JP4902592B2 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
JP4902592B2
JP4902592B2 JP2008123775A JP2008123775A JP4902592B2 JP 4902592 B2 JP4902592 B2 JP 4902592B2 JP 2008123775 A JP2008123775 A JP 2008123775A JP 2008123775 A JP2008123775 A JP 2008123775A JP 4902592 B2 JP4902592 B2 JP 4902592B2
Authority
JP
Japan
Prior art keywords
segment
data
unit
sinr
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008123775A
Other languages
English (en)
Other versions
JP2008219940A (ja
JP2008219940A5 (ja
Inventor
嘉孝 原
孝史 川端
一成 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008123775A priority Critical patent/JP4902592B2/ja
Publication of JP2008219940A publication Critical patent/JP2008219940A/ja
Publication of JP2008219940A5 publication Critical patent/JP2008219940A5/ja
Application granted granted Critical
Publication of JP4902592B2 publication Critical patent/JP4902592B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、複数のサブキャリアを用いて信号を伝送する無線伝送装置に関するものである。
高速デジタル移動通信において、周波数選択性フェージングを改善するための伝送方式としてマルチキャリアCDMA伝送方式が知られている。マルチキャリアCDMA伝送方式では、狭帯域のサブキャリアを並列に配置し、送信データを複数個複製して、複数のサブキャリアを用いて送信する。このように、狭帯域なサブキャリアを用意することにより、選択性フェージング環境においても、耐フェージング性の強い伝送方式となることが知られている。
図11はマルチキャリアCDMA方式を使用する従来の無線伝送装置を示す構成図であり、図において、1は送信対象のデータ、2はデータ1を複製して、複数の送信データ(以下、並列データという)を出力する複製部、3は複製部2から出力された並列データに拡散符号を乗算する符号乗算部、4は符号乗算部3により拡散符号が乗算された並列データに伝送キャリアを付加してマルチキャリア信号を生成するマルチキャリア変換部、5はマルチキャリア変換部4により生成されたマルチキャリア信号にガードインターバルを挿入し、そのマルチキャリア信号を周波数変換して送信アンテナ6に出力するガードインターバル挿入部、6は送信アンテナである。
7は受信アンテナ、8は受信アンテナ7により受信されたマルチキャリア信号の周波数を変換して、そのマルチキャリア信号からガードインターバルを除去するガードインターバル除去部、9はガードインターバル除去部8によりガードインターバルが除去されたマルチキャリア信号から各サブキャリアの情報シンボルを生成するマルチキャリア変換部、10はマルチキャリア変換部9により生成されたサブキャリアの情報シンボルにキャリア間のウエイトを乗算するキャリアウエイト乗算部、11はキャリアウエイト乗算部10の乗算結果を合成してデータ12を再生する合成部、12は合成部11により再生されたデータである。
次に動作について説明する。
まず、複製部2は、複数のサブキャリアを用いて、送信対象のデータ1を送信するため、送信対象のデータ1を複製して、同一内容の並列データを出力する。
符号乗算部3は、複製部2から並列データを受けると、その並列データに拡散符号を乗算する。
マルチキャリア変換部4は、符号乗算部3が並列データに拡散符号を乗算すると、乗算後の並列データに伝送キャリアを付加してマルチキャリア信号を生成する。
ガードインターバル挿入部5は、マルチキャリア変換部4がマルチキャリア信号を生成すると、そのマルチキャリア信号にガードインターバルを挿入し、そのマルチキャリア信号を周波数変換して送信アンテナ6に出力する。
このようにマルチキャリアCDMAでは、個々のデータ1は複数のサブキャリアによって伝送されるが、1つのデータ1を伝送するサブキャリアの組を「セグメント」と呼ぶことにすると、伝送帯域が複数のセグメントによって構成されて、複数のデータ1が同時に伝送される。
図12は周波数帯域で見たサブキャリアとセグメントの関係を示しており、1つのデータ1はセグメント単位で拡散され、複数のデータ1が異なるセグメントで伝送される。
ガードインターバル除去部8は、受信アンテナ7がマルチキャリア信号を受信すると、そのマルチキャリア信号の周波数を変換して、そのマルチキャリア信号からガードインターバルを除去する。
マルチキャリア変換部9は、ガードインターバル除去部8がマルチキャリア信号からガードインターバルを除去すると、そのマルチキャリア信号から各サブキャリアの情報シンボルを生成する。
キャリアウエイト乗算部10は、マルチキャリア変換部9が各サブキャリアの情報シンボルを生成すると、その情報シンボルにキャリア間のウエイトを乗算する。
合成部11は、キャリアウエイト乗算部10の乗算結果を合成してデータ12を再生する。
ここで、従来のマルチキャリアCDMAでは(非特許文献1を参照)、全てのセグメントを用いてデータを伝送する。しかし、セグメントによっては、フェージング環境が悪く、劣悪な伝搬特性となる場合もあるため、信号品質が悪くなることがあった。
これに対して最近では(非特許文献2を参照)、フェージング状態の良いセグメントのみを用いてデータの伝送を行う方式がある。
図13は本方式の適用例を示しており、(a)に示すように、セグメントによってフェージングの状態変化が異なる。従って、同一送信電力でデータを送信する場合でも、データの受信レベルがセグメントによって変化する。
本方式では、(b)に示すように、フェージング状態の良いセグメントを用いてデータの伝送を行うので、高品質なデータの伝送を行うことができる。
なお、送信局がフェージング状態を認識するには、図14に示すように、送信局がパイロット信号を受信局に送信し、受信局がセグメント毎のパイロット信号の受信レベルを測定する。受信局は受信レベルの測定結果から信号対干渉雑音比(SINR:Signal to interference plus noise ratio)を求め、そのSINRを送信局に通知する。
"下りリンクブロードバンドパケットOFCDMにおけるQ0Sを考慮したチャネル符号化の検討",RCS2001−181,Nov.2001. "高効率データ通信用MC−CDMA方式の一検討",RCS2000−261,March,2001.
従来の無線伝送装置は以上のように構成されているので、フェージング状態の良いセグメントを用いて高品質なデータの伝送を実現することができるが、1セグメント当り1つのデータしか伝送することができず、データの伝送効率を高めることができない課題があった。
この発明は上記のような課題を解決するためになされたもので、データ品質の劣化を招くことなく、データの伝送効率を高めることができる無線伝送装置を得ることを目的とする。
この発明に係る無線通信システムは、複数のサブキャリアの中から1以上のサブキャリアを1又は複数の受信局に割り当てる無線通信システムにおいて、各受信局向けのデータに割り当てられているサブキャリアに関する割り当て情報が前記データよりも早い時刻に送信局から送信され、1の受信局は前記送信局との間で相互に認識された制御情報に基づき、前記割り当て情報の一部に限定して自局宛のデータの割り当てられたサブキャリアに関する情報を検索することにより自局宛のデータの割り当てられたサブキャリアを認識し、前記割り当て情報を検索する範囲は受信局ごとに定められることを特徴とする。
この発明によれば、1の受信局は前記送信局との間で相互に認識された制御情報に基づき、前記割り当て情報の一部に限定して自局宛のデータの割り当てられたサブキャリアに関する情報を検索することにより自局宛のデータの割り当てられたサブキャリアを認識し、前記割り当て情報を検索する範囲は受信局ごとに定められるように構成したので、データ品質の劣化を招くことなく、データの伝送効率を高めることができる効果がある。


実施の形態1.
図1はこの発明の実施の形態1による無線伝送装置を示す構成図であり、図において、21は受信局から各セグメント(サブキャリア)の伝搬状態を示す伝搬情報を受信する伝搬情報受信部(監視手段)、22は伝搬情報受信部21により受信された伝搬情報を参照して、信号の伝送に使用する1以上のセグメントを選択するセグメント・符号選定部(選択手段)、23は送信対象のデータ、24はデータ23を複製して、複数の送信データ(以下、並列データという)を出力する複製部、25は複製部24から出力された並列データに拡散符号を乗算する符号乗算部、26は符号乗算部25により拡散符号が乗算された並列データに伝送キャリアを付加してマルチキャリア信号(多重化信号)を生成するマルチキャリア変換部である。なお、複製部24、符号乗算部25及びマルチキャリア変換部26から多重化手段が構成されている。
27はマルチキャリア変換部26により生成されたマルチキャリア信号にガードインターバルを挿入し、そのマルチキャリア信号の周波数をセグメント・符号選定部22により選択されたセグメントの周波数に変換して送信アンテナ28に出力するガードインターバル挿入部、28は送信アンテナである。なお、ガードインターバル挿入部27及び送信アンテナ28から送信手段が構成されている。
29は受信アンテナ、30は受信アンテナ29により受信されたマルチキャリア信号の周波数を変換して、そのマルチキャリア信号からガードインターバルを除去するガードインターバル除去部、31はガードインターバル除去部30によりガードインターバルが除去されたマルチキャリア信号から各セグメントの情報シンボルを生成するマルチキャリア変換部、32はマルチキャリア変換部31により生成されたセグメントの情報シンボルにキャリア間のウエイトを乗算するキャリアウエイト乗算部、33はキャリアウエイト乗算部32の乗算結果を合成してデータ34を再生する合成部、34は合成部33により再生されたデータである。
次に動作について説明する。
送信局が複数のデータ23をユーザ(1)の受信局に送信する場合、まず、送信局の伝搬情報受信部21が、ユーザ(1)の受信局から各セグメントの伝搬状態を示す伝搬情報を受信する。
具体的には、送信局がデータ23を送信する際、伝搬情報受信部21がパイロット信号を受信局に送信する。そして、受信局がセグメント毎のパイロット信号の受信レベルを測定し、その測定結果を伝搬情報として送信局に通知する方法が考えられる。
あるいは、送受信局間の双方向通信で同一の周波数を用いるTDD(Time Division Duplex)方式が採用される場合、逆方向通信における伝搬路特性を測定することにより、送信局が伝搬情報を得ることも可能である。
送信局のセグメント・符号選定部22は、伝搬情報受信部21が伝搬情報を受信すると、その伝搬情報を参照して、データ23の伝送に使用する1以上のセグメントを選択する。
即ち、送信局のセグメント・符号選定部22は、複数のセグメントの中から伝搬状態が良好なセグメントを選択するが、図2(a)の例では、セグメント(1)とセグメント(Q−2)の伝搬状態が良好であるため、セグメント(1)とセグメント(Q−2)を選択する。なお、セグメントの具体的な選択方法は後述する。
複数の複製部24は、複数のデータ23をユーザ(1)の受信局に送信するため、送信対象のデータ23を複製して並列データを出力する。
符号乗算部25は、複製部24から並列データを受けると、その並列データに拡散符号を乗算する。なお、各並列データには、相互に異なる拡散符号が乗算される。
マルチキャリア変換部26は、符号乗算部25が並列データに拡散符号を乗算すると、乗算後の並列データに伝送キャリアを付加してマルチキャリア信号を生成する。
ガードインターバル挿入部27は、マルチキャリア変換部26がマルチキャリア信号を生成すると、そのマルチキャリア信号にガードインターバルを挿入し、そのマルチキャリア信号の周波数をセグメント・符号選定部22により選択されたセグメントの周波数に変換して送信アンテナ28に出力する。
図2(b)の例では、伝搬状態が良好であるセグメント(1)又はセグメント(Q−2)の周波数にマルチキャリア信号の周波数を変換している。また、図2(b)の例では、2個のデータ23のマルチキャリア信号をセグメント(1)の周波数に変換し、4個のデータ23のマルチキャリア信号をセグメント(Q−2)の周波数に変換している。この理由は、より伝搬状態が良好なセグメントに多くのデータ23を割り当てる観点から、セグメント(Q−2)の伝搬状態の方がセグメント(1)の伝搬状態より良いため、セグメント(Q−2)に多くのデータ23を割り当てるようにしている。
なお、伝搬状態が良好でない他のセグメントには、1つのデータ23も割り当てられていないが、必ずしも割当数が零である必要はない。
ユーザ(1)の受信局のガードインターバル除去部30は、受信アンテナ29がマルチキャリア信号を受信すると、そのマルチキャリア信号の周波数を変換して、そのマルチキャリア信号からガードインターバルを除去する。
マルチキャリア変換部31は、ガードインターバル除去部30がマルチキャリア信号からガードインターバルを除去すると、そのマルチキャリア信号から各セグメントの情報シンボルを生成する。
キャリアウエイト乗算部32は、マルチキャリア変換部31が各セグメントの情報シンボルを生成すると、その情報シンボルにキャリア間のウエイトを乗算する。
合成部33は、キャリアウエイト乗算部32の乗算結果を合成してデータ34を再生する。
これにより、ユーザ(1)の受信局は、送信局から送信された複数のデータ23を取得することができる。
以上で明らかなように、この実施の形態1によれば、複数のセグメントの伝搬状態を監視して、複数のデータ23の伝送に使用するセグメントを選択し、その選択したセグメントを使用して、マルチキャリア変換部26により生成されたマルチキャリア信号を送信するように構成したので、データ品質の劣化を招くことなく、データの伝送効率を高めることができる効果を奏する。
実施の形態2.
上記実施の形態1では、各並列データに異なる拡散符号を乗算して、各並列データを1パケットとして取り扱うものについて示したが、マルチキャリア変換部26により生成されたマルチキャリア信号を1パケットとして取り扱うようにしてもよい。
これにより、上記実施の形態1よりも、パケットのヘッダ数を減らすことができるため、データの伝送効率を更に高めることができる。
実施の形態3.
上記実施の形態1では、送信局が複数のデータ23をユーザ(1)の受信局に送信するものについて示したが、送信先が異なるデータ23を符号多重してもよい。
即ち、送信局の伝搬情報受信部21が、図3(a)に示すように、ユーザ(1)〜(K)の受信局から各セグメントの伝搬状態を示す伝搬情報を受信する。
送信局のセグメント・符号選定部22は、伝搬情報受信部21がユーザ(1)〜(K)の受信局から伝搬情報を受信すると、各ユーザ毎に、当該ユーザの伝搬情報を参照して、データ23の伝送に使用する1以上のセグメントを選択する。
以降、上記実施の形態1と同様であるため説明を省略するが、この実施の形態3によれば、図3(b)に示すように、送信先が異なるデータであっても、伝搬状態が良好であれば、同一のセグメントを使用して伝送される。
実施の形態4.
上記実施の形態1では、セグメントの具体的な選択方法を説明していないが、伝搬状態が基準の状態を上回るセグメントの中で、伝搬状態が最良のセグメントから順番にデータ23の伝送に使用するセグメントとして選択するようにしてもよい。
具体的には、図6に示すようなスケジューリングアルゴリズムを実施してセグメントを選択する。
送信局は、図4に示すように、先頭にプリアンブル(プリアンブルには送信先のアドレス等が含まれている)が配置され、その後にデータが配置されている1フレームの伝送と同時に、パイロット信号を送信する。
各ユーザの受信局は、セグメント毎のパイロット信号の受信レベルを測定し、その受信レベルの測定結果から信号対干渉雑音比(SINR:Signal to interference plus noise ratio)を推定し、そのSINR推定値を伝搬情報として送信局に通知する。
送信局のセグメント・符号選定部22は、伝搬情報受信部21が各ユーザの受信局からSINR推定値を受信すると、例えば、図6のスケジューリングアルゴリズムを実施してセグメントを選択する。
即ち、セグメント・符号選定部22は、図5に示すように、伝搬情報受信部21により受信されたSINR推定値を参照して、全ユーザ・全セグメントに対応するSINRテーブルを作成する(ステップST1)。なお、SINRテーブルにおける各要素γK,qは、ユーザK・セグメントqのSINR推定値である。
ただし、送信パケットを有しないユーザに関するSINR推定値をSINRテーブルから除外し、また、パケットの多重数が既に最大多重数Gに達しているセグメントがあれば、そのセグメントに関するSINR推定値をSINRテーブルから除外する(ステップST2)。
セグメント・符号選定部22は、SINRテーブルの要素γK,qが残っている場合、SINRテーブルの中で、最も高いSINR推定値γmaxを検索する(ステップST3,ST4)。
そして、セグメント・符号選定部22は、最も高いSINR推定値γmaxが基準状態を示すSINR閾値γthより大きい場合には、そのSINR推定値γmaxに対応するユーザKの1パケットを、そのSINR推定値γmaxに対応するセグメントqに割り当てるようにする(ステップST5,ST6)。
なお、そのSINR推定値γmaxがSINR閾値γthより小さい場合には、セグメントの選択処理を終了する。
この実施の形態4によれば、SINR推定値が高いセグメントが優先的に選択されるので、伝送品質の高いセグメントを効率的に選択することができる。
実施の形態5.
上記実施の形態4では、特に言及していないが、パケットの許容遅延量を考慮して、パケットの伝送に使用するサブキャリアを選択するようにしてもよい。
具体的には次の通りである。
有線系から基地局(送信局)に到達したパケットは、許容遅延量に応じて送信バッファに分類される。図7は基地局のバッファ構成を示しており、基地局では各ユーザ・許容遅延量毎にバッファを用意している。
次のフレームで必ず送信する必要のあるユーザKへのパケットは、ユーザKのMTD(Maximum Tolerable Delay)が“1”のFIFOバッファに蓄積され、r番目のフレームまでに送信する必要のあるユーザKへのパケットは、ユーザKのMTD(r)のFIFOバッファに蓄積される。
また、1フレーム分のスケジューリングが完了した段階で、MTD(1)に残ったパケットは全て廃棄され、MTD=2以上のバッファはMTDの値を1つ減らすようにする。このような操作により、許容遅延量が少ない順に各ユーザのパケットが分類される。
次に、送信局である基地局は、セル内のユーザからSINR推定値の報告を受けた後、許容遅延量を考慮したスケジューリングアルゴリズムを実施して(図8を参照)、パケットを送信するセグメントを選択する。
即ち、送信局のセグメント・符号選定部22は、まず、MTDの初期値を“r”に設定し(ステップST11)、伝搬情報受信部21により受信されたSINR推定値を参照して、全ユーザ・全セグメントに対応するSINRテーブルを作成する(ステップST12)。
ただし、MTD(r)の送信パケットを有しないユーザに関するSINR推定値をSINRテーブルから除外し、また、パケットの多重数が既に最大多重数Gに達しているセグメントがあれば、そのセグメントに関するSINR推定値をSINRテーブルから除外する(ステップST13)。
セグメント・符号選定部22は、SINRテーブルの要素γK,qが残っている場合、SINRテーブルの中で、最も高いSINR推定値γmaxを検索する(ステップST14,ST15)。
そして、セグメント・符号選定部22は、最も高いSINR推定値γmaxが基準状態を示すSINR閾値γthより大きい場合には、そのSINR推定値γmaxに対応するユーザKの1パケットを、そのSINR推定値γmaxに対応するセグメントqに割り当てるようにする(ステップST16,ST18)。
なお、そのSINR推定値γmaxがSINR閾値γthより小さい場合や、SINRテーブルの要素γK,qが残っていない場合は、MTDの値rをインクリメントして、ステップST12の処理に戻る。
この実施の形態5によれば、伝送品質の高いセグメントを更に効率的に選択することができる。
実施の形態6.
上記実施の形態4等では、受信局が各セグメントのSINR推定値を送信局に通知するものについて示したが、そのSINR推定値の通知に要する情報量をなるべく少なくすることが重要な課題となる。
そこで、この実施の形態6では、全てのセグメントのSINR推定値を通知するのではなく、SINR推定値が所定の閾値より高いセグメントを検索し、そのセグメントのSINR推定値のみを送信局に通知するようにする。
図9はSINR推定値の通知用フォーマットの一例であり、この通知用フォーマットでは、セグメント番号と当該セグメントに対応するSINR推定値を対にして通知する。
これにより、SINR推定値の通知に要する情報量を削減することができる。
実施の形態7.
上記実施の形態6では、SINR推定値が所定の閾値より高いセグメントを検索し、そのセグメントのSINR推定値のみを送信局に通知するものについて示したが、受信局が各セグメントのSINR推定値を求めると、そのSINR推定値が属するレンジ(SINR推定値が属するSINRの範囲)を特定し、そのレンジを送信局に通知するようにしてもよい。
各セグメントのSINR推定値を正確に伝達するには、そのSINR推定値の情報ビット数を増やす必要があるが、その場合、SINR推定値の通知に要する情報量が増加する不具合が生じる。
そこで、この実施の形態7では、受信局が各セグメントのSINR推定値を求めると、図10に示すような対応表を参照して、そのSINR推定値が属するレンジを特定し、そのレンジのレンジ情報を送信局に通知する。
例えば、SINR推定値が1dB以下の場合には、「000」のレンジ情報を送信し、SINR推定値が1〜2dBの場合には「001」のレンジ情報を送信する。
これにより、SINR推定値の通知に要する情報量を削減することができる。
実施の形態8.
上記実施の形態1〜7では、受信局における自局宛のパケットの取得方法については特に言及していないが、セグメントを使用して送信されたパケットに含まれているアドレスを確認して、自局宛のパケットを取得するようにすればよい。
即ち、スケジューリング利用時には時間毎に伝搬環境も変化し、希望信号が割り当てられるセグメントも時間的に変化する。従って、自局当てのパケットが使用されるセグメントや符号を受信局が知る必要がある。
この実施の形態8では、受信局がフレーム内の全てのパケットに含まれているアドレスを自局のアドレスと照合し、アドレスが一致する場合、当該パケットを自局宛のパケットであると認識して取得するようにする。
これにより、スケジューリング利用時の利用セグメントが時間的に変化する環境化でも、パケットの受信が可能になる。
実施の形態9.
上記実施の形態8では、フレーム内の全てのパケットに含まれているアドレスを自局のアドレスと照合するものについて示したが、上記実施の形態6のように、伝搬状態が良好なセグメントのSINR推定値のみを送信局に通知するような場合には、伝搬状態が良好なセグメント以外のセグメントを使用してパケットを送信されることはないので、SINR推定値を通知したセグメントを使用して送信されたパケットのアドレスのみを照合するようにしてもよい。
これにより、自局宛のパケットの検索に要する時間を短縮することができる。
実施の形態10.
上記実施の形態1〜9では、複数のセグメントの伝搬状態を監視して、複数のデータ23の伝送に使用するセグメントを選択し、その選択したセグメントを使用して、マルチキャリア変換部26により生成されたマルチキャリア信号を送信するものについて示したが、複数のセグメントの伝搬状態を監視して、複数のセグメントに適用する変調方式を決定し、その変調方式でマルチキャリア変換部26により生成されたマルチキャリア信号を変調して送信するようにしてもよい。
即ち、決定手段を構成するセグメント・符号選定部22は、伝搬情報受信部21が各セグメントの伝搬情報を受信すると、各セグメントの伝搬情報を参照して、各セグメントの伝搬状態を把握し、例えば、伝搬状態が良好なセグメントでは、QPSK,16QAM,256QAMなどの多値数の大きい変調方式を利用する。
一方、伝搬状態が悪いセグメントでは、BPSK,QPSKなどの多値数の低い変調方式を利用する。
このように、伝搬状態に応じて変調方式を変更することにより、高効率な伝送を行うことが可能となる。なお、同一のセグメントにおいても、多重する信号によって変調方式が異なっていてもよい。
なお、この実施の形態10では、複数のセグメントの伝搬状態を監視して、複数のセグメントに適用する変調方式を決定するものについて示したが、上記実施の形態1〜9のようなセグメントの選択処理を同時に実施するようにしてもよい。
この発明の実施の形態1による無線伝送装置を示す構成図である。 セグメントの選択処理を説明する説明図である。 セグメントの選択処理を説明する説明図である。 フレーム構成を示す説明図である。 SINRテーブルを示す説明図である。 スケジューリングアルゴリズムを示すフローチャートである。 基地局のバッファ構成を示す説明図である。 スケジューリングアルゴリズムを示すフローチャートである。 SINR推定値の通知用フォーマットを示す説明図である。 SINR推定値とレンジ情報の対応関係を示す説明図である。 従来の無線伝送装置を示す構成図である。 周波数帯域で見たサブキャリアとセグメントの関係を示す説明図である。 フェージングの状態変化等を示す説明図である。 フェージング状態の認識処理を示す説明図である。
符号の説明
21 伝搬情報受信部(監視手段)、22 セグメント・符号選定部(選択手段、決定手段)、23 データ、24 複製部(多重化手段)、25 符号乗算部(多重化手段)、26 マルチキャリア変換部(多重化手段)、27 ガードインターバル挿入部(送信手段)、28 送信アンテナ(送信手段)、29 受信アンテナ、30 ガードインターバル除去部、31 マルチキャリア変換部、32 キャリアウエイト乗算部、33 合成部、34 データ。

Claims (1)

  1. 複数のサブキャリアの中から1以上のサブキャリアを1又は複数の受信局に割り当てる無線通信システムにおいて、
    受信局向けのデータに割り当てられているサブキャリアに関する割り当て情報が前記データよりも早い時刻に送信局から送信され、
    1の受信局は前記送信局との間で相互に認識された制御情報に基づき、前記割り当て情報の一部に限定して自局宛のデータの割り当てられたサブキャリアに関する情報を検索することにより自局宛のデータの割り当てられたサブキャリアを認識し、
    前記割り当て情報を検索する範囲は受信局ごとに定められることを特徴とする無線通信システム。
JP2008123775A 2008-05-09 2008-05-09 無線通信システム Expired - Lifetime JP4902592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123775A JP4902592B2 (ja) 2008-05-09 2008-05-09 無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123775A JP4902592B2 (ja) 2008-05-09 2008-05-09 無線通信システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005259497A Division JP2006014372A (ja) 2005-09-07 2005-09-07 無線通信方法および送信機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011054316A Division JP5037706B2 (ja) 2011-03-11 2011-03-11 無線通信システム、受信局、送信局

Publications (3)

Publication Number Publication Date
JP2008219940A JP2008219940A (ja) 2008-09-18
JP2008219940A5 JP2008219940A5 (ja) 2009-02-26
JP4902592B2 true JP4902592B2 (ja) 2012-03-21

Family

ID=39839322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123775A Expired - Lifetime JP4902592B2 (ja) 2008-05-09 2008-05-09 無線通信システム

Country Status (1)

Country Link
JP (1) JP4902592B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
JP3631086B2 (ja) * 2000-02-23 2005-03-23 株式会社エヌ・ティ・ティ・ドコモ マルチキャリアcdma無線伝送方法及び装置
JP3826653B2 (ja) * 2000-02-25 2006-09-27 Kddi株式会社 無線通信システムのサブキャリア割当方法
JP2001345752A (ja) * 2000-06-05 2001-12-14 Kddi Research & Development Laboratories Inc 無線アクセスシステム
JP2002016577A (ja) * 2000-06-28 2002-01-18 Sony Corp 通信方法および通信装置

Also Published As

Publication number Publication date
JP2008219940A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4067873B2 (ja) 無線伝送装置
JP2006014372A (ja) 無線通信方法および送信機
KR100742127B1 (ko) 직교 주파수 분할 다중 접속 이동통신시스템에서 상향링크 랜덤 접속 채널을 송수신하기 위한 장치 및 방법
US9853796B2 (en) Terminal apparatus and method for controlling channel quality indicator transmission
JP4490921B2 (ja) 基地局装置及び受信方法
JP4482293B2 (ja) 基地局装置および送信方法
EP1492280B1 (en) Quality driven adaptive channel assignment in an OFDMA radio communication system
JP4564501B2 (ja) 周波数分割通信システム
JP3987858B2 (ja) 無線通信システム、無線送信装置、無線受信装置及び無線通信方法
JP2004312291A (ja) 基地局装置及び通信方法
WO2008054143A1 (en) Method and apparatus for determining reporting period of channel quality information in multi-carrier wireless system
JP4902592B2 (ja) 無線通信システム
JP5037706B2 (ja) 無線通信システム、受信局、送信局
KR100877746B1 (ko) Ofdma기반의 무선통신 시스템에서 맵 구성 방법 및이를 이용한 프레임 전송 장치
JP4982528B2 (ja) 基地局装置、移動局装置および送信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term