WO2007014823A2 - Molded sio2 element from two layers, method for producing the same and use thereof - Google Patents

Molded sio2 element from two layers, method for producing the same and use thereof Download PDF

Info

Publication number
WO2007014823A2
WO2007014823A2 PCT/EP2006/063934 EP2006063934W WO2007014823A2 WO 2007014823 A2 WO2007014823 A2 WO 2007014823A2 EP 2006063934 W EP2006063934 W EP 2006063934W WO 2007014823 A2 WO2007014823 A2 WO 2007014823A2
Authority
WO
WIPO (PCT)
Prior art keywords
sic
shaped body
dispersion
layers
die
Prior art date
Application number
PCT/EP2006/063934
Other languages
German (de)
French (fr)
Other versions
WO2007014823A3 (en
Inventor
Fritz Schwertfeger
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2007014823A2 publication Critical patent/WO2007014823A2/en
Publication of WO2007014823A3 publication Critical patent/WO2007014823A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/265Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor pressure being applied on the slip in the filled mould or on the moulded article in the mould, e.g. pneumatically, by compressing slip in a closed mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Definitions

  • SiO 2 molding of two layers, process for their preparation and use
  • the invention relates to amorphous porous open-pore SiC> 2 molded bodies made of two layers, to processes for their production and to their use.
  • Amorphous porous open-pored SiC> 2 shaped bodies are used in many technical fields. Examples include filter materials, thermal insulation materials or heat shields.
  • quartz goods of all kinds.
  • Highly pure SiO 2 ⁇ shaped bodies can serve as "preform" for glass fibers or optical fibers, for example.
  • crucibles for pulling silicon single crystals can also be produced in this way.
  • Amorphous porous open-pored SiO 2 ⁇ shaped bodies can in principle be produced by pressing corresponding SiO 2 ⁇ powders or by a wet chemical process.
  • porous SiC> 2 shaped bodies are therefore the wet-chemical route.
  • the main disadvantage of the sol-gel route is the low resulting solids content in the molding. This leads to large fractures and fracture problems, especially with larger geometries, and to enormous shrinkage in the case of later sintering.
  • a higher degree of filling of the dispersion is achieved by the addition of SiC> 2 particles, so that the resulting solids content in the shaped body is higher.
  • Such a method is described in EP 705797 and in EP 318100.
  • EP 1506947 A2 describes a process in which a solids content of more than 80% by weight can be achieved by using different particle sizes. This leads to a much higher strength of the SiO 2 ⁇ molded body, however, the preparation of such a dispersion is very expensive.
  • EP 653381 and DE-OS 2218766 disclose a slip casting method in which a dispersion of quartz glass particles in water is prepared and the SiC> 2 shaped body is formed by slow removal of water from a porous mold. Here, too, solid contents are achieved that are over 80Gew .-%. However, due to the diffusion-dependent removal of water, the slip casting process is very time-consuming and can only be used for thin-walled molded parts.
  • the object of the present invention was therefore to provide a binder-free amorphous porous open-pore SiC> 2 shaped body which is inexpensive to manufacture.
  • Another object of the present invention was to provide a process for producing such an amorphous porous open-pore SiC> 2 shaped body.
  • the former object is achieved by an amorphous porous open-pored SiC> 2 shaped body, which is characterized in that it consists of two or more SiO 2 layers, which ne have different composition, or are structured differently in their structure.
  • the shaped body according to the invention preferably consists of two or more SiC> 2 layers, which have a different composition, and which have different structure in structure.
  • It preferably consists of 2 to 5 SiO 2 layers, more preferably 2 SiO 2 layers.
  • a different structure is present, for example, when the particle sizes or the particle size distributions are different.
  • a different composition is, for example, when the contamination of the layers is different.
  • the further object is achieved by a method in which, in a first step, a first dispersion containing SiC> 2 particles is pumped into a die-casting mold of a die-casting machine, in which the dispersion is dewatered to form a SiC> 2 shaped body via an inner and an outer porous plastic membrane Is, the SiC> 2 molded body is unilaterally demolded and in a second step by means of a second dispersion containing SiC> 2 particles, which differs from the first dispersion in their composition, on the molded side of the SiC> 2 shaped body another Layer is formed by means of a further die-casting mold and the resulting molded body is removed from the mold.
  • the die used in the process consists of two porous membrane parts which form a closed space having the shape of the desired shaped body. At one or more points there is a corresponding supply line in the membrane, which is the filling of the closed Die casting mold allows.
  • the two die-cast parts are held together with a closing pressure, which allows filling and a body formation.
  • the shaped body obtained is demolded either on the inner or the outer side.
  • a further layer is formed on the demoulded side of the SiC> 2 shaped body by means of a further die casting mold.
  • a second die-casting mold again consisting of a porous membrane, is now moved together with the external die casting mold which contains the already formed shaped body.
  • the inner die has such a shape and size that it forms a closed gap to the already formed moldings, which corresponds in shape and thickness of the desired second layer.
  • a further dispersion containing SiC> 2 particles is pumped into the die casting in which the dispersion is dewatered over the inner and partly over the already present SiC> 2 shaped body to form a new layer on the already present SiC> 2 shaped body ,
  • At one or more points there is again a corresponding supply line in the inner membrane which allows the filling of the closed die casting mold.
  • the two die-casting molds Parts are held together with a closing pressure that allows filling and potting under the pressures used in each case.
  • a two-sided demolding of the two-layer molded body formed takes place while the two die-cast moldings are moved apart and simultaneous exposure of the porous membranes to compressed air and / or water.
  • the compressed air or the water dissolves the two-layer shaped body of the two porous membranes by some of the water penetrated into the porous membranes is pressed in the reverse direction to the two-layer molding and forms a thin film of water between two-layer molding and membrane.
  • a further layer on the outer side are formed, carried out a one-sided demoulding of the formed SiC> 2 shaped body with moving apart of the two die-cast moldings and simultaneous loading of the outer porous membranes with compressed air and /or water.
  • the compressed air or the water dissolves the shards in this case, as already described by the outer porous membrane.
  • a second outer die again consisting of a porous membrane, is now collapsed with the inner die casting containing the formed body already formed.
  • the outer die has such a shape and size that it forms a closed gap to the already formed moldings, which corresponds in shape and thickness of the desired second layer.
  • Another dispersion containing SiC> 2 particles is pumped into the die casting in which the dispersion is dewatered over the outer and partly over the already present SiC> 2 shaped body to form a new layer on the already present SiC> 2 shaped body ,
  • At one or more points is again a corresponding supply line in the outer membrane, which allows the filling of the closed die casting mold.
  • the two die-cast parts are held together with a closing pressure, which allows filling and a body formation under the pressures used in each case.
  • a two-sided demoulding of the formed two-layer molded article takes place again, with the two die-cast moldings moving out of contact with each other and simultaneous exposure of the porous membranes to compressed air and / or water.
  • the compressed air or water dissolves the two-layer molded article from the two porous membranes by pushing some of the water penetrated into the porous membranes in the reverse direction to the two-layer molded article and forming a thin film of water between the two-layer molded article and the membrane.
  • SiC> 2 moldings are obtained, whose two layers have different composition and / or structure, since the respective ones used
  • SiC> 2 dispersions differ in their composition.
  • the inner layer preferably has a foreign atom content, in particular of metals of ⁇ 300 ppmw (parts per million by weight), preferably ⁇ 100 ppmw, more preferably ⁇ 10 ppmw and most preferably ⁇ 1 ppmw.
  • SiC> 2 shaped bodies with more than two layers by the process according to the invention.
  • several layers are used successively formed in the manner described on a SiC> 2 molded body produced in a first step.
  • the dispersions used have a degree of filling of amorphous SiC> 2 particles between 10 and 80% by weight, preferably between 50 and 80% by weight and particularly preferably between 65 and 75% by weight.
  • polar or nonpolar organic solvents such as e.g. Alcohols, ethers, esters, organic acids, saturated or unsaturated hydrocarbons, or water or mixtures thereof.
  • alcohols such as methanol, ethanol, propanol, or acetone or water or mixtures thereof.
  • acetone and water or mixtures thereof are particularly preferred.
  • the above-described dispersants are used in a highly pure form, as described, for example, in US Pat. can be obtained by literature methods or are commercially available.
  • the water is treated with a mineral acid, e.g.
  • HCl, HF, H 3 POoH 2 SCU or silica or ionogenic additives such as fluorine salts.
  • Particularly preferred is the addition of HCl or HF, most preferably HF.
  • a pH of 2-7 preferably 3-6 should be set in the dispersion.
  • a mineral base may be added to the water, such as NH 3 , NaOH or KOH. Particularly preferred is NH 3 and NaOH, most preferably NH 3 .
  • a pH of 7-11, preferably 9-10 should be set.
  • the specific gravity of the amorphous SiO 2 particles should preferably be between 1.0 and 2.2 g / cm 3 . Particularly preferably, the particles have a specific gravity of between 1.8 and 2.2 g / cm 3 . Most preferably, the particles have a specific gravity between 2.0 and 2.2 g / cm 3 .
  • amorphous SiO 2 particles having ⁇ 3 OH groups per nm 2 on their outer surface, more preferably ⁇ 2
  • the amorphous SiO 2 particles should preferably have a particle size distribution with a D 50 value between 1-200 ⁇ m, preferably between 1-100 ⁇ m, particularly preferably between 10-50 ⁇ m and very particularly preferably between 10-30 ⁇ m.
  • amorphous SiO 2 particles having a BET surface area of 0.001 m 2 / g-50 m 2 / g, more preferably of 0.001 m 2 / g-5m 2 / g, very particularly preferably of 0.01 m 2 / g. 0.5 m 2 / g.
  • the amorphous SiO 2 particles should preferably have a crystalline content of at most 1%. Preferably should they also show as possible no interaction with the dispersant.
  • amorphous Si02 particles of different origin such as silica sintered (fused silica) and any type of amorphous sintered or compacted SiC> 2. They are therefore preferably suitable for the preparation of the dispersion according to the invention.
  • Corresponding material can be produced in a conventional manner in the oxyhydrogen flame. It is also commercially available, e.g. under the name Exelica® at Tokoyama, Japan. Furthermore, such a material can be prepared in a known manner via a sol-gel process. It is also commercially available, for. B. under the name MKC® Mitsubishi Chemical, Japan.
  • particles of other origin may also be used, e.g. Natural quartz, quartz glass sand, glassy silica, ground quartz glass or ground quartz glass waste, and chemically produced silica glass, such as silica glass. precipitated silica, fumed silica (fumed silica prepared by flame pyrolysis), xerogels, or aerogels.
  • the amorphous SiU 2 particles are preferably precipitated silicas, finely divided silicas, fused silica or compacted Si02 particles, more preferably highly dispersed silicic acid or fused silica, most preferably fused silica. Mixtures of said different Si02 particles are also possible and preferred.
  • amorphous SiO 2 particles having a different, preferably bimodal, particle size distribution.
  • Such Si02 particles are obtained by admixture on SiC> 2 particles, such as fused or fumed silica with a particle size of 1-100 nm, preferably 10 to 50 nm, in an amount of 0.1 to 50 wt.%, Particularly preferably in an amount of 1 to 30 % By weight, very particularly preferably in an amount of from 1 to 10% by weight to the abovementioned amorphous SiC> 2 particles.
  • the nanoscale SiC> 2 particles act as a kind of inorganic binder between the much larger SiC> 2 particles, but not as filler material to achieve a higher degree of filling.
  • Such SiO 2 particles preferably have a bimodal particle size distribution in the dispersion.
  • the particles described above are present in the dispersion for the inner layer in a highly pure form, i. preferably with a sum of the impurity at metal atoms smaller than 5 ppm, preferably smaller than 1 ppm, particularly preferred smaller than 500 ppm, especially preferred smaller than 200 ppm.
  • the sum of metal impurities in the outer layer is less critical and therefore may be higher.
  • the dispersion for the outer layer additionally contains metal particles, metal compounds or metal salts.
  • Compounds that are soluble in the dispersing agent are preferred, particularly preferred are water-soluble metal salts.
  • the molded article is exposed at high temperatures, e.g. a sintering process additional positive properties, as are familiar to those skilled in the glass production.
  • the metal particles, metal compounds or metal salts may be added during and / or after the preparation of the dispersion.
  • the dispersant is introduced and the SiC> 2 particles slowly and preferably continuously added.
  • the Si ⁇ 2 ⁇ particles can also be added in several steps (in portions).
  • the pore size and distribution in the SiC> 2 shaped bodies produced from the dispersion can be adjusted in a targeted manner.
  • dispersing devices it is possible to use all devices and devices known to the person skilled in the art. Preference is given to devices which contain no metal parts which could come into contact with the dispersion in order to avoid metal contamination due to abrasion.
  • the dispersion should be at temperatures between O 0 C and 5O 0 C, preferably between 5 0 C and 3O 0 C take place.
  • the gases possibly contained in the dispersion e.g. Air are removed. This is preferably carried out during and / or after complete dispersion.
  • the dispersion is transferred to the die casting mold of a die casting machine, in which the dispersion is dewatered under pressure and to form the SiC> 2 shaped body.
  • the filling of the die casting mold with the dispersion takes place in a manner known to the person skilled in the art, such as, for example, by pumping.
  • the filling can be carried out at any pressure, but is preferably carried out at pressures between 0 and 100 bar, more preferably at pressures between 5 and 30 bar and most preferably between 5 and 10 bar.
  • Shard formation preferably takes place under pressures between 0 and 100 bar, more preferably at pressures between 5 and 30 bar and most preferably between 5 and 10 bar.
  • the shards thicknesses of the individual layers formed are between 1 and 50 mm, preferably between 3 and 10 mm.
  • the conversion of the dispersion and the body formation can be carried out at temperatures of from 0 ° C. to the boiling point of the dispersant. Preference is given to temperatures between 2O 0 C and 3O 0 C.
  • membranes are preferably used as porous membranes which have an open porosity between 5 and 60% by volume, preferably between 10 and 30% by volume.
  • the pore size of the membrane may be larger, smaller or equal to the size of the SiO 2 particles used.
  • a membrane with a pore size between 10 nanometers and 100 micrometers, more preferably between 100 nanometers and 50 micrometers, most preferably between 100 nanometers and 30 micrometers is used.
  • the porous membrane is preferably completely wettable by the solvent of the dispersion, preferably water, so that a uniform body formation can take place.
  • any known in the art plastic is chemically resistant and contains no free, in particular no metallic residues. Preference is given to plastics which are already used in commercial pressure slip casting. Particularly preferred are polymethyl methacrylates and polymethyl methacrylates.
  • the thickness of the porous membrane depends on the shape of the shaped body to be produced.
  • the formed fragments have a solids content between 80 and 95 wt .-%.
  • the desiccated SiC> 2 molded body is dried by means of methods known to the person skilled in the art, such as e.g. Vacuum drying, drying by means of hot gases, e.g. Nitrogen or air,
  • the drying takes place at temperatures in the molding between 25 0 C and the boiling point of the dispersant in the pores of the molding.
  • the drying times depend on the volume of the shaped body to be dried, the maximum layer thickness, the dispersant and the pore structure of the shaped body.
  • the shrinkage depends on the degree of filling of the layers of the moist molded body. At a degree of filling of 80% by weight, the volume shrinkage is ⁇ 2.5% and the linear shrinkage is ⁇ 1, 0% by volume. At a higher degree of filling, the shrinkage is correspondingly lower.
  • the shrinkage during drying must be approximately equal. This can be done with layers of different structure (particle morphology or particle size distribution) e.g. be achieved by a variation of the degree of filling and or the variation of the particle size distribution.
  • the density of the molding according to the invention is between 1.4 g / cm 3 and 1.8 g / cm 3 .
  • the moldings obtainable in this way are an amorphous, open-pore, SiC> 2 shaped body of any dimensions and shape, which consists of at least two layers of different composition and / or structure.
  • the shaped articles described can be used in a variety of ways due to their special properties, e.g. are used as filter materials, thermal insulation materials, heat shields, catalyst support materials as well as "preform" for glass fibers, optical fibers, optical glasses or quartz goods of all kinds.
  • the porous shaped bodies can be completely or partially mixed with a wide variety of molecules, substances and substances. Preference is given to molecules, substances and substances which are catalytically active. All methods known to those skilled in the art can be used, as described, for example, in US Pat. No. 5,655,046.
  • the shaped bodies according to the invention can still be subjected to sintering. In this case, all methods known to those skilled in the art, such as vacuum sintering, zone sintering, arc sintering, sintering by means of plasma or laser, inductive sintering or sintering in a gas atmosphere or gas stream can be used.
  • the shaped bodies according to the invention as described in DE C 10158521, DE A 10260320 and DE A 10324440 can still be glazed by means of CO2 lasers.
  • the layer structure of the amorphous porous open-pore shaped bodies is lost. If a complete sintering, so no layer structure in the molding is no longer available. If the layers of the shaped body differ in their proportion of metal atoms, this difference is still present after complete sintering.
  • the invention thus also relates to a silica glass molded body which is characterized in that it has a gradient with respect to the metal atom concentration.
  • the silica glass moldings produced in this way are suitable in principle for all applications in which silica glass is used.
  • Preferred fürsfeider are quartz goods of all kinds, glass fibers, optical fibers and optical glasses.
  • a particularly preferred field of application are high-purity silica glass crucibles for drawing silicon single crystals.
  • the sintered silica glass body has additional properties.
  • the dispersion for the outer layer or the outer layer is wholly or partly with Added compounds that promote or cause cristobalite formation.
  • All compounds known to those skilled in the art which promote and / or effect cristobalite formation can be used, as described, for example, in EP 0753605, US Pat. No. 5,053,359 or GB 1,428,788. BaOH and / or aluminum compounds are preferred here.
  • crucibles are obtained for crystal pulling of Si single crystals which have a cristobalite layer on the outside. These crucibles are particularly suitable for crystal pulling, since they are more stable in temperature and z. B. contaminate a silicon melt less. As a result, a higher yield in crystal pulling can be achieved.
  • Fig. 1 shows schematically the sequence of the method according to the invention.
  • Fig. 3 shows a crack-free dried two-layer 14 "green body crucible
  • Fig. 4 shows a fully sintered body in which the boundary layer between the layers is no longer detectable
  • Example 1 serves to further explain the invention.
  • Example 1
  • the dispersion was subjected to a slight vacuum (0.8 bar) for 10 minutes to remove any trapped air bubbles.
  • the dispersion thus prepared consisted of 8900 g of solid, which corresponds to a solids content of 70 wt .-% (of which in turn 92% fused silica and 8% fumed silica).
  • the SiC> 2 dispersion is pressed from a feed tank at a pressure of 10 bar through a pipe system between two open-pored plastic membranes made of methyl methacrylate.
  • the membranes have a porosity of 30% by volume and an average pore radius of 20 ⁇ m.
  • the distance between the two membranes to each other allow the formation of a 5 mm thick shards.
  • the two diaphragms are subjected to a closing pressure of 200 bar.
  • the inner membrane is now lowered to another outer open-pored plastic membranes of methyl methacrylate.
  • This membrane also has a porosity of 30% by volume and an average pore radius of 20 ⁇ m.
  • the distance of the new outer membranes to the already formed cullet allows the formation of another layer of 5 mm on the cullet.
  • the two diaphragms are subjected to a closing pressure of 200 bar.
  • the dispersion was subjected to a slight vacuum (0.8 bar) for 10 minutes to remove any trapped air bubbles.
  • the dispersion thus prepared consisted of 8900 g of solid, which corresponds to a solids content of 70% by weight (of which in turn 92% fused silica and 8% fumed silica).
  • the SiC> 2 dispersion is pressed from a feed tank at a pressure of 10 bar through a conduit system into the space between the already formed shard and the second outer membrane.
  • the molding is released from the outer membrane.
  • the inner membrane is moved upwards.
  • the molding now hangs on the inner membrane.
  • a positive base is positioned under the molded body.
  • the molding is deposited on the pad and released from the inner membrane.
  • the inner membrane is in turn moved upwards.
  • the amorphous open-pored porous shaped body produced in this way has a solids content of 89% by weight and a residual water content of 11% by weight. It consists of two different layers with regard to the fused silica particles contained. Fig. 2 shows these layers in section through the shards.
  • Fig. 3 shows this molding. After a vacuum sintering (10 -3 mbar) no longer visually distinguish the two layers for 2 hours at 1600 0 C Can (see Fig. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

The invention relates to an amorphous porous open-pore molded SiO2 element which is characterized by being constituted of two or more SiO2 layers that have a different composition or that have a different structure.

Description

Siθ2-Formkörper aus zwei Schichten, Verfahren zu ihrer Herstellung und VerwendungSiO 2 molding of two layers, process for their preparation and use
Die Erfindung betrifft amorphe poröse offenporige SiC>2-Form- körper aus zwei Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung.The invention relates to amorphous porous open-pore SiC> 2 molded bodies made of two layers, to processes for their production and to their use.
Amorphe poröse offenporige SiC>2-Formkörper werden auf vielen technischen Gebieten benutzt. Als Beispiele seien Filtermateri- alien, Wärmedämmmaterialien oder Hitzeschilder genannt.Amorphous porous open-pored SiC> 2 shaped bodies are used in many technical fields. Examples include filter materials, thermal insulation materials or heat shields.
Ferner können aus amorphen porösen offenporigen Siθ2~Form- körpern mittels Sinterung und/oder Schmelzen Quarzgüter aller Art hergestellt werden. Hochreine Siθ2~Formkörper können dabei z.B. als "preform" für Glasfasern oder Lichtleitfasern dienen. Darüber hinaus können auf diesem Wege auch Tiegel für das Ziehen von Siliziumeinkristallen hergestellt werden.Furthermore, from sintered and / or melted amorphous porous open-pored SiO 2 -formed bodies, it is possible to produce quartz goods of all kinds. Highly pure SiO 2 ~ shaped bodies can serve as "preform" for glass fibers or optical fibers, for example. In addition, crucibles for pulling silicon single crystals can also be produced in this way.
Amorphe poröse offenporige Siθ2~Formkörper können prinzipiell mittels Verpressen entsprechender Siθ2~Pulver, oder über einen naßchemischen Prozess hergestellt werden.Amorphous porous open-pored SiO 2 ~ shaped bodies can in principle be produced by pressing corresponding SiO 2 ~ powders or by a wet chemical process.
Bei den aus der Keramik bekannten Verfahren zum Verpressen von Pulvern z.B. kalt- oder heißisostatischen Preßverfahren müssen in der Regel Bindemittel organischer Natur zugesetzt werden, um einen stabilen Formkörper zu erhalten. Diese Bindemittel müssen in einem späteren Schritt wieder herausgelöst oder verbrannt werden. Dass ist technisch aufwendig, teuer und führt zu Verunreinigungen, die es insbesondere bei der Herstellung von Tie- geln zum Ziehen von Siliziumeinkristallen unbedingt zu vermeiden gilt.In the known from the ceramic method for pressing powders, e.g. Cold or hot isostatic pressing process must usually be added organic binders to obtain a stable shaped body. These binders must be removed again or burned in a later step. This is technically complex, expensive and leads to impurities, which must be avoided in particular in the production of dies for pulling silicon single crystals.
Der bevorzugte Weg zur Darstellung von porösen SiC>2-Formkörpern ist daher der nasschemische Weg. Dabei unterscheidet man zwischen einer so genannten Sol-Gel Route, bei der der amorphe poröse offenporige SiC>2-Formkörper durch Hydrolyse und Kondensation von siliciumorganischen Verbindungen in einem Lösemittel hergestellt wird und einer kol- loidalen Sol-Gel Route, bei der dem System zusätzlich noch SiC>2 Partikel zugesetzt werden.The preferred way to prepare porous SiC> 2 shaped bodies is therefore the wet-chemical route. A distinction is made between a so-called sol-gel route, in which the amorphous porous open-pored SiC> 2 molded body is produced by hydrolysis and condensation of organosilicon compounds in a solvent and a colloidal sol-gel route, in which the system additionally still SiC> 2 particles are added.
Hauptnachteil der Sol-Gel Route ist der geringe resultierende Feststoffgehalt im Formkörper. Das führt gerade bei größeren Geometrien zu großen Riss und Bruchproblemen und bei einer spä- teren Sinterung zu einem enormen Schrumpf. In der kolloidalen Sol-Gel Route wird durch die Zugabe von SiC>2 Partikeln ein höherer Füllgrad der Dispersion erreicht, so dass der resultierende Feststoffgehalt im Formkörper höher ist. Ein solches Verfahren ist in EP 705797 und in EP 318100 beschrieben.The main disadvantage of the sol-gel route is the low resulting solids content in the molding. This leads to large fractures and fracture problems, especially with larger geometries, and to enormous shrinkage in the case of later sintering. In the colloidal sol-gel route, a higher degree of filling of the dispersion is achieved by the addition of SiC> 2 particles, so that the resulting solids content in the shaped body is higher. Such a method is described in EP 705797 and in EP 318100.
In EP 1506947 A2 ist ein Verfahren beschrieben, bei dem durch die Verwendung von unterschiedlichen Partikelgrößen ein Feststoffgehalt erreicht werden kann, der bei über 80Gew.-% liegt. Dies führt zu einer wesentlich höheren Festigkeit des Siθ2~ Formkörpers, jedoch ist die Herstellung einer solchen Dispersion sehr aufwendig.EP 1506947 A2 describes a process in which a solids content of more than 80% by weight can be achieved by using different particle sizes. This leads to a much higher strength of the SiO 2 ~ molded body, however, the preparation of such a dispersion is very expensive.
EP 653381 und DE-OS 2218766 offenbaren ein Schlickergußverfahren, bei dem eine Dispersion aus Quarzglasteilchen in Wasser hergestellt wird, und der SiC>2-Formkörper durch langsamen Wasserentzug an einer porösen Form gebildet wird. Auch hierbei werden Feststoffgehalte erreicht, die über 80Gew.-% liegen. Das Schlickergußverfahren ist jedoch aufgrund des diffusionsabhängigen Wasserentzuges sehr zeitintensiv und nur für dünnwan- dige Formteile anwendbar.EP 653381 and DE-OS 2218766 disclose a slip casting method in which a dispersion of quartz glass particles in water is prepared and the SiC> 2 shaped body is formed by slow removal of water from a porous mold. Here, too, solid contents are achieved that are over 80Gew .-%. However, due to the diffusion-dependent removal of water, the slip casting process is very time-consuming and can only be used for thin-walled molded parts.
Dieser Nachteil kann durch die Verwendung eines Druckgussverfahrens vermieden werden. Wie z. B. in EP 1245703 oder EP 0196717 Bl beschrieben, wird dabei eine SiC>2 Partikel enthaltende Dispersion in eine Druckgussform einer Druckgussmaschine gegossen und über eine poröse Kunststoffmembran unter Bildung des SiC>2 Formkörpers entwässert.This disadvantage can be avoided by using a die casting process. Such as As described in EP 1245703 or EP 0196717 Bl, while a SiC> 2 particles containing dispersion in a die-casting mold of a die-casting machine poured and dewatered over a porous plastic membrane to form the SiC> 2 shaped body.
Sämtliche bekannten amorphen porösen offenporige SiC>2-Form- körper haben den großen Nachteil, im nassen oder getrockneten Zustand, d. h. im noch nicht durch Wärmebehandlung verfestigten Zustand, sehr fragil, riss- und bruchanfällig zu sein. Dies wird im Stand der Technik durch die Zugabe von Bindemitteln versucht zu verbessern. Da bei der Herstellung von hochreinen Siθ2~Formkörpern für Anwendungen im Lichtwellenleiter- oder Halbleiterbereich sehr häufig auf den Zusatz von Bindemitteln verzichtet werden muss, ist die Rissproblematik hier noch einmal größer. DE 10339676 beschreibt ein Verfahren, bei dem ein Formkörper entsteht, der aus zwei Schichten besteht, die in ihrer Struktur und Zusammensetzung gleich aufgebaut sind. Bei diesem Formkörper führen Mikrorisse nicht automatisch zur Rissbildung oder Zerbrechen des Formkörpers .All known amorphous porous open-pored SiC> 2 molding bodies have the great disadvantage of being very fragile, crack and fracture-prone in the wet or dried state, ie in the state not yet solidified by heat treatment. This is attempted in the art by the addition of binders to improve. Since it is very often necessary to dispense with the addition of binders in the production of high-purity SiO 2 ~ moldings for applications in the optical waveguide or semiconductor sector, the crack problem here is even greater. DE 10339676 describes a process in which a shaped body is formed, which consists of two layers, which are constructed in the same structure and composition. Micro-cracks in this shaped body do not automatically lead to crack formation or breakage of the shaped body.
Soll solch ein Formkörper als Tiegel zum Ziehen von Siliziumeinkristallen verwendet werden, so muss er aus sehr reinem und daher sehr teurem SiC>2 Material bestehen. Aber gerade im Halbleiterbereich besteht ein hoher und ständiger Kostendruck.If such a shaped body is to be used as a crucible for drawing silicon single crystals, it must consist of very pure and therefore very expensive SiC> 2 material. But especially in the semiconductor sector there is a high and constant cost pressure.
Aufgabe der vorliegenden Erfindung war es daher, einen bindemittelfreien amorphen porösen offenporigen SiC>2-Formkörper zur Verfügung zu stellen, der preisgünstig herzustellen ist.The object of the present invention was therefore to provide a binder-free amorphous porous open-pore SiC> 2 shaped body which is inexpensive to manufacture.
Eine weitere Aufgabe der vorliegenden Erfindung war die Bereit- Stellung eines Verfahrens zu Herstellung eines solchen amorphen porösen offenporigen SiC>2-Formkörper .Another object of the present invention was to provide a process for producing such an amorphous porous open-pore SiC> 2 shaped body.
Die erstgenannte Aufgabe wird durch einen amorphen porösen offenporigen SiC>2-Formkörper gelöst, der dadurch gekennzeichnet ist, dass er aus zwei oder mehr Siθ2~Schichten besteht, die ei- ne unterschiedliche Zusammensetzung besitzen, oder die in ihrer Struktur unterschiedlich aufgebaut sind.The former object is achieved by an amorphous porous open-pored SiC> 2 shaped body, which is characterized in that it consists of two or more SiO 2 layers, which ne have different composition, or are structured differently in their structure.
Der erfindungsgemäße Formkörper besteht vorzugsweise aus zwei oder mehr SiC>2-Schichten, die eine unterschiedliche Zusammensetzung besitzen, und die in ihrer Struktur unterschiedlich aufgebaut sind.The shaped body according to the invention preferably consists of two or more SiC> 2 layers, which have a different composition, and which have different structure in structure.
Vorzugsweise besteht er aus 2 bis 5 Siθ2~Schichten, besonders bevorzugt aus 2 Siθ2~Schichten.It preferably consists of 2 to 5 SiO 2 layers, more preferably 2 SiO 2 layers.
Eine unterschiedliche Struktur liegt beispielsweise dann vor, wenn die Korngrößen oder die Korngrößenverteilungen unterschiedlich sind. Eine unterschiedliche Zusammensetzung liegt beispielsweise dann vor, wenn die Verunreinigung der Schichten unterschiedlich ist.A different structure is present, for example, when the particle sizes or the particle size distributions are different. A different composition is, for example, when the contamination of the layers is different.
Die weitere Aufgabe wird gelöst durch ein Verfahren bei welchem in einem ersten Schritt eine SiC>2 Partikel enthaltende erste Dispersion in eine Druckgussform einer Druckgussmaschine gepumpt wird, in der die Dispersion unter Bildung eines SiC>2 Formkörpers über eine innere und eine äußere poröse Kunststoffmembran entwässert wird, der SiC>2 Formkörpers einseitig entformt wird und in einem zweiten Schritt mittels einer SiC>2 Par- tikel enthaltende zweite Dispersion, die sie sich von der ersten Dispersion in ihrer Zusammensetzung unterscheidet, auf der entformten Seite des SiC>2 Formkörpers eine weitere Schicht mit Hilfe einer weiteren Druckgussform gebildet wird und der erhaltenen Formkörper entformt wird.The further object is achieved by a method in which, in a first step, a first dispersion containing SiC> 2 particles is pumped into a die-casting mold of a die-casting machine, in which the dispersion is dewatered to form a SiC> 2 shaped body via an inner and an outer porous plastic membrane Is, the SiC> 2 molded body is unilaterally demolded and in a second step by means of a second dispersion containing SiC> 2 particles, which differs from the first dispersion in their composition, on the molded side of the SiC> 2 shaped body another Layer is formed by means of a further die-casting mold and the resulting molded body is removed from the mold.
Die im Verfahren verwendete Druckgussform besteht aus zwei porösen Membranteilen, die einen abgeschlossenen Zwischenraum ausbilden, der die Gestalt des gewünschten Formkörpers besitzt. An einer oder mehreren Stellen liegt eine entsprechende Zulei- tung in der Membran vor, die das Befüllen der geschlossenen Druckgussform ermöglicht. Die beiden Druckgussformteile werden mit einem Schließdruck zusammengehalten, der ein Befüllen und eine Scherbenbildung ermöglicht. Nach dem Befüllen mit einer ersten Dispersion und dem Entwässern in einer für Druckgussver- fahren üblichen Weise wird der erhaltene Formkörper entweder auf der inneren oder der äußeren Seite entformt.The die used in the process consists of two porous membrane parts which form a closed space having the shape of the desired shaped body. At one or more points there is a corresponding supply line in the membrane, which is the filling of the closed Die casting mold allows. The two die-cast parts are held together with a closing pressure, which allows filling and a body formation. After filling with a first dispersion and dewatering in a customary manner for die-casting processes, the shaped body obtained is demolded either on the inner or the outer side.
Im zweiten Schritt des Verfahrens wird auf die entformten Seite des SiC>2 Formkörpers eine weitere Schicht mit Hilfe einer wei- teren Druckgussform gebildet.In the second step of the process, a further layer is formed on the demoulded side of the SiC> 2 shaped body by means of a further die casting mold.
Soll eine weitere Schicht auf der inneren Seite des SiC>2 Formkörpers gebildet werden, erfolgt eine einseitige Entformung des gebildeten Siθ2~Formkörpers unter Auseinanderfahren der zwei Druckgussformteile und gleichzeitiger Beaufschlagung der inneren porösen Membranen mit Druckluft und/oder Wasser. Die Druckluft bzw. das Wasser löst den Scherben von der inneren porösen Membran, indem etwas von dem in die poröse Membran eingedrungenen Wassers in umgekehrter Richtung zum Scherben hin gedrückt wird und einen dünnen Wasserfilm zwischen Scherben und Membran bildet.If a further layer is to be formed on the inner side of the SiC> 2 shaped body, unilateral demoulding of the formed SiO 2 ~ shaped body takes place with the two die cast parts moving apart and simultaneous pressurization of the inner porous membranes with compressed air and / or water. The compressed air or water dissolves the shards from the inner porous membrane by pushing some of the water that has penetrated into the porous membrane in the opposite direction to the shard and forms a thin film of water between shards and membrane.
Eine zweite Druckgussform, wiederum bestehend aus einer porösen Membran wird nun mit der äußeren Druckgussform, die den bereits gebildeten Formkörper enthält, zusammengefahren. Die innere Druckgussform hat dabei eine derartige Form und Größe, dass sie einen abgeschlossenen Zwischenraum zum bereits gebildeten Formkörper ausbildet, der in Form und Dicke der gewünschten zweiten Schicht entspricht. Nun wird eine weitere SiC>2 Partikel enthaltende Dispersion in die Druckgussform gepumpt, in der die Dis- persion unter Bildung einer neuen Schicht auf dem bereits vorliegenden SiC>2 Formkörper über die innere und zum Teil über den bereits vorliegenden SiC>2 Formkörper entwässert wird. An einer oder mehreren Stellen liegt wieder eine entsprechende Zuleitung in der inneren Membran vor, die das Befüllen der ge- schlossenen Druckgussform ermöglicht. Die beiden Druckgussform- teile werden mit einem Schließdruck zusammengehalten, der ein Befüllen und eine Scherbenbildung unter den jeweils verwendeten Drücken ermöglicht.A second die-casting mold, again consisting of a porous membrane, is now moved together with the external die casting mold which contains the already formed shaped body. The inner die has such a shape and size that it forms a closed gap to the already formed moldings, which corresponds in shape and thickness of the desired second layer. Now a further dispersion containing SiC> 2 particles is pumped into the die casting in which the dispersion is dewatered over the inner and partly over the already present SiC> 2 shaped body to form a new layer on the already present SiC> 2 shaped body , At one or more points there is again a corresponding supply line in the inner membrane, which allows the filling of the closed die casting mold. The two die-casting molds Parts are held together with a closing pressure that allows filling and potting under the pressures used in each case.
Nach Ausbildung der neuen Schicht erfolgt eine beidseitige Ent- formung des gebildeten Zweischicht-Formkörpers unter Auseinanderfahren der zwei Druckgussformteile und gleichzeitiger Beaufschlagung der porösen Membranen mit Druckluft und/oder Wasser. Die Druckluft bzw. das Wasser löst den Zweischicht-Formkörpers von den beiden porösen Membranen, indem etwas von dem in die porösen Membranen eingedrungenen Wassers in umgekehrter Richtung zum Zweischicht-Formkörpers hin gedrückt wird und einen dünnen Wasserfilm zwischen Zweischicht-Formkörper und Membran bildet.After the formation of the new layer, a two-sided demolding of the two-layer molded body formed takes place while the two die-cast moldings are moved apart and simultaneous exposure of the porous membranes to compressed air and / or water. The compressed air or the water dissolves the two-layer shaped body of the two porous membranes by some of the water penetrated into the porous membranes is pressed in the reverse direction to the two-layer molding and forms a thin film of water between two-layer molding and membrane.
Soll anstelle einer weitere Schicht auf der inneren Seite des SiC>2 Formkörpers eine weitere Schicht auf der äußeren Seite gebildet werden, erfolgt eine einseitige Entformung des gebildeten SiC>2-Formkörpers unter Auseinanderfahren der zwei Druckgussformteile und gleichzeitiger Beaufschlagung der äußeren porösen Membranen mit Druckluft und/oder Wasser. Die Druckluft bzw. das Wasser löst den Scherben in diesem Fall wie bereits beschrieben von der äußeren porösen Membran.If, instead of a further layer on the inner side of the SiC> 2 molded body, a further layer on the outer side are formed, carried out a one-sided demoulding of the formed SiC> 2 shaped body with moving apart of the two die-cast moldings and simultaneous loading of the outer porous membranes with compressed air and /or water. The compressed air or the water dissolves the shards in this case, as already described by the outer porous membrane.
Eine zweite äußere Druckgussform, wiederum bestehend aus einer porösen Membran wird nun mit der inneren Druckgussform, die den bereits gebildeten Formkörper enthält, zusammengefahren. Die äußere Druckgussform hat dabei eine derartige Form und Größe, dass sie einen abgeschlossenen Zwischenraum zum bereits gebildeten Formkörper ausbildet, der in Form und Dicke der gewünschten zweiten Schicht entspricht. Nun wird eine weitere SiC>2 Par- tikel enthaltende Dispersion in die Druckgussform gepumpt, in der die Dispersion unter Bildung einer neuen Schicht auf dem bereits vorliegenden SiC>2 Formkörper über die äußere und zum Teil über den bereits vorliegenden SiC>2 Formkörper entwässert wird. An einer oder mehreren Stellen liegt wieder eine entsprechende Zuleitung in der äußeren Membran vor, die das Befüllen der geschlossenen Druckgussform ermöglicht. Die beiden Druckgussformteile werden mit einem Schließdruck zusammengehalten, der ein Befüllen und eine Scherbenbildung unter den jeweils eingesetzten Drücken ermöglicht.A second outer die, again consisting of a porous membrane, is now collapsed with the inner die casting containing the formed body already formed. The outer die has such a shape and size that it forms a closed gap to the already formed moldings, which corresponds in shape and thickness of the desired second layer. Now another dispersion containing SiC> 2 particles is pumped into the die casting in which the dispersion is dewatered over the outer and partly over the already present SiC> 2 shaped body to form a new layer on the already present SiC> 2 shaped body , At one or more points is again a corresponding supply line in the outer membrane, which allows the filling of the closed die casting mold. The two die-cast parts are held together with a closing pressure, which allows filling and a body formation under the pressures used in each case.
Nach Ausbildung der neuen Schicht erfolgt wieder eine beidseitige Entformung des gebildeten Zweischicht-Formkörpers unter Auseinander fahren der zwei Druckgussformteile und gleichzeiti- ger Beaufschlagung der porösen Membranen mit Druckluft und/oder Wasser. Die Druckluft bzw. das Wasser löst den Zweischicht- Formkörpers von den beiden porösen Membranen, indem etwas von dem in die porösen Membranen eingedrungenen Wassers in umgekehrter Richtung zum Zweischicht-Formkörpers hin gedrückt wird und einen dünnen Wasserfilm zwischen Zweischicht-Formkörper und Membran bildet.After the formation of the new layer, a two-sided demoulding of the formed two-layer molded article takes place again, with the two die-cast moldings moving out of contact with each other and simultaneous exposure of the porous membranes to compressed air and / or water. The compressed air or water dissolves the two-layer molded article from the two porous membranes by pushing some of the water penetrated into the porous membranes in the reverse direction to the two-layer molded article and forming a thin film of water between the two-layer molded article and the membrane.
Mittels beider Verfahrensvarianten erhält man SiC>2 Formkörper, deren zwei Schichten in ihrer Zusammensetzung und/oder Struktur unterschiedlich aufgebaut sind, da die jeweils eingesetztenBy means of both process variants, SiC> 2 moldings are obtained, whose two layers have different composition and / or structure, since the respective ones used
SiC>2 Dispersionen sich in ihrer Zusammensetzung unterscheiden.SiC> 2 dispersions differ in their composition.
Bevorzugt werden SiC>2 Formkörper in Tiegelform hergestellt, deren innere Schicht weniger Metallatome enthalten als ihre äuße- re Schicht.Preference is given to producing SiC> 2 shaped bodies in crucible form, the inner layer of which contains fewer metal atoms than their outer layer.
Die innere Schicht hat vorzugsweise einen Fremdatomanteil insbesondere an Metallen von < 300 ppmw (parts per million per weight) , bevorzugt < 100 ppmw, besonders bevorzugt < 10 ppmw und ganz besonders bevorzugt < 1 ppmw.The inner layer preferably has a foreign atom content, in particular of metals of <300 ppmw (parts per million by weight), preferably <100 ppmw, more preferably <10 ppmw and most preferably <1 ppmw.
Prinzipiell ist es möglich SiC>2 Formkörper mit mehr als zwei Schichten über das erfindungsgemäße Verfahren herzustellen. Um dies zu erreichen werden analog der Schichtbildung zur Herstel- lung eines zweischichtigen SiC>2 Formkörper mehrere Schichten nacheinander in der beschriebenen Art und Weise auf einem in einem ersten Schritt erzeugten SiC>2 Formkörper gebildet.In principle it is possible to produce SiC> 2 shaped bodies with more than two layers by the process according to the invention. In order to achieve this, in analogy to the layer formation for the production of a two-layer SiC> 2 shaped body, several layers are used successively formed in the manner described on a SiC> 2 molded body produced in a first step.
Die eingesetzten Dispersionen weisen einen Füllgrad an amorphen SiC>2-Partikeln zwischen 10 und 80 Gew.%, vorzugsweise zwischen 50 und 80 Gew.% und besonders bevorzugt zwischen 65 und 75 Gew.% auf.The dispersions used have a degree of filling of amorphous SiC> 2 particles between 10 and 80% by weight, preferably between 50 and 80% by weight and particularly preferably between 65 and 75% by weight.
Als Dispersionsmittel können polare oder unpolare organische Lösungsmittel, wie z.B. Alkohole, Ether, Ester, organische Säuren, gesättigte oder ungesättigte Kohlenwasserstoffe, oder Wasser oder deren Mischungen vorliegen.As dispersing agents, polar or nonpolar organic solvents, such as e.g. Alcohols, ethers, esters, organic acids, saturated or unsaturated hydrocarbons, or water or mixtures thereof.
Vorzugsweise liegen Alkohole wie Methanol, Ethanol, Propanol, oder Azeton oder Wasser oder deren Mischungen vor. Besonders bevorzugt liegen Azeton und Wasser oder deren Mischungen vor, ganz besonders bevorzugt liegt Wasser vor.Preferably, there are alcohols such as methanol, ethanol, propanol, or acetone or water or mixtures thereof. Particular preference is given to acetone and water or mixtures thereof, most preferably water.
Besonders bevorzugt werden die oben beschriebenen Dispersions- mittel in hochreiner Form verwendet, wie sie z.B. nach literaturbekannten Verfahren erhalten werden können oder käuflich erhältlich sind.Most preferably, the above-described dispersants are used in a highly pure form, as described, for example, in US Pat. can be obtained by literature methods or are commercially available.
Bei der Verwendung von Wasser wird vorzugsweise speziell gerei- nigtes Wasser verwendet, das einen Widerstand von > 18 Mega- Ohm*cm aufweist.When using water, it is preferable to use specially purified water having a resistance of> 18 megohm * cm.
Vorzugsweise wird dem Wasser eine mineralische Säure, wie z.B.Preferably, the water is treated with a mineral acid, e.g.
HCl, HF, H3POoH2SCU oder Kieselsäure oder ionogene Zusatzstoffe wie z.B. Fluorsalze zugesetzt. Besonders bevorzugt ist dabei der Zusatz von HCl oder HF, ganz besonders bevorzugt HF.HCl, HF, H 3 POoH 2 SCU or silica or ionogenic additives such as fluorine salts. Particularly preferred is the addition of HCl or HF, most preferably HF.
Es können auch Mischungen der genannten Verbindungen eingesetzt werden. Dabei sollte in der Dispersion ein pH-Wert von 2-7, vorzugsweise 3-6 eingestellt werden. Alternativ und ebenfalls bevorzugt kann dem Wasser eine mineralische Base zugesetzt werden, wie z.B. NH3, NaOH oder KOH. Besonders bevorzugt ist NH3 und NaOH, ganz besonders bevorzugt NH3. Es können aber auch Mischungen der genannten Verbindungen eingesetzt werden. Dabei sollte ein pH-Wert von 7-11, vorzugsweise 9-10 eingestellt werden.It is also possible to use mixtures of the compounds mentioned. In this case, a pH of 2-7, preferably 3-6 should be set in the dispersion. Alternatively and also preferably, a mineral base may be added to the water, such as NH 3 , NaOH or KOH. Particularly preferred is NH 3 and NaOH, most preferably NH 3 . However, it is also possible to use mixtures of the compounds mentioned. In this case, a pH of 7-11, preferably 9-10 should be set.
Die Verwendung einer Dispersion mit herabgesetztem oder erhöhtem pH-Wert führt während der Scherbenbildung in der Regel zu einer festeren Scherbe, so dass ein stabilerer Siθ2-Formkörpers gebildet wird.The use of a dispersion with reduced or increased pH usually leads to a firmer shard during the body formation, so that a more stable SiO 2 shaped body is formed.
Die spezifische Dichte der amorphen Siθ2~Partikel sollte bevorzugt zwischen 1,0 und 2,2 g/cm3 liegen. Besonders bevorzugt ha- ben die Partikel eine spezifische Dichte zwischen 1,8 und 2,2 g/cm3. Insbesondere bevorzugt haben die Partikel eine spezifische Dichte zwischen 2,0 und 2,2 g/cm3.The specific gravity of the amorphous SiO 2 particles should preferably be between 1.0 and 2.2 g / cm 3 . Particularly preferably, the particles have a specific gravity of between 1.8 and 2.2 g / cm 3 . Most preferably, the particles have a specific gravity between 2.0 and 2.2 g / cm 3 .
Bevorzugt sind ferner amorphe Siθ2~Partikel mit ≤ 3 OH-Gruppen pro nm2 auf ihrer äußeren Oberfläche, besonders bevorzugt ≤ 2Also preferred are amorphous SiO 2 particles having ≦ 3 OH groups per nm 2 on their outer surface, more preferably ≦ 2
OH-Gruppen pro nm2 , und ganz besonders bevorzugt < 1 OH-Gruppen pro nm2.OH groups per nm 2 , and very particularly preferably <1 OH groups per nm 2 .
Die amorphen Siθ2~Partikel sollten vorzugsweise eine Korngrö- ßenverteilung mit einem D50-Wert zwischen 1-200 μm, bevorzugt zwischen 1-100 μm, besonders bevorzugt zwischen 10-50 μm und ganz besonders bevorzugt zwischen 10-30 μm aufweisen.The amorphous SiO 2 particles should preferably have a particle size distribution with a D 50 value between 1-200 μm, preferably between 1-100 μm, particularly preferably between 10-50 μm and very particularly preferably between 10-30 μm.
Bevorzugt sind amorphe Siθ2~Partikel mit einer BET-Oberflache von 0,001 m2/g - 50 m2/g, besonders bevorzugt von 0,001 m2/g - 5m2 /g, ganz besonders bevorzugt von 0,01 m2/g - 0,5 m2/g.Preference is given to amorphous SiO 2 particles having a BET surface area of 0.001 m 2 / g-50 m 2 / g, more preferably of 0.001 m 2 / g-5m 2 / g, very particularly preferably of 0.01 m 2 / g. 0.5 m 2 / g.
Die amorphen Siθ2~Partikel sollten vorzugsweise einen kristallinen Anteil von höchstens 1% aufweisen. Vorzugsweise sollten sie ferner möglichst keine Wechselwirkung mit dem Dispersionsmittel zeigen.The amorphous SiO 2 particles should preferably have a crystalline content of at most 1%. Preferably should they also show as possible no interaction with the dispersant.
Diese Eigenschaften haben amorphe SiÜ2-Partikel unterschiedli- eher Herkunft, wie z.B. nachgesinterte Kieselsäure (Fused SiIi- ca) sowie jede Art von amorphem gesinterten oder kompaktiertem SiC>2. Sie sind daher vorzugsweise zur Herstellung der erfindungsgemäßen Dispersion geeignet.These properties have amorphous Si02 particles of different origin, such as silica sintered (fused silica) and any type of amorphous sintered or compacted SiC> 2. They are therefore preferably suitable for the preparation of the dispersion according to the invention.
Entsprechendes Material lässt sich in an sich bekannter Art und Weise in der Knallgasflamme herstellen. Es ist auch käuflich erhältlich, z.B. unter der Bezeichnung Exelica® bei Tokoyama, Japan. Ferner lässt sich ein solches Material in bekannter Weise über einen Sol-Gel Prozess herstellen. Es ist auch käuflich erhältlich, z. B. unter der Bezeichnung MKC® bei Mitsubishi Chemical, Japan.Corresponding material can be produced in a conventional manner in the oxyhydrogen flame. It is also commercially available, e.g. under the name Exelica® at Tokoyama, Japan. Furthermore, such a material can be prepared in a known manner via a sol-gel process. It is also commercially available, for. B. under the name MKC® Mitsubishi Chemical, Japan.
Wenn obige Kriterien erfüllt werden, können auch Partikel anderer Herkunft verwendet werden, wie z.B. Naturquarz, Quarzglas- sand, glasige Kieselsäure, zermahlene Quarzgläser bzw. gemahlener Quarzglasabfall sowie chemisch hergestelltes Kieselglas, wie z.B. gefällte Kieselsäure, hochdisperse Kieselsäure (Fumed Silica, hergestellt mittels Flammenpyrolyse, ) , Xerogele, oder Aerogele .If the above criteria are met, particles of other origin may also be used, e.g. Natural quartz, quartz glass sand, glassy silica, ground quartz glass or ground quartz glass waste, and chemically produced silica glass, such as silica glass. precipitated silica, fumed silica (fumed silica prepared by flame pyrolysis), xerogels, or aerogels.
Bei den amorphen SiÜ2-Partikeln handelt es sich bevorzugt um gefällte Kieselsäuren, hochdisperse Kieselsäuren, Fused Silica oder kompaktierte SiÜ2-Partikel, besonders bevorzugt um hochdisperse Kieselsäure oder Fused Silica, ganz besonders bevor- zugt um Fused Silica. Mischungen der genannten unterschiedlichen SiÜ2-Partikel sind ebenfalls möglich und bevorzugt.The amorphous SiU 2 particles are preferably precipitated silicas, finely divided silicas, fused silica or compacted Si02 particles, more preferably highly dispersed silicic acid or fused silica, most preferably fused silica. Mixtures of said different Si02 particles are also possible and preferred.
Weiterhin bevorzugt werden amorphe SiÜ2-Partikel mit einer unterschiedlichen, vorzugsweise bimodalen, Korngrößenverteilung eingesetzt. Solche SiÜ2-Partikel erhält man durch Beimischung an SiC>2-Partikeln, wie z.B. Fused oder Fumed Silica mit einer Korngröße von 1-100 nm, bevorzugt 10 bis 50 nm, in einer Menge von 0,1 bis 50 Gew.%, besonders bevorzugt in einer Menge von 1 bis 30 Gew.%, ganz besonders bevorzugt in einer Menge von 1 bis 10 Gew.% zu den o.g. amorphen SiC>2-Partikel .Furthermore, preference is given to using amorphous SiO 2 particles having a different, preferably bimodal, particle size distribution. Such Si02 particles are obtained by admixture on SiC> 2 particles, such as fused or fumed silica with a particle size of 1-100 nm, preferably 10 to 50 nm, in an amount of 0.1 to 50 wt.%, Particularly preferably in an amount of 1 to 30 % By weight, very particularly preferably in an amount of from 1 to 10% by weight to the abovementioned amorphous SiC> 2 particles.
Die nanoskaligen SiC>2-Partikel fungieren dabei als eine Art anorganischer Binder zwischen den wesentlich größeren SiC>2- Partikeln, nicht aber als Füllmaterial um einen höheren Füll- grad zu erreichen. Solche Siθ2~Partikel besitzen in der Dispersion bevorzugt eine bimodale Partikelgrößenverteilung.The nanoscale SiC> 2 particles act as a kind of inorganic binder between the much larger SiC> 2 particles, but not as filler material to achieve a higher degree of filling. Such SiO 2 particles preferably have a bimodal particle size distribution in the dispersion.
In einer bevorzugten Ausführungsform liegen die oben beschriebenen Partikel in der Dispersion für die innere Schicht in hochreiner Form vor, d.h. vorzugsweise mit einer Summe der Verunreinigung an Metallatomen kleiner 5ppmw, bevorzugt kleiner lppmw besonders bevorzugt kleiner 500ppbw insbesondere bevorzugt kleiner 200ppbw. Die Summe an Metallverunreinigungen in der äußeren Schicht ist weniger kritisch und kann daher höher liegen.In a preferred embodiment, the particles described above are present in the dispersion for the inner layer in a highly pure form, i. preferably with a sum of the impurity at metal atoms smaller than 5 ppm, preferably smaller than 1 ppm, particularly preferred smaller than 500 ppm, especially preferred smaller than 200 ppm. The sum of metal impurities in the outer layer is less critical and therefore may be higher.
In einer weiteren bevorzugten Ausführungsform enthält die Dispersion für die äußere Schicht zusätzlich Metallpartikel, Metallverbindungen oder Metallsalze. Bevorzugt sind dabei Verbin- düngen, die im Dispersionsmittel löslich sind, besonders bevorzugt sind wasserlösliche Metallsalze. Je nach Art und Menge dieser Zusätze weist der Formkörper bei hohen Temperaturen, z.B. einem Sinterprozess zusätzliche positive Eigenschaften auf, wie sie dem Fachmann aus der Glasherstellung geläufig sind.In a further preferred embodiment, the dispersion for the outer layer additionally contains metal particles, metal compounds or metal salts. Compounds that are soluble in the dispersing agent are preferred, particularly preferred are water-soluble metal salts. Depending on the nature and amount of these additives, the molded article is exposed at high temperatures, e.g. a sintering process additional positive properties, as are familiar to those skilled in the glass production.
Die Metallpartikel, Metallverbindungen oder Metallsalze können während und/oder nach der Herstellung der Dispersion zugesetzt werden. Bei der Herstellung der Dispersion wird das Dispersionsmittel vorgelegt und die SiC>2-Partikel langsam und bevorzugt stetig zugegeben. Die Siθ2~Partikel können aber auch in mehreren Schritten (portionsweise) zugegeben werden.The metal particles, metal compounds or metal salts may be added during and / or after the preparation of the dispersion. In the preparation of the dispersion, the dispersant is introduced and the SiC> 2 particles slowly and preferably continuously added. The Siθ 2 ~ particles can also be added in several steps (in portions).
Über die Auswahl der Siθ2~Partikelgröße und Korngrößen lässt sich die Porengröße und Verteilung im aus der Dispersion hergestellten SiC>2-Formkörper gezielt einstellen.By selecting the SiO 2 particle size and particle sizes, the pore size and distribution in the SiC> 2 shaped bodies produced from the dispersion can be adjusted in a targeted manner.
Als Dispergiergeräte können alle dem Fachmann bekannten Geräte und Vorrichtungen verwendet werden. Bevorzugt sind Geräte, die keine Metallteile enthalten, die mit der Dispersion in Berührung kommen könnten, um eine Metallkontamination durch Abrieb zu vermeiden.As dispersing devices, it is possible to use all devices and devices known to the person skilled in the art. Preference is given to devices which contain no metal parts which could come into contact with the dispersion in order to avoid metal contamination due to abrasion.
Die Dispergierung sollte bei Temperaturen zwischen O0C und 5O0C, bevorzugt zwischen 50C und 3O0C erfolgen.The dispersion should be at temperatures between O 0 C and 5O 0 C, preferably between 5 0 C and 3O 0 C take place.
Vor, und/oder während und/oder nach der Dispergierung können mittels dem Fachmann bekannter Methoden, wie z.B. Vakuum, die eventuell in der Dispersion enthaltenen Gase wie z.B. Luft entfernt werden. Bevorzugt wird dies während und/oder nach der vollständigen Dispergierung durchgeführt.Before, and / or during and / or after dispersion, methods known to those skilled in the art, e.g. Vacuum, the gases possibly contained in the dispersion, e.g. Air are removed. This is preferably carried out during and / or after complete dispersion.
In einer so hergestellten homogenen Dispersion kommt es für mindestens 5 min, bevorzugt für mindestens 30 min zu keiner Sedimentation der Partikel.In a homogeneous dispersion thus produced, no sedimentation of the particles occurs for at least 5 minutes, preferably for at least 30 minutes.
Anschließend wird die Dispersion in die Druckgussform einer Druckgussmaschine überführt, in der die Dispersion unter Druck und unter Bildung des SiC>2 Formkörpers entwässert wird.Subsequently, the dispersion is transferred to the die casting mold of a die casting machine, in which the dispersion is dewatered under pressure and to form the SiC> 2 shaped body.
Das Befüllen der Druckgussform mit der Dispersion erfolgt in einer dem Fachmann bekannten Art und Weise, wie z.B. durch Pum- pen. Das Befüllen kann dabei mit einem beliebigen Druck erfolgen, erfolgt jedoch bevorzugt mit Drücken zwischen 0 und 100 bar, besonders bevorzugt mit Drücken zwischen 5 und 30 bar und ganz besonders bevorzugt zwischen 5 und 10 bar.The filling of the die casting mold with the dispersion takes place in a manner known to the person skilled in the art, such as, for example, by pumping. The filling can be carried out at any pressure, but is preferably carried out at pressures between 0 and 100 bar, more preferably at pressures between 5 and 30 bar and most preferably between 5 and 10 bar.
Die Scherbenbildung erfolgt bevorzugt unter Drücken zwischen 0 und 100 bar, besonders bevorzugt mit Drücken zwischen 5 und 30 bar und ganz besonders bevorzugt zwischen 5 und 10 bar.Shard formation preferably takes place under pressures between 0 and 100 bar, more preferably at pressures between 5 and 30 bar and most preferably between 5 and 10 bar.
Die gebildeten Scherbenstärken der einzelnen Schichten liegen je nach dem gewünschten Formkörper zwischen 1 und 50 mm, bevorzugt zwischen 3 und 10mm.Depending on the desired shaped body, the shards thicknesses of the individual layers formed are between 1 and 50 mm, preferably between 3 and 10 mm.
Je nach Scherbenstärke, porösen Membran und vorliegendem Druck werden zur Bildung von formstabilen Scherben zwischen 5 und 90min benötigt.Depending on the body thickness, the porous membrane and the existing pressure, formation of dimensionally stable shards between 5 and 90 minutes is required.
Das Überführen der Dispersion und die Scherbenbildung kann bei Temperaturen von O0C bis zum Siedepunkt des Dispergiermittels durchgeführt werden. Bevorzugt sind Temperaturen zwischen 2O0C und 3O0C.The conversion of the dispersion and the body formation can be carried out at temperatures of from 0 ° C. to the boiling point of the dispersant. Preference is given to temperatures between 2O 0 C and 3O 0 C.
In dem Druckgussprozess werden als poröse Membranen vorzugswei- se Membranen eingesetzt, die eine offene Porosität zwischen 5 und 60 Vol.%, bevorzugt zwischen 10 und 30 VoI .% besitzt. Die Porengröße der Membran kann größer, kleiner oder gleich der Größe der verwendeten Siθ2~Partikel sein. Bevorzugt wird eine Membran mit einer Porengröße zwischen 10 Nanometern und 100 Mikrometern, besonders bevorzugt zwischen 100 Nanometern und 50 Mikrometern, ganz besonders bevorzugt zwischen 100 Nanometern und 30 Mikrometern verwendet. Die poröse Membran ist vorzugsweise vollständig durch das Lösemittel der Dispersion, bevorzugt Wasser, benetzbar, damit eine gleichmäßige Scherbenbildung erfolgen kann.In the die casting process, membranes are preferably used as porous membranes which have an open porosity between 5 and 60% by volume, preferably between 10 and 30% by volume. The pore size of the membrane may be larger, smaller or equal to the size of the SiO 2 particles used. Preferably, a membrane with a pore size between 10 nanometers and 100 micrometers, more preferably between 100 nanometers and 50 micrometers, most preferably between 100 nanometers and 30 micrometers is used. The porous membrane is preferably completely wettable by the solvent of the dispersion, preferably water, so that a uniform body formation can take place.
Als Material für die Membran eignet sich jeder dem Fachmann bekannte Kunststoff, der chemisch beständig ist und keine freien, insbesondere keine metallischen, Rückstände enthält. Bevorzugt geeignet sind Kunststoffe, die bereits im kommerziellen Druck- schlickerguss verwendet werden. Besonders bevorzugt sind PoIy- methacrylate und Polymethylmethacrylate .As a material for the membrane, any known in the art plastic is chemically resistant and contains no free, in particular no metallic residues. Preference is given to plastics which are already used in commercial pressure slip casting. Particularly preferred are polymethyl methacrylates and polymethyl methacrylates.
Die Dicke der porösen Membran richtet sich nach der Form des herzustellenden Formkörpers .The thickness of the porous membrane depends on the shape of the shaped body to be produced.
Die gebildeten Scherben weisen einen Feststoffgehalt zwischen 80 und 95 Gew.-% auf.The formed fragments have a solids content between 80 and 95 wt .-%.
Das Trocknen des entformten SiC>2-Formkörpers erfolgt mittels dem Fachmann bekannter Methoden wie z.B. Vakuumtrocknung, Trocknung mittels heißer Gase wie z.B. Stickstoff oder Luft,The desiccated SiC> 2 molded body is dried by means of methods known to the person skilled in the art, such as e.g. Vacuum drying, drying by means of hot gases, e.g. Nitrogen or air,
Kontakttrocknung oder Mikrowellentrocknung. Auch eine Kombination der einzelnen Trocknungsmethoden ist möglich. Bevorzugt ist eine Trocknung mittels Mikrowelle.Contact drying or microwave drying. A combination of the individual drying methods is possible. Preference is given to drying by means of a microwave.
Das Trocknen erfolgt bei Temperaturen im Formkörper zwischen 250C und dem Siedepunktes des Dispergiermittels in den Poren des Formkörpers .The drying takes place at temperatures in the molding between 25 0 C and the boiling point of the dispersant in the pores of the molding.
Die Trockenzeiten sind abhängig vom zu trocknendem Volumen des Formkörpers, der maximalen Schichtdicke, dem Dispergiermittel und der Porenstruktur des Formkörpers .The drying times depend on the volume of the shaped body to be dried, the maximum layer thickness, the dispersant and the pore structure of the shaped body.
Beim Trocknen des Formkörpers tritt ein geringer Schrumpf auf. Der Schrumpf ist abhängig vom Füllgrad der Schichten des feuchten Formkörpers. Bei einem Füllgrad von 80 Gew.% ist der Volumenschrumpf < 2,5% und der lineare Schrumpf <l,0Vol.%. Bei höherem Füllgrad ist der Schrumpf entsprechend geringer.During drying of the molded body occurs a low shrinkage. The shrinkage depends on the degree of filling of the layers of the moist molded body. At a degree of filling of 80% by weight, the volume shrinkage is <2.5% and the linear shrinkage is <1, 0% by volume. At a higher degree of filling, the shrinkage is correspondingly lower.
Um ein rissfreies Trocknen des Formkörpers zu gewährleisten, muss der Schrumpf bei der Trocknung annähernd gleich groß sein. Dies kann bei Schichten mit unterschiedlicher Struktur (Partikelmorphologie bzw. Partikelgrößenverteilung) z.B. durch eine Variation des Füllgrades und oder die Variation der Partikelgrößenverteilung erreicht werden.In order to ensure a crack-free drying of the molding, the shrinkage during drying must be approximately equal. This can be done with layers of different structure (particle morphology or particle size distribution) e.g. be achieved by a variation of the degree of filling and or the variation of the particle size distribution.
Die Dichte des erfindungsgemäßen Formkörpers liegt zwischen 1,4 g/ cm3 und 1,8 g/cm3.The density of the molding according to the invention is between 1.4 g / cm 3 and 1.8 g / cm 3 .
Bei dem auf diese Weise erhältlichen Formkörper handelt es sich um einen amorphen, offenporigen, SiC>2-Formkörper beliebiger Dimensionen und Gestalt, der aus mindestens zwei Schichten besteht, die in ihrer Zusammensetzung und/oder Struktur unter- schiedlich aufgebaut sind.The moldings obtainable in this way are an amorphous, open-pore, SiC> 2 shaped body of any dimensions and shape, which consists of at least two layers of different composition and / or structure.
Die beschriebenen Formkörper können aufgrund ihrer besonderen Eigenschaften vielfältig verwendet werden, z.B. als Filtermaterialien, Wärmedämmmaterialien, Hitzeschilder, Katalysatorträ- germaterialien sowie als "preform" für Glasfasern, Lichtleitfasern, optischen Gläsern oder Quarzgüter aller Art dienen.The shaped articles described can be used in a variety of ways due to their special properties, e.g. are used as filter materials, thermal insulation materials, heat shields, catalyst support materials as well as "preform" for glass fibers, optical fibers, optical glasses or quartz goods of all kinds.
In einer weiteren speziellen Ausführungsform können die porösen Formkörper mit unterschiedlichsten Molekülen, Stoffen und Sub- stanzen ganz oder teilweise versetzt werden. Bevorzugt sind Moleküle, Stoffe und Substanzen, die katalytisch aktiv sind. Dabei können alle dem Fachmann bekannten Methoden angewendet werden, wie sie z.B. in US 5655046 beschrieben sind. Die erfindungsgemäßen Formkörper können noch einer Sinterung unterzogen werden. Dabei können alle dem Fachmann bekannten Methoden, wie z.B. Vakuumsintern, Zonensintern, Sintern im Lichtbogen, Sintern mittels Plasma oder Laser, induktives Sintern oder Sintern in einer Gasatmosphäre bzw. Gasstrom verwendet werden. So können die erfindungsgemäßen Formkörper wie in DE C 10158521, DE A 10260320 und DE A 10324440 beschrieben noch mittels CO2 Laser verglast werden.In a further specific embodiment, the porous shaped bodies can be completely or partially mixed with a wide variety of molecules, substances and substances. Preference is given to molecules, substances and substances which are catalytically active. All methods known to those skilled in the art can be used, as described, for example, in US Pat. No. 5,655,046. The shaped bodies according to the invention can still be subjected to sintering. In this case, all methods known to those skilled in the art, such as vacuum sintering, zone sintering, arc sintering, sintering by means of plasma or laser, inductive sintering or sintering in a gas atmosphere or gas stream can be used. Thus, the shaped bodies according to the invention as described in DE C 10158521, DE A 10260320 and DE A 10324440 can still be glazed by means of CO2 lasers.
Während der Sinterung geht der Schichtaufbau der amorphen porösen offenporigen Formkörper verloren. Erfolgt eine vollständige Sinterung, so ist kein Schichtaufbau im Formkörper mehr vorhanden. Unterschieden sich die Schichten des Formkörpers in ihrem Anteil an Metallatomen, so ist dieser Unterschied nach einer vollständigen Sinterung weiterhin gegeben.During sintering, the layer structure of the amorphous porous open-pore shaped bodies is lost. If a complete sintering, so no layer structure in the molding is no longer available. If the layers of the shaped body differ in their proportion of metal atoms, this difference is still present after complete sintering.
Die Erfindung betrifft somit auch einen Kieselglasformkörper, der dadurch gekennzeichnet ist, dass er einen Gradienten bezüglich der Metallatomkonzentration aufweist.The invention thus also relates to a silica glass molded body which is characterized in that it has a gradient with respect to the metal atom concentration.
Die so hergestellten Kieselglasformkörper eignen sich prinzipiell für alle Anwendungen, in denen Kieselglas verwendet wird. Bevorzugte Anwendungsfeider sind Quarzgüter aller Art, Glasfasern, Lichtleitfasern und optische Gläser.The silica glass moldings produced in this way are suitable in principle for all applications in which silica glass is used. Preferred Anwendungsfeider are quartz goods of all kinds, glass fibers, optical fibers and optical glasses.
Ein besonders bevorzugtes Anwendungsgebiet sind hochreine Kieselglastiegel für das Ziehen von Siliziumeinkristallen.A particularly preferred field of application are high-purity silica glass crucibles for drawing silicon single crystals.
Wurde die äußere Schicht, wie bereits beschrieben mit Metall- partikeln, Metallverbindungen oder Metallsalzen versetzt, so weist der gesinterte Kieselglaskörper zusätzliche Eigenschaften auf.If the outer layer has been mixed with metal particles, metal compounds or metal salts as described above, the sintered silica glass body has additional properties.
In einer solchen Ausführungsform wird die Dispersion für die äußere Schicht oder die äußere Schicht ganz oder teilweise mit Verbindungen versetzt, die eine Cristobalitbildung fördern oder bewirken. Dabei können alle dem Fachmann bekannten Verbindungen verwendet werden, die eine Cristobalitbildung fördern und/oder bewirken, wie z.B. in EP 0753605, US 5053359 oder GB 1428788 beschrieben. Bevorzugt sind hierbei BaOH und/oder Aluminumver- bindungen.In such an embodiment, the dispersion for the outer layer or the outer layer is wholly or partly with Added compounds that promote or cause cristobalite formation. All compounds known to those skilled in the art which promote and / or effect cristobalite formation can be used, as described, for example, in EP 0753605, US Pat. No. 5,053,359 or GB 1,428,788. BaOH and / or aluminum compounds are preferred here.
Nach dem Sintern eines solchen Formkörpers erhält man insbesondere Tiegel zum Kristallziehen von Si-Einkristallen, die außen eine Cristobalitschicht besitzen. Diese Tiegel eignen sich besonders zum Kristallziehen, da sie temperaturstabiler sind und z. B. eine Siliziumschmelze weniger stark verunreinigen. Dadurch kann eine höhere Ausbeute beim Kristallziehen erreicht werden.After sintering of such a shaped body, in particular crucibles are obtained for crystal pulling of Si single crystals which have a cristobalite layer on the outside. These crucibles are particularly suitable for crystal pulling, since they are more stable in temperature and z. B. contaminate a silicon melt less. As a result, a higher yield in crystal pulling can be achieved.
Fig. 1 zeigt schematisch den Ablauf des erfindungsgemäßen Verfahrens .Fig. 1 shows schematically the sequence of the method according to the invention.
Fig. 2 zeigt einen Scherben bestehend aus zwei unterschiedli- chen Schichten (innen 5 mm) bestehend Fused Silica2 shows a piece of shards consisting of two different layers (5 mm inside) consisting of fused silica
Fig. 3 zeigt einen rissfrei getrockneter Zweischicht-14" GrünkörpertiegelFig. 3 shows a crack-free dried two-layer 14 "green body crucible
Fig. 4 zeigt einen vollversinterten Scherben bei dem die Grenzschicht zwischen den Schichten nicht mehr nachweisbar istFig. 4 shows a fully sintered body in which the boundary layer between the layers is no longer detectable
Das folgende Beispiel dient der weiteren Erläuterung der Erfindung. Beispiel 1 :The following example serves to further explain the invention. Example 1 :
A) Herstellung der SiC>2 Dispersion für die innere Schicht.A) Preparation of the SiC> 2 dispersion for the inner layer.
In einem 10 Liter Kunststoffbecher wurden 3800 g bidest. H2O vorgelegt. Mit einem kunststoffbeschichteten Propellerrührer wurden zunächst 712 g Fumed Silica (Wacker HDK, BET Oberfläche 200 m2/g) in 30 min eingerührt. Anschließend wurden portionsweise in 30 min 8188 g gemahlene Fused Silica (MKC 400® der Firma Mitsubishi Chemical, mittlere Teilchengröße 25 μm) zugegeben und dispergiert.In a 10 liter plastic cup 3800 g were redistilled. H 2 O submitted. 712 g of fumed silica (Wacker HDK, BET surface area 200 m 2 / g) were first stirred in over 30 minutes using a plastic-coated propeller stirrer. 8188 g of ground fused silica (MKC 400® from Mitsubishi Chemical, average particle size 25 μm) were then added in portions over a period of 30 minutes and dispersed.
Im Anschluss an die vollständige Dispergierung wurde die Dispersion 10 Minuten einem leichten Unterdruck (0,8 bar) unterzogen, um eventuelle eingeschlossene Luftblasen zu entfernen.Following complete dispersion, the dispersion was subjected to a slight vacuum (0.8 bar) for 10 minutes to remove any trapped air bubbles.
Die so hergestellte Dispersion bestand aus 8900 g Feststoff, was einem Feststoffgehalt von 70 Gew.-% entspricht (davon wiederum 92% Fused Silica und 8% Fumed Silica) .The dispersion thus prepared consisted of 8900 g of solid, which corresponds to a solids content of 70 wt .-% (of which in turn 92% fused silica and 8% fumed silica).
B) Herstellung eines Formkörpers in 14" Tiegelgeometrie mit einer Schichtstärke von 5 mm.B) Production of a molded article in 14 "crucible geometry with a layer thickness of 5 mm.
Die SiC>2-Dispersion wird von einem Vorlagebehälter mit einem Druck von 10 bar durch ein Leitungssystem zwischen zwei offenporigen Kunststoffmembranen aus Methylmethacrylat gepresst. Die Membranen weisen eine Porosität von 30 VoI .% und ein mittleren Porenradius von 20 μm auf. Der Abstand der beiden Membranen zueinander lassen die Bildung eines 5 mm dicken Scherben zu. Die beiden Membrane werden mit einem Schließdruck von 200 bar beaufschlagt .The SiC> 2 dispersion is pressed from a feed tank at a pressure of 10 bar through a pipe system between two open-pored plastic membranes made of methyl methacrylate. The membranes have a porosity of 30% by volume and an average pore radius of 20 μm. The distance between the two membranes to each other allow the formation of a 5 mm thick shards. The two diaphragms are subjected to a closing pressure of 200 bar.
Durch den Druck, der auf der Dispersion lastet wird der größte Teil des Wassers der Dispersion in die Membrane gedrückt. Es bildet sich der SiC>2 Scherben. Nach Ablauf der Scherbenbildung von 45 min wird der Druck im Vorlagebehälter auf 0 bar Über- druck reduziert. Spezielle in der äußeren Membrane verlegte Luft- und Wasserleitungen ermöglichen es den gebildeten Formkörper durch die poröse Membrane mit Luft oder Wasser zur Endformung zu beaufschlagen. Dabei löst sich der Formkörper von der äußeren Membrane. Die innere Membrane wird dabei nach oben bewegt. Der Formkörper hängt jetzt an der inneren Membrane.Due to the pressure on the dispersion, most of the water in the dispersion is forced into the membrane. It forms the SiC> 2 shards. After the formation of a clay body of 45 min, the pressure in the storage tank is raised to 0 bar. reduced pressure. Special air and water pipes laid in the outer membrane make it possible to apply air or water to the shaped bodies formed by the porous membrane for final shaping. In this case, the shaped body of the outer membrane dissolves. The inner membrane is moved upwards. The molding now hangs on the inner membrane.
Die innere Membran wird nun auf eine andere äußere offenporige Kunststoffmembranen aus Methylmethacrylat abgesenkt. Diese Membrane weist ebenfalls eine Porosität von 30 VoI .% und ein mittleren Porenradius von 20 μm auf. Der Abstand der neuen äußeren Membranen zu dem bereits gebildeten Scherben lässt die Bildung einer weiteren Schicht von 5 mm auf dem Scherben zu. Die beiden Membrane werden mit einem Schließdruck von 200 bar beaufschlagt.The inner membrane is now lowered to another outer open-pored plastic membranes of methyl methacrylate. This membrane also has a porosity of 30% by volume and an average pore radius of 20 μm. The distance of the new outer membranes to the already formed cullet allows the formation of another layer of 5 mm on the cullet. The two diaphragms are subjected to a closing pressure of 200 bar.
C) Herstellung der SiC>2 Dispersion für die äußere Schicht.C) Preparation of the SiC> 2 dispersion for the outer layer.
In einem 10 Liter Kunststoffbecher wurden 3800 g bidest. H2O vorgelegt. Mit einem kunststoffbeschichteten Propellerrührer wurden zunächst 712 g Fumed Silica (Wacker HDK, BET Oberfläche 200 m2/g) in 30 min eingerührt. Anschließend wurden portionsweise in 30 min 8188 g Fused Silica (Exelica® SE 15 der Firma Tokuyama, mittlere Teilchengröße 30 μm) zugegeben und disper- giert .In a 10 liter plastic cup 3800 g were redistilled. H 2 O submitted. 712 g of fumed silica (Wacker HDK, BET surface area 200 m 2 / g) were first stirred in over 30 minutes using a plastic-coated propeller stirrer. 8188 g of fused silica (Exelica® SE 15 from Tokuyama, average particle size 30 μm) were then added in portions over a period of 30 minutes and dispersed.
Im Anschluß an die vollständige Dispergierung wurde die Dispersion 10 Minuten einem leichten Unterdruck (0,8 bar) unterzogen, um eventuelle eingeschlossene Luftblasen zu entfernen.Following complete dispersion, the dispersion was subjected to a slight vacuum (0.8 bar) for 10 minutes to remove any trapped air bubbles.
Die so hergestellte Dispersion bestand aus 8900 g Feststoff, was einem Feststoffgehalt von 70 Gew.% entspricht (davon wiederum 92% Fused Silica und 8% Fumed Silica) . D) Herstellung eines Zweischicht-Formkörpers in 14" TiegelgeometrieThe dispersion thus prepared consisted of 8900 g of solid, which corresponds to a solids content of 70% by weight (of which in turn 92% fused silica and 8% fumed silica). D) Preparation of a two-layer molding in 14 "crucible geometry
Die SiC>2-Dispersion wird von einem Vorlagebehälter mit einem Druck von 10 bar durch ein Leitungssystem in den Zwischenraum zwischen der bereits gebildeten Scherbe und der zweiten äußeren Membran gepresst.The SiC> 2 dispersion is pressed from a feed tank at a pressure of 10 bar through a conduit system into the space between the already formed shard and the second outer membrane.
Durch den Druck, der auf der Dispersion lastet wird der größte Teil des Wassers der Dispersion in die Membrane gedrückt. Es bildet sich der zweite SiC>2 Scherben. Nach Ablauf der Scherbenbildung von 45 min wird der Druck im Vorlagebehälter auf 0 bar Überdruck reduziert. Spezielle in der Membrane verlegte Luft- und Wasserleitungen ermöglichen es den gebildeten Formkörper durch die poröse Membrane mit Luft oder Wasser zur Endformung zu beaufschlagen. Zuerst wird der Formkörper von der äußeren Membrane gelöst. Die innere Membrane wird dabei nach oben bewegt. Der Formkörper hängt jetzt an der inneren Membrane. Eine formschlüssige Unterlage wird unter den Formkörper positioniert. Danach wird der Formkörper auf die Unterlage abgesetzt und von der inneren Membrane gelöst. Die innere Membrane wird dabei wiederum nach oben gefahren. Der so hergestellte amorphe offenporige poröse Formkörper weist einen Feststoffgehalt von 89 Gew.% und einem Restwassergehalt von 11 Gew.% auf. Er besteht aus zwei unterschiedlichen Schichten bezüglich der ent- haltenen Fused Silica Partikeln. Fig. 2 zeigt diese Schichten im Schnitt durch den Scherben.Due to the pressure on the dispersion, most of the water in the dispersion is forced into the membrane. The second SiC> 2 shard forms. After expiry of the body formation of 45 min, the pressure in the storage tank is reduced to 0 bar overpressure. Special air and water pipes laid in the membrane make it possible to pressurize the shaped bodies formed by the porous membrane with air or water for final shaping. First, the molding is released from the outer membrane. The inner membrane is moved upwards. The molding now hangs on the inner membrane. A positive base is positioned under the molded body. Thereafter, the molding is deposited on the pad and released from the inner membrane. The inner membrane is in turn moved upwards. The amorphous open-pored porous shaped body produced in this way has a solids content of 89% by weight and a residual water content of 11% by weight. It consists of two different layers with regard to the fused silica particles contained. Fig. 2 shows these layers in section through the shards.
Nach einer Trocknung bei 9O0C für 3 Stunden ist der Formkörper rissfrei und vollständig getrocknet Fig. 3 zeigt diesen Form- körper. Nach einer Vakuumsinterung (10~3 mbar) für 2 Stunden bei 16000C Können die beiden Schichten optisch nicht mehr unterschieden werden (siehe Fig. 4) . After drying at 9O 0 C for 3 hours, the shaped body is free of cracks and completely dried Fig. 3 shows this molding. After a vacuum sintering (10 -3 mbar) no longer visually distinguish the two layers for 2 hours at 1600 0 C Can (see Fig. 4).

Claims

Patentansprüche : Claims:
1. Amorpher poröser offenporiger SiC>2-Formkörper, dadurch gekennzeichnet, dass er aus zwei oder mehr Siθ2~Schichten besteht, die eine unterschiedliche Zusammensetzung besitzen, oder die in ihrer Struktur unterschiedlich aufgebaut sind.1. Amorphous porous open-pore SiC> 2 shaped body, characterized in that it consists of two or more SiO 2 layers, which have a different composition, or which are structured differently in structure.
2. Formkörper gemäß Anspruch 1, dadurch gekennzeichnet, dass er aus zwei oder mehr Siθ2~Schichten besteht, die eine unterschiedliche Zusammensetzung besitzen, und die in ihrer Struktur unterschiedlich aufgebaut sind.2. Shaped body according to claim 1, characterized in that it consists of two or more Siθ 2 ~ layers, which have a different composition, and which are structured differently in structure.
3. Formkörper gemäß Anspruch 1 oder 2, dadurch gekennzeich- net, dass er aus 2 bis 5 Siθ2~Schichten, besonders bevorzugt aus 2 SiC>2-Schichten besteht.3. Shaped body according to claim 1 or 2, characterized marked, that it consists of 2 to 5 SiO 2 ~ layers, more preferably 2 SiC> 2 layers.
4. Formkörper gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass er eine Tiegelform besitzt.4. Shaped body according to one of claims 1 to 3, characterized in that it has a crucible shape.
5. Formkörper gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die einzelnen Schichten eine Dicke zwischen 1 und 50 mm, bevorzugt zwischen 3 und 10mm besitzen,5. Shaped body according to one of claims 1 to 4, characterized in that the individual layers have a thickness between 1 and 50 mm, preferably between 3 and 10mm,
6. Formkörper gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er einen Feststoffgehalt zwischen 80 und 95 Gew.-% aufweist.6. Shaped body according to one of claims 1 to 5, characterized in that it has a solids content of 80 to 95 wt .-%.
7. Formkörper gemäß einem der Ansprüche 1 bis 6, dadurch ge- kennzeichnet, dass er eine Dichte zwischen 1,4 g/ cm3 und7. Shaped body according to one of claims 1 to 6, character- ized in that it has a density between 1.4 g / cm 3 and
1,8 g/cm3 aufweist.1.8 g / cm 3 .
8. Verfahren zur Herstellung eines Formkörpers gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in ei- nem ersten Schritt eine SiC>2 Partikel enthaltende erste Dispersion in eine Druckgussform einer Druckgussmaschine gepumpt wird, in der die Dispersion unter Bildung eines SiC>2 Formkörpers über eine innere und eine äußere poröse Kunststoffmembran entwässert wird, der SiC>2 Formkörpers einseitig entformt wird und in einem zweiten Schritt mittels einer SiC>2 Partikel enthaltende zweite Dispersion, die sie sich von der ersten Dispersion in ihrer Zusammensetzung unterscheidet, auf der entformten Seite des SiC>2 Formkörpers eine weitere Schicht mit Hilfe einer weiteren Druckgussform gebildet wird und der erhaltenen Formkörper entformt wird.8. A process for producing a shaped article according to any one of claims 1 to 7, characterized in that in a first step, a SiC> 2 particles containing first Dispersion is pumped into a die casting mold of a die casting machine, in which the dispersion is dewatered to form a SiC> 2 shaped body via an inner and an outer porous plastic membrane, the SiC> 2 molded body is unilaterally demolded and in a second step by means of a SiC> 2 particles containing second dispersion, which differs from the first dispersion in its composition, on the demoulded side of the SiC> 2 shaped body, a further layer is formed by means of a further die-casting mold and the resulting molded body is removed from the mold.
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die Dispersionen mit einem Druck zwischen 0 und 100 bar, besonders bevorzugt zwischen 5 und 30 bar und ganz besonders bevorzugt zwischen 5 und 10 bar in die Druckgußform gefüllt werden.9. The method according to claim 8, characterized in that the dispersions are filled with a pressure between 0 and 100 bar, more preferably between 5 and 30 bar and most preferably between 5 and 10 bar in the die.
10. Verfahren gemäß Anspruch 8 oder 9, dadurch gekennzeich- net, dass es über einen Zeitraum von 5 bis 90 min durchgeführt wird.10. The method according to claim 8 or 9, marked thereby, that it is carried out over a period of 5 to 90 min.
11. Verfahren gemäß Anspruch 8, 9 oder 10, dadurch gekennzeichnet, dass es bei einer Temperatur von O0C bis zum Siedepunkt des Dispergiermittels, bevorzugt bei einer Temperatur zwischen 2O0C und 3O0C durchgeführt wird.11. The method according to claim 8, 9 or 10, characterized in that it is carried out at a temperature of 0 0 C to the boiling point of the dispersant, preferably at a temperature between 2O 0 C and 3O 0 C.
12. Verwendung eines Formkörper gemäß einem der Ansprüche 1 bis 7 als Filtermaterialien, Wärmedämmmaterialien, Hitze- schilder, Katalysatorträgermaterialien oder als "preform" für Glasfasern, Lichtleitfasern, optischen Gläsern oder Quarzgüter. 12. Use of a shaped body according to one of claims 1 to 7 as filter materials, thermal insulation materials, heat shields, catalyst support materials or as preform for glass fibers, optical fibers, optical glasses or quartz goods.
13. Kieselglasformkörper der dadurch gekennzeichnet ist, dass er einen Gradienten bezüglich der Metallatomkonzentration aufweist 13. fused silica molded body which is characterized in that it has a gradient with respect to the metal atom concentration
PCT/EP2006/063934 2005-08-04 2006-07-06 Molded sio2 element from two layers, method for producing the same and use thereof WO2007014823A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510036746 DE102005036746A1 (en) 2005-08-04 2005-08-04 SiO2 molded body of two layers, process for their preparation and use
DE102005036746.1 2005-08-04

Publications (2)

Publication Number Publication Date
WO2007014823A2 true WO2007014823A2 (en) 2007-02-08
WO2007014823A3 WO2007014823A3 (en) 2007-03-29

Family

ID=37575326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063934 WO2007014823A2 (en) 2005-08-04 2006-07-06 Molded sio2 element from two layers, method for producing the same and use thereof

Country Status (2)

Country Link
DE (1) DE102005036746A1 (en)
WO (1) WO2007014823A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8713966B2 (en) * 2011-11-30 2014-05-06 Corning Incorporated Refractory vessels and methods for forming same
US9108876B2 (en) 2011-11-30 2015-08-18 Corning Incorporated Pressed, multilayered silica soot preforms for the manufacture of single sinter step, complex refractive index profile optical fiber
CN103286850B (en) * 2012-09-25 2014-04-09 江苏宏基炭素科技有限公司 One-time forming method and special mold for graphite crucible
DE102013208799A1 (en) * 2013-05-14 2014-11-20 Heraeus Quarzglas Gmbh & Co. Kg SiO2-based barrier layer for high-temperature diffusion and coating processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD284660A5 (en) * 1989-06-08 1990-11-21 Univ Halle Wittenberg PROCESS FOR PREPARING POROESES, CRYSTALLINE SILICATIVE PHASES CONTAINING SOLUBLE BODY
DE10339676A1 (en) * 2003-08-28 2005-03-24 Wacker-Chemie Gmbh Amorphous porous silicon dioxide molded body used e.g. as filter material, heat insulating material, catalyst carrier material and as a preform for glass fibers comprises two layers each having an identical structure and composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD284660A5 (en) * 1989-06-08 1990-11-21 Univ Halle Wittenberg PROCESS FOR PREPARING POROESES, CRYSTALLINE SILICATIVE PHASES CONTAINING SOLUBLE BODY
DE10339676A1 (en) * 2003-08-28 2005-03-24 Wacker-Chemie Gmbh Amorphous porous silicon dioxide molded body used e.g. as filter material, heat insulating material, catalyst carrier material and as a preform for glass fibers comprises two layers each having an identical structure and composition

Also Published As

Publication number Publication date
WO2007014823A3 (en) 2007-03-29
DE102005036746A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP1210294B1 (en) HIGHLY FILLED SiO2 DISPERSION, METHODS FOR THE PRODUCTION THEREOF AND ITS USE
EP2069244B1 (en) SiO2 SLURRY FOR THE PRODUCTION OF QUARTZ GLASS AS WELL AS THE APPLICATION OF THE SLURRY
EP1074513A2 (en) Sinter materials and their processes of manufacture and uses, dispersions of silica granules and their uses, as well as uses of silica granules
DE3228008A1 (en) MANUFACTURE OF Sintered Glasses with High Silicon Oxide Part
EP2141131B1 (en) Method of producing a quartz glass crucible
EP3057923A2 (en) Method for the production of molded bodies from reaction-bonded, silicon-infiltrated silicon carbide and/or boron carbide and thus produced molded body
EP1324959B1 (en) Electrophoretically redensified sio2 - moulded body, method for the production and use thereof
DE10319300B4 (en) Process for producing a shaped body of silica glass
EP1658242B1 (en) SIO sb 2 /sb MOLDED BODIES, METHOD FOR PRODUCING THEM AND USE THEREOF
WO2007014823A2 (en) Molded sio2 element from two layers, method for producing the same and use thereof
DE10344189A1 (en) Manufacture of opaque quartz glass composite material, used as starting material of permanent shaping-die manufacture of solar silicon melting, involves forming composite slip by mixing quartz glass granules and homogenous base slip
DE102010045934B4 (en) Process for the preparation of a quartz glass crucible with a transparent inner layer of synthetically produced quartz glass
EP0196717A1 (en) Method and apparatus for making glass bodies
EP3339258B1 (en) Method for producing opaque quartz glass, and blank made of the quartz glass
DE102006032687B4 (en) Pressings and slip die casting process for the production of compacts
EP0775672B1 (en) Process for producing a flat, glasslike or ceramic shaped article of structured surface
EP2091874B1 (en) Method and semifinished product for the production of opaque quartz glass, as well as a component produced from the semifinished product
DE4441911C1 (en) Slip cast silicon di:oxide and nitride article prodn. for mould for polycrystalline silicon ingot prodn.
DE102011120932A1 (en) Manufacture of transparent surface layer-containing silica glass component involves casting slurry of silica particles and liquid, cooling, drying obtained frozen material by heating, sintering, and sealing
DE102005059291A1 (en) Quartz glass component formation by impregnating a preform with a silicic acid solution, drying and sintering
EP4108641A1 (en) Mould made from opaque quartz glass and method of manufacturing the same
DE102008016230A1 (en) Production of synthetic quartz glass cylinders comprises forming coating of silica granules on quartz glass cylinder and sintering it, granules having multimodal particle size distribution with maxima in specified ranges
DE102018110215A1 (en) Process for producing a large-sized, ceramic gradient component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06764084

Country of ref document: EP

Kind code of ref document: A2