WO2007013499A1 - Visible light transmitting type planar coil element - Google Patents
Visible light transmitting type planar coil element Download PDFInfo
- Publication number
- WO2007013499A1 WO2007013499A1 PCT/JP2006/314750 JP2006314750W WO2007013499A1 WO 2007013499 A1 WO2007013499 A1 WO 2007013499A1 JP 2006314750 W JP2006314750 W JP 2006314750W WO 2007013499 A1 WO2007013499 A1 WO 2007013499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive
- visible light
- substrate
- conductive wire
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/046—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
Definitions
- the present invention relates to a planar coil element that can be suitably used for a position detection device using electromagnetic coupling such as a tablet sensor boat.
- planar coils suitable for thinning have been used.
- a loop coil which is one of planar coils
- a sensor board that constitutes a position detection device using electromagnetic coupling used in an input / output integrated display device such as a tablet PC, etc.
- an input / output integrated display device In an input / output integrated display device, a sensor board is placed behind the display, and electromagnetic waves are exchanged between the electronic input pen and the sensor board through the display to detect coordinates (Non-patent Document 1).
- an input / output integrated display device using this method requires a liquid crystal display on the premise that a sensor board is incorporated.Therefore, the display type is selected and the sensor board is placed on the display surface side of the display.
- An input / output integrated display device called an overlay structure to be arranged is desired.
- Patent Document 1 Japanese Patent Laid-Open No. 63-70326
- Non-Patent Document 1 “Basics and Applications of Touch Panel”, Techno Times, pp. 39-48 Disclosure of Invention
- Non-patent Document 1 a layer provided with conductive wires is provided on an insulating substrate such as a printed circuit board.
- the layer where the conductive layer is arranged By providing a plurality of openings in the substrate on both sides and the substrate, it is necessary to be able to connect the conductive wires between the layers.
- an object of the present invention is to provide a planar coil element excellent in visible light transmission that can be used for a sensor board having a high visible light transmittance.
- the first visible light transmissive planar coil element of the present invention is a first layer in which a substrate having visible light transparency and linear conductive lines are arranged in parallel on the substrate.
- a pattern film, a second-layer insulating film made of a dielectric formed so as to have an opening at an arbitrary point on the conductive line, and a linear conductive line arranged in parallel on the insulating film A third-layer pattern film, and the first-layer conductive wire is joined to the third-layer conductive wire at two points through the opening portion, or the third-layer conductive film
- a coil is formed by the first layer conductive wire and the third layer conductive wire depending on whether the conductive wire is structured to be joined to the first layer conductive wire at two points through the opening portion, and Conductive wires arranged in parallel on the first layer and conductive wires arranged in parallel on the third layer are arranged orthogonally in a front view of the substrate.
- the conductive wire is mainly composed of silver, copper or gold, the width of the conductive wire is 1
- the second visible light transmissive planar coil element of the present invention is a first layer pattern in which a substrate having visible light permeability and linear conductive wires are arranged in parallel on the substrate.
- a layer pattern film, and the first layer conductive line is connected to the third layer conductive line at two points through the opening, or the third layer conductive line A line extending through the opening
- a coil is formed by the first layer conductive wire and the third layer conductive wire, and the first layer conductive wire is arranged in parallel on the first layer.
- the conductive wires and the conductive wires arranged in parallel in the third layer are arranged orthogonally in a front view of the substrate, so that the coils can be integrated, and the main components of the conductive wires are made of ITO.
- the width of the conductive wire is 0.1 mm to: 10 mm, and the distance between the conductive wires in the same layer is 1 ⁇ m to 50 ⁇ m.
- a multilayer film is provided on a substrate having visible light permeability such as glass or a plastic sheet, and the first layer on the substrate side of the multilayer film is conductive.
- the pattern film on which the wires are arranged, the second layer is an insulating film made of a dielectric, and the third layer is a pattern film on which conductive wires are arranged.
- the insulating film of the second layer is provided with a plurality of opening portions, and the ends of the conductive wires of the first layer and the third layer are coupled to each other at the opening portions.
- the first layer conductive line and the third layer conductive line are orthogonal.
- a coil such as a loop coil can be formed on the substrate.
- the conductive wires arranged in parallel are in the same layer, and the conductive wires connected to the conductive wires arranged in parallel are in different layers. Can be arranged without overlapping, and the coil is successfully integrated on the substrate.
- the main component of the conductive wire is visible light of silver, copper or gold.
- the width of the conductive line is set to 1 ⁇ m to 50 ⁇ m, and the distance between the conductive lines in the same layer is set to 0.1 mm to 10 mm.
- the width of the conductive line shall be 0.1 mm to 10 mm, and the distance between the conductive lines in the same layer shall be 1 ⁇ m to 50 ⁇ m.
- the conductive material it is preferable to use silver, copper, or gold as a main component when giving priority to the characteristics of conductivity. When priority is given to visible light transmission, ITO is used as the main component. It is preferable to use anything.
- the conductive material contains silver, copper, or gold as the main component, if the width of the conductive wire is less than 1 ⁇ m, it will be difficult to fabricate and the resistance will be high. When the thickness exceeds 50 zm, the conductive lines are easily visualized, and the visible light transmittance of the element of the present invention is deteriorated. Considering the above, the width of the conductive wire should be between 10 111 and 30 111.
- the distance between the conductive lines in the same layer is less than 0.1 mm, the visible light transmission tends to deteriorate, and the manufacturing cost also increases, and if it exceeds 10 mm, the integration of the coils on the substrate is sufficient. Not. Considering these, the distance between the conductive lines in the same layer is preferably 0.5 mm to 5 mm.
- the main component of the conductive material is mainly composed of ITO
- the width of the conductive line is increased and the distance between the conductive lines is decreased.
- ITO is the main component
- ITO is transparent to visible light, but since a multilayer film is formed on the substrate, there is a difference in optical interference between the presence and absence of ITO, and visible light. This affects the transparency or reflectivity of the film, making it easier to visualize the ITO-free part, and the same phenomenon as the above structure occurs when the conductive material is mainly composed of silver, copper, or gold.
- the distance between conductive lines in the same layer needs to be 50 / m or less, and is preferably 30 ⁇ or less in consideration of the visualization phenomenon.
- the width of the conductive wire is preferably 0.1 mm to 10 mm, preferably 0.3 mm or more.
- the visible light transmitting substrate described above is a visible light transmitting material obtained in accordance with JIS R 3106 "Testing method for transmittance, reflectance, emissivity of solar glass” (1998).
- the rate is 70% or more, preferably 85% or more.
- the shape of the substrate is preferably rectangular in consideration of the field of application of the element of the present invention.
- the thickness of the second insulating film is smaller than the thickness of the first pattern film.
- the thickness of the second layer is smaller than the thickness of the first layer pattern film, that is, the conductive line
- the end of the conductive line in the first layer provided in the insulating film becomes the insulating film.
- the conductive wire part can be the highest part.
- the thickness of the second layer insulating film is 0.8 times or more less than the thickness of the first layer pattern film. If the ratio is less than 8 times, the height of the protruding portion of the conductive wire at the opening portion becomes high, and it becomes easy to form a gap in the wall surface portion of the protruding portion, and the conductive wire is likely to be partially cut. . Considering this, the thickness of the second-layer insulating film is preferably 0.9 times or more, more preferably 0.95 times or more that of the first-layer pattern film.
- the insulating film is a colorless dielectric mainly composed of an oxide or nitride of any one of Si, Al, Ti, Zn, Nb, Ta, In, and Sn, or a silicone resin, a urethane resin, a polycarbonate. It is preferably made of a dielectric material mainly composed of any organic polymer selected from the group consisting of neat, polyethersulfone, polyacrylate, and polyacrylamide, particularly a colorless dielectric material. In consideration of the film formation and reflectivity, a dielectric thin film mainly composed of an oxide of Si is preferable. In consideration of the manufacturing cost of the insulating film having an opening portion, a manufacturing method having a screen process is adopted.
- a dielectric material composed mainly of an organic polymer that is soluble in a solvent and a coating solution or a thin film, or a silicon oxide that is easily soluble in a solvent, such as an alkoxide, is available. It is preferable to use a dielectric material as the main component.
- a primer component is applied to the surface of the glass substrate in order to improve the adhesion between the organic polymer and the glass.
- UV ozone treatment is preferred.
- a method of improving adhesion to a glass substrate by adding a silicon alkoxide or colloidal silica to a coating solution in which a dielectric material mainly composed of an organic polymer is dissolved can be employed.
- ITO when used for the conductive wire, it can be bent with ITO to reduce the interference effect of the film.
- a dielectric thin film whose main component is an oxide of Ti, Zn, Nb, Ta, In, or Sn with an approximate curvature may be used.
- the substrate on which the element of the present invention is used has a rectangular shape, and the included angle between the side of the substrate and the conductive wire is 20 degrees to 45 degrees.
- the visible light transmission type planar coil element of the present invention is disposed on a display such as a liquid crystal display, a CRT display, an organic EL display, or a PDP display, thereby preventing the occurrence of moire. In order to achieve this, it is preferable to set the angle to 20 degrees to 45 degrees.
- the distance between all the conductive lines and the width of all the conductive lines in the first layer and the third layer pattern film are constant because the visibility of an image viewed through the element of the present invention is improved. .
- the force S that generates a conductive wire that is not used as a coil may be used as a dummy.
- the visible light transmission type planar coil element has a structure in which the first-layer conductive wire and the third-layer conductive wire are joined at the ends of the conductive wires, respectively. It is preferable to do.
- the main component of the conductive wire is silver, copper, or gold, it is visible from the substrate side.
- a black pigment or a dye is mixed in the conductive line or the conductive line is formed on the black pattern so that the conductive line portion is blackened. This is preferable because the effect of improving the contrast of an image viewed through the element of the present invention is obtained.
- planar coil element of the present invention can achieve transmission of visible light, it can be used in a wide range of applications of planar coil elements that are conventionally opaque and limited in use.
- an input / output integrated display device called an overlay structure in which the sensor board is arranged on the display surface side of the display can be created regardless of the display type.
- FIG. 1 is a front view of the main part of the visible light transmission type planar coil element of the present invention
- FIGS. 2 and 3 are sectional views of the main part. Show.
- the first-layer conductive wire 3 and the third-layer conductive wire 5 formed on the substrate 2 are arranged so as to be orthogonal when viewed from the front.
- the conductive line 3 is joined to the third-layer conductive line 5 through the opening 7 provided in the second-layer insulating film 4. Then, the conductive line 5 is joined to the first-layer conductive line 3 arranged in parallel with the previous conductive line 3, so that the first-layer conductive line 3 and the third-layer conductive line 5 are connected. And are joined at two points, and can be a coil such as a loop coil.
- the third-layer conductive wire 5 exists in a different layer from the first-layer conductive wire 3 via the second-layer insulating film 4, but is joined at the opening portion 7. As shown in FIG. 1, it is possible to provide an integrated coil circuit group integrated in the same direction and a coil circuit group integrated in the orthogonal direction.
- FIG. 4 is a view showing a portion that becomes a joint portion of the coil with an external circuit when the visible light transmission type planar coil element main part of the present invention is viewed from the front.
- FIG. 5 shows a cross-section of the main part serving as the joining site.
- the insulating film 4 or 6 may not be formed on the peripheral edge of the glass.
- the opening part 8 it is preferable to provide the opening part 8 without a film because the degree of freedom in the design of the coil circuit occurs.
- a coil circuit such as a loop coil is connected to an external circuit (not shown) through the opening 8.
- FIG. 6 is a diagram showing an overall image when the visible light transmissive planar coil element of the present invention is viewed from the front.
- a masking layer 9 such as a black frame is preferably provided on the peripheral edge of the coil element 1 so as to cover and conceal the connection part with the external circuit as described above and the external circuit.
- the conductive wire 3 of the first layer pattern film and the conductive wire 5 of the third layer are visually recognized in a mesh pattern, and the line width and the arrangement width of the conductive wires are defined in the present invention, thereby making visible light visible. As a result, a visible light transmission type planar coil element is obtained.
- the masking layer 9 is preferably provided with a masking layer having an absorbance of 3, more preferably 4 or more.
- This masking layer can be formed by applying a preparation containing a thermosetting synthetic resin, a pigment, and a dye, followed by drying and heating.
- thermosetting synthetic resin include epoxy resins, acrylic silicon resins, alkyd resins, and polyamides. Resin, fluororesin, or the like can be used.
- the pigment examples include one or more materials selected from iron oxide, copper oxide, chromium oxide, cobalt oxide, mangan oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate, and the like. Can be used.
- the dye for example, dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used.
- a medium for making this mixture into a paste for coating for example, a solvent such as diethylene glycol monobutyl ether acetate or ethylene glycol monobutyl ether can be used.
- a modified aliphatic polyamine resin or N-butanol may be mixed as a curing reaction accelerator.
- the thickness of the masking layer is larger than 35 ⁇ , there is a step at the boundary between the masking layer surface and the glass substrate surface. Since the film becomes large, bubbles are likely to remain in the stepped portion when an antiglare film or a low reflection film is applied. Even when the masking layer is formed on the circuit forming side, if the level difference as described above becomes large, problems such as difficult circuit formation are likely to occur.
- the substrate 2 is, for example, a plate-like glass substrate such as soda lime silicate glass, borosilicate glass, aluminosilicate glass, norium borosilicate glass, or quartz glass, and is particularly manufactured by a float process.
- a glass substrate is preferred.
- the coil element of the present invention is preferably formed on the surface not in contact with the tin bath at the time of glass production, that is, on the top surface side.
- Other than glass substrates for example, polycarbonate resin, polyethylene terephthalate resin, acrylic resin, triacetyl cellulose resin, polypropylene
- a resin-like resin substrate having a visible light transmittance such as a plate or a resin can be used.
- the substrate 2 is preferably a glass substrate.
- the conductive lines 3 and 5 in the first layer pattern film and the third layer pattern film are a paste process using a silver paste or the like, a copper process or a plating process using a silver pattern, IT O It is possible to use a known wiring pattern such as a pattern Jung film fabrication process.
- the conductive lines 3 and 5 are formed by a paste process, for example, a commercially available silver paste is used and a known technique such as a screen printing method is used. A parallel pattern is formed on the substrate 2. Then, by heating the silver paste at temperatures required for firing, the thickness. 3 to: 10 / im, preferably, at 4 to 8 mu m, specific resistance 3. 0 X 10- 6 ⁇ 'cm ⁇ :! ⁇ 0 X 10— 5 ⁇ 'cm conductive wire is obtained.
- an inorganic type paste in which silver fine particles, a low-melting glass frit, and a resin such as ethyl cellulose are mixed with a vehicle such as a viscous material that has been dissolved in a solvent such as terbinol is used as the silver paste.
- the low melting point glass functions as an adhesive layer with the base glass.
- firing at 400 ° C or higher is required to oxidize and volatilize the resin component by firing and to soften the low melting point glass frit to form an adhesive layer with the glass substrate. Therefore, the substrate 2 must be made of glass. 2.
- black pigments include oxidation
- a mixture of one or more materials selected from iron, copper oxide, chromium oxide, cobalt oxide, manganese oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate, etc. can be used.
- the dye for example, dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used.
- a conductive film formed in a pattern can be efficiently formed by using a semi-additive method.
- a substrate 2 / chrome oxide / chromium Z-copper layer film is formed on the substrate 2 by a known vapor deposition method such as a sputtering method, and a known patterning technique such as photolithography is used.
- a resist pattern formed in a straight line in parallel within the range specified in the present invention is formed on the laminated film. Then, by electrolytic plated thickness. 3 to: 10 mu m, preferably, at 4 to 8 mu m, the ratio resistance is 1. 7 X 10- 6 ⁇ 'cm ⁇ :!
- a thin film of chromium oxide, chromium, and copper was sequentially laminated on a soda lime silicate glass substrate 2 by an 8-inch rectangular float method by a sputtering method to form a laminated film.
- a resist pattern formed in a straight line and in parallel is formed by photolithography on the conductive laminated film thus formed.
- the opening width was 20 ⁇ m and the line width was 1 mm.
- a conductive film formed in a pattern of copper having a thickness of 5 ⁇ m is formed by electrolytic copper plating on the opening of the resist of 20 ⁇ m.
- the resist is peeled off by immersing this in acetone and ultrasonic cleaning.
- the conductive film formed in a pattern can be efficiently formed by using the sub-traactive method.
- a thin film is formed on the substrate 2 by a known vapor deposition method such as a sputtering method.
- a known patterning technique such as photolithography, a resist pattern formed in a straight line and in parallel within a range defined by the present invention is formed on the ITO film.
- An ITO thin film having a thickness of 200 nm was formed on a soda-lime silicate glass substrate 2 by an 8-inch rectangular float method by a sputtering method. At this time, in order to obtain a low-resistance ITO thin film, heating was performed so that the glass substrate at the time of film formation became 200 ° C. A resist pattern arranged in a straight line and in parallel is formed by photolithography on the IT ⁇ film thus formed.
- the insulating films 4 and 6 can be formed by forming the openings 7 and 8 at the same time as forming the film, or by forming a uniform film first, and then using a known patterning technique such as photolithography, laser ablation, etching, etc. Etc., and can be obtained by a method of forming the opening portions 7 and 8.
- the former is referred to as a simultaneous formation method and the latter post formation method for convenience.
- a specific example of forming an insulating film having an opening portion by the simultaneous formation method will be described below.
- the printing paste has transparency that does not impair the visibility when the printed film is placed on the front of the display, and the first and third conductive lines are electrically connected. As long as it has an insulating property so as not to be short-circuited.
- the silica precursor may be trimethoxysilane, triethoxysilane, tripropoxysilane, tetramethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, etyltrimethoxysilane, propyltrimethoxysilane.
- the Jetokishishiran the like can be used.
- a known thickening agent such as cellulose or polyethylene glycol is added to the above coating solution to form a paste-like coating solution, which is printed by a screen printing method, so that a volatile component of the solvent, a thickening agent, and the like.
- the insulating films 4 and 6 having opening portions 7 and 8 having a thickness of 2 to 8 zm are formed by volatilization and heat treatment at 80 to 400 ° C.
- This post forming method is a well-known patterning technique such as photolithography at the part where the opening parts 7 and 8 are formed.
- the thickness is 1 to 20 zm, preferably 5 to 15 zm, and the diameter 50 to 500.
- ⁇ m preferably 100-400 ⁇ m cylindrical heat-resistant resist is formed, and then Si, Al, Ti, Zn, etc. are formed on the substrate by vacuum deposition such as coating, sputtering, ion plating, etc.
- a colorless dielectric film composed mainly of an oxide or nitride of Nb, Ta, In, or Sn is formed.
- the insulating films 4 and 6 having the opening portions 7 and 8 having a thickness of 0 ⁇ 05 to 4 xm are formed by immersing the article in acetone, ultrasonic cleaning, and peeling the resist.
- a method of forming a dielectric film first and then forming the opening portions 7 and 8 by laser ablation or etching can be used as a post formation method.
- the main component is an oxide or nitride of Si, Al, Ti, Zn, Nb, Ta, In, or Sn on the substrate by a vacuum deposition method such as coating or sputtering or ion plating. A colorless dielectric film is formed.
- a part that connects the first-layer conductive wire and the third-layer conductive wire is laser ablation, or a method of masking other than the perforated portion with a resist and performing chemical etching with a hydrofluoric acid solution, And reactive ion etching using a reactive gas such as oxygen, hydrogen, nitrogen, fluorine, argon, carbon fluoride, and carbon chloride.
- a reactive gas such as oxygen, hydrogen, nitrogen, fluorine, argon, carbon fluoride, and carbon chloride.
- FIG. 1 is a diagram showing a main part of a visible light transmission type planar coil element according to the present invention when viewed from the front.
- FIG. 2 is a view showing a cross section taken along the line aa ′ in FIG.
- FIG. 3 is a view showing a cross section along line bb ′ of FIG.
- FIG. 4 is a diagram showing a portion that becomes a joint portion with an external circuit of a coil when the visible light transmission type planar coil element of the present invention is viewed from the front.
- FIG. 5 is a view showing a cross section of cc ′ of FIG.
- FIG. 6 is a diagram showing an overall image when the visible light transmission type planar coil element of the present invention is viewed from the front. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
There is provided a planar coil element having an excellent visible light transmittance which can be used for a sensor board having a high visible light transmittance. The visible light transmitting type planar coil element includes a substrate, a first layer pattern film having rectilinear conductive lines arranged in parallel on the substrate, a second layer insulation film made of a dielectric body formed with an opening at an arbitrary point on the conductive lines, and a third layer pattern film having rectilinear conductive lines arranged in parallel on the insulation film. The conductive lines of the first layer is connected to the conductive lines of the third layer at two points through the opening or the conductive lines of the third layer are connected to the conductive lines of the first layer at two points through the opening, so that the conductive lines of the first layer and the conductive lines of the third layer constitute a coil and the conductive lines arranged in parallel in the first layer orthogonally intersect the conductive lines arranged in parallel in the third layer when viewed from front.
Description
明 細 書 Specification
可視光透過型平面コイル素子 Visible light transmission type planar coil element
技術分野 Technical field
[0001] 本発明は、タブレットのセンサーボート等の電磁結合を利用した位置検出装置に好 適に使用することが可能な平面型のコイル素子に関する。 The present invention relates to a planar coil element that can be suitably used for a position detection device using electromagnetic coupling such as a tablet sensor boat.
背景技術 Background art
[0002] 携帯電話やノート型パソコン等に使用される磁気素子には、薄型化に適した平面コ ィルの使用が進んでいる。そして、平面コイルの一つであるループコイルを基板上に 集積化することで、タブレット PC等の入出力一体型表示装置に使用される電磁結合 を利用した位置検出装置を構成するセンサボード等と成すことができる (例えば、特 許文献 1及び 2等)。 [0002] For magnetic elements used in cellular phones, notebook computers, etc., planar coils suitable for thinning have been used. By integrating a loop coil, which is one of planar coils, on a substrate, a sensor board that constitutes a position detection device using electromagnetic coupling used in an input / output integrated display device such as a tablet PC, etc. (For example, patent documents 1 and 2).
[0003] 入出力一体型表示装置は、センサボードをディスプレイの背後に配置し、ディスプ レイを通して電子入力ペンとセンサボード間で電磁波を授受し、座標を検出する(非 特許文献 1)。しかしながら、この方式での入出力一体型表示装置では、センサボー ドを組み込むことを前提とした液晶ディスプレイが必要であることから、ディスプレイの タイプを選ばなレ、、センサボードをディスプレイの表示面側に配置するオーバーレイ 構造と呼ばれる入出力一体型表示装置が望まれている。し力 ながら、このオーバー レイ構造の入出力一体型表示装置を実現するためには、可視光の透過率の高いセ ンサボードの開発が必要である。 [0003] In an input / output integrated display device, a sensor board is placed behind the display, and electromagnetic waves are exchanged between the electronic input pen and the sensor board through the display to detect coordinates (Non-patent Document 1). However, an input / output integrated display device using this method requires a liquid crystal display on the premise that a sensor board is incorporated.Therefore, the display type is selected and the sensor board is placed on the display surface side of the display. An input / output integrated display device called an overlay structure to be arranged is desired. However, in order to realize an input / output integrated display device with this overlay structure, it is necessary to develop a sensor board with high visible light transmittance.
[0004] 特許文献 1 :特開昭 63— 70326号公報 [0004] Patent Document 1: Japanese Patent Laid-Open No. 63-70326
特許文献 2:特開平 2— 53805号公報 Patent Document 2: JP-A-2-53805
非特許文献 1 :「タツチパネルの基礎と応用」テクノタイムズ社出版、 39乃至 48頁 発明の開示 Non-Patent Document 1: “Basics and Applications of Touch Panel”, Techno Times, pp. 39-48 Disclosure of Invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] コイル素子をセンサボードに組み込むためには、平面コイルを集積化する必要があ るので、導電線が配された層を、プリント基板等の絶縁物基板に設ける(非特許文献 1)。そして、合理的な導電線の配線パターンを考慮すると、導電層が配された層を
基板両面に設け、そして基板に開口部位を複数設けることで、層間の導電線を連結 することを可能としたものが必要となる。 [0005] In order to incorporate a coil element into a sensor board, it is necessary to integrate planar coils, and therefore a layer provided with conductive wires is provided on an insulating substrate such as a printed circuit board (Non-patent Document 1). . And considering the rational conductive wire pattern, the layer where the conductive layer is arranged By providing a plurality of openings in the substrate on both sides and the substrate, it is necessary to be able to connect the conductive wires between the layers.
[0006] 一方、可視光の透過率が高いセンサボードを提供するためには、上記絶縁基板を 透明部材で達成するだけでなぐコイルを形成する導電線を細くして基板を正面視し たときの回路の開口率を向上させる力 \ IT〇等の透明導電体でループコイルを形成 することが必要となる。 [0006] On the other hand, in order to provide a sensor board having a high visible light transmittance, when the insulating substrate is achieved with a transparent member, a conductive wire forming a coil is thinned and the substrate is viewed from the front. It is necessary to form a loop coil with a transparent conductor such as power to improve the aperture ratio of the circuit.
本発明では、上記技術的な問題点を考慮し、可視光の透過率が高いセンサボード に供することが可能な可視光透過に優れた平面コイル素子を提供することを課題と する。 In view of the above technical problems, an object of the present invention is to provide a planar coil element excellent in visible light transmission that can be used for a sensor board having a high visible light transmittance.
課題を解決するための手段 Means for solving the problem
[0007] すなわち、本発明の第 1の可視光透過型平面コイル素子は、可視光透過性を有す る基板と、該基板上に直線状の導電線が並列に配された第 1層目パターン膜と、該 導電線上の任意点に開口部位を有するように形成された誘電体よるなる第 2層目の 絶縁膜と、該絶縁膜上に直線状の導電線が並列に配された第 3層目パターン膜とを 有し、前記第 1層目の導電線を、前記開口部位を通して前記第 3層目導電線と 2点で 接合される構造とするか、又は前記第 3層目の導電線を、前記開口部位を通して前 記第 1層目導電線と 2点で接合される構造とするかにより、第 1層目導電線と第 3層目 導電線とでコイルを形成し、かつ第 1層目に並列に配された導電線と、第 3層目に並 列に配された導電線とが基板の正面視において直交状に配列されることでコイルの 集積化を可能とし、前記導電線の主成分を銀、銅又は金とし、また、導電線の幅を 1 m〜50 /i mとして、同層での導電線間距離を 0. 1mm〜: 10mmとしたことを特徴と する。 That is, the first visible light transmissive planar coil element of the present invention is a first layer in which a substrate having visible light transparency and linear conductive lines are arranged in parallel on the substrate. A pattern film, a second-layer insulating film made of a dielectric formed so as to have an opening at an arbitrary point on the conductive line, and a linear conductive line arranged in parallel on the insulating film A third-layer pattern film, and the first-layer conductive wire is joined to the third-layer conductive wire at two points through the opening portion, or the third-layer conductive film A coil is formed by the first layer conductive wire and the third layer conductive wire depending on whether the conductive wire is structured to be joined to the first layer conductive wire at two points through the opening portion, and Conductive wires arranged in parallel on the first layer and conductive wires arranged in parallel on the third layer are arranged orthogonally in a front view of the substrate. The conductive wire is mainly composed of silver, copper or gold, the width of the conductive wire is 1 m to 50 / im, and the distance between the conductive wires in the same layer is 0.1 mm to : Characteristic of 10mm.
[0008] また、本発明の第 2の可視光透過型平面コイル素子は、可視光透過性を有する基 板と、該基板上に直線状の導電線が並列に配された第 1層目パターン膜と、該導電 線上の任意点に開口部位を有するように形成された誘電体よりなる第 2層目の絶縁 膜と、該絶縁膜上に直線状の導電線が並列に配された第 3層目パターン膜とを有し 、前記第 1層目の導電線を、前記開口部位を通して前記第 3層目導電線と 2点で接 合する構造とするか、又は前記第 3層目の導電線を、前記開口部位を通して前記第
1層目導電線と 2点で接合される構造とすることにより、第 1層目導電線と、第 3層目 導電線とでコイルを形成し、かつ第 1層目に並列に配された導電線と第 3層目に並列 に配された導電線とが基板の正面視において直交状に配列されることでコイルの集 積化を可能とし、更に、前記導電線の主成分を ITOから構成し、導電線の幅を 0. 1 mm〜: 10mmとし、同層での導電線間距離を 1 μ m〜50 μ mとしたことを特徴とする [0008] Further, the second visible light transmissive planar coil element of the present invention is a first layer pattern in which a substrate having visible light permeability and linear conductive wires are arranged in parallel on the substrate. A film, a second insulating film made of a dielectric formed so as to have an opening at an arbitrary point on the conductive wire, and a third conductive film in which linear conductive wires are arranged in parallel on the insulating film. A layer pattern film, and the first layer conductive line is connected to the third layer conductive line at two points through the opening, or the third layer conductive line A line extending through the opening By adopting a structure in which the first layer conductive wire is joined at two points, a coil is formed by the first layer conductive wire and the third layer conductive wire, and the first layer conductive wire is arranged in parallel on the first layer. The conductive wires and the conductive wires arranged in parallel in the third layer are arranged orthogonally in a front view of the substrate, so that the coils can be integrated, and the main components of the conductive wires are made of ITO. The width of the conductive wire is 0.1 mm to: 10 mm, and the distance between the conductive wires in the same layer is 1 μm to 50 μm.
[0009] 本発明の可視光透過型平面コイル素子においては、ガラスや、プラスチックシート 等の可視光透過性を有する基板上に多層膜を設け、この多層膜の基板側の第 1層 目を導電線が配されたパターン膜、第 2層目を誘電体よりなる絶縁膜、第 3層目を導 電線が配されたパターン膜とする。第 2層目の絶縁膜には、複数の開口部位を設け、 該開口部位にて、第 1層目及び第 3層目の導電線の端部同士が結合される。この開 口部位を通して接合される第 1層目導電線と、第 3層目導電線との接合点を 2点設け れば、第 1層目導電線と第 3層目導電線は、直交状に配列され、しかも該接合が導 電線の端部でなされているので、基板上にループコイル等のコイルを形成することで きる。 In the visible light transmissive planar coil element of the present invention, a multilayer film is provided on a substrate having visible light permeability such as glass or a plastic sheet, and the first layer on the substrate side of the multilayer film is conductive. The pattern film on which the wires are arranged, the second layer is an insulating film made of a dielectric, and the third layer is a pattern film on which conductive wires are arranged. The insulating film of the second layer is provided with a plurality of opening portions, and the ends of the conductive wires of the first layer and the third layer are coupled to each other at the opening portions. If two junction points are provided between the first layer conductive line and the third layer conductive line to be joined through the opening, the first layer conductive line and the third layer conductive line are orthogonal. In addition, since the joining is made at the end of the conductive wire, a coil such as a loop coil can be formed on the substrate.
そして、本発明でのコイルにおいては、並列に配置される導電線は同一層中にあり 、それらの並列に配置された導電線と接続される導電線は別の層にあるので、複数 のコイルを重なることなく配列可能で、基板上でのコイルの集積化に奏功する。 In the coil according to the present invention, the conductive wires arranged in parallel are in the same layer, and the conductive wires connected to the conductive wires arranged in parallel are in different layers. Can be arranged without overlapping, and the coil is successfully integrated on the substrate.
[0010] 本発明の可視光透過型平面コイル素子においては、可視光透過性を有する基板 に前記多層膜を形成するので、前記導電線の主成分を銀、銅又は金の可視光に対 して不透明な導電材料とした場合においては、導電線の幅を 1 μ m〜50 μ mとし、 同層での導電線間距離を 0. 1mm〜: 10mmとし、一方、前記導電線の主成分を IT〇 の可視光に対して透明な導電材料とした場合においては、導電線の幅を 0. lmm〜 10mmとし、同層での導電線間距離を 1 μ m〜50 μ mとする。 In the visible light transmissive planar coil element of the present invention, since the multilayer film is formed on a substrate having visible light permeability, the main component of the conductive wire is visible light of silver, copper or gold. In the case of a non-transparent conductive material, the width of the conductive line is set to 1 μm to 50 μm, and the distance between the conductive lines in the same layer is set to 0.1 mm to 10 mm. When the conductive material is transparent to visible light of IT ○, the width of the conductive line shall be 0.1 mm to 10 mm, and the distance between the conductive lines in the same layer shall be 1 μm to 50 μm.
[0011] 導電材料については、導電率の特性を優先させる場合、銀、銅又は金を主成分と するものを使用することが好ましぐ可視光の透過を優先さる場合、 ITOを主成分とす るものを使用することが好ましい。導電材料が、銀、銅又は金を主成分とする場合、 導電線の幅が 1 μ m未満では、その作製が困難となることから抵抗値が高いものとな
る傾向があり、 50 z mを超えると、導電線が視覚化されやすくなり、本発明の素子の 可視光透過性が悪くなる。上記を考慮すると、導電線の幅は、 10 111〜30 111とす ること力 S好ましレ、。 [0011] Regarding the conductive material, it is preferable to use silver, copper, or gold as a main component when giving priority to the characteristics of conductivity. When priority is given to visible light transmission, ITO is used as the main component. It is preferable to use anything. When the conductive material contains silver, copper, or gold as the main component, if the width of the conductive wire is less than 1 μm, it will be difficult to fabricate and the resistance will be high. When the thickness exceeds 50 zm, the conductive lines are easily visualized, and the visible light transmittance of the element of the present invention is deteriorated. Considering the above, the width of the conductive wire should be between 10 111 and 30 111.
又、同層での導電線間距離が 0. 1mm未満では、可視光の透過性が悪くなる傾向 があり、そして製造コストも上昇し好ましくなぐ 10mm超では、基板上のコイルの集積 化が十分でなくなる。これらを考慮すると、同層での導電線間距離は、 0. 5mm〜5 mmとすることが好ましい。 In addition, if the distance between the conductive lines in the same layer is less than 0.1 mm, the visible light transmission tends to deteriorate, and the manufacturing cost also increases, and if it exceeds 10 mm, the integration of the coils on the substrate is sufficient. Not. Considering these, the distance between the conductive lines in the same layer is preferably 0.5 mm to 5 mm.
[0012] 導電材料の主成分が ITOを主成分とする場合、導電線の幅を大きくし、導電線間距 離を小さくする。 ITOを主成分とする場合、 ITOは可視光の透過性を有するのではあ るが、基板上に多層膜を形成することから、 ITOの有無の箇所で光学的干渉の違い が生じ、可視光の透過性、又は反射性に影響し、 ITOの無い部分が視覚化されやす くなり、導電材料が、銀、銅又は金を主成分とする場合の上記構造と同様の現象が 生じる。 [0012] When the main component of the conductive material is mainly composed of ITO, the width of the conductive line is increased and the distance between the conductive lines is decreased. When ITO is the main component, ITO is transparent to visible light, but since a multilayer film is formed on the substrate, there is a difference in optical interference between the presence and absence of ITO, and visible light. This affects the transparency or reflectivity of the film, making it easier to visualize the ITO-free part, and the same phenomenon as the above structure occurs when the conductive material is mainly composed of silver, copper, or gold.
[0013] 力べして、 ITOを主成分とする導電材料を使用する場合であっても、パターンの視 覚化現象を考慮する必要が生じる。従って、同層での導電線間距離を 50 / m以下と する必要があり、視覚化現象を考慮すると 30 μ ΐη以下とすることが好ましい。他方、こ の導電線間距離を l x mとすると、その作製が困難となるので好ましくない。そして、 I T〇を主成分とする材料で導電性を確保するためには、導電線の幅を 0. 1mm〜: 10 mm、好ましくは、 0. 3mm以上とすることが好ましい。 [0013] Even when using a conductive material whose main component is ITO, it is necessary to consider the phenomenon of pattern visualization. Therefore, the distance between conductive lines in the same layer needs to be 50 / m or less, and is preferably 30 μΐη or less in consideration of the visualization phenomenon. On the other hand, if the distance between the conductive lines is set to l x m, it is not preferable because the production becomes difficult. In order to ensure conductivity with a material mainly composed of ITO, the width of the conductive wire is preferably 0.1 mm to 10 mm, preferably 0.3 mm or more.
尚、上記した可視光透過性を有する基板は、 JIS R 3106「板ガラス類の透過率 · 反射率 ·放射率'日射熱取得率の試験方法」(1998年)に準拠して得られる可視光 透過率が、 70%以上のもので、好ましくは 85%以上のものである。そして、基板の形 状は、本発明の素子の応用分野を考慮すると、矩形状のものとすることが好ましい。 The visible light transmitting substrate described above is a visible light transmitting material obtained in accordance with JIS R 3106 "Testing method for transmittance, reflectance, emissivity of solar glass" (1998). The rate is 70% or more, preferably 85% or more. The shape of the substrate is preferably rectangular in consideration of the field of application of the element of the present invention.
[0014] 本発明の可視光透過型平面コイルでは、第 2層目絶縁膜の厚みが第 1層目パター ン膜の厚みよりも小さレ、ものとすることが好ましレ、。この第 2層目の厚みを第 1層目パ ターン膜、すなわち導電線の厚みよりも小さくすることにより、該絶縁膜中に設けられ る第 1層目にある導電線端部は、絶縁膜で覆われた導電線の方向を除いて、導電線 部を最高部とできる。結果、第 3層目パターン膜を形成する際に、第 3層目の導電線
と第 1層目の導電線との接合をしやすくなる。 [0014] In the visible light transmission type planar coil of the present invention, it is preferable that the thickness of the second insulating film is smaller than the thickness of the first pattern film. By making the thickness of the second layer smaller than the thickness of the first layer pattern film, that is, the conductive line, the end of the conductive line in the first layer provided in the insulating film becomes the insulating film. Except for the direction of the conductive wire covered with, the conductive wire part can be the highest part. As a result, when forming the third layer pattern film, the third layer conductive wire And the first-layer conductive wire can be easily joined.
[0015] 前記した導電線の接合を考慮すると、第 2層目絶縁膜の厚みは、第 1層目パターン 膜の厚み未満で 0. 8倍以上とすることが好ましい。 0. 8倍未満では、開口部位にあ る導電線の突出部の高さが高くなり、突出部の壁面部に空隙ができやすくなり、導電 線の部分的な切断が生じやすくなることがある。これを考慮すると、第 2層目絶縁膜 の厚みは、第 1層目パターン膜の 0. 9倍以上、より好ましくは、 0. 95倍以上とするこ とが好ましい。 In consideration of the bonding of the conductive wires, it is preferable that the thickness of the second layer insulating film is 0.8 times or more less than the thickness of the first layer pattern film. If the ratio is less than 8 times, the height of the protruding portion of the conductive wire at the opening portion becomes high, and it becomes easy to form a gap in the wall surface portion of the protruding portion, and the conductive wire is likely to be partially cut. . Considering this, the thickness of the second-layer insulating film is preferably 0.9 times or more, more preferably 0.95 times or more that of the first-layer pattern film.
そして、第 3層目パターン膜上に誘電体よりなる第 4層目絶縁膜を形成すると、第 3 層目の導電線の保護を図れるので好ましい。そして、第 4層目の絶縁膜は、第 1層目 及び/又は第 2層目の導電線と外部回路とを接合させるための開口部位を有してい ること力 S好ましレ、。 It is preferable to form a fourth-layer insulating film made of a dielectric on the third-layer pattern film because the third-layer conductive line can be protected. The fourth-layer insulating film has an opening for bonding the first-layer and / or second-layer conductive lines and the external circuit.
[0016] 前記絶縁膜は、 Si、 Al、 Ti、 Zn、 Nb、 Ta、 In、 Snのいずれかの酸化物又は窒化 物を主成分とする無色の誘電体、又はシリコーン樹脂、ウレタン樹脂、ポリカーボネー ト、ポリエーテルサルホン、ポリアタリレート、ポリアクリルアミドのいずれかの有機ポリ マーを主成分とする誘電体、特には無色な誘電体よりなることが好ましい。膜の形成 しゃすさや反射率を考慮すると、 Siの酸化物を主成分とする誘電体薄膜が好ましい 又、開口部位を有する前記絶縁膜の製造コストを考慮すると、スクリーン工程を有 する製造方法とすることが好ましぐその場合、溶媒に可溶で塗布液としゃすい有機 ポリマーを主成分とする誘電体、又は溶媒に易可溶なアルコキシド等の前駆体を入 手しやすレヽ Si酸化物を主成分とする誘電体とすることが好ましレヽ。 [0016] The insulating film is a colorless dielectric mainly composed of an oxide or nitride of any one of Si, Al, Ti, Zn, Nb, Ta, In, and Sn, or a silicone resin, a urethane resin, a polycarbonate. It is preferably made of a dielectric material mainly composed of any organic polymer selected from the group consisting of neat, polyethersulfone, polyacrylate, and polyacrylamide, particularly a colorless dielectric material. In consideration of the film formation and reflectivity, a dielectric thin film mainly composed of an oxide of Si is preferable. In consideration of the manufacturing cost of the insulating film having an opening portion, a manufacturing method having a screen process is adopted. In this case, a dielectric material composed mainly of an organic polymer that is soluble in a solvent and a coating solution or a thin film, or a silicon oxide that is easily soluble in a solvent, such as an alkoxide, is available. It is preferable to use a dielectric material as the main component.
[0017] 有機ポリマーを主成分とする誘電体で絶縁膜を形成する場合で基板をガラス基板 とする場合、有機ポリマーとガラスとの密着性を向上させるために、ガラス基板表面に プライマー成分を塗布しておくか、 UVオゾン処理をしておくことが好ましい。他には、 有機ポリマーを主成分とする誘電体を溶解させた塗布液にケィ素アルコキシド、又は コロイダルシリカを添加し、ガラス基板との密着性を向上させる方法も採用することが できる。 [0017] When an insulating film is formed of a dielectric material composed mainly of an organic polymer and the substrate is a glass substrate, a primer component is applied to the surface of the glass substrate in order to improve the adhesion between the organic polymer and the glass. Or UV ozone treatment is preferred. In addition, a method of improving adhesion to a glass substrate by adding a silicon alkoxide or colloidal silica to a coating solution in which a dielectric material mainly composed of an organic polymer is dissolved can be employed.
更には、導電線に ITOを使用する場合、膜の干渉効果を小さくするために ITOと屈
折率の近似した Ti、 Zn、 Nb、 Ta、 In、 Snのいずれかの酸化物を主成分とする誘電 体薄膜としてもよい。 In addition, when ITO is used for the conductive wire, it can be bent with ITO to reduce the interference effect of the film. A dielectric thin film whose main component is an oxide of Ti, Zn, Nb, Ta, In, or Sn with an approximate curvature may be used.
[0018] 又、本発明の素子が使用される基板を矩形状とし、基板の辺と導電線とでなす侠角 側角度が 20度〜 45度とすることが好ましい。本発明の可視光透過型平面コイル素 子は、センサボードで使用される場合は、液晶ディスプレイ、 CRTディスプレイ、有機 ELディスプレイ、 PDPディスプレイ等のディスプレイ上に配置されるので、モアレの発 生を防止するためにも上記角度を 20度〜 45度とすることが好ましい。 [0018] Further, it is preferable that the substrate on which the element of the present invention is used has a rectangular shape, and the included angle between the side of the substrate and the conductive wire is 20 degrees to 45 degrees. When used in a sensor board, the visible light transmission type planar coil element of the present invention is disposed on a display such as a liquid crystal display, a CRT display, an organic EL display, or a PDP display, thereby preventing the occurrence of moire. In order to achieve this, it is preferable to set the angle to 20 degrees to 45 degrees.
そして、第 1層目及び第 3層目パターン膜中の全ての導電線間距離、全ての導電 線幅を一定とすると、本発明の素子を経て視認される像の視認性を向上させるので 好ましい。導電線間距離、及び導電線幅を一定とする設計によってはコイルとして活 用しない導電線が発生する力 S、これをダミーとして使用してもよい。 And, it is preferable that the distance between all the conductive lines and the width of all the conductive lines in the first layer and the third layer pattern film are constant because the visibility of an image viewed through the element of the present invention is improved. . Depending on the design in which the distance between the conductive wires and the conductive wire width are constant, the force S that generates a conductive wire that is not used as a coil may be used as a dummy.
更に基板上にコイル回路を集積させる観点から上記可視光透過型平面コイル素子 は、第 1層目の導電線と第 3層目の導電線がそれぞれ導電線の端部で接合される構 造とすることが好ましい。 Further, from the viewpoint of integrating the coil circuit on the substrate, the visible light transmission type planar coil element has a structure in which the first-layer conductive wire and the third-layer conductive wire are joined at the ends of the conductive wires, respectively. It is preferable to do.
[0019] 又、本発明の素子を経て視認される像の視認性を向上させるとの観点からは、導電 線の主成分を銀、又は銅、若しくは金とした場合には、基板側から視認した場合、該 導電線部が黒色化するように導電線に黒色顔料又は染料を混ぜるか、黒色パターン 上に導電線を形成することが好ましい。こうすることにより、本発明の素子を経て視認 される像のコントラストが向上する等の効果が奏するようになり好ましい。 [0019] From the viewpoint of improving the visibility of an image viewed through the element of the present invention, when the main component of the conductive wire is silver, copper, or gold, it is visible from the substrate side. In this case, it is preferable that a black pigment or a dye is mixed in the conductive line or the conductive line is formed on the black pattern so that the conductive line portion is blackened. This is preferable because the effect of improving the contrast of an image viewed through the element of the present invention is obtained.
発明の効果 The invention's effect
[0020] 本発明の平面コイル素子は、可視光の透過を達成できるので、従来不透明で使用 箇所に制限があった平面コイル素子の使用用途を広げることができる。例えば、タブ レット PC等で使用されるセンサーボートを透明化できるので、ディスプレイのタイプを 選ばない、センサボードをディスプレイの表示面側に配置するオーバーレイ構造と呼 ばれる入出力一体型表示装置ができる。 [0020] Since the planar coil element of the present invention can achieve transmission of visible light, it can be used in a wide range of applications of planar coil elements that are conventionally opaque and limited in use. For example, since the sensor boat used in a tablet PC can be made transparent, an input / output integrated display device called an overlay structure in which the sensor board is arranged on the display surface side of the display can be created regardless of the display type.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の可視光透過型平面コイル素子について図面を用いて説明する。図 1は、 本発明の可視光透過型平面コイル素子要部の正面、図 2及び図 3は、要部の断面を
示す。図 1に示すように、基板 2上に形成された第 1層目の導電線 3と、第 3層目の導 電線 5とは、正面視で直交状となるように配列されている。 The visible light transmissive planar coil element of the present invention will be described with reference to the drawings. FIG. 1 is a front view of the main part of the visible light transmission type planar coil element of the present invention, and FIGS. 2 and 3 are sectional views of the main part. Show. As shown in FIG. 1, the first-layer conductive wire 3 and the third-layer conductive wire 5 formed on the substrate 2 are arranged so as to be orthogonal when viewed from the front.
図 2、 3に示すように、導電線 3は、第 2層目の絶縁膜 4に設けられた開口部位 7に て第 3層目の導電線 5と接合される。そして、この導電線 5は、先の導電線 3と平行に 配置された第 1層目の導電線 3と接合することにより、第 1層目の導電線 3と第 3層目 の導電線 5とが 2点で接合される構造となり、ループコイル等のコイルとすることができ る。 As shown in FIGS. 2 and 3, the conductive line 3 is joined to the third-layer conductive line 5 through the opening 7 provided in the second-layer insulating film 4. Then, the conductive line 5 is joined to the first-layer conductive line 3 arranged in parallel with the previous conductive line 3, so that the first-layer conductive line 3 and the third-layer conductive line 5 are connected. And are joined at two points, and can be a coil such as a loop coil.
[0022] 第 3層目の導電線 5が、第 1層目の導電線 3とは第 2層目の絶縁膜 4を介して別の 層に存在するが、開口部位 7にて接合するので、図 1に示すような、集積された同一 方向に集積化されたコイル回路群と、直交方向に集積化されたコイル回路群を設け ることが可能となる。 [0022] The third-layer conductive wire 5 exists in a different layer from the first-layer conductive wire 3 via the second-layer insulating film 4, but is joined at the opening portion 7. As shown in FIG. 1, it is possible to provide an integrated coil circuit group integrated in the same direction and a coil circuit group integrated in the orthogonal direction.
図 4は、本発明の可視光透過型平面コイル素子要部の正面視したときのコイルの 外部回路との接合部位となる部分を示す図である。図 5は、該接合部位となる要部の 断面を示す。コイルと外部回路の接続部位を形成するめにガラスの周縁部に絶縁膜 4、 6を形成しない方式としてもよいが、図 5の断面で示すように導電線 3の端部にあ たる部分に絶縁膜のない開口部位 8を設けるようにするとコイル回路の設計に自由度 が生じるので好ましい。そしてループコイル等のコイル回路は開口部位 8を経て図示 しなレ、外部回路と接続される。 FIG. 4 is a view showing a portion that becomes a joint portion of the coil with an external circuit when the visible light transmission type planar coil element main part of the present invention is viewed from the front. FIG. 5 shows a cross-section of the main part serving as the joining site. In order to form the connection part between the coil and the external circuit, the insulating film 4 or 6 may not be formed on the peripheral edge of the glass. However, as shown in the cross section of FIG. It is preferable to provide the opening part 8 without a film because the degree of freedom in the design of the coil circuit occurs. A coil circuit such as a loop coil is connected to an external circuit (not shown) through the opening 8.
[0023] 図 6は、本発明の可視光透過型平面コイル素子を正面視したときの全体像を示す 図である。コイル素子 1の周縁部には、上記したような外部回路との接続部位や外部 回路を覆い隠せるように、黒枠等のマスクキング層 9を設けることが好ましい。第 1層 目パターン膜の導電線 3と第 3層目の導電線 5は、メッシュ状パターンで視認され、導 電線の線幅と配列幅とを本発明で規定したものとすることにより可視光の透過部位が 形成され、結果、可視光透過型の平面コイル素子が得られる。 FIG. 6 is a diagram showing an overall image when the visible light transmissive planar coil element of the present invention is viewed from the front. A masking layer 9 such as a black frame is preferably provided on the peripheral edge of the coil element 1 so as to cover and conceal the connection part with the external circuit as described above and the external circuit. The conductive wire 3 of the first layer pattern film and the conductive wire 5 of the third layer are visually recognized in a mesh pattern, and the line width and the arrangement width of the conductive wires are defined in the present invention, thereby making visible light visible. As a result, a visible light transmission type planar coil element is obtained.
[0024] 前記マスキング層 9には、吸光度が 3、より好ましくは 4以上のマスキング層が設けら れることが好ましい。このマスキング層は、熱硬化性合成樹脂と、顔料、染料とを含む 調合物を塗布し、乾燥、加熱等することで形成することができる。前記熱硬化合成樹 脂としては、例えば、エポキシ樹脂や、アクリルシリコン樹脂、アルキッド樹脂、ポリアミ
ド樹脂、フッ素樹脂等を用いることができる。 The masking layer 9 is preferably provided with a masking layer having an absorbance of 3, more preferably 4 or more. This masking layer can be formed by applying a preparation containing a thermosetting synthetic resin, a pigment, and a dye, followed by drying and heating. Examples of the thermosetting synthetic resin include epoxy resins, acrylic silicon resins, alkyd resins, and polyamides. Resin, fluororesin, or the like can be used.
前記顔料としては、例えば、酸化鉄や、酸化銅、酸化クロム、酸化コバルト、酸化マ ンガン、酸化アルミニウム、酸化亜鉛、クロム酸鉛、硫酸鉛、モリブデン酸鉛等から選 ばれる 1種または複数の材料を混合したものを使用できる。 Examples of the pigment include one or more materials selected from iron oxide, copper oxide, chromium oxide, cobalt oxide, mangan oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate, and the like. Can be used.
[0025] 前記染料としては、例えば、ジォキサジン系や、フタロシアニン系、アントラキノン系 の有機物等を用いることができる。塗布のためにこの混合物をペースト状にするため の媒体としては、例えば、ジエチレングリコールモノブチルエーテルアセテートや、ェ チレングリコールモノブチルエーテルなどの溶剤を用いることができる。また、硬化反 応促進剤として、例えば、変性脂肪族ポリアミン樹脂や、 N—ブタノールなどを混合し てもよい。 [0025] As the dye, for example, dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used. As a medium for making this mixture into a paste for coating, for example, a solvent such as diethylene glycol monobutyl ether acetate or ethylene glycol monobutyl ether can be used. Further, for example, a modified aliphatic polyamine resin or N-butanol may be mixed as a curing reaction accelerator.
マスキング層 9は、コイル回路形成側か、又は回路が形成される側とは反対側のど ちらに設けられてよレ、。そして、その厚さは 35 μ m以下、特に 30 μ m以下であること が好ましい。 The masking layer 9 may be provided on either the coil circuit forming side or the side opposite to the circuit forming side. The thickness is preferably 35 μm or less, particularly 30 μm or less.
[0026] マスキング層の形成が、回路が形成される側とは反対側の場合、マスキング層の厚 さが 35 μ ΐηよりも大きいと、マスキング層表面とガラス基板表面との境界部の段差が 大きくなるので、防眩フィルム又は低反射フィルムを貼付するとき、この段差部分に気 泡が残留し易くなる。又、マスキング層の形成が回路形成側の場合にも、上記したよ うな段差が大きくなると、回路の形成が難しくなる等の問題が生じやすくなる。 [0026] When the masking layer is formed on the side opposite to the side on which the circuit is formed, if the thickness of the masking layer is larger than 35 μΐη, there is a step at the boundary between the masking layer surface and the glass substrate surface. Since the film becomes large, bubbles are likely to remain in the stepped portion when an antiglare film or a low reflection film is applied. Even when the masking layer is formed on the circuit forming side, if the level difference as described above becomes large, problems such as difficult circuit formation are likely to occur.
図 1乃至図 6は、導電線の主成分が銀、銅又は金の場合の模式図を示したもので、 導電線の主成分が ΙΤΟの場合は、導電線 3、 5は、本発明で規定したように太いバタ ーンのものとなり、図 6のように全体像で見た場合に導電線の無い部分力 Sメッシュ状 ノ ターンで視認される。 FIGS. 1 to 6 show schematic views when the main component of the conductive wire is silver, copper or gold. When the main component of the conductive wire is ΙΤΟ, the conductive wires 3 and 5 are As specified, it becomes a thick pattern, and when viewed in the whole image as shown in Fig. 6, it is visible with a partial force S mesh-like pattern without conductive wires.
[0027] 基板 2には、例えば、ソーダライム珪酸塩ガラスや、硼珪酸ガラス、アルミノ珪酸ガラ ス、ノ リウム硼珪酸ガラス、石英ガラス等の板状のガラス基板で、特にフロート法で製 造されたガラス基板が好ましい。フロート法で製造されたガラスを使用する場合、本発 明のコイル素子は、ガラス製造時に錫浴に接しなかった面、即ち、トップ面側に形成 することが好ましい。ガラス基板以外では、例えば、ポリカーボネート樹脂や、ポリエ チレンテレフタレート樹脂、アクリル樹脂、トリァセチルセルロース樹脂、ポリプロピレン
樹脂等の板状、又はフィルム状の可視光透過性を有する樹脂の基板を使用できる。 そしてコイルの製造プロセス、オーバーレイ構造の入出力一体型表示装置への適用 等を考慮すると、基板 2は、ガラス基板とすることが好ましい。 [0027] The substrate 2 is, for example, a plate-like glass substrate such as soda lime silicate glass, borosilicate glass, aluminosilicate glass, norium borosilicate glass, or quartz glass, and is particularly manufactured by a float process. A glass substrate is preferred. When glass produced by the float process is used, the coil element of the present invention is preferably formed on the surface not in contact with the tin bath at the time of glass production, that is, on the top surface side. Other than glass substrates, for example, polycarbonate resin, polyethylene terephthalate resin, acrylic resin, triacetyl cellulose resin, polypropylene A resin-like resin substrate having a visible light transmittance such as a plate or a resin can be used. In consideration of the coil manufacturing process, the application of the overlay structure to the input / output integrated display device, etc., the substrate 2 is preferably a glass substrate.
[0028] そして、第 1層目のパターン膜、第 3層目のパターン膜での導電線 3、 5は、銀ぺー スト等を使用するペーストプロセスや、銅メツキゃ銀メツキ等によるメツキプロセス、 IT 〇パターンユング膜作製プロセス等の公知の配線パターンを使用することが可能で ある。 [0028] The conductive lines 3 and 5 in the first layer pattern film and the third layer pattern film are a paste process using a silver paste or the like, a copper process or a plating process using a silver pattern, IT O It is possible to use a known wiring pattern such as a pattern Jung film fabrication process.
ペーストプロセスで導電線 3、 5を形成する場合、例えば、市販されている銀ペース トを用い、スクリーン印刷法等の公知の技術を用いて、本発明で規定された範囲内で 直線状でかつ並列されたパターンを基板 2上に形成する。そして、銀ペーストを焼成 に必要な温度で加熱することで、厚み 3〜: 10 /i m、好ましくは、 4〜8 μ mで、比抵抗 が 3. 0 X 10— 6 Ω ' cm〜: ! · 0 X 10— 5 Ω ' cmの導電線が得られる。 When the conductive lines 3 and 5 are formed by a paste process, for example, a commercially available silver paste is used and a known technique such as a screen printing method is used. A parallel pattern is formed on the substrate 2. Then, by heating the silver paste at temperatures required for firing, the thickness. 3 to: 10 / im, preferably, at 4 to 8 mu m, specific resistance 3. 0 X 10- 6 Ω 'cm~ :! · 0 X 10— 5 Ω 'cm conductive wire is obtained.
[0029] 例えば、金属有機化合物 (銀)ペースト XE109— 8 (ナミックス株式会社製)を使用し て、 8インチの矩形状のフロート法によるソーダライム珪酸塩ガラス基板 2上に、スクリ ーン印刷法により、線幅 30 x m、線間隔 lmmとなるように直線状で並列されたパタ ーンを形成し、乾燥後 250°Cで焼付けを行うと、導電線のパターン膜を形成すること ができる。これで厚みは 6 x mで、比抵抗が 3. 8 X 10— 6 Ω ' cmの導電線を得ることが できる。 [0029] For example, using a metal organic compound (silver) paste XE109-8 (manufactured by NAMICS Co., Ltd.), on a soda-lime silicate glass substrate 2 by an 8-inch rectangular float method, a screen printing method is used. Thus, a pattern of conductive lines can be formed by forming linearly parallel patterns so that the line width is 30 xm and the line interval is 1 mm, and baking is performed at 250 ° C. after drying. This thickness is 6 xm, may be specific resistance obtained conductive lines 3. 8 X 10- 6 Ω 'cm .
[0030] 銀ペーストには、上記以外に銀微粒子と低融点ガラスフリットとェチルセルロース等 の樹脂をテルビネオール等の溶剤で溶力 た粘性体等のビヒクルと混合した無機タ イブのペーストを使用することもできる。無機タイプの銀ペーストは低融点ガラスが基 板ガラスとの接着層として機能する。無機タイプ銀ペーストを使用する場合、焼成に より樹脂成分を酸化的に揮発させ、なおかつ低融点ガラスフリットを軟化させてガラス 基板との接着層を形成するために、 400°C以上の焼成が必要であることから基板 2を ガラスとする必要がある。無機タイプの銀ペーストにより 2. 5 X 10— 6 Ω ' cm〜3. 0 X 1 0"6 Ω ' cmの導電線が得られる。 [0030] In addition to the above, an inorganic type paste in which silver fine particles, a low-melting glass frit, and a resin such as ethyl cellulose are mixed with a vehicle such as a viscous material that has been dissolved in a solvent such as terbinol is used as the silver paste. You can also. In the inorganic type silver paste, the low melting point glass functions as an adhesive layer with the base glass. When inorganic type silver paste is used, firing at 400 ° C or higher is required to oxidize and volatilize the resin component by firing and to soften the low melting point glass frit to form an adhesive layer with the glass substrate. Therefore, the substrate 2 must be made of glass. 2. The inorganic type silver paste 5 X 10- 6 Ω 'cm~3. 0 X 1 0 "6 Ω' cm of the conductive wire is obtained.
[0031] 又、導電線 3、 5を黒色化するように銀ペーストには、導電線の比抵抗が下がらない 程度で黒色顔料又は染料を混ぜることが好ましい。黒色顔料としては、例えば、酸化
鉄や、酸化銅、酸化クロム、酸化コバルト、酸化マンガン、酸化アルミニウム、酸化亜 鉛、クロム酸鉛、硫酸鉛、モリブデン酸鉛等から選ばれる 1種又は複数の材料を混合 したものを使用でき、染料としては、例えば、ジォキサジン系や、フタロシアニン系、ァ ントラキノン系の有機物等を用いることができる。 [0031] Further, it is preferable to mix a black pigment or dye in the silver paste so that the specific resistance of the conductive wire does not decrease so that the conductive wires 3 and 5 are blackened. Examples of black pigments include oxidation A mixture of one or more materials selected from iron, copper oxide, chromium oxide, cobalt oxide, manganese oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate, etc. can be used. As the dye, for example, dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used.
メツキプロセスで導電線 3、 5を形成する場合、セミアディティブ法を利用することに より、効率的にパターン状に形成された導電膜を形成することができる。基板 2上にス ノ ッタリング法等の公知の蒸着法で、例えば、基板 2/酸化クロム/クロム Z銅の積 層膜を形成し、フォトリソグラフィ一等の公知のパターン化技術を用レ、、本発明で規 定された範囲において直線状で並列に形成されたレジストパターンを積層膜上に形 成する。そして、電解めつきにより、厚み 3〜: 10 μ m、好ましくは、 4〜8 μ mで、比抵 抗が 1. 7 X 10— 6 Ω ' cm〜: ! · 0 X 10— 5 Ω ' cmの導電線が得られる。本プロセスは、導 電線の比抵抗を比較的小さくでき、細い線幅の導電線パターンを得やすぐ力 Pえて、 酸化クロムとクロムとの光学干渉効果を利用した黒色化処理も容易等の利点がある。 When the conductive lines 3 and 5 are formed by a plating process, a conductive film formed in a pattern can be efficiently formed by using a semi-additive method. For example, a substrate 2 / chrome oxide / chromium Z-copper layer film is formed on the substrate 2 by a known vapor deposition method such as a sputtering method, and a known patterning technique such as photolithography is used. A resist pattern formed in a straight line in parallel within the range specified in the present invention is formed on the laminated film. Then, by electrolytic plated thickness. 3 to: 10 mu m, preferably, at 4 to 8 mu m, the ratio resistance is 1. 7 X 10- 6 Ω 'cm~ :! · 0 X 10- 5 Ω' cm conductive wires are obtained. This process has the advantages that the specific resistance of the conductive wire can be made relatively small, a conductive line pattern with a narrow line width can be obtained quickly, and the blackening process using the optical interference effect between chromium oxide and chromium is easy. There is.
[0032] メツキプロセスを用いたパターン状に形成された導電膜の作製例を次ぎに述べる。 [0032] Next, an example of manufacturing a conductive film formed in a pattern using a plating process will be described.
8インチの矩形状のフロート法によるソーダライム珪酸塩ガラス基板 2上に、スパッタリ ング法により酸化クロム、クロム、銅の薄膜を順次積層し、積層膜を形成した。このよう に形成した導電性の積層膜の上に、フォトリソグラフィ一により、直線状でかつ並列に 形成されたレジストパターンを形成する。このとき開口幅 20 μ m、線幅 lmmとした。 続レ、てこの 20 μ mのレジスト開口部分に電解銅メツキにより厚さ 5 μ mの銅によるパタ ーン状に形成された導電膜が形成される。これをアセトン中に浸漬し超音波洗浄す ることでレジストが剥離される。 A thin film of chromium oxide, chromium, and copper was sequentially laminated on a soda lime silicate glass substrate 2 by an 8-inch rectangular float method by a sputtering method to form a laminated film. A resist pattern formed in a straight line and in parallel is formed by photolithography on the conductive laminated film thus formed. At this time, the opening width was 20 μm and the line width was 1 mm. Subsequently, a conductive film formed in a pattern of copper having a thickness of 5 μm is formed by electrolytic copper plating on the opening of the resist of 20 μm. The resist is peeled off by immersing this in acetone and ultrasonic cleaning.
[0033] 続いて線間の銅層、クロム層、酸化クロム層を順次、それぞれの層に最適なエッチ ヤント溶液に浸漬することでケミカルエッチングが行われ、線幅 20 x m、線間距離が lmmの比抵抗が 2 X 10— 6 Ω ' cm導電線のパターン膜が得られる。このようにして得ら れるパターン膜は、線幅が細ぐなおかつ酸化クロムとクロムの光学干渉効果を利用 した黒色化処理が施されているため、本発明の素子 1をディスプレイの前面に配置し た場合でも視認性を損なわなレ、ものである。 [0033] Subsequently, chemical etching is performed by sequentially immersing the copper layer, the chromium layer, and the chromium oxide layer between the lines in an optimum etchant solution for each layer, and the line width is 20 xm and the distance between the lines is lmm. pattern film resistivity of 2 X 10- 6 Ω 'cm conductive wire is obtained. The pattern film thus obtained has a narrow line width and is subjected to a blackening process utilizing the optical interference effect between chromium oxide and chromium. Therefore, the element 1 of the present invention is disposed on the front surface of the display. Even in the case of a problem, the visibility is not impaired.
[0034] 上記では、電解めつき法を利用した導電膜の作製を述べたが、無電解めつきを利
用したものとしてもよぐ導電体の主成分を上記した銅以外に銀又は金も使用するこ とがでさる。 In the above description, the production of the conductive film using the electrolytic plating method has been described. In addition to copper, silver or gold can be used as the main component of the conductor.
IT〇パターンユング膜作製プロセスで導電線 3、 5を形成する場合、サブトラタティ ブ法を利用することにより、効率的にパターン状に形成された導電膜を形成すること ができる。基板 2上にスパッタリング法等の公知の蒸着法で、 ΙΤΟ薄膜を形成する。こ のとき低抵抗な膜を得るために蒸着時にガラス基板を 150〜250°Cに加熱しておくこ とが好ましい。そして、フォトリソグラフィ一等の公知のパターン化技術を用レ、、本発明 で規定された範囲で直線状でかつ並列で形成されたレジストパターンを ITO膜上に 形成する。 When forming the conductive lines 3 and 5 in the IT ○ pattern Jung film fabrication process, the conductive film formed in a pattern can be efficiently formed by using the sub-traactive method. A thin film is formed on the substrate 2 by a known vapor deposition method such as a sputtering method. At this time, in order to obtain a low resistance film, it is preferable to heat the glass substrate to 150 to 250 ° C. during vapor deposition. Then, using a known patterning technique such as photolithography, a resist pattern formed in a straight line and in parallel within a range defined by the present invention is formed on the ITO film.
[0035] 続いて、レジストの無い部分をケミカルエッチングし、レジストを除去することによつ て、厚み 50〜400nm、好ましく ίま 100〜300nmで];匕抵抗力 S 1. 8 X 10— 4 Ω · cm〜 1 . 0 X 10— 3 Ω ' cmの導電線が得られる。 ITOによる導電線は、可視光透過に優れるの で、導電線の比抵抗よりも素子 1の可視光透過を優先する場合に本プロセスを使用 することが好ましい。 [0035] Subsequently, a portion having no resist chemical etching, resist Te cowpea in removing, thickness 50 to 400 nm, preferably ί or 100 to 300 nm];匕抵drag S 1. 8 X 10- 4 Ω · cm~ 1. 0 X 10- 3 Ω 'cm of the conductive wire is obtained. Since the conductive wire by ITO is excellent in visible light transmission, it is preferable to use this process when priority is given to the visible light transmission of the element 1 over the specific resistance of the conductive wire.
ITOによるパターン状に形成された導電膜の作製の具体例を以下に記す。 A specific example of manufacturing a conductive film formed in a pattern using ITO will be described below.
8インチの矩形状のフロート法によるソーダライム珪酸塩ガラス基板 2上に、スパッタリ ング法により 200nmの膜厚を有する ITO薄膜を形成した。このとき低抵抗な ITO薄 膜を得るために、成膜時のガラス基板が 200°Cとなるように加熱を行った。このように 形成した IT〇膜の上に、フォトリソグラフィ一により、直線状でかつ並列に配置された レジストパターンを形成する。 An ITO thin film having a thickness of 200 nm was formed on a soda-lime silicate glass substrate 2 by an 8-inch rectangular float method by a sputtering method. At this time, in order to obtain a low-resistance ITO thin film, heating was performed so that the glass substrate at the time of film formation became 200 ° C. A resist pattern arranged in a straight line and in parallel is formed by photolithography on the IT ○ film thus formed.
[0036] 続いてこれをエツチャント溶液に浸漬することでレジスト開口部分の ΙΤ〇層のケミカ ルエッチングを行った。そして、次に物品をアセトン中に浸漬し、超音波洗浄すること でレジストを剥離した。このようにして比抵抗が 2. 0 X 10— 4 Ω ' cmで、線幅 lmm、線 間距離 50 μ mの導電性のパターン膜が得られる。 Subsequently, this was immersed in an etchant solution to perform chemical etching on the resist opening portion. The article was then immersed in acetone and ultrasonically cleaned to remove the resist. In this way the specific resistance is 2. 0 X 10- 4 Ω 'cm , a line width lmm, the conductivity of the pattern film of the distance between lines 50 mu m is obtained.
絶縁膜 4、 6は、膜形成時と同時に開口部位 7、 8を同時に形成する方法、又は先に 一様の膜を形成し、その後フォトリソグラフィ一等の公知のパターン化技術、レーザー アブレーシヨン、エッチング等で開口部位 7、 8を形成する方法で得ることができる。本 発明では、便宜的に前者を同時形成方法、後者ポスト形成方法とする。
[0037] 同時形成方法で開口部位を有する絶縁膜を形成する具体例を以下に記す。 The insulating films 4 and 6 can be formed by forming the openings 7 and 8 at the same time as forming the film, or by forming a uniform film first, and then using a known patterning technique such as photolithography, laser ablation, etching, etc. Etc., and can be obtained by a method of forming the opening portions 7 and 8. In the present invention, the former is referred to as a simultaneous formation method and the latter post formation method for convenience. A specific example of forming an insulating film having an opening portion by the simultaneous formation method will be described below.
第 1層目の導電線と第 3層目の導電線とを接続させる部位に、直径 300 μ mの円形 の開口を有するように作製したスクリーン版を用意する。印刷用ペーストには印刷後 の被膜がディスプレイの前面に配置した場合の視認性を損なわない程度の透明性を 有し、かつ第 1層目の導電線と第 3層目の導電線が電気的に短絡しないような絶縁 性を有するものであればよい。 Prepare a screen plate that has a circular opening with a diameter of 300 μm at the site where the first-layer conductive wire and third-layer conductive wire are connected. The printing paste has transparency that does not impair the visibility when the printed film is placed on the front of the display, and the first and third conductive lines are electrically connected. As long as it has an insulating property so as not to be short-circuited.
このような材料としては、例えば、シリコーン樹脂や、ウレタン樹脂、ポリエーテルサ ルホン、ポリアミド等の有機ポリマーを使用することができる。これら有機ポリマーを含 有する溶液にケィ素アルコキシド等のシリカ前駆体を混合することにより、有機ポリマ 一とケィ素酸化物とが複合化された誘電体である絶縁体とすることができる。該複合 化された誘電体は、ガラスとの密着性が向上するだけでなぐ膜の強度も高ぐ更に は、ケィ素酸化物の影響により、第 3層目の導電線も積層しやすくなる等の効果を奏 する。又、有機ポリマーの中では、耐熱性を考慮するとポリエーテルサルホンを使用 することが好ましい。 As such a material, for example, an organic polymer such as silicone resin, urethane resin, polyether sulfone, polyamide or the like can be used. By mixing a silica precursor such as a silicon alkoxide into a solution containing these organic polymers, an insulator which is a dielectric in which an organic polymer and a silicon oxide are combined can be obtained. The composite dielectric not only improves the adhesion to the glass, but also increases the strength of the film. Furthermore, due to the influence of the silicon oxide, it is easy to stack the third conductive wire. Has the effect of. Among organic polymers, it is preferable to use polyethersulfone in view of heat resistance.
[0038] 前記シリカ前駆体として、テトラエトキシシラン以外にもトリメトキシシランや、トリエト キシシラン、トリプロボキシシラン、テトラメトキシシラン、テトラプロボキシシラン、メチル トリメトキシシラン、ェチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエト キシシラン、ェチノレトリエトキシシラン、プロピノレトリエトキシシラン、ジメチノレジメトキシ プロピルトリエトキシシラン、 γ—メルカプトプロビルトリメトキシシラン、 γ—メルカプト プロピルトリエトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 γ—ァミノプロビルト リエトキシシラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、フエニルトリ プロポキシシラン、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシラン等を使用 できる。 [0038] In addition to tetraethoxysilane, the silica precursor may be trimethoxysilane, triethoxysilane, tripropoxysilane, tetramethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, etyltrimethoxysilane, propyltrimethoxysilane. Methoxysilane, methyltriethoxysilane, ethinoretriethoxysilane, propinoretriethoxysilane, dimethinoresimethoxymethoxypropyltriethoxysilane, γ-mercaptopropyl trimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltrimethoxy Silane, γ-aminopropyl triethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, diphenyldimethoxysilane, diphenyl The Jetokishishiran the like can be used.
[0039] 上記塗布液に、好ましくは、セルロースや、ポリエチレングリコール等の公知の増粘 剤を加えてペースト状の塗布液とし、スクリーン印刷法により印刷し、溶媒の揮発成分 、増粘剤等を揮発させ、 80〜400°Cで熱処理を行うことで、厚さ 2〜8 z mの開口部 位 7、 8を有する絶縁膜 4、 6が形成される。
ポスト形成方法で開口部位を有する絶縁膜を形成する具体例を以下に記す。 このポスト形成方法は、開口部位 7、 8を形成させる部位にフォトリソグラフィ一等の 公知のパターン化技術で、例えば、厚さ l〜20 z m、好ましくは 5〜: 15 z m、直径 5 0〜500 μ m、好ましくは 100〜400 μ mの円柱状で耐熱性のあるレジストを形成し、 続いて基板上にコーティング法、スパッタリング、イオンプレーティング等の真空蒸着 法で Si、 Al、 Ti、 Zn、 Nb、 Ta、 In、 Snのいずれかの酸化物又は窒化物を主成分と する無色の誘電体膜を形成する。 [0039] Preferably, a known thickening agent such as cellulose or polyethylene glycol is added to the above coating solution to form a paste-like coating solution, which is printed by a screen printing method, so that a volatile component of the solvent, a thickening agent, and the like. The insulating films 4 and 6 having opening portions 7 and 8 having a thickness of 2 to 8 zm are formed by volatilization and heat treatment at 80 to 400 ° C. A specific example of forming an insulating film having an opening by the post formation method will be described below. This post forming method is a well-known patterning technique such as photolithography at the part where the opening parts 7 and 8 are formed. For example, the thickness is 1 to 20 zm, preferably 5 to 15 zm, and the diameter 50 to 500. μm, preferably 100-400 μm cylindrical heat-resistant resist is formed, and then Si, Al, Ti, Zn, etc. are formed on the substrate by vacuum deposition such as coating, sputtering, ion plating, etc. A colorless dielectric film composed mainly of an oxide or nitride of Nb, Ta, In, or Sn is formed.
[0040] その後、アセトン中に物品を浸漬し、超音波洗浄して、レジストを剥離することにより 、厚さ 0· 05〜4 x mの開口部位 7、 8を有する絶縁膜 4、 6が形成される。 [0040] Then, the insulating films 4 and 6 having the opening portions 7 and 8 having a thickness of 0 · 05 to 4 xm are formed by immersing the article in acetone, ultrasonic cleaning, and peeling the resist. The
その他には、まずは誘電体膜を形成し、その後レーザーアブレーシヨンや、エッチ ングによって開口部位 7、 8を形成する方法もポスト形成方法として使用できる。 In addition, a method of forming a dielectric film first and then forming the opening portions 7 and 8 by laser ablation or etching can be used as a post formation method.
例えば、基板上にコーティング法や、スパッタリング、イオンプレーティング等の真空 蒸着法で Si、 Al、 Ti、 Zn、 Nb、 Ta、 In、 Snのいずれかの酸化物又は窒化物を主成 分とする無色の誘電体膜を形成する。 For example, the main component is an oxide or nitride of Si, Al, Ti, Zn, Nb, Ta, In, or Sn on the substrate by a vacuum deposition method such as coating or sputtering or ion plating. A colorless dielectric film is formed.
[0041] その後、第 1層目の導電線と第 3層目の導電線を接続する部位をレーザーアブレ ーシヨン法や、穴あけ部以外をレジストによりマスキングし、弗酸溶液によりケミカルェ ツチングを行う方法や、酸素、水素、窒素、フッ素、アルゴン、フッ化炭素、塩化炭素 等の反応性ガスを用いたリアクティブイオンエッチングにより行うことができる。このよう にして厚さ 0. 05〜4 z mの開口部位 7、 8を有する絶縁膜 4、 6が形成される。 [0041] After that, a part that connects the first-layer conductive wire and the third-layer conductive wire is laser ablation, or a method of masking other than the perforated portion with a resist and performing chemical etching with a hydrofluoric acid solution, And reactive ion etching using a reactive gas such as oxygen, hydrogen, nitrogen, fluorine, argon, carbon fluoride, and carbon chloride. In this way, insulating films 4 and 6 having opening portions 7 and 8 having a thickness of 0.05 to 4 zm are formed.
図面の簡単な説明 Brief Description of Drawings
[0042] [図 1]本発明の可視光透過型平面コイル素子を正面視したときの要部を示す図であ る。 FIG. 1 is a diagram showing a main part of a visible light transmission type planar coil element according to the present invention when viewed from the front.
[図 2]図 1の a— a'の断面を示す図である。 FIG. 2 is a view showing a cross section taken along the line aa ′ in FIG.
[図 3]図 1の b— b'の断面を示す図である。 FIG. 3 is a view showing a cross section along line bb ′ of FIG.
[図 4]本発明の可視光透過型平面コイル素子を正面視したときのコイルの外部回路と の接合部位となる部分を示す図である。 FIG. 4 is a diagram showing a portion that becomes a joint portion with an external circuit of a coil when the visible light transmission type planar coil element of the present invention is viewed from the front.
[図 5]図 4の c c'の断面を示す図である。 FIG. 5 is a view showing a cross section of cc ′ of FIG.
[図 6]本発明の可視光透過型平面コイル素子を正面視したときの全体像を示す図で
ある。 FIG. 6 is a diagram showing an overall image when the visible light transmission type planar coil element of the present invention is viewed from the front. is there.
符号の説明 Explanation of symbols
1 可視光透過型平面コイル素子 1 Visible light transmission type planar coil element
2 基板 2 Board
3 第 1層目のパターン膜の導電線 3 Conductive wire of the first layer pattern film
4 第 2層目の絶縁膜 4 Second layer insulation film
5 第 3層目のパターン膜の導電線 5 Conductive wire of the third layer pattern film
6 第 4層目の絶縁膜 6 4th layer insulating film
7 第 1層目のパターン膜の導電線と第 3層目のパターン膜の導電線とを接続させ るために第 2層目の絶縁膜に設けられた開口部位 7 Opening part provided in the second-layer insulating film to connect the conductive wire of the first-layer pattern film and the conductive wire of the third-layer pattern film
8 第 1層目のパターン膜の導電線又は第 3層目のパターン膜の導電線と外部回路 とを接合させるための開口部位 8 Opening part for joining the conductive wire of the first layer pattern film or the conductive wire of the third layer pattern film to the external circuit
9 マスキング層
9 Masking layer
Claims
[1] 可視光透過性を有する基板と、該基板上に直線状の導電線が並列に配された第 1 層目パターン膜と、該導電線上の任意点に開口部位を有するように形成された誘電 体よるなる第 2層目の絶縁膜と、該絶縁膜上に直線状の導電線が並列に配された第 3層目パターン膜とを有し、前記第 1層目の導電線を、前記開口部位を通して前記第 3層目導電線と 2点で接合される構造とするか、又は前記第 3層目の導電線を、前記 開口部位を通して前記第 1層目導電線と 2点で接合される構造とすることにより、第 1 層目導電線と第 3層目導電線とでコイルを形成し、かつ第 1層目に並列に配された導 電線と第 3層目に並列に配された導電線とが基板の正面視において直交状に配列 されることでコイルの集積化を可能とし、前記導電線の主成分を銀、銅又は金とし、 導電線の幅を1 111〜50 111とし、同層での導電線間距離を 0. lmm〜10mmとし たことを特徴とする可視光透過型平面コイル素子。 [1] A substrate having visible light transparency, a first layer pattern film in which linear conductive lines are arranged in parallel on the substrate, and an opening at an arbitrary point on the conductive lines. A second-layer insulating film made of a dielectric, and a third-layer pattern film in which linear conductive lines are arranged in parallel on the insulating film. The third-layer conductive line is joined at two points through the opening part, or the third-layer conductive line is connected at two points with the first-layer conductive line through the opening part. By adopting a bonded structure, a coil is formed by the first layer conductive wire and the third layer conductive wire, and the conductive wire arranged in parallel in the first layer and the third layer in parallel. The arranged conductive wires are arranged orthogonally in a front view of the substrate, so that the coil can be integrated, and the main component of the conductive wires is silver, copper or gold. And the width of the conductive wire is 1 111-50 111, visible light transmissive flat coil element, wherein a conductive wire distance in the same layer was 0. lmm~10mm.
[2] 可視光透過性を有する基板と、該基板上に直線状の導電線が並列に配された第 1 層目パターン膜と、該導電線上の任意点に開口部位を有するように形成された誘電 体よりなる第 2層目の絶縁膜と、該絶縁膜上に直線状の導電線が並列に配された第 3層目パターン膜とを有し、前記第 1層目の導電線を、前記開口部位を通して前記第 3層目導電線と 2点で接合される構造とするか、又は前記第 3層目の導電線を、前記 開口部位を通して前記第 1層目導電線と 2点で接合される構造とすることにより、第 1 層目導電線と第 3層目導電線とでコイルを形成し、かつ第 1層目に並列に配された導 電線と第 3層目に並列に配された導電線とが基板の正面視において直交状に配列 されることでコイルの集積化を可能とし、前記導電線の主成分を ITOとし、導電線の 幅を 0. 1mm〜: 10mmとし、同層での導電線間距離を 1 μ m〜50 μ mとしたことを特 徴とする可視光透過型平面コイル素子。 [2] A substrate having visible light transparency, a first layer pattern film in which linear conductive lines are arranged in parallel on the substrate, and an opening portion at an arbitrary point on the conductive lines. A second-layer insulating film made of a dielectric, and a third-layer pattern film in which linear conductive lines are arranged in parallel on the insulating film. The third-layer conductive line is joined at two points through the opening part, or the third-layer conductive line is connected at two points with the first-layer conductive line through the opening part. By adopting a bonded structure, a coil is formed by the first layer conductive wire and the third layer conductive wire, and the conductive wire arranged in parallel in the first layer and the third layer in parallel. The arranged conductive wires are arranged orthogonally in front view of the substrate, so that the coil can be integrated. The main component of the conductive wires is ITO, and the conductive wires are conductive. A visible light transmissive planar coil element characterized in that the line width is 0.1 mm to 10 mm, and the distance between conductive wires in the same layer is 1 μm to 50 μm.
[3] 第 2層目絶縁膜の厚みが、第 1層目パターン膜の厚みよりも小さい請求項 1又は請 求項 2に記載の可視光透過型平面コイル素子。 [3] The visible light transmissive planar coil element according to claim 1 or 2, wherein the thickness of the second layer insulating film is smaller than the thickness of the first layer pattern film.
[4] 第 3層目パターン膜上に、誘電体よりなる第 4層目絶縁膜が更に形成されている請 求項 1乃至請求項 3のいずれかに記載の可視光透過型平面コイル素子。 [4] The visible light transmission type planar coil element according to any one of claims 1 to 3, wherein a fourth layer insulating film made of a dielectric is further formed on the third layer pattern film.
[5] 第 4層目絶縁膜が、第 1層目及び/又は第 2層目の導電線と外部回路とを接合さ
せるための開口部位を有する請求項 4に記載の可視光透過型平面コイル素子。 [5] The fourth-layer insulating film joins the first and / or second-layer conductive wires to the external circuit. 5. The visible light transmission type planar coil element according to claim 4, wherein the visible light transmission type planar coil element has an opening portion.
[6] 基板が、矩形状であり、基板の辺と導電線とでなす侠角側角度が、 20度〜 45度で ある請求項 1乃至請求項 5のいずれかに記載の可視光透過型平面コイル素子。 [6] The visible light transmissive type according to any one of claims 1 to 5, wherein the substrate has a rectangular shape, and a depression angle formed between the side of the substrate and the conductive wire is 20 degrees to 45 degrees. Planar coil element.
[7] 第 1層目及び第 3層目パターン膜中の全ての導電線間距離、全ての導電線幅が、 一定である請求項 1乃至請求項 6のいずれかに記載の可視光透過型平面コイル素 子。 [7] The visible light transmission type according to any one of [1] to [6], wherein the distance between all conductive lines and the width of all conductive lines in the first layer and the third layer pattern film are constant. Planar coil element.
[8] 第 1層目の導電線と第 3層目の導電線とが、それぞれ導電線の端部で接合されて レ、る請求項 1乃至請求項 7のいずれかに記載の可視光透過型平面コイル素子。
[8] The visible light transmission according to any one of [1] to [7], wherein the first-layer conductive wire and the third-layer conductive wire are joined at the ends of the conductive wires, respectively. Mold plane coil element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005216637A JP2007034644A (en) | 2005-07-27 | 2005-07-27 | Visible light transmission type planar coil element |
JP2005-216637 | 2005-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013499A1 true WO2007013499A1 (en) | 2007-02-01 |
Family
ID=37683390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314750 WO2007013499A1 (en) | 2005-07-27 | 2006-07-26 | Visible light transmitting type planar coil element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007034644A (en) |
WO (1) | WO2007013499A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1835382A3 (en) * | 2006-03-16 | 2012-03-07 | Wacom Co., Ltd. | Position detecting apparatus, position inputting apparatus and computer |
JP2013122783A (en) * | 2008-02-18 | 2013-06-20 | Trendon Touch Technology Corp | Capacitive touch panel |
US20160098122A1 (en) * | 2014-10-07 | 2016-04-07 | Microsoft Technology Licensing, Llc | Digitizer sensor |
WO2017013437A1 (en) * | 2015-07-21 | 2017-01-26 | Ronald Peter Binstead | Touch sensor |
US10198121B2 (en) | 2014-03-13 | 2019-02-05 | Noritake Co., Limited | Projected capacitive touch switch panel |
CN112241212A (en) * | 2019-07-16 | 2021-01-19 | 中强光电股份有限公司 | Conductive sheet for touch panel and method for manufacturing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101369431B1 (en) | 2011-11-30 | 2014-03-06 | 주식회사 팬택 | touch panel, apparatus for sensing touch including touch panel and method for sensing touch |
KR102367248B1 (en) * | 2015-05-12 | 2022-02-25 | 삼성디스플레이 주식회사 | Touch screen panel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05158606A (en) * | 1991-12-05 | 1993-06-25 | Wacom Co Ltd | Sense part of position detection device and its manufacture |
-
2005
- 2005-07-27 JP JP2005216637A patent/JP2007034644A/en active Pending
-
2006
- 2006-07-26 WO PCT/JP2006/314750 patent/WO2007013499A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05158606A (en) * | 1991-12-05 | 1993-06-25 | Wacom Co Ltd | Sense part of position detection device and its manufacture |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1835382A3 (en) * | 2006-03-16 | 2012-03-07 | Wacom Co., Ltd. | Position detecting apparatus, position inputting apparatus and computer |
JP2013122783A (en) * | 2008-02-18 | 2013-06-20 | Trendon Touch Technology Corp | Capacitive touch panel |
US10198121B2 (en) | 2014-03-13 | 2019-02-05 | Noritake Co., Limited | Projected capacitive touch switch panel |
US20160098122A1 (en) * | 2014-10-07 | 2016-04-07 | Microsoft Technology Licensing, Llc | Digitizer sensor |
CN106796476A (en) * | 2014-10-07 | 2017-05-31 | 微软技术许可有限责任公司 | Digitizer sensor |
CN106796476B (en) * | 2014-10-07 | 2020-05-05 | 微软技术许可有限责任公司 | Digitizer sensor |
WO2017013437A1 (en) * | 2015-07-21 | 2017-01-26 | Ronald Peter Binstead | Touch sensor |
GB2556783A (en) * | 2015-07-21 | 2018-06-06 | Peter Binstead Ronald | Touch sensor |
US10534487B2 (en) | 2015-07-21 | 2020-01-14 | Ronald Peter Binstead | Touch sensor |
GB2556783B (en) * | 2015-07-21 | 2021-11-10 | Peter Binstead Ronald | Touch sensor |
CN112241212A (en) * | 2019-07-16 | 2021-01-19 | 中强光电股份有限公司 | Conductive sheet for touch panel and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2007034644A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007013499A1 (en) | Visible light transmitting type planar coil element | |
KR101586263B1 (en) | Narrow frame touch input sheet and manufacturing method of same | |
JP4601710B1 (en) | Narrow frame touch input sheet and manufacturing method thereof | |
WO2015008617A1 (en) | Layered body for touch panel, and touch panel | |
JP6201623B2 (en) | Electrode member, method for manufacturing the same, touch panel using the electrode member, and image display device including the touch panel | |
US8947399B2 (en) | Dual-substrate capacitive touch panel | |
JP6233015B2 (en) | Electrode sheet, touch panel using the electrode sheet, and image display device provided with the touch panel | |
US20150022492A1 (en) | Touch window and touch device including the same | |
TW201342155A (en) | Touch panel and display apparatus comprising the same | |
WO2013146787A1 (en) | Light-transmissible electrode | |
JP6712270B2 (en) | Transparent electrode film, light control element, and method for manufacturing transparent electrode film | |
CN109564488A (en) | Conductive membrane and touch panel | |
JP6070675B2 (en) | Method for producing transparent conductive substrate and touch panel sensor | |
JP2016184683A (en) | See-through electrode, position detection electrode for touch panel using see-through electrode, touch panel, and image display device | |
KR20140052510A (en) | Manufacturing method of touch screen panel | |
CN207182252U (en) | A kind of projection-type capacitive touch screen of double-face electrode | |
JP2011129272A (en) | Double-sided transparent conductive film sheet and method of manufacturing the same | |
CN114049987A (en) | Metal grid conductive film and preparation method thereof | |
CN111722742A (en) | Transparent conductive film and preparation method thereof | |
CN212675531U (en) | Electrode member for touch panel, and image display device | |
US9392700B2 (en) | Transparent conductive film and preparation method thereof | |
JP6233024B2 (en) | Touch panel sensor, touch panel sensor manufacturing method, and display device with touch position detection function | |
CN207458007U (en) | Touch-screen sensor, touch-screen and electronic equipment | |
KR102631091B1 (en) | Blackening plating solution and conductive substrate manufacturing method | |
KR20200114559A (en) | Touch panel including silver nanowire touch sensor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781662 Country of ref document: EP Kind code of ref document: A1 |