WO2007013493A1 - 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置 - Google Patents

両親媒性単分子膜の接触による二分子膜の形成方法およびその装置 Download PDF

Info

Publication number
WO2007013493A1
WO2007013493A1 PCT/JP2006/314741 JP2006314741W WO2007013493A1 WO 2007013493 A1 WO2007013493 A1 WO 2007013493A1 JP 2006314741 W JP2006314741 W JP 2006314741W WO 2007013493 A1 WO2007013493 A1 WO 2007013493A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
contact
forming
amphiphilic
liquid
Prior art date
Application number
PCT/JP2006/314741
Other languages
English (en)
French (fr)
Inventor
Shoji Takeuchi
Hiroaki Suzuki
Kei Funakoshi
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to US11/997,058 priority Critical patent/US8506905B2/en
Publication of WO2007013493A1 publication Critical patent/WO2007013493A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements

Definitions

  • the present invention relates to a method for forming a bilayer membrane for membrane protein analysis used in the fields of biotechnology, biochips, membrane protein analysis, drug screening, biosensors, and the like, and an apparatus therefor.
  • Membrane proteins are present in cell membranes and play an important role in immune reactions and transport of substances inside and outside the cell. Therefore, it is possible to elucidate the functions and characteristics of various membrane proteins one by one. It has become an important issue in the development of next-generation treatment and drug discovery methods.
  • planar lipid membranes for membrane protein analysis such as ion channels include the planar membrane method, that is, the brush coating method and the LB method (Longmuir-Blodgett method).
  • a lipid bilayer is formed in a small pore of about several hundred microns opened in a Teflon (registered trademark) sheet in a chamber filled with noffer.
  • Teflon registered trademark
  • FIG. 1 is a schematic diagram showing a conventional planar lipid bilayer formation method by the LB method.
  • 101 is a Teflon (registered trademark) sheet
  • 102 is a small hole opened in the Teflon (registered trademark) sheet 101
  • 103 is a solution in which a monolayer 104 of lipid is formed on the surface
  • 105 is a buffer solution, which is formed so as to form a lipid membrane 106 by gradually raising the surface of the solution 103 in the chamber on both sides of the Teflon (registered trademark) sheet 101.
  • Patent Document 1 Japanese Patent Laid-Open No. 03-118832
  • Patent Document 2 Japanese Patent Laid-Open No. 05-261277
  • Non-Patent Document 1 "Ion Channel Reconstitution,” C. Miller Ed., Plenum pre ss, (1986)
  • Non-Patent Document 2 H. Suzuki, K. Tabata, Y. Kato— Yamada, H. Noji, and S. Takeuchi, / z TAS, 2, 246 (2004)
  • Non-Patent Document 3 H. Suzuki et al, 3rd Int. IEEE—EMBS Special Topic C onf. On Microtechnologies in Medicine and Biology, Hawaii. May 20 05.
  • Non-Patent Document 4 T. Ide, Y. Takeuchi, and T. Yanagida, Single Molecules. 3, 33 (2002).
  • both the brushing method and the LB method described above require a large chamber of about several centimeters and cannot be observed with a microscope with a large dead volume.
  • the conventional method (1) described above has difficulty in the process of removing the liquid in the intermediate layer.
  • a process for evaporation of the solution and a process for natural thinning are required, and it takes a long time to complete the process, and reproducibility is difficult.
  • the present invention provides a method for forming a bilayer film by contact with an amphiphilic monolayer and an apparatus for the bilayer that can be easily and accurately formed.
  • the porpose is to do.
  • the present invention provides
  • an organic solvent containing amphiphilic molecules is introduced into a chamber formed on the substrate, and a plurality of the organic solvents are introduced into the organic solvent.
  • a liquid that is not mixed with the divided organic solvent is introduced, and a plurality of amphiphilic monomolecular films are formed at the interface between the divided liquid and the organic solvent, and the liquid or the liquid in the chamber is formed.
  • the bilayer membrane is formed by bringing the plurality of amphiphilic monolayers into contact with each other under the control of the organic solvent.
  • the organic solvent is introduced into the first microchannel formed on the front and back of the substrate, A liquid that does not mix with the organic solvent from both sides of the second microchannel toward the intersecting portion in the second microchannel where the both side forces of the first microchannel intersect to form an intersection.
  • an opposite amphiphilic monomolecular film is formed at the interface between the liquid and the organic solvent, and the pressure of the liquid in the second microchannel is controlled by a syringe pump so that the first It is characterized in that the opposite amphiphilic monomolecular film is brought into contact with each other and fused to form a bimolecular film by bringing the liquid interfaces introduced with both ends of the microchannel into contact with each other.
  • an apparatus for forming a bimolecular film by contact with an amphiphilic monomolecular film a chamber formed on a substrate, an organic solvent containing amphiphilic molecules introduced into the chamber, and the organic solvent A liquid that is not mixed with the organic solvent introduced so as to be divided into a plurality of parts in the solvent, and a plurality of amphiphilic monomolecular films are formed at the interface between the liquid and the organic solvent, and the inside of the chamber
  • An amphiphilic monomolecule comprising a control means for controlling the liquid or the organic solvent, and forming the bimolecular film by bringing the plurality of amphiphilic monomolecular films into contact with each other by the control means. It is characterized in that a bimolecular film is obtained by contact of the film.
  • the first is formed on the front and back of the substrate and the organic solvent is introduced.
  • a microchannel and an intersection that intersects from both sides of the first microchannel are formed, and a second microchannel that introduces a liquid that is mixed with the organic solvent from both sides against the intersection.
  • a syringe pump for adjusting the pressure of the liquid in the second microchannel, and the amphiphilic monomolecule facing the interface between the liquid in the second microchannel and the organic solvent.
  • a membrane is formed, and the pressure of the liquid is controlled by the syringe pump so that the liquid interfaces introduced from both ends of the first microchannel are brought into contact with each other.
  • Contact It is characterized by obtaining a bilayer by touching and fusing.
  • the chamber is divided into a plurality of compartments by a constricted portion formed on the main body of the substrate.
  • a liquid that fills the organic solvent and does not mix with the organic solvent is dropped by a pipette for each compartment, and a plurality of droplets are arranged, and the parent is formed at the interface between the plurality of droplets and the organic solvent.
  • Forming an amphiphilic monomolecular film controlling the liquid or the organic solvent, bringing the interfaces of the plurality of droplets into contact with each other, and bringing the amphiphilic monomolecular film into contact with each other to cause fusion; A film is formed.
  • a plurality of compartments are separated by a constricted portion formed on the front and back sides of the substrate.
  • a chamber the organic solvent introduced into the chamber, a syringe pump for introducing a liquid not mixed with the organic solvent into the organic solvent in the chamber, and arranging a plurality of liquid droplets. At the interface between the plurality of droplets and the organic solvent.
  • the interfaces of the plurality of droplets are brought into contact with each other, and the amphiphilic monomolecular film is brought into contact with and fused with each other. It is characterized by obtaining a bimolecular film.
  • the liquid is an aqueous solution. It is characterized by that.
  • the liquid is an aqueous solution. It is characterized by that.
  • the plurality of compartments are 5 compartments, and the outline shape is a square. It is characterized by having a shape.
  • FIG. 1 is a schematic diagram showing a conventional method for forming a planar lipid bilayer by the LB method.
  • FIG. 2 is a diagram showing a method for forming a lipid bilayer membrane by contacting a monolayer using the substantially cross-shaped chamber according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an apparatus for forming a lipid bilayer membrane by contacting a monolayer according to the first embodiment of the present invention.
  • FIG. 4 is a view showing a microscopic image when the aqueous solution interfaces are in contact with each other, showing the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a capacitive transient current passing through the interface when a 10 mV rectangular signal according to the present invention is applied.
  • FIG. 6 is a diagram showing a time-series change in current passing through a lipid bilayer membrane incorporating dalamicidin when 63 mV is applied, showing an example of the present invention.
  • FIG. 7 is a schematic plan view of an apparatus for forming a lipid bilayer membrane by contact of a monomolecular membrane having a plurality of chambers having a constricted portion according to a second embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing a method for forming a lipid bilayer membrane by contacting monolayer membranes having a plurality of chambers having constricted portions according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an apparatus for forming a lipid bilayer membrane by contacting monolayer membranes having a plurality of chambers having a constricted portion according to a second embodiment of the present invention.
  • FIG. 10 is a view showing a structure of a chip device including a plurality of chambers having a constricted portion according to the present invention.
  • FIG. 11 is a diagram showing a method of forming a lipid bilayer membrane according to an experimental example of the present invention.
  • FIG. 12 is a plan view of an apparatus for forming a lipid bilayer membrane, which comprises two damper bilayer membranes, each having a three-part section arranged in a horizontal arrangement by two constricted portions according to a third embodiment of the present invention. It is a schematic diagram.
  • FIG. 13 is a schematic plan view of an apparatus for forming a lipid bilayer membrane having a chamber having a substantially triangular outer shape for forming three lipid bilayer membranes according to the fourth embodiment of the present invention.
  • FIG. 14 is a schematic plan view of an apparatus for forming a lipid bilayer membrane having a chamber having a substantially rectangular outer shape for forming four lipid bilayer membranes according to a fifth embodiment of the present invention.
  • an organic solvent containing an amphipathic molecule is introduced into the first microchannel formed on the front and back of the substrate. Then, the second microchannel that intersects from both sides of the first microchannel is formed on the second microchannel.
  • a liquid that is not mixed with an organic solvent containing a functional molecule is introduced, an opposing amphiphilic monomolecular film is formed at the interface between the liquid and the organic solvent, and the pressure of the liquid in the second microchannel Is controlled by a syringe pump so that the liquid interfaces introduced with both end forces of the first microchannel are brought into contact with each other, whereby the opposing amphiphilic monolayers are brought into contact and fused to form a bilayer membrane.
  • FIG. 2 is a diagram showing a method for forming a bilayer film by contacting a monolayer using the substantially cross-shaped chamber according to the first embodiment of the present invention
  • FIG. FIG. 2 (b) is a diagram showing a state in which the aqueous solution interfaces are in contact with each other.
  • the organic solvent 2 containing lipid molecules is introduced into the first microchannel 1 formed on the substrate 5 having the front and back surfaces.
  • a second micro-channel 3 is formed so as to be orthogonal to the first micro-channel 1, and the intersection of the first and second micro-channels is formed from both sides of the second micro-channel 3.
  • a liquid (for example, an aqueous solution) 4 that does not mix with the organic solvent 2 containing lipid molecules.
  • Syringe pumps (not shown) are arranged at both ends of the second microchannel 3, and the pressure of the liquid 4 in the second microchannel 3 can be controlled by adjusting the syringe pump.
  • KC1 solution is used as the liquid (aqueous solution) 4 for energization.
  • a general aqueous solution can be used.
  • the cross-shaped chamber 6 has the first A lipid monomolecular film 2A is formed at the interface between the liquid 4 and the organic solvent 2 at the intersection where the microchannel 1 of 1 and the second microchannel 3 intersect.
  • the surfaces of the two aqueous solutions 4 are brought close to each other by controlling the pressure by injecting the liquid 4 from the syringe pump.
  • Fig. 2 (b) when the distance between the two lipid monolayers 2A becomes several angstroms or less, the lipid monolayer 2A is fused by the van der Waals attraction to become the lipid bilayer 2B.
  • membrane protein 9 can be incorporated into the lipid bilayer structure of Fig. 2 (b) in order to conduct an experiment on membrane transport.
  • 7 is an AgZAgCl electrode
  • 8 is a current / voltage measuring device.
  • FIG. 3 is a schematic diagram of an apparatus for forming a lipid bilayer membrane by contact with a monolayer according to the first embodiment of the present invention.
  • the cross-shaped chamber 6 is mechanically covered with a CADZCAM modeling system on an acrylic plastic (PMMA) substrate 5, and a thin PMMA plate is attached to the substrate 5 to close the flow path. wear.
  • the width and depth of the channel are both 0.5 mm.
  • the aqueous solution 4 is introduced from the two inlets facing each other in the second microchannel 3, and the organic solvent 2 containing lipid molecules is introduced from the inlet provided at one end of the first microchannel 1.
  • a dalamicidin peptide ion channel which is a kind of membrane protein, is used for an ion molecule transport experiment.
  • an AgZAgCl electrode 7 connected to a current / voltage measuring device 8 is connected to two aqueous solutions (here, KC1 solution) 4 in the second microchannel 3. insert.
  • KC1 solution aqueous solutions
  • the injection and extrusion of the KC1 solution 4 are controlled by a syringe pump (not shown).
  • the pressure and volume of the KC1 solution can be controlled arbitrarily.
  • the organic solvent 2 containing lipid molecules used here is 1-2-Dioleoyl-sn-Glycero
  • -3-Phosphocholine DOPC, CAS No; 4235-95-4
  • DOPC -3-Phosphocholine
  • 'hexadecane 1: 1 vol%.
  • 25 mg of the above DOPC was used.
  • the optimum concentration is 0.5 to 25 mgZml.
  • membrane components that can form a membrane include lipids (eg, phosphatidylcholine), amphiphilic molecules, and surfactants.
  • FIG. 4 is a view showing a microscopic image when the aqueous solution interfaces are in contact with each other, showing the first embodiment of the present invention.
  • the lipid bimolecular film is a thin dielectric film, it functions as a capacitor.
  • FIG. 5 is a diagram showing a capacitive transient current passing through the interface when a 10 mV rectangular signal that is useful for the present invention is applied.
  • a represents the capacitive transient current in the lipid bilayer membrane formed by contacting the lipid monolayers on the surface of the aqueous solution
  • b represents the capacitive transient current before the contact.
  • the dalamicidin peptide ion channel that opens in synchronism with the monomer dimerization of each monolayer membrane. Is introduced into the aqueous solution.
  • FIG. 6 is a diagram showing a time-series change of current passing through a lipid bilayer membrane incorporating dalamicidin when 63 mV is applied according to an embodiment of the present invention.
  • the monomolecular film is brought into contact [Fig. 6 (a)]. If the surface of the monolayer is kept in contact, the current increases corresponding to the enlargement of the lipid bilayer region [Fig. 6 (b)]. Next, when the surface of the monomolecular film is separated by control with a syringe pump (Fig. 6 (c), (d)), the current drops to the reference value (the gramicidin concentration is 5.0 in lOOmM KC1. X 10- 12 M).
  • lipid monomolecular film that contacts the microfluidic chip was created for reconstitution of the lipid bimolecular film in the vertical direction.
  • Two lipid monolayers according to the present invention produced a lipid bilayer that exhibited a capacitance consistent with the conventional BLM method, and a dalamicidin channel was formed in the membrane. Therefore, it was confirmed that the membrane formed by the present invention was a lipid bilayer membrane.
  • membrane transport was monitored electrically using ion channels. This technique also enables fluorescent imaging of molecular transport through the membrane.
  • FIG. 7 is a schematic plan view of a lipid bilayer membrane forming apparatus by contact of a monomolecular membrane having a plurality of chambers having a constricted portion according to a second embodiment of the present invention
  • Fig. 8 is a lipid using the same
  • FIG. 6 is a schematic perspective view showing a method for forming a dimeric film.
  • a chamber 12 partitioned by a constricted portion 13 is prepared on a substrate 11 that is open upward.
  • the chamber 12 having the constricted portion 13 is filled with the organic solvent 14 containing lipid molecules.
  • Figure 7 ( c) or Fig. 8 (c) pipette 15 (Fig. 8 (Fig. 8 (c)) to each of the chambers 12 delimited by the constricted section 13 is an aqueous solution 16, 17 that is not mixed with the organic solvent 14 containing lipid molecules.
  • a lipid monomolecular film 18 is formed at the interface between the aqueous solution droplets 16 and 17 and the organic solvent 14 containing lipid molecules.
  • the aqueous solution droplets 16 and 17 are enlarged (aqueous solution droplets 16 'and 17'), and the aqueous solution droplets 16 'and 1
  • the lipid monolayer 18 formed at the interface between the aqueous solution droplets 16 ', ⁇ 1' and the organic solvent 14 containing lipid molecules also contacts and fuses to form a lipid bilayer membrane 19. It is formed.
  • FIG. 9 is a schematic diagram of a lipid bilayer membrane formation apparatus by contact of a monomolecular membrane having a plurality of chambers having a constricted portion according to a second embodiment of the present invention.
  • the flow path 25 for sending the organic solvent 24 containing lipid molecules, and the two chambers 22 in the aqueous solution A flow path 26 for forming the liquid droplet 27, a syringe pump 28 disposed in the flow path 26, and a control device 29 connected to the syringe pump 28.
  • the droplet 27 of the aqueous solution that is not mixed with the organic solvent 24 containing lipid molecules is introduced from the channel 26. It is.
  • the aqueous solution droplets 27 are controlled by the control of the syringe pump 28, and the lipid monolayer formed at the interface between the aqueous solution droplets 27 and the organic solvent 24 containing lipid molecules comes into contact and fuses. A lipid bilayer 24B is formed.
  • FIG. 10 and FIG. 11 are experimental examples of the present invention
  • FIG. 10 is a diagram showing a structure of a chip device having a plurality of chambers having a constricted portion of the present invention
  • FIG. FIG. 10B is an enlarged plan view of the plurality of chamber parts
  • FIG. 10C is a side sectional view of the whole
  • FIG. 10D is a perspective view of the whole.
  • the length of the substrate 30 is 30 mm, the width yi is 20 mm, and the radius r of the chamber 31 is 2 mm.
  • the length 1 between the constricted portions 32 is 2 mm, and the thickness d of the substrate 30 is 2 mm in FIG. 10 (c).
  • the material of the substrate 30 is acrylic.
  • FIG. 11 is a diagram showing a method of forming a lipid bilayer membrane according to an experimental example of the present invention.
  • Fig. 11 (a-1) is a perspective view of the chip device
  • Fig. 11 (a-2) is a side sectional view of the chip device
  • Fig. 11 (a-3) is a top view of the chip device. reference ⁇ .
  • the first droplet (15 1) 35 of the aqueous solution not mixed with the organic solvent 33 containing lipid molecules is introduced into the organic solvent 33 containing lipid molecules by a pipette 34 [chip] See Fig. 11 (b-1), which is a side sectional view of the device, and Fig. 11 (b-2), which is a top view of the chip device.
  • FIG. 11 (c 1) which is a side sectional view of the chip device
  • FIG. 11 (c 2) which is a top view of the chip device
  • FIG. 12 shows a third embodiment of the present invention.
  • a device for forming a lipid bilayer membrane comprising two type of bilayer membranes and two lipid bilayer membranes provided with the three partitions separated in a horizontal array.
  • a chamber 42 having two laterally arranged constricted portions 43, 44 formed on a substrate 41 is prepared, and an organic solvent 45 containing lipid molecules is first introduced into the chamber 42.
  • an organic solvent 45 containing lipid molecules is first introduced into the chamber 42.
  • the first lipid bilayer 49 is attached to the contact surface of the droplets 46 and 47, and the droplets 47, 48 and The second lipid bilayer membrane 50 is formed on the contact surface at the boundary of each.
  • FIG. 13 is a schematic plan view of an apparatus for forming a lipid bilayer membrane having a chamber having an approximately triangular outer shape for forming three lipid bilayer membranes according to the fourth embodiment of the present invention.
  • the chamber 51 has a substantially triangular shape, and by introducing three droplets 53, 54, 55 into an organic solvent 52 containing lipid molecules, the droplets 53 and 54 are formed.
  • the first lipid bilayer 56 on the insect contact surface, the second lipid bilayer 57 on the contact surface with droplets 54 and 55, and the third lipid bimolecule on the contact surface with droplets 55 and 53 Each of the films 58 can be formed.
  • FIG. 14 is a schematic plan view of an apparatus for forming a lipid bilayer membrane having a chamber having a substantially rectangular outer shape for forming four lipid bilayer membranes according to a fifth embodiment of the present invention.
  • the chamber 61 has a substantially rectangular outer shape, and is an organic solvent containing lipid molecules.
  • Each of the fourth lipid bilayer membranes 71 can be formed.
  • the shape of the chamber is not limited to that described above, and a lipid monomolecular film is formed at the interface between the liquid droplet and the organic solvent containing lipid molecules. If a bimolecular film can be formed, it can be transformed into various shapes
  • Lipid bilayers can be formed by contacting and fusing molecular membranes.
  • the control of the liquid that is not mixed with the organic solvent containing the lipid molecule is described.
  • the organic solvent containing the lipid molecule may be controlled.
  • a lipid bilayer may be formed by relatively contacting and fusing a plurality of lipid monolayers.
  • an organic solvent containing a lipid molecule is shown, but an organic solvent containing an amphiphilic molecule may be used.
  • the amphiphilic molecules include phospholipids, long-chain alcohols, long-chain cambonic acids, sarcophagus, synthetic detergents, and the like.
  • a monomolecular film can be formed at the Z aqueous solution interface.
  • Membrane proteins play an important role in physiological functions such as drug response 'energy conversion' immune reaction 'substance transport' information transmission. Many membrane proteins are the main targets for drug discovery. For example, the market for drugs related to a series of receptor proteins called GPCR (G-protein coupled receptor) is large. For this reason, it is expected that membrane proteins will be arrayed on the chip, but there have been no reports of efficiently reconstituting lipid planar membranes on the array. In addition, there is no device that can measure the membrane current as well as the physiological condition setting.
  • GPCR G-protein coupled receptor
  • membrane proteins are also the main next-generation drug targets, such as a series of membrane proteins called ABC transporters that cause drug resistance in cancer cells. The development of this system can contribute to rapid drug development by incorporating these target membrane proteins for drug discovery.

Abstract

簡便にして的確に二分子膜を形成することができる両親媒性単分子膜の接触による二分子膜の形成方法およびその装置を提供する。 基板(5)の表裏に形成される第1のマイクロ流路(1)に脂質分子を含む有機溶媒(2)を導入し、第1のマイクロ流路(1)の両側から交差して交差部が形成される第2のマイクロ流路(3)に、この第2のマイクロ流路(3)の両側から前記交差部に向かって脂質分子を含む有機溶媒(2)と混ざらない液体(4)を導入し、この液体(4)と脂質分子を含む有機溶媒(2)との界面に、対向する脂質単分子膜(2A)を形成し、第2のマイクロ流路(3)中の液体(4)の圧力をシリンジポンプにより制御して第1のマイクロ流路(1)の両端から導入した液体(4)の界面を互いに接触させることにより、前記対向する脂質単分子膜(2A)を接触させて融合させ脂質二分子膜(2B)を形成する。

Description

明 細 書
両親媒性単分子膜の接触による二分子膜の形成方法およびその装置 技術分野
[0001] 本発明は、バイオテクノロジー、バイオチップ、膜タンパク質分析、創薬スクリーニン グ、バイオセンサーなどの分野に用いられる膜タンパク質分析用二分子膜の形成方 法とその装置に関するものである。
背景技術
[0002] 膜タンパク質は、細胞膜中に存在し、免疫反応、細胞の内外の物質輸送'排出に 重要な役割を果たしているため、各種の膜タンパク質の機能や特性を一つ一つ解明 することが、次世代の治療、創薬法の開発に重要な課題となっている。
[0003] イオンチャンネル等、膜タンパク質分析のための平面脂質膜作製の代表的な従来 方法としては平面膜法、すなわち、はけ塗り法や LB法 (Longmuir— Blodgett法) が挙げられる。両者とも、ノッファを満たしたチャンバ内でテフロン (登録商標)シート などに開けた数百ミクロン程度の小孔に、脂質二分子膜を形成する方法であるが、前 者は脂質溶液をはけで小孔に塗る方法、後者は、液体表面に脂質の単分子膜が形 成されることを利用して、テフロン (登録商標)シートの両側のチャンバの溶液表面を 徐々に上昇させることによって平面脂質膜を形成する方法である。
[0004] 図 1は力かる従来の LB法による平面脂質二分子膜形成法を示す模式図である。
[0005] この図において、 101はテフロン(登録商標)シート、 102はそのテフロン (登録商標 )シート 101に開口された小孔、 103は表面に脂質の単分子膜 104が形成される溶 液、 105はバッファ液であり、テフロン(登録商標)シート 101の両側のチャンバ一の 溶液 103表面を徐々に上昇させることによって脂質膜 106を形成するようにして ヽる
[0006] また、脂質二分子膜の形成方法として、
(1)液体の三層系の界面に両親媒性の分子を展開し、中間層の液体を取り除くこと により脂質二分子膜を形成する方法 (下記特許文献 1参照)
(2)貫通された小孔を有する基板の一方の表面を第 1の水溶液の表面に接触させた 後、小孔内の第 1の水溶液上に脂質二分子膜形成分子を含む溶液を添加し、さらに 基板の他方の表面上に第 2の水溶液を供給する方法 (下記特許文献 2参照)などが 提案されている。
特許文献 1:特開平 03— 118832公報
特許文献 2:特開平 05 - 261277号公報
非特許文献 1 : "Ion Channel Reconstitution, "C. Miller Ed. , Plenum pre ss, (1986)
非特許文献 2 :H. Suzuki, K. Tabata, Y. Kato— Yamada, H. Noji, and S. T akeuchi, /z TAS, 2, 246 (2004)
非特許文献 3 :H. Suzuki et al, 3rd Int. IEEE— EMBS Special Topic C onf. on Microtechnologies in Medicine and Biology, Hawaii. May 20 05.
非特許文献 4: T. Ide, Y. Takeuchi, and T. Yanagida, Single Molecules. 3 , 33 (2002) .
発明の開示
[0007] し力しながら、上記したはけ塗り法と LB法の両方法とも、数 cm程度の大きなチャン バーが必要であり、デッドボリュームが大きぐ顕微鏡観察も不可能である。また、上 記した従来の(1)の方法の場合は、中間層の液体を取り除くプロセスに難がある。さ らに、上記(2)の方法の場合は、溶液の蒸発や、自然薄化させる工程を必要とし、ェ 程が完了するまでに長時間を要するとともに、再現性に難がある。
[0008] このように、従来の方法では、簡便にして的確な脂質二分子膜の形成には問題が めつに。
[0009] 本発明は、上記問題点に鑑みて、簡便にして的確に二分子膜を形成することがで きる両親媒性単分子膜の接触による二分子膜の形成方法およびその装置を提供す ることを目的とする。
[0010] 本発明は、上記目的を達成するために、
〔1〕両親媒性単分子膜の接触による二分子膜の形成方法において、基板に形成さ れるチャンバに両親媒性分子を含む有機溶媒を導入し、この有機溶媒中に複数に 区分される前記有機溶媒と混ざらない液体を導入し、この複数に区分される前記液 体と前記有機溶媒との界面に複数の両親媒性単分子膜を形成させ、前記チャンバ 内の前記液体又は前記有機溶媒の制御により前記複数の両親媒性単分子膜を互 いに接触させて二分子膜を形成することを特徴とする。
[0011] 〔2〕上記〔1〕記載の両親媒性単分子膜の接触による二分子膜の形成方法において 、基板の表裏に形成される第 1のマイクロ流路に前記有機溶媒を導入し、前記第 1の マイクロ流路の両側力も交差して交差部が形成される第 2のマイクロ流路に、この第 2 のマイクロ流路の両側から前記交差部に向かって前記有機溶媒と混ざらない液体を 導入し、この液体と前記有機溶媒との界面に、対向する両親媒性単分子膜を形成し 、前記第 2のマイクロ流路中の液体の圧力をシリンジポンプにより制御して前記第 1の マイクロ流路の両端力 導入した液体の界面を互 ヽに接触させることにより、前記対 向する両親媒性単分子膜を接触させて融合させ二分子膜を形成することを特徴とす る。
[0012] 〔3〕両親媒性単分子膜の接触による二分子膜の形成装置において、基板に形成さ れるチャンバと、このチャンバに導入される両親媒性分子を含む有機溶媒と、この有 機溶媒中に複数に区分されるように導入される前記有機溶媒と混ざらない液体と、こ の液体と前記有機溶媒との界面に複数の両親媒性単分子膜を形成させ、前記チヤ ンバ内の前記液体又は前記有機溶媒を制御する制御手段とを備え、前記複数の両 親媒性単分子膜を前記制御手段により互いに接触させて二分子膜を形成することを 特徴とする両親媒性単分子膜の接触による二分子膜を得ることを特徴とする。
[0013] 〔4〕上記〔3〕記載の両親媒性単分子膜の接触による二分子膜の形成装置にお!、て 、基板の表裏に形成され、前記有機溶媒が導入される第 1のマイクロ流路と、この第 1 のマイクロ流路の両側から交差する交差部が形成され、この交差部に向力つて両側 から前記有機溶媒と混ざらな 、液体が導入される第 2のマイクロ流路と、この第 2のマ イクロ流路中の液体の圧力を調整するシリンジポンプとを備え、前記第 2のマイクロ流 路中の液体と前記有機溶媒との界面に、対向する両親媒性単分子膜を形成し、前 記液体の圧力を前記シリンジポンプにより制御して前記第 1のマイクロ流路の両端か ら導入した液体の界面を接触させることにより、前記対向する両親媒性単分子膜を接 触させて融合させ二分子膜を得ることを特徴とする。
[0014] [5]上記〔1〕記載の両親媒性単分子膜の接触による二分子膜の形成方法にお!、て 、基板の本体に形成される括れ部により複数のコンパートメントに区切られるチャンバ に、前記有機溶媒を満たし、前記有機溶媒と混ざらない液体をピペットによりコンパ 一トメント毎に滴下して複数個の液滴を配置し、この複数個の液滴と前記有機溶媒と の界面に両親媒性単分子膜を形成させ、前記液体又は前記有機溶媒を制御するこ とにより、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜を接触させ て融合させ二分子膜を形成することを特徴とする。
[0015] 〔6〕上記〔3〕記載の両親媒性単分子膜の接触による二分子膜の形成装置にお!、て 、基板の本体に形成される括れ部により複数のコンパートメントに区切られるチャンバ と、このチャンバに導入される前記有機溶媒と、前記チャンバ内の前記有機溶媒内 に、この有機溶媒と混ざらない液体をコンパートメント毎に滴下して複数個の液滴を 配置するピペットとを備え、前記ピペットから滴下される液滴と前記有機溶媒との界面 に両親媒性単分子膜を形成させ、前記液体又は前記有機溶媒を制御することにより 、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜を接触させて融合 させ二分子膜を得ることを特徴とする。
[0016] 〔7〕上記〔1〕記載の両親媒性単分子膜の接触による二分子膜の形成方法にお!、て 、基板の表裏に形成される括れ部により複数のコンパートメント〖こ区切られるチャンバ に、前記有機溶媒を満たし、前記有機溶媒と混ざらない液体をシリンジポンプの制御 によりコンパートメント毎に導入して複数個の液滴を配置し、この複数個の液滴と前記 有機溶媒との界面に両親媒性単分子膜を形成させ、前記液体又は前記有機溶媒を 制御することにより、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜 を接触させて融合させ二分子膜を形成することを特徴とする。
[0017] 〔8〕上記〔3〕記載の両親媒性単分子膜の接触による二分子膜の形成装置にお!、て 、基板の表裏に形成される括れ部により複数のコンパートメント〖こ区切られるチャンバ と、このチャンバに導入される前記有機溶媒と、前記チャンバ内の前記有機溶媒内 に、この有機溶媒と混ざらない液体を前記コンパートメント毎に導入して複数個の液 滴を配置するシリンジポンプとを備え、この複数個の液滴と前記有機溶媒との界面に 両親媒性単分子膜を形成させ、前記液体をシリンジポンプにより制御することによつ て、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜を接触させて融 合させ二分子膜を得ることを特徴とする。
[0018] 〔9〕上記〔1〕、〔2〕、〔5〕又は〔7〕記載の両親媒性単分子膜の接触による二分子膜の 形成方法にぉ 、て、前記液体が水溶液であることを特徴とする。
[0019] 〔10〕上記〔3〕、〔4〕、〔6〕又は〔8〕記載の両親媒性単分子膜の接触による二分子膜 の形成装置にぉ 、て、前記液体が水溶液であることを特徴とする。
[0020] 〔11〕上記〔6〕又は〔8〕記載の両親媒性単分子膜の接触による二分子膜の形成装置 において、前記複数のコンパートメントが 2個のコンパートメントであることを特徴とす る。
[0021] 〔12〕上記〔6〕又は〔8〕記載の両親媒性単分子膜の接触による二分子膜の形成装置 において、前記複数のコンパートメントが 3個のコンパートメントであることを特徴とす る。
[0022] 〔13〕上記〔6〕又は〔8〕記載の両親媒性単分子膜の接触による二分子膜の形成装置 において、前記複数のコンパートメントが 5個のコンパートメントであり、概略外形が四 角形状をなすことを特徴とする。
図面の簡単な説明
[0023] [図 1]従来の LB法による平面脂質二分子膜形成法を示す模式図である。
[図 2]本発明の第 1実施例を示す略十字型チャンバを用いた単分子膜の接触による 脂質二分子膜形成方法を示す図である。
[図 3]本発明の第 1実施例を示す単分子膜の接触による脂質二分子膜の形成装置 の模式図である。
[図 4]本発明の第 1実施例を示す、水溶液界面同士が接触しているときの顕微鏡画 像を示す図である。
[図 5]本発明にかかる 10mVの矩形信号を印加した時の界面を通過する容量性過渡 電流、 capacitive transient current)を示す図でめる。
[図 6]本発明の実施例を示す 63mVが印加された場合の、ダラミシジンを組み込んだ 脂質二分子膜を通過する電流の時系列変化を示す図である。 [図 7]本発明の第 2実施例を示す括れ部を有する複数のチャンバを備えた単分子膜 の接触による脂質二分子膜形成装置の概略平面図である。
[図 8]本発明の第 2実施例を示す括れ部を有する複数のチャンバを備えた単分子膜 の接触による脂質二分子膜形成方法を示す概略斜視図である。
[図 9]本発明の第 2実施例を示す括れ部を有する複数のチャンバを備えた単分子膜 の接触による脂質二分子膜形成装置の模式図である。
[図 10]本発明の括れ部を有する複数のチャンバを備えたチップデバイスの構造を示 す図である。
[図 11]本発明の実験例の脂質二分子膜の形成方法を示す図である。
[図 12]本発明の第 3実施例を示す 2つの括れ部により横配列に 3つに区切られたチヤ ンパを備え、 2つの脂質二分子膜を形成する脂質二分子膜の形成装置の平面模式 図である。
[図 13]本発明の第 4実施例を示す 3つの脂質二分子膜を形成させる外形が略三角 形状のチャンバを有する脂質二分子膜の形成装置の平面模式図である。
[図 14]本発明の第 5実施例を示す 4つの脂質二分子膜を形成させる外形が略四角 形状のチャンバを有する脂質二分子膜の形成装置の平面模式図である。
発明を実施するための最良の形態
[0024] 本発明の両親媒性単分子膜の接触による二分子膜の形成方法によれば、基板の表 裏に形成される第 1のマイクロ流路に両親媒性分子を含む有機溶媒を導入し、前記 第 1のマイクロ流路の両側から交差して交差部が形成される第 2のマイクロ流路に、こ の第 2のマイクロ流路の両側力 前記交差部に向力つて前記両親媒性分子を含む有 機溶媒と混ざらない液体を導入し、この液体と前記有機溶媒との界面に、対向する 両親媒性単分子膜を形成し、前記第 2のマイクロ流路中の液体の圧力をシリンジボン プにより制御して前記第 1のマイクロ流路の両端力 導入した液体の界面を互いに接 触させることにより、前記対向する両親媒性単分子膜を接触させて融合させ二分子 膜を形成する。
実施例
[0025] 以下、本発明の実施の形態について詳細に説明する。 [0026] 図 2は本発明の第 1実施例を示す略十字型チャンバを用いた単分子膜の接触による 二分子膜形成方法を示す図であり、図 2 (a)は水溶液界面同士が接触していない状 態を示す図、図 2 (b)は水溶液界面同士が接触した状態を示す図である。
[0027] まず、最初に、図 2 (a)に示すように、表裏を有する基板 5に形成される第 1のマイクロ 流路 1に脂質分子を含む有機溶媒 2を導入する。この第 1のマイクロ流路 1に直交す るように第 2のマイクロ流路 3を形成して、この第 2のマイクロ流路 3の両側から、第 1、 第 2のマイクロ流路の交差部へ向かって脂質分子を含む有機溶媒 2とは混ざらない 液体 (例えば、水溶液) 4を導入する。第 2のマイクロ流路 3の両端にはシリンジポンプ (図示なし)を配置して、このシリンジポンプの調整により、第 2のマイクロ流路 3内の液 体 4の圧力を制御可能にしている。なお、ここでは、通電させるために液体 (水溶液) 4としては KC1溶液を用いているが、脂質二分子膜形成だけのためであれば、脂質 分子を含む有機溶媒 2と混ざらないものであれば、一般的な水溶液を用いることがで きる。
[0028] このように、第 1のマイクロ流路 1に脂質分子を含む有機溶媒 2を導入し、第 2のマイク ロ流路 3内に液体 4を導入すると、十字型チャンバ 6の、前記第 1のマイクロ流路 1と第 2のマイクロ流路 3とが交差する交差部において、液体 4と有機溶媒 2の界面に脂質 単分子膜 2Aが形成される。
[0029] 次に、シリンジポンプからの液体 4の注入による圧力の制御によって、 2つの水溶液 4 の表面を接近させる。図 2 (b)に示すように、 2つの脂質単分子膜 2A間の距離が数 オングストローム以下になると、ファンデルワールス引力によって脂質単分子膜 2Aは 融合し、脂質二分子膜 2Bとなる。
[0030] なお、図 2 (c)に示すように、膜輸送の実験を行うために、図 2 (b)の脂質二分子膜構 造中に膜タンパク質 9を組み込むことができる。図 2において、 7は AgZAgCl電極、 8は電流 ·電圧計測装置である。
[0031] 図 3は本発明の第 1実施例を示す単分子膜の接触による脂質二分子膜の形成装置 の模式図である。
[0032] 十字型チャンバ 6は、アクリルプラスチック(PMMA)基板 5上に CADZCAMモデリ ングシステムで機械カ卩ェされ、流路を閉じるために、薄い PMMA板を基板 5に貼り 付ける。流路の幅及び深さは共に 0. 5mmである。第 2のマイクロ流路 3の対向する 2 つの注入口からは水溶液 4が導入され、第 1のマイクロ流路 1の一方端に設けられる 注入口からは脂質分子を含む有機溶媒 2が導入される。ここでは、イオン分子輸送の 実験のために膜タンパク質の一種であるダラミシジンペプチドイオンチャンネルを用 いる。イオンの流れ(電流)を検出するために、電流'電圧計測装置 8に接続された A gZAgCl電極 7を第 2のマイクロ流路 3における 2つの水溶液 (ここでは、 KC1溶液) 4 の流路に挿入する。前述のように、 KC1溶液 4の注入、押し出しの制御はシリンジボン プ(図示なし)により行う。これにより、 KC1溶液の圧力 ·容量を任意に制御可能である
[0033] なお、ここで用いた脂質分子を含む有機溶媒 2は、 1— 2— Dioleoyl— sn— Glycero
- 3 - Phosphocholine (DOPC, CAS No ;4235— 95— 4)をクロ口ホルム'へキ サデカン(1: 1 vol%)に溶解した溶液である。この実験では、上記の DOPCを 25m g使用した。濃度は 0. 5〜25mgZmlが最適な条件である。膜形成が可能な膜成分 は、脂質〔lipid、例えばホスファチジルコリン(phosphatidylcholine)など〕の他、両 親媒性分子、界面活性剤などが挙げられる。
[0034] 図 4は本発明の第 1実施例を示す、水溶液界面同士が接触しているときの顕微鏡画 像を示す図である。この 2つの水溶液 (KC1溶液)は表面に脂質分子が存在するため に融合しない。本発明の利点の 1つに、もし脂質二分子膜が破れてしまった場合でも 、チャンバ内の溶媒を流して再度簡単かつ迅速に手順をやり直すことができると 、う 点がある。
[0035] ところで、脂質二分子膜は薄い誘電膜であるため、キャパシタとして作用する。
[0036] 図 5は本発明に力かる 10mVの矩形信号を印加した時の界面を通過する容量性過 渡電流(capacitive transient current)を示す図である。なお、図中の aは、水溶 液表面の脂質単分子膜同士が接触してできた脂質二分子膜における容量性過渡電 流、 bはその接触前における容量性過渡電流を示して 、る。
[0037] この図 5から分力るように、 lOOmV(lOOHz)の矩形波の電圧を与えた場合、薄膜の 形成によって膜キャパシタンス特性が発生する。この実験結果では、水溶液界面同 士が接触した時(図中 a)に、 130pFに相当する膜キャパシタンスが計測された。これ により、接触した水溶液同士の界面に脂質二分子膜の膜構造が形成されていること が確認できた。
[0038] 次に、上記で形成された脂質膜が二分子膜であることをさらに確認するため、個々の 単分子膜のモノマーの二量体化に同調して開くダラミシジンペプチドイオンチャンネ ルを水溶液に導入する。
[0039] 図 6は本発明の実施例を示す 63mVが印加された場合の、ダラミシジンを組み込ん だ脂質二分子膜を通過する電流の時系列変化を示す図である。
[0040] まず最初に、単分子膜を接触させる〔図 6 (a)〕。単分子膜表面を接触させ続けると、 脂質二分子膜領域の拡大〔図 6 (b)〕に対応して電流が増加する。次に、シリンジボン プによる制御で単分子膜表面を分離する〔図 6 (c) , (d)〕と、電流は基準値まで下が る(グラミシジン濃度は、 lOOmMの KC1中に 5. 0 X 10— 12 M)。
[0041] このように、水溶液の界面が接触した後、 K+イオンの流れ (電流)が徐々に増加して おり、これは二分子膜領域の拡大と対応している。一方で、界面が離れると、電流は 0に下がる。ダラミシジンは二分子膜中にある場合にのみ電流を通すので、この結果 から、水溶液界面の接触中は、脂質二分子膜が存在することが分かる。
[0042] 上記したように、本発明では、垂直方向への脂質二分子膜の再構成のために微小流 体チップに接触する脂質単分子膜を作り上げた。本発明による 2つの脂質単分子膜 力 作られた脂質二分子膜は、従来法である BLM法と一致するキャパシタンスを示 し、ダラミシジンチャンネルがその膜内に形成された。したがって、本発明によって形 成された膜は脂質二分子膜であると確認された。ここでは、イオンチャンネルを使つ て、電気的に膜輸送のモニタリングを行った。本手法で、膜を通過する分子輸送の蛍 光イメージングも可能となる。
[0043] 図 7は本発明の第 2実施例を示す括れ部を有する複数のチャンバを備えた単分子膜 の接触による脂質二分子膜形成装置の概略平面図、図 8はそれを用いた脂質二分 子膜形成方法を示す概略斜視図である。
[0044] まず、図 7 (a)又は図 8 (a)に示すように、上方は開放された基板 11上に括れ部 13で 区切られたチャンバ 12を用意する。次に、図 7 (b)又は図 8 (b)に示すように、その括 れ部 13を有するチャンバ 12内に脂質分子を含む有機溶媒 14を満たす。次に、図 7 ( c)又は図 8 (c)に示すように、括れ部 13で区切られたチャンバ 12のそれぞれに脂質 分子を含む有機溶媒 14とは混ざらない水溶液の液滴 16, 17をピペット 15〔図 8 (c) 参照〕で滴下する。すると、この状態で、水溶液の液滴 16, 17と脂質分子を含む有 機溶媒 14の界面に脂質単分子膜 18が形成される。次に、図 7 (d)又は図 8 (d)に示 すように、水溶液の液滴 16, 17を大きくし (水溶液の液滴 16' 、 17' )、水溶液の液 滴 16' と 1 の界面を接触させると、水溶液の液滴 16' , \1' と脂質分子を含む 有機溶媒 14との界面に生成されていた脂質単分子膜 18も接触、融合して脂質二分 子膜 19が形成される。
[0045] 図 9は本発明の第 2実施例を示す括れ部を有する複数のチャンバを備えた単分子膜 の接触による脂質二分子膜形成装置の模式図である。
[0046] この実施例では、表裏を有する基板 21によって閉じられた括れ部 23を有するチャン バ 22内には脂質分子を含む有機溶媒 24を送る流路 25と、その 2個のチャンバ 22に 水溶液の液滴 27を形成する流路 26と、この流路 26に配置されるシリンジポンプ 28と 、このシリンジポンプ 28に接続される制御装置 29を有している。
[0047] そこで、流路 25から脂質分子を含む有機溶媒 24, 24がチャンバ 22に導入されると、 流路 26から脂質分子を含む有機溶媒 24とは混じらない水溶液の液滴 27が導入さ れる。そして、シリンジポンプ 28の制御により、水溶液の液滴 27が制御され、水溶液 の液滴 27と脂質分子を含む有機溶媒 24との界面に生成された脂質単分子膜は接 触し、融合して脂質二分子膜 24Bが形成される。
[0048] 図 10及び図 11は本発明の実験例であり、図 10は本発明の括れ部を有する複数の チャンバを備えたチップデバイスの構造を示す図であり、図 10 (a)はその全体の上面 図、図 10 (b)はその複数のチャンバ部の拡大平面図、図 10 (c)はその全体の側面 断面図、図 10 (d)はその全体の斜視図である。
[0049] 010 (a)【こお!ヽて、基板 30の長さ χίま 30mm、幅 yiま 20mmであり、図 10 (b)【こお!/、 て、チャンバ 31の半径 rは 2mm、括れ部 32間の長さ 1は 2mm、また、図 10 (c)にお いて、基板 30の厚さ dは 2mmである。さらに、基板 30の材質はアクリルである。
[0050] 図 11は本発明の実験例の脂質二分子膜の形成方法を示す図である。
[0051] (1)まず、脂質分子を含む有機溶媒 (15 ^ 1) 33を図 10で示したチャンバ 31に満た す〔チップデバイスの斜視図である図 11 (a— 1)、チップデバイスの側面断面図であ る図 11 (a— 2)、チップデバイスの上面図である図 11 (a— 3)をそれぞれ参照〕。
[0052] (2)次に、脂質分子を含む有機溶媒 33中にピペット 34により、脂質分子を含む有機 溶媒 33と混ざらない水溶液の 1つ目の液滴(15 1) 35を導入する〔チップデバイス の側面断面図である図 11 (b— 1)、チップデバイスの上面図である図 11 (b— 2)をそ れぞれ参照〕。
[0053] (3)次に、脂質分子を含む有機溶媒 33と混ざらない水溶液の、 2つ目の液滴(15 1
) 36を導入する〔チップデバイスの側面断面図である図 11 (c 1)、チップデバイスの 上面図である図 11 (c 2)をそれぞれ参照〕。
[0054] (4)すると、図 11 (d)に示すように、チップデバイスの括れ部 32 (図 10参照)では、水 溶液の液滴 35, 36の接触部分 37に脂質二分子膜 38が得られる。
[0055] 図 12は本発明の第 3実施例を示す 2つの括れ部により横配列に 3つに区切られたチ ヤンパを備え、 2つの脂質二分子膜を形成する脂質二分子膜の形成装置の平面模 式図である。
[0056] この実施例では、基板 41上に横配列の 2個の括れ部 43, 44を形成したチャンバ 42 を用意して、そのチャンバ 42に、まず、脂質分子を含む有機溶媒 45を導入し、そこ に 3つの液滴 46, 47, 48を導人することによって、それらの液滴 46と 47との接虫面 に第 1の脂質二分子膜 49が、それらの液滴 47と 48との境界の接触面に第 2の脂質 二分子膜 50がそれぞれ形成される。
[0057] 図 13は本発明の第 4実施例を示す 3つの脂質二分子膜を形成させる外形が略三角 形状のチャンバを有する脂質二分子膜の形成装置の平面模式図である。
[0058] この実施例では、チャンバ 51は外形が略三角形状をなし、脂質分子を含む有機溶 媒 52中に 3つの液滴 53, 54, 55を導人することにより、液滴 53と 54との接虫面に第 1の脂質二分子膜 56、液滴 54と 55との接触面に第 2の脂質二分子膜 57、液滴 55と 53との接触面に第 3の脂質二分子膜 58をそれぞれ形成することができる。
[0059] 図 14は本発明の第 5実施例を示す 4つの脂質二分子膜を形成させる外形が略四角 形状のチャンバを有する脂質二分子膜の形成装置の平面模式図である。
[0060] この実施例では、チャンバ 61は外形が略四角形状をなし、脂質分子を含む有機溶 媒 62中に 5つの液滴 63, 64, 65, 66, 67を導人する。つまり、中 、に液滴 63力 立 置し、その回りに液滴 64, 65, 66, 67を酉己置することにより、液滴 63と 64 との接触面に第 1の脂質二分子膜 68、液滴 63と 65との接触面に第 2の脂質二分子 膜 69、液滴 63と 66との接触面に第 3の脂質二分子膜 70、液滴 63と 67との接触面に 第 4の脂質二分子膜 71をそれぞれ形成することができる。
[0061] なお、チャンバの形状は上記したものに限定されるものではなぐ上記したように、液 滴と脂質分子を含む有機溶媒の界面に脂質単分子膜が形成され、チャンバの括れ 部において脂質二分子膜が形成可能であれば、種々の形状に変形することができる
[0062] このように、あらかじめ脂質分子を含む有機溶媒に、有機溶媒とは混ざらな 、液滴を 導入し、脂質単分子膜を形成しておき、その液滴を制御することにより、脂質単分子 膜を接触、融合させた脂質二分子膜を形成することができる。
[0063] なお、上記実施例では専ら脂質分子を含む有機溶媒とは混ざらない液体の制御に ついて述べたが、脂質分子を含む有機溶媒の制御を行うようにしてもよい。例えば、 脂質分子を含む有機溶媒の圧力 (容積)を減じることによって、相対的に複数の脂質 単分子膜が接触し融合することにより脂質二分子膜を形成するようにしてもよい。
[0064] また、上記実施例では、脂質分子を含む有機溶媒を用いる実施例を示したが、両親 媒性分子を含む有機溶媒を用いるようにしてもよい。この両親媒性分子としては、例 えば、リン脂質、長鎖アルコール、長鎖カンボン酸、石鹼、合成洗剤などが挙げられ、 これらの両親媒性分子は、無極性溶液 Z水溶液界面や気相 Z水溶液界面に単分 子膜を形成することができる。
[0065] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種々 の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0066] 本発明によれば、以下のような効果を奏することができる。
[0067] (1)簡便にして的確な二分子膜の形成を行うことができる。
[0068] (2)請求項 2, 4, 7及び 8記載の発明では、シリンジポンプの制御により、液体の圧力 、容量を制御することができ、これにより膜厚の制御が可能となり、再現性を飛躍的に 向上させることができる。 産業上の利用可能性
[0069] 膜タンパク質は、薬剤応答'エネルギー変換 '免疫反応'物質輸送'情報伝達などの 生理的な機能の重要な役割を担っている。また、膜タンパク質の多くは、創薬の主な ターゲットであり、たとえば GPCR(G— protein coupled receptor ;Gタンパク質 共役受容体)と呼ばれる一連のレセプタータンパク質に関する薬の市場規模は大き い。そのため、チップ上への膜タンパク質のアレイ化が期待されているが、脂質平面 膜を効率的にアレイ上に再構成したものは報告されていない。また、生理的条件設 定と同様に膜電流を計測可能なデバイスは皆無である。
[0070] 例えば、ヒトゲノム計画で、すでに全ての GPCRの遺伝子は同定されており、実質上 ターゲットとなりうる数は限られている。そのため、これをチップ上にアレイ状に並べて 、それぞれの GPCRに対する薬剤に対する応答を調べることが急務である。これ以 外にも、がん細胞の薬剤耐性の原因である ABCトランスポータと呼ばれる一連の膜 タンパク質など、次世代の創薬ターゲットの主なものも膜タンパク質である。本システ ムの開発は、こういった創薬のターゲット膜タンパク質を組み込むことで、迅速な薬剤 開発に寄与することができる。

Claims

請求の範囲
[1] 基板に形成されるチャンバに両親媒性分子を含む有機溶媒を導入し、該有機溶媒 中に複数に区分される前記有機溶媒と混ざらない液体を導入し、該複数に区分され る前記液体と前記有機溶媒との界面に複数の両親媒性単分子膜を形成させ、前記 チャンバ内の前記液体又は前記有機溶媒の制御により前記複数の両親媒性単分子 膜を互いに接触させて二分子膜を形成することを特徴とする両親媒性単分子膜の接 触による二分子膜の形成方法。
[2] 請求項 1記載の両親媒性単分子膜の接触による二分子膜の形成方法において、 基板の表裏に形成される第 1のマイクロ流路に前記有機溶媒を導入し、前記第 1の マイクロ流路の両側力 交差して交差部が形成される第 2のマイクロ流路に、該第 2 のマイクロ流路の両側から前記交差部に向かって前記有機溶媒と混ざらない液体を 導入し、該液体と前記有機溶媒との界面に、対向する両親媒性単分子膜を形成し、 前記第 2のマイクロ流路中の液体の圧力をシリンジポンプにより制御して前記第 1の マイクロ流路の両端力 導入した液体の界面を互 ヽに接触させることにより、前記対 向する両親媒性単分子膜を接触させて融合させ二分子膜を形成することを特徴とす る両親媒性単分子膜の接触による二分子膜の形成方法。
[3] (a)基板に形成されるチャンバと、
(b)該チャンバに導入される両親媒性分子を含む有機溶媒と、
(c)該有機溶媒中に複数に区分されるように導入される前記有機溶媒と混ざらな!、 液体と、
(d)該液体と前記有機溶媒との界面に複数の両親媒性単分子膜を形成させ、前記 チャンバ内の前記液体又は前記有機溶媒を制御する制御手段とを備え、
(e)前記複数の両親媒性単分子膜を前記制御手段により互いに接触させて二分子 膜を形成することを特徴とする両親媒性単分子膜の接触による二分子膜の得ること を特徴とする両親媒性単分子膜の接触による二分子膜の形成装置。
[4] 請求項 3記載の両親媒性単分子膜の接触による二分子膜の形成装置にぉ 、て、
(a)基板の表裏に形成され、前記有機溶媒が導入される第 1のマイクロ流路と、
(b)該第 1のマイクロ流路の両側から交差する交差部が形成され、該交差部に向かつ て両側力 前記有機溶媒と混ざらない液体が導入される第 2のマイクロ流路と、
(c)該第 2のマイクロ流路中の液体の圧力を調整するシリンジポンプとを備え、
(d)前記第 2のマイクロ流路中の液体と前記有機溶媒との界面に、対向する両親媒 性単分子膜を形成し、前記液体の圧力を前記シリンジポンプにより制御して前記第 1 のマイクロ流路の両端カゝら導入した液体の界面を接触させることにより、前記対向す る両親媒性単分子膜を接触させて融合させ二分子膜を得ることを特徴とする両親媒 性単分子膜の接触による二分子膜の形成装置。
[5] 請求項 1記載の両親媒性単分子膜の接触による二分子膜の形成方法において、 基板の本体に形成される括れ部により複数のコンパートメントに区切られるチャンバ に、前記有機溶媒を満たし、前記有機溶媒と混ざらない液体をピペットによりコンパ 一トメント毎に滴下して複数個の液滴を配置し、該複数個の液滴と前記有機溶媒との 界面に両親媒性単分子膜を形成させ、前記液体又は前記有機溶媒を制御すること により、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜を接触させて 融合させ二分子膜を形成することを特徴とする両親媒性単分子膜の接触による二分 子膜の形成方法。
[6] 請求項 3記載の両親媒性単分子膜の接触による二分子膜の形成装置において、
(a)基板の本体に形成される括れ部により複数のコンパートメントに区切られるチャン バと、
(b)該チャンバに導入される前記有機溶媒と、
(c)前記チャンバ内の前記有機溶媒内に、該有機溶媒と混ざらない液体をコンパ一 トメント毎に滴下して複数個の液滴を配置するピペットとを備え、
(d)前記ピペットから滴下される液滴と前記有機溶媒との界面に両親媒性単分子膜 を形成させ、前記液体又は前記有機溶媒を制御することにより、前記複数個の液滴 の界面を接触させ、前記両親媒性単分子膜を接触させて融合させ二分子膜を得るこ とを特徴とする両親媒性単分子膜の接触による二分子膜の形成装置。
[7] 請求項 1記載の両親媒性単分子膜の接触による二分子膜の形成方法において、 基板の表裏に形成される括れ部により複数のコンパートメントに区切られるチャンバ に、前記有機溶媒を満たし、前記有機溶媒と混ざらない液体をシリンジポンプの制御 によりコンパートメント毎に導入して複数個の液滴を配置し、該複数個の液滴と前記 有機溶媒との界面に両親媒性単分子膜を形成させ、前記液体又は前記有機溶媒を 制御することにより、前記複数個の液滴の界面を接触させ、前記両親媒性単分子膜 を接触させて融合させ二分子膜を形成することを特徴とする両親媒性単分子膜の接 触による二分子膜の形成方法。
[8] 請求項 3記載の両親媒性単分子膜の接触による二分子膜の形成装置において、
(a)基板の表裏に形成される括れ部により複数のコンパートメントに区切られるチャン バと、
(b)該チャンバに導入される前記有機溶媒と、
(c)前記チャンバ内の前記有機溶媒内に、該有機溶媒と混ざらない液体を前記コン パートメント毎に導入して複数個の液滴を配置するシリンジポンプとを備え、
(d)該複数個の液滴と前記有機溶媒との界面に両親媒性単分子膜を形成させ、前 記液体をシリンジポンプにより制御することによって、前記複数個の液滴の界面を接 触させ、前記両親媒性単分子膜を接触させて融合させ二分子膜を得ることを特徴と する両親媒性単分子膜の接触による二分子膜の形成装置。
[9] 請求項 1、 2、 5又は 7記載の両親媒性単分子膜の接触による二分子膜の形成方法 にお ヽて、前記液体が水溶液であることを特徴とする両親媒性単分子膜の接触によ る二分子膜の形成方法。
[10] 請求項 3、 4、 6又は 8記載の両親媒性単分子膜の接触による二分子膜の形成装置 にお ヽて、前記液体が水溶液であることを特徴とする両親媒性単分子膜の接触によ る二分子膜の形成装置。
[11] 請求項 6又は 8記載の両親媒性単分子膜の接触による二分子膜の形成装置にお いて、前記複数のコンパートメントが 2個のコンパートメントであることを特徴とする両 親媒性単分子膜の接触による二分子膜の形成装置。
[12] 請求項 6又は 8記載の両親媒性単分子膜の接触による二分子膜の形成装置にお いて、前記複数のコンパートメントが 3個のコンパートメントであることを特徴とする両 親媒性単分子膜の接触による二分子膜の形成装置。
[13] 請求項 6又は 8記載の両親媒性単分子膜の接触による二分子膜の形成装置にお いて、前記複数のコンパートメントが 5個のコンパートメントであり、概略外形が四角形 状をなすことを特徴とする両親媒性単分子膜の接触による二分子膜の形成装置。
PCT/JP2006/314741 2005-07-29 2006-07-26 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置 WO2007013493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/997,058 US8506905B2 (en) 2005-07-29 2006-07-26 Method of forming bilayer membrane by contact between amphipathic monolayers and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-220002 2005-07-29
JP2005220002A JP5114702B2 (ja) 2005-07-29 2005-07-29 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置

Publications (1)

Publication Number Publication Date
WO2007013493A1 true WO2007013493A1 (ja) 2007-02-01

Family

ID=37683383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314741 WO2007013493A1 (ja) 2005-07-29 2006-07-26 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置

Country Status (3)

Country Link
US (1) US8506905B2 (ja)
JP (1) JP5114702B2 (ja)
WO (1) WO2007013493A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120816A1 (ja) * 2007-03-30 2008-10-09 Tokyo Institute Of Technology 二分子膜の製造方法および二分子平面膜
US8268627B2 (en) 2006-07-26 2012-09-18 Isis Innovation Limited Formation of bilayers of amphipathic molecules
US8784929B2 (en) 2007-08-21 2014-07-22 Isis Innovation Limited Bilayers
JP2021507296A (ja) * 2017-12-21 2021-02-22 オックスフォード ナノポール テクノロジーズ リミテッド エレクトロウェッティングデバイス内の液滴界面

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100196203A1 (en) 2007-02-20 2010-08-05 Gurdial Singh Sanghera Formation of Lipid Bilayers
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
JP4469024B2 (ja) * 2008-08-26 2010-05-26 パナソニック株式会社 人工脂質膜形成方法および人工脂質膜形成装置
GB0913823D0 (en) * 2009-08-07 2009-09-16 Isis Innovation Bilayers
US9364831B2 (en) * 2009-08-08 2016-06-14 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
JP5614642B2 (ja) * 2010-10-10 2014-10-29 公益財団法人神奈川科学技術アカデミー 脂質二重膜の形成方法及びそのための器具
US9176504B2 (en) * 2011-02-11 2015-11-03 The Regents Of The University Of California High-speed on demand droplet generation and single cell encapsulation driven by induced cavitation
GB201119032D0 (en) 2011-11-03 2011-12-14 Isis Innovation Multisomes: encapsulated droplet networks
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
GB201219196D0 (en) 2012-10-25 2012-12-12 Isis Innovation Droplet assembly method
GB201219201D0 (en) 2012-10-25 2012-12-12 Isis Innovation Hydrogel network
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
CA2889664C (en) * 2012-10-26 2020-12-29 Oxford Nanopore Technologies Limited Droplet interfaces
JP6078848B2 (ja) * 2012-11-20 2017-02-15 公益財団法人神奈川科学技術アカデミー 脂質二重膜の形成方法及びそのための器具
WO2014087175A2 (en) * 2012-12-07 2014-06-12 Isis Innovation Limited Droplet assembly by 3d printing
JP6211273B2 (ja) * 2013-02-27 2017-10-11 国立大学法人 東京大学 脂質二重膜デバイス、脂質二重膜デバイスアレイ、脂質二重膜デバイス製造装置及び脂質二重膜デバイスの製造方法
CN105452873B (zh) 2013-03-15 2019-01-18 加利福尼亚大学董事会 高速按需微流体珠滴生成和操控
JP6376636B2 (ja) * 2013-10-17 2018-08-22 地方独立行政法人神奈川県立産業技術総合研究所 脂質二重膜形成器具
GB201418512D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Electrical device with detachable components
WO2016081723A1 (en) * 2014-11-21 2016-05-26 Icahn School Of Medicine At Mount Sinai Method of forming a lipid bilayer
CN108780096B (zh) 2015-11-17 2021-03-23 巴黎科学与文学联大-拉丁区 用于分析离子通道的活性的方法
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
JP6877028B2 (ja) * 2017-03-28 2021-05-26 国立大学法人福井大学 脂質二重膜形成装置、脂質二重膜形成方法、および評価システム
AU2020239385A1 (en) 2019-03-12 2021-08-26 Oxford Nanopore Technologies Plc Nanopore sensing device and methods of operation and of forming it
CN114908358A (zh) * 2022-04-14 2022-08-16 广州孔确基因科技有限公司 一种两亲性分子层的制备方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091305A (ja) * 2003-09-19 2005-04-07 Japan Science & Technology Agency 人工脂質二重膜の形成装置および人工脂質二重膜の形成方法、並びにその利用
JP2005098718A (ja) * 2003-09-22 2005-04-14 Univ Tokyo 人工脂質膜の形成方法とそのための脂質平面膜形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US201A (en) * 1837-05-22 Improvement in the construction of water-wheels
USH201H (en) * 1985-08-23 1987-01-06 United States Of America Biosensors from membrane proteins reconstituted in polymerized lipid bilayers
JPH03118832A (ja) * 1989-09-29 1991-05-21 Toshiba Corp 二分子膜の形成方法
JPH05261277A (ja) * 1992-03-23 1993-10-12 Toshiba Corp 二分子膜の作製方法
US7595195B2 (en) * 2003-02-11 2009-09-29 The Regents Of The University Of California Microfluidic devices for controlled viscous shearing and formation of amphiphilic vesicles
CA2518667C (en) * 2003-03-14 2011-07-19 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
US20060076295A1 (en) * 2004-03-15 2006-04-13 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
JP4394917B2 (ja) * 2003-09-19 2010-01-06 独立行政法人科学技術振興機構 人工脂質二重膜を有する電流測定装置
JP4953044B2 (ja) * 2005-05-09 2012-06-13 財団法人生産技術研究奨励会 脂質二重膜の形成方法およびその装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091305A (ja) * 2003-09-19 2005-04-07 Japan Science & Technology Agency 人工脂質二重膜の形成装置および人工脂質二重膜の形成方法、並びにその利用
JP2005098718A (ja) * 2003-09-22 2005-04-14 Univ Tokyo 人工脂質膜の形成方法とそのための脂質平面膜形成装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268627B2 (en) 2006-07-26 2012-09-18 Isis Innovation Limited Formation of bilayers of amphipathic molecules
US8691586B2 (en) 2006-07-26 2014-04-08 Isis Innovation Limited Formation of bilayers of amphipathic molecules
WO2008120816A1 (ja) * 2007-03-30 2008-10-09 Tokyo Institute Of Technology 二分子膜の製造方法および二分子平面膜
JP5057348B2 (ja) * 2007-03-30 2012-10-24 国立大学法人東京工業大学 二分子膜の製造方法および二分子平面膜
US8961898B2 (en) 2007-03-30 2015-02-24 Tokyo Institute Of Technology Method for producing bilayer membrane and planar bilayer membrane
US8784929B2 (en) 2007-08-21 2014-07-22 Isis Innovation Limited Bilayers
JP2021507296A (ja) * 2017-12-21 2021-02-22 オックスフォード ナノポール テクノロジーズ リミテッド エレクトロウェッティングデバイス内の液滴界面

Also Published As

Publication number Publication date
US20100147450A1 (en) 2010-06-17
JP2007029911A (ja) 2007-02-08
JP5114702B2 (ja) 2013-01-09
US8506905B2 (en) 2013-08-13

Similar Documents

Publication Publication Date Title
WO2007013493A1 (ja) 両親媒性単分子膜の接触による二分子膜の形成方法およびその装置
EP1712909B1 (en) Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
Trantidou et al. Engineering compartmentalized biomimetic micro-and nanocontainers
JP4953044B2 (ja) 脂質二重膜の形成方法およびその装置
US8232074B2 (en) Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells
EP2047266B1 (en) Formation of bilayers of amphipathic molecules
US8038885B2 (en) Formation and encapsulation of molecular bilayer and monolayer membranes
WO2010023848A1 (ja) 人工脂質膜形成方法および人工脂質膜形成装置
US20130140192A1 (en) Method of Producing a Lipid Bilayer and Microstructure and Measuring Arrangement
WO2010147942A1 (en) Multiphase non-linear electrokinetic devices
Zhu et al. Giant unilamellar vesicle microarrays for cell function study
JP2008194573A (ja) 脂質二重膜形成方法
Hirano‐Iwata et al. Micro‐and Nano‐Technologies for Lipid Bilayer‐Based Ion‐Channel Functional Assays
WO2008120816A1 (ja) 二分子膜の製造方法および二分子平面膜
Makhoul-Mansour et al. Droplet-based membranous soft materials
Tivony et al. A microfluidic platform for sequential assembly and separation of synthetic cell models
Shoji et al. Recessed Ag/AgCl microelectrode-supported lipid bilayer for nanopore sensing
US20060073597A1 (en) Highly controllable electroporation and applications thereof
Bachler et al. Permeation studies across symmetric and asymmetric membranes in microdroplet arrays
Kang et al. Tightly sealed 3D lipid structure monolithically generated on transparent SU-8 microwell arrays for biosensor applications
Challita et al. Hydrogel microelectrodes for the rapid, reliable, and repeatable characterization of lipid membranes
Wang et al. Coarse-grained molecular dynamics simulation of tethered lipid assemblies
US8821702B2 (en) Devices and methods for electroosmotic transport of non-polar solvents
Mruetusatorn et al. Control of membrane permeability in air-stable droplet interface bilayers
JP4936354B2 (ja) 二分子膜からなる微小物体の形成方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11997058

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06781653

Country of ref document: EP

Kind code of ref document: A1