WO2007012691A1 - Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapéuticas contra el sida - Google Patents

Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapéuticas contra el sida Download PDF

Info

Publication number
WO2007012691A1
WO2007012691A1 PCT/ES2006/070114 ES2006070114W WO2007012691A1 WO 2007012691 A1 WO2007012691 A1 WO 2007012691A1 ES 2006070114 W ES2006070114 W ES 2006070114W WO 2007012691 A1 WO2007012691 A1 WO 2007012691A1
Authority
WO
WIPO (PCT)
Prior art keywords
mva
vector
virus
vaccination
immune response
Prior art date
Application number
PCT/ES2006/070114
Other languages
English (en)
French (fr)
Inventor
Jonathan Heeney
Petra Mooij
Carmen Elena Gómez Rodríguez
José Luis Nájera García
Victoria JIMÉNEZ TENTOR
Mariano ESTEBAN RODRÍGUEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to DK06778467.8T priority Critical patent/DK1921146T3/da
Priority to EP06778467A priority patent/EP1921146B1/en
Priority to US11/989,425 priority patent/US8871219B2/en
Priority to ES06778467T priority patent/ES2392670T3/es
Priority to PL06778467T priority patent/PL1921146T3/pl
Publication of WO2007012691A1 publication Critical patent/WO2007012691A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/863Poxviral vectors, e.g. entomopoxvirus
    • C12N15/8636Vaccina virus vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16211Human Immunodeficiency Virus, HIV concerning HIV gagpol
    • C12N2740/16222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16311Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
    • C12N2740/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to recombinant viruses expressing human immunodeficiency virus (HIV-I) antigens, designed to be used as preventive and therapeutic vaccines against AIDS. More specifically, the invention relates to recombinant viruses based on the modified Ankara virus (MVA) that simultaneously express the gpl20 envelope protein and a chimeric protein resulting from a fusion of Gag, PoI and Nef.
  • VVA modified Ankara virus
  • the invention also relates to recombinant viruses based on the Ankara Modified Vaccinia virus (MVA) expressing antigens of the ape and human immunodeficiency virus (SHIV), valid to be used for the immunization of apes and to check the degree of protection that they acquire when they are infected with the HIV and SIV hybrid vipers, SHIV.
  • MVA Ankara Modified Vaccinia virus
  • SHIV human immunodeficiency virus
  • HIV human immunodeficiency virus
  • HIV is a retrovirus that belongs to the genus Lentivirus, with a 9.8 kb genome.
  • the virion contains two copies of single band and positive polar RNA.
  • genomic RNA by means of reverse transcriptase or retrotranscriptase (RT) that reaches the cell associated with viral RNA, is converted into linear double-band DNA.
  • RT retrotranscriptase
  • This DNA is transported to the nucleus, where it is integrated into the host cell in the form of a provirus, from which the structural genes gag, pol and env, the regulatory genes, tat, rev, nef, and the accessory genes vif are transcribed, vpr and vpu.
  • the products of the translation of these genes are the following:
  • the translation product of the Gag gene is the gag-p55 precursor polyprotein that is processed giving rise to the p7 matrix protein, the p24 capsid protein and the p6 and p7 nucleocapsid proteins.
  • the processing of the PoI precursor gives rise to the three viral enzymes: protease (pl 1), retrotranscriptase (p6S / Sl) (RT) and integrase (p32), of which RT has DNA polymerase activity (dependent both RNA and DNA) and endonuclease activity (RNase H), both required during DNA synthesis, while integrase is involved in the process of provirus integration, acting as an endonuclease.
  • the product of the Env gene is an 88 kDa protein that is strongly glycosylated (gpl60). This protein is processed by cellular proteases, giving rise to g ⁇ l20 and gp41 proteins, which remain bound by non-covalent bonds on the virion surface.
  • the binding sites to the cellular receptors, the CD4 receptor and the CXCR4 (called X4) and CCR5 (called C5) receptors are located. It is this protein that is mainly due to the genetic variability of HIV and its ability to escape the humoral and cellular immune response, as it is the most -:> - exposed on the surface of the virus.
  • the g ⁇ 41 or transmembrane glycoprotein acts as an anchor to the lipid membrane, being located at its amino terminal end a highly conserved hydrophobic zone required for the fusion of the viral membrane and the cellular plasma membrane during the process of virus entry into the host cell
  • the regulatory and auxiliary genes are encoded by six fragments of overlapping open reading.
  • the Tat and Rev genes are necessary for viral replication in all infected cells.
  • the Tat gene encodes a 14 kDa protein that increases the expression of HIV genes.
  • the Rev gene encodes a 19 kDa protein that facilitates transport to mRNA cytoplasm.
  • the 210 amino acid Nef protein is associated with membrane structures and induces internalization and degradation of CD4 molecules in lysosomes.
  • the Vif gene encodes a protein necessary for the spread of the virus in peripheral blood lymphocytes, primary macrophages and some established cell lines.
  • the Vpr gene encodes a 15 kDa protein that is associated with the p6 nucleocapsid protein.
  • Vpu protein is a phosphoprotein that facilitates the dissociation within the infected cell of g ⁇ l60 and CD4 by degradation of the CD4 molecule in the endoplasmic reticulum.
  • LTR ilong-terminal repeats
  • HIV-I and HIV-2 Two classes of the virus have been identified: HIV-I and HIV-2, of which the second, HIV-2, appears to be less pathogenic than the first and is located primarily in the western part of Africa. It is the form that generates the disease more quickly, HIV-I, the one that is most widespread on the planet and the one that has diversified the most. There are three subtypes of HIV-I, called M, N and O, although more than 95% of all HIV isolates globally in the population belong to subtype M.
  • this subtype is subdivided in turn into eight main lines, which are generally referred to as clades and which are called with the letters A, B, C, D, F , G, H and J.
  • Clades B and C represent approximately 80% of infections worldwide, with clade B being the most representative in Europe and - TO -
  • recombinant DNA molecules that contain sequences capable of expressing HIV proteins, or fragments or fusion forms thereof such that, when administered to an individual, said syntheses are synthesized. proteins, fragments or forms of fusion thereof and an immune response is generated against it.
  • Said recombinant DNA molecules can be generated from virus genomes in which regions whose expression is necessary for the replication of the virus in the target cells and / or in which regions encoding non-essential proteins have been replaced or inactivated. for the virus to develop the part of its life cycle that is desired to take place in the target cell.
  • the recombinant DNA can be administered in the form of complete viral particles that facilitate transfection of the recombinant DNA to the target cell.
  • the modified forms of the Vaccinia virus are among the most tentative viral vectors to be applied as a recombinant vaccine. Some of them, such as the NYVAC virus, (whose genome is represented in the lower part of Figure 1), have been generated by directed mutagenesis with the result of the elimination of 18 genes of the Vaccinia virus (Copenhagen strain), approximately 10 kb .
  • MVA Ankara modified Vaccinia virus
  • CEF chicken embryo fibroblasts
  • MVA In the MVA virus, the structural genes of the virus they have remained unchanged, while genes involved in the evasion of the immune system (3), and genes related to host rank (2, 4, 5), have been deleted or fragmented. MVA produces its complete infectious cycle in CEF cells and Hamster kidney cells (BHK), while in human cell lines, including HeLa 5 cells it has an abortive cycle (6, 7). Although viral replication depends on the cell type, blockade of the morphogenesis program in non-permissive cells occurs in the subsequent steps to the formation of immature viral forms (IV), without altering the expression of early and late viral gene expression (8 , 9).
  • MVA recombinants In cultured cells, MVA recombinants produce similar or higher levels of heterologous protein than vectors derived from the wild strain of the Vaccinia WR virus (Western Reserve) (9-11), which makes it interesting as an expression system. In mammals, MVA recombinants have been shown to induce protective immunity against a broad spectrum of pathogens (6, 12-16), showing the following advantages as an expression vector of heterologous antigens: - High safety, demonstrated when used in more than 120000 individuals during the smallpox eradication campaign in Germany.
  • mice do not work as an infection model, since neither the human immunodeficiency virus (HIV) nor the equivalent of ape, the simian immunodeficiency virus (SIV), is not replicated, so they are not valid models to assess the protective capacity of vaccination It is possible, however, to obtain from the mice prior information on the irrmunological behavior of the vectors under study that allows a previous evaluation of their possible efficacy and helps to rule out or consider it interesting to continue with the trials.
  • HCV human immunodeficiency virus
  • SIV simian immunodeficiency virus
  • transgenic mouse model that expresses the MHC class I human histocompatibility antigen allows to demonstrate whether vaccination confers human-like antigen presentation by HLA-A2, which is prevalent in the population, something that it cannot be done, at the moment, in primates, because transgenic primates are not available for said human antigen.
  • Studies on the protective capacity conferred by vaccination require the use of models other than the mouse model.
  • ape immunodeficiency virus (often abbreviated as SIV from its English name, simian immunodeficiency virus) has been found to be a much more useful model. It is a lentivirus that naturally infects various types of primates. Five subgroups thereof have been described. The isolated form of Rhesus macaques (Macaca mulatta), which is called SlVmac, belongs to the former.
  • HIV its genome is characterized by two LTR sequences at its 3 'and 5' ends, in which the promoter and the regulatory or binding sequences for transcriptional factors are found. It presents three open reading frames for structural proteins: gag, pol and env; open reading frames for regulatory genes: nef, tat and rev, and the so-called accessory genes: vif, vpr and vpx.
  • SIV and HIV viruses include cell tropism, genomic organization, ultrastructural characteristics, mode of transmission, host response to infection and clinical symptoms. of the disease, with the exception of asymptomatic infections.
  • SIV infection is characterized by a maximum of viremia in the first two weeks, with a decrease in viral levels to a point that is variable and on which the progression of the disease will depend.
  • the viral incubation period is less than in HIV infection.
  • the variability in the progression of the disease depends on the genetic heterogeneity of the macaques used in the studies, as well as the virus used in the challenge and the route of exposure (intravenously , mucosa or perinatal).
  • the host response is similar to that generated against HIV, but differs in the specificity of neutralizing antibodies against envelope antigens.
  • the SIV has several disadvantages as a model. In the first place, it is a virus different from HIV; therefore, the envelope proteins, which are the fundamental target of neutralizing antibodies, are very divergent in both models. Another fact to add is that SIV uses only the CCR5 co-receptor to enter the cell, while HIV also uses other co-receptors such as CXCR4, CCR2 or CCR3. For this and other reasons, the quality and effectiveness of a candidate tested in this model is not necessarily considered extrapolated to humans.
  • SHIV Sesimian-Human Immunodeficiency Virus
  • SHIV89.6P obtained through serial passes in Rhesus macaques of the parental virus SHIV89.6, which contains the genes gag, pol, vif, vpx, vpr and nef Ape virus SIVmac239, while the auxiliary genes tat, rev and vpu and the env envelope protein gene are derived from a cytopathic isolate of HIV-I, HIV89.6 (26,27). Thanks to the SHIV89.6P virus and similar ones, there is a model to evaluate the protection against disease and death conferred by possible vaccines in development.
  • the MVA-derived recombinant vectors are proving to be particularly useful for use in combined protocols of induction and potentiation of the immune response with different vectors, especially when the MVA-derived recombinant is administered in the second and / or at some dose after this and expresses, like the vector used in the first dose, multiple HIV and SIV antigens (Simian Immunodeficiency Virus).
  • SIV antigens Simian Immunodeficiency Virus.
  • the cytotoxic and generated memory T cell response demonstrates the potential of MVA recombinants as vaccines against HIV (17).
  • patent applications WO 02/072754 and WO 2004/087201 generally describe vectors derived from MVA expressing the Env, Gag and PoI proteins (rMVA), considering as an additional option the possibility of the immunizing antigen also include sequences of vif, vpr, tat, rev, vpu or nef, although without arguing that the expression of any of these sequences is of great importance for the possible protection response generated or using that option in the embodiments of the invention.
  • rMVA Env, Gag and PoI proteins
  • Patent application WO 2004/035006 also describes vectors derived from MVA containing sequences encoding several HIV proteins that are expressed in the form of fusion proteins, namely a Gag-Pol fusion and a nef-tat fusion, but the focus is here different from the international applications mentioned above: it is sought that there is no packaging in viral proteins, for which the proposed solution is that at least one of the HIV protein coding sequences is linked to a heterologous leader sequence, being that of the tPA which is chosen for the embodiments corresponding to vectors derived from the MVA and thus promoting the secretion of the synthesized proteins.
  • the present invention provides different recombinant vectors, based on MVA, capable of expressing various HIV antigens, that respond to a different approach to those described in previous requests.
  • MVA-derived recombinant vectors have sequences that allow simultaneous expression of the gpl20 protein and a Gag-Pol-Nef fusion protein.
  • Both the sequence that expresses the gpl20 protein and the sequence corresponding to the Gag-Pol-Nef fusion protein are inserted in the same place, the one corresponding to the thymidine kinase gene, thereby increasing the stability of the vectors by use a single insertion site with respect to other vectors also derived from the MVA that contain several sequences encoding HIV proteins, since the latter, by inserting each of the sequences in a different place of the MVA, easily lose the inserts present in them.
  • the specific use of the thymidine kinase locus as a place of insertion results in the vectors of the invention being recombinant MVA-derived viruses that have a greater safety to be used as vaccines, because they lack a gene, that of the gene. Thymidine kinase, involved in virulence.
  • the expression of the gpl 20 protein in the absence of sequences corresponding to the gp41 protein allows its release to the extracellular medium a few hours after its synthesis in the cytoplasm of the infected cell, thereby facilitating the induction of both humoral and cellular response to this protein, the one with the greatest variability in its sequence between the different clades.
  • the recombinant viruses of the present invention express at least four antigens: Env, Gag, PoI and Nef, since a vector that expresses those four antigens is considered to be much more effective than recombinant vectors capable of expressing only some of said antigens or even others, for the ability of the antigens chosen to induce specific cellular responses and for the lower genetic diversity among HIV isolates in terms of the Gag, PoI and Nef sequences.
  • sequences corresponding to the regulatory gene nef are considered a particularly important feature of the invention, since it is expressed in the early stages of the HIV cycle and the generation of a Cellular response to its products is considered necessary to increase the repertoire of immunological defense against HIV and achieve an adequate protective response that allows the immunological control of HIV-I infection.
  • the association of the coding sequences of gag, pol and nef is has carried out in the vectors of the invention so that a fusion protein was generated that maintained all the epitopes with the capacity to generate cellular response, allowing a greater antigenic presentation than other vectors that express fusions corresponding only to Gag and PoI proteins, but generating a fusion protein that is not proteolyzed by viral protease action, does not result in the formation of viral particles and that, contrary to what happened with the proteins expressed in other vectors of the prior art, accumulates in the cytoplasm in the form of a stable polyprotein.
  • these vectors derived from the MVA virus represent both an alternative to similar constructs derived from the NYVAC virus and a useful complement for the use of each of the aforementioned recombinant vectors at different stages of immunization protocols in which one or two doses are delivered to trigger the immune response and one or more successive doses to enhance it, because the tests carried out so far by the group of the inventors show that, in addition to differing in their genome and response Immune generated in mice against the HIV antigens gpl20 and Gag-Pol-Nef, both vectors show a differential behavior in cell cultures and animal models (induction of different patterns of expression of human genes in HeLa cells, lower induction by the MVA of apoptosis than the NYVAC vector, inducing the latter greater cell destruction and humoral response against itself (28)) which makes it predictable that its behavior is also different after administration to humans as vaccines of recombinant vectors generated from each from them.
  • mice demonstrate the immunogenic capacity of these vectors of the invention designed for vaccination of humans and, in particular, of the two embodiments of vectors of the invention with which were carried out the tests, the vectors MVA-B and MVA-C.
  • a nonhuman primate model such as that of the Rhesus macaques described above, which are subject to a triggering protocol.
  • vectors of the invention designed for the vaccination of human beings, vectors whose inserts encode proteins exogenous to the MVA virus that all derive from sequences of HIV-I proteins, but rather require the generation of special vectors that meet several conditions: a) contain retroviral coding sequences of the same origin as those contained in the virus to be used in the challenge, virus that can be SHIV, so that the sequence corresponding to the env gene it will come from HIV-I while the possible sequences corresponding to other genes, such as gag, pol or nef, will come from SIV); b) present the same structure of gene organization, insertion site and promoters as vectors designed for use in humans with which they want to compare.
  • the present invention also provides vectors for assessing the protective capacity that could be generated in humans who were vaccinated with recombinant viruses of the invention, derived from MVA and with exogenous sequences derived all from HIV-I protein sequences. Additionally, analogous recombinant vectors constructed from another poxvirus derivative, the NYVAC, are also provided in order to compare the effect of both.
  • the invention provides new recombinant vectors derived from the virus.
  • MVA capable of simultaneously expressing a form of HIV-I Env protein that lacks the part corresponding to gp41 protein and a fusion protein corresponding to HIV-I Gag, PoI and Nef proteins that is not proteolyzed by the action of the HIV protease, the sequence corresponding to the Env protein and the sequence corresponding to the Gag-Pol-Nef fusion protein being under the control of identical promoters and both inserted in the same insertion site of the vector.
  • vectors of the invention in which the coding sequences of antigens exogenous to MVA are all derived from sequences of the human immunodeficiency virus 1 (HIV-I), have been designed to be able to manufacture with them drugs that serve as preventive or therapeutic vaccines against AIDS in humans to which they are administered; therefore, to differentiate them from the vectors of the invention that will be described later, which comprise sequences derived from SlVmac and have been designed to be administered to macaques, these first vectors of the invention are sometimes referred to herein with expressions of the type "the vectors of the invention designed for the vaccination of human beings", "the vectors derived from the MVA virus designed for the vaccination of human beings”, "the vectors of the invention designed to be used in humans human.
  • HMV-I human immunodeficiency virus 1
  • the invention also relates both to compositions containing said recombinant vectors and to the use of said vectors for the manufacture of a medicament intended to be used as a vaccine to help prevent or treat an infection caused by the HIV virus. .
  • the expression of the Env protein synthesized from the vectors of the invention gives rise to gpl20 proteins not associated with gp41 proteins or fragments thereof, thereby facilitating their exit from the cell and their release to the medium, which makes it more likely the activation of B cells and the production of neutralizing antibodies against HIV.
  • the nucleotide sequence corresponding to the Env protein that is part of the vectors of the invention encodes a complete gpl20 protein, the entire sequence of the env gene having been deleted in the natural sequence of said gene appears after the last triplet corresponding to the gpl20 protein, thereby eliminating all of the coding sequence corresponding to the gp41 protein.
  • the fusion protein of Gag, PoI and Nef it is designed so that it does not lead to the formation of particles similar to viral particles.
  • the form used for the construction of the embodiments of the invention described in detail herein is accumulated in the cytoplasm of cells infected with the recombinant vectors of the invention in the form of polyprotein, without experiencing the characteristic processing of the HIV virus. caused by the viral protease that would result in its cleavage into smaller proteins, although later it will undergo cellular processing that allows the presentation of antigenic peptides of the fusion protein and the generation of an immune response against them.
  • the location of the vector in which the sequence corresponding to the Env protein and the sequence corresponding to the Gag-Pol-Nef fusion protein are inserted is the thymidine kinase gene, a gene that is inactivated by the presence of the sequences inserted in it, thereby increasing the safety of the vectors of the invention to be provided to individuals for the purpose of generating in them an immune response against HIV.
  • the Gag-Pol-Nef fusion protein coding sequence is generated from Gag, PoI and Nef protein sequences for which it is deduced. a cDNA sequence using frequent reading codons in mammals, thereby seeking to increase levels of fusion protein expression. In addition, modifications to the natural sequences are caused in the coding sequence of the fusion protein, to increase its immunogenicity and safety.
  • the most preferred modifications include inactivation by mutagenesis of the active site of the protease and deletion by deletion of the active site of the integrase, the making of deletions in the nef gene and its insertion in the coding region of RT , the translocation of the active place of the RT to the C-terminal end of the fusion protein and the fusion of the gag gene sequence in reading phase with pol-nef, creating a deviation from a reading phase and introducing a change of Alanine glycine to prevent the formation of virus-like particles.
  • a scheme of the elements that make up a Gag-Pol-Nef fusion protein that meets all these characteristics is shown in the lower area of Figure 40, marked as GagPolNef (gpn).
  • the promoter is chosen to allow expression of the Env protrusion and the Gag-Pol-Env fusion protein at both early and late stages of the MVA virus infective cycle.
  • the early / late synthetic poxvirus promoter pE / L (19) is the option chosen for the most preferred embodiments of the invention, although any other poxvirus promoter could also be used for the construction of vectors of the invention.
  • both the sequence corresponding to the Env protein as the sequences used to generating the sequence that gives rise to the Gag-Pol-Nef fusion protein comes from natural isolates belonging to clade B and / or clade C.
  • the sequence corresponding to the Env protein and the sequences used to generate the sequence that gives rise to the Gag-Pol-Nef fusion protein come from natural isolates belonging to the same clade, preferably clade B or clade C, but embodiments of the invention are also considered those in which the The sequence corresponding to the Env protein is derived from an isolate corresponding to a clade and the sequences used to generate the sequence that gives rise to the Gag-Pol-Nef fusion protein come from an isolate corresponding to a different clade.
  • compositions of the invention containing recombinant vectors of the invention, intended for use in vaccination against the HIV virus may contain recombinant vectors generated only from isolates of a particular clade, preferably B or C, mixtures of vectors.
  • compositions containing vectors of the invention generated from a single clade, preferably B or C, or mixtures of vectors generated from isolates of clade B and vectors generated from isolates of clade C are preferred. that contain both vectors generated from isolates of clade B and vectors generated from isolates of clade C should be especially useful to be used for the prevention and / or treatment of HIV infection in those areas where both clades are represented significantly.
  • the sequence corresponding to the Env protein is it is inserted in the opposite direction with respect to the sense of transcription of the Gag-Pol-Nef fusion protein, the promoters corresponding to each of the sequences corresponding to HIV proteins inserted in opposite orientations and in the innermost part of the insert being found .
  • Each of the vectors of the invention designed for the vaccination of human beings whose construction is described were generated from natural isolates corresponding to different clades.
  • the first one, MVA-B allows the expression of a form of the env gene obtained from the isolation of HIV BX08, from Europe, and a Gag-Pol-Nef fusion protein that results from the translation of a polynucleotide sequence. generated from sequences corresponding to gag, pol and nef of the IIIB isolation, which forms part, such as the BXO 8 isolation, of clade B.
  • the second of the vectors allows the expression of a form of the env gene obtained at from the isolation of HIV CN54, from China, and a Gag-Pol-Nef fusion protein resulting from the translation of a polynucleotide sequence generated from sequences corresponding to gag, pol and nef of the same CN54 isolation, which is part of clade C.
  • the amino acid sequences expressed from each of the env genes contained in the MVA derived vectors reproduce the complete sequence of the gpl20 proteins corresponding to the BX08 isolation viruses. , in the case of MVA-B, and ios virus of isolation CN54 in the case of MVA-C.
  • mice are not an adequate model to assess the ability to control HIV infection so that the vectors of the invention are capable of conferring on humans immunized with them.
  • animals evolutionarily closer to humans such as nonhuman primates such as Rhesus macaques, who are inoculated with a virus capable of infecting said animals and producing a similar syndrome in them.
  • characteristics that meet some pathogenic variants of the SHIV virus such as the so-called SHIV89.6P.
  • Challenging the immunogenic response produced by one or more vaccination vectors with a variant of the SHlV virus implies that immunization cannot be performed with the vectors of the invention described above, which are designed to express proteins derived from sequences specific to the virus against whose infection protection is sought, HIV-I, since the conditions of the process that would occur in a human being would not be reproduced in the assay.
  • the evaluation of the infection control capacity that can be conferred by the vectors of the invention designed for vaccination of human beings requires the generation of special vectors that meet several conditions: a) contain retroviral coding sequences of the same origin as the contained in the virus to be used in the challenge, virus that can be SHIV, so that the sequence corresponding to the env gene will come from HIV-I while the possible sequences corresponding to other genes, such as gag, pol or nef, will come from the SIV); b) present the same structure of gene organization, insertion site and promoters as vectors designed for use in humans with which they want to compare.
  • the invention also provides vectors that meet these characteristics, which are also an object of the present invention.
  • the invention also relates to new recombinant vectors derived from the MVA virus capable of simultaneously expressing a form of the HIV-I Env protein that lacks the part corresponding to the gp41 protein and a fusion protein containing protein sequences.
  • Gag, PoI and Nef of the simian immunodeficiency virus SIV the sequence corresponding to the Env protein and the sequence corresponding to the Gag-Pol-Nef fusion protein being under the control of identical promoters and both inserted in the same place of vector insertion.
  • the fusion protein corresponding to the Gag, PoI and Nef proteins is not synthesized from sequences originating from HIV-I, but from sequences from SlVmac (simian immunodeficiency virus isolated from macaques).
  • the vectors of the invention designed to perform tests in macaques meet the condition of presenting the same structure of gene organization, insertion site and promoters that the vectors of the invention designed for the vaccination of human beings with which they want to compare.
  • the expression of the Env protein synthesized from the vectors of the invention designed to be used in macaques gives rise to gpl20 proteins not associated with gp41 proteins or fragments thereof, thereby facilitating their exit from the cell and their release to the medium, which makes the activation of B cells and production more likely of neutralizing antibodies against HIV.
  • the nucleotide sequence corresponding to the Env protein that is part of the vectors of the invention encodes a complete gpl20 protein, the entire sequence of the env gene having been deleted in the natural sequence of said gene appears after the last triplet corresponding to the gpl20 protein, thereby eliminating the entire coding sequence corresponding to the g ⁇ 41 protein.
  • a scheme concerning the sequence of the Env protein that is part of the vectors of the invention is shown in the upper part of Figure 40. It is the last graph that corresponds to the sequence of a gpl20 protein expressed from vector vectors. the invention, in which the entire coding sequence corresponding to the gp41 protein has been removed, while the previous graphics represent shell proteins with sequences corresponding to the gp41 protein.
  • the fusion protein of Gag, PoI and Nef also analogously to the homologous protein synthesized from the vectors in which the corresponding coding sequence derived from sequences specific to HIV-I, is designed so that it does not lead to the formation of particles similar to viral particles.
  • the form used for the construction of the embodiments of the vectors of the invention described in detail herein is accumulated in the cytoplasm of cells infected with the recombinant vectors of the invention in the form of polyprotein, without undergoing the characteristic processing of the HIV virus caused by the viral protease that would result in its cleavage into smaller proteins, although later it will undergo the cellular processing that allows the presentation of antigenic peptides of the fusion protein and the generation of an immune response against them .
  • the main utility of the vectors of the invention comprising sequences derived from SlVmac is to be used in immunization protocols to extract data on the possible utility as vector vaccines designed to be administered to humans, They must have the same structure of gene organization, promoters and insertion site. That is why the embodiments equivalent to the preferred embodiments of the vectors of the invention designed for the vaccination of humans (except those referring to isolates of HIV-I as the preferred origin of the coding sequences of the Env and Gag proteins) Pol-Nef) are also preferred embodiments of vectors designed for testing in macaques.
  • the location of the vector in which the sequence corresponding to the Env protein and the sequence corresponding to the Gag-Pol-Nef fusion protein are inserted is the thymidine kinase gene, a virulence related gene which is inactivated by the presence of the sequences inserted therein, thereby increasing the safety of the vectors.
  • the fusion protein coding sequence is the thymidine kinase gene, a virulence related gene which is inactivated by the presence of the sequences inserted therein, thereby increasing the safety of the vectors.
  • Gag-Pol-Nef is generated from sequences of Gag, PoI and Nef proteins for which a cDNA sequence is deduced using frequent reading codons in mammals, thereby seeking to increase the expression levels of the fusion protein.
  • modifications to the natural sequences have been caused in the coding sequence of the fusion protein, to increase its immunogenicity and safety.
  • Modifications for which there is a greater preference include inactivation by mutagenesis of the protease active site and elimination by deletion of the active site of the integrase, the realization of deletions in the nef gene and its insertion in the coding region of the RT, the translocation of the active place of the RT to the C-terminal end of the fusion protein and the fusion of the sequence of the gag gene in reading phase with pol-nef, creating a deviation from a reading phase and introducing a change from glycine to alanine to prevent the formation of virus-like particles.
  • Gag-Pol-Nef proteins derived from HIV-I sequences
  • Gag-Pol-Nef fusion proteins that meet all these characteristics, although derived in this case from SlVmac sequences, are represented by the scheme shown in the lower area of Figure 40, marked as GagPolNef (gpn).
  • the promoter is chosen so as to allow the expression of the Env protein and the Gag-Pol-Env fusion protein at both early and late stages of the MVA virus infective cycle.
  • the early / late synthetic poxvirus promoter pE / L (19) is the option chosen for the most preferred embodiments of the invention, although any other poxvirus promoter could also be used for the construction of vectors of the invention.
  • Examples 1 and 19 describe, respectively, the construction of the vectors called MVA-B and MVA-C, which involve two embodiments of vectors of the invention, designed for the vaccination of human beings, which fulfill all the preferred characteristics for these vectors of the invention.
  • the sequence corresponding to the Env protein is inserted in the opposite direction with respect to the transcription sense of the Gag-Pol-Nef fusion protein, the promoters corresponding to each of the sequences corresponding to HIV proteins inserted being found in opposite orientations and in the innermost part of the insert.
  • an MVA-SHIV vector has been constructed whose genome contains an insert of which the 89.6P protein coding sequence is both -gpl20, that is, a sequence corresponding to the Env protein of the SHIV89.6P virus (originally from HIV-I isolate 89.6), modified so that it completely lacks the part corresponding to the gp41 protein, as coding sequences of the Gag, PoI and Nef antigens of said SHIV89.6P virus (originally from simian immunodeficiency virus, isolated from macaques, SIVmac239), from which the sequence corresponding to the SlVgpn fusion protein has been generated by performing them the preferred modifications of the invention. That is why the vector constructed in this way
  • recombinant vectors derived from NYVAC with the same gene organization structure, insertion site in the viral genome (the thymidine kinase locus, TK) and the same early / late synthetic promoters have been used, located in the same arrangement as in the MVA-derived vector with which they wish to compare: the NYVAC-B vectors (used in the tests performed with MVA-B), NYVAC-C (used in the tests performed with MVA-C) and an additional vector, intended to carry out comparative tests with those performed with the vectors called MVA-SHIV, which has been specifically designed to carry out the tests of evaluation of the protective capacity described herein, which has been referred to, in abbreviated form , NYVAC-SHIV.
  • the specific NYVAC-SHIV vector whose construction is described herein has been referred to as NYVAC-89.6P-SIVgpn or, in more detail, NYVAC-gpl20-HIV89.6- SIVmac239-gag-pol- nef
  • the vectors of the NYVAV-SHlV type are also within the scope of the present invention.
  • the present invention also relates to compositions containing recombinant vectors of the invention comprising a sequence encoding a form of the HIV-I Env protein that lacks the portion corresponding to the gp41 protein in its entirety and a sequence coding for a Gag-Pol-Nef fusion protein derived from sequences of the SlVmac virus, as well as its use to assess the immune response and protective capacity against HIV infection triggered by vectors with the same structure of gene organization, promoters and Insertion site intended to be used for vaccination of human beings.
  • the preferred embodiment of this form of use of the vectors of the invention consists in administering them to apes, preferably Rhesus macaques (Macaca mulatta), in which the immunological response produced and the protective capacity generated after such administration will be evaluated, subsequently subjecting them to a challenge with a pathogenic SHIV.
  • apes preferably Rhesus macaques (Macaca mulatta)
  • relevant information is obtained to assess whether the results indicate that it is worthwhile to carry out the next phase of clinical trials in humans with the homologous vectors provided for the vaccination of human beings, as well as on the appropriate procedure to perform such tests.
  • the protocol that is followed for the administration of the vectors of the invention to macaques will respond to the scheme that is planned to be followed for the vaccination of human beings or to a scheme of which it is desired to evaluate their degree of adequacy.
  • Immunogenicity tests performed with the MVA-B and MVA- vectors will respond to the scheme that is planned to be followed for the vaccination of human beings or to a scheme of which it is desired to evaluate their degree of adequacy.
  • vaccination methods are also an object of the present invention to prevent or treat an HIV infection in which at least one recombinant vector of the invention, derived from the MVA virus, capable of simultaneously expressing a form of the HIV-I Env protein that lacks the part corresponding to the gp41 protein in its entirety and a fusion protein that contains sequences of the HIV-I Gag, PoI and Nef proteins, that is, one of the vectors of the invention designed for the manufacture of medicaments useful as preventive or therapeutic vaccines against AIDS.
  • the vaccination methods included within the scope of the invention may comprise one or more doses of vaccination, as long as at least one vector of the invention is administered in one of them. Methods in which more than one vaccination dose is administered to trigger or enhance the immune response are preferred.
  • the combined protocols in which different vectors are used in the first dose of triggering the immune response and in the successive doses intended to reinforce the triggered response are especially preferred.
  • MVA-derived vectors appear to be more useful for achieving a protection response against HIV when they are delivered in the second or in successive doses intended to reinforce the previously triggered immune response, what is most preferred is that at least a recombinant vector derived from the MVA of the invention is present in the second dose or in a subsequent dose, and may be absent or present from the first vaccination dose.
  • At least one vector derived from MVA is present in the second dose and / or in a subsequent dose of vaccination, it prefers that at least one vector administered in the first vaccination dose is capable of expressing the same HIV-derived proteins as the vector of the invention present in another different dose.
  • vectors derived from the NYVAC, NYVAC-B and NYVAC-C virus and combinations comprising both vectors are a suitable option to be used in the first vaccination dose as part of a vaccination method of the invention when the vector of the invention administered in the second and / or in a successive dose of vaccination is, respectively, the vector of the invention that is subsequently called MVA-B or the vector that is subsequently called MVA-C or a composition comprising both MVA -B as MVA-C.
  • Also preferred embodiments of the vaccination method of the invention are those in which the first vaccination dose contains the naked DNA vector DNA-B when in the second dose and / or in subsequent doses of vaccination is present the MVA-B vector of the invention, as well as those in which the first vaccination dose contains the naked DNA vector DNA-C when in the second dose and / or in subsequent doses of Vaccination is present the MVA-C vector of the invention.
  • Figure 1 shows a schematic of the maps of the genomes of the MVA (upper) and NYVAC (lower) viruses, in which the location of the fragmented genes is indicated by dark shading, indicating their designation immediately below.
  • the underlined names correspond to denominations of genes deleted in MVA and intact in NYVAC, bold names correspond to denominations of genes deleted in both MVA and NYVAC and italicized names correspond to denominations of intact genes in
  • the letters A to Q located on each of the genome representations refer to the denomination of the different restriction fragments generated by the HindIII enzyme by digesting with it the genomic DNA of MVA and NYVAC.
  • RTI left terminal region
  • RCC central region conserved
  • RTD right terminal region.
  • Figure 2 shows a diagram of the construction of the plasmid transfer vector pLZAWlgpl20B / gagpolnef-B-1 and the plasmids from which it is generated.
  • Figure 3 shows the fragments generated in the PCR analysis of the TK locus of the MVA-B virus.
  • the upper part of the figure shows a scheme in which the positions of the oligonucleotides used as primers are represented, the estimated sizes of the fragments that are generated in the PCR with the different combinations of oligonucleotides, as well as their location with respect to the inserts and flanking sequences thereof.
  • the lower part shows photographs of the gels obtained by electrophoresis the PCR products made with different pairs of primers.
  • A PCR barley with oligonucleotides TK-L and GPN7649; B: PCR barley with oligonucleotides GPN8170 and E / L; C: PCR barley with oligonucleotides BX08556 / TK-R.
  • the samples corresponding to each street are: 1: pLZAWlgpl20B / gagpolnef-B-l; 2: MVA-B; 3: MVA-WT; 4: NYVAC-WT.
  • Figure 4 shows a photograph of a gel obtained by electrophoresis the products resulting from a PCR reaction in which oligonucleotide primers that hybridized with the flanking sequences of the TK gene were used as primers.
  • the samples corresponding to each street are: 1: NYVAC-WT; 2: MVA-B; 3: MVA-WT.
  • Figure 5 shows the results of Western blot analysis of the expression of the heterologous genes gpl20-BX08 (upper part of the figure) and gagpolnef-IIIB (lower part of the figure, in which the gagpolnef-IIIB protein is abbreviated as GPN) from a NYVAC-B vector (first street), from Pl 3 P2 and P3 stocks (lanes 2-4: Pl, P2 and P3) and from cells in which the infection had been simulated (lane 5).
  • GPN gagpolnef-IIIB protein
  • Figure 6 shows the results corresponding to the stability tests of the MVA-B vector.
  • Part A shows the results of immuno stains of CEF cells infected with the MVA-B vector and treated with the anti-WR (left photo), anti-p24 (central photo) and anti-gpl20 (photo photograph) antibodies. right), together with a graph that represents the total of cells stained with each antibody.
  • Part B shows the detection of the expression of the gagpolnef-IHB (left photo) and gpl20-BX08 (right photo) proteins by Western blotting and detection with antibodies directed against said proteins in cells infected with the recombinant virus NYVAC-B (NYVACB), cells in which the infection (M) was simulated and virus stocks corresponding to passes 7 through 10 (P7, P8, P9 and P10).
  • Figure 7 shows the expression kinetics of the gp! 20-BX08 protein obtained by analyzing with an anti-gpl20 antibody of clade B of Western blots corresponding to samples taken after 4, 8, 16 and 24 hours of an infection with a recombinant virus
  • the upper part corresponds to infection with the MVA-B virus and the lower part to infection with the NYVAC-B virus.
  • Figure 8 shows the expression kinetics of the gagpolnef-IIIB protein obtained by analysis with an anti-p24 antibody of clade B of Western blots corresponding to samples taken after 6, 18 and 24 hours of an infection with a recombinant virus.
  • the streets marked "1" correspond to samples infected with the NYVAC-B virus, the streets marked "2" to samples infected with the MVA-B virus and the street marked M to a sample in which the infection was simulated .
  • the arrow indicates the position of the gagpolnef-IIIB protein (abbreviated as GPN).
  • Figure 9 shows a graph corresponding to the detection by expanded ELISPOT of IFN- ⁇ secreting T cells generated by the immunization of BALB / c mice with recombinant viruses from which the gpl20-BX08 and gagpolnef-IIIB proteins can be expressed .
  • the number of IFN- ⁇ secreting T cells detected per 10 5 splenocytes, specific for each of the clade B peptide groups indicated in abscissa, is indicated in ordinates.
  • the first bar corresponds to the value detected in animals immunized with MVA-B and the second to animals immunized with NYVAC-B.
  • Figure 10 shows the cytokine production detected in ALB / c B mice immunized with recombinant viruses from which the gpl20-BX08 and gagpomef-IHB proteins can be expressed.
  • the left part corresponds to the levels of
  • IFN- ⁇ and the right to IL-IO levels both in pg / ml, detected in splenocyte supernatants from animals inoculated with MVA-B (first bar of each of the peptide groups) or NYVAC-B ( second bar of each of the peptide groups) against specific groups of peptides representative of clade B.
  • Figure 11 shows graphs corresponding to the levels of different types of IFN- ⁇ secreting T cells and present in the splenocytes of B ALB / c mice inoculated with MVA-B (first bar of each peptide group) or NYVAC-B ( second bar of each peptide group) re-stimulated by the representative peptide groups of clade B indicated in abscissa.
  • the upper graph shows the percentage of CD8 + T cells that secrete IFN- ⁇
  • the intermediate graph the percentage of CD4 + T cells that secrete IFN- ⁇
  • the lower graph the total percentage of CD8 + and T CD4 + cells that secrete IFN- ⁇ , all of them detected for every 3 x 10 5 splenocytes.
  • Figure 12 shows a graph corresponding to the ELISPOT detection of IFN- ⁇ secreting T cells generated by the immunization of BALB / c mice with different combinations of vectors from which the gpl20-BX08 and gagpolnef- proteins can be expressed. IIIB, as well as the results corresponding to the controls, in all cases administering the vectors following induction / potentiation protocols.
  • the first bar corresponds to the value detected in animals immunized with DNA-B + MVA-B, the second to animals immunized with DNA-B + NYVAC-B, the third to animals immunized with DNA-B + DNA-B, the fourth to animals immunized with DNA 0 + MV A-WT and the last to animals immunized with DNA 0 + NYVAC-WT.
  • the circles (•) under the bars indicate significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control; the presence of asterisks (*) indicates significant differences (p ⁇ 0.05) between the different groups.
  • Figure 13 shows the production of IFN- ⁇ , in pg / ml, generated after re-stimulation, with the groups of peptides indicated in abscissa, of splenocytes extracted from BALB / c mice immunized by induction / potentiation combination protocols in which DNA-B is included in the first dose of initiation of the response except in the last sample, which is inoculated with DNA without insert (DNA- ⁇ ), inoculating in the second dose of potentiation of the MVA-B response (first bar of each group), NYVAC-B (second bar), DNA-B again (third bar), MVA-WT (fourth bar) and NYVAC-WT (fifth bar, corresponding to the sample that was first inoculated DNA- ⁇ ).
  • Figure 14 shows the production of chemokines, in pg / ml, generated after re-stimulation, with the groups of clade B peptides indicated in abscissa, of splenocytes extracted from BALB / c mice immunized by induction / potentiation combination protocols in the that DNA-B is included in the first dose of initiation of the response except in the control, which was inoculated with DNA without insert (DNA- ⁇ ), inoculating in the second dose of potentiation of the MVA-B response (first bar of each group), NYVAC-B (second bar), DNA-B again (third bar), and NYVAC-WT (fourth bar, corresponding to the control first inoculated with DNA- ⁇ ).
  • the graph on the left corresponds to the detected concentration of MP-I ⁇ and the one on the right corresponds to the detected concentration of RANTES.
  • Figure 15 shows graphs corresponding to the levels of different types of IFN- ⁇ or TNF- ⁇ secretory T cells present in splenocytes re-stimulated by groups of representative clade B peptides indicated in abscissa after being extracted from immunized BALB / c mice through combined induction / potentiation protocols in which DNA-B is included in the first dose of initiation of the response except in the controls, which were inoculated with DNA without insert (DNA- ⁇ ), inoculated in the second dose of potentiation of the response MVA-B (first bar of each group), NYVAC-B (second bar) and DNA-B again (third bar), while controls inoculated with DNA- ⁇ received in the second dose MVA-WT (fourth bar) or NYVAC-WT (fifth bar).
  • the upper part corresponds to IFN- ⁇ producing cells and the lower part to TNF- ⁇ producing cells.
  • the graphics on the left correspond to the CD 8 + cells, the graphics Intermediates to CD4 + cells and the graphs right to the total cells.
  • the given value refers to the number of secretory cells of the corresponding type (CD8 + , CD4 + , total) detected per 3 x 10 5 splenocytes.
  • Figure 16 shows a graph corresponding to the detection by ELISPOT of ⁇ FN- ⁇ secretory T cells specific for each of the clade B peptide groups indicated in abscissa, generated by the immunization of BALB / c mice by induction protocols / potentiation in which vectors derived from Vaccinia are combined from which the gpl20-BX08 and gagpolnef-IIIB proteins can be expressed.
  • the number of IFN- ⁇ secreting T cells, specific for each of the clade B peptide groups indicated in abscissa, detected per 10 6 splenocytes is indicated in ordinates.
  • the first bar corresponds to the value detected in animals immunized with NYVAC-B + MVA-B, the second to animals immunized with MVA-B + NYVAC-B and the third to animals immunized with MVA-WT + NYVAC-WT.
  • Figure 17 shows the production of IFN- ⁇ , in pg / ml, generated after restimulation, with groups of clade B peptides indicated in abscissa, of splenocytes extracted from BALB / c mice immunized by induction / potentiation combination protocols.
  • Figure 18 shows a graph corresponding to the detection by ELISPOT of IFN- ⁇ secreting T cells specific for each of the groups of clade B peptides indicated in abscissa, generated by the immunization of humanized HHDII mice by induction protocols.
  • enhancement in which DNA-B is included in the first dose of induction of the response inoculating in the second dose of potentiation of the response MVA-B (first bar of each group) or NYVAC-B (second bar).
  • the third bar corresponds to the control of inoculation of a DNA without insert (DNA 0) in the first dose and MVA-WT in the second.
  • FIG. 19 shows a graph corresponding to the detection by ELISPOT of IL-2 secretory T cells specific for each of the groups of clade B peptides indicated in abscissa, generated by the immunization of HHDII mice by induction / potentiation protocols. in which the DNA-B is included in the first dose of induction of the response, inoculating in the second dose of potentiation of the response MVA-B (first bar of each group) or NYVAC-B (second bar).
  • the third bar corresponds to the control of inoculation of a DNA without insert (DNA 0) in the first dose and MVA-WT in the second.
  • the circles (•) under the bars indicate significant differences (p ⁇ 0.005) of each group of peptides with respect to the negative control; the presence of asterisks (*) indicates significant differences (p ⁇ 0.05) between the different groups
  • Figure 20 shows a graph corresponding to the detection by ELISPOT of IFN- ⁇ secreting T cells specific for each of the groups of clade B peptides indicated in abscissa, generated by the immunization of humanized HHDII mice by induction protocols. potentiation in which vectors derived from Vaccinia are combined from which the gpl20-BX08 and gagpolnef-IIIB proteins can be expressed. The ordinate shows the number of cells secreting T IFN- ⁇ , specific for each peptide group, detected per 10 6 splenocytes indicated ,.
  • the first bar corresponds to the value detected in animals immunized with MVA + NYVAC-B, the second to animals immunized with NYVAC-B + MVA-B, the third to animals immunized with MVA-B + MVA-B. the fourth to animals immunized with NYVAC-B + NYVAC-B and the fifth to animals immunized with NYVAC-WT + MVA-WT.
  • the circles (•) under the bars indicate significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control.
  • Figure 21 shows a graph corresponding to the detection by ELISPOT of IL-2 secretory T cells specific for each of the groups of clade B peptides indicated in abscissa, present for every 10 splenocytes of HHDII mice immunized by induction protocols. / potentiation in which vectors derived from Vaccinia are combined from which the gpl20-BX08 and gagpolnef-IIIB proteins can be expressed.
  • the first bar corresponds to the value detected in animals immunized with MVA + NYVAC-B
  • the third to animals immunized with MVA-B + MVA-B the third to animals immunized with MVA-B + MVA-B.
  • Figure 22 shows a diagram of the construction of the plasmid transfer vector pLZAWlgpl20B / gagpolnef-C-14 and the plasmids from which it is generated.
  • Figure 23 shows the fragments generated in the PCR analysis of the TK locus of the MVA-C virus.
  • the upper part of the figure shows a diagram of the sizes of the fragments that are generated with the different combinations of oligonucleotides, as well as their location with respect to the inserts and flanking sequences thereof.
  • the lower part shows photographs of the gels obtained by electrophoresis the PCR products made with different pairs of primers.
  • A PCR barley with oligonucleotides TK-L and gpl20-1213; B: PCR barley with oligonucleotides gp 120-1050 and gpl20-10; C: PCR barley with oligonucleotides GPN-2018 and GPN-3820; D: PCR barley with oligonucleotides GPN-4000 and TK-R; E: PCR barley with oligonucleotides GPN-802 and GPN-2198.
  • the samples corresponding to each lane are: 1: NYVAC-C; 2: MVA-C (FZ); 3: MVA-WT; 4: NYVAC-WT.
  • Figure 24 shows, in its upper part, a scheme of the fragments obtained by amplifying by PCR the TK locus from samples containing or lacking inserts in said locus, while the lower part is a photograph of a gel obtained at Electrophoresis the products resulting from a PCR reaction in which oligonucleotide primers that hybridized with the flanking sequences of the TK gene were used as primers.
  • the samples were: NYVAC-C (lane 1), MVA-C corresponding to Pl stocks (lane 2) and P2 (lane 3) and MVA-WT (lane 4).
  • Figure 25 shows the results of Western blot analysis of the expression of the heterologous genes gpl20-C (upper part) and gagpolnef-C (lower part, in which the gagpolnef-C protein is abbreviated as GPN) from a vector NYVAC-C (last street), from stocks P2 and P3 (first and second streets, marked as P2-M and P3, respectively) and from cells in which the infection had been simulated (M).
  • GPN gagpolnef-C protein
  • Figure 26 shows the results corresponding to the stability tests of the MVA-C vector.
  • Part A shows the results of immunostaining of CEF cells infected with the MVA-C vector and treated with the anti-WR antibodies (clade C on the left), anti-gpl20 specific for clade C (central photograph) and specific anti-p24 of clade C (photograph on the right), as well as a graph representing the percentages of the plates stained with each of the antibodies calculated with respect to the total of plates stained with the anti-WR antibody.
  • Part B shows the detection of the expression of gagpolnef-C (left photo) and gpl20-C (right photo) proteins by Western blotting and detection with antibodies directed against said proteins in cells infected with the recombinant virus NYVAC-C (streets marked "NYVAC-C", cells in which the infection had been simulated (streets marked "CEF” and virus stocks corresponding to passes and 10 (streets marked P7, P8, P9 and PlO ).
  • Figure 27 shows the expression kinetics of the gpl20-C protein obtained by analysis with an anti-gpl20 antibody of clade C of Western blots corresponding to samples taken after 6, 18, and 24 hours of an infection with a recombinant virus .
  • the upper part corresponds to infection with the MVA-C virus and the lower part to infection with the NYVAC-C virus.
  • the signal intensity achieved by incubating the samples with an anti- ⁇ -actin antibody ( ⁇ -act) appears immediately below each sample.
  • P precipitate
  • S supernatant
  • M simulation of infection .
  • P precipitate
  • S supernatant
  • M infection simulation.
  • Figure 28 shows the expression kinetics of the gagpolnef-C protein obtained by analysis with an anti-p24 antibody of clade C of Western blots corresponding to cell precipitates of samples taken after 6, 18 and 24 hours of an infection with a recombinant virus
  • the streets marked "1" correspond to samples infected with the MVA-C virus
  • the streets marked "2" to samples infected with the NYVAC-C virus
  • the streets marked M to samples in which the infection was simulated.
  • the arrow indicates the position of the gagpolnef-C protein (abbreviated as GPN).
  • Figure 29 shows a graph corresponding to the ELISPOT detection of IFN- ⁇ secreting T cells generated by the immunization of humanized HHDII mice with recombinant viruses from which the gpl20-C and gagpolnef-C proteins can be expressed.
  • Part A corresponds to IFN- ⁇ secreting T cells, detected for every 10 6 splenocytes, specific for each of the clade C peptide groups indicated in abscissa.
  • Part B corresponds to IFN- ⁇ secreting T cells generated against the part of the recombinant viruses derived from Vaccim ' a. Both in the case of the peptides (part A) and in that of the anti-Vaccinia response, the first bar corresponds to the value detected in animals immunized with MVA-C and the second to animals immunized with NYVAC-C.
  • Figure 30 shows the production of cytokines detected in HHDII mice immunized with recombinant viruses from which the gpl20-C and gagpolnef-C proteins can be expressed.
  • the upper part corresponds to IFN- ⁇ levels and the lower part to IL-IO 5 levels both in pg / ml, detected in splenocyte supernatants from animals inoculated with MVA-C (first bar of each of the groups of peptides) or NYVAC-C (second bar of each of the peptide groups) against specific groups of peptides representative of clade C.
  • Figure 31 shows graphs corresponding to the percentages of different types of IFN- ⁇ producing T cells generated against specific peptide groups representative of clade C by inoculation of MVA-C (first bar of each peptide group) or NYVAC- C (second bar of each peptide group) to HDDIL mice
  • the upper graph represents the percentage of CD8 + cells with respect to the total IFN- ⁇ secretory cells
  • the intermediate graph the percentage of CD4 + cells
  • Figure 32 shows the humoral response generated by inoculation of MVA-C or NYVAC-C to HHDII or C57 / BL6 mice using the optical density values at 492 nm obtained by detecting IgG antibodies against: (A) cell extracts from ELISA an infection with Vaccinia; (B) Gag protein or (C) gpl60 protein.
  • the immunization groups were: 1: MVA-C in HHDII; 2: MVA-C in C57 / BL6; 3: NYVAC-C in HHDII; 4: NYVAC-C in C57 / BL6; 5: control.
  • the status of the symbols marks the value obtained for each of the mice in the graph: ⁇ : mouse 1; B: mouse 2; A: mouse 3; •: mouse 4; horizontal bar position - indicates the average value corresponding to the four mice in each group.
  • Figure 33 shows a graph corresponding to the detection by ELISPOT of IFN- ⁇ secretory T cells specific for each of the groups of clade C peptides indicated in abscissae, present for every 10 splenocytes of HHDII mice immunized by induction protocols.
  • / enhancement in which the DNA-C is included in the first dose of induction of the response inoculating in the second dose of potentiation of the response MVA-C (first bar of each group) or NYVAC-C (second bar).
  • the third bar corresponds to the inoculation control of a DNA without insert (DNA 0) in the first dose and NYVAC-WT in the second.
  • the circles (•) under the bars indicate significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control; the presence of asterisks indicates significant differences between the different groups: *: p ⁇ 0.05; **: p ⁇ 0.005.
  • Figure 34 shows a graph corresponding to the detection by ELISPOT of IL-2 secretory T cells specific for each of the groups of clade C peptides indicated in abscissa, present for every 10 6 splenocytes of HHDII mice immunized by protocols of induction / potentiation in which the DNA-C is included in the first dose of induction of the response, inoculating in the second dose of potentiation of the response MVA-C (first bar of each group) or NYVAC-C (second bar) .
  • the third bar corresponds to the inoculation control of a DNA without insert (DNA 0) in the first dose and NYVAC-WT in the second.
  • IFN- ⁇ secretory T cells specific for each of the groups of clade C peptides indicated in abscissa, present for every 10 splenocytes of BALB / c mice immunized by induction / potentiation protocols in which vectors derived from Vaccirda from which the gpl20-C and gagpolnef-C proteins can be expressed.
  • the first bar corresponds to the value detected in animals immunized with NYVAC-C + MVA-C
  • the second to animals immunized with MVA-C + MVA-C the third to animals immunized with MVA-C + NYVAC-C
  • the fourth to animals immunized with NYVAC-C + NYVAC-C the fifth to animals immunized with NYVAC-WT + MVA-WT.
  • the circles (•) under the bars indicate significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control; the presence of asterisks indicates significant differences between the different groups: *: p ⁇ 0.05; **: p ⁇ 0.005.
  • Figure 36 shows the production of cytokines detected after immunization of BALB / c mice by induction / potentiation protocols in which vectors derived from Vaccinia are combined from which the gpl20-C and gagpolnef-C proteins can be expressed.
  • the left part corresponds to IFN- ⁇ levels (in ng / ml) and the right part to IL-IO levels (in pg / ml), detected in splenocyte supernatants, stimulated with each of the peptide groups of clade C indicated next to each group of bars, extracted from animals inoculated with: MVA-C + NYVAC-C (first bar of each group), MVA-C + MVA-C (second bar), NYVAC-C + MVA- C (third bar), NYVAC-C + NYVAC-C (fourth bar), NYVAC-WT + MVA-WT (fifth bar) or MVA-WT + NYVAC-WT (sixth bar).
  • Figure 37 shows graphs corresponding to the levels of different types of IFN- ⁇ secreting T cells and present in the splenocytes of BALB / c mice immunized by induction / potentiation protocols in which vectors derived from Vaccinia are combined from which gpl20-C and gagpolnef-C proteins can be expressed, after being stimulated by the groups of peptides representative of clade C indicated in abscissa.
  • the upper graph corresponds to IFS- ⁇ producing CDS + cells present for every 3 x 10 5 CD8 + cells, the intermediate chart to IFN- ⁇ producing CD4 + cells present for every 3 x 10 5 CD4 + cells and the graphic below the set of CD8 + cells plus CD4 + IFN- ⁇ producers present for every 3 x 10 5 CD8 + + CD4 + cells.
  • the bars that appear in each peptide group correspond to animals inoculated with: NYVAC-C + MVA-C (first bar of each group), MVA-C + MVA-C (second bar), MVA-C + NYVAC-C (third bar), NYVAC-C + NYVAC-C (fourth bar), NYVAC-WT + MVA-WT (fifth bar).
  • Figure 38a shows the results obtained when dealing with antibodies directed against the PARP protein used from HeLa cells collected after the different times, in hours, indicated on the streets after infection with MVA- WT (streets headed by "MVA") or with NYVAC (streets headed by "NYVAC”).
  • PARPc indicates the position of the complete PARP protein;
  • PARPf indicates the position of the PARP protein that has undergone a specific break.
  • the lower part shows the intensity of the signals achieved by incubating the samples with an anti- ⁇ -actin ( ⁇ -act) antibody.
  • Figure 38b shows the immunofluorescence signals detected from cells infected with MVA-WT (upper photo) or NYVAC-WT (lower photo) whose nuclei had been stained with DAPI.
  • Figure 38c shows a photograph of a gel obtained by electrophoresis samples of ribosomal RNA obtained from HeLa cells after the times in hours (18 and 24) that are indicated on the streets after infecting said cells with: virus-free samples (wells marked "HeLa”), Wild Vaccinia virus from the Western Reserve strain (wells marked "WR”), MVA-WT
  • Figure 38d shows a graph in which the factor of increase in the number of apoptotic cells detected by flow cytometry in infected HeLa cells is indicated in ordinates as indicated in abscissa: M: simulation of infection; WR: infection with wild Vaccinia virus of the Western Reserve strain; MVA: infection with MVA-WR; NYVAC: infection with NYVAC-WT.
  • M simulation of infection
  • WR infection with wild Vaccinia virus of the Western Reserve strain
  • MVA infection with MVA-WR
  • NYVAC infection with NYVAC-WT.
  • the "-" and “+” signs indicate, respectively, the absence or presence of the zVAD caspase inhibitor in the samples used to cause infection.
  • Figure 39 shows a scheme of the genome organization of the chymic virus of simian and human immunodeficiency SHIV89.6P.
  • the sequences represented by filled rectangles come from the genus of the ape virus
  • Figure 40 shows the structure of the retrovirus antigen coding sequences present in the vectors of the present invention.
  • the upper part, headed by the abbreviation "Env” corresponds to different forms of the sequence corresponding to the envelope protein, of which the last one, marked as “C- env-120 ", represents the present in the vectors of the invention, completely devoid of the part corresponding to the gp41 protein.
  • the bottom part shows the scheme corresponding to the Gag-Pol-Nef fusion protein synthesized from the vectors whose construction is described in the Examples, indicating the modifications made on the sequences deduced from the SHIV89.P proteins, generated by deducing the sequence of triplets corresponding to the amino acid sequences of the proteins using the most frequent codons in mammals.
  • sequences on which the following were made as main modifications the sequence corresponding to the Gag antigen that includes the proteins of the matrix (MA), the capsid (CA), p2 and p7 was linked respecting the reading frame (at the point labeled FS-I) with the sequence corresponding to the PoI antigen that lacked an integrase domain; in addition, the active site of the reverse transcript (RT) was replaced by a nef gene in which the amino acid order (scnef) had been altered, so that the area that naturally contains the carboxyl end (RT-C) outside the initial part, while the zone that naturally contains the amino end (RT-A) became the final zone; the RT sequence that overlaps the active site (active site, RT) was translocated respecting the reading frame at the 3 'end of the coding sequence of the fusion protein; additionally, the amino end glycine was replaced by alanine ( ⁇ Myr (G- * A)) to prevent myristylation, while canceling the protea
  • Figure 41 shows a scheme of the construction of the plasmid transfer vector pLZAW-l-89.6P-SIVgpn-18 and of the plasmids from which it is generated.
  • Figure 41a shows the steps leading to obtaining the vector pLZAWl-89.6P-9;
  • Figure 41b shows the steps leading to obtaining the vector pLZAW-l-89.6P-SIVgpn-18 from the vector pLZAW-l-89.6P-9.
  • Figure 42 shows the fragments generated in the PCR analysis of the thymidine kinase (TK) locus of the MVA-89.6P-S ⁇ Vgpn virus.
  • the upper part of the figure, marked “A” shows a scheme representing the pairing positions of the oligonucleotides used as primers with respect to the left (TK-L) and right (TK-D) arms of the TK locus, as well as the estimated sizes of the fragments that are generated in the PCR performed using the MVA-89.6P-SIVgpn virus (first line of the graph) or the MVA virus without insert (lower line of the graph, located in the area marked "WT”) as a template.
  • the lower part, marked “B”, shows the photograph of the gel obtained by electrophoresis the PCR products performed with the primers TK-L and TK-R2 on DNA extracted from cells infected with MVA-WT (lane 3) , the P2 stock of MVA-89.6P-SIVgpn (lane 4), the P3 stock of MVA-89.6P-SIVgpn (lane 5) or transfected with plasmid pLZAWl-89.6P-SIVgpn-18 (positive control, C +) ( street 2).
  • Lane 1 corresponds to a size marker.
  • Figure 43 shows the results of Western blot analysis of the expression of heterologous genes 89.6p-gpl20 (upper part of the figure, marked as “anti-gpl20", in which the position of the protein is indicated by the arrow labeled "89.6P") and SlVgpn (bottom of the figure, marked as i 'anti-SIVp27 ", in which the position of the SlVgpn protein is indicated by the arrow labeled” GPN ") detected in extracts of cells transiently transfected with plasmid pLZAWl-89.6P-SIVgpn-18 (second lane, marked “C +") or in cell extracts infected with Pl stocks (third lane, marked "Pl"), P2 (fourth lane, marked “P2”) and P3 (fifth lane, marked “P3”) of the virus MVA-89.6P.SIV-gpn, or from cells treated under the same conditions but which had not come into contact with the plasm
  • Figure 44 shows, at the top, the results of immunostaining of CEF cells infected with the MVA-89.6P-SIVgpn vector and treated with anti-WR antibodies (which recognizes the part of the MVA-derived vector) (photo of the left), anti-gpl20 (central photograph) and anti-SIVp27 (which recognizes the part of the SlVgpn protein corresponding to the p27 protein) photograph on the right), while at the bottom a graph appears in which the percentages are represented of the plates stained with each of the antibodies calculated with respect to the total plates stained with the anti-WR antibody.
  • anti-WR antibodies which recognizes the part of the MVA-derived vector
  • anti-gpl20 central photograph
  • anti-SIVp27 which recognizes the part of the SlVgpn protein corresponding to the p27 protein
  • Figure 45 shows the fragments generated in the PCR analysis of the TK locus of the NYVAC-89.6P-SIVgpn virus.
  • the upper part of the figure, marked “A” shows a scheme in which the pairing positions of the oligonucleotides used as primers with respect to the left (TK-L) and right (TK-R) arms of the locus are represented TK, as well as the estimated sizes of the fragments that are generated in the PCR performed using as a template the NYVAC-89.6P-SIVgpn virus (first line of the graph) or the NYVAC virus without insert, (lower line of the part of the marked graph as "NYVAC-WT").
  • Lane 1 shows the photograph of the gel obtained by electrophoresis the PCR products performed with primers TK-L and TK-R2 on DNA extracted from cells infected with NYVAC-WT (lane 2) , the P3 stock of the NYVAC-89.6P-SIVgpn (lane 3), the P3 stock of the MVA-89.6P-SIVgpn (lane 4) or the MVA-WT virus, which lacks an insert (lane 5).
  • Lane 1 corresponds to a size marker
  • Figure 46 shows the results of Western blot analysis of the expression of heterologous genes 89.6p-gpl20 (upper part of the figure, marked as “anti-gpl20", in which the position of the protein is indicated by the arrow labeled "89.6P") and SlVgpn (bottom of the figure, marked “anti-SrVp27", in which the position of the SlVgpn protein is indicated by the arrow labeled "GPN") detected in cell extracts infected with the Pl (lane 3), P2 (lane 4) and P3 (lane 5) stocks of the NYVAC-89.6P-SIVgpn vector, with the P3 stock of the MVA-89.6P-SIVgpn vector (lane 2) or in extracts of cells treated under the same conditions but that had not come into contact with any virus stock (cell cultures in which the infection was simulated, analyzed in lane 1).
  • Figure 47 shows, in the upper part, the results of immunostaining of CEF cells infected with the NYVAC-89.6P-SIVgpn vector and treated with anti-WR antibodies (left photo), anti-gpl20 (central photography) and anti-SIVp27 (photo on the right), while at the bottom a graph appears in which the percentages of the stained plates are represented with each of the antibodies calculated with respect to the total of plates stained with the anti-WR antibody .
  • Figure 48 shows photographs of Western-type transfers of polyacrylamide gels in which extracts of cells infected with different P3 stocks of NYVAC-89.6P-SIVgpn viruses (lanes 1 and 2, corresponding, respectively, to stocks had been electrophoresed P3.1 (01/29/04) and P3.2 (02/25/04)) and MVA-89.6P-SIVgpn (P3 stocks from 06/20/03 (3rd street), P3 from 09/20/04 (lane 4), P3.1 of 09/20/04 (lane 5) and P3.2, of 10/1/04 (lane 6), lane 7 corresponds to an extract of cells in which Ia had been simulated infection
  • the photograph on the left corresponds to incubation with a rabbit polyclonal anti-gpl20 antibody; the position of the 89.6P-gpl20 protein is indicated by an arrow marked "89.6P.”
  • the photograph on the right corresponds to the incubation with an anti-SIV-gag-p27 monoclonal antibody, which recognizes the
  • Figure 49 shows a schematic of the study in cynomolgus monkeys to assess inmunogem 'Cidad and efficacy as vaccines against the SHIV of poxvirus derived vectors of the present invention, which are marked the various events.
  • the numbers below the second horizontal line indicate the time elapsed, in weeks, since the beginning of the study.
  • Point 0 corresponds to the inoculation of the first vaccination vector.
  • DNA DNA-SHFV inoculation, that is, two naked plasmids with inserts corresponding to protein-coding sequences of SHIV89.6P, Env (pcDNA-gpl20 89.6p) and SlVgpn (pcDNA-gag-pol-ne ⁇ ) (groups 1 and 2), or of the naked plasmid without DNA-emp insert ( group 3), NYVAC vs MVA: inoculation of the vectors derived from poxvirus NYVAC-89.6P-SIVgpn (group 2), MVA-89.6P-SIVgpn (group 1) or of the wild-type NYVAC vector, devoid of insertion with coding sequences of SHIV89.6P proteins (group 3); CHALLENGE: inoculation of the chimeric pathogenic virus SHIV
  • the thin arrows, marked “CMI”, indicate the times when peripheral blood samples were taken from the macaques.
  • Figure 50 shows, in logarithmic scale, the number of SFC cells (spot form ⁇ ng cells) expressing IFN- ⁇ obtained per 10 6 peripheral blood mononuclear cells (PBMC) in samples from each of the macaques included in the vaccination efficacy study.
  • the numbers that appear on the abscissa axis indicate, in weeks, the moment in time at which each sample was taken, taking as time 0 the moment of administration of the first vaccination dose.
  • the first vertical of points, marked by squares with a vertex pointing upwards ( #) corresponds to samples taken from each of the group 1 macaques (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + MVA-89.6P-SIVgpn);
  • the second vertical of points, marked by squares whose vertices determine two parallel lines (ü) corresponds to samples taken from each of the macaques of group 2 (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SHV89.6P + NYVAC-89.6P-SlVgpn) fusion protein SlVgpn);
  • the third vertical of points, marked by circles () corresponds to
  • Each point represents the value obtained for a specific macaque, while the rectangles located in each of the verticals indicate the average value corresponding to all the macaques of that group for the samples taken at the same time.
  • the presence of a number of points lower than 7 in some verticals indicates that the point located on the abscissa axis represents more than one macaque, in each of which the value of the CFS detected for every 10 6 PBMCs analyzed was not greater than 1.
  • the dotted line indicates the value below which the values are not considered significant (20 SFC).
  • White arrows indicate the inoculation of a vaccination vector; The black arrow indicates the moment at which the challenge occurred by inoculating the SHIV89.6P.
  • Figure 51 shows, on a logarithmic scale, the average SPF values expressing IFN- ⁇ obtained, for every 10 PBMC analyzed, for each group of macaques throughout the study time, time expressed in weeks on the axis of abscissa, corresponding time 0 at the time of administration of the first dose of vaccination.
  • Dotted arrows indicate the times when vaccination doses were administered.
  • the arrow with continuous dark fill indicates the moment in which the challenge occurred by inoculating the SHIV89.6P virus.
  • the data indicated by squares with a vertex pointing up ( ⁇ -) correspond to group 1 (immunized with two plasmids with inserts corresponding to the g ⁇ l20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + MVA-89.6P -SIVgpn); the data indicated by squares whose vertices determine two parallel lines (•) correspond to group 2 (immunized with individual plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + NYVAC-89.6P- SIVgpn).
  • the data indicated by triangles () correspond to group 3 (immunized with a plasmid from which no antigen corresponding to SHIV89.6P + NYVAC-WT was expressed).
  • Figure 52 shows, on a logarithmic scale, the average SPF values expressing IL-2 obtained, for every 10 6 PBMCs analyzed, for each group of macaques throughout the study time, time expressed in weeks on the axis of abscissae, corresponding to time 0 at the time of administration of the first vaccination dose.
  • Dotted arrows indicate the times at which vaccination doses were administered.
  • the arrow with continuous dark fill indicates the moment in which the challenge occurred by inoculating the SHIV89.6P virus.
  • the data indicated by squares with a vertex pointing up ( ⁇ -) correspond to group 1 (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + MVA-89.6P -SIVgpn); the data indicated by squares whose vertices determine two parallel lines ( • ») correspond to group 2 (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + NYVAC-89.6P -SIVgpn).
  • the data indicated by triangles () correspond to group 3 (immunized with a plasmid from which no antigen corresponding to SHIV89.OP + NYVAC-WT) was expressed.
  • Figure 53 shows, on a logarithmic scale, the average SPF values that expressed IL-4 obtained, for every 10 6 PBMCs analyzed, for each group of macaques throughout the study time, time expressed in weeks on the axis of abscissa, the time 0 corresponding to the administration of the first vaccination dose.
  • Dotted arrows indicate the times at which vaccination doses were administered.
  • the arrow with continuous dark fill indicates the moment in which the challenge occurred by inoculating the SHIV89.6P virus.
  • the data indicated by squares with a vertex pointing upwards ( ⁇ ) correspond to group 1 (immunized with two plasmids with inserts corresponding to the g ⁇ l20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + MVA-89.6P- SIVgpn); the data indicated by squares whose vertices determine two parallel lines (») correspond to group 2 (immunized with individual plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + NYVAC-89.6P- SIVgpn).
  • the data indicated by triangles ( ⁇ ) correspond to group 3 (immunized with a plasmid from which no antigen corresponding to SHIV89.6P + NYVAC-WT was expressed).
  • Figure 54 corresponds to the assessment of viremia in the three groups under study.
  • the upper graph corresponds to group 3, immunized with a plasmid from which no antigen corresponding to SHIV89.6P + NYVAC-WT was expressed.
  • the lower graphs correspond to the groups that received vectors derived from poxvirus: the graph in the lower left corresponds to group 1, immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.
  • Figure 55 shows the concentration, per microliter of blood, of CD4 + cells (points marked by unfilled circles, ⁇ ) and CD8 + cells (points marked by unfilled triangles, A), detected by FACS through the use of specific targeted antibodies against each of these types of cells.
  • Each group of points corresponds to the values obtained in the samples of a different macaque, extracted at the time at the time indicated, expressed in weeks, at the top of the graphs.
  • the time 0 corresponds to the moment of inoculation of the SHIV89.6P virus, indicated by the abbreviation "desf".
  • the upper graphs correspond to group 1 macaques, immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + MVA-89.6P-SIVgpn.
  • the intermediate graphs correspond to group 2 macaques, immunized with individual plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SlVgpn fusion protein of SHIV89.6P + NYVAC-89.6P-SIVgpn.
  • the lower graphs correspond to group 3 macaques, immunized with a plasmid from which no antigen corresponding to SHIV89.6P + NYVAC-WT was expressed.
  • the last graph lacking points indicative of values, marked "D7 98028 (euth)", corresponds to a macaque that had to be sacrificed due to the advanced state of the disease that the inoculated SHIV89.6P virus triggered in it.
  • Figure 56 shows, in ordinates, the survival percentage of the macaques that made up each of the groups according to the weeks elapsed since the time of infection with the SHIV89.6P virus, indicated in abscissa, corresponding time 0 to of inoculation of said virus.
  • the data indicated by squares with a vertex pointing up correspond to group 1 (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the SIYgpn fusion protein of SHIV89.6P + MVA-89.6P -SIVgpn); the data indicated by squares whose vertices determine two parallel lines ( «) correspond to group 2 (immunized with two plasmids with inserts corresponding to the gpl20 protein of SHIV89.6P and the fusion protein SlV gpn of SHIV89.6P + NYVAC-89.6P -SrVgpn).
  • the data indicated by triangles (-.) Correspond to group 3 (immunized with a plasmid from which no antigen corresponding to SHIV89.6P + NYVAC-WT was expressed).
  • the plasmid vector pLZAWlgpl20B / gagpolnef-Bl was constructed by the inventors for the generation of the recombinant MVA virus that expresses the Env genes of HIV-I (BX08 isolation) and the Gag chimera, PoI and Nef (UIB isolation) - both belonging to clade B.
  • Plasmid pLZAWlgpl20B / gagpolnef-Bl is a derivative of pUC designed for the selection of blue / white plates.
  • TK-R right and left (TK-L) flanking sequences of the thymidine kinase (TK) viral gene
  • E3L promoter directing the expression of the ⁇ -galactosidase selection marker
  • AP ampicillin resistance gene
  • gpl20-BX08 SEQ ID NO: 15
  • gagpoInef-IIIB SEQ ID NO: 16
  • the plasmid is a derivative of pUC containing the right (TK-R) and left (TK-L) flanking sequences of the thymidine kinase (TK) viral gene, the E3L promoter directing the expression of the ⁇ -galactosidase selection marker, and the ampicillin resistance (AP) gene. Between the two flanking sequences are the two sequences that are to be expressed, gpl20-BX08 and gagpolnef-IIIB, which have been modified to optimize the use of mammalian codons. To direct the expression of each of the sequences there are two early / late synthetic promoters (pE / L), located in opposite orientation in the area of the insert furthest from the flanking sequences.
  • pE / L early / late synthetic promoters
  • the plasmid was provided by Linong Zhang, of the Aventis group, Canada. It is a pUC-based plasmid that contains a left arm of the TK gene, cloning sites to insert exogenous genes, a short repetition of the left arm of the TK gene, an E3L promoter directing the expression of a ⁇ -gal cassette and a right arm of the TK gene.
  • the construction of plasmid pLZAW ⁇ gpl20B / gagpolnefB-l from these other two plasmids s is depicted in Figure 2. Briefly, a DNA fragment of
  • plasmid pMA60gpl20 / gagpolnefB-12.17 modified by incubation with the Klenow DNA polymerase to generate blunt ends, and cloned into the pLZAWl vector previously digested with the endonuclease.
  • AscI restriction modified by incubation with Klenow, and dephosphorylated by incubation with the enzyme alkaline phosphatase, thereby generating the plasmid transfer vector pLZAWlgpl20B / gagpolnef-Bl.
  • the generated plasmid directs the insertion of the genes of interest into the TK locus of the genome of the attenuated MVA virus.
  • CEF chicken embryo fibroblasts
  • Recombinant MVA viruses containing the gpl20B / gagpolnef-B genes and transiently coexpressing the ⁇ -Gal marker gene (MVA-B (X-GaI + )), were selected by consecutive plaque purification passes on CEF cells stained with 5-Bromo-4-chloro-3-indolyl- ⁇ -galactoside (XGaI) (300 ⁇ g / ml).
  • Recombinant MVAs that contained the gpl20B / gagpolnef-B genes and that had lost the marker gene (MVA-B (X-GaI ' )) were selected as viral stains not stained in CEF cells in the presence of XGaI.
  • the isolated plates were expanded in CEF for 3 days, and the crude viral extract obtained was used for the consecutive plate purification step.
  • a P3 stock of purified virus from infected CEF cells at a multiplicity of infection of 0.05 pfu / cell was prepared through two 45% sucrose mattresses. This P3 stock, with a titer of 2.4 x 10 9 pfu / ml, was the one used in the immunization protocols.
  • a PCR analysis of the viral DNA extracted from infected CEF cells at a multiplicity of 5 pfu / cell was performed, using oligonucleotides that hybridize or with the flanking TK regions of the insert of interest or with internal regions of the inserted genes.
  • the sequence of the oligonucleotides used as primers and the position in which they appear on the plasmid transfer vector pLZAWlgpl20B / gagpolnefB-l are shown in Table 3.
  • FIG. 3 shows photographs of the gels obtained by electrophoresis the PCR products performed with the different primer pairs to perform the analysis of the HIV-I fragments included in the MVA-B virus.
  • CEF chicken embryo cells
  • the wild-type NYVAC virus used in this example, as well as the recombinant forms NYVAC-B and NYVAC-C subsequently used and which have been generated by inserting on the wild-type NYVAC the same sequences used to generate, respectively, the vectors of the Invention MVA-B and MVA-C 5 were donated by the Aventis group, in the framework of collaboration of the EuroVac I project, in vials containing approximately 7x10 7 infectious units per vial.
  • the NYVAC-B vector was grown on CEF cells and purified on a sucrose mattress under the same conditions as MVA-B.
  • Figure 4 shows a photograph of a gel corresponding to the analysis of PCR products corresponding to the TK locus.
  • 100 ng of the viral DNA extracted from infected CEF cells at a multiplicity of 5 pfu / cell with the NYVAC-WT (lane 1), MVA-B (lane 2) or MVA-WT (lane 3) viruses were used as a template for PCR analysis of the TK locus using 100 ng of the oligonucleotides that hybridize with the flanking sequences of the TK, TK-L (SEQ ID NO: 1) and TK-R (SEQ ID NO: 2) genetics as primers ) in a reaction mixture containing 0.3 mM dNTPs, 2.5 mM MgCl 2 and 2.5 U of the Platinum Taq polymerase enzyme.
  • the program includes a cycle of denaturation at 94 0 C for 5 min, 25 cycles of denaturation at 94 0 C for 1 min, hybridization at 60 0 C for 1 min and extension at 68 ° C for 2 min, and finally a cycle of extension at 68 ° C for 10 min.
  • the PCR products were analyzed on a 0.7% agarose gel, obtaining the result shown in Figure 4.
  • lane 2 the one corresponding to the MVA-B vector, a band of approximately 6 Kb compatible is observed with the presence of the complete insert, while in the streets corresponding to the wild-type viruses MVA-WT (3) and NYVAC-WT (1) appear much smaller bands, which would correspond to the TK locus without insert.
  • TK gene is one of those that has undergone selective inactivation in the NYVAC virus (see Figure 1), the size of the TK gene being smaller in this attenuated form of Vaccinia.
  • the expression of the gpl20-BX08 and gagpolnef-B proteins by the MVA-B virus was analyzed by Western blotting. Monolayers of CEF cells grown in 12-well plates were infected with 5 pfu / cell of the different stocks of MVA-B recombinant virus: Pl, P2 and P3.
  • both antigens are efficiently expressed by the different stocks of the MVA-B recombinant generated.
  • Example 3 Checking the stability of the MVA-B To verify that the recombinant MVA-B could be passed successively without losing the expression of the inserted genes, a stability test was carried out by performing several successive passes of the recombinant MVA-B virus in CEF cells. Monolayers of CEF cells grown on PlOO plates were infected successively, at a multiplicity of 0.05 pfu / cell, starting from the P2 stock of MVA-B (pass 6) until generating pass 10 (PlO). Next, monolayers of CEF cells grown in 6-well plates were infected with a 10 ° dilution of the viral extract obtained from the last pass (PlO).
  • the generated lysis plaques were analyzed by immunostaining, using polyclonal anti-WR antibodies (which recognize MVA virus proteins); anti-gpl20 (which recognizes the gpl20 of BX08 insulation); and anti-p24 (which recognizes the gagpolnef-B chimera of IIIB insulation); these last two antibodies were the same as those used in Example 2.
  • the results of these immunostains are shown in part A of Figure 6.
  • the plate counts performed showed that 100% of the plates were stained with the anti-antibodies. -WR, anti-p24 and anti-gpl20. Therefore, it can be considered that, after 10 successive passes of the virus in CEF 5 cells, both antigens are efficiently expressed (100% of the plates recognized by the three antibodies), corroborating the stability of the generated product.
  • Extracts of CEF cells infected with passes 7, 8, 9 and 10 were also analyzed by Western blot, tests to which the stains shown in part B of Figure 6 correspond. To perform these tests, CEF cell monolayers grown in 12-well plates were infected with 5 pfu / cell of the viral extracts obtained in passes 7 (P7), 8 (P8), 9 (P9) and 10 (PlO) of the MVA-B recombinant virus.
  • gagpolnef-B fusion protein was analyzed following a similar procedure: monolayers of CEF cells grown in 12-well plates were infected with MVA-B at 5 pfu / cell although, in this case, the presence of the protein was tested in the cell precipitate obtained at 6, 18 and 24 hours post-infection, also by Western blotting and showing the presence of the protein by reaction with the polyclonal anti-p24 antibody used in Examples 2 and 3. Results are shown in Figure 8. It can be observed the correct expression of this fusion protein over the time of infection both from MVA-B (lane 2 of each time of infection) and from NYVAC-B (lane 1) , although there is a greater accumulation of the fusion protein in cells infected with MVA-B.
  • mice 10 days after immunization the mice were sacrificed by cervical dislocation, and the spleen was removed to carry out the ELISPOT assay that detects specific T cells against the antigen based on their quality to produce ⁇ FN- ⁇ , which is a positive indicator that an immunogen is capable of selectively activating a cellular response of the CD4 + ThI type, a characteristic that is considered indicative of the efficacy of a vaccination process.
  • 96-well plates with nitrocellulose bottoms were covered with 75 ⁇ l / well at a concentration of 6 ⁇ g / ml of a murine anti-IFN- ⁇ rat monoclonal antibody (R4-6A2, Pharmingen, San Diego, CA) resuspended in PBS, incubating overnight at room temperature. Subsequently the wells were washed three times with medium RPMT and finally incubated with medium supplemented with 10% FCS, at the least one hour at 37 0 C under CO 2 at 5%.
  • R4-6A2 murine anti-IFN- ⁇ rat monoclonal antibody
  • the spleens of immunized mice which once extracted were maintained in RPMI + 10% FCS, were placed in a sterile grid on a 60 mm plate, and homogenized, disintegrating the extract by passing through needles of different caliber (21G-> 25G).
  • the cells thus disintegrated were centrifuged 5 min at 1,500 rpm at 4 0 C, and washed twice with RPMI + 10% FCS.
  • NH 4 CI sterile 0.1 M (2 ml / spleen) was kept at 4 0 C for 3-5 min, it was added RPMI + 10% FCS and centrifuged.
  • each group of peptides was diluted to a concentration of 10 ⁇ g / ml in RPMI + 10% FCS to which 30 U / ml of IL-2 was added.
  • 100 ⁇ l of peptide group mixture was added to each well, to which 100 ⁇ l / well of splenocytes from the immunized animals was added, at a concentration of 10 7 splenocytes / ml and 1/4 and 1 dilutions / 16 of it.
  • the plates were incubated for 48 hours at 37 ° C under CO 2 atmosphere, washed 5 times with PBS containing 0.05% Tween 20 (PBST), and incubated with 2 ⁇ g / ml of the anti rat monoclonal antibody - Biotinylated IFN- ⁇ XMGl. 2 (Pharmingen) diluted in PBST, for 2 hours at room temperature. The plates were then washed 5 times with PBST and a 1/800 dilution of avidin-peroxidase (0.5 mg / ml) (Sigma) was added.
  • PBST PBS containing 0.05% Tween 20
  • the stimulated cytokine production in the splenocytes of the immunized mice was evaluated when mixed with the different groups of overlapping peptides.
  • the splenocytes isolated in Example 5 were cultured (5x10 6 cells / well) in a 24-well plate and stimulated with 1 ⁇ g / ml of each peptide group. The plate was incubated for 5 days at 37 0 C under 5% CO2. After this period, the supernatants were harvested crop and centrifuged at 1500 rpm, 5 min, 4 0 C and stored at -7O 0 C until use.
  • the levels of interferon-cytokine cytokine (IFN- ⁇ ) are a positive indicator of the activation of a cellular response of the CD4 + ThI type, while the IL-IO cytokine, meanwhile, is an indicator of activation of the cellular response type CD4 + Th2.
  • IFN- ⁇ and IL-IO levels indicates whether vaccination is more or less effective.
  • IL-IO and IFN- ⁇ present in the supernatants of cultures of re-stimulated splenocytes "m vitro", these levels were determined by commercial ELISA kits from Pharmingen.
  • 96-well flat bottom plates were covered with the anti-cytokine antibody, diluted in their corresponding buffer, and incubated overnight at 4 ° C. Then, the wells were washed with PBST, and blocked for 1 hour at room temperature with PBST + 10% FCS (PBSTB). Subsequently, serial dilutions in PBSTB of the samples and of the standard cytokines were added, the plate being incubated at room temperature for 2 hours. Then, it was washed with PBST and incubated at room temperature, for 1 hour, with the specific biotinylated anti-cytokine antibody, together with the peroxidase-conjugated streptavidin, all diluted in PBSTB.
  • reaction was detected with TMB (3.3 r , 5,5'-tetramethylbenzidine, Sigma), at room temperature and in the dark, and stopped, after 30 min incubation, with H 2 SO 4 2 N. Absorbance was read at 450 nm and the values obtained were extrapolated in the standard curve (pg / ml).
  • the following step was to elucidate whether the cellular response that was being obtained in ELISPOT was due to the secretion of IFN- ⁇ by CD8 + T cells or by CD4 + T cells.
  • the splenocytes obtained in Example 5 were restimulated in vitro for 1 hour at 37 0 C with 5 ug / ml of each group overlapping peptides to the CIADE B, after which Brefeldin at a concentration of 10 .mu.g / ml, incubating overnight at 37 ° C. Seven days later a surface tightening was carried out using specific anti-CD4 or anti-CD8 antibodies conjugated to FITC, followed by an intracellular tightening using anti-IFN- ⁇ conjugated to PE . Once fixed the cells were analyzed in the flow cytometer.
  • mice 6-8 weeks of age were inoculated intramuscularly (im) with 100 ⁇ g of the DNA-B DNA vector (courtesy of GeneArt, Germany), which contains the same coding sequences of HIV-I proteins that carry MVA-B inserted, but under the control of both cytomegalovirus promoters and inserted into plasmid vectors (one for gpl20 and one for the Gag-Pol-Nef fusion protein).
  • Control groups were inoculated (im) with 100 ⁇ g of DNA without insert (DNA 0).
  • mice 15 days later they were immunized intraperitoneally (ip) with 2 x 10 7 pfu / mouse of MVA-B (stock P3) or of NYVAC-B (Aventis group, France), which expresses the same HIV antigens as MVA- B.
  • a third group received a second dose of DNA-B (100 ⁇ g, im).
  • Control groups received a 2 x dose of 10 7 pfu / mouse of MVA-WT or NYVAC-WT. 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • mixtures of splenocytes from the animals immunized in each group were contacted for 48 hours with different mixtures (pools) of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all included antigenic regions in the MVA-B and NYVAC-B recombinant viruses.
  • the number of IFN- ⁇ producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • the extracted splenocytes were stimulated in vitro with the different mixtures of overlapping peptides belonging to clade B (1 ⁇ g / mL) and incubated for 5 days at 37 0 C. After that time, the supernatants were collected and stored at -7O 0 C IFN- ⁇ levels were determined by ELISA using a commercial Kit (Pharmigen). The results are shown in Figure 13, where it is observed that IFN- ⁇ production differs depending on whether MVA-B or NYVAC-B is used as the second immunization vector.
  • Example 10 Use of MVA-B in induction / potentiation protocols: Production of ⁇ -chemokines by re-stimulated splenocytes
  • the extracted splenocytes were stimulated in vitro with the different mixtures of overlapping peptides belonging to clade B (1 ⁇ g / ml) and incubated for 5 days at 37 0 C.
  • Example 11 Use of MVA-B in induction / potentiation protocols: Identification of specific types of IFN- ⁇ and TNF- ⁇ producing T cells
  • the extracted splenocytes were stimulated in vitro with the envelope peptide of the BxO 8 isolate (5 ⁇ g / ml) and incubated for 1 hour at 37 0 C. After this time, Brefeldin A (10 ⁇ g / mL) was added and left incubating at 37 0 C.
  • Example 12 Use of MVA-B in induction / potentiation protocols that combine vectors derived from Vaccinia: Specific immune response of IFN-y producing T cells.
  • mice 6-8 weeks of age were inoculated intraperitoneally (ip) with a dose of 2 x 10 7 pfu / mouse of MVA-B (stock P3), NYVAC B (Aventi group) or MVA WT. 15 days later, the mice received a second intraperitoneal (ip) dose of 2 x 10 7 pfu / mouse vector, so that mice that had received MVA-B in the first dose, MVA- were inoculated NYVAC-B B to mice that had received NYVAC-B at the first dose and NYVAC- WT (Aventis group) to mice that had received MVA-WT in the first dose. Groups were thus generated that had been inoculated with the following vector combinations: NYVAC-B + MVA-B, MVA-B + NYVAC-B and MVA-WT + NYVAC-WT.
  • mice 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • splenocyte mixture groups of the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all the antigenic regions included in MVA-B and NYVAC-B recombinant viruses.
  • the number of IFN- ⁇ producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • Example 13 Use of MVA-B in induction / potentiation protocols that combine vectors derived from Vaccinia: Production of IFN- and by stimulated splenocytes
  • the extracted splenocytes were stimulated in vitro with the different mixtures of overlapping peptides belonging to clade B (1 ⁇ g / ml) used in the previous Examples and incubated for 5 days at 37 0 C. After that time, the supernatants were collected and stored at -70 ° C. IFN- ⁇ levels were determined by ELISA using a commercial lcit (Pharmigen).
  • Example 14 Use of MVA-B in induction / potentiation protocols that combine DNA vectors and viral vectors derived from Vaccinia: Specific immune response of IFN-producing T cells and in humanized HHDII mice
  • mice were also carried out. These mice, generated by F. Lemonier in France and assigned by him for the performance of the experiments described herein, only allow the presentation of antigens in the context of human MHC class I, having murine MHC genes replaced class I and ⁇ -microglobulin by the corresponding human genes.
  • mice Groups of 4 6-10 week old HHDII mice were inoculated intramuscularly (im) with 100 ⁇ g of the DNA-B DNA vector (courtesy of GeneArt, Germany) also used in Example 8. Control groups were inoculated ( im) with 100 ⁇ g of DNA without insert (DNA 0). 15 days later they were immunized intraperitoneally (Lp.) With 2 x 10 7 pfu / mouse of MVA-B (stock P3) or of NYVAC-B (Aventis group, France), which expresses the same HIV antigens as MVA -B. A third group received a second dose of DNA-B (100 ⁇ g, im).
  • the control group received a dose of 2 x 10 7 pfu / mouse of MVA-WT. 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay. To detect the specific immune response, mixtures of splenocytes from the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all the antigenic regions included in the viruses. MVA-B and NYVAC-B recombinants. The number of IFN- ⁇ producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases. • denotes differences significant (p ⁇ 0.005) of each group with respect to the negative control. * denotes significant differences (p ⁇ 0.05) between the different groups
  • Figure 18 shows the results obtained. It is observed that the combinations DNA-B + MVA-B and DNA-B + NYVAC-B induce a broad response against peptide groups, with immunodominance against Env.
  • Example 15 Use of MVA-B in induction / potentiation protocols that combine DNA vectors and viral vectors derived from Vaccinia: Specific immune response of IL-2 producing T cells in humanized HHDII mice
  • Groups of 4 HHDII mice 6-10 weeks of age were inoculated intramuscularly (im) with 100 ⁇ g of the DNA-B DNA vector (courtesy of GenArt, Germany).
  • the control group was inoculated (im) with 100 ⁇ g of DNA without insert (DNA 0). 15 days later they were immunized intraperitoneally (ip) with 2 x 10 7 pfu / mouse of MVA-B (stock P3) or of NYVAC-B (Aventis group, France), which expresses the same HIV antigens as MVA- B.
  • a third group received a second dose of DNA-B (100 ⁇ g, im).
  • the control group received a dose of 2 x 10 7 pfu / mouse of MVA-WT.
  • mice 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • mixtures of splenocytes from the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all the antigenic regions included in the viruses.
  • MVA-B and NYVAC-B recombinants.
  • the number of IL-2 producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • Figure 19 shows the results obtained, in which: • denotes significant differences (p ⁇ 0.005) of each pool with respect to the negative control.
  • Example 16 Use of MVA-B in induction / potentiation protocols that combine vectors derived from Vaccinia: Specific immune response of IFN- ⁇ producing T cells in humanized HHDII mice Five groups of 4 HHDII mice 6-10 weeks old were inoculated intraperitoneally (ip) with a dose of 2 x 10 7 pfu / mouse of MVA-B (stock P3) (2 groups), NYVAC B (Aventis group) (2 groups) or NYVAC WT (control group).
  • mice received a second dose intraperitoneally (ip) of 2 x 10 7 pfu / mouse vector, so that one of the groups that had received MVA-B in the first dose was inoculated NYVAC-B and another MVA-B again, one of the groups that had received NYVAC-B in the first dose was inoculated NYVAC-B again and another MVA-B and, finally, the control group received in the second dose MVA- WT (Aventis-Pasterur).
  • ip intraperitoneally
  • mice 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • splenocyte mixture groups of the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all the antigenic regions included in MVA-B and NYVAC-B recombinant viruses, The number of IFN- ⁇ producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • Figure 20 shows the results obtained, in which: • denotes significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control.
  • Example 17.- Use of MVA-B in induction / potentiation protocols that combine vectors derived from Vaccinia Specific immune response of IL-2 producing T cells in humanized HHDH mice Five groups of 4 HHDII mice 6-10 weeks old were inoculated intraperitoneally (ip) with a dose of 2 x 10 7 pfu / mouse of MVA-B (stock P3) (2 groups), NYVAC B (Aventis group) (2 groups) or NYVAC WT (control group).
  • mice received a second dose intraperitoneally (ip) of 2 x 10 7 pfu / mouse vector, so that one of the groups that had received MVA-B in the first dose was inoculated NYVAC-B and another MVA-B again, one of the groups that had received NYVAC-B in the first dose was inoculated NYVAC-B again and another MVA-B and, finally, the control group received in the second dose MVA- WT (Aventis group).
  • ip intraperitoneally
  • Groups were thus generated that had been inoculated with the following vector combinations: MVA-B + NYVAC-B, NYVAC-B + MVA-B, MVA-B + MVA-B, NYVAC-B + NYVAC-B and NYVAC-WT + MVA-WT.
  • mice 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • splenocyte mixture groups of the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade B (5 ⁇ g / ml) comprising all the antigenic regions included in MVA-B and NYVAC-B recombinant viruses.
  • the number of IL-2 producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • Figure 21 shows the results obtained, in which: • denotes significant differences (p ⁇ 0.005) of each peptide group with respect to the negative control.
  • the pLZAWlgpl20C / gagpolnef-C-14 vector was built by the inventors for the generation of the MVA recombinant virus that expresses sequences genetics corresponding to the g ⁇ l20 protein (gpl20-C) and the chimera of Gag, PoI and Nef (gagpolnef-C) of the CN54 isolation, which belongs to clade C.
  • Plasmid pLZAWlgp! 20C / gagpolnef-C-14 is a derivative of pUC designed for the selection of blue / white plates. It contains the right (TK-R) and left (TK-L) flanking sequences of the thymidine kinase (TK) viral gene, the E3L promoter directing the expression of the ⁇ -galactosidase selection marker, and the ampicillin resistance gene ( AP). Between the two flanking sequences are the two sequences that are to be expressed, gpl20-C (SEQ ID NO: 17) and gagpolnef-C (SEQ ID NO: 18), which have been modified to optimize the use of mammalian codons.
  • each of the sequences there are two early / late synthetic promoters (pE / L), located in opposite orientation in the area of the insert furthest from the flanking sequences.
  • the position of each of the components included in the plasmid is described below in Table 4.
  • the plasmid is a derivative of pUC that contains the right (TK-R) and left (TK-L) flanking sequences of the thymidine quüiase (TK) viral gene at pUC cloning sites. Between the two flanking sequences are the two sequences that are to be expressed, gpl20-C and gagpolnef-C, which have been modified to optimize the use of mammalian codons. To direct the expression of each of the sequences there are two early / late synthetic promoters (pE / L), located in opposite orientation in the area of the insert furthest from the flanking sequences.
  • pE / L early / late synthetic promoters
  • the plasmid was provided by Linong Zhang, of the Aventis group, Canada. It is a plasmid based on pUC that contains a left arm of the TK gene, cloning sites to insert exogenous genes, a short repetition of the left arm the TK gene, an E3L promoter directing the expression of a cassette with ⁇ -gal and a right arm of the TK gene.
  • Plasmid pLZAWlgpl20C / gagpolnefC-14 The construction of plasmid pLZAWlgpl20C / gagpolnefC-14 from these two other plasmids is depicted in Figure 22. Briefly, a 6047 kpb DNA fragment containing the genes of interest was removed by EcoRV digestion of plasmid pMA60gpl20C / gagpolnefC- 14,15, modified by incubation with Klenow DNA polymerase to generate blunt ends, and cloned into the pLZAWl vector previously digested with AscI restriction endonuclease, modified by incubation with Klenow, and dephosphorylated by incubation with alkaline phosphatase from calf intestine , thus generating the plasmid transfer vector pLZAWlgpl20C / gagpolnef-C-14.
  • the generated plasmid directs the insertion of the genes of interest into the TK locus of the MVA attenuated virus genome.
  • the subsequent spread of the recombinant virus leads to the self-deletion of ⁇ -gal by homologous recombination between the left arm of TK and the short repetition of the left arm of TK that flank the marker. Construction of the MVA-C recombinant viros
  • CEF chicken embryo fibroblasts
  • MVA viruses containing the gpl20C / gagpolnef-C genes and transiently coexpressing the ⁇ -Gal marker gene were selected by consecutive plate purification passes on stained CEF cells with 5-Bromo-4-chloro-3-indolyl- ⁇ -galactoside (XGaI) (300 ⁇ g / ml).
  • MVA-B X-GaI "
  • a P3 stock of virus was prepared, purifying it from infected CEF cells at a multiplicity of infection of 0.05 per pass through two 36% sucrose mattresses.
  • This P3 stock with a titer of 4.25 x 10 8 pfu / ml, was the one used in immunization protocols in the murine model.
  • a PCR analysis of the viral DNA extracted from infected CEF cells at a multiplicity of 5 pfu / cell was performed, using oligonucleotides that hybridize or with TK regions flanking the insert or with internal regions of the inserted genes.
  • the sequence of the oligonucleotides used as primers and the position in which they appear on the transfer plasmid vector pLZAWlgpl20C / gagpolnefC-14 are shown in Table 6.
  • FIG. 23 shows photographs of the gels obtained by electrophoresis the PCR products performed with the different primer pairs to perform the analysis of the HIV-I fragments included in the MVA-C virus.
  • 100 ng of viral DNA extracted from CEF cells infected at a multiplicity of 5 pfu / cell with the NYVAC-C (lane 1), MVA-C (lane 2), MVA-WT (lane 3) or NYYAC- viruses WT (lane 4) were used as a template for PCR amplification of different HIV-I fragments included in MVA-C.
  • the conditions of each PCR were standardized individually for each pair of oligonucleotide primers used.
  • Figure 24 shows a photograph of a gel obtained by electrophoresis the products resulting from a PCR reaction in which oligonucleotide primers (TK-L and TK-R) that hybridize with flanking sequences were used as primers of the TK gene.
  • TK-L and TK-R oligonucleotide primers
  • the expression of the gpl20-C and gagpolnef-C proteins by the MVA-C virus was analyzed by Western blotting. Monolayers of CEF cells grown in 12-well plates were infected with 5 units / cell of the different stocks of MVA-B recombinant virus.
  • Example 20 Checking the stability of the MVA-C To verify that the recombinant MVA-C could be passed successively without losing the expression of the inserted genes, a stability test similar to that described in Example 3 was performed, performing several passes successive MVA-C recombinant virus in CEF cells. Monolayers of CEF cells grown on PlOO plates were infected successively, at a multiplicity of 0.05 pfu / cell, starting from the P2 stock of the MVA-C (pass 6) until generating pass 10 (PlO). Then CEF monolayers cells grown in 6 - well plates were infected with a dilution 10 "5 of the viral extract obtained from the last pass (Plo).
  • the plates generated lysis were analyzed by inrnunotinalism, using polyclonal anti-WR antibodies (which recognizes proteins of the MVA virus); anti-gpl20 (which recognizes the gpl20 of the CN54 isolation); and anti-p24 (which recognizes the gagpolnef-C chimera of the same isolation); these last two antibodies were the same as those used in Example 19.
  • the results of these immunostains are shown in part A of Figure 26. Plate counts showed that, after 10 successive passes of the virus in CEF cells, both antigens are efficiently expressed (100 % of the plates recognized by the anti-WR antibody were recognized by the anti-gpl20 and anti-p24 antibodies), corroborating the stability of the generated product.
  • Extracts of CEF cells infected with passes 7, 8, 9 and 10 were also analyzed by Western blot, tests to which the stains shown in part B of Figure 26 correspond. To perform these tests, CEF cell monolayers grown in 12-well plates were infected with 5 pfu / cell of the viral extracts obtained in passes 7 (PT), 8 (P8), 9 (P9) and 10 (PlO) of the MVA-C recombinant virus.
  • gagpolnef-C fusion protein was analyzed in the cell precipitate also at 6, 18 and 24 hours post-infection following a procedure analogous to that used for the gpl20-C protein, although in this case using the anti-antibody p24 specific for CN54 insulation. The results are shown in Figure 28. It can be seen that this fusion protein is efficiently expressed throughout the time of infection both from MVA-C (lane 1 of each time of infection) and from NYVAC-C (lane 2 ).
  • Example 22 Specific immune response of IFN- ⁇ producing T cells
  • mice 8 days after immunization the mice were sacrificed by cervical dislocation, and the spleen was removed to carry out an ELISPOT test analogous to that described in Example 5, following the same methodology described in said Example with the exception that, in this case, to evaluate the specific immune response, different groups containing 40-50 overlapping peptides of 15 amino acids each, belonging to clade C, covering all the antigenic regions included in the MVA-C recombinant of the invention were used.
  • the response generated against the proteins expressed from the parts of the vector derived from the attenuated forms of Vaccinia used for the construction of the recombinants, MVA and NYVAC was also evaluated.
  • the splenocytes of the immunized animals were contacted for 48 hours with RMAS-HDD cells previously infected for 5 hours with 5 pfu / cell of the wild strains of MVA and NYVAC, MVA-WT and NYVAC-WT.
  • the number of IFN- ⁇ producing cells obtained against uninfected RMAS-HHDII cells (negative control) was subtracted in all cases.
  • Splenocytes isolated from animals immunized with MVA-C and NYVAC C isolated in Example 22 were cultured (5x10 6 cells / well) in a 24 - well plate and stimulated with 1 .mu.g / ml of each peptide group belonging to the clade C. the plate was incubated for 5 days at 37 0 C under 5% CO2. After this period, the supernatants were harvested crop and centrifuged at 1500 rpm, 5 min, 4 0 C and stored at -7O 0 C until use.
  • the splenocytes obtained in Example 22 were re-stimulated for 1 hour with 5 ⁇ g / ml of each group of peptides, after which Brefeldin was added at a concentration of 10 ⁇ g / ml, incubating overnight. Subsequently, a surface marking was carried out using specific anti-CD4 or anti-CD8 antibodies conjugated to FITC, followed by intracellular marking using anti-IFN- ⁇ conjugated to PE. Once fixed the cells were analyzed in the flow cytometer.
  • mice were inoculated intraperitoneally (ip) with a dose of 2 x 10 7 pfu / mouse of MVA-C (stock P3) or NYVAC-C (Aventis group, France). 14 days, blood was drawn from the suborbital plexus of the immunized mice and, after leaving overnight at 4 0 C was centrifuged to yield serum.
  • the total amount of IgG antibodies present in the sera against the Gag protein (2 ⁇ g / ml), the envelope protein gp-160 (2 ⁇ g / mL) or against cell extracts of an infection with vaccinia was determined by ELISA , diluting for this the sera 1/500 for the detection of antibodies against Vaccinia and 1/50 for the detection of antibodies against the Gag protein and against the protein gp 160.
  • Example 26 Use of MVA-C in induction / potentiation protocols that combine DNA vectors and viral vectors derived from Vaccinia: Specific immune response of IFN-Y producing T cells generated in humanized HHDII mice Groups of 4 HHDII mice of 6 -10 weeks of age were inoculated intramuscularly (im) with 100 ⁇ g of the DNA-C DNA vector (courtesy of GeneArt, Germany), formed by two recombinant plasmids derived from pcDNA each containing one of the coding sequences of HIV-I proteins (gpl20-C and gagpolnef-C) that have MVA-C inserted under the control of both cytomegalovirus promoters.
  • the control group was inoculated (im) with 100 ⁇ g of DNA without insert (DNA 0). 15 days later they were immunized intraperitoneally (ip) with 2 x 10 7 pfu / mouse of MVA-C (stock P3) or of NYVAC-C (Aventis group, France), which expresses the same HIV antigens as MVA- C.
  • the control group received a 2 x dose of 10 7 pfu / mouse from NYVAC-WT. 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • mixtures of splenocytes from the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade C (5 ⁇ g / ml) comprising all the antigenic regions included in the viruses.
  • MVA-C and NYVAC-C recombinants were used to detect the specific immune response.
  • Example 27 Use of MVA-C in induction / potentiation protocols that combine DNA vectors and viral vectors derived from Vaccinia: Specific immune response of IL-2 producing T cells generated in humanized HHDII mice Groups of 4 6-10 week old HHDII mice were inoculated intramuscularly (im) with 100 ⁇ g of the DNA-C DNA vector (courtesy of GeneArt, Germany) used in Example 26. The control group was inoculated (im ) with 100 ⁇ g of DNA without insert (DNA 0).
  • mice 15 days later they were immunized intraperitoneally (ip) with 2 x 10 7 pfu / mouse of MVA-C (stock P3) or of NYVAC-C (Aventis group, France), which expresses the same HIV antigens as MVA- C.
  • the control group received a 2 x dose of 10 7 pfu / mouse from NYVAC-WT. 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • mixtures of splenocytes from the immunized animals in each group were contacted for 48 hours with the mixtures of overlapping peptides belonging to clade C (5 ⁇ g / ml), which comprise all the antigenic regions included in the MVA-C and NYVAC-C recombinant viruses, used in the previous Examples concerning MVA-C.
  • the number of IL-2 producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • Example 28 Use of MVA-C in induction / potentiation protocols that combine vectors derived from Vaccinia: Specific immune response of IFN-Y producing T cells in BALB / c mice
  • ip intraperitoneally
  • Groups were thus generated that had been inoculated with the following vector combinations: MVA-C + NYVAC-C, NYVAC-C + MVA-C, MVA-C + MVA-C, NYVAC-C + NYVAC-C, NYVAC-WT + MVA-WT and MVA-WT + NYVAC-WT.
  • mice 10 days after the last immunization the mice were sacrificed by cervical dislocation and the spleen was removed to carry out the ELISPOT assay.
  • splenocyte mixing groups of the animals immunized in each group were contacted for 48 hours with different mixtures of overlapping peptides belonging to clade C (5 ⁇ g / ml) comprising all the antigenic regions included in MVA-C and NYVAC-C recombinant viruses.
  • the number of IFN- ⁇ producing cells obtained against a mixture of unrelated antigenic peptides (negative control) was subtracted in all cases.
  • the combinations of MVA-C and NYVAC-C resulted in greater responses than the administration of two doses of homologous viruses, MVA-C + MVA-C or NYVAC-C + NYVAC-C.
  • the group of mice that were administered in the first NYVAC-C dose and in the MVA-C potentiation dose was the one that showed the highest number of IFN- ⁇ secretory cells against the different groups of peptides.
  • Example 30 »Use of MVA-C in induction / potentiation protocols that combine vectors derived from Vaccinia: Identification of specific types of IFN- ⁇ secreting T cells generated in BALB / c mice
  • the extracted splenocytes were reestimuiados in vitro for 1 hour at 37 0 C with 5 ug / ml of each group overlapping peptides to the clade C, after which Brefeldin at a concentration of 10 ug / ml and incubated overnight at 37 0 C.
  • Example 31 Differential profile of changes in expression levels of induced human genes during infection with the MVA and NYVAC vectors To assess whether differences in immune responses induced by inoculation of recombinant vectors derived from MVA and NYVAC were accompanied also of different profiles of induction of variations in the levels of gene expression in infected cells, an experiment of infection of HeLa cells with MVA and NYVAC was performed and changes in the levels of expression of 15,000 human genes were evaluated using microarrays. with human cDNA.
  • cDNA microarrays were generated as previously described (20), using the 4OK human cDNA library from Research Genetics (http://www.resgen.com/products/SVHcDNA.php3), which contained 15,360 sequences cDNA, (of which 13295 correspond to known genes and 2,257 correspond to control genes), using CMT-GAPS II (Corning) slides on which the cDNA sequences were fixed by Microgrid II (BioRobot ⁇ cs) at 22 ° C and a relative humidity of 40-45%.
  • HeLa cells from the American Type Culture Collection
  • MVA-WT and the NYVAC-WT at a multiplicity of infection of 5 pfu / cell.
  • RNA sample was used in two different hybridizations: in a hybridization, the sample infected with MVA-WT was labeled with dUTP-Cy3 and the sample infected with NYVAC-WT was labeled with dUTP- Cy 5, while in the other the sample infected with MVA-WT was labeled with dUTP-Cy5 and the sample infected with NYVAC-WT was marked with dUTP-Cy3.
  • Double marking was used to suppress differences in marking and hybridization due to specific characteristics of Cy-dUTP.
  • the reaction was terminated by adding EDTA and the starting RNA template was removed by adding 2 ⁇ l of NaOH IO N, followed by incubation (20 min, 65 ° C). The reaction was neutralized by adding 4 ⁇ l of 5 M acetic acid. The Cy5 and Cy3 probes were mixed and the unincorporated dyes were removed by precipitation with isopropanol. The probes were resuspended in deionized water; The blocking agents added to increase specificity were poly (A) (20 ⁇ g, Sigma), tRNA (20 ⁇ g, Sigma) and human Cot-1 DNA (20 ⁇ g, Invitrogen).
  • the microarrays were prehybridized with a mixture containing 6x SSC (SSC IX is formed by 0.15 M NaCl and 0.015 M sodium citrate), 0.5% sodium dodecyl sulfate (SDS) and 1% bovine serum albumin (42 0 C 5 1 hour), washed five times with water, and dried by centrifugation (563 xg, 1 min).
  • SSC IX is formed by 0.15 M NaCl and 0.015 M sodium citrate
  • SDS sodium dodecyl sulfate
  • bovine serum albumin 42 0 C 5 1 hour
  • the probes were resuspended in 40 ⁇ l of hybridization buffer (50% formamide, 6x SSC, 0.5% SDS, 5x Denhardt solution) and incubated with the slides containing the microarrays (42 ° C, 16 hours) in hybridization chambers (Array-It) in a dark water bath. After incubation, the slides were washed twice in 0.1% SSC-0.1% SDS for 5 minutes each time and three times in SSC O 5 Ix for 5 minutes each time. Finally, the slides were dried by centrifugation as described above and scanned on a ScanArray 4000 (Packard Biosciences) using the ScanArray 3.1 software.
  • hybridization buffer 50% formamide, 6x SSC, 0.5% SDS, 5x Denhardt solution
  • the data set was reduced by eliminating the genes with a standard deviation between the replicas> 1 and those that showed values of z ⁇ 2, after the data was reprocessed, the genes were grouped using the classic map of self-organization of Kohonen (22,23,24) and the resulting map was analyzed using Engene software, available at http://www.engene.cnb.uam.es.
  • Table 7 Expression profiles of representative genes modified by the infection of human HeLa cells with MVA and NYVAC strains.
  • Kappa 2 light polypeptide nuclear factor NFKB2 2.03 2.22 2.34 1.53 2.02 1.79
  • Interferon stimulated protein 15 kDa ISG15 2.57 2.25 1.61 1.21 1.14 3.39
  • CD80 antigen CD80 1.75 2.58 2.06 1.25 2.02 2.7
  • CD47 antigen CD47 5.35 4.08 3.16 1.02 0.76 1.03
  • NFATC3 activated T cell cytoplasmic nuclear factor 3.46 2.97 1.30 1.01 1.34 1.34
  • Example 32 Differential profile of changes in induction levels of apoptosis induced during infection of cells in culture by vectors
  • apoptosis is the specific protease breakage of the PARP protein.
  • lysis buffer 50 mM Tris-HCl, pH 8.0, NaCl 0, 5 M, 10% NP-40, 1% SDS.
  • Equal amounts of Used protein (10 ⁇ g) were separated by electrophoresis in SDS-polyacrylamide gels (SDS-PAGE), transferred to nitrocellulose membranes and incubated with a human anti-PARP antibody (1: 500 dilution) of CeIl Signaling, obtaining the results shown in the upper part of Figure 38 a, which indicates the position of the band corresponding to the complete PARP protein (PARPc) and that corresponding to a fragment of the PARP protein cleaved from the complete protein (PARPf).
  • the membranes were also incubated against an anti- ⁇ -actin monoclonal antibody (SIGMA), obtaining the signal shown at the bottom of said Figure .
  • SIGMA anti- ⁇ -actin monoclonal antibody
  • RNAs (2 micrograms) were electrophoresed in 1% agarose-formaldehyde gels containing ethidium bromide and the band pattern obtained was photographed under ultraviolet light.
  • the test was carried out on samples that had been incubated in the absence or in the presence of the general caspase inhibitor zVAD (4 micromolar, Calbiochem).
  • the cells were harvested, washed with cold PBS, permeabilized with ethanol at 70% in PBS at 4 0 C for 30 min. After three washes with PBS, cells were incubated for 45 min at 37 0 C with RNase A and stained with IP (10 micrograms / ml). The percentage of cells presenting hypodiploid DNA was determined by flow cytometry. Data were acquired in 15,000 cells per sample and the results are represented as times of increase in apoptotic cells compared to uninfected cells.
  • the graph in Figure 38d shows the apoptotic cell growth factor observed in each case. It can be seen that infection with NYVAC causes apoptosis in a large part of the cell population (more than 40%) and that this phenomenon is prevented by the addition of general zVAD caspases inhibitor. The induction of apoptosis by MVA was much reduced.
  • the plasmid transfer vector pLZAWl-89.6p-SIVgpn-18 was constructed by the inventors for the generation of recombinant viruses derived from MVA and NYVAC that express the part corresponding to the g ⁇ l20 protein of the Env gene of SHIV 89.6P (89.6 Psynenvl20, which hereafter referred to in abbreviated form as 89.6P-gpl20) and the chimera of the Gag, PoI and Nef genes of the same virus (SIVmac239-gagpolnef, which hereafter referred to in abbreviated form as SlVgpn), the latter from a nucleotide sequence obtained from the sequences of the Gag, PoI and Nef genes of SHIV89.6P virus in which the same modifications that were made to obtain the chimeras of the genes had been made Gag, PoI and Nef present in the vectors MVA-B and MVA-C.
  • Plasmid pLZAWl-89.6p-SIVgpn-18 is a derivative of pUC designed for the selection of blue / white plaques and the generation, as a safety measure, of a viral vector lacking the ⁇ -Gal marker, as was done in the case of the MVA-B and MVA-C vectors, as a safety measure. It contains the flanking sequences right (TK-R) and left (TK-L) of the thymidine kinase (TK) gene of MVA, a short repeat of the left flanking sequence ("left arm " ) of the TK gene, the E3L promoter directing expression of the ⁇ -galactosidase selection marker, and the ampicillin resistance (AP) gene.
  • flanking sequences Between the two flanking sequences are the two sequences to be expressed, 89.6P-gpl20 (SEQ ID NO: 22) and SIVgpn (SEQ ID NO: 23), which have been modified to optimize the use of mammalian codons.
  • SEQ ID NO: 22 SEQ ID NO: 22
  • SIVgpn SEQ ID NO: 23
  • the position of each of the components included in the plasmid is described below in Table 8. Table 8.- Position of the components of plasmid pLZAWlgpl20B / gagpolnefB-l
  • the plasmid was provided by Linong Zhang, of the Aventis group, Canada. It is a pUC-based plasmid that contains a left arm of the TK gene, cloning sites to insert exogenous genes, a short repeat of the left arm the TK gene, an E3L promoter directing the expression of a ⁇ -gal cassette and a right arm of the TK gene.
  • the plasmid was generated by the inventors. It is a derivative of pUC that contains the right and left flanking sequences of the HA locus of the virus
  • MVA (P7.5) directing the expression of the ⁇ -gus gene.
  • plasmid pLZAWl-89.6P-SIVgpn ⁇ 18 The construction of plasmid pLZAWl-89.6P-SIVgpn ⁇ 18 from these two other plasmids is depicted in Figures 41a and 41b. Briefly, a 1,518 Kb DNA fragment containing the 89.6P-gpl20 gene (indicated in the figure as 89.6synenvl20) was cleaved from the plasmid pcDNA89.6P-syn-CD5-GP120REKR by digestion with EcoRI, treatment with the Klenow fragment of DNA polymerase to generate blunt ends, and digestion with BamHI.
  • the DNA fragment was subcloned into the vector p JRl 01 (previously digested with Smal and BamHI restriction endonucleases), generating plasmid pJR-89.6P-18 (7918 bp).
  • a 1,612 kb DNA fragment containing the early / late synthetic promoter (E / L) targeting gene 89.6-gpl20 was cleaved from plasmid pJR-89.6P-18 by digestion with HindIII and BamHI, followed by modification with the fragment Klenow of the DNA polymerase, and was cloned into the pLZAWl vector (previously digested with the restriction endonuclease AscI, modified by incubation with the Klenow fragment, and dephosphorylated by incubation with the calf alkaline phosphatase (CIP)), generating the plasmid vector pLZAWl-89.6P-9 (9131 bp) ( Figure 41a).
  • the plasmid pCR-Script SFV-syn-gagpolnef was cleaved by digestion with EcoRI and Xhol followed by modification with the Klenow fragment of the DNA polymerase, and subcloned into the vector p JRl 01 (previously digested with Smal and dephosphorylated restriction endonuclease by incubation with calf alkaline alkaline phosphatase (CIP), generating plasmid pJR-SFVgpn-9 (10630 bp).
  • CIP calf alkaline alkaline phosphatase
  • a 4.3 kb DNA fragment containing the early / late synthetic promoter (E / L) targeting the SlVgpn gene was cleaved from the plasmid pJR-SIVgpn-9 by digestion with HindIIII, treatment with the Klenow fragment of DNA polymerase and digestion with Notl, and was cloned into the vector pLZAWl- 89.6P-9 (previously digested with restriction endonucleases SwaI and Notl, generating the plasmid transfer vector pLZAWl-89.6P-SIVgpn-18 (13399 bp) ( Figure 41b).
  • the plasmid pLZAWl-89.6P-SIVgpn-18 generated directs the insertion of the genes of interest into the TK locus of the MVA and NYVAC genome.
  • the desired recombinant viruses were isolated by means of the evaluation of the expression of the ⁇ -galactosidase activity, the subsequent propagation of the recombinant viruses leads to the autodelection of the ⁇ -gal gene by homologous recombination between the left arm of TK and the repetition cut off the left arm of TK that are flanking the marker.
  • Recombinant MVA viruses containing 89.6P-gpl20 / SrVgpn genes and transiently co-expressing the ⁇ -Gal marker gene (MVA-SHIV (X-GaI + )), were selected by performing consecutive plate purification passes on CEF cells stained with 5-bromo-4-chloro-3-indolyl- ⁇ -galactoside (XGaI) (300 ⁇ g / ml).
  • Recombinant MVA viruses that contained the 89.6P-gpl20 / SIVgpn genes and that had lost the marker gene (MVA-SHIV (X-GaI " )), were selected as non-stained viral foci in CEF cells in the presence of XGaI. purification step The isolated plates were expanded in CEF cells for 3 days, and the crude viral extract obtained was used for the next plate purification step.
  • MVA-89.6P-SIVgpn- 3 X-GaI + plates were isolated, which were called MVA-89.6P-SIVgpn- (la 3).
  • the plate called MVA-89.6P-SFVgpn-1 which efficiently expressed the 89.6P-gpl20 and SlVgpn antigens, was amplified and used for the next purification step.
  • 22 X-GaI + plates were isolated, all of which efficiently expressed both proteins.
  • the recombinant called MVA-89.6P-SFVgpn-1.6.8.5 (X-GaI " ) was used to prepare the P2 stocks by infection at a multiplicity of 0.01 pfu / cell of five pl50 plates.
  • the P3 stocks (generated in cells CEF infected in 40-100 pl50 plates at a multiplicity of infection of 0.05 pfu / cell, collected after 3-4 days after infection and purified through two 45% sucrose mattresses) were prepared only from MVA-89.6P-SIVgpn-l.6.8.5 (X-GaF) for immunization studies in apes; the characteristics of the different P3 stocks obtained are specified below in Example 38.
  • the P2 stocks (MVA-89.6P-SFVgpn-l.6.8.5) were amplified and P3 by infection of CEF cells at a multiplicity of infection of 5 pfu / cell, recovering the cell extracts at 24 hours post-infection.
  • Virus DNA was purified and subjected to PCR analysis using oligonucleotide primers that hybridize with the TK regions. flanking the insert of interest left (oligonucleotide TK-L) or right (oligonucleotide TK-R2), with the following sequences:
  • TK-L 5 'TGATTAGTTTGATGCGATTC 3' (SEQ ID NO: 1)
  • TK-R2 5 'CTGCCGTATCAAGGACA 3' (SEQ ID NO: 21)
  • the positions in which said oligonucleotides hybridize with respect to the insert present in MVA-89.6P -SIVgpn, as well as the estimated sizes of the fragments generated in the PCRs that use the DNA of said virus as a template and the DNA corresponding to the wild-type MVA virus (WT), lacking an insert, are represented at the top of the Figure 42.
  • FIG. 42 shows a photograph of a gel corresponding to the analysis of PCR products located between the left (TK-L) and right (TK-R) arms of the TK locus in the MVA-SHFV virus of the stocks P2 (MVA-89.6P-SIVgpn (P2)) and P3 (MVA-89.6P-SFVgpn (P3)), the wild-type MVA virus (MVA-WT) and the transfer plasmid pLZAWl- 89.6P-SIVgpn-18.
  • 100 ng of the viral DNA extracted from infected CEF cells at a multiplicity of 5 pfu / cell with the MVA-WT (lane 3), MVA-89.6P-SIVgpn (P2) (lane 4) or MVA-89.6 viruses P-SFVgpn (P3) (lane 5) or 10 ng of plasmid pLZAWl- 89.6P-SFVgpn-18 were used as a template to perform a PCR analysis of the sequence located between both arms of the TK locus using 100 ng of the primers as primers oligonucleotides that hybridize with the flanking sequences of the TK, TK-L (SEQ ID NO: 1) and TK-R2 (SEQ ID NO: 21) gene in a reaction mixture containing 0.3 mM dNTPs, 2.5 mM of MgCl 2 and 2.5 U of the enzyme Platinum Taq polymerase.
  • the program includes a cycle of denaturation at 94 0 C for 5 min, 25 cycles of denaturation at 94 ° C for 1 min, hybridization at 60 0 C for 1 min and extension at 68 ° C for 2 min, and finally a cycle of extension at 68 ° C for 10 min.
  • the PCR products were analyzed on a 0.7% agarose gel, obtaining the result shown in the lower part of Fig. 3. In lanes 4 and 5, those corresponding to the two MVA- vector stock stocks.
  • SHIV there is a band located slightly above the 6 Kb band of the marker (lane 1), compatible with the presence of the complete insert, a band that also appears in the street corresponding to the positive control, plasmid pLZAWl-89.6P- SIVgpn-18 while on the street corresponding to the wild-type virus MVA-WT (3) a much smaller band appears, which would correspond to the TK locus without insert.
  • DNA of the MVA-89.6P-SIVgpn virus from the P2 stock was sequenced, using the oligonucleotides TK-L (SEQ ID NO: 1), TK-R2 (SEQ ID NO: 21) and E / L as primers (SEQ ID NO: 25) obtaining the sequence represented by SEQ ID NO: 24.
  • Example 34 Analysis of SHIV protein expression from MVA-89.6P-SIVgpn 34.1.- Westem type transfers.-
  • MVA-89.6P-SIVgpn was also analyzed in CEF cells infected with a dilution
  • anti-WR either an anti-gp! 20 polyclonal antibody of clade B (anti-gpl20) or the anti-SIVgag-p27 monoclonal antibody provided by the EVA program
  • Example 35 Construction and characterization of the recombinant virus NYVAC-89.6F-SIVgagpoInef They were infected with the wild type strain of NYVAC (donated by the group
  • BSC40 cells a cell line derived from monkey kidney, which lacks myogenic potential
  • pLZAWl-89.6P-SIVgpn-18 whose characteristics were described in Example 33
  • lipofectamine reagent Invitrogen, Cat. 18324-012, lot 1198865
  • NYVAC viruses containing 89.6P-g ⁇ l20 / SIVgpn genes and transiently co-expressing the ⁇ -Gal marker gene were selected by performing consecutive plate purification passes in BSC40 cells stained with 5-bromo-4-chloro-3-indolyl- ⁇ -galactoside (XGaI) (300 ⁇ g / ml).
  • NYVAC viruses that contained the 89.6P-gpl20 / SIVg ⁇ n genes and that had lost the ⁇ -Gal indicator gene (NYVAC-89.6P-SIVgpn (X-GaF)), were selected as non-stained viral foci in BSC40 cells in the presence of XGaI.
  • NYVAC-89.6P-SIVgpn X-GaF
  • the isolated plates were expanded in BSC40 cells for 2 days, and the crude viral extract obtained was used for the next plaque purification step.
  • 3 X-GaI + plates were isolated which were called NYVAC-89.6P-SIVgpn- (la 3).
  • 18 X-GaI + plates were isolated; 8/18 expressed both proteins.
  • the plate called NYVAC-89.6P-SIVgpn-2.1 was amplified, which was used for the next purification step.
  • 12 X-GaI + plates were isolated, all of which efficiently expressed the 89.6P-gpl20 protein and 11/12 expressed the SlVgpn protein.
  • the plates named NYVAC-89.6P-SIVgpn-2.1.1 and NYVAC-89.6P-SIVgpn-2.1.2 were amplified and used in the next purification step.
  • X- GaI and 12 plates X-Gal + were isolated;. All of them expressed efficiently the 89.6P gpl20 protein and 22 of 24 expressed the SIVgpn protein called NYVAC Recombinants-89.6P-SIVgpn -2.1.1.1 (X-Gal ") and NYVAC-89.6P-SIVgpn-2.1.2.3 (X-Gal”) were amplified and used in the next purification step.
  • X-Gal were isolated " ; All of them efficiently expressed both antigens.
  • the recombinant named NYVAC-89.6P-SIVgpn-2.1.1.1.4 (X-GaI " ) was amplified in CEF cells (a pl50 plate to generate the Pl stock) and was used to prepare the P2 stocks (by infection of five pl50 plates at 0.01 pfu / cell) P3 stocks (grown in 40-100 pl50 plates of infected CEF cells at a multiplicity of infection of 0.05, collected after 3-4 days after infection and purified through two 45% sucrose mattresses) they were prepared for immunization studies in apes; The characteristics of each of the generated P3 stocks are mentioned in Example 37.
  • the P3 stock was amplified by infection of CEF cells to a multiplicity of infection of 5 pfu / cell, recovering cell extracts at 24 hours post-infection.
  • Virus DNA was purified and subjected to PCR analysis using oligonucleotide primers that hybridize with the flanking TK regions of the left (TK-L) insert (SEQ ID NO: 1) and right (TK-R2) ( SEQ ID NO: 21). analogously to that described in Example 33.
  • MVA-89.6P-SIVgpn (P3) (MVA-SHIV) and MVA-WT were used as a template for PCR amplification of the sequence fragment between the TK-L and TK-R arms in each of them.
  • the sample corresponding to the positive control the recombinant virus MVA-89.6P-STVgpn (P3) (lane 4) gives rise to a band of equal size as the corresponding to the samples of the recombinant virus whose description is described in this example NYVAC-SHlV (NYVAC-89.6P-SIVgpn (P3), lane 3), while in lane 2, corresponding to the insert-free NYVAC virus (NYVAC-WT) , a band of approximately 400 bp is observed compatible with the absence of insertion in the TK locus of NYVAC, shorter than that of the MVA-WT which, in turn, gives rise to the band of almost 900 bp that would have expected according to the characteristics of the TK locus in this last virus.
  • Cell extracts were collected at 24 hours post-infection, fractionated by electrophoresis in denaturing polyacrylamide gels with SDS (SDS-PAGE), transferred to nitrocellulose membranes, and subjected to the reaction against a polyclonal rabbit anti-gpl20 antibody (generated in the inventors' laboratory immunizing rabbits with the gpl20 protein of the HIB isolate), which is capable of recognizing the gpl20 protein of SHIV89.6P; and against an anti-SIV-gag-p27 monoclonal antibody (assigned by the EVA program, ARP392) that recognizes the SIV gag protein and, therefore, the SlVgpn fusion protein.
  • SDS-PAGE denaturing polyacrylamide gels with SDS
  • Cell extracts were collected at 24 hours post-infection, fractionated by electrophoresis in denaturing polyacrylamide gels with SDS (SDS-PAGE), transferred to nitrocellulose membranes, and subjected to the reaction against a polyclonal rabbit anti-gpl20 antibody (generated in the inventors' laboratory by immunizing rabbits with the g ⁇ l20 protein of the IHB isolate), which is capable to recognize the gpl20 protein of SHIV89.6P; and against an anti-SIV-gag-p27 monoclonal antibody (assigned by the EVA program, ARP392) that recognizes the SIV gag protein and, therefore, the SlVgpn fusion protein.
  • SDS-PAGE denaturing polyacrylamide gels with SDS
  • Figure 48 shows the results of immunostaining with each of the antibodies, the left part corresponding to staining with the anti-gpl20 antibody and the right part staining with the anti-SIV-gag-p27 antibody. Proven efficient expression of both proteins in the extracts from each of the stocks, aliquots of them were sent to Drs. Jonathan Heeney and Petra Mooij, of the Biomedical Primate Research Center in Rijswijk, The Netherlands, where the macaque tests described in the following Examples.
  • Examples 38 and 39 were carried out to assess the immunogenicity and efficacy of vectors whose construction is described in Examples 33 and 35 to protect apes immunized with them against disease development. of acquired immunodeficiency syndrome, with the in order to assess from the results obtained the degree of expected efficacy of the vectors described in the main patent when immunizing with them human beings. These tests were carried out at the Biomedical Primate Research Center in Rijswisjk (The Netherlands). For its realization, Rhesus macaques ⁇ Macaca mulatta) young adults were used, which had been shown to be negative for SIV infection, retro simian virus and ape leukemia virus. The conditions of animal housing and management followed the ethical norms established by the mentioned experimentation center.
  • NYVAC-89.6P-SIVgpn The alternative vector used whose construction is also described herein is the NYVAC derived vector, called NYVAC-89.6P-SIVgpn, which will also be referred to in the following Examples by the abbreviated general designation NYVAC-SHIV.
  • NYVAC-SHIV Both the MVA-SHIV and the NYVAC-SHIV, which contain the same insert, were administered in booster or potentiated immune response doses (which are frequently referred to by the English term boosf) after dose administration.
  • the DNA-SHIV vector consisting of two expression plasmids, pcDNA-gpl20.89.6p, which expresses the gpl20 protein of SHIV89.6P, and pcDNA-SIVgag-pol-nef, which expresses the SlVgpn protein generated from sequences corresponding to the SH3V89.6P virus, plasmids that were generated by Dr. RaIf Wagner, Regensburg, Germany, and assigned by him for the study. Details about the study and the results obtained are described in more detail below in Examples 38 and 39.
  • the 21 macaques used in the study were divided into three groups (groups 1, 2, and 3), each consisting of 7 individuals. Each of the groups was subjected to a different immunization protocol, as shown in Table 11 below:
  • control group 3 received in the first two doses naked DNA that lacked the insert with the sequences of SHIV89.6P (DNA-emp), while in the last two received the NYVAC-WT vector, which also lacks the insert
  • the NYVAC-WT vector was grown on CEF cells and purified on two sucrose mattresses analogously to that used with the MVA-SHIV and NYVAC-SHIV recombinants; of the generated stock, a total of 8x10 9 pfu was sent to the Netherlands primate center on April 20, 2004, with a title of lxl ⁇ 9 pfu / ml.
  • Immunizations with naked DNA were produced with a total of 4 mg of plasmid, using in the case of the DNA-SHIV vector 2 mg of each of the plasmids that compose it, pcDNA-gpl2089.6p and pcDNA-SIV-gag-pol -nef, and using 4 mg of the DNA-emp vector for the controls.
  • 2 mg of plasmid were dissolved, dissolved in 1.5 ml of PBS, which were supplied intramuscularly at the top of each leg.
  • FIG. 49 shows an outline of the course of the study, in which Sampling times are marked (MIC, abbreviation of "ce // mediated immunity” or cell-mediated immunity), the moments at which the different doses of immunization were administered (DNA and vectors derived from poxvirus: NYVAC or MVA) and the moment at which the challenge was carried out with the SHIV89.6P virus.
  • MIC abbreviation of "ce // mediated immunity” or cell-mediated immunity
  • the cytokine response was evaluated in the fractions of PBMC cells extracted from each of the macaques. To do this, samples of said cells from each of the macaques were incubated for 48 hours with groups of peptides.
  • groups of peptides For the ELISPOT of gpl20 a group of 48 peptides was used, specifically peptides 4702 to 4749 of Cat. No. 4827 of the NIH AIDS Research and Reference Reagents Program, each of which consists of 20 amino acids of which 10 amino acids are overlapping. with the following peptide, with which the protein sequence 89.6P- is represented gpl20.
  • the peptides were synthesized by SynPep Dublin (California, United States) and are groups of 15 amino acids with 11 overlapping amino acids, which can be grouped into the groups (pools): Gag-pool 11, 1-54; Gag-pool 12, 55-108; Pol-pool 11, 109-168; PoI pool 12, 169-173 + 236-290; PoI pool 13, 291-349; Nef pool 11, 174-235; The response of the 7 peptide groups was analyzed using 2 micrograms / ml of each peptide in the assay.
  • SPF spot forming cells
  • PBMC cells expressing a certain cytokine
  • the first vertical point corresponds to samples taken from macaques of group 1 (DNA - SHIV / MV A-SHIV); the second vertical of points corresponds to samples taken from group 2 macaques (DNA-SHIV / NYV AC-SHIV); the third vertical point corresponds to samples taken from mice of group 3 (DNA-emp / NYVAC-WT).
  • Each point represents the value obtained for a specific macaque, while the rectangles located in each of the verticals indicate the average value corresponding to all the macaques of that group for the samples taken at the same time.
  • the presence of a number of points lower than 7 in some verticals indicates that the point located on the abscissa axis represents more than one macaque, in each of which the value of the CFS detected for every 10 6 PBMCs analyzed was not greater than 1.
  • the dotted line indicates the value below which the values are considered insignificant (20 SFCs).
  • the white arrows indicate the inoculation of a vaccination vector;
  • the black arrow indicates the moment when the challenge occurred with SHIV89.6P.
  • the points corresponding to the first two groups, and especially their average value are higher than those obtained in the control group, immunized with DNA / NYVAC without inserts. Once infection with the SHIV89.6P pathogen occurs, the values are fairly matched in all groups when immunity against SHIV occurs.
  • Figure 51 shows the average values of the total number of cells expressing IFN- ⁇ obtained for each of the groups, again in logarithmic scale, as a function of the time in which they were taken. the samples, starting in this case from the moment in which the macaques received the first dose of naked DNA.
  • Figures 52 and 53 represent the average values obtained for each of the groups, also in logarithmic scale, as a function of time, of CFS expressing IL-4 ( Figure 53) or IL-2 ( Figure 52 ). It is observed that, both in group 1 (the one that received the MVA-SHIV vector, the
  • the values referring to the number of viral particles detectable in plasma constitute a good indicative value of the capacity of the immune response generated to control the possible infection caused by the inoculated SHIV89.6P virus. Values above 100,000 copies / mi are considered to lead to development in AIDS macaques and the death of the animal, while values close to 10,000 copies / ml or less keep the animal without apparent pathogenic effects. The detection of a concentration of viral copies below that value can be considered indicative that the generated immune response is capable of conferring protection in the animal models used.
  • RNA of the SHIV89.6P virus present in the plasma of the blood samples extracted from the macaques just before (time 0) and after the inoculation of said virus.
  • the QC RNA-PCR real-time quantitative technique was used, which measures the number of viral copies per milliliter of plasma and is capable of detecting 50 copies per me.
  • the values obtained for each of the macaques are shown in Figure 54, in which three graphs appear. The upper graph corresponds to group 3, that of the control macaques that had been immunized with DNA and NYVAC that lacked an insert from which to express SHIV antigens.
  • the graph in the lower left corresponds to group 1, immunized with DNA-SHIV / MV A-SHIV, while the graph in the lower right corresponds to group 2, immunized with DNA-SHIV / NYVAC-SHIV.
  • group 1 immunized with DNA-SHIV / MV A-SHIV
  • group 2 immunized with DNA-SHIV / NYVAC-SHIV.
  • CD4 + and CD8 + T cells are also significant data, since CD4 + cells are used by both HIV and SIV as target cells for infection. The reduction in the number of these cells below 200 cells per me is considered a symptom of the disease, AIDS. The proportion of CD4 + and CD8 + T cells is therefore a good indicator of the infection status.
  • NYVAC, NYVAC-89.6P-SIVgpn which have the same genetic organization in their inserts and are capable of simultaneously expressing the 89.6P-gpl20 and SlVgpn antigens, have shown in the nonhuman primate model, the Rhesus macaques, which are excellent vectors to be used for vaccination against apes AIDS. These results reinforce those obtained in the tests described in the
  • MV A modified vaccinia virus Ankara
  • Vaccinia vectors as candidate vaccines The development of Modified Vaccinia Virus Ankara for antigen delivery. Current Targets-Infectious

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Vectores Recombinantes basados en el Virus Modificado de Ankara (MVA) como Vacunas Preventivas y Terapéuticas contra el SIDA. Los virus recombinantes de la invención contienen secuencias que se encuentran insertadas en el mismo sitio de inserción del MVA y permiten la expresión simultánea de varios antígenos, una proteína Env del VIH-I consistente en una proteína gpl20 carente de secuencias correspondientes a la proteína gp41, y una proteína quimérica de fusión de Gag, Pol y Nef. Son virus estables, que permiten el desencadenamiento de respuestas inmunes contra gran variedad de antígenos. Aquellos cuya proteína quimérica deriva de secuencias propias del VIH-I son adecuados para preparar vacunas preventivas o terapéuticas contra el SIDA, especialmente para usarse protocolos de vacunación que comprenden varias dosis y distintos vectores, como indican ensayos realizados gracias a otros vectores de la invención, con igual organización del genoma, pero cuya proteína quimérica deriva de secuencias de SHIV patógenos.

Description

"VECTORES RECOMBINANTES BASADOS EN EL VIRUS MODIFICADO DE ANKARA (MVA) COMO VACUNAS PREVENTIVAS Y TERAPÉUTICAS
CONTRA EL SIDA"
ÁMBITO DE LA INVENCIÓN
La presente invención se refiere a virus recombinantes que expresan antígenos del virus de la inmunodeficiencia humana (VIH-I), diseñados para utilizarse como vacunas preventivas y terapéuticas contra el SIDA. Más concretamente, la invención se refiere a virus recombinantes basados en el virus modificado de Ankara (MVA) que expresan simultáneamente la proteína de la envuelta gpl20 y una proteina quimérica resultante de una fusión de Gag, PoI y Nef. La invención se refiere también a virus recombinantes basados en el virus Vaccinia Modificado de Ankara (MVA) que expresan antígenos del virus quimérico de la inmunodeficiencia de simio y humano (SHIV), válidos para ser utilizados para la inmunización de simios y poder comprobar el grado de protección que los mismos adquieren al ser infectados con el viras híbrido de VIH y SIV, SHIV. De esta manera se confirma en animales evolutivamente muy próximos a los seres humanos, susceptibles de ser infectados de forma natural por un virus similar al virus de la inmunodeficiencia humana, la eficacia como vacunas de dichos vectores derivados de MVA, lo que es un indicativo de la potencialidad de los vectores homólogos primeramente mencionados, los virus derivados de MVA que expresan antígenos del VIH-I, como vacunas eficaces para proteger a seres humanos contra el virus de la inmunodeficiencia humana.
ESTADO DE LA TÉCNICA Los datos de la OMS indican que en el año 2004 la enfermedad del SIDA ha causado más de 23 millones de fallecimientos, con más de 40 millones de personas infectadas y con unas predicciones de sobrepasar los 60 millones de infectados para el año 2012. Las diferencias geográficas y económicas de esta enfermedad son evidentes, pues más del 95% de los casos y el 95% de las muertes por SIDA ocurren en el tercer mundo, la mayoría de ellas en el África subsahariana y el sudeste asiático, sobre todo entre jóvenes adultos, con un incremento progresivo entre las mujeres. De entre los países desarrollados, España continúa siendo el país con mayor número de personas infectadas de la Unión Europea, con unos 150.000 casos. Si bien es cierto que una mejora en los servicios sanitarios en muchas regiones contribuiría a disminuir la velocidad de transmisión del virus, existe consenso en la comunidad internacional de la urgente necesidad en desarrollar vacunas profilácticas y terapéuticas contra el SIDA que ayuden a solucionar el problema.
El desarrollo del SIDA representa los últimos estadios de la infección por el retrovirus conocido como virus de la inmunodeficiencia humana (VIH). El VIH es un retrovirus que pertenece al genero Lentivirus, con un genoma de 9,8 kb. El virión contiene dos copias de ARN de banda sencilla y de polaridad positiva. En los primeros estadios de la infección, el ARN genómico, por medio de la transcriptasa en reverso o retrotranscriptasa (RT) que llega a Ia célula asociada al ARN viral, se convierte en ADN lineal de doble banda. Este ADN se transporta al núcleo, donde se integra en la célula hospedadora en forma de provirus, a partir del cual se transcriben los genes estructurales gag, pol y env, los genes reguladores, tat, rev, nef, y los genes accesorios vif, vpr y vpu. Los productos de la traducción de dichos genes son los siguientes:
El producto de la traducción del gen Gag es la poliproteína precursora gag- p55 que se procesa dando lugar a la proteína matriz pl7, la proteína de la cápsida p24 y las proteínas de la nucleocápsida p6 y p7.
El procesamiento del precursor PoI da lugar a las tres enzimas víricas: la proteasa (pl 1), la retrotranscriptasa (p6S/Sl) (RT) y la integrasa (p32), de las que Ia RT posee actividad de ADN polimerasa (dependiente tanto de ARN como de ADN) y actividad endonucleasa (RNasa H), ambas requeridas durante la síntesis del ADN, mientras que la integrasa está involucrada en el proceso del integración del provirus, actuando como endonucleasa. - El producto del gen Env es una proteína de 88 kDa que está fuertemente glicosilada (gpl60). Esta proteína es procesada por proteasas celulares, dando lugar a las proteínas gρl20 y gp41, que permanecen unidas por uniones no covalentes en la superficie del virión. En la glicoproteína gpl20 se localizan los sitios de unión a los receptores celulares, el receptor CD4 y los correceptores CXCR4 (llamado X4) y CCR5 (llamado C5). Es a esta proteína a la que se debe mayoritariamente la variabilidad genética del VIH y su capacidad para escapar a la respuesta inmune tanto humoral como celular, por ser la que está más - :> - expuesta en la superficie del virus. Por su parte, la glicoproteína gρ41 o transmembrana actúa como anclaje a la membrana lipídica, localizándose en su extremo amino terminal una zona hidrófoba altamente conservada requerida para la fusión de la membrana vírica y la membrana plasmática celular durante el proceso de entrada del virus en la célula hospedadora.
Los genes reguladores y auxiliares son codificados por seis fragmentos de lectura abierta solapante. Los genes Tat y Rev son necesarios para la replicación vírica en todas las células infectadas. El gen Tat codifica una pro teína de 14 kDa que aumenta la expresión de los genes del VIH. El gen Rev codifica una proteína de 19 kDa que facilita el transporte al citoplasma de los ARNm. La proteína Nef, de 210 aminoácidos, se asocia con estructuras de membrana e induce la internalización y degradación de moléculas de CD4 en los lisosomas.
El gen Vif codifica una proteína necesaria para la propagación del virus en linfocitos de sangre periférica, macrófagos primarios y algunas líneas celulares establecidas. El gen Vpr codifica una proteína de 15 kDa que se asocia con la proteína de la nucleocápsida p6. La proteína Vpu es una fosfoproteína que facilita la disociación dentro de la célula infectada de la gρl60 y CD4 por degradación de la molécula CD4 en el retículo endoplásmico.
En los extremos 5' y 3' del DNA viral se encuentran la secuencias LTR ilong - terminal repeats), en las que se localizan importantes regiones reguladoras y que juegan un papel primordial durante el proceso de retrotranscripción.
Se han identificado dos clases del virus: VIH-I y VIH-2, de las que la segunda, VIH-2, parece ser menos patógena que la primera y se localiza sobre todo en la zona occidental de África. Es la forma que genera la enfermedad con mayor rapidez, VIH-I, la que se encuentra más extendida por el planeta y la que más se ha diversificado. Existen tres subtipos del VIH-I, denominados M, N y O, aunque más del 95% de todos los aislados del VIH a nivel global en la población pertenecen al subtipo M. En función de las diferencias en la secuencia de nucleótidos, en especial en la parte correspondiente a las proteínas de la envuelta (Env), este subtipo se subdivide a su vez en ocho estirpes principales, a las que se alude generalmente como clades y que se denominan con las letras A, B, C, D, F, G, H y J. Los clades B y C representan aproximadamente el 80% de las infecciones a nivel mundial, siendo el clade B el más representativo en Europa y - A -
América del Norte, mientras que el clade C es prevalente en África y Asia. Son abundantes las zonas en las que las dos clases están presentes en la población (China, India, África subsahariana), por lo que se piensa que las vacunas que contuvieran antígenos correspondientes a los dos clades, B y C, serían mucho más eficaces en dichas zonas.
Una posibilidad para el diseño de tales vacunas consiste en la generación de moléculas de ADN recombinante que contengan secuencias capaces de expresar proteínas del VIH, o fragmentos o formas de fusión de las mismas de forma que, al ser administradas a un individuo, se sintetizan dichas proteínas, fragmentos o formas de fusión de las mismas y se genera una respuesta inmune contra ella. Dichas moléculas de ADN recombinante pueden generarse a partir de genomas de virus en los que se han eliminado o inactivado regiones cuya expresión es necesaria para Ia replicación del virus en las células diana y/o en los que se han sustituido regiones que codifican proteínas no imprescindibles para que el virus desarrolle la parte de su ciclo vital que se desea que tenga lugar en la célula diana. En esos casos, el ADN recombinante puede administrarse en forma de partículas virales completas que facilitan la transfección del ADN recombinante a la célula diana. De entre los virus que se están utilizando como vectores, las formas modificadas del virus Vaccinia están entre los vectores virales más tentativos para ser aplicados como vacuna recombinante. Algunas de ellas, como el virus NYVAC, (cuyo genoma se representa en la parte inferior de la Figura 1), han sido generadas por mutagénesis dirigida con el resultado de la eliminación de 18 genes del virus Vaccinia (estirpe Copenhague), aproximadamente 10 kb. Otras, como el virus Vaccinia modificado de Ankara (MVA), han sido generadas de forma menos controlada; concretamente, el MVA se ha generado al haber pasado el virus por más de 570 pases seriados en cultivos primarios de fibroblastos de embrión de pollo (CEF), lográndose una pérdida del 15% del genoma viral parental (1, 2) que supone deleciones en genes de los que algunos de ellos están intactos en el genoma del virus NYVAC (genes que se indican subrayando su nombre en la Figura 1) y otros han sido delecionados en ambos vectores (genes que aparecen con el nombre en negrita en la Figura 1), existiendo también genes que permanecen intactos en el genoma del virus MVA y que presentan deleciones en el genoma de NYVAC (los genes cuyo nombre aparece en cursiva en la Figura 1). En el virus MVA, los genes estructurales del virus han permanecido inalterados, mientras que genes involucrados en la evasión del sistema inmune (3), y genes relacionados con el rango de hospedador (2, 4, 5), han sido delecionados o fragmentados. MVA produce su ciclo infeccioso completo en células CEF y en células de riñon de Hámster (BHK), mientras que en líneas celulares humanas, incluyendo las células HeLa5 tiene un ciclo abortivo (6, 7). Aunque la replicación viral depende del tipo celular, el bloqueo del programa de morfogénesis en las células no permisivas ocurre en los pasos posteriores a la formación de formas virales inmaduras (IV), sin haber alteraciones de la expresión de genes virales tempranos y tardíos (8, 9). En células en cultivo, los recombinantes de MVA producen niveles similares o mayores de proteína heteróloga que los vectores derivados de la cepa silvestre del virus Vaccinia WR (Western Reserve) (9-11), Io que le hace interesante como sistema de expresión. En mamíferos, recombinantes de MVA han demostrado inducir una inmunidad protectora frente a un amplio espectro de patógenos (6, 12-16), mostrando las siguientes ventajas como vector de expresión de antígenos heterólogos: - Alta seguridad, demostrada cuando se usó en más de 120000 individuos durante la campaña de erradicación de la viruela en Alemania.
- Avirulento en una amplia variedad de animales en condiciones inmuno supresoras .
- Poca o nula reacción sistémica o local tras su inoculación en humanos, incluyendo individuos de alto riesgo.
- Alta plasticidad y estabilidad de su genoma, lo que permite introducir grandes cantidades de material génico exógeno.
- Potente inductor de una respuesta inmune eficaz frente a una gran variedad de antígenos. Dada su seguridad y capacidad de producir protección, puede ser de gran utilidad en la generación de vacunas vivas frente a enfermedades infecciosas y en la terapia del cáncer. Como cualquier otra vacuna dirigida a seres humanos, para llevar a cabo ensayos clínicos de la posible eficacia como vacunas de vectores derivados del MVA, es necesario obtener información previa sobre su comportamiento inmunogénico y su capacidad de conferir protección en modelos animales. En el caso del SIDA, sin embargo, no es sencillo encontrar un modelo animal adecuado. Los modelos habituales para el estudio de otros diversos trastornos, como pueden ser los ratones, no sirven como modelo de infección, al no replicarse en ellos ni el virus de la inmunodeíiciencia humana (VIH) ni el equivalente de simio, el virus de la inmunodeficiencia de simio (SIV), por lo que no son modelos válidos para evaluar la capacidad protectora de la vacunación. Sí es posible, sin embargo, obtener de los ratones información previa sobre el comportamiento irrmunológico de los vectores en estudio que permita una evaluación previa de su posible eficacia y ayude a descartar o considerar interesante continuar con los ensayos. Además, el modelo de ratón transgénico que expresa el antígeno de histocompatibilidad humano MHC de clase I (HLA-A2) permite demostrar si la vacunación confiere presentación antigénica similar a la humana por parte del HLA- A2, que es prevalente en la población, algo que no se puede hacer, de momento, en primates, por no disponerse de primates transgénicos para dicho antígeno humano. Los estudios sobre la capacidad protectora conferida por la vacunación, sin embargo, requieren el uso de otros modelos distintos del modelo de ratón.
En esa línea, los modelos de primates no humanos se han convertido en una herramienta fundamental para evaluar en ensayos clínicos las vacunas candidatas contra el SIDA. La infección de chimpancés por el VIH-I ha presentado grandes limitaciones como su elevado costo, su poca disponibilidad y la ausencia de síntomas clínicos. Se ha encontrado que el virus de la inmunodeficiencia de simios (abreviado frecuentemente como SIV a partir de su nombre en inglés, simian immunodeficiency virus) es un modelo mucho más útil. Se trata de un lentivirus que infecta de forma natural diversos tipos de primates. Se han descrito cinco subgrupos del mismo. La forma aislada de macacos Rhesus (Macaca mulatta), a la que se denomina SlVmac, pertenece al primero. Al igual que sucede con el VIH, su genoma se caracteriza por presentar dos secuencias LTR en sus extremos 3' y 5', en las cuales se encuentra el promotor y las secuencias reguladoras o de unión a factores transcripcionales. Presenta tres marcos de lectura abierta para proteínas estructurales: gag, pol y env; marcos de lectura abierta para genes reguladores: nef, tat y rev, y los llamados genes accesorios: vif, vpr y vpx. Los miembros del subgrupo SlVmac comparten un alto grado de homología genética con el VIH-2. Existen puntos comunes entre los virus SIV y VIH, entre los que se encuentran el tropismo celular, la organización genómica, las características ultraestructurales, el modo de transmisión, la respuesta del hospedador a la infección y los síntomas clínicos de la enfermedad, con la salvedad de las infecciones asintomáticas. Estas características han propiciado que los modelos basados en el virus SIV sean atractivos para la evaluación de la eficacia de candidatos a vacunas y el diseño de nuevas vacunas para ensayos en humanos. La infección por SIV se caracteriza por un máximo de viremia en las dos primeras semanas, con una disminución de los niveles virales hasta un punto que es variable y del cual dependerá la progresión de la enfermedad. El período de incubación viral es menor que en la infección por VIH, La variabilidad en la progresión de la enfermedad depende de la heterogeneidad genética de los macacos usados en los estudios, así como del virus empleado en el desafío y la ruta de exposición (intravenosa, mucosa o perinatal). Ante la infección por SIV, la respuesta del hospedador es parecida a la generada contra el VIH, pero difiere en la especificidad de los anticuerpos neutralizantes contra los antígenos de la envoltura.
El SIV presenta varias desventajas como modelo. En primer lugar, es un virus diferente al VIH; por tanto, las proteínas de la envuelta, que son el blanco fundamental de los anticuerpos neutralizantes, son muy divergentes en ambos modelos. Otro dato a añadir es que el SIV usa sólo el correceptor CCR5 para entrar en la célula, mientras que el VIH usa, además, otros correceptores como CXCR4, CCR2 o CCR3, Por esta y otras razones, la calidad y la eficacia de un candidato probado en este modelo no se considera necesariamente extrapolable a seres humanos.
Para soslayar estas desventajas, en 1991 se obtuvo por primera vez un virus híbrido entre el VIH y el SIV, al que se denominó SHIV (del inglés Simian-Human Immunodeficiency Virus) (25). Este híbrido contenía los genes env y tat del VIH y el resto del material genético del SIV. El SHIV fue capaz de infectar macacos Rhesus, aunque no era capaz de reproducir los síntomas característicos del SIDA en los animales inoculados.
Con este primer híbrido, se dispuso de un modelo de infección en macacos útil para estudios de protección contra la infección, si bien este modelo aún no permitía concluir si los candidatos a vacunas eran capaces de proteger contra la enfermedad. Unos años más tarde, a través de pasos sucesivos por macacos y en cultivo, se lograron aislar variantes agresivas del SHIV capaces no sólo de infectar macacos, sino de producir un síndrome similar al SIDA. Estas cepas, adaptadas a multiplicarse en los animales, provocan depleción en los linfocitos CD4+ y la muerte de los macacos en menos de un año tras la inoculación. De entre estas variantes del SHIV, una de las más comúnmente utilizadas es la denominada SHIV89.6P, obtenida mediante pases seriados en macacos Rhesus del virus parental SHIV89.6, que contiene los genes gag, pol, vif, vpx, vpr y nef del virus de simio SIVmac239, mientras que los genes auxiliares tat, rev y vpu y el gen de las proteínas de la envuelta env proceden de un aislado citopático del HIV-I, el HIV89.6 (26,27). Gracias al virus SHIV89.6P y otros similares se cuenta con un modelo para evaluar la protección contra la enfermedad y la muerte conferida por posibles vacunas en desarrollo. Gracias a este modelo, varios estudios realizados en macacos han demostrado la relevancia de recombinantes de MVA como vacuna potencial frente al VIH5 especialmente cuando se utilizan en sistemas combinados de inmunización en los que se emplean dos o más dosis de vacunación separadas en el tiempo, suministrándose al menos en la primera dosis un vector diferente al de las siguientes dosis, aunque los antígenos expresados a partir de cada uno de los vectores pueden ser los mismos. Para hacer referencia a estos protocolos de vacunación en los que se suministra una primera dosis de desencadenamiento de la respuesta inmune con un vector que da lugar a la expresión de un antígeno y una o más dosis de potenciación o refuerzo de la respuesta inmune generada que contienen un vector diferente, pero que da lugar generalmente a la expresión del mismo antígeno, se emplea a menudo su denominación en inglés prime/boost. Estos protocolos se consideran especialmente adecuados para ser aplicados para la prevención o el tratamiento de las infecciones por el virus VIH pues, por una parte, evitan la administración de formas vivas atenuadas del virus, recurriéndose sólo a la utilización de componentes del mismo; por otra parte, el uso de vectores de expresión capaces de introducirse en las células en lugar de recurrir a la administración directa de las proteínas que expresan posibilita que las proteínas que deben actuar como antígenos se encuentren presentes en el citoplasma de las células hospedadoras para que se produzca su procesamiento mediante la ruta de presentación de antígenos del MHC de clase I, lo que es necesario para desencadenar una respuesta inmune de células T, particularmente respuestas citotóxicas inmunes asociadas con linfocitos T CD8+; por último, el uso de vectores diferentes en cada una de las dosis disminuye la probabilidad de que el vector de vacunación como tal sea eliminado rápidamente por el sistema inmune del hospedador, evitándose la potenciación de la respuesta inmune dirigida contra las partes constituyentes del vector que no proceden del microorganismo contra el que se busca protección.
En los estudios con macacos (12), los vectores recombinantes derivados del MVA están demostrando ser particularmente útiles para ser utilizados en protocolos combinados de inducción y potenciación de la respuesta inmune con vectores diferentes, en especial cuando el recombinante derivado del MVA se administra en la segunda y/o en alguna dosis posterior a esta y expresa, al igual que el vector utilizado en la primera dosis, múltiples antígenos de VIH y SIV (Virus de la Inmunodeficiencia de Simio). La respuesta de células T citotóxicas y de memoria generada demuestra el potencial de los recombinantes de MVA como vacunas frente al VIH (17).
Por ello, se han diseñado distintos vectores recombinantes, basados en el MVA, capaces de expresar diversos antígenos del VIH. Intentando buscar formas más eficaces para generar una respuesta protectora, se han construido vectores capaces de expresar más de una proteína de dicho virus, en ocasiones formando proteínas de fusión. Así, por ejemplo, las solicitudes de patente WO 02/072754 y WO 2004/087201 describen en general vectores derivados del MVA que expresan las proteínas Env, Gag y PoI (rMVA), considerando como una opción adicional la posibilidad de que el antígeno inmunizante incluya también secuencias de vif, vpr, tat, rev, vpu o nef, aunque sin discutir que la expresión de alguna de esas secuencias tenga gran importancia de cara a la posible respuesta de protección generada ni utilizando esa opción en las realizaciones de la invención. Aunque en dichas solicitudes internacionales se menciona que las secuencias de vif, vpr, tat, rev, vpu o nef, así como las correspondientes a env, gag y pol, pueden en general codificar sólo fragmentos de la correspondiente proteína, y/o presentar mutaciones, es una característica defmitoria de la invención que se intenta proteger en dichas solicitudes internacionales que el gen env carezca de parte o de la totalidad de los nucleótidos que codifican el dominio citoplasmático de gp41. El estado de la técnica no describe específicamente la posibilidad de que la parte codificante correspondiente a la proteína gp41 se elimine en su totalidad ni discute las consecuencias que esto tendría. Sí se menciona en cambio en los ejemplos de ambas solicitudes que dichas proteínas de la envuelta, gracias al truncamiento de gρ41, ven facilitada su acumulación en la membrana de las células que la expresan, lo que se trata como un efecto positivo buscado. También se trata como tal la formación de partículas similares a virus VIH en las que están presentes proteínas Gag y Env y que se pueden detectar, entre otras localizaciones, en el exterior de las células en las que las correspondientes proteínas se han expresado. Respecto al lugar de inserción de las secuencias expresadas, no se menciona que éste tenga una importancia especial salvo para manifestar como positivo el hecho de que la elección del sitio de la deleción III como uno de los lugares en los que se insertan secuencias permite que el recombinante MVA siga siendo TIC. Ello implica que el vector recombinante MVA descrito en dicho estado de la técnica exprese timidina quinasa y, por consiguiente, mantenga una cierta virulencia. Tampoco se discute que tenga relevancia alguna que se utilice más de un lugar de inserción para incluir en el vector las secuencias que codifican los antígenos que se desean expresar, no describiéndose pruebas para demostrar la estabilidad de dichos vectores.
La solicitud de patente WO 2004/035006 describe también vectores derivados de MVA que contienen secuencias codificantes de varias proteínas de VIH que se expresan en forma de proteínas de fusión, concretamente una fusión Gag-Pol y una fusión nef-tat, pero el enfoque es aquí diferente al de las solicitudes internacionales anteriormente comentadas: se busca que no haya empaquetamiento en proteínas virales, para lo cual Ia solución propuesta es que al menos una de las secuencias codificantes de proteínas del VIH esté unida a una secuencia líder heteróloga, siendo la del tPA la que se elige para las realizaciones correspondientes a vectores derivados del MVA y promoviéndose de esta manera la secreción de las proteínas sintetizadas. Para la inserción de las secuencias, además, se muestra preferencia por el sitio de la deleción III, utilizándose de nuevo en un mismo vector un segundo lugar de inserción de secuencias adicionales, el de la deleción II, para una proteína de fusión tPA-nef-tat, sin considerar que esto pueda tener consecuencias para la estabilidad del vector ni realizar experimentos para verificar que realmente sea estable. Además, la única forma considerada para la secuencia env, delta V2 env, donde posee deleciones es en la parte correspondiente a la proteína gpl20, no considerándose de nuevo la posibilidad de eliminar la pro teína gp41 ni las posibles consecuencias derivadas de ello.
La presente invención, por su parte, proporciona distintos vectores recombinantes, basados en el MVA, capaces de expresar diversos antígenos del VIH, que responden a un enfoque diferente a los descritos en solicitudes anteriores. Estos vectores recombinantes derivados del MVA poseen secuencias que permiten la expresión simultánea de la proteína gpl20 y de una proteína de fusión Gag-Pol-Nef. Tanto la secuencia que expresa la proteína gpl20 como la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef se encuentran insertadas en un mismo lugar, el correspondiente al gen de la timidina quinasa, con lo que se aumenta la estabilidad de los vectores al utilizar un único sitio de inserción con respecto a otros vectores derivados también del MVA que contienen varias secuencias codificantes de proteínas del VIH, dado que estos últimos, al llevar insertas cada una de las secuencias en un lugar diferente del MVA, pierden con facilidad los insertos presentes en ellos. Además, la utilización específica del locus de la timidina quinasa como lugar de inserción da lugar a que los vectores de la invención sean virus recombinantes derivados del MVA que presentan una mayor seguridad para ser utilizados como vacunas, por carecer de un gen, el de la timidina quinasa, involucrado en virulencia. A diferencia de lo descrito en solicitudes como WO 02/072754 y WO 2004/087201 , la expresión de la proteína gpl 20 en ausencia de secuencias correspondientes a la proteína gp41, permite su liberación al medio extracelular pocas horas después de su síntesis en el citoplasma de la célula infectada, facilitándose con ello la inducción tanto de respuesta humoral como celular frente a esta proteína, la que mayor variabilidad presenta εn su secuencia entre los distintos clades. Los virus recombinantes de la presente invención expresan al menos cuatro antígenos: Env, Gag, PoI y Nef, por considerarse que un vector que exprese esos cuatro antígenos es mucho más eficaz que vectores recombinantes capaces de expresar sólo alguno de dichos antígenos o incluso otros, por la capacidad de los antígenos elegidos para inducir respuestas celulares específicas y por la menor diversidad genética entre aislados del VIH en lo que a las secuencias de Gag, PoI y Nef se refiere. Además, se considera una característica particularmente importante de la invención la presencia de secuencias correspondientes al gen regulador nef, junto con las correspondientes a los genes estructurales gag, pol y env, pues se expresa en etapas tempranas del ciclo del VIH y la generación de una respuesta celular frente a sus productos se considera necesaria para aumentar el repertorio de defensa iπmunológica contra el VIH y conseguir una respuesta protectora adecuada que permita el control inmunológico de Ia infección por el VIH-I . La asociación de las secuencias codificantes de gag, pol y nef se ha realizado en los vectores de la invención de forma que se generara una proteína de fusión que mantuviera todos los epítopos con capacidad para generar respuesta celular, posibilitando una mayor presentación antigénica que otros vectores que expresan fusiones que corresponden sólo a las proteínas Gag y PoI, pero generándose una proteína de fusión que no se proteoliza por acción de la proteasa viral, no da lugar a la formación de partículas virales y que, al contrario de lo que sucedía con las proteínas expresadas en otros vectores de la técnica anterior, se acumula en el citoplasma en forma de una poliproteína estable. El uso de un promotor sintético idéntico para dirigir la expresión tanto de la proteína gpl20 como de la fusión Gag-Pol-Nef, promotor que se elige para que permita la expresión de las correspondientes proteínas tanto a tiempos tempranos como a tiempos tardíos durante la replicación del MVA, permite la expresión simultánea de las secuencias de la gpl20 y de la proteína quimérica Gag-Pol-Nef, su acumulación a lo largo del ciclo de infección del MVA y el procesamiento antigénico de las mismas a tiempos tempranos y tardíos. Un grupo de los vectores de la invención han sido diseñados específicamente para la vacunación de seres humanos. En estos vectores, tanto la secuencia de la proteína gpl20 como la secuencia de la proteína de fusión Gag-Pol-Nef se han generado a partir de secuencias del virus de la inmunodefi ciencia humana VIH-I . La utilización para la generación de los vectores recombinantes de secuencias obtenidas específicamente de aislados naturales y que preferentemente pertenecen a los clades del VIH-I más representados en la naturaleza, B y C, posibilita además una vacunación mundial más representativa de la población infectada o en riesgo. Por todo ello, el uso de estos vectores para vacunación, de forma aislada o como parte de protocolos de inmunización en los que se suministran vectores codificantes de antígenos en varias dosis espaciadas en el tiempo, se ha considerado que puede ser de especial utilidad para ayudar a contener la expansión del viras VIH. Además, estos vectores derivados del virus MVA representan tanto una alternativa a construcciones similares derivadas del virus NYVAC como un complemento útil para la utilización de cada uno de los mencionados vectores recombinantes en fases diferentes de protocolos de inmunización en los que se suministra una o dos dosis para desencadenar la respuesta inmune y una o más dosis sucesivas para potenciarla, pues las pruebas realizadas hasta ahora por el grupo de los inventores muestran que, además de diferir en su genoma y en la respuesta inmune que generan en ratones frente a los antígenos del VIH gpl20 y Gag-Pol-Nef, ambos vectores manifiestan un comportamiento diferencial en cultivos celulares y modelos animales (inducción de diferentes patrones de expresión de genes humanos en células HeLa, menor inducción por parte del MVA de apoptosis que el vector NYVAC, induciendo éste último mayor destrucción celular y respuesta humoral contra sí mismo (28)) que hace predecible que su comportamiento sea diferente también tras la administración a seres humanos como vacunas de vectores recombinantes generados a partir de cada uno de ellos.
Tal como se describe más adelante en Ejemplos de la presente memoria, los ensayos realizados en ratones demuestran la capacidad inmunogénica de estos vectores de la invención diseñados para la vacunación de seres humanos y, en particular, de las dos realizaciones de vectores de la invención con las que se llevaron a cabo los ensayos, los vectores MVA-B y MVA-C. Sin embargo, para poder evaluar su capacidad para conferir protección para controlar la infección por el VIH, es necesario acudir a un modelo de primates no humanos, como puede ser el de los macacos Rhesus anteriormente descritos, que sean sometidos a un protocolo de desencadenamiento/potenciación de la respuesta inmune y en los que se evalúe posteriormente la capacidad para controlar la infección que la respuesta inmune generada sea capaz de conferir tras "desafiar" la misma mediante la inoculación de un virus capaz de infectar a los macacos y de dar lugar en ellos a síntomas similares a los del SIDA, desafío para el cual sería adecuada una de las variantes patogénicas del SHIV cuya existencia se mencionó anteriormente. Este tipo de ensayos, sin embargo, no pueden realizarse con los vectores de la invención diseñados para la vacunación de seres humanos, vectores cuyos insertos codifican proteínas exógenas al virus MVA que derivan todas ellas de secuencias de proteínas propias del VIH-I, sino que requieren la generación de vectores especiales que cumplan varias condiciones: a) contener secuencias codificantes retrovirales del mismo origen que las contenidas en el virus que vaya a utilizarse en el desafío, virus que puede ser el SHIV, de manera que la secuencia correspondiente al gen env procederá del VIH-I mientras que las posibles secuencias correspondientes a otros genes, como puedan ser gag, pol o nef, procederán del SIV); b) presentar la misma estructura de organización génica, sitio de inserción y promotores que los vectores diseñados para uso en humanos con los que se quieren comparar.
El cumplimiento de estas condiciones permite que el estudio sea factible y que se puedan extrapolar de sus resultados el comportamiento esperable al utilizar en seres humanos los vectores con los que se los quiere comparar. La presente invención proporciona también vectores que permiten valorar la capacidad protectora que podría generarse en seres humanos que fueran vacunados con virus recombinantes de la invención, derivados de MVA y con secuencias exógenas derivadas todas ellas de secuencias de proteínas del VIH-I . Adicionalmente, se proporcionan también vectores recombinantes análogos construidos a partir de otro derivado de poxvirus, el NYVAC, para poder comparar el efecto de ambos.
DESCRIPCIÓN DE LA INVENCIÓN La invención proporciona nuevos vectores recombinantes derivados del virus
MVA capaces de expresar simultáneamente una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la proteína gp41 y una proteína de fusión correspondiente a las proteínas Gag, PoI y Nef del VIH-I que no se proteoliza por acción de la proteasa del VIH, estando la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef bajo el control de promotores idénticos e insertadas ambas en el mismo lugar de inserción del vector. Estos vectores de la invención, en los que las secuencias codificantes de antí genos exógenos al MVA se derivan todas ellas de secuencias propias del virus de la inmunodeficiencia humana 1 (VIH-I), han sido diseñados para poder fabricar con ellos medicamentos que sirvan como vacunas preventivas o terapéuticas contra el SIDA en seres humanos a los que se les administre; por ello, para diferenciarlos de los vectores de la invención que se describirán más adelante, que comprenden secuencias derivadas del SlVmac y han sido diseñados para ser administrados a macacos, en la presente memoria se alude en ocasiones a estos primeros vectores de la invención con expresiones del tipo "los vectores de la invención diseñados para la vacunación de seres humanos", "los vectores derivados del virus MVA diseñados para la vacunación de seres humanos", "los vectores de la invención diseñados para ser utilizados en seres humanos". Por claridad de la descripción, en ocasiones se alude a ellos también describiendo la composición de su genoma, con expresiones del tipo "los vectores en los que las secuencias codificantes de antígenos exógenos al MVA se derivan todas ellas de secuencias propias del VIH-I". Así, la invención se refiere también tanto a composiciones que contienen dichos vectores recombinantes como al uso de dichos vectores para la fabricación de un medicamento destinado a ser utilizado como vacuna para ayudar a prevenir o tratar una infección provocada por el virus VIH.
La expresión de la proteína Env sintetizada a partir de los vectores de Ia invención da lugar a proteínas gpl20 no asociadas a proteínas gp41 o fragmentos de la misma, facilitándose con ello su salida de la célula y su liberación al medio, lo que hace más probable la activación de las células B y la producción de anticuerpos neutralizantes frente al VIH. En las realizaciones preferidas de los vectores de Ia invención, la secuencia de nucleótidos correspondiente a la proteína Env que forma parte de los vectores de la invención codifica una proteína gpl20 completa, habiéndose delecionado toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gpl20, eliminando con ello, la totalidad de la secuencia codificante correspondiente a la proteína gp41.
En cuanto a la proteína de fusión de Gag, PoI y Nef, está diseñada de manera que no dé lugar a la formación de partículas similares a partículas virales. La forma utilizada para la construcción de las realizaciones de la invención que se describen con detalle en la presente memoria se acumula en el citoplasma de las células infectadas con los vectores recombinantes de la invención en forma de poliproteína, sin experimentar el procesamiento característico del virus VIH provocado por la proteasa viral que daría lugar a su escisión en proteínas más pequeñas, aunque posteriormente sí va a experimentar el procesamiento celular que permite la presentación de péptidos antigénicos de la proteína de fusión y Ia generación de una respuesta inmune contra los mismos.
Se prefiere especialmente que el lugar del vector en el que se encuentran insertadas la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef sea el gen de la timidina quinasa, gen que queda inactivado por la presencia de las secuencias en él insertadas, aumentándose con ello la seguridad de los vectores de la invención para ser suministrados a individuos con el propósito de generar en ellos una respuesta inmune frente al VIH.
En las realizaciones preferidas de estos vectores de la invención, diseñados para la vacunación de seres humanos, la secuencia codificante de la proteína de fusión Gag- Pol-Nef se genera a partir de secuencias de proteínas Gag, PoI y Nef para las que se deduce una secuencia de ADNc utilizando codones de lectura frecuentes en mamíferos, buscando con ello aumentar los niveles de expresión de la proteína de fusión. Además, en la secuencia codificante de la proteína de fusión se provocan modificaciones respecto a las secuencias naturales, para aumentar su inmunogenicidad y su seguridad. Las modificaciones por las que se tiene mayor preferencia incluyen la inactivación por mutagénesis del lugar activo de la proteasa y la eliminación mediante deleción del lugar activo de la integrasa, la realización de deleciones en el gen nef y su inserción en la región codificante de la RT, la traslocación del lugar activo de la RT al extremo C- terminal de la proteína de fusión y la fusión de la secuencia del gen gag en fase de lectura con pol-nef, creando una desviación de una fase de lectura e introduciendo un cambio de glicina a alanina para prevenir la formación de partículas semejantes a virus. De entre ellas, se prefiere específicamente las modificaciones realizadas para generar la secuencia correspondiente a la proteína de fusión descritas por Didierlaurent A. et al. (18). Un esquema de los elementos que conforman una proteína de fusión Gag-Pol-Nef que cumple todas estas características se muestra en la zona inferior de la Figura 40, marcada como GagPolNef (gpn).
En las realizaciones preferidas de los vectores de la invención diseñados para la vacunación de seres humanos, el promotor se escoge de manera que permitan la expresión de la proterna Env y de la proteína de fusión Gag-Pol-Env tanto en etapas tempranas como tardías del ciclo infectivo del virus MVA. El promotor sintético temprano/tardío de poxvirus pE/L (19) es la opción elegida para las realizaciones más preferidas de la invención, aunque cualquier otro promotor de poxvirus podría utilizarse igualmente para la construcción de vectores de la invención.
En una realización particularmente preferida de los vectores de la invención diseñados para la vacunación de seres humanos, en los que las secuencias codificantes de antígenos exógenos al MVA se derivan todas ellas de secuencias propias del VIH-I, tanto la secuencia correspondiente a la proteína Env como las secuencias utilizadas para generar la secuencia que da lugar a la proteína de fusión Gag-Pol-Nef proceden de aislados naturales pertenecientes al clade B y/o al clade C. En realizaciones aún más preferidas de la invención, la secuencia correspondiente a la proteína Env y las secuencias utilizadas para generar la secuencia que da lugar a la proteína de fusión Gag- Pol-Nef proceden de aislados naturales pertenecientes a un mismo clade, preferentemente el clade B o el clade C, pero también se consideran realizaciones de la invención aquellas en las que la secuencia correspondiente a la proteína Env procede de un aislado correspondiente a un clade y las secuencias utilizadas para generar la secuencia que da lugar a la proteína de fusión Gag-Pol-Nef proceden de un aislado correspondiente a un clade diferente. Están incluidas también dentro del alcance de la invención aquellas realizaciones en las que al menos una de las secuencias utilizadas para generar la secuencia correspondiente a la proteína de fusión, es decir, la secuencia de gag, la secuencia de pol o la secuencia de nef, procede de un aislado diferente, pudiendo ser diferentes los tres aislados de los que se obtiene cada una de las correspondientes secuencias codificantes e, incluso, no pertenecer al mismo clade. Las composiciones de la invención que contienen vectores recombinantes de la invención, destinadas a ser utilizadas en la vacunación contra el virus VIH, pueden contener vectores recombinantes generados únicamente a partir de aislados de un clade concreto, preferentemente el B o el C, mezclas de vectores recombinantes de distintos clade s en las que cada uno de los vectores se ha construido con secuencias procedentes de aislados de un único clade, vectores idénticos entre sí que se han construido a partir de secuencias procedentes de aislados de clades diferentes o mezclas de cualquiera de los vectores incluidos dentro del alcance de la invención. Se prefieren aquellas composiciones que contengan vectores de la invención generados a partir de un único clade, preferentemente el B o el C, o mezclas de vectores generados a partir de aislados del clade B y vectores generados a partir de aislados del clade C. Las composiciones que contengan tanto vectores generados a partir de aislados del clade B y vectores generados a partir de aislados del clade C deberían ser de especial utilidad para ser utilizadas para la prevención y/o el tratamiento de la infección por el VIH en aquellas zonas en las que ambos clades están representados de forma significativa.
En las realizaciones de la invención cuya construcción se describe en los ejemplos de la presente memoria, la secuencia correspondiente a la proteína Env se encuentra insertada en sentido opuesto con respecto al sentido de la transcripción de la proteína de fusión Gag-Pol-Nef, encontrándose los promotores correspondientes a cada una de las secuencias correspondientes a proteínas del VIH insertados en orientaciones opuestas y en la zona más interna del inserto. Cada uno de los vectores de la invención diseñados para la vacunación de seres humanos cuya construcción se describe se generaron a partir de aislados naturales correspondientes a clades diferentes. El primero de ellos, MVA-B, permite la expresión de una forma del gen env obtenida a partir del aislamiento del VIH BX08, procedente de Europa, y una proteína de fusión Gag-Pol- Nef que resulta de Ia traducción de una secuencia polinucleotídica generada a partir de secuencias correspondientes a gag, pol y nef del aislamiento IIIB, que forma parte, como el aislamiento BXO 8, del clade B. El segundo de los vectores, MVA-C, permite la expresión una forma del gen env obtenida a partir del aislamiento del VIH CN54, procedente de China, y una proteína de fusión Gag-Pol-Nef que resulta de la traducción de una secuencia polinucleotídica generada a partir de secuencias correspondientes a gag, pol y nef del mismo aislamiento CN54, que forma parte del clade C. Las secuencias de aminoácidos expresadas a partir de cada uno de los genes env contenidos en los vectores derivados de MVA reproducen la secuencia completa de las proteínas gpl20 correspondientes a los virus del aislamiento BX08, en el caso del MVA-B, y a ios virus del aislamiento CN54 en el caso del MVA-C. La construcción de estos vectores y la evaluación de su capacidad inmunogénica en ratones se describen con más detalle con ayuda de las Figuras 1 a 38 y los Ejemplos 1 a 32 que aparecen más adelante en la presente memoria.
Sin embargo, como se ha comentado anteriormente, los ratones no son un modelo adecuado para evaluar la capacidad para controlar la infección del VIH que los vectores de la invención sean capaces de conferir a seres humanos inmunizados con ellos. Para ello es más adecuado recurrir a animales evolutivamente más próximos a los seres humanos, como pueden ser primates no humanos tales como los macacos Rhesus, a los que se les inocule un virus capaz de infectar a dichos animales y de producir en ellos un síndrome similar al SIDA, características que cumplen algunas variantes patogénicas del virus SHIV como puede ser la denominada SHIV89.6P. Desafiar la respuesta inmunogénica producida por uno o más vectores de vacunación con una variante del virus SHlV implica que la inmunización no puede realizarse con los vectores de la invención anteriormente descritos, que están diseñados para expresar proteínas derivadas de secuencias propias del viras contra cuya infección se busca protección , el VIH-I, pues no se reproducirían en el ensayo las condiciones del proceso que sucedería en un ser humano. Por ello, la evaluación de la capacidad de control de la infección que puedean conferir los vectores de la invención diseñados para la vacunación de seres humanos requiere la generación de vectores especiales que cumplan varias condiciones: a) contener secuencias codificantes retrovirales del mismo origen que las contenidas en el virus que vaya a utilizarse en el desafío, virus que puede ser el SHIV, de manera que la secuencia correspondiente al gen env procederá del VIH-I mientras que las posibles secuencias correspondientes a otros genes, como puedan ser gag, pol o nef, procederán del SIV); b) presentar la misma estructura de organización génica, sitio de inserción y promotores que los vectores diseñados para uso en humanos con los que se quieren comparar.
La invención proporciona también vectores que cumplen estas características, que son también un objeto de la presente invención. Así, la invención se refiere también a nuevos vectores recombinantes derivados del virus MVA capaces de expresar simultáneamente una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la proteína gp41 y una proteína de fusión que contiene secuencias de las proteínas Gag, PoI y Nef del virus de la inmunodeficiencia de simio SIV, estando la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef bajo el control de promotores idénticos e insertadas ambas en el mismo lugar de inserción del vector. En estos vectores, por tanto, a diferencia de los vectores de la invención diseñados para la vacunación de seres humanos la proteína de fusión correspondiente a las proteínas Gag, PoI y Nef no se sintetiza a partir de secuencias procedentes de VIH-I, sino de secuencias procedentes del SlVmac (virus de la inmunodeficiencia de simio aislado de macacos). Ello permite su utilización en protocolos de inmunización de macacos y el posterior desafío de la inmunidad creada con un viras SHIV patógeno en el que la secuencia del gen env deriva de la correspondiente secuencia de un aislado del VIH-I, mientras que las secuencias correspondientes a los genes gag, pol y nef correspondan al viras de simio que infecta a macacos. De esta manera, al cumplirse la condición de que las secuencias codificantes retrovirales contenidas en los vectores de la invención diseñados para realizar ensayos en macacos tengan su origen en el mismo tipo de virus que las presentes en el retrovirus que vaya a utilizarse en el desafío, la inmunidad generada frente a las proteínas sintetizadas a partir de dichos vectores podrá servir para controlar la infección desencadenada por el retrovirus que se inocule en el desafío.
Para que tenga sentido el establecimiento de paralelismos entre los resultados observados en macacos y los que podrían esperarse en seres humanos, los vectores de la invención diseñados para realizar ensayos en macacos cumplen la condición de presentar la misma estructura de organización génica, sitio de inserción y promotores que los vectores de la invención diseñados para la vacunación de seres humanos con los que se quieren comparar. De acuerdo con ello, de forma análoga a los vectores en los que las secuencias codificantes de antígenos exógenos al MVA se derivan todas ellas de secuencias propias del VIH-I, la expresión de la pro teína Env sintetizada a partir de los vectores de la invención diseñados para ser utilizados en macacos da lugar a proteínas gpl20 no asociadas a proteínas gp41 o a fragmentos de la misma, facilitándose con ello su salida de la célula y su liberación al medio, lo que hace más probable la activación de las células B y la producción de anticuerpos neutralizantes frente al VIH. En las realizaciones preferidas de la invención, la secuencia de nucleótidos correspondiente a la proteína Env que forma parte de los vectores de la invención codifica una proteína gpl20 completa, habiéndose delecionado toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gpl20, eliminando con ello, la totalidad de la secuencia codificante correspondiente a la proteína gρ41. Un esquema referente a la secuencia de la proteína Env que forma parte de los vectores de la invención se muestra en la parte superior de la Figura 40. Es el último gráfico el que corresponde a la secuencia de una proteína gpl20 expresada a partir de vectores de la invención, en la que se ha eliminado la totalidad de la secuencia codificante correspondiente a la proteína gp41, mientras los gráficos previos representan proteínas de la envuelta con secuencias correspondientes a la proteína gp41.
En cuanto a la proteína de fusión de Gag, PoI y Nef, también de forma análoga a la proteína homologa sintetizada a partir de los vectores en los que la correspondiente secuencia codificante deriva de secuencias propias del VIH-I, está diseñada de manera que no dé lugar a la formación de partículas similares a partículas virales. La forma utilizada para la construcción de las realizaciones de los vectores de la invención que se describen con detalle en la presente memoria se acumula en el citoplasma de las células infectadas con los vectores recombinantes de la invención en forma de poliproteína, sin experimentar el procesamiento característico del virus VIH provocado por la proteasa viral que daría lugar a su escisión en proteínas más pequeñas, aunque posteriormente sí va a experimentar el procesamiento celular que permite la presentación de péptidos antigénicos de la proteína de fusión y la generación de una respuesta inmune contra los mismos.
Tal como se ha comentado anteriormente, la utilidad principal de los vectores de la invención que comprenden secuencias derivadas del SlVmac es la de ser utilizados en protocolos de inmunización para extraer datos sobre la posible utilidad como vacunas de vectores diseñados para ser administrados a seres humanos, que deben tener la misma estructura de organización génica, promotores y sitio de inserción. Es por ello que las realizaciones equivalentes a las realizaciones preferidas de los vectores de la invención diseñados para la vacunación de seres humanos (exceptuando las que se refieren a aislados del VIH-I como origen preferido de las secuencias codificantes de las proteínas Env y Gag-Pol-Nef) son también realizaciones preferidas de los vectores diseñados para realizar ensayos en macacos. Así, se prefiere especialmente que el lugar del vector en el que se encuentran insertadas la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef sea el gen de la timidina quinasa, gen relacionado con la virulencia que queda inactivado por la presencia de las secuencias en él insertadas, aumentándose con ello la seguridad de los vectores. En las realizaciones preferidas, la secuencia codificante de la proteína de fusión
Gag-Pol-Nef se genera a partir de secuencias de proteínas Gag, PoI y Nef para las que se deduce una secuencia de ADNc utilizando codones de lectura frecuentes en mamíferos, buscando con ello aumentar los niveles de expresión de la proteína de fusión. Además, en la secuencia codificante de la proteína de fusión se han provocado modificaciones respecto a las secuencias naturales, para aumentar su inmunogenicidad y su seguridad. Las modificaciones por las que se tiene mayor preferencia incluyen la inactivación por mutagénesis del lugar activo de la proteasa y Ia eliminación mediante deleción del lugar activo de la integrasa, la realización de deleciones en el gen nef y su inserción en la región codificante de Ia RT, la traslocación del lugar activo de la RT al extremo C -terminal de la pro teína de fusión y la fusión de la secuencia del gen gag en fase de lectura con pol-nef, creando una desviación de una fase de lectura e introduciendo un cambio de glicina a alanina para prevenir la formación de partículas semejantes a virus. De entre ellas, se prefiere específicamente las modificaciones realizadas para generar la secuencia correspondiente a Ia pro teína de fusión descritas por Didierlaurent A. et al. (18). Tal como sucedía en el caso de las proteínas Gag-Pol-Nef derivadas de secuencias propias del VIH-I, las proteínas de fusión Gag-Pol-Nef que cumplen todas estas características, aunque derivadas en este caso de secuencias propias del SlVmac, están representadas por el esquema que se muestra en la zona inferior de la Figura 40, marcada como GagPolNef (gpn).
En las realizaciones preferidas de la invención, el promotor se escoge de manera que permitan la expresión de la proteína Env y de la proteína de fusión Gag-Pol-Env tanto en etapas tempranas como tardías del ciclo infectivo del virus MVA. El promotor sintético temprano/tardío de poxvirus pE/L (19) es la opción elegida para las realizaciones más preferidas de la invención, aunque cualquier otro promotor de poxvirus podría utilizarse igualmente para la construcción de vectores de la invención.
En los Ejemplos 1 y 19 se describe, respectivamente, la construcción de los vectores denominados MVA-B y MVA-C, que suponen sendas realizaciones de vectores de la invención, diseñados para la vacunación de seres humanos, que cumplen todas las características preferidas para estos vectores de la invención. En ellos, la secuencia correspondiente a la proteína Env se encuentra insertada en sentido opuesto con respecto al sentido de la transcripción de la proteína de fusión Gag-Pol-Nef, encontrándose los promotores correspondientes a cada una de las secuencias correspondientes a proteínas del VIH insertados en orientaciones opuestas y en la zona más interna del inserto. Para poder extraer datos sobre la posible protección que estos vectores conferirían a seres humanos vacunados con ellos, en la presente memoria se describe la construcción de un vector, obtenido igualmente a partir del MVA, que posee, igualmente insertado en el locus de timidina quinasa, un inserto que comprende la secuencia codificante de una proteína de fusión Gag-Pol-Nef generada a partir de secuencias del virus SlVmac en la que se han realizado todas las modificaciones antes mencionadas, detalladas en la publicación de Didierlaurent et al. (18) y bajo el control de un promotor sintético temprano/tardío pE/L, así como la secuencia codificante de una protema gρl20, procedente de un virus VIH-I, que carece totalmente de parte codificante correspondiente a la proteína gp41, igualmente bajo el control de un promotor sintético temprano/tardío pE/L, estando los promotores correspondientes a cada una de las secuencias correspondientes a proteínas del VIH insertados en orientaciones opuestas y en la zona más interna del inserto. A los vectores que cumplen estas características se les ha denominado, de forma general MVA-SHIV.
Para realizar el desafío posterior a la administración del vector MVA-SHIV cuya construcción se describe en la presente memoria, se ha elegido el virus quimérico de simio y humano SHIV89.6P. Por ello, para poder realizar los experimentos de valoración de la protección conferida por la inmunización con el vector en condiciones óptimas, se ha construido un vector MVA-SHIV cuyo genoma contiene un inserto del que forman parte tanto la secuencia codificante de la proteína 89.6P-gpl20, es decir, una secuencia correspondiente a la proteína Env del virus SHIV89.6P (originariamente procedente del aislado 89.6 de VIH-I), modificada para que carezca totalmente de la parte correspondiente a la pro teína gp41, como secuencias codificantes de los antígenos Gag, PoI y Nef de dicho virus SHIV89.6P (originariamente procedentes del virus de la inmunodeficiencia de simio, aislado de macacos, SIVmac239), a partir de las cuales se ha generado la secuencia correspondiente a la proteína de fusión SlVgpn realizando en ellas las modificaciones preferidas de la invención. Es por ello que al vector construido de esta manera se le denomina específicamente MVA-89.6P-SIVgpn o, de forma más detallada, MV A-gpl20-HIV89.6p-SIVmac239-gag-pol-nef.
Tanto en los Ejemplos que describen los ensayos de inmunogenicídad realizados con los vectores MVA-B y MVA-C, como en los Ejemplos encaminados a valorar la capacidad inmunogénica de los vectores de la invención diseñados para realizar ensayos en macacos y, por añadidura, su capacidad para conferir protección frente a infecciones causadas por el SHIV, se ha considerado adecuado disponer también de un control positivo con el que evaluar los resultados obtenidos con los vectores derivados de MVA. Para tal finalidad se han utilizado vectores recombinantes derivados de NYVAC con la misma estructura de organización génica, sitio de inserción en el genoma viral (el locus de timidina quinasa, TK) y los mismos promotores sintéticos tempranos/tardíos, situados en igual disposición que en el vector derivado de MVA con los que se desean comparar: los vectores NYVAC-B (utilizado en los ensayos realizados con MVA-B), NYVAC-C (utilizado en los ensayos realizados con MVA-C) y un vector adicional, previsto para realizar ensayos comparativos con los realizados con los vectores denominados MVA-SHIV, que se ha diseñado específicamente para realizar los ensayos de evaluación de la capacidad protectora descritos en la presente memoria, al que se ha denominado, de forma abreviada, NYVAC-SHIV. Teniendo en cuenta el origen de las secuencias presentes en su inserto, idéntico al origen de las secuencias presentes en el inserto del vector denominado MVA-89.6P-SIVgpn o MVA-gpl20-HIV89.6p- SIVmac239-gag-pol-nef con el que se desea comparar, al vector NYVAC-SHIV concreto cuya construcción se describe en la presente memoria se le ha denominado NYVAC-89.6P-SIVgpn o, de forma más detallada, NYVAC-gpl20-HIV89.6- SIVmac239-gag-pol-nef. Dada su utilidad como control positivo en los ensayos que constituyen la utilidad principal de los vectores MVA-SHIV de la presente invención, los vectores del tipo NYVAV-SHlV están también comprendidos dentro del alcance de la presente invención.
La presente invención se refiere también a composiciones que contienen vectores recombinantes de la invención que comprenden una secuencia codificante de una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la proteína gp41 en su totalidad y una secuencia codificante de una proteína de fusión Gag-Pol-Nef derivada de secuencias del virus SlVmac, así como a su uso para valorar la respuesta inmunológica y la capacidad protectora frente a la infección por el VIH desencadenada por vectores con la misma estructura de organización de genes, promotores y sitio de inserción que se pretendan utilizar para la vacunación de seres humanos. La realización preferida de esa forma de utilización de los vectores de la invención consiste en administrárselos a simios, preferiblemente a macacos Rhesus {Macaca mulatta), en los que se evaluará la respuesta inmunológica producida y la capacidad protectora generada tras dicha administración, sometiéndolos posteriormente a un desafío con un SHIV patógeno. Así se obtiene información relevante para valorar si los resultados indican que merece la pena llevar a cabo la siguiente fase de ensayos clínicos en seres humanos con los vectores homólogos previstos para la vacunación de seres humanos, así como sobre el procedimiento adecuado para realizar dichos ensayos. Preferiblemente, el protocolo que se siga para la administración de los vectores de la invención a macacos responderá al esquema que se tenga previsto seguir para la vacunación de seres humanos o a un esquema del cual se desee evaluar su grado de adecuación. Los ensayos de inmunogenicidad realizados con los vectores MVA-B y MVA-
C, descritos posteriormente en Ejemplos de la presente memoria, así como los ensayos de protección frente a la infección de SHIV89.6P realizados en macacos con el vector MVA-89.6P-SIVgpn, son un indicativo tanto de la utilidad como vacunas de los vectores de la invención diseñados para la vacunación de seres humanos como de la validez de los protocolos de inmunización utilizados. Por todo ello, son también un objeto de la presente invención los métodos de vacunación para prevenir o tratar una infección provocada por el VIH en los que se administra ai menos un vector recombinante de la invención, derivado del virus MVA, capaz de expresar simultáneamente una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la pro teína gp41 en su totalidad y una proteína de fusión que contiene secuencias de las proteínas Gag, PoI y Nef del VIH-I, es decir, uno de los vectores de la invención diseñados para la fabricación de medicamentos útiles como vacunas preventivas o terapéuticas contra el SIDA. Los métodos de vacunación incluidos dentro del alcance de la invención pueden comprender una o más dosis de vacunación, siempre y cuando en una de ellas se administre al menos un vector de la invención. Se prefieren los métodos en los que se administra más de una dosis de vacunación para desencadenar o potenciar la respuesta inmune. De entre ellos, se prefieren especialmente los protocolos combinados en los que se usan vectores diferentes en la primera dosis de desencadenamiento de la respuesta inmune y en las dosis sucesivas destinadas a reforzar la respuesta desencadenada (potenciación o refuerzo). Dado que los vectores derivados de MVA parecen ser de mayor utilidad para conseguir una respuesta de protección frente al VIH cuando se suministran en la segunda o en dosis sucesivas destinadas al refuerzo de la respuesta inmune previamente desencadenada, lo que más se prefiere es que al menos un vector recombinante derivado del MVA de la invención esté presente en la segunda dosis o en una dosis posterior, pudiendo estar ausente o presente de la primera dosis de vacunación. En los casos en los que al menos un vector derivado de MVA está presente en la segunda dosis y/o en una dosis posterior de vacunación, se prefiere que al menos un vector administrado en la primera dosis de vacunación sea capaz de expresar las mismas proteínas derivadas del VIH que el vector de la invención presente en otra dosis diferente. De ellos, los vectores derivados del virus NYVAC, NYVAC-B y NYVAC-C y las combinaciones que comprendan ambos vectores son una opción adecuada para ser utilizados en la primera dosis de vacunación como parte de un método de vacunación de la invención cuando el vector de la invención administrado en la segunda y/o en una dosis sucesiva de vacunación es, respectivamente, el vector de la invención que posteriormente se denomina MVA-B o el vector que posteriormente se denomina MVA-C o bien una composición que comprenda tanto MVA-B como MVA- C. También son realizaciones preferidas del método de vacunación de la invención aquellas en las que la primera dosis de vacunación contiene el vector de ADN desnudo DNA-B cuando en la segunda dosis y/o en dosis posteriores de vacunación está presente el vector MVA-B de la invención, así como aquellas en las que la primera dosis de vacunación contiene el vector de ADN desnudo DNA-C cuando en la segunda dosis y/o en dosis posteriores de vacunación está presente el vector MVA-C de la invención.
La construcción de vectores de la presente invención y los ensayos en los que se evalúa tanto su capacidad inmunogénica y como su capacidad protectora se describe con más detalle con ayuda de las Figuras y los Ejemplos que aparecen más adelante en la presente memoria.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra un esquema de los mapas de los genomas de los virus MVA (parte superior) y NYVAC (parte inferior), en los que la ϊocalización de los genes fragmentados se indica mediante un sombreado oscuro, indicándose su denominación inmediatamente debajo. Los nombres subrayados corresponden a denominaciones de genes delecionados en MVA e intactos en NYVAC, los nombres en negrita corresponden a denominaciones de genes delecionados tanto en MVA como en NYVAC y los nombres en cursiva corresponden a denominaciones de genes intactos en
MVA y que presentan deleciones en NYVAC. Las letras A a Q situadas sobre cada una de las representaciones de los genomas se refieren a la denominación de los distintos fragmentos de restricción generados por la enzima HindIII al digerir con ella el ADN genómico de MVA y NYVAC. RTI: región terminal izquierda; RCC: región central conservada; RTD: región terminal derecha.
La Figura 2 muestra un esquema de la construcción del vector plasmídico de transferencia pLZAWlgpl20B/gagpolnef-B-l y los plásmidos a partir de los cuales se genera.
La Figura 3 muestra los fragmentos generados en el análisis por PCR del locus TK del virus MVA-B. La parte superior de la figura muestra un esquema en el que se representan las posiciones de los oligonucleótidos utilizados como cebadores, los tamaños estimados de los fragmentos que se generan en la PCR con las diferentes combinaciones de oligonucleótidos, así como su localización con respecto a los insertos y las secuencias flanqueantes de los mismos. La parte inferior muestra fotografías de los geles obtenidos al someter a electroforesis los productos de las PCR realizadas con diferentes parejas de cebadores. A: PCR cebada con los oligonucleótidos TK-L y GPN7649; B: PCR cebada con los oligonucleótidos GPN8170 y E/L; C: PCR cebada con los oligonucleótidos BX08556/TK-R. Las muestras correspondientes a cada calle son: 1 : pLZAWlgpl20B/gagpolnef-B-l; 2: MVA-B; 3: MVA-WT; 4: NYVAC-WT.
La Figura 4 muestra una fotografía de un gel obtenido al someter a electroforesis los productos resultantes de una reacción de PCR en la que se utilizaron como cebadores oligonucleótidos que hibridaban con las secuencias flanqueantes del gen TK. Las muestras correspondientes a cada calle son: 1 : NYVAC-WT; 2: MVA-B; 3: MVA- WT.
La Figura 5 muestra los resultados del análisis por transferencia tipo Western de la expresión de los genes heterólogos gpl20-BX08 (parte superior de la figura) y gagpolnef-IIIB (parte inferior de la figura, en la que la proteína gagpolnef-IIIB se abrevia como GPN) desde un vector NYVAC-B (primera calle), desde los stocks Pl3 P2 y P3 (calles 2-4: Pl, P2 y P3) y desde células en las que se había simulado la infección (calle 5).
La Figura 6 muestra los resultados correspondientes a las pruebas de estabilidad del vector MVA-B. La parte A muestra los resultados de las inmuno tinciones de células CEF infectadas con el vector MVA-B y tratadas con los anticuerpos anti-WR (fotografía de la izquierda), anti-p24 (fotografía central) y anti-gpl20 (fotografía de la derecha), junto con un gráfico en el que se representa el total de células teñidas con cada anticuerpo. La parte B muestra la detección de la expresión de las proteínas gagpolnef- IHB (fotografía de la izquierda) y gpl20-BX08 (fotografía de la derecha) mediante transferencia tipo Western y detección con anticuerpos dirigidos contra dichas proteínas en células infectadas con el virus recombinante NYVAC-B (NYVACB), células en las que se había simulado la infección (M) y stocks de virus correspondientes a los pases 7 a l0 (P7, P8, P9 y P10).
La Figura 7 muestra la cinética de expresión de la proteína gp!20-BX08 obtenida mediante el análisis con un anticuerpo anti-gpl20 del clade B de transferencias tipo Western correspondientes a muestras tomadas pasadas 4, 8, 16 y 24 horas de una infección con un virus recombinante. La parte superior corresponde a la infección con el virus MVA-B y la inferior a la infección con el virus NYVAC-B. Para cada una de las muestras aparece inmediatamente debajo la intensidad de las señal lograda al incubar las muestras con un anticuerpo anti-β-actina (β-act.) P: precipitado; S: sobrenadante; M: simulación de infección..
La Figura 8 muestra la cinética de expresión de la proteína gagpolnef-IIIB obtenida mediante el análisis con un anticuerpo anti-p24 del clade B de transferencias tipo Western correspondiente a muestras tomadas pasadas 6, 18 y 24 horas de una infección con un virus recombinante. Las calles marcadas como "1" corresponden a muestras infectadas con el virus NYVAC-B, las calles marcadas como "2" a muestras infectadas con el virus MVA-B y la calle marcada como M a una muestra en Ia que se simuló la infección. La flecha indica la posición de la proteína gagpolnef-IIIB (abreviada como GPN).
La Figura 9 muestra un gráfico que corresponde a la detección mediante ELISPOT expandido de células T secretoras de IFN-γ generadas por la inmunización de ratones BALB/c con virus recombinantes a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB. En ordenadas se indica el número de células T secretoras de IFN-γ detectadas por cada 105 esplenocitos, específicas para cada uno de los grupos de péptidos del clade B que se indican en abscisas. Para cada uno de esos grupos de péptidos, la primera barra corresponde al valor detectado en animales inmunizados con MVA-B y la segunda a animales inmunizados con NYVAC-B. La Figura 10 muestra la producción de citoquinas detectada en ratones B ALB/c inmunizados con virus recombinantes a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpomef-IHB. La parte izquierda corresponde a los niveles de
IFN-γ y la derecha a los niveles de IL-IO, ambos en pg/ml, detectados en los sobrenadantes de esplenocitos de animales inoculados con MVA-B (primera barra de cada uno de los grupos de péptidos) o NYVAC-B (segunda barra de cada uno de los grupos de péptidos) frente a grupos específicos de péptidos representativos del clade B.
La Figura 11 muestra gráficos correspondientes a los niveles de distintos tipos de células T secretoras de IFN-γ y presentes en los esplenocitos de ratones B ALB/c inoculados con MVA-B (primera barra de cada grupo de péptidos) o NYVAC-B (segunda barra de cada grupo de péptidos) reestimulados por los grupos de péptidos representativos del clade B indicados en abscisas. El gráfico superior muestra el porcentaje de células T CD8+ que secretan IFN-γ, el gráfico intermedio el porcentaje de células T CD4+ que secretan IFN-γ y el gráfico inferior el porcentaje total de células T CD8+ y T CD4+ que secretan IFN-γ, todos ellos detectados por cada 3 x 105 esplenocitos.
La Figura 12 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IFN-γ generadas por la inmunización de ratones BALB/c con distintas combinaciones de vectores a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB, así como los resultados correspondientes a los controles, en todos los casos administrando los vectores siguiendo protocolos de inducción/potenciación. En ordenadas se indica el número de células T secretoras de IFN-γ detectadas por cada 106 esplenocitos, específicas para cada uno de los grupos de péptidos del clade B que se indican en abscisas. Para cada uno de esos péptidos, la primera barra corresponde al valor detectado en animales inmunizados con DNA-B+MVA-B, la segunda a animales inmunizados con DNA- B+NYVAC-B, la tercera a animales inmunizados con DNA-B+DNA-B, la cuarta a animales inmunizados con DNA 0 +MV A- WT y la última a animales inmunizados con DNA 0 + NYVAC-WT. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo; la presencia de asteriscos (*) indica diferencias significativas (p<0,05) entre los distintos grupos. La Figura 13 muestra la producción de IFN-γ, en pg/ml, generada tras la reestimulación, con los grupos de péptidos indicados en abscisas, de esplenocitos extraídos de ratones BALB/c inmunizados mediante protocolos de combinación de inducción/potenciación en los que se incluye el DNA-B en la primera dosis de iniciación de la respuesta excepto en la última muestra, que se inocula con ADN sin inserto (DNA-φ), inoculándose en la segunda dosis de potenciación de la respuesta MVA-B (primera barra de cada grupo), NYVAC-B (segunda barra), el DNA-B de nuevo (tercera barra), MVA-WT (cuarta barra) y NYVAC-WT (quinta barra, correspondiente a la muestra a la que se le inoculó primeramente DNA-φ). La Figura 14 muestra la producción de quimioquinas, en pg/ml, generada tras la reestimulación, con los grupos de péptidos del clade B indicados en abscisas, de esplenocitos extraídos de ratones BALB/c inmunizados mediante protocolos de combinación de inducción/potenciación en los que se incluye el DNA-B en la primera dosis de iniciación de la respuesta salvo en el control, que se inoculó con ADN sin inserto (DNA-φ), inoculándose en la segunda dosis de potenciación de Ia respuesta MVA-B (primera barra de cada grupo), NYVAC-B (segunda barra), el DNA-B de nuevo (tercera barra), y NYVAC-WT (cuarta barra, correspondiente al control inoculado primeramente con DNA-φ). El gráfico de la izquierda corresponde a la concentración detectada de MP-I β y el de la derecha a la concentración detectada de RANTES.
La Figura 15 muestra gráficos correspondientes a los niveles de distintos tipos de células T secretoras de IFN-γ o TNF-α presentes en esplenocitos reestimulados por los grupos de péptidos representativos del clade B indicados en abscisas tras haber sido extraídos de ratones BALB/c inmunizados medíante protocolos combinados de inducción/potenciación en los que se incluye el DNA-B en la primera dosis de iniciación de la respuesta salvo en los controles, que fueron inoculados con ADN sin inserto (DNA-φ), inoculándose en la segunda dosis de potenciación de la respuesta MVA-B (primera barra de cada grupo), NYVAC-B (segunda barra) y el DNA-B de nuevo (tercera barra), mientras que los controles inoculados con DNA-φ recibieron en la segunda dosis MVA-WT (cuarta barra) o NYVAC-WT (quinta barra). La parte superior corresponde a células productoras de IFN-γ y la inferior a células productoras de TNF- α. Los gráficos de la izquierda corresponden a las células CD 8+, los gráficos intermedios a las células CD4+ y los gráficos de la derecha al total de células. En cada caso, el valor dado se refiere a número de células secretoras del tipo correspondiente (CD8+, CD4+, total) detectadas por cada 3 x 105 esplenocitos.
La Figura 16 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de ΪFN-γ específicas para cada uno de los grupos de péptídos del clade B indicados en abscisas, generadas por la inmunización de ratones BALB/c mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB. En ordenadas se indica el número de células T secretoras de IFN-γ, específicas para cada uno de los grupos de péptidos del clade B que se indican en abscisas, detectadas por cada 106 esplenocitos. Para cada uno de esos péptidos, la primera barra corresponde al valor detectado en animales inmunizados con NYVAC-B+MVA-B, la segunda a animales inmunizados con MVA-B+NYVAC-B y la tercera a animales inmunizados con MVA-WT+NYVAC-WT. La Figura 17 muestra la producción de IFN-γ, en pg/ml, generada tras la reestimulación, con los grupos de péptidos del clade B indicados en abscisas, de esplenocitos extraídos de ratones BALB/c inmunizados mediante protocolos de combinación de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB: NYVAC-B+MVA-B (primera barra), MVA-B+NYVAC-B (segunda barra) y MVA-WT+NYVAC-WT (tercera barra).
La Figura 18 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IFN-γ específicas para cada uno de los grupos de péptidos del clade B indicados en abscisas, generadas por la inmunización de ratones humanizados HHDII mediante protocolos de inducción/potenciación en los que se incluye el DNA-B en la primera dosis de inducción de la respuesta, inoculándose en la segunda dosis de potenciación de Ia respuesta MVA-B (primera barra de cada grupo) o NYVAC-B (segunda barra). La tercera barra corresponde al control de inoculación de un DNA sin inserto (DNA 0) en la primera dosis y MVA-WT en Ia segunda. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo; la presencia de asteriscos (*) indica diferencias significativas (p<0,05) entre los distintos grupos La Figura 19 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IL-2 específicas para cada uno de los grupos de péptidos del clade B indicados en abscisas, generadas por la inmunización de ratones HHDII mediante protocolos de inducción/potenciación en los que se incluye el DNA-B en la primera dosis de inducción de la respuesta, inoculándose en la segunda dosis de potenciación de la respuesta MVA-B (primera barra de cada grupo) o NYVAC-B (segunda barra). La tercera barra corresponde al control de inoculación de un DNA sin inserto (DNA 0) en la primera dosis y MVA-WT en Ia segunda. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de pέptidos respecto al control negativo; la presencia de asteriscos (*) indica diferencias significativas (p<0,05) entre los distintos grupos
La Figura 20 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IFN-γ específicas para cada uno de los grupos de péptidos del clade B indicados en abscisas, generadas por la inmunización de ratones humanizados HHDII mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB. En ordenadas se indica el número de células T secretoras de IFN-γ, específicas para cada uno de los grupos de péptidos, detectadas por cada 106 esplenocitos,. Para cada uno de esos grupos de péptidos, la primera barra corresponde al valor detectado en animales inmunizados con MVA+NYVAC-B, la segunda a animales inmunizados con NYVAC-B+MVA-B, la tercera a animales inmunizados con MVA-B+MVA-B. la cuarta a animales inmunizados con NYVAC- B+NYVAC-B y la quinta a animales inmunizados con NYVAC-WT+MVA-WT. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo.
La Figura 21 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IL-2 específicas para cada uno de los grupos de péptidos del clade B indicados en abscisas, presentes por cada 10 esplenocitos de ratones HHDII inmunizados mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-BX08 y gagpolnef-IIIB. Para cada uno de esos grupos de péptidos, la primera barra corresponde al valor detectado en animales inmunizados con MVA+NYVAC-B, la segunda a animales inmunizados con NYVAC-B+MVA-B, la tercera a animales inmunizados con MVA-B+MVA-B. la cuarta a animales inmunizados con NYVAC-B+NYVAC-B y la quinta a animales inmunizados con NYV AC-WT+MV A-WT. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo.
La Figura 22 muestra un esquema de la construcción del vector plasmídico de transferencia pLZAWlgpl20B/gagpolnef-C-14 y los plásmidos a partir de los cuales se genera.
La Figura 23 muestra los fragmentos generados en el análisis por PCR del locus TK del virus MVA-C. La parte superior de la figura muestra un esquema de los tamaños de los fragmentos que se generan con las diferentes combinaciones de oligonucleótidos, así como su localización con respecto a los insertos y las secuencias flanqueantes de los mismos. La parte inferior muestra fotografías de los geles obtenidos al someter a electroforesis los productos de las PCR realizadas con diferentes parejas de cebadores. A: PCR cebada con los oligonucleótidos TK-L y gpl20-1213; B: PCR cebada con los oligonucleótidos gp 120- 1050 y gpl20-10; C: PCR cebada con los oligonucleótidos GPN-2018 y GPN-3820; D: PCR cebada con los oligonucleótidos GPN-4000 y TK-R; E: PCR cebada con los oligonucleótidos GPN-802 y GPN-2198, Las muestras correspondientes a cada calle son: 1:NYVAC-C; 2: MVA-C (FZ); 3: MVA-WT; 4: NYVAC-WT.
La Figura 24 muestra, en su parte superior, un esquema de los fragmentos obtenidos al amplificar mediante PCR el locus TK a partir de muestras que contienen o carecen de insertos en dicho locus, mientras que la parte inferior es una fotografía de un gel obtenido al someter a electroforesis los productos resultantes de una reacción de PCR en la que se utilizaron como cebadores oligonucleótidos que hibridaban con las secuencias flanqueantes del gen TK. Las muestras fueron: NYVAC-C (calle 1), MVA-C correspondiente a los stocks Pl (calle 2) y P2 (calle 3) y MVA-WT (calle 4).
La Figura 25 muestra los resultados del análisis por transferencia tipo Western de la expresión de los genes heterólogos gpl20-C (parte superior) y gagpolnef-C (parte inferior, en la que la proteína gagpolnef-C se abrevia como GPN) desde un vector NYVAC-C (última calle), desde los stocks P2 y P3 (calles primera y segunda, marcadas como P2-M y P3, respectivamente) y desde células en las que se había simulado la infección (M).
La Figura 26 muestra los resultados correspondientes a las pruebas de estabilidad del vector MVA-C. La parte A muestra los resultados de las inmunotinciones de células CEF infectadas con el vector MVA-C y tratadas con los anticuerpos anti-WR (fotografía de la izquierda), anti-gpl20 específico del clade C (fotografía central) y anti-p24 específico del clade C (fotografía de la derecha), así como un gráfico en el que se representan los porcentajes de las placas teñidas con cada uno de los anticuerpos calculados con respecto al total de placas teñidas con el anticuerpo anti- WR. La parte B muestra la detección de la expresión de las proteínas gagpolnef-C (fotografía de la izquierda) y gpl20-C (fotografía de la derecha) mediante transferencias tipo Western y detección con anticuerpos dirigidos contra dichas proteínas en células infectadas con el virus recombinante NYVAC-C (calles marcadas como "NYVAC-C", células en las que se había simulado la infección (calles marcadas como "CEF" y stocks de virus correspondientes a los pases y a 10 (calles marcadas como P7, P8, P9 y PlO).
La Figura 27 muestra la cinética de expresión de la proteína gpl20-C obtenida mediante el análisis con un anticuerpo anti-gpl20 del clade C de transferencias tipo Western correspondientes a muestras tomadas pasadas 6, 18, y 24 horas de una infección con un virus recombinante. La parte superior corresponde a la infección con el virus MVA-C y la inferior a la infección con el virus NYVAC-C. Para cada una de las muestras aparece inmediatamente debajo la intensidad de las señal lograda al incubar las muestras con un anticuerpo anti-β-actina (β-act). P: precipitado; S: sobrenadante; M: simulación de infección.. P: precipitado; S: sobrenadante; M: simulación de infección.
La Figura 28 muestra la cinética de expresión de la proteína gagpolnef-C obtenida mediante el análisis con un anticuerpo anti-p24 del clade C de transferencias tipo Western correspondientes a precipitados celulares de muestras tomadas pasadas 6, 18 y 24 horas de una infección con un virus recombinante. Las calles marcadas como "1" corresponden a muestras infectadas con el virus MVA-C, las calles marcadas como "2" a muestras infectadas con el virus NYVAC-C y las calles marcadas como M a muestras en las que se simuló la infección. La flecha indica la posición de la proteína gagpolnef-C (abreviada como GPN). La Figura 29 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IFN-γ generadas por la inmunización de ratones humanizados HHDII con virus recombinantes a partir de los cuales pueden expresarse las proteínas gpl20-C y gagpolnef-C. La parte A corresponde a las células T secretoras de IFN-γ, detectadas por cada 106 esplenocitos, específicas para cada uno de los grupos de péptidos del clade C que se indican en abscisas. La parte B corresponde a las células T secretores de IFN-γ generadas contra la parte de los virus recombinantes que deriva de Vaccim'a. Tanto en el caso de los péptidos (parte A) como en el de Ia respuesta anti- Vaccinia, la primera barra corresponde al valor detectado en animales inmunizados con MVA-C y la segunda a animales inmunizados con NYVAC-C.
La Figura 30 muestra la producción de citoquinas detectada en ratones HHDII inmunizados con virus recombinantes a partir de los cuales pueden expresarse las proteínas gpl20-C y gagpolnef-C. La parte superior corresponde a los niveles de IFN-γ y la inferior a los niveles de IL-IO5 ambos en pg/ml, detectados en los sobrenadantes de esplenocitos de animales inoculados con MVA-C (primera barra de cada uno de los grupos de péptidos) o NYVAC-C (segunda barra de cada uno de los grupos de péptidos) frente a grupos específicos de péptidos representativos del clade C.
La Figura 31 muestra gráficos correspondientes a los porcentajes de distintos tipos de células T productoras de IFN-γ generadas frente a grupos de péptidos específicos representativos del clade C por la inoculación de MVA-C (primera barra de cada grupo de péptidos) o NYVAC-C (segunda barra de cada grupo de péptidos) a ratones HDDIL El gráfico superior representa el porcentaje de células CD8+ respecto al total de células secretoras de IFN-γ, el gráfico intermedio el porcentaje de células CD4+ y el gráfico inferior al porcentaje que la suma de las células CDS+ y CD4+ anteriores supone sobre el total de células secretoras de IFN-γ.
La Figura 32 muestra la respuesta humoral generada por inoculación de MVA-C o NYVAC-C a ratones HHDII o C57/BL6 mediante los valores de densidad óptica a 492 nm obtenidos al detectar por ELISA anticuerpos IgG frente a: (A) extractos celulares de una infección con Vaccinia; (B) proteína Gag o (C) la proteína gpl60. Los grupos de inmunización fueron: 1: MVA-C en HHDII; 2: MVA-C en C57/BL6; 3: NYVAC-C en HHDII; 4: NYVAC-C en C57/BL6; 5: control. En cada grupo, la situación de los símbolos marca el valor obtenido para cada uno de los ratones del grapo: ^: ratón 1 ; B: ratón 2; A: ratón 3; •: ratón 4; la posición de la barra horizontal — indica el valor medio correspondiente a los cuatro ratones de cada grupo.
La Figura 33 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IFN-γ específicas para cada uno de los grupos de péptidos del clade C indicados en abscisas, presentes por cada 10 esplenocitos de ratones HHDII inmunizados mediante protocolos de inducción/potenciación en los que se incluye el DNA-C en la primera dosis de inducción de la respuesta, inoculándose en la segunda dosis de potenciación de la respuesta MVA-C (primera barra de cada grupo) o NYVAC-C (segunda barra). La tercera barra corresponde al control de inoculación de un DNA sin inserto (DNA 0) en la primera dosis y NYVAC-WT en la segunda. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo; la presencia de asteriscos indica diferencias significativas entre los distintos grupos: *: p<0,05; **:p<0,005.
La Figura 34 muestra un gráfico que corresponde a la detección mediante ELISPOT de células T secretoras de IL-2 específicas para cada uno de los grupos de péptidos del clade C indicados en abscisas, presentes por cada 106 esplenocitos de ratones HHDII inmunizados mediante protocolos de inducción/potenciación en los que se incluye el DNA-C en la primera dosis de inducción de la respuesta, inoculándose en la segunda dosis de potenciación de la respuesta MVA-C (primera barra de cada grupo) o NYVAC-C (segunda barra). La tercera barra corresponde al control de inoculación de un DNA sin inserto (DNA 0) en la primera dosis y NYVAC-WT en la segunda. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo; la presencia de asteriscos indica diferencias significativas entre los distintos grupos: *: p<0,05; **:p<0,005. La Figura 35 muestra un gráfico que corresponde a la detección mediante
ELISPOT de células T secretoras de IFN-γ específicas para cada uno de los grupos de péptidos del clade C indicados en abscisas, presentes por cada 10 esplenocitos de ratones BALB/c inmunizados mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccirda a partir de los cuales pueden expresarse las proteínas gpl20-C y gagpolnef-C. Para cada uno de esos grupos de péptidos, la primera barra corresponde al valor detectado en animales inmunizados con NYVAC-C+MVA- C, la segunda a animales inmunizados con MVA-C+MVA-C, la tercera a animales inmunizados con MVA-C+NYVAC-C, la cuarta a animales inmunizados con NYVAC- C+NYVAC-C y la quinta a animales inmunizados con NYVAC-WT+MVA-WT. Los círculos (•) bajo las barras indican diferencias significativas (p<0,005) de cada grupo de péptidos respecto al control negativo; la presencia de asteriscos indica diferencias significativas entre los distintos grupos: *: p<0,05; **:p<0,005.
La Figura 36 muestra la producción de citoquinas detectada tras la inmunización de ratones BALB/c mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-C y gagpolnef-C. La parte izquierda corresponde a los niveles de IFN-γ (en ng/ml) y la derecha a los niveles de IL-IO (en pg/ml), detectados en los sobrenadantes de esplenocitos, reestimulados con cada uno de los grupos de péptidos del clade C indicados junto a cada grupo de barras, extraídos de animales inoculados con: MVA-C+NYVAC-C (primera barra de cada grupo), MVA-C+MVA-C (segunda barra), NYVAC-C+MVA-C (tercera barra), NYVAC-C+NYVAC-C (cuarta barra), NYVAC-WT+MVA-WT (quinta barra) o MVA-WT+NYVAC-WT (sexta barra).
La Figura 37 muestra gráficos correspondientes a los niveles de distintos tipos de células T secretoras de IFN-γ y presentes en los esplenocitos de ratones BALB/c inmunizados mediante protocolos de inducción/potenciación en los que se combinan vectores derivados de Vaccinia a partir de los cuales pueden expresarse las proteínas gpl20-C y gagpolnef-C, tras ser reestimulados por los grupos de péptidos representativos del clade C indicados en abscisas. El gráfico superior corresponde a las células CDS+ productoras de IFN-γ presentes por cada 3 x 105 células CD8+, el gráfico intermedio a las células CD4+ productoras de IFN-γ presentes por cada 3 x 105 células CD4+ y el gráfico inferior al conjunto de células CD8+ más CD4+ productoras de IFN-γ presentes por cada 3 x 105 células CD8++CD4+. Las barras que se aparecen en cada grupo de péptidos corresponden a animales inoculados con: NYVAC-C+MVA-C (primera barra de cada grupo), MVA-C+MVA-C (segunda barra), MVA-C+NYVAC-C (tercera barra), NYVAC-C+NYVAC-C (cuarta barra), NYVAC-WT+MVA-WT (quinta barra). La Figura 38a muestra los resultados obtenidos al tratar con anticuerpos dirigidos contra la proteína PARP usados de células HeLa recogidos transcurrido los distintos tiempos, en horas, que se indican sobre las calles tras la infección con MVA- WT (calles encabezadas por "MVA") o con NYVAC (calles encabezadas por "NYVAC"). PARPc indica la posición de la proteína PARP completa; PARPf indica la posición de la proteína PARP que ha sufrido una rotura específica. La parte inferior muestra la intensidad de las señales logradas al incubar las muestras con un anticuerpo anti-β-actina (β-act).
La Figura 38b muestra las señales de inmunofluorescencia detectadas a partir de células infectadas con MVA-WT (fotografía superior) o NYVAC-WT (fotografía inferior) cuyos núcleos habían sido teñidos con DAPI.
La Figura 38c muestra una fotografía de un gel obtenido al someter a electroforesis muestras de ARN ribosómico obtenidas de células HeLa transcurridos los tiempos en horas (18 y 24) que se indican sobre las calles tras infectar dichas células con: muestras carentes de virus (pocilios marcados como "HeLa"), virus Vaccinia silvestre de la cepa Western Reserve (pocilios marcados como "WR"), MVA-WT
(pocilios marcados como "MVA"), o NYVAC-WT (pocilios marcados como "NYVAC"). Se indican las posiciones en las que se detectan los ARN ribosómicos 28S
(28S rRNA) y 18S (18S rRNA) y la de las bandas resultantes de su degradación.
La Figura 38d muestra un gráfico en el que se indica en ordenadadas el factor de incremento del número de células apoptóticas detectado mediante citometría de flujo en células HeLa infectadas según se indica en abscisas: M: simulación de infección; WR: infección con virus Vaccinia silvestre de la cepa Western Reserve; MVA: infección con MVA-WR; NYVAC: infección con NYVAC-WT. Los signos "-" y "+" indican, respectivamente, la ausencia o la presencia del inhibidor de caspasas zVAD en las muestras utilizadas para provocar la infección.
La Figura 39 muestra un esquema de la organización del genoma del virus quimérico de la inmunodeficiencia de simio y humano SHIV89.6P. Las secuencias representadas por rectángulos rellenos provienen del genoma del virus de simio
SIVmac239, mientras que las secuencias representadas por rectángulos sin relleno provienen del genoma del aislado 89.6 del virus VIH-I.
La Figura 40 muestra la estructura de las secuencias codificantes de antígenos de retrovirus presentes en los vectores de la presente invención. La parte superior, encabezada por la abreviatura "Env" corresponde a distintas formas de la secuencia correspondiente a la proteína de la envuelta, de las que la última, la marcada como "C- env-120", representa la presente en los vectores de la invención, carente por completo de la parte correspondiente a la proteína gp41. La parte inferior muestra el esquema correspondiente a la proteína de fusión Gag-Pol-Nef sintetizada a partir de los vectores cuya construcción se describe en los Ejemplos, indicándose las modificaciones realizadas sobre las secuencias deducidas a partir de las proteínas del SHIV89.P, generadas deduciendo la secuencia de tripletes correspondientes a las secuencias de aminoácidos de las proteínas utilizando para ello los codones más frecuentes en mamíferos, secuencias sobre las cuales se realizaron como modificaciones principales las siguientes: la secuencia correspondiente al antígeno Gag que incluye las proteínas de la matriz (MA), la cápsida (CA), p2 y p7 se ligó respetando el marco de lectura (en el punto marcado como FS-I) con la secuencia correspondiente al antígeno PoI que carecía de dominio integrasa; además, el sitio activo de la transcriptas a en reverso (RT) fue reemplazado por un gen nef en el que se había alterado el orden de los aminoácidos (sc- nef), de manera que la zona que de forma natural contiene el extremo carboxilo (RT-C) fuera la parte inicial, mientras la zona que de forma natural contiene el extremo amino (RT-A) pasó a ser la zona final; la secuencia de RT que solapa con el sitio activo (sitio activo, RT) se traslocó respetando el marco de lectura al extremo 3' de la secuencia codificante de la proteína de fusión; adicionalmente, la glicina del extremo amino se sustituyó por alanina (ΔMyr (G-* A)) para impedir su miristilación, mientras se anulaba la actividad enzimática de la proteasa (XPR) introduciendo una mutación puntual en su sitio activo (ΔPRr (D→N)).
La Figura 41 muestra un esquema de la construcción del vector plasmídico de transferencia pLZAW-l-89.6P-SIVgpn-18 y de los plásmidos a partir de los cuales se genera. La Figura 41a muestra los pasos que conducen a la obtención del vector pLZAWl-89.6P-9; la Figura 41b muestra los pasos que conducen a la obtención del vector pLZAW-l-89.6P-SIVgpn-18 a partir del vector pLZAW-l-89.6P-9. En ambos casos la parte correspondiente a la proteína de fusión Gag-Pol-Nef, denominada posteriormente "SlVgpn" se indica en la Figura como "SlVsyngagpolnef" , mientras la parte correspondiente a la proteína de la envuelta, denominada posteriormente 89.6gpl20, aparece indicada como "89.6Psynenvl20".
La Figura 42 muestra los fragmentos generados en el análisis por PCR del locus de timidina quinasa (TK) del virus MVA-89.6P-SΪVgpn. La parte superior de la figura, marcada como "A" muestra un esquema en el que se representan las posiciones de apareamiento de los oligonucleótidos utilizados como cebadores respecto a los brazos izquierdo (TK-L) y derecho (TK-D) del locus TK, así como los tamaños estimados de los fragmentos que se generan en la PCR realizada utilizando como molde el virus MVA-89.6P-SIVgpn (primera línea del gráfico) o el virus MVA sin inserto (línea inferior del gráfico, situada en la zona marcada como "WT"). La parte inferior, marcada como "B", muestra la fotografía del gel obtenido al someter a electroforesis los productos de las PCR realizadas con los cebadores TK-L y TK-R2 sobre ADN extraído de células infectadas con MVA-WT (calle 3), el stock P2 del MVA-89.6P-SIVgpn (calle 4), el stock P3 del MVA-89.6P-SIVgpn (calle 5) o transfectadas con el plásmido pLZAWl-89.6P-SIVgpn-18 (control positivo, C+) (calle 2). La calle 1 corresponde a un marcador de tamaño.
La Figura 43 muestra los resultados del análisis por transferencia tipo Western de la expresión de los genes heterólogos 89.6p-gpl20 (parte superior de la figura, marcada como "anti-gpl20", en la que la posición de la proteína se indica mediante la flecha etiquetada como "89.6P") y SlVgpn (parte inferior de la figura, marcada como i'anti-SIVp27", en la que la posición de la proteína SlVgpn se índica mediante la flecha etiquetada como "GPN") detectada en extractos de células transfectadas de forma transitoria con el plásmido pLZAWl-89.6P-SIVgpn-18 (segunda calle, marcada como "C+") o en extractos de células infectadas con los stocks Pl (tercera calle, marcada como "Pl"), P2 (cuarta calle, marcada como "P2") y P3 (quinta calle, marcada como "P3") del virus MVA-89.6P.SIV-gpn, o desde células tratadas en las mismas condiciones pero que no habían entrado en contacto ni con el plásmido pLZAWl- 89.6P-SIVgpn-18 ni con ningún stock de virus (cultivos de células en las que se simuló la infección, analizadas en la primera calle, marcada como "M").
La Figura 44 muestra, en la parte superior, los resultados de las inmunotinciones de células CEF infectadas con el vector MVA-89.6P-SIVgpn y tratadas con anticuerpos anti-WR (que reconoce la parte del vector derivada de MVA) (fotografía de la izquierda), anti-gpl20 (fotografía central) y anti-SIVp27 (que reconoce la parte de la proteína SlVgpn correspondiente a la proteína p27) fotografía de la derecha), mientras en la parte inferior aparece un gráfico en el que se representan los porcentajes de las placas teñidas con cada uno de los anticuerpos calculados con respecto al total de placas teñidas con el anticuerpo anti-WR.
La Figura 45 muestra los fragmentos generados en el análisis por PCR del locus TK del virus NYVAC-89.6P-SIVgpn. La parte superior de la figura, marcada como "A", muestra un esquema en el que se representan las posiciones de apareamiento de los oligonucleótidos utilizados como cebadores respecto a los brazos izquierdo (TK-L) y derecho (TK-R) del locus TK, así como los tamaños estimados de los fragmentos que se generan en la PCR realizada utilizando como molde el virus NYVAC-89.6P-SIVgpn (primera línea del gráfico) o el virus NYVAC sin inserto, (línea inferior de la parte del gráfico marcada como "NYVAC-WT"). La parte inferior, marcada como "B", muestra la fotografía del gel obtenido al someter a electroforesis los productos de las PCR realizadas con los cebadores TK-L y TK-R2 sobre ADN extraído de células infectadas con NYVAC-WT (calle 2), el stock P3 del NYVAC-89.6P-SIVgpn (calle 3), el stock P3 del MVA-89.6P-SIVgpn (calle 4) o el virus MVA-WT, que carece de inserto (calle 5). La calle 1 corresponde a un marcador de tamaño
La Figura 46 muestra los resultados del análisis por transferencia tipo Western de la expresión de los genes heterólogos 89.6p-gpl20 (parte superior de la figura, marcada como "anti-gpl20", en la que la posición de la proteína se indica mediante la flecha etiquetada como "89.6P") y SlVgpn (parte inferior de la figura, marcada como "anti-SrVp27", en la que la posición de la proteína SlVgpn se indica mediante la flecha etiquetada como "GPN") detectada en extractos de células infectadas con los stocks Pl (calle 3), P2 (calle 4) y P3 (calle 5) del vector NYVAC-89.6P-SIVgpn, con el stock P3 del vector MVA-89.6P-SIVgpn (calle 2) o en extractos de células tratadas en las mismas condiciones pero que no habían entrado en contacto con ningún stock de virus (cultivos de células en las que se simuló la infección, analizadas en la calle 1).
La Figura 47 muestra, en la parte superior, los resultados de las inmunotinciones de células CEF infectadas con el vector NYVAC-89.6P-SIVgpn y tratadas con los anticuerpos anti-WR (fotografía de la izquierda), anti-gpl20 (fotografía central) y anti- SIVp27 (fotografía de la derecha), mientras en la parte inferior aparece un gráfico en el que se representan los porcentajes de las placas teñidas con cada uno de los anticuerpos calculados con respecto al total de placas teñidas con el anticuerpo anti-WR. La Figura 48 muestras fotografías de transferencias tipo Western de geles de poliacrilamida en los que se había sometido a electroforesis extractos de células infectadas con diferentes stocks P3 de los virus NYVAC-89.6P-SIVgpn (calles 1 y 2, correspondientes, respectivamente a los stocks P3.1 (29/01/04) y P3.2 (25/02/04)) y MVA-89.6P-SIVgpn (stocks P3 del 20/06/03 (calle 3), P3 del 20/09/04 (calle 4), P3.1 del 20/09/04 (calle 5) y P3.2, del 1/10/04 (calle 6). La calle 7 corresponde a un extracto de células en las que se había simulado Ia infección. La fotografía de la izquierda corresponde a la incubación con un anticuerpo policlonal de conejo anti-gpl20; la posición de la proteína 89.6P-gpl20 se indica mediante una flecha marcada como "89.6P". La fotografía de la derecha corresponde a la incubación con un anticuerpo monoclonal anti-SIV-gag-p27, que reconoce la proteína SFVgpn, cuya posición en el gen se indica mediante una flecha marcada como "SlVgpn".
La Figura 49 muestra un esquema del estudio realizado en macacos para evaluar la inmunogem'cidad y eficacia como vacunas frente el SHIV de los vectores derivados de poxvirus de la presente invención, en el que están marcados los distintos eventos. Los números situados debajo de la segunda línea horizontal indican el tiempo transcurrido, en semanas, desde el comienzo del estudio. El punto 0 corresponde al de inoculación del primer vector de vacunación. Las flechas gruesas indican los momentos en los que se inoculó a los macacos bien un vector de vacunación, bien un virus capaz de producir infección, según se indica en la línea inferior: ADN: inoculación de DNA- SHFV, es decir, dos plásmidos desnudos con insertos correspondiente a secuencias codificantes de proteínas del SHIV89.6P, Env (pcDNA-gpl20 89.6p) y SlVgpn (pcDNA-gag-pol-neí) (grupos 1 y 2), o del plásmido desnudo carente de inserto DNA- emp (grupo 3), NYVAC vs MVA: inoculación de los vectores derivados de poxvirus NYVAC-89.6P-SIVgpn (grupo 2), MVA-89.6P-SIVgpn (grupo 1 ) o del vector NYVAC tipo silvestre, carente de inserto con secuencias codificantes de proteínas del SHIV89.6P (grupo 3); DESAFÍO: inoculación del virus patógeno quimérico SHIV89.6P. Las flechas delgadas, marcadas como "CMI", indican los momentos en los que se extrajeron de los macacos muestras de sangre periférica. La Figura 50 muestra, en escala logarítmica, el número de células SFC (spot formϊng cells) que expresaban IFN-γ obtenido por cada 106 células mononucleares de sangre periférica (PBMC) en muestras procedentes de cada uno de los macacos incluidos en el estudio de eficacia de la vacunación. Los números que aparecen en el eje de abscisas indican, en semanas, el momento en el tiempo en el que fueron tomadas cada una de las muestras, tomando como tiempo 0 el momento de la administración de la primera dosis de vacunación. Para cada valor de tiempo, aparecen tres grupos de valores, que presentan el comportamiento de cada uno de los 7 animales utilizados en el estudio con un procedimiento de inmunización concreto: la primera vertical de puntos , marcados mediante cuadrados con un vértice apuntando hacia arriba (#) corresponde a muestras tomadas de cada uno de los macacos del grupo 1 (inmunizados con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn); la segunda vertical de puntos, marcados mediante cuadrados cuyos vértices determinan dos líneas paralelas (ü), corresponde a muestras tomadas de cada uno de los macacos del grupo 2 (inmunizados con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P- SlVgpn); la tercera vertical de puntos, marcados mediante círculos ( ), corresponde a muestras tomadas de cada uno de los macacos del grupo 3 (inmunizados con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT). Cada punto representa el valor obtenido para un macaco concreto, mientras los rectángulos situados en cada una de las verticales indican el valor medio correspondiente a todos los macacos de ese grupo para las muestras tomadas en un mismo momento en el tiempo. La presencia de un número de puntos inferior a 7 en algunas verticales indica que el punto situado sobre el eje de abscisas representa a más de un macaco, en cada uno de los cuales el valor de las SFC detectadas por cada 106 PBMC analizadas no fue superior a 1. La línea punteada indica el valor por debajo del cual los valores no se consideran significativos (20 SFC). Las flechas blancas indican la inoculación de un vector de vacunación; la flecha negra indica el momento en el que se produjo el desafío mediante la inoculación del SHIV89.6P.
La Figura 51 muestra, en escala logarítmica, los valores medios de SPF que expresaban IFN-γ obtenidos, por cada 10 PBMC analizadas, para cada grupo de macacos a lo largo del tiempo de estudio, tiempo que se expresa en semanas en el eje de abscisas, correspondiendo el tiempo 0 al momento de la administración de la primera dosis de vacunación. Las flechas con relleno punteado indican los momentos en los que se administraron dosis de vacunación. La flecha con relleno oscuro continuo indica el momento en el que se produjo el desafío mediante la inoculación del virus SHIV89.6P. Los datos indicados mediante cuadrados con un vértice apuntando hacia arriba (Φ-) corresponden al grupo 1 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gρl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn); los datos indicados mediante cuadrados cuyos vértices determinan dos líneas paralelas (•) corresponden al grupo 2 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P-SIVgpn). Los datos indicados mediante triángulos ( ) corresponden al grupo 3 (inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT).
La Figura 52 muestra, en escala logarítmica, los valores medios de SPF que expresaban IL-2 obtenidos, por cada 106 PBMC analizadas, para cada grupo de macacos a lo largo del tiempo de estudio, tiempo que se expresa en semanas en el eje de abscisas, correspondiendo el tiempo 0 al momento de la administración de la primera dosis de vacunación. Las flechas con relleno punteado indican los momentos en los que se administraron dosis de vacunación. La flecha con relleno oscuro continuo indica el momento en el que se produjo el desafío mediante la inoculación del virus SHIV89.6P. Los datos indicados mediante cuadrados con un vértice apuntando hacia arriba (Φ-) corresponden al grupo 1 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn); los datos indicados mediante cuadrados cuyos vértices determinan dos líneas paralelas (») corresponden al grupo 2 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P-SIVgpn). Los datos indicados mediante triángulos ( ) corresponden al grupo 3 (inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.ÓP + NYVAC-WT). La Figura 53 muestra, en escala logarítmica, los valores medios de SPF que expresaban IL-4 obtenidos, por cada 106 PBMC analizadas, para cada grupo de macacos a lo largo del tiempo de estudio, tiempo que se expresa en semanas en el eje de abscisas, correspondiendo el tiempo 0 al momento de la administración de la primera dosis de vacunación. Las flechas con relleno punteado indican los momentos en los que se administraron dosis de vacunación. La flecha con relleno oscuro continuo indica el momento en el que se produjo el desafío mediante la inoculación del virus SHIV89.6P. Los datos indicados mediante cuadrados con un vértice apuntando hacia arriba (Φ) corresponden al grupo 1 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gρl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn); los datos indicados mediante cuadrados cuyos vértices determinan dos líneas paralelas (») corresponden al grupo 2 (inmunizado con sendos pϊásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P-SIVgpn). Los datos indicados mediante triángulos ( ~) corresponden al grupo 3 (inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT). La Figura 54 corresponde a la valoración de la viremia en los tres grupos en estudio. El gráfico superior corresponde al grupo 3, inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT. Los gráficos inferiores corresponden a los grupos que recibieron vectores derivados de poxvirus: el gráfico de la parte inferior izquierda corresponde ai grupo 1 , inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn; el gráfico de la parte inferior derecha corresponde al grupo 2, inmunizado con sendos plásmidos con insertos correspondientes a la proteína gp!20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P-SIVgpn. Cada línea que conecta puntos representa un macaco. Cada punto marcado con un símbolo representa las copias de ARN del SHIV89.6P, detectadas mediante QC RNA-PCR, en la muestra de plasma de ese macaco tomada en la semana que se indica en el eje de abscisas. El tiempo 0 corresponde al momento de inoculación del virus SHIV89.6P.
La Figura 55 muestra la concentración, por microlitro de sangre, de células CD4+ (puntos marcados mediante círculos sin relleno, β) y de células CD8+ (puntos marcados mediante triángulos sin relleno, A), detectadas por FACS mediante el uso de anticuerpos específicos dirigidos contra cada uno de estos tipos de células. Cada grupo de puntos corresponde a los valores obtenidos en las muestras de un macaco diferente, extraídas en el momento en el tiempo que se indica, expresado en semanas, en la parte superior de los gráficos. El tiempo 0 corresponde al momento de inoculación del virus SHIV89.6P, indicado mediante la abreviatura "desf". Los gráficos superiores corresponden a macacos del grupo 1, inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + MVA-89.6P-SIVgpn. Los gráficos intermedios corresponden a macacos del grupo 2, inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlVgpn del SHIV89.6P + NYVAC-89.6P-SIVgpn. Los gráficos inferiores corresponden a macacos de grupo 3, inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT. El último gráfico, carente de puntos indicativos de valores, marcado como "D7 98028 (euth)", corresponde a un macaco que hubo de ser sacrificado debido al avanzado estado de la enfermedad que el virus SHIV89.6P inoculado desencadenó en él.
La Figura 56 muestra, en ordenadas, el porcentaje de supervivencia de los macacos que componían cada uno de los grupos según las semanas transcurridas desde el momento de la infección con el virus SHIV89.6P, que se indican en abscisas, correspondiendo el tiempo 0 al de inoculación de dicho virus. Los datos indicados mediante cuadrados con un vértice apuntando hacia arriba (Φ-) corresponden al grupo 1 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SIYgpn del SHIV89.6P + MVA-89.6P-SIVgpn); los datos indicados mediante cuadrados cuyos vértices determinan dos líneas paralelas («) corresponden al grupo 2 (inmunizado con sendos plásmidos con insertos correspondientes a la proteína gpl20 del SHIV89.6P y la proteína de fusión SlV gpn del SHIV89.6P + NYVAC-89.6P-SrVgpn). Los datos indicados mediante triángulos ( -. ) corresponden al grupo 3 (inmunizado con un plásmido a partir del cual no se expresaba ningún antígeno correspondiente al SHIV89.6P + NYVAC-WT). EJEMPLOS
Construcción y ensayos de inmunogenicidad de vectores diseñados para la vacunación de seres humanos
- Ejemplo 1.- Generación del MVA-B
Construcción del vector plasmídico pLZAWlgpl20B/gagpolnef-B-l El vector plasmídico pLZAWlgpl20B/gagpolnef-B-l fue construido por los inventores para la generación del virus recombinante de MVA que expresa los genes Env de VIH-I (aislamiento BX08) y la quimera de Gag, PoI y Nef (aislamiento UIB)- ambos pertenecientes al clade B. El ADN de la quimera Gag-Pol-Nef fue generado por GeneArt (Regensburg, Alemania) y el ADN de gρl20 fue generado por el grupo Aventis; los plásmidos que los contienen utilizados para la construcción de pLZAWlgpl20B/gagpolnef-B-l y del MVA-B a partir de éste último, fueron cedidos al grupo de los inventores en el marco del programa de colaboración EuroVacI. El plásmido pLZAWlgpl20B/gagpolnef-B-l es un derivativo de pUC diseñado para la selección de placas azules/blancas. Contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quinasa (TK), el promotor E3L dirigiendo la expresión del marcador de selección β-galactosidasa, y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentran las dos secuencias que se desean expresar, gpl20-BX08 (SEQ ID NO: 15) y gagpoInef-IIIB (SEQ ID NO: 16), que han sido modificadas para optimizar el uso de codones de mamífero. Para dirigir la expresión de cada una de las secuencias hay sendos promotores sintéticos temprano/tardío (pE/L), situados en orientación opuesta en la zona del inserto más alejada de las secuencias flanqueantes. La posición de cada uno de los componentes incluidos en el plásmido se describe a continuación en la Tabla 1.
Figure imgf000050_0001
Para la construcción de este plásmido se utilizaron otros dos plásmido s diferentes:
- pMA60gpl 20B/gagpolnefβ-12, 17 (proporcionado por el grupo Aventis, Canadá). El plásmido es un derivativo de pUC que contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quinasa (TK), el promotor E3L dirigiendo la expresión del marcador de selección β-galactosidasa, y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentras las dos secuencias que se desean expresar, gpl20-BX08 y gagpolnef-IIIB, que han sido modificadas para optimizar el uso de codones de mamífero. Para dirigir la expresión de cada una de las secuencias hay sendos promotores sintéticos temprano/tardío (pE/L), situados en orientación opuesta en la zona del inserto más alejada de las secuencias flanqueantes.
- pLZAWl : El plásmido fue proporcionado por Linong Zhang, del grupo Aventis, Canadá. Es un plásmido basado en pUC que contiene un brazo izquierdo del gen de TK, sitios de clonación para insertar genes exógeno, una repetición corta del brazo izquierdo el gen de TK, un promotor E3L dirigiendo la expresión de un cásete con β-gal y un brazo derecho del gen de TK. La construcción del plásmido pLZAWΪgpl20B/gagpolnefB-l a partir de estos otros dos plásmido s se representa en la Figura 2. Brevemente, un fragmento de ADN de
5,6 Kb que contenía los genes de interés fue sacado por digestión con BamHI del plásmido pMA60gpl20/gagpolnefB-12,17 modificado por incubación con la ADN polimerasa Klenow para generar extremos romos, y clonado en el vector pLZAWl previamente digerido con la endonucleasa de restricción AscI, modificado por incubación con Klenow, y desfosforilado por incubación con la enzima fosfatasa alcalina, generándose de esta forma el vector plasmídico de transferencia pLZAWlgpl20B/gagpolnef-B-l. El plásmido generado dirige la inserción de los genes de interés en el locus TK del genoma del virus atenuado MVA.
Construcción del virus recombinante MVA-B
Cultivos primarios de fibroblastos de embrión de pollo (CEF) fueron infectados con virus atenuado MVA en pase 586 (habiendo sido el MVA-F6, pase 585, proporcionado por Gerd Sutter) a una multiplicidad de 0,05 ufp/célula, y posteriormente transfectados con 10 μg del vector plasmídico de transferencia pLZAWlgpl20B/gagpolnefB-l, usando para ello lipofectina comercial suministrada por Invitrogen y siguiendo las instrucciones del fabricante. Después de 72 horas postinfección las células fueron recogidas, sonicadas y usadas para la selección de los virus recombinantes. Los virus MVA recombinantes que contenían los genes gpl20B/gagpolnef-B y coexpresaban de forma transitoria el gen marcador β-Gal (MVA-B (X-GaI+)), fueron seleccionados por pases consecutivos de purificación de placas en células CEF teñidas con 5-bromo-4-cloro-3-indolil-β-galactósido (XGaI) (300 μg/ml). Los MVA recombinantes que contenían los genes gpl20B/gagpolnef-B y que habían perdido el gen marcador (MVA-B (X-GaI')), fueron seleccionados como focos virales no teñidos en células CEF en presencia de XGaI . En cada paso de purificación las placas aisladas fueron expandidas en CEF durante 3 días, y el extracto viral crudo obtenido fue usado para el paso de purificación de placas consecutivo.
Tras 4 pases consecutivos de purificación fueron aisladas 12 placas recombinantes que expresaban eficientemente ambos antígenos y que habían perdido el gen marcador. Se hizo crecer el recombinante designado como MVA-B-4,1.5.2 (Pl) para generar un stock crudo (P2) que se envió a producción en condiciones GMP para estudios clínicos. La secuencia del inserto situada en el loσus de la timidina quinasa de este recombinante está representada por SEQ ID NO: 19. La localización en dicha secuencia de cada uno de los elementos que componen el inserto se indica a continuación en la Tabla 2: Tabla 2.- Posición de los componentes principales del inserto del vector MVA-B
Figure imgf000052_0001
A partir del P2, se preparó un stock P3 de virus purificado de células CEF infectadas a una multiplicidad de infección de 0,05 ufp/célula a través de dos colchones de sacarosa al 45%. Este stock P3, con un título de 2,4 x 109 ufp/ml, fue el que se utilizó en los protocolos de inmunización.
Caracterización del MVA-B
Para confirmar la homogeneidad genética del virus MVA-B generado y la integridad de los genes insertados, se realizó un análisis por PCR del ADN viral extraído de células CEF infectadas a una multiplicidad de 5 ufp/célula, empleando para ello oligonucléotidos que hibridan o con las regiones TK flanqueantes del inserto de interés o con regiones internas de los genes insertados. La secuencia de los oligonucléotidos utilizados como cebadores y la posición en que aparecen sobre el vector plasmídico de transferencia pLZAWlgpl20B/gagpolnefB-l se muestran en la Tabla 3. Las posiciones en las que hibridan dichos oligonucléotidos, así como los tamaños estimados de los fragmentos generados en las distintas PCR y la localización de los mismos con respecto a los insertos y las secuencias flanqueantes, aparecen representados en la parte superior de la Figura 3. Tabla 3.~ Oligonucleótidos utilizados como cebadores de las PCR de caracterización del vector MVA-B
Figure imgf000053_0001
La parte inferior de la Figura 3 muestra fotografías de los geles obtenidos al someter a electroforesis los productos de las PCR realizadas con las diferentes parejas de cebadores para efectuar el análisis de los fragmentos del VIH-I incluidos en el virus MVA-B. Para ello, 100 ng de ADN viral extraído de células de embrión de pollo (CEF) infectadas a una multiplicidad de 5 ufp/célula con los virus MVA-B del stock P3 (calle 2), MVA-WT (calle 3) y NYVAC-WT (calle 4) o bien con 10 ng del plásmido pLZAWlgpl20B/gagpolnef-B-l (calle 1), fueron usados como molde para hacer una amplificación mediante PCR de los diferentes fragmentos del VIH-I incluidos en MVA-B. Las condiciones de cada PCR se estandarizaron de forma individualizada para cada pareja de oligonucleótidos cebadores empleada. Como se observa en las fotografía mostradas en la parte inferior de la Figura 3, las muestras correspondientes al control positivo, el plásmido pLZAWlgpl20B/gagpolnef-B-l, dan lugar en todos los casos a bandas de igual tamaño que las correspondientes muestras MVA-B, mientras que en las calles 3 y 4, correspondientes a muestras que carecen de inserto (MVA-WT y NYVAC- WT, respectivamente), no se observan bandas.
El virus NYVAC de tipo silvestre utilizado en este ejemplo, así como las formas recombinantes NYVAC-B y NYVAC-C utilizadas posteriormente y que se han generado insertando sobre el NYVAC de tipo silvestre las mismas secuencias utilizadas para generar, respectivamente, los vectores de la invención MVA-B y MVA-C5 fueron donados por el grupo Aventis, en el marco de colaboración del proyecto EuroVac I, en viales conteniendo aproximadamente 7x107 unidades infecciosas por vial. Previamente a su utilización, el vector NYVAC-B fue crecido en células CEF y purificado en colchón de sacarosa en las mismas condiciones que MVA-B.
La Figura 4, por su parte, muestra una fotografía de un gel correspondiente al análisis de productos de PCR correspondientes al locus TK. Para su obtención, 100 ng del ADN viral extraído de células CEF infectadas a una multiplicidad de 5 ufp/célula con los virus NYVAC-WT (calle 1), MVA-B (calle 2) o MVA-WT (calle 3), fueron usados como molde para hacer un análisis por PCR del locus TK empleando como cebadores 100 ng de los oligonucleótidos que hibridan con las secuencias flanqueantes del gen TK, TK-L (SEQ ID NO: 1) y TK-R (SEQ ID NO:2) en una mezcla de reacción que contenía 0,3 mM de dNTPs, 2,5 mM de MgCl2 y 2,5 U de la enzima polimerasa Platinum Taq. El programa incluye un ciclo de desnaturalización a 940C durante 5 min, 25 ciclos de desnaturalización a 940C durante 1 min, hibridación a 600C durante 1 min y extensión a 68°C durante 2 min, y finalmente un ciclo de extensión a 68°C durante 10 min. Los productos de PCR fueron analizados en un gel de agarosa al 0,7%, obteniéndose el resultado que se muestra en la Figura 4. En la calle 2, la correspondiente al vector MVA-B, se observa una banda de aproximadamente 6 Kb compatible con la presencia del inserto completo, mientras que en las calles correspondientes a los virus de tipo silvestre MVA-WT (3) y NYVAC-WT (1) aparecen bandas mucho menores, que corresponderían al locus de TK sin inserto. Las diferencias observadas en los tamaños de las bandas correspondientes a los virus sin inserto MVA- WT y NYVAC-WT se debe a que el gen TK es uno de los que ha sufrido una inactivación selectiva en el virus NYVAC (véase la Figura 1), siendo el tamaño del gen TK menor en esta forma atenuada de Vaccinia.
Ejemplo 2.- Análisis de Ia expresión de proteínas del VIH a partir del
MVA-B
La expresión de las proteínas gpl20-BX08 y gagpolnef-B por el virus MVA-B fue analizada mediante transferencia tipo Western. Monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula de los diferentes stocks de virus recombinante MVA-B: Pl, P2 y P3. Los extractos celulares fueron recogidos a las 24 horas post-infección, fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a la reacción frente a un anticuerpo policlonal de conejo anti-gpl20 (generado en el laboratorio) que reconoce la proteína gpl20 del aislamiento BX08; y frente a un anticuerpo policlonal de conejo anti-p24 (cedido por el programa EVA, ARP432) que reconoce la quimera gagpoínef-B del aislamiento HIB. Como controles positivos se utilizaron extractos procedentes de células infectadas con el vector NYVAC-B.
Como se observa en la Figura 5, ambos antígenos son expresados eficientemente por los diferentes stocks del recombinante MVA-B generado.
Ejemplo 3.- Comprobación de Ia estabilidad del MVA-B Para verificar que el recombinante MVA-B podía ser pasado sucesivamente sin perder la expresión de los genes insertados, se realizó un ensayo de estabilidad efectuando varios pases sucesivos del virus recombinante MVA-B en células CEF. Monocapas de células CEF crecidas en placas PlOO fueron infectadas de forma sucesiva, a una multiplicidad de 0,05 ufp/célula, partiendo del stock P2 del MVA-B (pase 6) hasta generar el pase 10 (PlO). A continuación, monocapas de células CEF crecidas en placas de 6 pocilios fueron infectadas con una dilución 10° del extracto viral obtenido del último pase (PlO). A las 48 horas post-infección, las placas de lisis generadas fueron analizadas por inmunotinción, empleando anticuerpos policlonales antí-WR (que reconoce proteínas del virus MVA); anti-gpl20 (que reconoce la gpl20 del aislamiento BX08); y anti-p24 (que reconoce la quimera gagpolnef-B del aislamiento IIIB); estos dos últimos anticuerpos fueron los mismos que se utilizaron en el Ejemplo 2. Los resultados de estas inmunotinciones se muestran en la parte A de la Figura 6. Los recuentos de placas efectuados mostraron que un 100% de las placas resultaban teñidas con los anticuerpos anti-WR, anti-p24 y anti-gpl20. Por ello, se puede considerar que, tras 10 pases sucesivos del virus en células CEF5 ambos antígenos se expresan eficientemente (100% de las placas reconocidas por los tres anticuerpos), corroborándose la estabilidad del producto generado.
Los extractos de células CEF infectadas con los pases 7, 8, 9 y 10 también fueron analizados por inmunotransferencia tipo Western, pruebas a las cuales corresponden las tinciones mostradas en la parte B de la Figura 6. Para realizar estos ensayos, monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula de los extractos virales obtenidos en los pases 7 (P7), 8 (P8), 9 (P9) y 10 (PlO) del virus recombinante MVA-B. Los extractos celulares fueron recogidos a las 24 horas post-infección, fraccionados en geles desnaturalizantes de poliacrilamida (SDA-PAGE), transferidos a membranas de nitrocelulosa y hechos reaccionar con los mismos anticuerpos policlonales anti-gpl20 (parte derecha de la figura) o anti-p24 (parte izquierda de la figura) utilizados en la prueba correspondiente a la parte A de la Figura 6. Ambos anticuerpos se utilizaron a una dilución 1/500. Como control positivo se empleó un extracto de células CEF infectadas con el virus NYYAC-B (cedido por el grupo Aventis). Los resultados confirman la correcta expresión de las proteínas gpl20- BX08 y gagpolnef-B en todos los extractos obtenidos por la infección con virus procedentes de distintos pases.
- Ejemplo 4,- Liberación de gpl20-BX08 y cinética de expresión a partir del MVA-B en el transcurso del tiempo
Para definir si la proteína gpl20-BX08 era eficientemente secretada, monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con MVA-B a 5 ufp/célula. A las 4, 8, 16 y 24 horas post-infección las células se recogieron separando el precipitado (P) del sobrenadante (S) celular. Los sobrenadantes de cada tiempo analizado fueron concentrados y fraccionados junto a los precipitados celulares en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a reacción frente al anticuerpo policlonal anti-gpl20 (diluidos 1/500) anteriormente utilizado en los Ejemplos 2 y 3. De igual forma fueron tratadas células CEF infectadas con el NYVAC-B (proporcionado por el grupo Aventis), usado como control positivo en el ensayo. Como control interno para verificar que había sido aplicado en el gel la misma cantidad de protema, las membranas fueron incubadas también frente a un anticuerpo monoclonal anti-β-actina. Los resultados se muestran en la Figura 7. En su parte superior, correspondiente a la muestra del MVA-B, puede apreciarse que la proteína gpl20-BX08 es expresada eficientemente por el MVA- B desde las 4 horas post-infección, detectándose en el sobrenadante celular a partir de las 8 horas post-infección, y con un comportamiento similar al que se observa en células infectadas con el NYVAC-B, para el cual se muestran los resultados obtenidos en la parte inferior de Ia Figura 7. La expresión de la proteína de fusión gagpolnef-B fue analizada siguiendo un procedimiento similar: monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con MVA-B a 5 ufp/célula aunque, en este caso, la presencia de la proteína se ensayó en el precipitado celular obtenido a las 6, 18 y 24 horas post- infección, igualmente mediante transferencia tipo Western y poniendo de manifiesto la presencia de la proteína mediante reacción con el anticuerpo policlonal anti-p24 utilizado en los Ejemplos 2 y 3. Los resultados se muestran en la Figura 8. En ella puede observarse la correcta expresión de esta proteína de fusión a lo largo del tiempo de infección tanto desde MVA-B (calle 2 de cada tiempo de infección) como desde NYVAC-B (calle 1), aunque se produce una mayor acumulación de la proteína de fusión en células infectadas con MVA-B.
- Ejemplo 5.- Inmuno genicidad del MVA-B: Respuesta inmune específica de células T productoras de IFN-y Una vez generado y caracterizado el recombinante MVA-B, el siguiente objetivo fue analizar su capacidad de inducir una respuesta inmune específica en el modelo murino frente a los antígenos que expresa. Para ello, ratones BALB/c (n=4) de 6-8 semanas de edad se inocularon por vía intraperitoneal (i.p.) con una dosis de 2 x 107 ufp/ratón de MVA-B (stock P3) o de NYVAC-B. 10 días después de la inmunización los ratones fueron sacrificados por dislocación cervical, y se les extrajo el bazo para llevar a cabo el ensayo de ELISPOT que detecta las células T específicas frente al antígeno en función de su cualidad para producir ΪFN-γ, que es un indicador positivo de que un inmunógeno es capaz de activar selectivamente una respuesta celular del tipo CD4+ ThI, característica esta última que se considera indicadora de la eficacia de un proceso de vacunación.
Para ello, placas de 96 pocilios con fondos de nitrocelulosa se cubrieron con 75 μl/pocillo a una concentración de 6 μg/ml de un anticuerpo monoclonal de rata anti- IFN-γ murino (R4-6A2, Pharmingen, San Diego, CA) resuspendido en PBS, incubándose toda la noche a temperatura ambiente. Posteriormente se lavaron los pocilios tres veces con medio RPMT y finalmente se incubó con medio complementado con 10% FCS, al menos una hora a 370C en atmósfera de CO2 al 5%. Por otro lado, los bazos de los ratones inmunizados, que una vez extraídos se mantuvieron en RPMI + 10% FCS, se dispusieron en una rejilla estéril sobre una placa de 60 mm, y se homogeneizaron, disgregando el extracto mediante su paso por agujas de diferente calibre (21G->25G). Las células así disgregadas se centrifugaron 5 min a 1.500 rpm a 40C, y se lavaron dos veces con RPMI + 10% FCS. Para Usar los eritrocitos de las muestras, se añadió NH4CI 0,1 M estéril (2 ml/bazo) y se mantuvo a 40C durante 3-5 min, se añadió RPMI + 10% FCS y se centrifugó. Después se lavaron 2 veces, y finalmente se resuspendieron en 1-2 mi de RPMI + 10% FCS. El recuento de Ia viabilidad de los esplenocitos se realizó mediante tinción con azul tripan (4% en agua, Sigma). Para evaluar la respuesta inmune específica, se utilizaron diferentes grupos de
40-50 péptidos de 15 aminoácidos cada uno, solapantes en 11 aminoácidos, que cubrían todas las regiones antigénicas incluidas en el recombinante MVA-B de la invención. Cada grupo de péptidos se diluyó a una concentración de 10 μg/ml en RPMI + 10% FCS a los que se les añadió 30 U/ml de IL-2. Una vez preparado, se añadió a cada pocilio 100 μl de mezcla del grupo de péptidos, sobre lo cual se añadió 100 μl/pocillo de esplenocitos de los animales inmunizados, a una concentración de 107 esplenocitos/ml y diluciones 1/4 y 1/16 de la misma. Las placas se incubaron durante 48 horas a 37°C en atmósfera de CO2, se lavaron 5 veces con PBS que contenía Tween 20 al 0,05% (PBST), y se incubaron con 2 μg/ml del anticuerpo monoclonal de rata anti- IFN-γ biotinilado XMGl .2 (Pharmingen) diluido en PBST, durante 2 horas a temperatura ambiente. Después se lavaron las placas 5 veces con PBST y se añadió una dilución 1/800 de avidina-peroxidasa (0,5 mg/ml) (Sigma). Tras 1 hora a temperatura ambiente se lavó 3 veces con PBST y 2 con PBS, añadiéndose finalmente la mezcla reveladora con 1 μg/ml del sustrato DAB (Sigma), resuspendido en Tris-HCI 50 mM pH 7,5, que contenía 0,015% de H2O2. La reacción se detuvo lavando la placa con abundante agua y, una vez seca, se llevó a cabo el recuento de las manchas generadas con la ayuda de un estereomicroscopio de Leica MZ 122 APO y el software Imaging System QWIN (Leica, Cambridge, Reino Unido). El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos. Los resultados, que se muestran en la Figura 9, demuestran que el MVA-B es capaz de potenciar una respuesta inmune específica frente a casi todos los grupos de péptidos ensayados, en distinta proporción que su homólogo NYVAC-B.
- Ejemplo 6.- Inmunogenicidad del MVA-B: Producción de citoquinas por espíen oci tos reestimulados
A continuación, se procedió a evaluar la producción de citoquinas estimulada en los esplenocitos de los ratones inmunizados al ser mezclados con los diferentes grupos de péptidos solapantes. Para ello, los esplenocitos aislados en el Ejemplo 5 fueron cultivados (5x106 células/pocilio) en una placa de 24 pocilios y estimulados con 1 μg/ml de cada grupo de péptidos. La placa se incubó durante 5 días a 370C en atmósfera del 5% CO2. Después de este período, se recogieron los sobrenadantes de los cultivos y se centrifugaron a 1.500 rpm, 5 min, a 40C, almacenándose a -7O0C hasta su utilización.
Tal como se ha comentado anteriormente, los niveles de la citoquina interferón- gamma (IFN-γ) son un indicador positivo de la activación de una respuesta celular del tipo CD4+ ThI, mientras que la citoquina IL-IO, por su parte, es un indicador de activación de la respuesta celular tipo CD4+ Th2. La relación entre los niveles de IFN-γ e IL-IO indica si la vacunación es más o menos eficaz. Para conocer los niveles de una y otra citoquina, IL-IO e IFN-γ, presentes en los sobrenadantes de cultivos de esplenocitos reestimulados "m vitro", se procedió a la determinación de estos niveles mediante kits de ELISA comerciales de Pharmingen. Siguiendo las instrucciones del fabricante, placas de 96 pocilios de fondo plano se cubrieron con el anticuerpo anti-citoquina, diluido en su correspondiente tampón, y se incubó toda la noche a 4°C. Después, los pocilios se lavaron con PBST, y se bloquearon durante 1 hora a temperatura ambiente con PBST + 10% FCS (PBSTB). Posteriormente, se añadieron diluciones seriadas en PBSTB de las muestras y de las citoquinas estándar, incubándose la placa a temperatura ambiente durante 2 horas. Después, se lavó con PBST y se incubó a temperatura ambiente, durante 1 hora, con el anticuerpo específico anti-citoquina biotínilado, junto a la estreptavidina conjugada con peroxidasa, todo ello diluido en PBSTB. Finalmente, la reacción se detectó con TMB (3,3 r,5,5'-tetrametilbenzidina, Sigma), a temperatura ambiente y en oscuridad, y se detuvo, tras 30 min de incubación, con H2SO4 2 N. La absorbancia se leyó a 450 nm y los valores obtenidos fueron extrapolados en la curva estándar (pg/ml).
Los resultados, mostrados en la Figura 10, indican que existe una polarización de la respuesta celular específica hacia un subtipo ThI, caracterizado por la secreción de altos niveles de IFN-γ, tanto para MVA-B como para NYVAC-B, frente a los diferentes grupos de péptidos ensayados. Existen claras diferencias entre las respuestas generadas por cada uno de los recombinantes.
- Ejemplo 7.- Inmunogenkidad del MVA-B: Identificación de los tipos de células T especificas secretoras de IFN-γ
Como las células presentadoras que se estaban empleando hasta el momento en la caracterización de la respuesta celular eran las propias del bazo que expresan las moléculas de histocompatibilidad tanto de clase I (MHC-I) como de clase II (MHC-II), el siguiente paso fue dilucidar si la respuesta celular que se estaba obteniendo en ELISPOT era debida a la secreción de IFN-γ por las células T CD8+ o por las células T CD4+. Para ello, los esplenocitos obtenidos en el Ejemplo 5 fueron reestimulados in vitro durante 1 hora a 370C con 5 μg/ml de cada grupo de péptidos solapantes pertenecientes al cíade B, tras lo cual se añadió Brefeldina a una concentración de 10 μg/ml, incubándose durante toda la noche a 370C. Siete días después se procedió a un mareaje de superficie empleando anticuerpos específicos anti-CD4 o anti-CD8 conjugados a FITC, seguido de un mareaje intracelular empleando anti-IFN-γ conjugado a PE. Una vez fijadas las células fueron analizadas en el citómetro de flujo.
Los resultados, mostrados en la Figura 11, permiten apreciar que, tanto para el grupo de animales inmunizado con el MVA-B, como para el grupo inmunizado con NYVAC-B, la respuesta productora de IFN-γ es mayoritariamente debida a la población de células T CD8+ específicas activadas frente a los diferentes grupos de péptidos. Al determinar los niveles totales de IFN-γ secretados por ambos tipos de células, se corroboró el resultado obtenido en el ensayo de ELISPOT descrito en el Ejemplo 5, donde se observaba una respuesta específica frente a la mayoría de los grupos de péptidos en los animales inmunizados con ambos recombinantes. De nuevo, existen diferencias claras entre las respuestas generadas por cada uno de los recombinantes. Ejemplo 8.- Utilización del MVA-B en protocolos de inducción/potenciación: Respuesta inmnne específica de células T productoras de
IFN-Y
Una vez establecido que la administración de una primera dosis de inmunización que contenía el MVA-B era capaz de inducir una respuesta inmune específica en el modelo murino, se evaluó a continuación si la utilización de este vector de la invención como parte de protocolos de inducción/potenciación (priming/boosting) daba lugar a un incremento en la magnitud y en la amplitud de la respuesta inmune. Para ello, grupos de 4 ratones BALB/c de 6-8 semanas de edad se inocularon por vía intramuscular (i.m.) con 100 μg del vector de ADN DNA-B (cedido por GeneArt, Alemania), que contiene las mismas secuencias codificantes de proteínas del VIH-I que lleva insertadas el MVA-B, pero bajo el control de sendos promotores de citomegalovirus e insertadas en vectores plasmídicos (uno para gpl20 y otroa para la proteína de fusión Gag-Pol-Nef). Los grupos control fueron inoculados (i.m.) con 100 μg de ADN sin inserto (DNA 0). 15 días después se les inmunizó por vía intraperitoneal (i.p.) con 2 x 107 ufp/ratón de MVA-B (stock P3) o de NYVAC-B (grupo Aventis, Francia), que expresa los mismos antígenos de VIH que MVA-B. Un tercer grupo recibió una segunda dosis de DNA-B (100 μg, i.m.). Los grupos control recibieron una dosis de 2 x de 107 ufp/ratón de MVA- WT o NYVAC-WT. 10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, mezclas de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas (pools) de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA-B y NYVAC-B. El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos.
Los resultados obtenidos se muestran en la Figura 12, en la que aparece el número de células secretoras de IFN-γ específicas detectadas por cada 106 esplenocitos en los ratones inmunizados con las diferentes combinaciones de vectores. Se observa para casi todos los grupos de péptidos analizados que la inclusión de vectores derivados de poxvirus que codifican antígenos del VIH-I en la segunda dosis de refuerzo de la respuesta inmune da lugar en casi todos los casos a un incremento significativo de la respuesta inmune con respecto a la utilización únicamente de vectores de ADN, siendo la respuesta generada diferente según se utilice MVA-B o NYVAC-B.
- Ejemplo 9.- Utilización del MVA-B en protocolos de inducción/potenciación: Producción de citoquinas por esplcnocitos reestimulados
Cinco grupos de ratones BALB/c (n=4) fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y de potenciación de la misma mediante la inoculación de otro vector en una segunda dosis, de manera análoga a como se describió en el Ejemplo 8 y utilizando las mismas combinaciones de vectores. Los esplenocitos extraídos fueron estimulados in vitro con las diferentes mezclas de péptidos solapantes pertenecientes al clade B (1 μg/mL) e incubados durante 5 dias a 37 0C. Transcurrido ese tiempo, se recogieron los sobrenadantes y se almacenaron a -7O0C. Los niveles de IFN-γ se determinaron por ELISA usando un Kit comercial (Pharmigen). Los resultados se muestran en la Figura 13, donde se observa que la producción de IFN-γ difiere según se utilice MVA-B o NYVAC-B como segundo vector de inmunización.
Ejemplo 10.- Utilización del MVA-B en protocolos de inducción/potenciación: Producción de β-quimio quinas por esplenocitos reestimulados
Cinco grupos de ratones BALB/c (n=4) fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y de potenciación de la misma mediante la inoculación de otro vector en una segunda dosis, de manera análoga a como se describió en el Ejemplo 8 y utilizando las mismas combinaciones de vectores. Los esplenocitos extraídos fueron estimulados in vitro con las diferentes mezclas de péptidos solapantes pertenecientes al clade B (1 μg/ml) e incubados durante 5 días a 37 0C. Transcurrido ese tiempo, se recogieron los sobrenadantes y se almacenaron a -7O0C. Los niveles de MIP-I β y RANTES se determinaron por ELISA usando kits comerciales (Pharmigen) Los resultados se muestran en la Figura 14, donde se observa que la producción de quimioquínas MIP-I β y RANTES difieren según se utilice MVA-B o NYVAC-B como segundo vector de inmunización.
- Ejemplo 11.- Utilización del MVA-B en protocolos de inducción/potenciación: Identificación de los tipos de células T específicas productoras de IFN-γ y TNF-α
Cinco grupos de ratones BALB/c (n=4) fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y de potenciación de la misma mediante la inoculación de otro vector en una segunda dosis, de manera análoga a como se describió en el Ejemplo 8 y utilizando las mismas combinaciones de vectores. Los esplenocitos extraídos fueron estimulados in vitro con el péptido de la envuelta del aislado BxO 8 (5 μg/ml) e incubados durante 1 hora a 37 0C. Transcurrido ese tiempo se le añadió Brefeldina A (10 μg/mL) y se dejó incubando a 37 0C. Siete días después, se procedió a un mareaje de superficie empleando anticuerpos específicos anti-CD4 o anti-CD8 conjugados a FITC (diluidos 1/100), seguido de un mareaje intracelular empleando anti-IFN-γ o anti- TNF-α conjugado a PE (diluido 1/100). Una vez fijadas las células fueron analizadas en el citómetro de flujo Los resultados se muestran en la Figura 15. En ellos se observan diferencias en los niveles de células CD 8+ entre los grupos, con un mayor incremento de células secretoras de TNF-α en el grupo que había recibido DNA-B+MVA-B.
Ejemplo 12,- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Respuesta inmune específica de células T productoras de IFN-y
Grupos de 4 ratones BALB/c de 6-8 semanas de edad se inocularon por vía intraperitoneal (i.p.) con una dosis de con 2 x 107 ufp/ratón de MVA-B (stock P3), NYVAC B (grupo Aventi) o MVA WT. 15 días después los ratones recibieron una segunda dosis por vía intraperitoneal (i.p.) de 2 x 107 ufp/ratón de vector, de manera que se inoculó NYVAC-B a los ratones que habían recibido MVA-B en la primera dosis, MVA-B a los ratones que habían recibido NYVAC-B en la primera dosis y NYVAC- WT (grupo Aventis) a los ratones que habían recibido MVA-WT en la primera dosis. Se generaron así grupos que habían sido inoculados con las siguientes combinaciones de vectores: NYVAC-B+MVA-B, MVA-B+NYVAC-B y MVA-WT+NYVAC-WT.
10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, grupos de mezcla de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA- B y NYVAC-B. El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos.
Los resultados obtenidos se muestran en la Figura 16. En ella puede observarse como las dos combinaciones de vectores que contienen secuencias derivadas de VIH-I incrementan tanto la magnitud como la amplitud de la respuesta inmune específica generada, según se observa con los diferentes grupos de péptidos. La combinación en la que el NYVAC-B se inocula en la primera dosis y el MVA-B en la segunda fue la que dio lugar al número más elevado de células secretoras de IFN-γ frente a los diferentes grupos de péptidos.
Ejemplo 13.- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Producción de IFN-y por esplenocitos estimulados
Tres grupos de ratones BALB/c (n=4) de 6-8 semanas de edad fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y de potenciación de la misma mediante la inoculación de otro vector en una segunda dosis, de manera análoga a como se describió en el Ejemplo 12 y utilizando las mismas combinaciones de vectores. Los esplenocitos extraídos fueron estimulados in vitro con las diferentes mezclas de péptidos solapantes pertenecientes al clade B (1 μg/ml) utilizadas en los Ejemplos anteriores e incubados durante 5 días a 37 0C. Transcurrido ese tiempo, se recogieron los sobrenadantes y se almacenaron a -70°C. Los niveles de IFN-γ se determinaron por ELISA usando un lcit comercial (Pharmigen).
Los resultados se muestran en la Figura 17, donde se observa que la producción de IFN-γ más amplia se obtiene con la combinación NYVAC-B+MVA-B, al igual que en el Ejemplo 12.
Ejemplo 14.- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores de ADN y vectores virales derivados de Vaccinia: Respuesta inmune específica de células T productoras de IFN-y en ratones humanizados HHDII
Se procedió también a realizar experimentos con ratones humanizados HHDII. Estos ratones, generados por F. Lemonier en Francia y cedidos por él para la realización de los experimentos descritos en la presente memoria, sólo permiten la presentación de antígenos en el contexto del MHC de clase I humano, al tener reemplazados los genes murinos del MHC clase I y β-microglobulina por los correspondientes genes humanos.
Grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intramuscular (i.m.) con 100 μg del vector de ADN DNA-B (cedido por GeneArt, Alemania) utilizado también en el Ejemplo 8. Los grupos control fueron inoculados (i.m.) con 100 μg de ADN sin inserto (DNA 0). 15 días después se les inmunizó por vía intraperitoneal (Lp.) con 2 x 107 ufp/ratón de MVA-B (stock P3) o de NYVAC-B (grupo Aventis, Francia), que expresa los mismos antígenos de VIH que MVA-B. Un tercer grupo recibió una segunda dosis de DNA-B (100 μg, i.m.). El grupo control recibió una dosis de 2 x de 107 ufp/ratón de MVA-WT. 10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, mezclas de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA-B y NYVAC-B. El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos. • denota diferencias significativas (p< 0,005) de cada grupo respecto al control negativo. * denota diferencias significativas (p< 0,05) entre los distintos grupos
La Figura 18 muestra los resultados obtenidos. Se observa que las combinaciones DNA-B+MVA-B y DNA-B+NYVAC-B inducen una amplia respuesta frente a los grupos de péptidos, con inmunodominancia frente a Env.
Ejemplo 15.- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores de ADN y vectores virales derivados de Vaccinia: Respuesta inmune específica de células T productoras de IL-2 en ratones humanizados HHDII
Grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intramuscular (i.m.) con 100 μg del vector de ADN DNA-B (cedido por GenArt, Alemania). El grupo control fue inoculado (i.m.) con 100 μg de ADN sin inserto (DNA 0). 15 días después se les inmunizó por vía intraperitoneal (i.p.) con 2 x 107 ufp/ratón de MVA-B (stock P3) o de NYVAC-B (grupo Aventis, Francia), que expresa los mismos antígenos de VIH que MVA-B. Un tercer grupo recibió una segunda dosis de DNA-B (100 μg, i.m.). El grupo control recibió una dosis de 2 x de 107 ufp/ratón de MVA-WT. 10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, mezclas de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA- B y NYVAC-B. El número de células productoras de IL-2 obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos. La Figura 19 muestra los resultados obtenidos, en la que: • denota diferencias significativas (p< 0,005) de cada pool respecto al control negativo. * denota diferencias significativas (p< 0,05) entre los distintos grupos. Se observa inmunodominancia de antígenos de Env, con amplia respuesta frente a los distintos grupos de péptidos y diferencias significativas entre los grupos DNA-B+MVA-B y DNA-B+NYVAC-B. Ejemplo 16.- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Respuesta inmune específica de células T productoras de IFN-γ en ratones humanizados HHDII Cinco grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intraperitoneal (i.p.) con una dosis de 2 x 107 ufp/ratón de MVA-B (stock P3) (2 grupos), NYVAC B (grupo Aventis) (2 grupos) o NYVAC WT (grupo control). 15 días después los ratones recibieron una segunda dosis por vía intraperitoneal (i.p.) de 2 x 107 ufp/ratón de vector, de manera que a uno de los grupos que había recibido MVA-B en la primera dosis se le inoculó NYVAC-B y a otro de nuevo MVA-B, a uno de los grupos que habían recibido NYVAC-B en la primera dosis se le inoculó NYVAC-B de nuevo y a otro MVA-B y, finalmente, el grupo control recibió en Ia segunda dosis MVA-WT (Aventis-Pasterur). Se generaron así grupos que habían sido inoculados con las siguientes combinaciones de vectores: MVA-B+NYVAC-B, NYVAC-B+MVA-B, MVA-B+MVA-B, NYV AC-B+NYV AC-B y N YVAC-WT+MVA-WT.
10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, grupos de mezcla de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA- B y NYVAC-B, El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos. La Figura 20 muestra los resultados obtenidos, en la que: • denota diferencias significativas (p< 0,005) de cada grupo de péptidos respecto al control negativo. Se observa que la inmunización combinada de vectores virales, MVA-B y NYVAC-B, induce una amplia respuesta inmune contra distintos antígenos del VIH. Ejemplo 17.- Utilización del MVA-B en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Respuesta inmune específica de células T productoras de IL-2 en ratones humanizados HHDH Cinco grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intraperitoneal (i.p.) con una dosis de 2 x 107 ufp/ratón de MVA-B (stock P3) (2 grupos), NYVAC B (grupo Aventis) (2 grupos) o NYVAC WT (grupo control). 15 días después los ratones recibieron una segunda dosis por vía intraperitoneal (i.p.) de 2 x 107 ufp/ratón de vector, de manera que a uno de los grupos que había recibido MVA-B en la primera dosis se le inoculó NYVAC-B y a otro de nuevo MVA-B, a uno de los grupos que habían recibido NYVAC-B en la primera dosis se le inoculó NYVAC-B de nuevo y a otro MVA-B y, finalmente, el grupo control recibió en la segunda dosis MVA-WT (grupo Aventis). Se generaron así grupos que habían sido inoculados con las siguientes combinaciones de vectores: MVA-B+NYVAC-B, NYVAC-B+MVA-B, MVA- B+MVA-B, NYVAC-B+NYVAC-B y NYVAC-WT+MVA-WT.
10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, grupos de mezcla de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade B (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA- B y NYVAC-B. EI número de células productoras de IL-2 obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos. La Figura 21 muestra los resultados obtenidos, en la que: • denota diferencias significativas (p< 0,005) de cada grupo de péptidos respecto al control negativo. Como en el Ejemplo 16, se observa que la combinación de vectores induce una amplia respuesta inmune (producción de IL-2) frente a distintos antígenos del VIH.
- Ejemplo 18.- Generación del MVA-C Construcción del vector píasmídico pLZAWl gpl20C/gagpolnef-C-14
El vector píasmídico pLZAWlgpl20C/gagpolnef-C-14 fue construido por los inventores para la generación del virus recombinante de MVA que expresa secuencias génicas correspondientes a la proteína gρl20 (gpl20-C) y a la quimera de Gag, PoI y Nef (gagpolnef-C) del aislamiento CN54, que pertenece al clade C. El vector pMA60gpl20C/gagpolnefC-14,15 utilizado para su construcción, contiene las secuencias codificantes de ambas proteínas; se construyó utilizando la secuencia codificante de la proteína de fusión gagpolnef-C generada por GeneArt (Regensburg, Alemania) y fue cedido a los inventores para la construcción del vector MVA-C en el marco del programa de colaboración EuroVacI.
El plásmido pLZAWlgp!20C/gagpolnef-C-14 es un derivativo de pUC diseñado para la selección de placas azules/blancas. Contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quinasa (TK), el promotor E3L dirigiendo la expresión del marcador de selección β-galactosidasa, y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentras las dos secuencias que se desean expresar, gpl20-C (SEQ ID NO: 17) y gagpolnef-C (SEQ ID NO: 18), que han sido modificadas para optimizar el uso de codones de mamífero. Para dirigir la expresión de cada una de las secuencias hay sendos promotores sintéticos temprano/tardío (pE/L), situados en orientación opuesta en la zona del inserto más alejada de las secuencias flanqueantes. La posición de cada uno de los componentes incluidos en el plásmido se describe a continuación en la Tabla 4. Tabla 4.- Componentes del plásmido pLZAWlgpl20C/gagpolnef-C-14
Figure imgf000069_0001
Para la construcción de este plásmido se utilizaron otros dos plásmidos diferentes:
- pMAóOgpl 20C/gagpolnef-C- 14,15 (proporcionado por el grupo Aventis, Canadá). El plásmido es un derivativo de pUC que contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quüiasa (TK) en sitios de clonación del pUC Entre las dos secuencias flanqueantes se encuentras las dos secuencias que se desean expresar, gpl20-C y gagpolnef-C, que han sido modificadas para optimizar el uso de codones de mamífero. Para dirigir la expresión de cada una de las secuencias hay sendos promotores sintéticos temprano/tardío (pE/L), situados en orientación opuesta en la zona del inserto más alejada de las secuencias flanqueantes.
- pLZA Wl : El plásmido fue proporcionado por Linong Zhang, del grupo Aventis, Canadá. Es un plásmido basado en pUC que contiene un brazo izquierdo del gen de TK, sitios de clonación para insertar genes exógenos, una repetición corta del brazo izquierdo el gen de TK, un promotor E3L dirigiendo la expresión de un cásete con β-gal y un brazo derecho del gen de TK.
La construcción del plásmido pLZAWlgpl20C/gagpolnefC-14 a partir de estos otros dos plásmidos se representa en la Figura 22. Brevemente, un fragmento de ADN de 6047 kpb que contenía los genes de interés fue sacado por digestión con EcoRV del plásmido pMA60gpl20C/gagpolnefC-14,15, modificado por incubación con la ADN polimerasa de Klenow para generar extremos romos, y clonado en el vector pLZAWl previamente digerido con la endonucleasa de restricción AscI, modificado por incubación con Klenow, y desfosforilado por incubación con fosfatasa alcalina de intestino de ternera, generándose de esta forma el vector plasmídico de transferencia pLZAWlgpl20C/gagpolnef-C-14. El plásmido generado dirige la inserción de los genes de interés en el locus de la TK del genoma del virus atenuado MVA. Después de aislar el virus recombinante deseado mediante el análisis de la expresión de actividad β- galactosidasa la posterior propagación del virus recombinante conduce a la autodeleción de β-gal por recombinación homologa entre el brazo izquierdo de TK y la repetición corta del brazo izquierdo de TK que flanquean el marcador. Construcción del viros recombinante MVA-C
Cultivos primarios de fibroblastos de embrión de pollo (CEF) fueron infectados con virus atenuado MVA en pase 586 (MVA-F6, pase 586, proporcionado por Gerd Sutter) a una multiplicidad de 0,05 ufp/célula, y posteriormente transfectados con 10 μg de ADN del plásmido de transferencia pLZAWlgpl20C/gagpolnefC-14, usando para ello lipofectina comercial suministrada por Invitrogen y siguiendo las instrucciones del fabricante. Después de 72 horas post-infección las células fueron recogidas, sonicadas y usadas para la selección de los virus recombinantes. Los virus MVA recombinantes que contenían los genes gpl20C/gagpolnef-C y coexpresaban de forma transitoria el gen marcador β-Gal (MVA-B (X-GaI+)), fueron seleccionados por pases consecutivos de purificación de placas en células CEF teñidas con 5-bromo-4-cloro-3-indolil-β- galactósido (XGaI) (300 μg/ml). En lo sucesivo, los MVA recombinantes que contenían los genes gpl20C/gagpolnef-C y que habían perdido el gen marcador (MVA-B (X-GaI" )), fueron seleccionados como focos virales no teñidos en células CEF en presencia de XGaL En cada paso de purificación las placas aisladas fueron expandidas en CEF durante 3 días, y el extracto viral crudo obtenido fue usado para el paso de purificación de placas consecutivo.
Tras 4 pases consecutivos de purificación fueron aisladas 24 placas recombinantes que expresaban eficientemente ambos antígenos y que habían perdido el gen marcador. Se hizo crecer el recombinante designado como MVA-C-1.7.1.2 (Pl) (SEQ ID NO: 16) para generar un stock crudo (P2) que se envió a producción en condiciones de buenas prácticas de fabricación para estudios clínicos. La secuencia del inserto que este recombinante lleva incluido en el sitio de la timidina quinasa viene representada por SEQ ID NO:20. La localización en dicha secuencia de cada uno de los elementos que componen el inserto se indica a continuación en la Tabla 5
Tabla 5.- Posición de los componentes principales del inserto del vector MVA-C
Figure imgf000071_0001
A partir del P2, se preparó un stock P3 de virus, purificándolo a partir de células CEF infectadas a una multiplicidad de infección de 0,05 por pase a través de dos colchones de sacarosa al 36%. Este stock P3, con un título de 4,25 x 108 ufp/ml, fue el que se utilizó en los protocolos de inmunización en el modelo murino.
Caracterización del virus recombinante MVA-C
Para confirmar la homogeneidad genética del virus MVA-C generado y la integridad de los genes insertados, se realizó un análisis por PCR del ADN viral extraído de células CEF infectadas a una multiplicidad de 5 ufp/célula, empleando para ello oligonucléotidos que hibridan o con las regiones TK flanqueantes del inserto o con regiones internas de los genes insertados. La secuencia de los oligonucléotidos utilizados como cebadores y la posición en que aparecen sobre el vector plasmídico de transferencia pLZAWlgpl20C/gagpolnefC-14 se muestran en la Tabla 6. Las posiciones en las que hibridan dichos oligonucléotidos, así como los tamaños estimados de los fragmentos generados en las distintas PCR y la localización de los mismos con respecto a los insertos y las secuencias flanqueantes, aparecen representadas en Ia parte superior de la Figura 23. Tabla 6.- Oligonucléotidos utilizados como cebadores de las PCR de caracterización del vector MVA-C
Figure imgf000072_0001
La parte inferior de la Figura 23 muestra fotografías de los geles obtenidos al someter a electroforesis los productos de las PCR realizadas con las diferentes parejas de cebadores para efectuar el análisis de los fragmentos del VIH-I incluidos en el virus MVA-C. Para ello, 100 ng del ADN viral extraído de células CEF infectadas a una multiplicidad de 5 ufp/céluϊa con los virus NYVAC-C (calle 1), MVA-C (calle 2), MVA-WT (calle 3) o NYYAC-WT (calle 4), fueron usados como molde para hacer una amplificación mediante PCR de diferentes fragmentos de VIH-I incluidos en MVA-C. Las condiciones de cada PCR se estandarizaron de forma individualizada para cada pareja de oligonucleótidos cebadores empleada. Como se observa en las fotografías mostradas en la parte inferior de la Figura 23, en las calles 3 y 4, correspondientes a muestras que carecen de inserto, no se observan bandas en ninguno de los casos, mientras que el control positivo NYVAC-C expresa los mismos genes incluidos en MVA-C. La Figura 24, por su parte, muestra una fotografía de un gel obtenido al someter a electroforesis los productos resultantes de una reacción de PCR en la que se utilizaron como cebadores oligonucleótidos (TK-L y TK-R) que hibridan con las secuencias flanqueantes del gen TK. En las calles 2 y 3, correspondiente a los stocks Pl y P2 del vector MVA-C se observa una banda de algo más de 6 Kb compatible con la presencia del inserto completo; mientras que en la calle 4, correspondiente a ADN extraído de células CEF infectadas con la cepa silvestre MVA-WT del virus MVA aparece una banda mucho menor, que correspondería al locus de TK sin inserto.
Ejemplo 19.- Análisis de Ia expresión de proteínas del VIH a partir del MVA-C
La expresión de las proteínas gpl20-C y gagpolnef-C por el virus MVA-C fue analizada mediante transferencia tipo Western. Monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 uíp/célula de los diferentes stocks de virus recombinante MVA-B. Los extractos celulares fueron recogidos a las 24 horas post- infección, fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a la reacción frente a un anticuerpo policlonal de conejo anti-gpl20 (generado en el laboratorio) que reconoce la proteína gρl20 del aislamiento CN54; y frente a un anticuerpo policlonal de conejo anti-p24 (cedido por el programa EVA, ARP432) que reconoce la quimera gagpolnef-C del mismo aislamiento. Como controles positivos se utilizaron extractos procedentes de células infectadas con el vector NYVAC-C. Como se observa en la Figura 25, ambos antígenos son expresados eficientemente por diferentes stocks (P2, P3) del recombinante MVA-C generado.
Ejemplo 20.- Comprobación de Ia estabilidad del MVA-C Para verificar que el recombinante MVA-C podía ser pasado sucesivamente sin perder la expresión de los genes insertados, se realizó un ensayo de estabilidad análogo al descrito en el Ejemplo 3, efectuando varios pases sucesivos del virus recombinante MVA-C en células CEF. Monocapas de células CEF crecidas en placas PlOO fueron infectadas de forma sucesiva, a una multiplicidad de 0,05 ufp/célula, partiendo del stock P2 del MVA-C (pase 6) hasta generar el pase 10 (PlO). A continuación, monocapas de células CEF crecidas en placas de 6 pocilios fueron infectadas con una dilución 10"5 del extracto viral obtenido del último pase (PlO). A las 48 horas post-infección, las placas de lisis generadas fueron analizadas por inrnunotinción, empleando anticuerpos policlonales anti-WR (que reconoce proteínas del virus MVA); anti-gpl20 (que reconoce la gpl20 del aislamiento CN54); y anti-p24 (que reconoce la quimera gagpolnef-C del mismo aislamiento); estos dos últimos anticuerpos fueron los mismos que se utilizaron en el Ejemplo 19. Los resultados de estas inmunotinciones se muestran en la parte A de la Figura 26. Los recuentos de placas demostraron que, tras 10 pases sucesivos del virus en células CEF, ambos antígenos se expresan eficientemente (100% de las placas reconocidas por el anticuerpo anti-WR fueron reconocidas por los anticuerpos anti-gpl20 y anti-p24), corroborándose la estabilidad del producto generado.
Los extractos de células CEF infectadas con los pases 7, 8, 9 y 10 también fueron analizados por inmunotransferencia tipo Western, pruebas a las cuales corresponden las tinciones mostradas en la parte B de la Figura 26. Para realizar estos ensayos, monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula de los extractos virales obtenidos en los pases 7 (PT), 8 (P8), 9 (P9) y 10 (PlO) del virus recombinante MVA-C. Los extractos celulares fueron recogidos a las 24 horas post-infección, fraccionados en geles desnaturalizantes de poliacrilamida (SDA-PAGE), transferidos a membranas de nitrocelulosa y hechos reaccionar con los mismos anticuerpos policlonales anti-gpl20 (parte derecha de la figura) o anti-p24 (parte izquierda de la figura) utilizados en la prueba correspondiente a la parte A de la Figura 26. Ambos anticuerpos se utilizaron a una dilución 1/500. Como control positivo se empleó un extracto de células CEF infectadas con el virus NYVAC-C (cedido por el grupo Aventis). Los resultados confirman la correcta expresión de las proteínas gpl20- C y gagpolnef-C en todos los extractos obtenidos por la infección con virus procedentes de distintos pases.
Ejemplo 21.- Liberación de gp!2Q-C y cinética de expresión a partir del MVA-C en el transcurso del tiempo
Para definir si la proteína gpl20-C era eficientemente secretada, monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con el virus recombinante MVA-C a 5 ufp/célula. A las 6, 18 y 24 horas post-infección las células se recogieron separando el precipitado (P) del sobrenadante (S) celular. Los sobrenadantes de cada tiempo analizado fueron concentrados y fraccionados junto a los precipitados celulares en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a reacción frente al anticuerpo policlonal anti- gpl20 específico para el aislamiento CN54 anteriormente utilizado en los Ejemplos 19 y 20. De igual forma fueron tratadas células CEF infectadas con el NYVAC-C (proporcionado por el grupo Aventis), usado como control positivo en el ensayo. Como control interno para verificar que había sido aplicado en el gel la misma cantidad de proteína, las membranas fueron incubadas también frente a un anticuerpo monoclonal anti-β-actina. Los resultados se muestran en la Figura 27. En su parte superior, correspondiente a la muestra del MVA-C, puede apreciarse que la proteína gpl20-C es expresada eficientemente por el MVA-C desde las 6 horas post-infección, detectándose en el sobrenadante celular a partir de las 18 horas post-infección, y con un comportamiento similar al que se observa en células infectadas con el NYVAC-C, para el cual se muestran los resultados obtenidos en la parte inferior de la Figura 27. La expresión de la proteína de fusión gagpolnef-C fue analizada en el precipitado celular igualmente a las 6, 18 y 24 horas post-infección siguiendo un procedimiento análogo al utilizado para la proteína gpl20-C, aunque utilizando en este caso el anticuerpo anti-p24 específico para el aislamiento CN54. Los resultados se muestran en la Figura 28. En ella puede observarse que esta proteína de fusión se expresa eficientemente a lo largo del tiempo de infección tanto desde MVA-C (calle 1 de cada tiempo de infección) como desde NYVAC-C (calle 2).
Ejemplo 22.- Inmiinogenicidad del MVA-C: Respuesta inmune específica de células T productoras de IFN-γ
Una vez generado y caracterizado el recombinante MVA-C, el siguiente objetivo fue analizar su capacidad de inducir una respuesta inmune específica en el modelo murino frente a los antígenos que expresa. Para ello, ratones transgénicos HHDII (n=4) de 10 semanas de edad se inocularon por vía intraperitoneal (i.p.) con una dosis de 2 x 107 ufp/ratón de MVA-C o de NYVAC-C. 8 días después de la inmunización los ratones fueron sacrificados por dislocación cervical, y se les extrajo el bazo para llevar a cabo un ensayo de ELISPOT análogo al descrito en el Ejemplo 5, siguiendo la misma metodología descrita en dicho Ejemplo con la excepción de que, en este caso, para evaluar la respuesta inmune específica, se utilizaron diferentes grupos que contenían 40- 50 péptidos solapantes de 15 aminoácidos cada uno, pertenecientes al clade C, que cubrían todas las regiones antigénicas incluidas en el recombinante MVA-C de la invención.
Los resultados, que se muestran en la Figura 29, demuestran que el MVA-C es capaz de potenciar una respuesta inmune específica frente a casi todos los grupos de péptidos ensayados, evidenciándose la mejor respuesta frente a los grupos de péptidos representativos de los genes de la envuelta (Envl y En v2).
Adicionalmente, se evaluó también la respuesta generada contra las proteínas expresadas a partir de las partes del vector derivadas de las formas atenuadas de Vaccinia utilizadas para la construcción de los recombinantes, MVA y NYVAC. Para ello, los esplenocitos de los animales inmunizados se pusieron en contacto durante 48 horas con células RMAS-HDD previamente infectadas durante 5 horas con 5 ufp/célula de las cepas silvestres de MVA y NYVAC, MVA-WT y NYVAC-WT. El número de células productoras de IFN-γ obtenido frente a las células RMAS-HHDII sin infectar (control negativo) fue sustraído en todos los casos. Los resultados, que se muestran en la parte B de la Figura 29, demuestran que la respuesta anti-Vaccinia fue superior en el grupo de ratones inmunizados con NYVAC-C.
- Ejemplo 23.- Inmunogcnicidad del MVA-C: Producción de citoquinas por esplenocitos reestimiilados
Los esplenocitos aislados de los animales inmunizados con MVA-C y NYVAC- C aislados en el Ejemplo 22 fueron cultivados (5x106 células/pocilio) en una placa de 24 pocilios y estimulados con 1 μg/ml de cada grupo de péptidos pertenecientes al clade C. La placa se incubó durante 5 días a 370C en atmósfera del 5% CO2. Después de este período, se recogieron los sobrenadantes de los cultivos y se centrifugaron a 1.500 rpm, 5 min, a 40C, almacenándose a -7O0C hasta su utilización.
Para conocer los niveles de IL-IO e IFN-γ presentes en los sobrenadantes de cultivos de esplenocitos reestimulados in vitro, se procedió a la determinación de estos niveles mediante kits de ELISA comerciales de Pharmigen, siguiendo las instrucciones del fabricante de forma análoga a la descrita en el Ejemplo 6.
Los resultados, mostrados en la Figura 30, indican que MVA-C induce la secreción de las citoquinas IL-10 e IFN-γ en el sobrenadante de cultivo de los esplenocitos reestimulados. Los niveles de IFN-γ fueron significativamente superiores frente a los grupos de péptidos GPN2, Env-1 y Env-2, evidenciando una clara polarización de la respuesta celular antígeno-específica hacia un subtipo ThI .
- Ejemplo 24.- Innmnogenicidad del MVA-C: Identificación de los tipos de células T específicas productoras de IFN-γ
Para dilucidar si la respuesta celular que se estaba obteniendo en ELISPOT era debida a la secreción de IFN-γ por las células T CDS+ o por las células T CD4+, los esplenocitos obtenidos en el Ejemplo 22 fueron reestimulados durante 1 hora con 5 μg/ml de cada grupo de péptidos, tras lo cual se añadió Brefeldina a una concentración de 10 μg/ml, incubándose durante toda la noche. Posteriormente se procedió a un mareaje de superficie empleando anticuerpos específicos anti-CD4 o anti-CD8 conjugados a FITC, seguido de un mareaje intracelular empleando anti-IFN-γ conjugado a PE. Una vez fijadas las células fueron analizadas en el citómetro de flujo.
Los resultados, mostrados en la Figura 31, permiten apreciar que, tanto para el grupo de animales inmunizado con el MVA-C, como para el grupo inmunizado con NYVAC-C, la respuesta productora de IFN-γ es mayoritariamente debida a la población de células T CDS+ específicas activadas frente a los diferentes grupos de péptidos. Al determinar los niveles totales de IFN-γ secretados por ambos tipos de células, se corroboró el resultado obtenido en el ensayo de ELISPOT, donde se observaba una respuesta específica frente a la mayoría de los grupos de péptidos en los animales inmunizados con ambos recombinantes. De nuevo, existen diferencias claras entre las respuestas generadas por cada uno de los recombinantes.
- Ejemplo 25,- Inmunogenicidad del MVA-C: Respuesta humoral generada
Para evaluar la respuesta humoral generada por la inoculación de MVA-C y NYVAC-C, grupos de 4 ratones HHDII o C57BL/6 de 6-10 semanas de edad fueron inoculados por vía intraperitoneal (i.p.) con una dosis de 2 x 107 ufp/ratón de MVA-C (stock P3) o de NYVAC-C (grupo Aventis, Francia). 14 días después, se extrajo sangre del plexo suborbital de los ratones inmunizados y, tras dejarlo toda la noche a 4 0C se centrifugó obteniéndose el suero. La cantidad total de anticuerpos IgG presentes en los sueros frente a la proteína Gag (2 μg/ml), la proteína de la envuelta gp-160 (2 μg/mL) o frente a extractos celulares de una infección con vaccinia fue determinada por ELISA, diluyendo para ello los sueros 1/500 para la detección de los anticuerpos frente a Vaccinia y 1/50 para la detección de los anticuerpos frente a la proteína Gag y frente a la pro teína gp 160. Los resultados, que se muestran en la Figura 32, muestran un aumento de la respuesta humoral generada frente a la proteína de la envuelta en los ratones inmunizados con el vector recombinante MVA-C con respecto a los controles y los ratones inmunizados con NYVAC-C, siendo inferior la respuesta humoral generada frente a los antígenos del propio vector Vaccinia en los ratones inmunizados con MVA- C que en los ratones del mismo tipo inmunizados con NYVAC-C. Ejemplo 26.- Utilización del MVA-C en protocolos de inducción/potenciación que combinan vectores de ADN y vectores virales derivados de Vaccinia: Respuesta inmune específica de células T productoras de IFN-Y generada en ratones humanizados HHDII Grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intramuscular (i.m.) con 100 μg del vector de ADN DNA-C (cedido por GeneArt, Alemania), formado por dos plásmidos recombinantes derivados de pcDNA que contienen cada uno de ellos una de las secuencias codificantes de proteínas del VIH-I (gpl20-C y gagpolnef-C) que lleva insertadas el MVA-C, bajo el control de sendos promotores de citomegalovirus. El grupo control fue inoculado (i.m.) con 100 μg de ADN sin inserto (DNA 0). 15 días después se les inmunizó por vía intraperitoneal (i.p.) con 2 x 107 ufp/ratón de MVA-C (stock P3) o de NYVAC-C (grupo Aventis, Francia), que expresa los mismos antígenos de VIH que MVA-C. El grupo control recibió una dosis de 2 x de 107 ufp/ratón de NYVAC-WT. 10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, mezclas de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade C (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA-C y NYVAC-C. El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos.
Los resultados se muestran en la Figura 33. Se observa que la inmunización combinada de vectores genera una respuesta inmune amplia, con producción de IFN-γ frente a distintos antígenos del VIH, con diferencias significativas entre los vectores. La combinación DNA- C+N YV AC-C produjo inmunodominancia frente a Env.
Ejemplo 27.- Utilización del MVA-C en protocolos de inducción/potenciación que combinan vectores de ADN Y vectores virales derivados de Vaccinia: Respuesta inmune específica de células T productoras de IL-2 generada en ratones humanizados HHDII Grupos de 4 ratones HHDII de 6-10 semanas de edad se inocularon por vía intramuscular (i.m.) con 100 μg del vector de ADN DNA-C (cedido por GeneArt, Alemania) utilizado en el Ejemplo 26. El grupo control fue inoculado (i.m.) con 100 μg de ADN sin inserto (DNA 0). 15 días después se les inmunizó por vía intraperitoneal (i.p.) con 2 x 107 ufp/ratón de MVA-C (stock P3) o de NYVAC-C (grupo Aventis, Francia), que expresa los mismos antígenos de VIH que MVA-C. El grupo control recibió una dosis de 2 x de 107 ufp/ratón de NYVAC-WT. 10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, mezclas de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con las mezclas de péptidos solapantes pertenecientes al clade C (5 μg/ml), que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA-C y NYVAC-C, utilizadas en los Ejemplos anteriores referentes al MVA-C. El número de células productoras de IL-2 obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos.
Los resultados obtenidos se muestran en la Figura 34. Se observa que la inmunización combinada de vectores genera una respuesta inmune amplia, con producción de IL-2 frente a los distintos antígenos del VIH, con diferencias significativas entre los vectores. La combinanción DNA-C +NYVAC-C produjo inmunodominancia frente a Env.
Ejemplo 28.- Utilización del MVA-C en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Respuesta inmune específica de células T productoras de IFN-Y en ratones BALB/c
Habiendo establecido que la administración de una primera dosis de inmunización que contenía el MVA-C era capaz de inducir una respuesta inmune específica en el modelo murino, se evaluó a continuación si la utilización de este vector de la invención como parte de un protocolo de inducción/potenciación, con diferentes combinaciones de MVA-C y NYVAC-C, daba lugar a un incremento en la magnitud y la amplitud de la respuesta inmune. Por ello, se suministró una primera dosis de inmunización a 4 grupos de ratones BALB/c (n=4) de 6-8 semanas de edad que contenía 2 x 107 ufp/ratón de MVA-C (P3), NYVAC-C (grupo Aventis), MVA-WT o NYVAC- WT por la ruta intraperitoneal. 15 días después los ratones recibieron una segunda dosis por vía intraperitoneal (i.p.) de 2 x 107 ufp/ratón, de manera que a uno de los grupos que había recibido MVA-B en la primera dosis se le inoculó NYVAC-C y a otro de nuevo MVA-C, a uno de los grupos que habían recibido NYVAC-C en la primera dosis se le inoculó NYVAC-C de nuevo y a otro MVA-B y, el grupo control que había recibido MVA-WT recibió en la segunda dosis NYVAC-C y el grypo control que había recibido NYVAC-WT recibió en la segunda dosis MVA-WT (grupo Aventis). Se generaron así grupos que habían sido inoculados con las siguientes combinaciones de vectores: MVA- C+NYVAC-C, NYVAC-C+MVA-C, MVA-C+MVA-C, NYVAC-C+NYVAC-C, NYVAC-WT+MVA-WT y MVA-WT+NYVAC-WT.
10 días después de la última inmunización los ratones fueron sacrificados por dislocación cervical y el bazo fue extraído para llevar a cabo el ensayo de ELISPOT. Para detectar la respuesta inmune específica, grupos de mezcla de esplenocitos de los animales inmunizados en cada grupo se pusieron en contacto durante 48 horas con diferentes mezclas de péptidos solapantes pertenecientes al clade C (5 μg/ml) que comprenden todas las regiones antigénicas incluidas en los virus recombinantes MVA- C y NYVAC-C. El número de células productoras de IFN-γ obtenido frente a una mezcla de péptidos antigénicos no relacionados (control negativo) fue sustraído en todos los casos.
Los resultados obtenidos se muestran en la Figura 35. De ellos se deduce que las diferentes combinaciones de vectores derivados de poxvirus (MV A-C+NYV AC-C, MVA-C+MVA-C, NYVAC-C+MVA-C, NYVAC-C+NYVAC-C, NYVAC- WT+MVA-WT, MVA-WT+NYVAC-WT) incrementan tanto la magnitud como la amplitud de la respuesta inmune específica generada, según se observa con los diferentes grupos de péptidos. Los grupos de péptidos mejor reconocidos fueron los correspondientes a Envl, GPNl y GPN2, seguidos de GPN3 y Gagl.
Las combinaciones de MVA-C y NYVAC-C dieron lugar a mayores respuestas que la administración de dos dosis de virus homólogos, MVA-C+MVA-C o NYVAC- C+NYVAC-C. El grupo de ratones al que se le administró en la primera dosis NYVAC- C y en la dosis de potenciación MVA-C fue el que mostró el número más elevado de células secretoras de IFN-γ frente a los diferentes grupos de péptidos. Ejemplo 29.- Utilización del MVA-C en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Producción de citoquinas por espϊenocitos reestimuiados procedentes de ratones BALB/c Seis grupos de ratones BALB/c (n=4) fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y la potenciación de la misma mediante la inoculación de un segundo vector en una segunda dosis, de manera análoga a la descrita en el Ejemplo 28 y utilizando las mismas combinaciones de vectores. Los esplenocitos extraídos fueron estimulados in vitro con las diferentes mezclas de péptidos solapantes pertenecientes al clade C (1 μg/ml) e incubados durante 5 días a 37°C. Transcurrido ese tiempo, se recogieron los sobrenadantes y se almacenaron a -700C. Los niveles de IFN-γ e IL-10 se determinaron por ELISA usando kits comerciales (Pharmigen).
Los resultados se muestran en la Figura 36. Se observa que la combinación de vectores virales induce una respuesta celular tipo Th2, con polarización hacia los antí genos Env y gpnl.
Ejemplo 30.» Utilización del MVA-C en protocolos de inducción/potenciación que combinan vectores derivados de Vaccinia: Identificación de los tipos de células T específicas secretoras de IFN-γ generadas en ratones BALB/c
Cinco grupos de ratones BALB/c (n=4) fueron inoculados en régimen combinado de inducción de la respuesta inmune mediante la administración de una primera dosis de vector y la potenciación de la misma mediante la inoculación de un segundo vector en una segunda dosis, de manera análoga a la descrita en el Ejemplo 28 y utilizando las mismas combinaciones de vectores salvo en el caso de los controles, en el que se prescindió de inocular la combinación MVA- WT+N YVAC -WT en este orden. Los esplenocitos extraídos fueron reestimuiados in vitro durante 1 hora a 370C con 5 μg/ml de cada grupo de péptidos solapantes pertenecientes al clade C, tras lo cual se añadió Brefeldina a una concentración de 10 μg/ml, incubándose durante toda la noche a 370C. Siete días después se procedió a un mareaje de superficie empleando anticuerpos específicos anti-CD4 o anti-CD8 conjugados a FITC, seguido de un mareaje intracelular empleando anti-IFN-γ conjugado a PE. Una vez fijadas las células fueron analizadas en el citómetro de flujo.
Los resultados obtenidos se muestran en la Figura 37. Se observa que la combinación de vectores virales induce un menor aumento de células CD 8+ productoras de IFN-γ que de células CD4+, con la combinación NYVAC-C+MVA-C induciendo el mayor incremento frente a los péptidos de Gagl, Envl, Gpnl y Gpn2.
- Ejemplo 31.- Perfil diferencial de cambios en los niveles de expresión de genes humanos inducidos dαrante Ia infección con los vectores MVA y NYVAC Para evaluar si las diferencias en las respuestas inmunes inducidas por la inoculación de vectores recombinantes derivados de MVA y NYVAC iban acompañadas también de perfiles diferentes de inducción de variaciones en los niveles de expresión de genes en las células infectadas, se realizó un experimento de infección de células HeLa con MVA y NYVAC y se evaluaron los cambios experimentados en los niveles de expresión de 15000 genes humanos utilizando microarrays con ADNc humano.
Para ello, se generaron microarrays de ADNc tal como se ha descrito previamente (20), utilizando la genoteca de ADNc humano 4OK de Research Genetics (http://www.resgen.com/products/SVHcDNA.php3), que contenían 15.360 secuencias de ADNc, (de las cuales 13295 corresponden a genes conocidos y 2.257 corresponden a genes de control), utilizando portaobjetos CMT-GAPS II (Corning) sobre los que se fijaron las secuencias de ADNc mediante el Microgrid II (BioRobotícs) a 22°C y una humedad relativa de 40-45%. Por otro lado, se cultivaron células HeLa (de Ia American Type Culture Collection) en placas de 10 cm de diámetro, en medio de Dulbecco al que le había añadido suero bovino de recién nacido al 10% y antibióticos y se llevaron a cabo infecciones con el MVA-WT y el NYVAC-WT a una multiplicidad de infección de 5 ufp/célula. El ARN total se aisló de las células infectadas utilizando Ultraespect-II RNA (Biotecx), siguiendo las instrucciones del fabricante, a partir de muestras tomadas por duplicado de las células infectadas con cada uno de los virus transcurridas 2, 6 y 16 horas del momento de la infección. Cada muestra de ARN se utilizó en dos hibridaciones diferentes: en una hibridación, la muestra infectada con MVA-WT se marcó con dUTP-Cy3 y la muestra infectada con NYVAC-WT se marcó con dUTP- Cy 5, mientras que en la otra la muestra infectada con MVA-WT se marcó con dUTP- Cy5 y la muestra infectada con NYVAC-WT se marcó con dUTP-Cy3. El doble mareaje se utilizó para suprimir diferencias en el mareaje y la hibridación debidas a características específicas del Cy-dUTP. Una mezcla que contenía 40 μg de ARN, 150 pmoles de oligo(dT)20,dATP 0,5 mM, dGTP 0,5 mM, dCTP 0,5 mM, dTTP 0,1 mM dUTP Cy3/Cy5 0,05 mM (Amersham), tampón de reacción para la primera hebra IX (Invitrogen) y ditiotreitol 10 mM en un volumen de 38 μl se calentó (65°C, 5 min) y se preincubó (42°C, 5 min), tras lo cual se añadieron 400 U de SuperScript II (Invitrogen) y 40 U de inhibidor de RNasa (Roche) y se incubó la mezcla a 42°C durante 2,5 horas. La reacción se terminó añadiendo EDTA y el molde de ARN de partida se retiró añadiendo 2 μl de NaOH IO N, seguido de incubación (20 min, 65°C). La reacción se neutralizó añadiendo 4 μl de ácido acético 5 M. Se mezclaron las sondas de Cy5 y Cy3 y los colorantes no incorporados se retiraron mediante precipitación con isopropanol. Las sondas se resuspendieron en agua desionizada; los agentes bloqueantes añadidos para incrementar la especificidad fueron poli(A) (20 μg, Sigma), ARNt (20 μg, Sigma) y ADN humano Cot-1 (20 μg, Invitrogen). Mientras las sondas se secaban en una Speed-Vac, los microarrays se prehibridaron con una mezcla que contenía SSC 6x (SSC IX está formado por NaCl 0,15 M y citrato sódico 0,015 M), dodecilsulfato sódico (SDS) al 0,5% y albúmina de suero bovino al 1% (420C5 1 hora), se lavaron cinco veces con agua, y se secaron mediante centrifugación (563 x g, 1 min). Las sondas se resuspendieron en 40 μl de tampón de hibridación (formamida al 50%, SSC 6x, SDS al 0,5%, solución de Denhardt 5x) y se incubaron con los portaobjetos que contenían los microarrays (42°C, 16 horas) en cámaras de hibridación (Array-It) en un baño de agua en la oscuridad. Después de la incubación, los portaobjetos se lavaron dos veces en SSC 0,1X-SDS 0,1% durante 5 minutos cada vez y tres veces en SSC O5Ix durante 5 minutos cada vez. Finalmente, los portaobjetos se secaron mediante centrifugación como se describió anteriormente y se escanearon en un ScanArray 4000 (Packard Biosciences) utilizando el software ScanArray 3.1. A partir de las imágenes de Cy5 y Cy3 se obtuvieron datos preliminares utilizando el software QuantArray 3.0 (Packard Biosciences), que se procesaron utilizando el software SOLAR (BioALMA, Madrid, España. La señal de fondo se resta de la señal, se representa log^fseñal) frente Iog2(relación) y se realiza una normalización mínima. Este valor se calcula para las cuatro réplicas y se obtiene una tabla con la señal media, el factor de cambio, log (relación), la desviación estándar del logaritmo de la relación y el valor z (una medida de la proximidad de un valor [log relación] a otros valores con señales similares) (21). Una vez obtenidos estos datos, el juego de datos se redujo eliminando los genes con una desviación estándar entre las réplicas >1 y aquellos que mostraban valores de z < 2, después de lo se reprocesaron los datos, se agrupó los genes utilizando el mapa clásico de autoorganización de Kohonen (22,23,24) y se analizó el mapa resultante utilizando el software Engene, disponible en http://www.engene.cnb.uam.es.
Las diferencias más representativas detectadas en las células infectadas con uno y otro virus se resumen en la Tabla 7, en la que se indican el factor de aumento de la expresión de varios genes representativos observado transcurridos distintos intervalos de tiempo (horas post-infección; h.p.i.) tras el momento de la infección. En ella puede observarse que el perfil de inducción de variaciones en los niveles de expresión de genes en las células infectadas es diferente según el virus utilizado para la infección. Por ejemplo, el incremento por MVA y no por NYYAC de genes coestimuladores de la respuesta inmune, como IL-7, proteína B7, NFATC3 y MAP2K5, puede condicionar el menor grado de respuesta inmune de un vector frente al otro.
Tabla 7.-.Perfiles de expresión de genes representativos modificados por la infección de células humanas HeLa con cepas de MVA y NYVAC
Factor de cambio i ;on MVA Factor de cambio con NYVAC
Función y nombre del gen Símbolo gen 2hpi 6 hpi 16 hpi 2 hpi 6 hpi 16 hpi
Genes incrementados con MVA y NYVAC
Respuesta de crecimiento temprano 1 EGR1 4,17 4,60 1,94 4,74 10,38 6,83
Factor nuclear similar al factor 2 derivado de células eritroides 3 NFE2L3 2,36 2,36 2,52 1,19 2,13 1,32
Factor nuclear del polipéptido ligero kappa 2 NFKB2 2,03 2,22 2,34 1,53 2,02 1,79
Interleuquina 6 SL6 2,65 2,14 1,56 2,02 5,85 2,68
Proteína estimulada por el interferón, 15 kDa ISG15 2,57 2,25 1,61 1,21 1,14 3,39
Antígeno CD80 CD80 1,75 2,58 2,06 1,25 2,02 2,7
Fosfatasa de especificidad dual 5 DUSP5 3,01 2,91 1,87 1,98 4,16 2,18
Protooncogén JUN B JUNB 2,93 3,92 1,06 2,16 2,14 1,32
Homólogo del oncogén V-jun del virus de! sarcoma de aves 17 JUN 2,17 2,02 1,31 2,14 13,75 8,01
Homólogo del oncogén V-MYC del virus de mielocitomatosis de aves MYC 2,22 1,53 1,05 1,05 2,93 1,65
Miembro de Ia familia de Ia quinesina 5A KIF5A 2,05 1,88 1,73 1,89 oo
5,45 4,64
Genes incrementados con MVA
Interleuquina 7 IL7 6,10 5,3 3,2 0,80 0,55 0,88
Proteína B7 B7 1,97 1,75 3,53 1,58 1,58 1,78
Antígeno CD47 CD47 5,35 4,08 3,16 1,02 0,76 1,03
Proteína quinasa activada por mitógenos 5 MAP2K5 2,37 2,74 1,69 1,02 0,76 1,03
Factor nuclear del polipéptido ligero kappa epsilon NFKBIE 2,41 1,61 1,12 1,18 1,27 1,42
Factor nuclear citoplásmico de células T activadas NFATC3 3,46 2,97 1,30 1,01 1,34 1,34
Genes incrementados con NYVAC
Factor activador de Ia transcripció 3 ATF3 1,78 1,98 0,99 2,42 8,36 6,10
Caspasa 9, proteasa de cisteína relacionada con la apoptosis CASP9 1,1 0,82 0,32 2,59 2,37 1,98
Fosfatasa de especificidad dual 2 DUSP2 3,93 3,59 1,85 2,43 5,25 1,56
Nucleoporina de 88kD NUP88 0,87 0,93 0,92 3,52 6,49 4,23
Factor de crecimiento de tejido conectivo CTGF 5,77 4,51 1,12 4,24 11,45 5,14
Dominio similar a los de homología con pleckstrina, familia A, miembro 1 PHLDA1 1,01 0,95 0,99 4,19 8,24 5,28
- Ejemplo 32.- Perfil diferencial de cambios en los niveles de inducción de apoptosis inducidos durante la infección de células en cultivo por los vectores
MVA v NYVAC
Para evaluar si las diferencias observadas en la resupuesta inmune inducida por la inoculación de vectores derivados de MVA y NYVAC iban acompañadas de variaciones en los niveles de inducción de muerte celular por apoptosis, se llevaron a cabo distintos experimentos para evaluar el grado de apoptosis, evaluando distintos parámetros indicativos del mismo.
Una de las características de la apoptosis es la rotura específica por proteasas de la proteína PARP. Para evaluarla, se procedió a la infección de células HeLa con 5 ufp/célula de MVA o NYVAC y se recogieron a 4, 8 y 16 horas postinfección en tampón de lisis (Tris-HCl 50 mM, pH 8,0, NaCl 0,5 M, NP-40 10%, SDS 1%.). Se separaron cantidades iguales de Usados de proteínas (10 μg) mediante electroforesis en geles de SDS-poliacrilamida (SDS-PAGE), se transfirieron a membranas de nitrocelulosa y se incubaron con un anticuerpo anti-PARP humano (1:500 dilución) de CeIl Signalling, obteniéndose los resultados que se muestran en la parte superior de la Figura 38 a, en la que se indica la posición de la banda correspondiente a la proteína PARP completa (PARPc) y la correspondiente a un fragmento de la proteína PARP escindido de la proteína completa (PARPf). Como control interno para verificar que había sido aplicado en el gel la misma cantidad de proteína, las membranas fueron incubadas también frente a un anticuerpo monoclonal anti-β-actina (SIGMA), obteniéndose la señal que se muestra en la parte inferior de dicha Figura.
Los resultados muestran que la infección de células HeLa con NYVAC induce con el tiempo de infección la degradación de PARP. Esta degradación es mucho menor en células infectadas con MVA.
La inducción de apoptosis por NYVAC también se confirmó mediante pruebas de inmunofluorescencía de células HeLa infectadas con 5 ufp/célula cuyos núcleos fueron teñidos a las 24 horas postinfección con DAPI durante 30 min a temperatura ambiente y las célula fotografiadas. Los resultados se muestran en la Figura 38b, en cuya parte inferior, correspondiente a células HeLa infectadas con NYVAC, se observa que NYVAC favorece condensación de Ia cromatina y formación de cuerpos apoptótícos, algo que no se observa en la infección con MVA (parte superior de la Figura).
Otro indicador de apoptosis es la activación de la enzima RNasa L, que favorece la ruptura del ARN ribosómico. Para evaluar esta activación, se aisló el total de ARN usando el sistema de purificación por resina de ARN Ultraspec-II (Bioteck), a partir de muestras de células HeLa infectadas con 5 ufp/célula obtenidas transcurridas 18 ó 24 de la infección con la cepa Western Reserve (WR) de Vaccinia, con MVA o con NYVAC, añadiendo un control en el que se simuló la infección. Se sometieron los ARNs (2 microgramos) a electroforesis en geles de agarosa-formaldehido al 1% que contenían bromuro de etidio y se fotografió bajo luz ultravioleta el patrón de bandas obtenido. Los resultados, mostrados en la Figura 38c muestran que la infección de células HeLa con NYVAC induce a las 18 horas degradación del ARN ribosómico en fragmentos característicos de la activación de la enzima RNasa L, lo que no se observa en la infección con MVA. Finalmente, otro indicador de apoptosis es la cuantificación del número de células apoptóticas por citometría de flujo. Este ensayo se realizó de nuevo en células HeLa infectadas (5 ufp/célula) con Vaccinia WR5 MVA y NYVAC, así como en controles en los que se simuló la infección. Los diferentes estadios del ciclo celular y el porcentaje de células en la fase subGo fueron analizadas por tinción con yoduro de propidio (IP). Para cada uno de ellos se realizó el ensayo en muestras que habían sido incubadas en ausencia o en presencia del inhibidor general de caspasas zVAD (4 micromolar, Calbiochem). A las 24 horas se recogieron las células, se lavaron con PBS frió, se permeabilizaron con etanol al 70% en PBS a 40C durante 30 min. Después de tres lavados con PBS, las células se incubaron durante 45 min a 370C con RNasa A y se tiñeron con IP (10 microgramos/ml). El porcentaje de células que presentaban DNA hipodiploide se determinó por citometría de flujo. Los datos fueron adquiridos en 15000 células por muestra y los resultados se representan como veces de incremento en células apoptóticas respecto a las células sin infectar. El gráfico de la Figura 38d muestra el factor de incremento de células apoptóticas observado en cada uno de los casos. En él puede observarse que la infección con NYVAC provoca apoptosis en una gran parte de la población celular (más del 40%) y que este fenómeno se previene con la adición del inhibidor general de caspasas zVAD. La inducción de apoptosis por MVA fue mucho más reducida.
Los resultados de estos ensayos demuestran que NYVAC induce apoptosis durante la infección, mientras que MVA no parece activar apoptosis o da muestras de activar en menor medida.
Estas diferencias bioquímicas, junto a las diferencias genéticas definidas en el Ejemplo 31, indican que es de esperar que los vectores recombinantes generados a partir de MVA y NYVAC, a pesar de contener las mismas secuencias codificantes del VIH-I bajo el control de promotores idénticos, den lugar a comportamientos diferentes al ser inoculados en seres humanos con la intención de provocar una respuesta inmune contra el VIH. Los vectores recombinantes derivados de MVA, por tanto, representan una interesante alternativa para sustituir o complementar de forma ventajosa a los vectores recombinantes derivados de NYVAC en protocolos de inmunización frente al VIH-I.
Construcción y ensayos realizados con los vectores diseñados para uso en macacos - Ejemplo 33.- Generación del MVA-89.6P-SIVgpn
Construcción del vector plasmídico pLZAWl-89.6p-SIVgpn-18
El vector plasmídico de transferencia pLZAWl-89.6p-SIVgpn-18 fue construido por los inventores para la generación de los virus recombinantes derivados de MVA y de NYVAC que expresan la parte correspondiente a la pro teína gρl20 del gen Env del SHIV 89.6P (89.6Psynenvl20, a la que en lo sucesivo se aludirá de forma abreviada como 89.6P-gpl20) y la quimera de los genes Gag, PoI y Nef del mismo virus (SIVmac239-gagpolnef, a la que en lo sucesivo se aludirá de forma abreviada como SlVgpn), esta última a partir de una secuencia de nucleótidos obtenida a partir de las secuencias de los genes Gag, PoI y Nef del virus SHIV89.6P en las que se habían practicado las mismas modificaciones que se realizaron para obtener las quimeras de los genes Gag, PoI y Nef presentes en los vectores MVA-B y MVA-C.
El plásmido pLZAWl-89.6p-SIVgpn-18 es un derivativo de pUC diseñado para la selección de placas azules/blancas y la generación, como medida de seguridad, de un vector viral carente del marcador β-Gal, al igual que se hizo en el caso de los vectores MVA-B y MVA-C, como medida de seguridad. Contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen de la timidina quinasa (TK) del MVA, una repetición corta de la secuencia flanqueante izquierda ("brazo izquierdo"') del gen TK, el promotor E3L dirigiendo la expresión del marcador de selección β-galactosidasa, y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentran las dos secuencias que se desea expresar, 89.6P-gpl20 (SEQ ID NO: 22) y SIVgpn (SEQ ID NO: 23), que han sido modificadas para optimizar el uso de codones de mamífero. Para dirigir la expresión de cada una de las secuencias hay sendos promotores sintéticos temprano/tardío (pE/L), situados en orientación opuesta en la zona del inserto más alejada de las secuencias flanqueantes. La posición de cada uno de los componentes incluidos en el plásmido se describe a continuación en la Tabla 8. Tabla 8.- Posición de los componentes del plásmido pLZAWlgpl20B/gagpolnefB-l
Figure imgf000090_0001
Para la construcción de este plásmido se utilizaron otros dos plásmidos diferentes:
- pcDNA89.6P-sγn-CD5-GP120REKR: (proporcionado por RaIf Wagner, Regensburg, Alemania).
- pCR-ScriptSIV-syn-gagpolnef: (proporcionado por RaIf Wagner, Regensburg, Alemania).
- pLZAWl: El plásmido fue proporcionado por Linong Zhang, del grupo Aventis, Canadá. Es un plásmido basado en pUC que contiene un brazo izquierdo del gen de TK, sitios de clonación para insertar genes exógenos, una repetición corta del brazo izquierdo el gen de TK, un promotor E3L dirigiendo la expresión de un cásete con β- gal y un brazo derecho del gen de TK.
- pJRlOl : El plásmido fue generado por los inventores. Es un derivado de pUC que contiene las secuencias flanqueantes derecha e izquierda del locus HA del virus
MVA, sitios de clonación para insertar genes exógenos bajo el control de la transcripción del promotor sintético temprano/tardío (E/L), y el promotor 7.5 del virus
MVA (P7.5) dirigiendo la expresión del gen β-gus.
La construcción del plásmido pLZAWl-89.6P-SIVgpn~18 a partir de estos otros dos plásmidos se representa en las Figuras 41a y 41b. Brevemente, un fragmento de ADN de 1,518 Kb que contenía el gen 89.6P-gpl20 (indicado en la figura como 89.6synenvl20) se escindió del plásmido pcDNA89.6P-syn-CD5-GP120REKR mediante digestión con EcoRI, tratamiento con el fragmento Klenow de la ADN polimerasa para generar extremos romos, y digestión con BamHI. El fragmento de ADN se subclonó en el vector p JRl 01 (previamente digerido con las endonucleasas de restricción Smal y BamHI), generando el plásmido pJR-89.6P-18 (7918 pb). Un fragmento de ADN de 1,612 kb que contenía el promotor sintético temprano/tardío (E/L) dirigiendo al gen 89.6-gpl20 se escindió del plásmido pJR-89.6P-18 mediante digestión con HindIII y BamHI, seguida de la modificación con el fragmento Klenow de Ia ADN polimerasa, y se clonó en el vector pLZAWl (previamente digerido con la endonucleasa de restricción AscI, modificado mediante la incubación con el fragmento Klenow, y desfosforilado mediante incubación con la fosfatasa alcalina intestinal de ternera (CIP)), generando el vector plasmídico pLZAWl-89.6P-9 (9131 pb) (Figura 41a). Por otra parte, un fragmento de ADN de 4,230 kb que contenía el gen SFVgpn
(indicado en las Figuras como SlVsyngagpolnef) se escindió del plásmido pCR-Script SFV-syn-gagpolnef mediante digestión con EcoRI y Xhol seguida de la modificación con el fragmento Klenow de la ADN polimerasa, y se subclonó en el vector p JRl 01 (previamente digerido con la endonucleasa de restricción Smal y desfosforilado mediante incubación con la fosfatasa alcalina intestinal de ternera (CIP)), generando el plásmido pJR-SFVgpn-9 (10630 pb). Un fragmento de ADN de 4,3 kb que contenía el promotor sintético temprano/tardío (E/L) dirigiendo al gen SlVgpn se escindió del plásmido pJR-SIVgpn-9 mediante digestión con HindIIII, tratamiento con el fragmento Klenow de la ADN polimerasa y digestión con Notl, y se clonó en el vector pLZAWl- 89.6P-9 (previamente digerido con las endonucleasas de restricción SwaI y Notl, generando el vector plasmídico de transferencia pLZAWl-89.6P-SIVgpn-18 (13399 pb) (Figura 41b).
El plásmido pLZAWl-89.6P-SIVgpn-18 generado dirige la inserción de los genes de interés en el locus TK del genoma de MVA y NYVAC. Después de que los virus recombinantes deseados fueron aislados mediante Ia evaluación de la expresión de la actividad β-galactosidasa, la propagación posterior de los virus recombinantes conduce a la autodelecíón del gen β-gal mediante recombinación homologa entre el brazo izquierdo de TK y la repetición corta del brazo izquierdo de TK que están flanqueando el marcador.
Construcción del virus recombinante MVA-89.6P-SIVgpn Cultivos primarios de fibroblastos de embrión de pollo (CEF) procedentes de huevos SPF (libres de patógenos específicos, por sus siglas en inglés "Specifϊc Pathogen Free") fueron infectados con un virus atenuado MVA en pase 586 (habiendo sido el MVA-F6 del pase anterior, 585, proporcionado por Gerd Sutter) a una multiplicidad de 0,05 ufp/célula, y posteriormente transfectados con 10 μg del vector plasmídico de transferencia pLZAWl-89.6P-SIVgpn-18, usando para ello el reactivo de transfección lipofectamina (Lipofectamine™ 2000, Cat. 18324-012, lote 1198865, suministrada por Invitrogen S. A., El Prat de Llobregat, Barcelona, España) y siguiendo las instrucciones del fabricante. Después de 72 horas post-infección las células fueron recogidas, sonicadas y usadas para la selección de los virus recombinantes. Los virus MVA recombinantes que contenían los genes 89.6P-gpl20/SrVgpn y que coexpresaban de forma transitoria el gen marcador β-Gal (MVA-SHIV (X-GaI+)), fueron seleccionados realizando pases consecutivos de purificación de placas en células CEF teñidas con 5-bromo-4-cloro-3-indolil-β-galactósido (XGaI) (300 μg/ml). Los virus MVA recombinantes que contenían los genes 89.6P-gpl20/SIVgpn y que habían perdido el gen marcador (MVA-SHIV (X-GaI")), fueron seleccionados como focos virales no teñidos en células CEF en presencia de XGaI. En cada paso de purificación las placas aisladas fueron expandidas en células CEF durante 3 días, y el extracto viral crudo obtenido fue usado para el siguiente paso de purificación de placas.
En el primer paso de la selección por cribado se aislaron 3 placas X-GaI+ a las que se denominó MVA-89.6P-SIVgpn-(l a 3). La placa denominada MVA-89.6P- SFVgpn-1, que expresaba de forma eficiente los antígenos 89.6P-gpl20 y SlVgpn, se amplificó y utilizó para el siguiente paso de purificación. En el segundo pase, se aislaron 22 placas X-GaI+, todas las cuales expresaban de forma eficiente ambas proteínas. Se amplificaron tres placas, denominadas MVA-89.6P-SFVgpn-1.4, MVA- 89.6P-SIVgpn-l,6 y MVA-89.6P-SIVgpn-1.18, que se utilizaron para el siguiente paso de purificación. En el tercer pase, se aislaron 20 placas X-GaI+ y 4 placas X-GaI", todas las cuales expresaban de forma eficiente ambos antígenos. Una de las placas X-GaI" (MVA-89.6P-SIVgpn-1.6.8) y una de las placas X-GaI+ (MVA-89.6P-SΪVgpn-1.18.2) se amplificaron y utilizaron en el siguiente paso de purificación; la primera de ellas, MV A-89.6P-SIVgpn- 1.6.8, se utilizó para preparar el stock Pl por infección a partir de una placa pl50 en células CEF). En el cuarto pase se aislaron 6 placas X-GaF y 6 placas X-GaI+. El recombinante denominados MVA-89.6P-SFVgpn- 1.6.8.5 (X-GaI") se utilizó para preparar los stocks P2 por infección a una multiplicidad de 0,01 ufp/célula de cinco placas pl50. Los stocks P3 (generados en células CEF infectadas en 40-100 placas pl50 a una multiplicidad de infección de 0,05 ufp/célula, recogidos transcurridos 3-4 días después de la infección y purificados a través de dos colchones de sacarosa al 45%) se prepararon solamente a partir del MVA-89.6P-SIVgpn-l.6.8.5 (X-GaF) para los estudios de inmunización en simios; las características de los diferentes stocks P3 obtenidos se especifican más adelante en el Ejemplo 38.
Caracterización del MVA-89.6P-SIVgpn
Para confirmar la homogeneidad genética del virus MVA-89.6P-SIVgpn-1.6.8.5 (X-GaF) generado y la integridad de los genes insertados, se amplificaron los stocks P2 (MVA-89.6P-SFVgpn-l.6.8.5) y P3 mediante infección de células CEF a una multiplicidad de infección de 5 ufp/célula, recuperando los extractos celulares a las 24 horas post-infección. Se purificó el ADN del virus y se sometió a análisis mediante PCR empleando para ello oligonucléotidos cebadores que hibridan con las regiones TK flanqueantes del inserto de interés izquierda (oligonucleótido TK-L) o derecha (oligonucleótido TK-R2), con las siguientes secuencias:
TK-L: 5' TGATTAGTTTGATGCGATTC 3' (SEQ ID NO:1) TK-R2: 5' CTGCCGTATCAAGGACA 3' (SEQ ID NO:21) Las posiciones en las que hibridan dichos oligonucleótidos con respecto al inserto presente en MVA-89.6P-SIVgpn, así como los tamaños estimados de los fragmentos generados en las PCR que utilizan como molde el ADN de dicho virus y el ADN correspondiente al virus MVA de tipo silvestre (WT), carente de inserto, aparecen representados en la parte superior de la Figura 42. La parte inferior de la Figura 42, por su parte, muestra una fotografía de un gel correspondiente al análisis de productos de PCR situados entre los brazos izquierdo (TK-L) y derecho (TK-R) del locus TK en los virus MVA-SHFV de los stocks P2 (MVA-89.6P-SIVgpn (P2)) y P3 (MVA-89.6P-SFVgpn (P3)), el virus MVA tipo silvestre (MVA-WT) y el plásmido de transferencia pLZAWl-89.6P-SIVgpn-18. Para su obtención, 100 ng del ADN viral extraído de células CEF infectadas a una multiplicidad de 5 ufp/célula con los virus MVA-WT (calle 3), MVA-89.6P-SIVgpn (P2) (calle 4) o MVA-89.6P-SFVgpn (P3) (calle 5) o 10 ng del plásmido pLZAWl- 89.6P-SFVgpn-18 fueron usados como molde para hacer un análisis por PCR de la secuencia ubicada entre ambos brazos del locus TK empleando como cebadores 100 ng de los oligonucleótidos que hibridan con las secuencias flanqueantes del gen TK, TK-L (SEQ ID NO: 1) y TK-R2 (SEQ ID NO:21) en una mezcla de reacción que contenía 0,3 mM de dNTPs, 2,5 mM de MgCl2 y 2,5 U de la enzima polimerasa Platinum Taq. El programa incluye un ciclo de desnaturalización a 940C durante 5 min, 25 ciclos de desnaturalización a 94°C durante 1 min, hibridación a 600C durante 1 min y extensión a 68°C durante 2 min, y finalmente un ciclo de extensión a 68°C durante 10 min. Los productos de PCR fueron analizados en un gel de agarosa al 0,7%, obteniéndose el resultado que se muestra en la parte inferior de la Fig. 3. En las calles 4 y 5, las correspondientes a los dos stocks de vector MVA-SHIV, se observa una banda situada ligeramente por encima de la banda de 6 Kb del marcador (calle 1), compatible con la presencia del inserto completo, banda que también aparece en la calle correspondiente al control positivo, el plásmido pLZAWl-89.6P-SIVgpn-18, mientras que en la calle correspondiente al virus de tipo silvestre MVA-WT (3) aparece una banda mucho menor, que corresponderían al locus de TK sin inserto.
Adicionalmente, se procedió a secuenciar el ADN del virus MVA-89.6P-SIVgpn del stock P2, utilizando como cebadores los oligonucleótidos TK-L (SEQ ID NO: 1), TK-R2 (SEQ ID NO:21) y E/L (SEQ ID NO:25) obteniéndose Ia secuencia representada por SEQ ID NO:24.
Los elementos que forman parte del inserto presente en el genoma del virus MVA-89.6-SIVgpn se especifican a continuación en la Tabla 9.
Tabla 9.- Posición de los componentes principales del inserto del vector MVA- 89.6P-SIVgpn
Figure imgf000095_0001
Ejemplo 34.- Análisis de la expresión de proteínas del SHIV a partir del MVA-89.6P-SIVgpn 34.1.- Transferencias tipo Westem.-
La expresión de las proteínas 89.6P-gpl20 y SlVgpn por los stocks P2 y P3 del virus MVA-89.6P-SIVgpn fue analizada mediante transferencia tipo Western. Monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula del stock P2 o del stock P3. Los extractos celulares fueron recogidos a las 24 horas post-infección, fraccionados mediante electroforesis en geles desnaturalizantes de poliacrilamida con SDS (SDS-PAGE)3 transferidos a membranas de nitrocelulosa, y sometidos a la reacción frente a un anticuerpo policlonal de conejo anti-gpl20 (generado en el laboratorio de los inventores) que reconoce la proteína gρl20 del SHIV89.6P; y frente a un anticuerpo monoclonal anti-SIV-gag-p27 (cedido por el programa EVA, ARP392) que reconoce la parte correspondiente a la proteína p27 del antígeno Gag del SIV y, por ello, la proteína de fusión SlVgpn. Como controles positivos se utilizaron extractos procedentes de células transfectadas de forma transitoria con el vector plasmídico de transferencia pLZAWl-89.6P-SIVgpn-18.
Como se muestra en la Figura 43, tanto la proteína 89.6-gpl20 (fotografía superior, marcada como "anti-gpl20") como la protema de fusión SFVgpn (fotografía inferior, marcada como "anti-SIVp27") se detectaron en los extractos de células infectadas con virus de los stocks Pl, P2 y P3 del MVA-89.6P-SIVgpn, así como en el extracto de células transfectadas de forma transitoria con el plásmido utilizado como control positivo (calles marcadas como "C+"), indicando la correcta expresión de ambos antígenos por los virus recombinantes derivados de MVA generados.
34.2. Inmuno tinción de placas. -
La expresión de las proteínas 89.6P-gpl20 y SlVgpn por parte del recombinante
MVA-89.6P-SIVgpn se analizó también en células CEF infectadas con una dilución
10~s del stock P3, mediante la mmunotinción de las mismas utilizando bien un anticuerpo policlonal dirigido contra las proteínas propias del vector MVA tipo silvestre
(anti-WR), bien un anticuerpo policlonal anti-gp!20 del clade B (anti-gpl20) o bien el anticuerpo monoclonal anti-SIVgag-p27 proporcionado por el programa EVA
(ARP392). Los resultados, mostrados en la Figura 44, muestran que más del 97% de las placas virales que resultaban teñidas con el anticuerpo anti-WR eran también positivas para los anticuerpos anti-gpl20 (fotografías y barras marcadas como "amigpl20") y anti-SIVgag-p27 (fotografías y barras marcadas como "anti-SIVp27")-
- Ejemplo 35.- Construcción y caracterización del virus recombinante NYVAC-89.6F-SIVgagpoInef Se infectaron con la cepa de tipo silvestre de NYVAC (donada por el grupo
Aventis, en el marco de colaboración del proyecto financiado por el V Programa Marco de la Unión Europea (Ew -opean Vaccine Effort Against HIV, conocido por su acrónimo EuroVac I), a una multiplicidad de infección de 0,025 ufp/célula, células BSC40 (una línea celular derivada de riñon de mono, que carece de potencial miogénico), que luego se transfectaron con 10 μg de ADN del vector plasmídico de transferencia pLZAWl- 89.6P-SIVgpn-18 (cuyas características se describieron en el Ejemplo 33), utilizando como reactivo lipofectamina (Invitrogen, Cat. 18324-012, lote 1198865) siguiendo las instrucciones del fabricante. 72 horas después de la infección se recogieron las células, se sonicaron y se utilizaron para realizar un cribado en busca de virus recombinantes.
Los virus NYVAC recombinantes que contenían los genes 89.6P-gρl20/SIVgpn y que coexpresaban de forma transitoria el gen marcador β-Gal (NYVAC-89.6P- SIVgpn (X-GaI+)), fueron seleccionados realizando pases consecutivos de purificación de placas en células BSC40 teñidas con 5-bromo-4-cloro-3-indolil-β-galactósido (XGaI) (300 μg/ml). Los virus NYVAC recombinantes que contenían los genes 89.6P- gpl20/SIVgρn y que habían perdido el gen indicador β-Gal (NYVAC-89.6P-SIVgpn (X-GaF)), fueron seleccionados como focos virales no teñidos en células BSC40 en presencia de XGaI. En cada paso de purificación las placas aisladas fueron expandidas en células BSC40 durante 2 días, y el extracto viral crudo obtenido fue usado para el siguiente paso de purificación de placas.
En el primer paso de la selección por cribado se aislaron 3 placas X-GaI+ a las que se denominó NYVAC-89.6P-SIVgpn-(l a 3). Las tres placas, que expresaban eficientemente los antígenos 89.6P-gpl20 y SlVgpn, se amplificaron y utilizaron para el siguiente paso de purificación de placas. En el segundo pase, se aislaron 18 placas X- GaI+; 8/18 expresaban ambas proteínas. Se amplificó Ia placa denominada NYVAC- 89.6P-SIVgpn-2.1, que se utilizó para el siguiente paso de purificación. En el tercer pase, se aislaron 12 placas X-GaI+, todas las cuales expresaban de forma eficiente la proteína 89.6P-gpl20 y 11/12 expresaban la proteína SlVgpn. Las placas denominadas NYVAC-89.6P-SIVgpn-2.1.1 y NYVAC-89.6P-SIVgpn-2.1.2 se amplificaron y utilizaron en el siguiente paso de purificación. En el cuarto pase se aislaron 12 placas X- GaI" y 12 placas X-GaI+; todas ellas expresaban de forma eficiente la proteína 89.6P- gpl20 y 22 de 24 expresaban la proteína SlVgpn. Los recombinantes denominados NYVAC-89.6P-SIVgpn-2.1.1.1 (X-GaI") y NYVAC-89.6P-SIVgpn-2.1.2.3 (X-GaI") se amplificaron y utilizaron en el siguiente paso de purificación. En el quinto pase se aislaron 12 placas X-GaI"; todas ellas expresaban de forma eficiente ambos antígenos. El recombinante denominado NYVAC-89.6P-SIVgpn-2.1.1.1.4 (X-GaI") se amplificó en células CEF (una placa de pl50 para generar el stock Pl) y se utilizó para preparar los stocks P2 (por infección de cinco placas pl50 a 0,01 ufp/célula). Los stocks P3 (crecidos en 40-100 placas pl50 de células CEF infectadas a una multiplicidad de infección de 0,05, recogidos transcurridos 3-4 días después de la infección y purificados a través de dos colchones de sacarosa al 45%) se prepararon para los estudios de inmunización en simios; las características de cada uno de los stocks P3 generados se mencionan en el Ejemplo 37.
Caracterización del NYVAC-89.6P-SIVgpn
Para confirmar la homogeneidad genética y pureza del virus NYVAC-89.6P- SFVgpn generado y la integridad de los genes insertados, se amplificó el stock P3 mediante infección de células CEF a una multiplicidad de infección de 5 ufp/célula, recuperando los extractos celulares a las 24 horas post-infección. Se purificó el ADN del virus y se sometió a análisis mediante PCR empleando para ello oligonucléotidos cebadores que hibridan con las regiones TK flanqueantes del inserto de interés izquierda (TK-L) (SEQ ID NO:1) y derecha (TK-R2) (SEQ ID NO:21). de forma análoga a la descrita en el Ejemplo 33.
Las posiciones en las que hibridan dichos oligonucléotidos con respecto al inserto presente en NYVAC-SHIV, así como los tamaños estimados de los fragmentos generados en las PCR que utilizan como molde el ADN de dicho virus y el ADN correspondiente al virus NYVAC de tipo silvestre (WT) carente de inserto, aparecen representados en la parte superior de la Figura 45. La parte inferior de dicha Figura 45 muestra la fotografía de los geles obtenidos al someter a electro foresis los productos de las PCR realizadas con la pareja de cebadores TK-L/TK-R2 para efectuar el análisis del inserto incluido en el virus NYVAC-SHIV presente en el stock P3 (NYVAC-89.6P- SlVgpn (P3)) (calle3), que se comparó con los productos de PCR generados a partir del control positivo MVA-SHIV (MVA-89.6P-SIVgpn (P3)) (calle 4) y con los vectores tipo silvestre, sin insertos, como controles positivos, es decir, NYVAC-WT (calle 2) y MVA-WT (calle 5). Para ello, 100 ng de ADN viral extraído de células de embrión de pollo (CEF) infectadas a una multiplicidad de 5 ufp/célula con los virus NYVAC-WT, NYVAC-89.6P-SIVgpn (P3) (MVA-SHIV). MVA-89.6P-SIVgpn (P3) (MVA-SHIV) y MVA-WT fueron usados como molde para hacer una amplificación mediante PCR del fragmento de secuencia comprendido entre los brazos TK-L y TK-R en cada uno de ellos. Como se observa en las fotografía mostradas en la parte inferior de la Figura 45, la muestra correspondiente al control positivo, el virus recombinante MVA-89.6P- STVgpn (P3) (calle 4), da lugar a una banda de igual tamaño que las correspondientes a las muestras del virus recombinante cuya descripción se describe en este ejemplo NYVAC-SHlV (NYVAC-89.6P-SIVgpn (P3), calle 3), mientras que en la calle 2, correspondientes al virus NYVAC que carece de inserto (NYVAC-WT), se observa una banda de aproximadamente 400 pb compatible con la ausencia de inserto en el locus de TK propio de NYVAC, más corto que el del MVA-WT que, por su parte, da lugar a Ia banda de casi 900 pb que habría de esperarse según las características del locus de TK en este último virus.
Ejemplo 36 .- Análisis de la expresión de proteínas del SHIV a partir del NYVAC-89.6P-SIVgpn
36.1.- Transferencias tipo Western,-
La expresión de las proteínas 89.6P-gpl20 y SlVgpn por el virus recombinante NYVAC-89.6P-SIVgpn fue analizada mediante transferencia tipo Western. Monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula de los stocks Pl, P2 o P3. Los extractos celulares fueron recogidos a las 24 horas postinfección, fraccionados mediante electroforesis en geles desnaturalizantes de poliacrilamida con SDS (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a la reacción frente a un anticuerpo policlonal de conejo anti-gpl20 (generado en el laboratorio de los inventores inmunizando conejos con la proteína gpl20 del aislado HIB), que es capaz de reconocer la proteína gpl20 del SHIV89.6P; y frente a un anticuerpo monoclonal anti-SIV-gag-p27 (cedido por el programa EVA, ARP392) que reconoce la proteína gag del SIV y, por ello, la proteína de fusión SlVgpn. Como controles positivos se utilizaron extractos procedentes de células infectadas con el virus MVA-SHIV (MVA.89.6P-SIVgpn(P3)). Como se muestra en la Figura 46, tanto la proteína 89.6-gpl20 (fotografía de superior, marcada como "anti-gpl20") como la proteína de fusión SlVgpn (fotografía inferior, marcada como "anti-SIVp27") se detectaron en los extractos de células infectadas con virus de los stocks Pl, P2 y P3 del NYVAC-89.6P-SIVgpn (NYVAC- SHIV), así como en el extracto de células infectadas con el control positivo MVA- SHIV, indicando la correcta expresión de ambos antígenos por los virus recombinantes derivados de NYVAC generados. 36.2. Inmunotinción de placas,-
La expresión de las proteínas 89.6P-gpl20 y SlVgpn por parte del recombinante NYVAC-89.6P-SIVgpn se analizó también en células DF-I infectadas con una dilución 10"5 del stock P3 del NYVAC-SHIV (NYVAC-89.6P-SIVgpn (P3)), mediante la inmunotinción de las mismas utilizando bien un anticuerpo policlonal dirigido contra las proteínas propias del vector MVA tipo silvestre (anti-WR), bien un anticuerpo policlonal anti-gpl20 del clade B (anti-gpl20) o bien el anticuerpo monoclonal anti- SIVgag-p27 proporcionado por el programa EVA (ARP392). Los resultados, mostrados en la Figura 47, muestran que más del 98% de las placas virales que resultaban teñidas con el anticuerpo anti-WR eran también positivas para los anticuerpos anti-gpl20 (fotografías y barras marcadas como "antigpl20") y anti-SIVgag-p27 (fotografías y barras marcadas como "anti-SIVp27").
- Ejemplo 37.- Control de los stocks virales enviados para los estadios de inmunización de macacos
De los stocks de virus recombinantes MVA-SHIV y NYVAC-SHIV obtenidos, se seleccionaron para ser utilizados en estudios de inmunización de macacos los que se muestran a continuación en la Tabla 10:
Tabla 10.- Stocks de virus recombinantes seleccionados para estudios de inmunización en macacos
Figure imgf000100_0001
La expresión de las proteínas 89.6P-gpl20 y SlVgpn por los diferentes stocks de virus recombinantes MVA-89.6P-SIVgpn y NYVAC-89.6P-SIVgpn fue analizada mediante transferencia tipo Western. Monocapas de células CEF crecidas en placas de 12 pocilios fueron infectadas con 5 ufp/célula de uno de los stocks mencionados en la Tabla 10. Los extractos celulares fueron recogidos a las 24 horas post-infección, fraccionados mediante electroforesis en geles desnaturalizantes de poliacrilamida con SDS (SDS-PAGE), transferidos a membranas de nitrocelulosa, y sometidos a la reacción frente a un anticuerpo policlonal de conejo anti-gpl20 (generado en el laboratorio de los inventores inmunizando conejos con la proteína gρl20 del aislado IHB), que es capaz de reconocer la proteína gpl20 del SHIV89.6P; y frente a un anticuerpo monoclonal anti-SIV-gag-p27 (cedido por el programa EVA, ARP392) que reconoce la proteína gag del SIV y, por ello, la proteína de fusión SlVgpn. Como control negativo se utilizó un extracto de células en las que se había simulado la infección, es decir, que habían sido sometidas a los mismos pasos que las células infectadas, pero que no habían recibido virus en la solución con las que deberían haber sido infectadas (extracto M). La Figura 48 muestra los resultados de las inmunotinciones con cada uno de los anticuerpos, correspondiendo la parte izquierda a la tinción con el anticuerpo anti-gpl20 y la derecha a la tinción con el anticuerpo anti- SIV-gag-p27. Comprobada la expresión eficiente de ambas proteínas en los extractos procedentes de cada uno de los stocks, se enviaron alícuotas de los mismos a los Drs. Jonathan Heeney y Petra Mooij, del Biomedical Primate Research Centre de Rijswijk, Holanda, donde se llevaron a cabo los ensayos con macacos que se describen en los siguientes Ejemplos.
Estudio preclínico de la eficacia como vacuna
Protocolo de inmunización y desafío posterior
Los ensayos que se describen a continuación en los Ejemplos 38 y 39 se llevaron a cabo para evaluar la inmunogenicidad y la eficacia de los vectores cuya construcción se describe en los Ejemplos 33 y 35 para proteger a simios inmunizados con ellos frente al desarrollo de la enfermedad del síndrome de la inmunodeficiencia adquirida, con el fin de valorar a partir de los resultados obtenidos el grado de eficacia esperable de los vectores descritos en la patente principal al inmunizar con ellos seres humanos. Dichos ensayos se llevaron a cabo en el Biomedical Primate Research Centre de Rijswisjk (Países Bajos). Para su realización, se utilizaron macacos Rhesus {Macaca mulatta) adultos jóvenes, que habían demostrado ser negativos a la infección por SIV, retro virus de simio y virus de leucemia de simio. Las condiciones de estabulación y manejo de los animales siguieron las normas éticas establecidas por el mencionado centro de experimentación.
El estudio no sólo pretendió establecer correlaciones con la inmunogenicidad y eficacia que serían esperables al utilizar los vectores de la patente principal como vacunas en seres humanos, sino que también intentó obtener datos para compararlos con los resultados obtenidos al utilizar un vector, también derivado de poxvirus, que contiene el mismo inserto de secuencias codificantes de antígenos del SHIV89.6P que el vector derivado de MVA cuya construcción y caracterización se ha descrito en los Ejemplos 33 y 34, MVA-89.6P-SIVgpn, al que también se hará referencia en los Ejemplos siguientes mediante la denominación general abreviada MVA-SHIV. El vector alternativo utilizado cuya construcción está también descrita en la presente memoria es el vector derivado de NYVAC, denominado NYVAC-89.6P-SIVgpn, al que también se hará referencia en los Ejemplos siguientes mediante la denominación general abreviada NYVAC-SHIV. Tanto el MVA-SHIV como el NYVAC-SHIV, que contienen el mismo inserto, fueron administrados en dosis de refuerzo o potenciación de la respuesta inmune (a las que se alude con frecuencia mediante el término inglés boosf) con posterioridad a la administración de dosis de iniciación o desencadenamiento de la respuesta inmune (priming) en las que los animales recibieron ADN desnudo que contenía un inserto idéntico al presente en el ADN de los vectores MVA-SHIV y NYVAC-SHIV, el vector DNA-SHIV, que consta de dos plásmidos de expresión, pcDNA-gpl20.89.6p, que expresa la proteína gpl20 del SHIV89.6P, y pcDNA-SIVgag- pol-nef, que expresa la proteína SlVgpn generada a partir de secuencias correspondientes al virus SH3V89.6P, plásmidos que fueron generados por el Dr. RaIf Wagner, Regensburg, Alemania, y cedidos por el mismo para la realización del estudio. Los detalles sobre el estudio y los resultados obtenidos se describen con mayor detalle a continuación en los Ejemplos 38 y 39. Ejemplo 38.- Inmunización de los macacos y valoración de la inmunidad generada
Los 21 macacos utilizados en el estudio fueron divididos en tres grupos (grupos 1, 2, y 3), cada uno compuesto de 7 individuos. Cada uno de los grupos fue sometido a un protocolo de inmunización diferente, según se muestra a continuación en la Tabla 11 :
Tabla 11.- Grupos de inmunización y tratamiento recibido
Figure imgf000103_0001
El grupo 3, de control, recibió en las dos primeras dosis ADN desnudo que carecía del inserto con las secuencias propias del SHIV89.6P (DNA-emp), mientras que en las dos últimas recibió el vector NYVAC-WT, que carece igualmente del inserto.
Para la realización del estudio, el vector NYVAC-WT fue crecido en células CEF y purificado en dos colchones de sacarosa de forma análoga a la utilizada con los recombinantes MVA-SHIV y NYVAC-SHIV; del stock generado se enviaron al centro de primates de Holanda, el día 20 de abril de 2004, un total de 8x109 ufp, con un título de lxlθ9ufρ/ml.
Las inmunizaciones con ADN desnudo se produjeron con un total de 4 mg de plásmido, utilizando en el caso del vector DNA-SHIV 2 mg de cada uno de los plásmidos que lo componen, pcDNA-gpl2089.6p y pcDNA-SIV-gag-pol-nef, y empleando 4 mg del vector DNA-emp para los controles. En cada una de las dos inoculaciones de ADN desnudo que recibió cada macaco se suministraron 2 mg de plásmido, disueltos en 1,5 mi de PBS, que se suministraron por vía intramuscular en la parte superior de cada pata.
Las inmunizaciones con los vectores NYVAC-SHIV, MVA-SHIV y NYVAC- WT se llevaron a cabo inoculando en la parte superior del brazo derecho, por vía intramuscular, 0,5 mi que contenían 5x108 ufp, de manera que en cada dosis se inocularon 5xlO8 ufp/macaco. Para ello se utilizaron los siguientes stocks:
- en el caso del MVA-SHIV, P3 (20/06/03), con un título de 1,6 x 109 ufp/ml,; - en el caso del NYVAC-SHIV, P3.1 (29/01/04), con un título de l,2xlθ9 ufp/ml,;
- en el caso del NYVAC-WT, el stock con un título de 1x10 ufp/ml mencionado anteriormente. En todos los casos, transcurridas 32 semanas después de recibir la primera dosis de inmunización, los macacos fueron sometidos a lo que se conoce como un "desafío" o "reto" viral (traducción del término inglés "challenge "), es decir, se inoculó a los animales por vía intravenosa una dosis de 50-100 MID50 de SHIV89.6P, dilución 1 :1000 del stock de Letvin (entendiendo como MID50 o "Monkey Infectious Dose" la cantidad de virus que es capaz de producir infección en el 50% de los animales) y se observó la evolución de cada animal.
2 semanas antes de comenzar con el protocolo de inmunización, en distintos momentos a lo largo del mismo y con posterioridad al desafío se extrajeron muestras de sangre periférica, mediante punción intravenosa, de cada uno de los animales. De la sangre heparinizada se obtuvieron las células PBMC {"peripheral blood mononuclear cells ", células mononucleares de sangre periférica), que se utilizaron para los ensayos de respuesta celular: En la Figura 49 se muestra un esquema del transcurso del estudio, en el que están marcados los momentos de las tomas de muestras (CMI, abreviatura de "ce// mediated immunity" o inmunidad mediada por células), los momentos en los que se administraron las distintas dosis de inmunización (ADN y vectores derivados de poxvirus: NYVAC ó MVA) y el momento en el que se procedió al desafío con el virus SHIV89.6P.
Con el fin de valorar la inmunidad generada, se realizaron ensayos para detectar por la técnica de ELISPOT la respuesta de IFN-γ, IL-2 e IL-4 en los animales de cada uno de los grupos y su evolución en el tiempo, según se describe a continuación.
La respuesta de citoquinas se evaluó en las fracciones de células PBMC extraídas de cada uno de los macacos. Para ello, muestras de dichas células de cada uno de los macacos se incubaron durante 48 horas con grupos de péptidos. Para el ELISPOT de gpl20 se utilizó un grupo de 48 péptidos, concretamente los péptidos 4702 a 4749 del N° Cat. 4827 del NIH AIDS Research and Reference Reagents Program, cada uno de los cuales consta de 20 aminoácidos de los que 10 aminoácidos son solapantes con el siguiente péptido, con los cuales queda representada la secuencia de la proteína 89.6P- gpl20. Para el ELISPOT de SlVgpn, los péptidos fueron sintetizados por SynPep Dublín (California, Estados Unidos) y son grupos de 15 aminoácidos con 11 aminoácidos solapantes, que se pueden agrupar en los grupos (pools): Gag-pool 11, 1- 54; Gag-pool 12, 55-108; Pol-pool 11, 109-168; PoI pool 12, 169-173 + 236-290; PoI pool 13, 291-349; Nef pool 11, 174-235; la respuesta de los 7 grupos de péptidos fue analizada utilizando 2 microgramos/ml de cada péptido en el ensayo. Tras la incubación, en cada una de las muestras se midieron las SPF (Spot forming cells), que son las células PBMC que expresan una determinada citoquina, después de su estimulación con péptidos específicos incluidos en las proteínas 89.6P-gpl20 y SlVgpn. Esto es una medida de las células que fueron estimuladas específicamente por la inoculación de los vectores que expresaban dichas proteínas. Se realizaron medidas por ELISPOT para detectar las SPF que expresaban IFN-γ, IL-2 ó IL-4 (29).
En el caso de las SPF que expresaban IFN-γ, los resultados obtenidos con cada uno de los animales, expresados como SPF totales (las estimuladas por 89.6P-gpl20 y la estimuladas por SlVgpn) detectadas por cada 10 PBMC analizadas, se representan en la Figura 50, en la que se ha utilizado una escala logarítmica en el eje de ordenadas. Los números que aparecen en el eje de abscisas indican el momento en el tiempo en el que fueron tomadas cada una de las muestras. Para cada valor de tiempo, aparecen tres grupos de valores, que presentan el comportamiento de cada uno de los 7 animales utilizados en el estudio con un procedimiento de inmunización concreto: la primera vertical de puntos corresponde a muestras tomadas de macacos del grupo 1 (DNA- SHIV/MV A-SHIV); la segunda vertical de puntos corresponde a muestras tomadas de macacos del grupo 2 (DNA-SHIV/NYV AC-SHIV); la tercera vertical de puntos corresponde a muestras tomadas de ratones del grupo 3 (DNA-emp/NYVAC-WT). Cada punto representa el valor obtenido para un macaco concreto, mientras los rectángulos situados en cada una de las verticales indican el valor medio correspondiente a todos los macacos de ese grupo para las muestras tomadas en un mismo momento en el tiempo. La presencia de un número de puntos inferior a 7 en algunas verticales indica que el punto situado sobre el eje de abscisas representa a más de un macaco, en cada uno de los cuales el valor de las SFC detectadas por cada 106 PBMC analizadas no fue superior a 1. La línea punteada indica el valor por debajo del cual los valores se consideran insignificantes (20 SFC). Las flechas blancas indican la inoculación de un vector de vacunación; la flecha negra indica el momento en el que se produjo el desafío con el SHIV89.6P. Se aprecia como antes del desafío, los puntos correspondientes a los dos primeros grupos, y en especial el valor medio de los mismos, son superiores a los obtenidos en el grupo control, inmunizado con DNA/NYVAC sin insertos. Una vez producida la infección con el patógeno SHIV89.6P, los valores quedan bastante igualados en todos lo grupos al producirse inmunidad frente al SHIV.
Para simplificar la interpretación de los datos, en la Figura 51 se representan los valores medios del número total de células que expresan IFN-γ obtenidos para cada uno de los grupos, de nuevo en escala logarítmica, en función del tiempo en el que se tomaron las muestras, partiendo en este caso del momento en el que los macacos recibieron la primera dosis de ADN desnudo. Las Figuras 52 y 53, por su parte, representan los valores medios obtenidos para cada uno de los grupos, igualmente en escala logarítmica, en función del tiempo, de SFC que expresaban IL-4 (Figura 53) o IL-2 (Figura 52). Se observa que, tanto en el grupo 1 (el que recibió el vector MVA-SHIV, el
MVA-89.6P-SIVgpn, en las dosis de potenciación de la respuesta) (datos indicados mediante cuadrados con un vértice apuntando hacia arriba, Φ) como en el grupo 2 (el que recibió el vector NYVAC-SHIV, el NYVAC-89.6P-SrVgpn, en las dosis de potenciación de la respuesta) (datos mediante cuadrados cuyos vértices conforman dos líneas paralelas, * ), la magnitud de la respuesta inmune es semejante y claramente superior a la que se detecta en el grupo 3, el de los macacos que recibieron vectores que no expresaban antígenos del SHIV (cuyos datos se indican mediante triángulos, - L ). En este último grupo, se aprecia como la respuesta inmune aumenta claramente después del desafío con el virus SHFV89.6P, debido a la replicación del virus, lo que hace que, a partir de ese momento, los valores sean semejantes en los tres grupos.
Estos datos indican que la media total de la respuesta inmune (producción de IFN-γ) resulta claramente potenciada al serles administrados a los macacos los vectores MVA-89.6P-SIVgpn y NYVAC-89.6P-SIVgpn. La respuesta inmune inducida por estos dos vectores es semejante. Ambos inducen una buena respuesta celular frente a los antígenos 89.6P-gpl20 y SlVgpn. Ejemplo 39.- Eficacia de la respuesta inmune generada para proteger frente al desarrollo de! virus SHIV
Para valorar la eficacia de protección frente al desarrollo de una infección generada por el virus SHIV89.6 en relación a la respuesta inmune evaluada en los ensayos descritos en el Ejemplo 38, se procedió a extraer datos sobre dos magnitudes significativas: el número de partículas virales detectables en el plasma de las muestras sanguíneas que habían sido extraídas de los macacos una vez que se les habían inoculado el virus patógeno SHIV89.6P, así como el porcentaje que las células CD4+ y CD8+ suponían respecto al total de células mononucleares de sangre periférica (PBMC).
39.1.- ARN viral detectable en plasma
Los valores referentes al número de partículas virales detectables en plasma constituyen un buen valor indicativo de la capacidad de la respuesta inmune generada para controlar la posible infección producida por el virus SHIV89.6P inoculado. Valores por encima de 100.000 copias/mi se consideran que conducen al desarrollo en los macacos de SIDA y a la muerte del animal, mientras que valores próximos a 10.000 copias/ml o inferiores mantienen al animal sin aparentes efectos patógenos. La detección de una concentración de copias virales inferior a ese valor puede considerarse indicativo de que la respuesta inmune generada es capaz de conferir protección en los modelos animales utilizados.
Por ello, se procedió a detectar el ARN del virus SHIV89.6P presente en el plasma de las muestras sanguíneas extraídas de los macacos justo antes (tiempo 0) y con posterioridad a la inoculación de dicho virus. Para ello se utilizó la técnica cuantitativa en tiempo real QC RNA-PCR, que mide el número de copias virales por mililitro de plasma y es capaz de detectar 50 copias por mi. Los valores obtenidos para cada uno de los macacos se muestran en la Figura 54, en la que aparecen tres gráficos. El gráfico superior corresponde al grupo 3, el de los macacos control que habían sido inmunizados con ADN y NYVAC que carecían de inserto desde el que poder expresar antígenos del SHIV. El gráfico de la parte inferior izquierda corresponde al grupo 1, inmunizado con DNA-SHIV/MV A-SHIV, mientras el gráfico de la parte inferior derecha corresponde al grupo 2, inmunizado con DNA-SHIV/NYVAC-SHIV. En dicha Figura puede apreciarse como, de los 7 macacos que recibieron la inmunización control, 32 semanas después del desafío, 6 presentan valores continuados de viremia que oscilan entre 10.000-100.000 copias/mi, mientras que uno de los animales no respondió a la infección. De los animales vacunados, todos los animales del grupo DNA-SHIV/MVA-
SHIV redujeron los niveles de viremia con respecto al grupo control. 3 eliminaron completamente el virus antes de las 20 semanas, concretamente transcurridas 7, 14 ó 18 semanas. En cuanto al resto, al cabo de las 32 semanas, tres macacos redujeron la viremia por debajo de 1000 copias/ml y uno mantenía alrededor de 2000 copias/ml. En cuanto al grupo vacunado con DNA-SHIV/NYVAC-SHIV, 4 animales eliminaron completamente el virus antes de las 20 semanas, concretamente transcurridas 4, 14 ó 17 semanas. En cuanto al resto, al cabo de las 32 semanas, dos macacos mantenían niveles por debajo de 1000 copias/ml y uno de ellos por debajo de 10000 copias/ml. Estos resultados demuestran claramente que los dos vectores derivados de poxvirus utilizados, MVA-SHIV (MVA-89.6P-SIVgpn) y NYVAC-SHIV (MVA- 89.6P-SIVgpn), inducen un alto grado de protección en macacos frente al virus patógeno SHIV89.6P al ser utilizados en protocolos de tipo primelboost (desencadenamiento/potenciación de la respuesta) al ser utilizados en las dosis de refuerzo o potenciación de la respuesta inmune generada.
39.2.- Porcentaje de células CD4+ y CD8+.-
Los valores referentes a los porcentajes de células T de sangre periférica CD4+ y CD8+ detectables son también datos significativos, pues las células CD4+ son utilizadas tanto por el VIH como por el SIV como células diana para la infección. La reducción en el número de estas células por debajo de 200 células por mi se considera un síntoma de la enfermedad, el SIDA. La proporción de células T CD4+ y CD8+ es por tanto un buen indicador del estado de la infección.
Por ello, se procedió a su detección en la fracción de células PBMC de las muestras sanguíneas extraídas a los macacos 12 semanas antes de que se produjera el desafío con el SHIV89.6P, justo antes de inocularlo (tiempo 0) y con posterioridad a la inoculación de dicho virus. Para llevar a cabo los ensayos, se utilizaron anticuerpos específicos para cada una de las poblaciones, determinándose por FACS la proporción de células CD4+ y CD8+ presentes. Los resultados se muestran en la Figura 55.
En la parte superior de dicha Figura, la correspondiente al grupo inmunizado con DNA-SHIV/MVA-SHIV, se observa que 6 de los macacos mantenían niveles normales de células CD4+, similares a los de células CD8+, y sólo en uno de ellos dichos niveles se redujeron por debajo de 100. En la parte intermedia de la Figura, la correspondiente al grupo inmunizado con DNA-SHIV/NYV AC-SHIV, se obtuvieron resultados similares: 6 animales mantenían niveles normales de células CD4+ y sólo en uno dichos niveles se redujeron por debajo de 100. En el grupo control, en cambio, tal como se observa en la parte inferior de la Figura 55, en 5 de los macacos los niveles de células CD4+ se redujeron por debajo de 100, habiendo sido necesario sacrificar uno de los otros dos macacos (D7 98928, junto a cuyo nombre figura la abreviatura "euth") debido al avanzado estado de la enfermedad. Uno de los macacos control, sin embargo, se mantuvo protegido.
39.3.- Porcentaje de supervivencia de los macacos infectados. - Adicionalmente, se realizó un cálculo del porcentaje de supervivencia de los macacos en cada uno de los tres grupos, computando el número de macacos que permanecían vivos tras la inoculación del virus SHIV89.6P. En la Figura 56 se representan los datos obtenidos transcurridos los intervalos de tiempo desde la infección, en semanas, que se representan en el eje abscisas. En dicha Figura puede observarse como, transcurridas más de 50 semanas desde la infección con el SHIV89.6P, tanto los macacos del grupo inmunizado con DNA-SHIV/MVA-SHIV (datos indicados mediante cuadrados con un vértice apuntando hacia arriba, 4^) como los del grupo inmunizado con DNA-SHIV/NYV AC-SHI V (datos indicados mediante cuadrados cuyos vértices conforman dos líneas paralelas, -»), la supervivencia de los macacos era del 100%, mientras que en el grupo control (datos indicados mediante triángulos, ) a las 27 semanas desde la inoculación del virus SHFV89.6P comienza a observarse un descenso de los macacos vivos, siendo su porcentaje de supervivencia inferior al 40% transcurridas más de 50 semanas desde la inoculación de dicho virus. Tomando estos datos en conjunto, puede concluirse que tanto el recombinante generado a partir de MVA, MVA-89.6P-SIVgpn, como el generado a partir de
NYVAC, NYVAC-89.6P-SIVgpn, que tienen la misma organización genética en sus insertos y son capaces de expresar simultáneamente los antígenos 89.6P-gpl20 y SlVgpn, han demostrado en el modelo de primates no humanos, los macacos Rhesus, que son unos excelentes vectores para ser utilizados para la vacunación contra el SIDA de simio. Estos resultados refuerzan los obtenidos en los ensayos descritos en los
Ejemplos de la patente principal y suponen un apoyo respecto a la posible utilidad de estos vectores en la vacunación frente al SIDA humano.
REFERENCIAS BIBLIOGRÁFICAS
1. Antonie, G., F., Scheiñinger, F. Dorner, y F. G. Falkner. 1998. The complete genomic sequence of the modified vaccinia Ankara strain: comparision with other orthopoxviruses. Virology 244:365-396.
2. Meyer, H., G. Sutter, and A. Mayr. 1991. Mapping of deletions in the genome of highly attenuated vaccinia virus MVA and their influence on vinal ence. J. Gen. Virol. 72:1031-1038.
3. Blanchard, T. J., Alcamí, P. Andrea, and G. L. Smith. 1998. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implication for use as a human vaccine. J. Gen. Virol. 79:1159-1167.
4. Altenburger, W., C-P. Sütter, and J. Altenburger. 1989. Partial deletion of the human host range inthe attenuated vaccinia virus MV A. Arch. Viro 1. 105: 15-27. 5. Wyatt, L. S., M. W. Carroll, C-P. Czerny, M. Merchlinsky, J. R. Sisler, and B.
Moss. 1998. Marker rescue of the host range restríctions defects of modified vaccinia virus Ankara. Virology 251:334-342.
6. Carroll, M. W. and B. Moss. 1997. Host range and cytopathogenicity of the highly attenuated MV A strain of vaccinia virus: propagation and generation of recombinant virases in a non human mammalian cell line. Virology 238: 198-211.
7. Drexler, L, K. Heller, B. Wahren, V. Erfle and G. Sütter. 1998. Highly attenuated modified vaccinia virus Ankara replicates in baby hámster kidney cells, a potential host for virus propagation, but not in various human transformed and primary. J. Gen. Virol. 79:347-52. 8. Sancho, M. C, S. Schleich, G. Griffiths, and J. Krijnse-Locker. 2002. The block in assembly of modified vaccinia virus Ankara in HeLa cells reveáis new insights into vaccinia virus morphogenesis. J. Virol. 76: 8318-8334.
9. Sütter, G., and B. Moss. 1992. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Nati. Acad. Sci. USA. 89:10847-10851. 10. Carroll, M. W., W. W. Overwijk, R. S. Chamberlain, S. A. Rosenberg, B.
Moss, and N. P. Restifo. 1997. Highly attenuated modified vaccinia virus Ankara (MV A) as an effective recombinant vector: a murine tumor model. Vaccine 15:387-394.
11. Ramírez, J. C, M. M. Gherardi, and M. Esteban. 2000. Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T -cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol. 74:923-933.
12. Hirsch, V. M., T. R. Fuerst, G. Sutter, M. W. Carrol, L. C. Yang, S. Goldstein, M. Piatak, Jr., W. R. Elkins, W. G. Alvord, D. C. Montefiori, B. Moss, and J. D. Lifston. 1996. Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SΙV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modifϊed vaccinia virus Ankara. J. Virol. 70:3741-3552.
13. Mahnel, H. and A. Mayr. 2002. Experíences with immunization against orthopox virus es of humans and animáis using vaccine strain MV A. Berl. Muench. Tierazetl. Wochnschr.l07:253-256.
14. Mayr, A., H. Stickl, H. K. Muller, K. Danner, and H. Singer. 1978. The smallpox vaccination strain MV A: marker, genetic structure, experience gained with parenteral vaccination and behaviour in organísm with a debilitated defense mechanism. Zentbl. Bakteriol. B. 167:375-390. 15. Schneider, J., S. C. Gilbert, T. J. Blanchard, T. Hanke, K. J. Robson, C. M.
Hannan, M. Becker, R. Sinden, g. L. Smith and A. V.S. HiIl. 1998. Enhanced immunogenicity for CD8+ T cell índuction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4:397- 402. 16. Sutter, G., L. S. Wyatt, P. L. Foley, J. R. Benninnk, and B. Moss. 1994. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective irnraunity in mice to influenza virus. Vaccine 12:1032-1040.
17. Sutter, G. 2003. Vaccinia vectors as candidate vaccines: The development of Modified Vaccinia Virus Ankara for antigen delivery. Current Targets-Infectious
Disorders 3, 263-271.
18. Didierlaurent A., Ramírez JC, Gherardi Mi, Zimmerli SC, Graf M, Orbea HA, Pantaleo G, Wagner R, Esteban M, Kraehenbuhl JP, Sirard JC. 2004. Attenuated poxviruses expressing a synthetic HIV protein stimulate HLA-A2-restricted cytotoxic T-cell responses. Vaccine 22:3395-3403.
19. Chakrabarti, S , Sisler, R. J., Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. 1997. BioTechniques 23, 1094-1097. 20. Guerra, S., L. A. López-Fernanández, A. Pascual-Montano, M. Muñoz, K. Harshman y M. Esteban. Cellular gene expression survey of vaccinia virus infection of human HeLa cells. 2003. J. Virol. 77:6493-6506.
21. Quackenbush, J. Microarray data normalization and transformation. 2002. Nat. Genet. 32:496-501.
22. Kohonen, T. Self-organization maps, 2a edición. 1997. Springer-Verlag, Heidelberg, Alemania.
23. Jones, J.O. y A.M. Arvin. Microarray analysis of host cell gene transcription in response to Varicella-Zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. 2003. J. Virol. 77:1268-1280.
24. Eisen, M. B., P.T. Spellman, P.O. Brown, y D. Botstein. Cluster analysis and display of genome-wide expression patterns. 1998. Proc. Nati. Acad. Sci. USA 95:14863-14868.
25. Li, J., Lord, C. L, Haseítine, W., Letvin, N.L., Sodroski, J. Infection of cynomolgus monkeys with a chimeric HIV-I /SI Vmac virus that expresses the HIV-I envelope glycoproteins. 1992. J. Acuir. Immune Defϊc. Syndr 5:639-646.
26. Reimann, K. A., J. T. Li, G. Voss, C. Lekutis, K. Tenner-Racz, P. Racz, W. Lin, D. C. Montefiori, D. E. Lee-Parritz, Y. Lu, et al. An env gene derived from a primary human immunodeficiency virus type 1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys. 1996. J. Virol. 70:3198.
27. Reimann, K. A., J. T. Li, R. Veazey, M. Halloran, I. W. Park, G. B. Karlsson, J. Sodroski, N. L. Letvin. A chimeric simian/human immunodefϊciency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS- like disease añer in vivo passage in rhesus monkeys. 1996. J. Virol. 70:6922.
28. Guerra, S., López-Fernández, L.A., Pascual-Montano, A., Nájera, J.L., Zavallos, A., Esteban, M. Host response to the attenuated poxvirus vector NYVAC: upregulation of apoptotic genes and NF-kB responsive genes in infected HeLa cells. 2006. J. Virol 80:985-998. 29. Mooij, P., Nieuwenhuis I.G., Knoop CJ., Doms R. W., Bogers W.M.J.M., ten
Haaft P.J.F., Niphuis H., Koornstra W., Bieler K., Kδstler J., Morein B., Cafaro A., Ensoli B., Wagner R., Heeney J.L. Qualitative T-Helper Responses to Múltiple Viral Antigens Correlate with Vaccine-Induced Immunity to Simian/Human Immunodeficiency Virus Infection. 2004. J. Virol. 78:3333-3342.

Claims

REIVINDICACIONES
1. Un vector recombinante derivado del virus MVA capaz de expresar simultáneamente una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la proteína gp41 en su totalidad y una proteína de fusión que contiene secuencias de las proteínas Gag, PoI y Nef del VIH-I, estando la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef bajo el control de promotores idénticos e insertadas ambas secuencias en el mismo lugar de inserción del vector.
2. Un vector recombinante derivado del virus MVA según la reivindicación 1, en el que la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se encuentran insertadas en el locus de la timidina quinasa de forma que se inactiva dicho gen.
3. Un vector recombinante según cualquiera de las reivindicaciones 1 y 2, en el que tanto la secuencia de nucleótidos correspondiente a la pro teína Env como las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se generan a partir de las secuencias de proteínas Env, Gag, PoI y Nef de aislados naturales.
4. Un vector recombinante derivado del virus MVA según la reivindicación 3, en el que la secuencia de nucleótidos correspondiente a la proteína Env se ha generado realizando en ella modificaciones en la secuencia correspondiente destinada a eliminar la expresión de la proteína gp41 de manera que se ha eliminado toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gpl20.
5. Un vector recombinante derivado del virus MVA según cualquiera de las reivindicaciones 3 y 4, en el que la secuencia de nucleótidos que codifica la proteína de fusión Gag-Pol-Nef no se proteoüza por acción de la proteasa del VIH.
6. Un vector recombinante derivado del virus MVA según cualquiera de las reivindicaciones 1 a 5, en el que los promotores bajo cuyo control están la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef son promotores idénticos que permiten la expresión de la proteína de fusión Gag-Pol-Nef y de la proteína Env carente de la parte correspondiente a la proteína gp41 en su totalidad tanto en etapas tempranas como tardías del ciclo infectivo del virus MVA.
7. Un vector recombinante derivado del virus MVA según la reivindicación 6, en el que los promotores bajo cuyo control están la secuencia correspondiente a Ia proteína Env y la secuencia correspondiente a la protema de fusión Gag-Pol-Nef son promotores sintéticos pE/L.
8. Un vector recombinante según las reivindicaciones 1 a 7, en el que la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se encuentran insertadas en el locus de Ia timidina quinasa de forma que se inactiva dicho gen, la secuencia de nucleótidos correspondiente a la proteína Env se ha generado eliminando toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gpl20, la secuencia de nucleótidos que codifica la proteína de fusión Gag-Pol-Nef da lugar a una poliproteína que no se proteoliza por acción de la proteasa del VIH y los promotores bajo cuyo control están la secuencia correspondiente a la proteína Env y la secuencia correspondiente a Ia proteína de fusión Gag-Pol-Nef son promotores sintéticos pE/L.
9. Un vector recombinante según la reivindicación 8, en el que tanto la secuencia de nucleótidos correspondiente a la proteína Env como las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden de aislados naturales pertenecientes al clade B.
10. Un vector recombinante según la reivindicación 9, en el que la secuencia de nucleótidos correspondiente a la proteína Env da lugar a una proteína que reproduce la secuencia de la proteína gpl20 del aislado BX08, representada por SEQ ID NO: 15.
11. Un vector recombinante según la reivindicación 9, en el que las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden del aislado UIB, estando la secuencia de nucleótidos de la proteína de fusión representada por SEQ ID NO: 16.
12. Un vector recombinante según las reivindicaciones 10 y 11, en el que la secuencia de nucleótidos correspondiente a la proteína Env da lugar a una proteína que reproduce la secuencia de la proteína gpl20 del aislado BX08 y las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden del aislado IIIB, estando representadas dichas secuencias, respectivamente, por SEQ ID NO: 15 y SEQ ID NO: 16.
13. Un vector recombinante según la reivindicación 8, en el que tanto la secuencia de nucleótidos correspondiente a Ia pro teína Env como las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden de aislados naturales pertenecientes al clade C.
14. Un vector recombinante según la reivindicación 13, en el que la secuencia de nucleótidos correspondiente a la pro teína Env da lugar a una proteína que reproduce la secuencia de la proteína gpl20 del aislado CN54, representada por SEQ ID NO: 17.
15. Un vector recombinante según la reivindicación 13, en el que las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden del aislado CN54, estando la secuencia de nucleótidos de la proteína de fusión representada por SEQ ID NO: 18.
16. Un vector recombinante según las reivindicaciones 14 y 15, en el que la secuencia de nucleótidos correspondiente a la proteína Env da lugar a una proteína que reproduce la secuencia de la proteína gpl20 del aislado CN54 y las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden también del aislado CN54, estando representadas dichas secuencias, respectivamente, por SEQ ID NO: 16 y SEQ ID NO: 18.
17. Una composición que contiene al menos un vector recombinante según cualquiera de las reivindicaciones 1 a 16.
18. Una composición que contiene al menos un vector recombinante según la reivindicación 17 destinada a ser administrada a un individuo con el propósito de provocar o reforzar una respuesta inmune que ayude a prevenir o a tratar una infección provocada por el virus VIH.
19. Una composición según cualquiera de las reivindicaciones 17 y 18 que contiene al menos un vector recombinante según cualquiera de las reivindicaciones 9 a
12.
20. Una composición según la reivindicación 19, que contiene al menos un vector recombinante según la reivindicación 12.
21. Una composición según la reivindicación 20, destinada a ser administrada a un individuo con el propósito de provocar o reforzar una respuesta inmune que ayuda a prevenir o tratar una infección provocada por el virus VIH como parte de un protocolo de inmunización en el que se administra una primera dosis de vacunación para desencadenar la respuesta inmune y una o más dosis posteriores para reforzar la respuesta inmune inicial.
22. Una composición según la reivindicación 21, destinada a ser administrada como la primera dosis de vacunación con la que se desencadena la respuesta inmune.
23. Una composición según la reivindicación 21, destinada a ser administrada tras la primera dosis de vacunación como una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
24. Una composición según la reivindicación 21 , destinada a ser administrada tanto en la primera dosis de vacunación con la que se desencadena la respuesta inmune como en una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
25. Una composición según cualquiera de las reivindicaciones 17 y 18 que contiene al menos un vector recombinante según cualquiera de las reivindicaciones 13 a 16.
26. Una composición según la reivindicación 25, que contiene al menos un vector recombinante según la reivindicación 16.
27. Una composición según la reivindicación 26, destinada a ser administrada a un individuo con el propósito de provocar o reforzar una respuesta inmune que ayuda a prevenir o tratar una infección provocada por el virus VIH como parte de un protocolo de inmunización en el que se administra una primera dosis de vacunación para desencadenar la respuesta inmune y una o más dosis posteriores para reforzar la respuesta inmune inicial.
28. Una composición según la reivindicación 27, destinada a ser administrada como la primera dosis de vacunación con la que se desencadena la respuesta inmune.
29. Una composición según la reivindicación 27, destinada a ser administrada como una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
30. Una composición según la reivindicación 27, destinada a ser administrada tanto como primera dosis de vacunación con la que se desencadena la respuesta inmune como en una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
31. Una composición según cualquiera de las reivindicaciones 17 y 18 que contiene al menos un vector recombinante según cualquiera de las reivindicaciones 9 a
12 y al menos un vector recombinante según cualquiera de las reivindicaciones 13 a 16.
32. Una composición según la reivindicación 31, que contiene al menos un vector recombinante según la reivindicación 12 y al menos un vector recombinante según la reivindicación 16.
33. Una composición según la reivindicación 32, destinada a ser administrada a un individuo con el propósito de provocar o reforzar una respuesta inmune que ayuda a prevenir o tratar una infección provocada por el viras VIH como parte de un protocolo de inmunización en el que se administra una primera dosis de vacunación para desencadenar la respuesta inmune y una o más dosis posteriores para reforzar la respuesta inmune inicial.
34. Una composición según la reivindicación 33, destinada a ser administrada como la primera dosis de vacunación con la que se desencadena la respuesta inmune
35. Una composición según la reivindicación 33, destinada a ser administrada tras la primera dosis de vacunación como una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
36. Una composición según la reivindicación 33 ; destinada a ser administrada tanto en la primera dosis de vacunación con la que se desencadena la respuesta inmune como en una o más de las dosis posteriores de vacunación que tienen el propósito de reforzar la respuesta inmune inicial.
37. Uso de un vector recombinante derivado del virus MVA según cualquiera de las reivindicaciones 1 a 16 para la fabricación de un medicamento destinado a ser utilizado como vacuna para ayudar a prevenir o a tratar una infección provocada por el virus VIH.
38. Uso según la reivindicación 37 en el que medicamento está diseñado para ser la única vacuna que se suministre a un individuo para ayudar a prevenir o a tratar una infección provocada por el virus VIH.
39. Uso según la reivindicación 38 en el que el medicamento contiene al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16.
40. Uso según la reivindicación 37 en el que el medicamento está diseñado para ser administrado como al menos una de las dosis que forman parte de un protocolo de inmunización en el que se administra una primera dosis de vacunación para desencadenar la respuesta inmune y una segunda o más dosis posteriores para reforzar la respuesta inmune inicial.
41. Uso según la reivindicación 40 en el que el medicamento está diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial.
42. Uso según la reivindicación 41 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16.
43. Uso según la reivindicación 42 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un vector según la reivindicación 12 y/o al menos un vector según la reivindicación 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector recombinante derivado del virus NYVAC.
44. Uso según la reivindicación 43 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un vector según la reivindicación 12 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos el vector recombinante NYVAC-B .
45. Uso según la reivindicación 43 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un vector según la reivindicación 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos el vector recombinante NYVAC-C.
46. Uso según la reivindicación 42 en el que tanto el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial como el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contienen al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16.
47. Uso según la reivindicación 46 en el que tanto el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial como el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contienen al menos un vector según la reivindicación 12.
48. Uso según la reivindicación 46 en el que tanto el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial como el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contienen al menos un vector según la reivindicación 16.
49. Uso según la reivindicación 40, en el que el medicamento está diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada.
50. Uso según la reivindicación 49 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16.
51. Uso según la reivindicación 50 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según cualquiera de las reivindicaciones 9 al 2 y/o al menos un vector según cualquiera de las reivindicaciones 13 aló y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un vector recombinante derivado del virus NYVAC.
52. Uso según la reivindicación 51 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según la reivindicación 12 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos el vector recombinante NYVAC-B.
53. Uso según la reivindicación 51 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según la reivindicación 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos el vector recombinante NYVAC-C.
54. Uso según la reivindicación 50 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un plásmido recombinante que contiene secuencias codificantes de antígenos del VIH-L
55. Uso según la reivindicación 54 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según cualquiera de las reivindicaciones 9 a 12 y/o al menos un vector según cualquiera de las reivindicaciones 13 a 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos un plásmido recombinante que contiene secuencias codificantes de antígenos del VIH-I que están presentes también en al menos uno de los vectores según cualquiera de las reivindicaciones 9 a 12 o según cualquiera de las reivindicaciones 13 a 16 que forman parte o constituyen la segunda dosis y/o dosis posteriores de vacunación.
56. Uso según la reivindicación 55 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según la reivindicación 12 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos el plásmido recombinante DNA-B.
57. Uso según la reivindicación 55 en el que el medicamento diseñado para ser administrado como parte de o constituyendo la segunda y/o dosis posteriores destinadas a reforzar la respuesta inmune inicial previamente desencadenada contiene al menos un vector según la reivindicación 16 y en el que el medicamento diseñado para ser administrado como parte de o constituyendo la primera dosis de vacunación que desencadena la respuesta inmune inicial contiene al menos el plásmido recombinante DNA-C.
58. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I que comprende administrar al sujeto al menos un vector según cualquiera de las reivindicaciones 1 a 16 o una composición según cualquiera de las reivindicaciones 17 a 36 para desencadenar y/o potenciar una respuesta inmune contra el VIH.
59. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 58, que comprende administrar al sujeto una única dosis de vacunación, comprendiendo la dosis al menos un vector según cualquiera de las reivindicaciones 1 a 16 o una composición según cualquiera de las reivindicaciones 17 a 36, para desencadenar una respuesta inmune contra el VIH.
60. Un método de prevención o tratamiento de una infección provocada por el virus VIH según la reivindicación 58, que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo al menos una de las dosis al menos un vector según cualquiera de las reivindicaciones 1 a 16 o una composición según cualquiera de las reivindicaciones 17 a 36, para desencadenar y/o potenciar una respuesta inmune contra el VIH.
61. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 60, que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo tanto la primera como la segunda dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 1 a 16 o una composición según cualquiera de las reivindicaciones 17 a 36.
62. Un método de prevención o tratamiento de una infección provocada por el virus VIH según la reivindicación 61 que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo tanto la primera como la segunda dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 9 a 12.
63. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 61, que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo tanto la primera como la segunda dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 13 a 16.
64. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 60 que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo la primera dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 1 a 16 o una composición según cualquiera de las reivindicaciones 17 a 36 y estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
65. Un método de prevención o tratamiento de una infección provocada por el virus VIH según la reivindicación 64 que comprende administrar al sujeto más de una dosis de vacunación, comprendiendo la primera dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 9 a 12 y estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
66. Un método de prevención o tratamiento de una infección provocada por el virus VIH según la reivindicación 64 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo la primera dosis de vacunación al menos un vector según cualquiera de las reivindicaciones 15 ó 16 y estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
67. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 60 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según cualquiera de las reivindicaciones 1 a 16 y estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
68. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 67 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según cualquiera de las reivindicaciones 9 a 12 y estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
69. Un método de prevención o tratamiento de una infección provocada por el virus VIH según la reivindicación 68 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según cualquiera de las reivindicaciones 9 a 12, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación un vector que expresa las mismas proteínas que el vector según cualquiera de las reivindicaciones 9 a 12.
70. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 69 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según la reivindicación 12, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación el vector NYVAC-B.
71. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 69 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según la reivindicación 12, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación el plásmido DNA-B.
72. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 67 que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según cualquiera de las reivindicaciones 13 a 16, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16.
73. Un método de prevención o tratamiento de una infección provocada por el virus VIH según al reivindicación 72, que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera al menos un vector según cualquiera de las reivindicaciones 13 a 16, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación un vector que expresa las mismas proteínas que el vector según cualquiera de las reivindicaciones 13 a 16 presente en al menos una dosis de vacunación distinta de la primera.
74. Un método de prevención o tratamiento de una infección provocada por el virus VIH según al reivindicación 73, que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera un vector según la reivindicación 16, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación el vector NYVAC-C.
75. Un método de prevención o tratamiento de una infección provocada por el virus VIH según al reivindicación 73, que comprende administrar a un sujeto más de una dosis de vacunación, comprendiendo una dosis distinta de la primera un vector según la reivindicación 16, estando ausente de las sucesivas dosis de vacunación cualquier vector según cualquiera de las reivindicaciones 1 a 16 y estando presente en la primera dosis de vacunación el plásmido DNA-C.
76. Un vector recombinante derivado del virus MVA capaz de expresar simultáneamente una forma de la proteína Env del VIH-I que carece de la parte correspondiente a la proteína gp41 en su totalidad y una proteína de fusión que contiene secuencias de las proteínas Gag, PoI y Nef del virus de la inmuno deficiencia de simio, SIV, estando la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la pro teína de fusión Gag-Pol-Nef bajo el control de promotores idénticos e insertadas ambas secuencias en el mismo lugar de inserción del vector.
77. Un vector recombinante derivado del virus MVA según la reivindicación 76, en el que la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se encuentran insertadas en el locus de la timidina quinasa de forma que se inactiva dicho gen.
78. Un vector recombinante según cualquiera de las reivindicaciones 76 y 77, en el que tanto la secuencia de nucleótidos correspondiente a la proteína Env como las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se generan a partir de las secuencias de proteínas Env, Gag, PoI y Nef de virus quiméricos de la inmunodeficiencia de simio y humano, SHIV.
79. Un vector recombinante derivado del virus MVA según la reivindicación 78, en el que la secuencia de nucleótidos correspondiente a la proteína Env se ha generado realizando en ella modificaciones en la secuencia correspondiente destinada a eliminar la expresión de la proteína gp41 de manera que se ha eliminado toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gρl20.
80. Un vector recombinante derivado del virus MVA según cualquiera de las reivindicaciones 78 y 79, en el que la secuencia de nucleótidos que codifica la pro teína de fusión Gag-Pol-Nef no se proteoliza por acción de la proteasa retroviral.
81. Un vector recombinante derivado del virus MVA según cualquiera de las reivindicaciones 76 a 80, en el que los promotores bajo cuyo control están la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef son promotores idénticos que permiten la expresión de la proteína de fusión Gag-Pol-Nef y de la proteína Env carente de la parte correspondiente a la proteína gp41 en su totalidad tanto en etapas tempranas como tardías del ciclo infectivo del virus MVA.
82. Un vector recombinante derivado del virus MVA según la reivindicación 81, en el que los promotores bajo cuyo control están la secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef son promotores sintéticos pE/L.
83. Un vector recombinante según las reivindicaciones 76 a 82, en el que la secuencia de nucleótidos correspondiente a la proteína Env y la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef se encuentran insertadas en el lo cus de la timidina quinasa de forma que se inactiva dicho gen, la secuencia de nucleótidos correspondiente a la proteína Env se ha generado eliminando toda la secuencia del gen env que en la secuencia natural de dicho gen aparece tras el último triplete correspondiente a la proteína gpl20, la secuencia de nucleótidos que codifica la proteína de fusión Gag-Pol-Nef da lugar a una poliproteína que no se proteoliza por acción de la proteasa retroviral y los promotores bajo cuyo control están Ia secuencia correspondiente a la proteína Env y la secuencia correspondiente a la proteína de fusión Gag-Pol-Nef son promotores sintéticos pE/L.
84. Un vector recombinante según la reivindicación 83, en el que tanto la secuencia de nucleótidos correspondiente a la proteína Env como las secuencias utilizadas para generar la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef proceden del virus quimérico SHIV89.6P.
85. Un vector recombinante según la reivindicación 84, en el que la secuencia de nucleótidos correspondiente a la proteína Env está representada por SEQ ID NO:22.
86. Un vector recombinante según la reivindicación 84, en el que la secuencia de nucleótidos correspondiente a la proteína de fusión Gag-Pol-Nef está representada por SEQ ID NO:23
87. Un vector recombinante según las reivindicaciones 85 y 86 que comprende un inserto cuya secuencia está representada por SEQ ID NO:24
88. Una composición que comprende al menos un vector recombinante según una cualquiera de las reivindicaciones 76 a 87.
89. Una composición según la reivindicación 88 que comprende adicionalmente al menos un vehículo farmacéuticamente aceptable.
90. Uso de un vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 76 a 87 o de una composición según una cualquiera de las reivindicaciones 88 u 89 para evaluar la eficacia como vacuna de un vector derivado del virus MVA según una cualquiera de las reivindicaciones 1 a 16 que presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector según una cualquiera de las reivindicaciones 76 a 87.
91. Uso según la reivindicación 90, en el que la eficacia como vacuna del vector derivado de MVA según una cualquiera de las reivindicaciones 1 a 16 se evalúa tras administrar a macacos un vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 76 a 87 o una composición que lo comprende, en el que dicho vector derivado de MVA según una cualquiera de las reivindicaciones 76 a 87 presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector según una cualquiera de las reivindicaciones 1 a 16.
92. Uso según la reivindicación 91, en el que la eficacia como vacuna de un vector derivado de MVA según una cualquiera de las reivindicaciones 1 a 16 se evalúa a partir de la capacidad para controlar el desarrollo de síndrome de inmunodeficiencia de simio que muestra la respuesta inmune generada en los macacos a los que se les ha administrado el vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 76 a 87 o una composición que lo comprende, en el que dicho vector derivado de MVA según una cualquiera de las reivindicaciones 76 a 87 presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector según una cualquiera de las reivindicaciones 1 a 16.
93. Uso según la reivindicación 92, en el que la capacidad para controlar el desarrollo de síndrome de inmunodeficiencia de simio de la respuesta inmune generada en los macacos a los que se les ha administrado el vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 76 a 87 o la composición que lo comprende se evalúa tras inocular a los macacos una forma patógena de un virus quimérico de la inmunodeficiencia de simio y humana, SHIV, con posterioridad a la administración del vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 76 a 87 o de la composición que Io comprende.
94. Uso según la reivindicación 93, en el que la capacidad para controlar el desarrollo de síndrome de inmunodeficiencia de simio de la respuesta inmune generada en los macacos a los que se les ha administrado o el vector recombinante derivado del virus MVA o la composición que lo comprende se evalúa mediante la valoración del número de copias de ARN del virus SHIV inoculado presentes en el plasma de los macacos transcurridos al menos 10 días desde el momento de la inoculación del virus SHIV.
95. Uso según la reivindicación 94, en el que la forma patógena de virus quimérico de la inmunodefíciencia de simio y humana inoculada es el SHIV89.6P.
96. Uso según ía reivindicación 95, en el que el SHIV89.6P se inocula por vía intravenosa.
97. Uso según la reivindicación 96, en el que el vector recombinante derivado del virus MVA que se ha administrado a los macacos previamente a la inoculación del SHIV89.6P es un vector de la reivindicación 87.
98. Uso según la reivindicación 97, en el que el vector según una cualquiera de las reivindicaciones 1 a 16 que presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector de la reivindicación 87 es el vector MVA- B y/o el vector MVA-C.
99. Uso según la reivindicación 98, en el que el vector de la reivindicación 87 se administra a los macacos en una o más dosis de vacunación de potenciación de la respuesta inmune.
100. Uso según la reivindicación 99, en el que el vector de la reivindicación 87 se administra a los macacos en la tercera dosis de vacunación.
101. Uso según la reivindicación 100, en el que el vector de la reivindicación 87 se administra a los macacos adicionalmente en una cuarta dosis de vacunación.
102. Uso según cualquiera de las reivindicaciones 100 ó 101, en el que el vector de la reivindicación 87 está ausente de la primera y/o de la segunda dosis de vacunación administradas a los macacos.
103. Uso según la reivindicación 102, en el que el vector de la reivindicación 87 está ausente de la primera y de la segunda dosis de vacunación administradas a los macacos.
104. Uso según la reivindicación 103, en el que la primera y la segunda dosis de vacunación comprenden un vector de ADN desnudo a partir del cual pueden expresarse en los macacos antígenos del SHIV89.6P
105. Uso según la reivindicación 99, en el que el vector de la reivindicación 87 se administra por vía intramuscular.
106. Un vector recombinante derivado del virus NYVAC que presenta la misma estructura de organización génica, sitio de inserción y promotores que un vector de una cualquiera de las reivindicaciones 76 a 87.
107. Un vector recombinante derivado del virus NYVAC según la reivindicación 106 que comprende un inserto cuya secuencia está representada por SEQ ID NO:24
108. Uso de un vector recombinante derivado del virus NYVAC según una cualquiera de las reivindicaciones 106 ó 107 que presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector derivado de MVA según una cualquiera de las reivindicaciones 76 a 87 como control en un procedimiento en el que se evalúa la eficacia como vacuna de un vector derivado del virus MVA según una cualquiera de las reivindicaciones 1 a 16 mediante el uso del vector según una cualquiera de las reivindicaciones 76 a 87 que presenta la misma estructura de organización génica, sitio de inserción y promotores que el vector derivado de MVA según una cualquiera de las reivindicaciones 1 a 16.
109. Uso según la reivindicación 108 en el que el vector recombinante derivado del virus NYVAC es el vector de la reivindicación 107 y el vector recombinante derivado de MVA que se utiliza en el procedimiento en el que se evalúa la eficacia como vacuna de otro vector recombinante derivado del virus MVA según una cualquiera de las reivindicaciones 1 a 16 es un vector recombinante de la reivindicación
12.
110. Uso según la reivindicación 109, en el que se evalúa la eficacia como vacuna del vector MVA-B y/o del vector MVA-C.
111. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 60, en el que el vector según una cualquiera de las reivindicaciones 1 a 16 se administra como parte de un protocolo de vacunación en una o más dosis de potenciación de la respuesta inmune.
112. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 111, en el que el vector según una cualquiera de las reivindicaciones 1 a 16 está comprendido en la tercera dosis de vacunación.
113. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 1115 en el que el vector según una cualquiera de las reivindicaciones 1 a 16 está comprendido en la cuarta dosis de vacunación
114. Un método de prevención o tratamiento de una infección provocada por el viras VIH-I según la reivindicación 111, en el que el vector según una cualquiera de las reivindicaciones 1 a 16 está comprendido en la tercera y en la cuarta dosis de vacunación.
115. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 114, en el que la primera y la segunda dosis de vacunación comprenden un vector de ADN desnudo que expresa antígenos del VIH-I en células humanas.
116. Un método de prevención o tratamiento de una infección provocada por el viras VIH-I según la reivindicación 115, en el que el vector derivado de MVA comprendido en las dosis de vacunación es MVA-B.
117. Un método de prevención o tratamiento de una infección provocada por el virus VIH-I según la reivindicación 115, en el que el vector derivado de MVA comprendido en las dosis de vacunación es MVA-C.
118. Un plásmido útil como intermedio en la obtención de un vector según una cualquiera de las reivindicaciones 76 a 87 y/o en su caracterización que posee un inserto con las mismas secuencias codificantes que el vector recombinante derivado de MVA en cuya obtención se pueda utilizar, secuencias que se encuentran bajo el control de promotores idénticos situados en la misma disposición relativa uno con respecto al otro que deba presentar el correspondiente inserto en el genoma del vector recombinante derivado de MVA, y en el que el inserto esté flanqueado, en uno de sus extremos, por una secuencia correspondiente a uno de los extremos del locus que suponga el lugar de inserción en el genoma del vector recombinante y, en el otro extremo, por una secuencia más corta correspondiente al extremo contrario de dicho locus, presentando el plásmido adicionalmente un gen marcador situado entre la secuencia corta flanqueante del inserto y una secuencia más larga correspondiente al mismo extremo del locus del vector recombinante derivado de MVA en el que deba insertarse el inserto, todo ello en una disposición análoga a la del último plásmido representado en Ia Fig. 41b.
119. Plásmido según la reivindicación 118, en el que las secuencias flanqueantes corresponden al locus de timidina quinasa, las secuencias codificantes presentes en el inserto corresponden a las de las proteínas 89.6P-gpl20 y SlVgpn, los promotores idénticos bajo cuyo control se encuentran dichas secuencias codificantes son promotores sintéticos pE/L y el gen marcador es LAC-Z.
120. Plásmido según la reivindicación 119, que es el plásmido pLZAWl-89.6P-
STVgpn-18.
PCT/ES2006/070114 2005-07-27 2006-07-25 Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapéuticas contra el sida WO2007012691A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK06778467.8T DK1921146T3 (da) 2005-07-27 2006-07-25 Rekombinante vektorer på basis af det Modificerede Ankara-Virus(MVA) som forebyggende og terapeutiske vacciner mod AIDS
EP06778467A EP1921146B1 (en) 2005-07-27 2006-07-25 Recombinant vectors based on the modified ankara virus (mva) as preventive and therapeutic vaccines against aids
US11/989,425 US8871219B2 (en) 2005-07-27 2006-07-25 Recombinant vectors based on the modified vaccinia ankara virus (MVA) as preventive and therapeutic vaccines against AIDS
ES06778467T ES2392670T3 (es) 2005-07-27 2006-07-25 Vectores recombinantes basados en el virus modificado de Ancara (MVA) como vacunas preventivas y terapéuticas contra el sida
PL06778467T PL1921146T3 (pl) 2005-07-27 2006-07-25 Rekombinowane wektory oparte na zmodyfikowany wirusie ankara (mva) jako profilaktyczne i terapeutyczne szczepionki przeciw aids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP200501841 2005-07-27
ES200501841A ES2281252B1 (es) 2005-07-27 2005-07-27 Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapeuticas contra el sida.
ES200600762A ES2282041B1 (es) 2005-07-27 2006-03-24 Mejoras introducidas en el objeto de la patente principal n es200501841 para "vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapeuticas contra el sida".
ESP200600762 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007012691A1 true WO2007012691A1 (es) 2007-02-01

Family

ID=38458314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070114 WO2007012691A1 (es) 2005-07-27 2006-07-25 Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapéuticas contra el sida

Country Status (8)

Country Link
US (1) US8871219B2 (es)
EP (1) EP1921146B1 (es)
CY (1) CY1113288T1 (es)
DK (1) DK1921146T3 (es)
ES (3) ES2281252B1 (es)
PL (1) PL1921146T3 (es)
PT (1) PT1921146E (es)
WO (1) WO2007012691A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047861A1 (en) * 2007-10-12 2009-04-15 Institut Pasteur Lentiviral gene transfer vectors suitable for iterative administration and their medicinal applications
WO2011047031A2 (en) * 2009-10-13 2011-04-21 Geovax, Inc. Eliciting immune responses using recombinant mva viruses expressing hiv env, gag and pol anitgens
WO2013038185A1 (en) 2011-09-12 2013-03-21 Jonathan Norden Weber Methods and compositions for raising an immune response to hiv
US8420104B2 (en) 2007-08-03 2013-04-16 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
US11278607B2 (en) 2016-01-08 2022-03-22 Geovax, Inc. Compositions and methods for generating an immune response to a tumor associated antigen
US11311612B2 (en) 2017-09-19 2022-04-26 Geovax, Inc. Compositions and methods for generating an immune response to treat or prevent malaria

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2641915T3 (es) * 2008-09-10 2017-11-14 Institut National De La Sante Et De La Recherche Medicale Construcción de un gen sintético que codifica el gag del VIH1 y su utilización para la obtención de vacunas contra el VIH-1
AU2010305030A1 (en) 2009-10-08 2012-05-10 Bavarian Nordic A/S Generation of a broad T-cell response in humans against HIV
AU2012243039B2 (en) 2011-04-08 2017-07-13 Immune Design Corp. Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses
CN107735103B (zh) 2015-02-25 2022-05-27 纪念斯隆-凯特琳癌症中心 使用灭活的非复制型的修饰的痘苗病毒安卡拉(mva)作为实体肿瘤的单一免疫疗法或与免疫检查点阻断剂的组合
CN116173193A (zh) 2015-04-17 2023-05-30 纪念斯隆凯特琳癌症中心 Mva或mvaδe3l作为抗实体瘤的免疫治疗剂的应用
WO2017147553A2 (en) 2016-02-25 2017-08-31 Memorial Sloan-Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human flt3l or gm-csf for cancer immunotherapy
JP7034080B2 (ja) 2016-02-25 2022-03-11 メモリアル スローン ケタリング キャンサー センター ヒトflt3lを発現する組換えmvaまたはmvaδe3lおよび固形腫瘍に対する免疫療法薬としてのそれらの使用
WO2018209315A1 (en) 2017-05-12 2018-11-15 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy
KR20220047277A (ko) * 2019-07-16 2022-04-15 길리애드 사이언시즈, 인코포레이티드 Hiv 백신, 및 이의 제조 및 사용 방법
EP4277652A1 (en) 2021-01-14 2023-11-22 Gilead Sciences, Inc. Hiv vaccines and methods of using

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036614A2 (de) * 1999-11-16 2001-05-25 Geneart Gmbh Gessellschaft Für Angewandte Biotechnologie Das genom des hiv-1 intersubtyps (c/b') und seine anwendungen
WO2001088141A2 (en) * 2000-05-18 2001-11-22 Geneart Gmbh Synthetic gagpol genes and their uses
WO2002032943A2 (en) * 2000-08-14 2002-04-25 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Modifications of hiv env, gag, and pol enhance immunogenicity for genetic immunization
WO2002072754A2 (en) 2001-03-08 2002-09-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mva expressing modified hiv envelope, gag, and pol genes
US6649409B1 (en) * 1999-03-29 2003-11-18 Statens Serum Institut Method for producing a nucleotide sequence construct with optimized codons for an HIV genetic vaccine based on a primary, early HIV isolate and synthetic envelope BX08 constructs
US20030220276A1 (en) * 1995-05-16 2003-11-27 Opendra Narayan HIV vaccine and method of use
WO2004035006A2 (en) 2002-10-18 2004-04-29 The Aaron Diamond Aids Research Center Methods and compositions for immunization against hiv
WO2004087201A2 (en) 2003-03-28 2004-10-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mva virus expressing modified hiv envelope, gag, and pol genes
US20050058657A1 (en) * 2001-07-27 2005-03-17 Ertl Peter Franz Vaccine comprising gp120 and nef and/or tat for the immunisation against hiv
WO2005034992A2 (en) * 2003-09-15 2005-04-21 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv vaccines based on env of multiple clades of hif
WO2006020071A2 (en) * 2004-07-16 2006-02-23 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vaccines against aids comprising cmv/r-nucleic acid constructs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030220276A1 (en) * 1995-05-16 2003-11-27 Opendra Narayan HIV vaccine and method of use
US6649409B1 (en) * 1999-03-29 2003-11-18 Statens Serum Institut Method for producing a nucleotide sequence construct with optimized codons for an HIV genetic vaccine based on a primary, early HIV isolate and synthetic envelope BX08 constructs
WO2001036614A2 (de) * 1999-11-16 2001-05-25 Geneart Gmbh Gessellschaft Für Angewandte Biotechnologie Das genom des hiv-1 intersubtyps (c/b') und seine anwendungen
WO2001088141A2 (en) * 2000-05-18 2001-11-22 Geneart Gmbh Synthetic gagpol genes and their uses
WO2002032943A2 (en) * 2000-08-14 2002-04-25 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Modifications of hiv env, gag, and pol enhance immunogenicity for genetic immunization
WO2002072754A2 (en) 2001-03-08 2002-09-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mva expressing modified hiv envelope, gag, and pol genes
US20050058657A1 (en) * 2001-07-27 2005-03-17 Ertl Peter Franz Vaccine comprising gp120 and nef and/or tat for the immunisation against hiv
WO2004035006A2 (en) 2002-10-18 2004-04-29 The Aaron Diamond Aids Research Center Methods and compositions for immunization against hiv
WO2004087201A2 (en) 2003-03-28 2004-10-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mva virus expressing modified hiv envelope, gag, and pol genes
WO2005034992A2 (en) * 2003-09-15 2005-04-21 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv vaccines based on env of multiple clades of hif
WO2006020071A2 (en) * 2004-07-16 2006-02-23 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vaccines against aids comprising cmv/r-nucleic acid constructs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHEIFLINGER ET AL.: "Archives of Virology", vol. 141, 1 January 1996, SPRINGER WIEN, pages: 663 - 669
WYATT ET AL.: "AIDS Research and Human Retroviruses", MARY ANN LIEBERT, vol. 20, no. 6, 1 June 2004 (2004-06-01), pages 645 - 653

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420104B2 (en) 2007-08-03 2013-04-16 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
US8709799B2 (en) 2007-08-03 2014-04-29 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
US9328146B2 (en) 2007-08-03 2016-05-03 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
EP2047861A1 (en) * 2007-10-12 2009-04-15 Institut Pasteur Lentiviral gene transfer vectors suitable for iterative administration and their medicinal applications
WO2011047031A2 (en) * 2009-10-13 2011-04-21 Geovax, Inc. Eliciting immune responses using recombinant mva viruses expressing hiv env, gag and pol anitgens
WO2011047031A3 (en) * 2009-10-13 2011-09-22 Geovax, Inc. Eliciting immune responses using recombinant mva viruses expressing hiv env, gag and pol anitgens
WO2013038185A1 (en) 2011-09-12 2013-03-21 Jonathan Norden Weber Methods and compositions for raising an immune response to hiv
US11278607B2 (en) 2016-01-08 2022-03-22 Geovax, Inc. Compositions and methods for generating an immune response to a tumor associated antigen
US11413341B2 (en) 2016-01-08 2022-08-16 Geovax, Inc. Vaccinia viral vectors encoding chimeric virus like particles
US11311612B2 (en) 2017-09-19 2022-04-26 Geovax, Inc. Compositions and methods for generating an immune response to treat or prevent malaria
US11857611B2 (en) 2017-09-19 2024-01-02 Geovax, Inc. Compositions and methods for generating an immune response to treat or prevent malaria

Also Published As

Publication number Publication date
ES2281252B1 (es) 2009-02-16
US20100047276A1 (en) 2010-02-25
ES2281252A1 (es) 2007-09-16
US8871219B2 (en) 2014-10-28
CY1113288T1 (el) 2016-04-13
DK1921146T3 (da) 2012-11-05
ES2282041A1 (es) 2007-10-01
ES2392670T3 (es) 2012-12-12
PT1921146E (pt) 2012-11-12
EP1921146A1 (en) 2008-05-14
ES2282041B1 (es) 2009-03-16
EP1921146B1 (en) 2012-08-01
PL1921146T3 (pl) 2013-01-31

Similar Documents

Publication Publication Date Title
ES2281252B1 (es) Vectores recombinantes basados en el virus modificado de ankara (mva) como vacunas preventivas y terapeuticas contra el sida.
Volz et al. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development
CN106999571B (zh) 诱导针对人免疫缺陷病毒感染的保护性免疫性的方法和组合物
Shibata et al. Live, attenuated simian immunodeficiency virus vaccines elicit potent resistance against a challenge with a human immunodeficiency virus type 1 chimeric virus
PL188641B1 (pl) Szczepionka polienv przeciwko HIV, sposób wytwarzania szczepionki polienv,zastosowanie szczepionki polienv,zastosowanie przynajmniej jednego rekombinowanego białka env HIV lub przynajmniej jednego wektora DNA, który koduje ekspresję rekombinowanego białka env HIV, plazmid bifunkcjonalny.
JP2011530309A (ja) 多価ワクチン
US8916174B2 (en) HIV DNA vaccine regulated by a caev-derived promoter
Kent et al. Mucosally-administered human–simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3
JP2006514549A (ja) Il−15を発現する組換えワクチンウイルスおよびその使用方法
Rabinovich et al. A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice
RU2302461C2 (ru) Химерный ген cr3 и кодируемый им химерный белок cr3 (варианты), индуцирующий иммунный ответ против вич-1
Mooij et al. Rational development of prophylactic HIV vaccines based on structural and regulatory proteins
US20190022212A1 (en) Methods for safe induction of cross-clade immunity against human immunodeficiency virus infection in human
Hasenkrug et al. Immunoprotective determinants in friend murine leukemia virus envelope protein
Joachim et al. Induction of identical IgG HIV-1 envelope epitope recognition patterns after initial HIVIS-DNA/MVA-CMDR immunization and a late MVA-CMDR boost
J O'Connell et al. HIV vaccine efficacy and immune correlates of risk
US8765140B2 (en) DNA vaccine compositions with HIV/SIV gene modifications
US20080306244A1 (en) Renta: an HIV immunogen and uses thereof
ES2396915T3 (es) Secuencias consenso, antígenos y transgenes del VIH-1 del clado A
Rodriguez et al. Characterization of DNA and MVA vectors expressing Nef from HIV-1 CRF12_BF revealed high immune specificity with low cross-reactivity against subtype B
Stolte-Leeb et al. Sustained conservation of CD4+ T cells in multiprotein triple modality-immunized rhesus macaques after intrarectal challenge with simian immunodeficiency virus
ES2549209A2 (es) Partículas víricas VSV-VIH que carecen de la funcionalidad transcriptasa inversa y aplicaciones terapéuticas de las mismas
Jesil et al. HIV VACCI ES: PRESE T SCE ARIO AD FUTURE PROSPECTS
Van Harmelen Human immunodeficiency virus type-1 distribution in South Africa and the relevance of genetic diversity on vaccine design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006778467

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006778467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11989425

Country of ref document: US