WO2007011024A1 - 携帯時計および電子機器 - Google Patents
携帯時計および電子機器 Download PDFInfo
- Publication number
- WO2007011024A1 WO2007011024A1 PCT/JP2006/314480 JP2006314480W WO2007011024A1 WO 2007011024 A1 WO2007011024 A1 WO 2007011024A1 JP 2006314480 W JP2006314480 W JP 2006314480W WO 2007011024 A1 WO2007011024 A1 WO 2007011024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atomic oscillator
- watch
- module
- electronic device
- oscillator
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a portable watch and an electronic device that can be carried and carried around, and more particularly to a wristwatch and an electronic device provided with an atomic oscillator that generates a reference clock signal.
- Some electronic timepieces which are electronic devices, divide a reference clock signal output from a reference oscillator to generate, for example, a 1 Hz signal, and measure time based on this 1 Hz signal.
- a yearly watch that achieves within tens of seconds of the year difference by using a temperature compensated crystal oscillator (Temperature Compensated Crystal Oscillator) as a reference oscillator! (See, for example, Japanese Examined Patent Publication No. 6-31731).
- the heat of the atomic oscillator (for example, the temperature of the cell can be maintained by adopting a configuration similar to that of a watch using a conventional quartz oscillator).
- the problem is that adverse effects are caused by the temperature rise.
- the heat from the atomic oscillator causes adverse effects such as deformation, deterioration, and characteristic deterioration of elements (lubricating oil, oscillation circuit, drive circuit, battery, etc.) that constitute the watch driver (movement). There is a possibility of receiving.
- the object of the present invention is to use the heat of an atomic oscillator as a reference It is an object of the present invention to provide a portable watch or electronic device capable of reducing the influence and reducing power consumption, in particular, a portable watch configured as a watch.
- a portable watch includes an atomic oscillator that generates and outputs a reference clock signal, a watch module that operates based on the reference clock signal, the atom oscillator, and the watch module. And a thermal separation unit for thermal separation.
- the clock module since the atomic oscillator and the clock module are thermally separated by the thermal separation portion, the clock module may be affected by the heat of the atomic oscillator even in a relatively small portable watch. It is possible to suppress the occurrence of mechanical component accuracy degradation and lubricant oil deterioration.
- a case is provided, the atomic oscillator is disposed in the case, and an air layer or an air layer is provided as the thermal separation unit between the atomic oscillator and the clock module. At least some of the insulation may be placed!
- the atomic oscillator is positioned relative to the watch module and integrated with the watch module.
- the case has a module storage unit for storing the watch module, and the atomic oscillator is disposed around the module storage unit.
- the module storage portion is provided with an inner frame formed of a heat insulating material which is disposed in the case and supports the clock module and functions as the thermal separation portion.
- the clock module supported by the middle frame may be accommodated.
- the atomic oscillator and the clock module are three-dimensionally spatially separated and arranged.
- the clock module and the atomic oscillator are arranged such that orthogonal projection of the clock module and the predetermined plane of the atomic oscillator does not overlap. It may be made to be.
- the case includes a back cover, and the atomic oscillator is supported by the back cover.
- the portable watch is configured as a watch equipped with a watch band for mounting the portable watch on an arm.
- the atomic oscillator is supported by the watch band.
- a dial for time display is provided, and the atomic oscillator is supported by the dial.
- the atomic oscillator includes a cell in which an atom is enclosed, a heater for heating the cell, an energy level of an excited state accompanying excitation of the atom with respect to the cell, an energy level of a ground state.
- a control device may be provided to control the heater and maintain the cell at a predetermined temperature while referring to a frequency corresponding to an energy difference with a position.
- heat transmitted from the thermal resistance to the atomic oscillator side clock and the clock module is preferably used. It is desirable to use one that has a value that can be blocked as necessary.
- the electronic device includes an atomic oscillator that generates and outputs a reference clock signal, an operation module that operates based on the reference clock signal, the atomic oscillator, and the operation module, which are thermally And a thermal separation unit for separating into two.
- the operation module is the heat of the atomic oscillator. It is possible to suppress the occurrence of mechanical component accuracy deterioration and lubricant oil deterioration that would not be affected by
- a case is provided, the atomic oscillator is disposed in the case, and an air layer or a heat insulating material is provided as the thermal separation unit between the atomic oscillator and the operation module. Even if you place at least some of them! Good.
- the electronic device includes a crystal oscillator that generates and outputs a first oscillation signal, an atomic oscillator that generates and outputs a second oscillation signal that is more accurate than the first oscillation signal, and the first oscillation.
- a thermal separation unit that thermally separates the operation module operating based on the signal and the second oscillation signal; the atomic oscillator; and the crystal oscillator and the operation module. As! / Scold.
- the crystal oscillator and the operation module are thermally separated by the thermal separation portion, the crystal oscillator and the operation module are not affected by the heat of the atomic oscillator. It is possible to maintain the operating state for a long time.
- the crystal oscillator and the operation module may be disposed integrally.
- the atomic oscillator is disposed integrally with the operation module.
- the thermal separation portion may include at least one of an air layer and a heat insulating material.
- a case having a module storage unit for storing the operation module may be provided, and the atomic oscillator may be arranged around the module storage unit of the case.
- an inner frame formed of a heat insulating material for supporting the operation module may be provided, and the module storage portion may be configured to receive the operation module supported by the inner frame.
- the atomic oscillator and the operation module are three-dimensionally spatially separated and arranged.
- the operation module and the atomic oscillator may be arranged such that orthogonal projections of the operation module and the predetermined plane of the atomic oscillator do not overlap.
- the electronic device constitutes a timekeeping device, and the operation module This includes the clock drive circuit.
- the electronic device is configured as a watch, and includes a watch band for attaching the watch to a person, and the atomic oscillator is supported by the watch band.
- the electronic device is configured as a wristwatch, and the atomic oscillator may be supported by a watchband for wearing the wristwatch on a human body.
- a dial for time display is provided, and the atomic oscillator is supported by the dial.
- the atomic oscillator includes a cell in which an atom is enclosed, a heater for heating the cell, an energy level of an excited state accompanying excitation of the atom with respect to the cell, and a ground state. And a control device for controlling the heater to maintain the cell at a predetermined temperature while referring to a frequency corresponding to an energy difference with the energy level of
- the effect of the heat can be reduced, and the portable watch or electronic device can be configured. It can be reduced.
- FIG. 1 is a block diagram showing a schematic configuration of a timepiece according to an embodiment.
- FIG. 2 is an explanatory view of a component mounting state when viewing the front side force of the timepiece according to the first embodiment.
- FIG. 3 is a cross-sectional view of an essential part of the timepiece according to the first embodiment.
- FIG. 4 is an explanatory view of a fixed state of the atomic oscillator of the first embodiment.
- FIG. 5 is an explanatory view of an atomic oscillator and a heat insulating part of the first embodiment.
- Fig. 6 is an explanatory view of a component mounting state when viewing the front side force of the timepiece according to the second embodiment.
- FIG. 7 is a cross-sectional view of an essential part of a timepiece according to a second embodiment.
- FIG. 8 is an explanatory view of a third embodiment.
- FIG. 9 An explanatory view of a component mounting state when viewing the front side force of the timepiece of the fourth embodiment.
- FIG. 10 is a cross-sectional view of an essential part of a timepiece according to a fourth embodiment.
- FIG. 11 is an explanatory diagram of a fifth embodiment.
- FIG. 12 is a plan view of a timepiece according to a sixth embodiment.
- FIG. 13 is an explanatory diagram of a first aspect of the sixth embodiment.
- FIG. 14 is an explanatory diagram of a second mode of the sixth embodiment.
- FIG. 15 is an explanatory diagram of a seventh embodiment.
- FIG. 16 is an explanatory diagram of an eighth embodiment.
- FIG. 17 is a block diagram showing a schematic configuration of a timepiece according to a ninth embodiment.
- FIG. 18 This is an operation flowchart focusing on the oscillation operation.
- FIG. 19 is an explanatory view of a first modified example.
- FIG. 20 is an explanatory view of a second modified example.
- FIG. 1 is a block diagram showing a schematic configuration of a timepiece according to an embodiment.
- a wristwatch (electronic clock) 10 as a portable watch can be roughly divided into a pointer unit 11 having a plurality of pointers for displaying time, and a watch as an operation module for driving the pointer unit 11 based on a reference clock signal CLK0.
- a module 12 and an atomic oscillator 13 generating and outputting a reference clock signal CLK0 are provided.
- the clock module 12 and the atomic oscillator 13 are three-dimensionally spatially separated, and more specifically, the predetermined plane (parallel to the display surface) of the clock module 12 and the atomic oscillator 13 If the orthogonal projection to the plane is overlapped, it is arranged as
- the clock module 12 divides the reference clock signal CLK0 to generate and output the operation clock signal CLK, and a clock that drives the clock mechanism based on the operation clock signal CLK.
- a drive circuit 16, a timing mechanism, a motor 17 controlled by the watch drive circuit 16, and a wheel train 18 for transmitting a driving force of the motor 17 are provided.
- the divider circuit 15 is configured by connecting a plurality of dividers including a 1Z2 divider circuit with a data set function that functions to give a logic speed and delay function in multiple stages, and divides the reference clock signal CLK 0 up to 1 Hz. It outputs a 1 Hz operating clock signal CLK.
- FIG. 2 is an explanatory view of a component mounting state when the watch of the first embodiment is viewed from the front side.
- FIG. 3 is a cross-sectional view of an essential part of the timepiece according to the first embodiment.
- FIG. 4 is an explanatory view of a fixed state of the atomic oscillator of the first embodiment.
- the watch 10 is provided with a case 21.
- This case 21 is made of metal (titanium, stainless steel, aluminum etc.) or resin.
- the whole or a part of the periphery of the atomic oscillator 13 housed near the periphery of the case 21 is made of a heat insulating material 50 which functions as a thermal separation part.
- a heat insulating material 50 which functions as a thermal separation part.
- the entire periphery of the atomic oscillator 13 is covered with the heat insulating material 50.
- resins such as acrylic, polyethylene and polystyrene can be mentioned.
- the atomic oscillator 13 whose periphery is covered with the heat insulating material 50 is further accommodated in a metallic atomic oscillator case 13A.
- the atomic oscillator made of metal is used as the atomic oscillator case 13 A.
- the vibrator case 13A is used because of the magnetic resistance.
- the atomic oscillator 13 and the motor 17 can be arranged close to each other. Therefore, the layout restrictions when placing the atomic oscillator 13 in the case 21 of the electronic watch become smaller, and it becomes possible to make the watch thinner and smaller.
- the atomic oscillator case 13A may have a heat insulating structure by coating ceramic, resin or the like.
- a ceramic coating, a resin coating, or the like may be provided around the atomic oscillator of case 21 to provide a heat insulating structure.
- an inner frame 22 which is formed of a heat insulating material and functions as a thermal separation portion is housed.
- a battery 23 as a power source, an atomic oscillator 13, a frequency divider circuit 15 constituting the clock module 12, and a clock IC 24 functioning as a clock drive circuit 16, a motor 17, and a wheel train 18 , Is stored.
- the atomic oscillator 13 is disposed on the inner peripheral side of the middle frame 22 made of a heat insulating material.
- Examples of the material of the heat insulating material constituting the middle frame 22 include acrylic resin, resins such as polyethylene and polystyrene, ceramic, soda glass, lead glass, and the like.
- the clock module 12 has a U-shape, and the atomic oscillator case 13 A accommodating the atomic oscillator 13 is disposed in the recessed portion of the clock module 12. There is.
- the end force of the atomic oscillator case 13A also has the support 13A1 extending in the left and right direction in FIG. 2, and as shown in FIG. 4, the screw SC is screwed into the ground plate BP, thereby holding the pressure plate FP and the ground plate BP.
- Substrate 12A1 on which wiring of clock module 12 is formed and circuit board 13B on which wiring of atomic oscillator 13 is formed are electrically connected.
- the rotor 17A of motor 17 described later The car No. 5 51 is fit to the car 51, and the car No. 51 51 of the car No. 5 51 is fit to the car No. 4 52.
- the second hand constituting the hand unit 11 is attached to the rotation shaft of the fourth wheel and pinion 52, and the second hand is driven as the fourth wheel and pinion 52 rotates.
- the support portion 13A1 is not limited to one formed in the left-right direction, and may be positioned and fixed to the timepiece module 12 with one or more support portions. Furthermore, it may be positioned and fixed by known positioning and fixing means without using screw SC! / ⁇ .
- the third car 53 is engaged with the Kana 52A of the fourth car 52, and the second car 54 is engaged with the third car 53 53A.
- the minute hand constituting the hand unit 11 is attached to the rotation shaft of the second wheel & pinion 54, and the minute hand is driven as the second wheel & pinion 54 rotates.
- the second car 54, the Kana 54A has a sun gear 55 on it.
- An hour wheel (not shown) is engaged with the rotation shaft of the minute wheel, and when the hour wheel rotates, the hour hand constituting the pointer unit 11 attached to the rotation shaft of the hour wheel is driven. It will be.
- day reverse car 55 is engaged with the day reverse middle car 56.
- the intermediate car 56 of this day is connected to the crown 58 via the time correction wheel train 57.
- the atomic oscillator 13 and the clock module 12 need to be thermally separated for the following reasons.
- the atomic oscillator needs to be heated and maintained at a predetermined temperature as necessary, and heat is dissipated to the watch module or the external space to prevent an increase in power consumption due to the need for heating.
- the thermal conductivity of the material connecting atomic oscillator 13 and clock module 12 is ⁇
- the cross-sectional area is ⁇
- the distance between the two is X
- the thermal resistance R between the two is Is represented by
- the atomic oscillator case 13A accommodating the atomic oscillator 13 is disposed in the recessed portion of the operation module and spatially separated to reduce the effective thermal conductivity ⁇ , Try to increase the thermal resistance R.
- FIG. 5 is an explanatory view of an atomic oscillator and a heat insulating part of the first embodiment.
- the atomic oscillator unit 31 constituting the atomic oscillator 13 is roughly divided into a cell 41 in which an alkali metal (cell) is sealed, a laser diode 42 for emitting laser light for excitation to the cell 41, and a cell 41.
- the atomic oscillator 13 uses a cesium atomic oscillator as the atomic oscillator unit 31.
- the control circuit unit 33 performs output control of the laser diode 42 based on the temperature of the laser diode measured by the laser temperature sensor 45, and also a heater 43 based on the temperature of the cell 41 measured by the cell temperature sensor 46.
- Control circuit 47 for controlling the output signal of the photodiode 44, and a local oscillator 48 for down converting the frequency of the output signal of the photodiode 44 output via the control circuit 47 to a predetermined frequency and outputting the result.
- a divider circuit 49 that divides the output signal of the local oscillator 48 and outputs it as a reference clock signal CLK0.
- the control circuit unit 33 refers to the frequency corresponding to the energy difference between the energy level of the excited state accompanying excitation of the cesium atom and the energy level of the ground state.
- the heater 43 is controlled to maintain the cell 41 at a predetermined temperature. More specifically, the laser diode 42 is modulated such that the frequency difference between the upper sideband and the lower sideband of its output matches the natural frequency of the cesium atom. The amount of transmitted laser light is largest when the frequency difference between the upper and lower sidebands matches the natural frequency of the cesium atom, so the modulation frequency of the laser diode is adjusted to maximize the output of the photodiode 44. By doing this, the modulation frequency is stabilized on the basis of the natural frequency of the semiconductor atom. As a result, the reference clock signal CLK 0 is also stabilized on the basis of the natural frequency of cesium atoms.
- the entire atomic oscillator 13 (indicated by the heat insulating portion AO in FIG. 5) is thermally insulated.
- the heat insulating part AO is made of a heat insulating material.
- divider circuit 15 When power is supplied to atomic oscillator 13 and atomic oscillator 13 generates reference clock signal CLK0, divider circuit 15 generates a reference clock signal based on the correction data previously set in the 1Z2 divider circuit with data setting function. The frequency of the reference clock signal CLK0 is divided while the logic speed of CLK0 is being adjusted, and the 1 Hz operation clock signal CLK is output from the clock drive circuit 16.
- the watch drive circuit 16 drives the motor 17.
- the rotor 17A of the motor 17 rotationally drives the fifth wheel 51 and drives the fourth wheel 52 via the pinion 51A of the fifth wheel 51. Then, with the rotation of the fourth wheel 52, the second hand is driven.
- the third car 53 is driven via the kana 52A of the fourth car 52, and the second car 54 is driven via the kana 53A of the third car 53. Then, with the rotation of the second wheel & pinion 54, the minute hand is driven.
- the structural material, the gear, etc. that constitute the clock module 12 Prevention of material deformation and deterioration, prevention of deterioration of lubricating oil applied to gears etc., It is possible to prevent deterioration of the battery 23 and prevent deformation and deterioration of the circuit. Therefore, it is possible to prevent the time display accuracy from being lowered due to these, and to generate the operation clock signal CLK based on the ultra-high-precision reference clock signal CLK0 generated by the atomic oscillator 13. It is possible to achieve high display accuracy. Therefore, it can be configured as a railway watch used by train station personnel such as subways and train drivers who require accuracy.
- the power loss associated with the heat generation of the heater for heating the atomic oscillator 13 can be reduced, and hence the power consumption can be reduced.
- the atomic oscillator 13 is housed and disposed on the inner peripheral side of the middle frame 22.
- the atomic oscillator 13 is mounted on the case 21 of the outer peripheral side of the middle frame 22. This is an embodiment in the case of partial arrangement.
- FIG. 6 is an explanatory view of a component mounting state when the front side view of the timepiece of the second embodiment is viewed.
- FIG. 7 is a cross-sectional view of an essential part of the watch of the second embodiment.
- the watch 10 is provided with a case 21.
- This case 21 is made of metal (titanium, stainless steel, aluminum etc.) or resin.
- the whole or a part of the periphery of the atomic oscillator 13 housed near the peripheral edge of the case 21 is formed of a heat insulating material 50 which functions as a thermal separation part.
- a heat insulating material 50 which functions as a thermal separation part.
- Polyethylene, polystyrene and other resins Furthermore, a ceramic coating, a resin coating, etc. may be applied around the atomic oscillator of case 21 to provide a heat insulating structure.
- an inner frame 22 which is formed of a heat insulating material and functions as a thermal separation portion is accommodated.
- the atomic oscillator 13 is fixedly disposed by using a thermal separation portion (heat insulating material 50, middle frame 22) and a case 21.
- a battery 23 as a power supply
- a frequency divider circuit 15 constituting a clock module 12 (operation module)
- a clock IC 24 functioning as a clock drive circuit 16
- the rotor 17A of the motor 17 is engaged with the fifth wheel 51
- the kana 51A of the fifth wheel 51 is engaged with the fourth wheel 52.
- the second hand constituting the hand unit 11 is attached to the rotation shaft of the fourth wheel and pinion 52, and the second hand is driven as the fourth wheel and pinion 52 rotates.
- the third car 53 is engaged with the Kana 52A of the fourth car 52, and the second car 54 is engaged with the third car 53 53A.
- the minute hand constituting the hand unit 11 is attached to the rotation shaft of the second wheel & pinion 54, and the minute hand is driven as the second wheel & pinion 54 rotates.
- the second car 54, the Kana 54A has a sun gear 55 on it.
- An hour wheel (not shown) is engaged with the rotation shaft of the minute wheel, and when the hour wheel rotates, the hour hand constituting the pointer unit 11 attached to the rotation shaft of the hour wheel is driven. It will be.
- day reverse car 55 is engaged with the day reverse middle car 56.
- the intermediate car 56 of this day is connected to the crown 58 via the time correction wheel train 57.
- the atomic oscillator 13 is built in a state of being thermally separated from the clock module 12 via the middle frame 22.
- the atomic oscillator 13 roughly includes an atomic oscillator unit 31 and a control circuit unit 33.
- the control circuit unit 33 and the clock module 12 are electrically connected via a flexible substrate 34. Connected to
- the control circuit unit 33 includes a control circuit 47, a local oscillator 48, and a divider circuit 49.
- the reason is that thermal separation is performed. It is decided to use the flexible substrate 34 which can reduce the thermal conductivity ⁇ and can reduce the cross sectional area.
- the atomic oscillator 13 By arranging the atomic oscillator 13 on the outer peripheral side of the middle frame 22, commercial products can be developed using existing clock modules. That is, for example, by changing the circuit board and the IC for the clock from the existing clock module and connecting the atomic oscillator 13 to the changed clock module, product development using the existing clock movement becomes possible. Ru. As a result, it is possible to commercialize at low cost.
- FIG. 8 is an explanatory diagram of the third embodiment.
- FIG. 9 is an explanatory view of a component mounting state when the front side view of the timepiece of the fourth embodiment is viewed.
- FIG. 10 is a cross-sectional view of an essential part of a timepiece according to a fourth embodiment.
- the atomic oscillator 13 is disposed in part of the case 21, but in the fourth embodiment, the atomic oscillator 13 is housed in the middle frame 22. It is an embodiment of the case.
- the middle frame 22 is formed of a heat insulating material, and the atomic oscillator 13 is covered with the heat insulating material.
- the material of the heat insulating material examples include acrylic, polyethylene, resin ceramics such as polystyrene, soda glass, 10 glass and the like.
- the atomic oscillator 13 is covered by a metal case.
- This metal case may have a heat insulating structure by coating ceramic, resin or the like.
- FIG. 11 is an explanatory diagram of the fifth embodiment.
- each of the above embodiments arranges the atomic oscillator 13 at any force around the movement M in plan view
- the fifth embodiment arranges the atomic oscillator 13 so as to overlap the back surface side of the movement M. Is an embodiment of the present invention.
- the atomic oscillator 13 is housed on the back side of the movement M (opposite to the pointer 11) in a state of being surrounded by the back cover 60 and the heat insulating material 61, and placed on the back cover 60.
- the movement M and the atomic oscillator 13 are electrically connected by a coil spring 62, and signal transmission is performed.
- coil spring 62 even if the product frequency is changed by changing the output frequency of reference clock signal CLK0, at least one of the wire diameter, radius and outer diameter of coil spring 62 is used. Change other components just by changing It is possible to easily form an optimal signal transmission that does not occur.
- the distance X between the movement M and the atomic oscillator 13 can be made larger.
- a conductive rubber instead of the coil spring 62, a conductive rubber can be used.
- the back cover 60 is made of metal or metal coated with ceramic or resin as a heat insulating coating.
- the cell 41 constituting the atomic oscillator unit 31 may be covered with a metal case.
- Examples of the material of the heat insulating material 61 include resins such as acrylic, polyethylene and polystyrene, ceramic, soda glass, lead glass, and the like.
- FIG. 12 is a plan view of a timepiece according to a sixth embodiment.
- FIG. 13 is an explanatory diagram of a first aspect of the sixth embodiment.
- FIG. 14 is an explanatory diagram of a second aspect of the sixth embodiment.
- the atomic oscillator 13 is disposed so as to overlap the back surface side of the movement M.
- the atomic oscillator 13 is disposed on the dial plate. It is.
- the atomic oscillator 13 is covered with a heat insulating material 80 which is a heat insulating means, and is disposed on a second heat insulating material 81 which is a heat insulating means disposed on the lower surface of the dial 65 and has an internal movement. It is thermally separated from M.
- the atomic oscillator 13 and the heat insulating material 80 are disposed closer to the dial 65 than the plane including the rotation locus of the minute hand Hm, and from the rotation locus EH of the tip of the hour hand Hh. Are also located outside. Further, the atomic oscillator 13 and the heat insulating material 80 are inserted into the hole provided in the dial 65 from below, and the upper surface thereof protrudes upward from the dial 65.
- the dial 65 may be formed of only the base material! /
- the base is coated with ceramic and resin on the upper surface, the lower surface and both surfaces of the base. You may use something Yes.
- a viewing window 65W provided with a translucent material such as transparent ceramic, soda glass, or lead glass is formed on the dial plate 65, and the viewing window 65W is formed below the viewing window 65W.
- the atomic oscillator 13 (and the heat insulating material 80) may be arranged so as to be visible.
- the viewing window 65 W may not be provided, and the top surface of the heat insulating material 80 may be configured to have the same height as the viewing side surface of the dial 65.
- the movement M may be disposed between the dial 65 and the second heat insulating material 81.
- the atomic oscillator 13 by arranging the atomic oscillator 13 on the dial 65 or by arranging the atomic oscillator 13 at a position visible through the dial 65, the atomic oscillator 13 can be obtained. While being able to easily recognize that it is a watch equipped with a watch, it is possible to develop products with a wide range of design variations.
- FIG. 15 is an explanatory diagram of the seventh embodiment.
- the seventh embodiment is an embodiment in the case of being housed in a watch band.
- the atomic oscillator 13 is housed in a watch band 67.
- the watch band 67 is made of a heat insulating material, or the atomic oscillator 13 is covered with the heat insulating material.
- the watch band 67 is made of a heat insulating material, it is made of a resin such as acrylic, polyethylene, polystyrene, rubber, or the like.
- the circumference of the atomic oscillator 13 may be insulated by coating with ceramic, resin or the like!
- the atomic oscillator 13 is mounted by arranging the atomic oscillator 13 in the watch band 67.
- the thickness and size of the watch can be easily realized. Furthermore, as described above, commercialization and development using existing watch movements will be facilitated.
- FIG. 16 is an explanatory diagram of the eighth embodiment.
- FIG. 16 the same parts as in FIG. 1, FIG. 2 and FIG.
- the clock (electronic clock) 70 is configured as a portable clock, and roughly divided, the clock module 12C and the pointer unit disposed at the top through a base 72 and a column 72 erected on the base 71. 11 and the base 71 are housed in the portion 71 and supplied with AC power, the ACZDC converter unit 73 for converting AC power to DC power, the battery 74 for storing DC power supplied from the ACZDC converter unit 73, and the base And an atomic oscillator 13 placed at 71.
- the atomic oscillator 13 is covered by a heat insulating material 75.
- timepiece 70 The operation of the timepiece 70 is the same as that of each of the above embodiments, and the detailed description thereof is omitted.
- the clock prevents deformation or deterioration of materials such as gears, etc. that constitute the modules (12, 12B, 12C), prevents deterioration of the lubricant applied to gears etc., prevents deterioration of the battery 23, and prevents circuit deformation or deterioration. Since this can be achieved, it is possible to prevent the time display accuracy from being lowered due to these.
- the power loss associated with heat generation can be reduced, which in turn can reduce power consumption.
- FIG. 17 is a block diagram showing a schematic configuration of a timepiece according to a ninth embodiment.
- the same parts as in the first embodiment of FIG. 1 are denoted by the same reference numerals.
- a watch (electronic watch) 10X is configured as a watch, and roughly divided, a watch module 12X as an operation module having a crystal oscillator 14 that generates and outputs a first oscillation signal SX1, and a first oscillation signal SX1. And an atomic oscillator 13 that generates and outputs a second oscillation signal SX2 of higher accuracy than that of the first oscillation signal SX2.
- the clock module 12X and the atomic oscillator 13 are three-dimensionally separated and arranged, and more specifically, the clock module 12X And the orthogonal projections of the predetermined plane (plane parallel to the display plane) of the atomic oscillator 13 are arranged so as not to overlap.
- the clock module 12X compares the frequency and phase of the crystal oscillator 14 described above, the first oscillation signal SX1 generated by the crystal oscillator 14 and the second oscillation signal SX2 generated by the atomic oscillator 13 with each other.
- the frequency divider circuit 15 divides the frequency of the circuit 19 and the first oscillation signal SX1 based on the comparison result of the frequency and phase comparison circuit 19 to generate and output a reference clock signal CLK, and the reference clock signal CLK.
- a timepiece drive circuit 16 for driving the timepiece mechanism based on the above, a motor 17 controlled by the timepiece drive circuit 16, and a wheel train 18 for transmitting the driving force of the motor 17 are provided.
- the watch module 12X has the same configuration as the watch module 12 of the first embodiment except that the watch module 12X includes the crystal oscillator 14 and the comparison circuit 19. Therefore, in the following, description will be made with reference to FIGS. 2 to 5.
- the rotor 17A of the motor 17 described later is engaged with the fifth wheel 51, and the kana 51A of the fifth wheel 51 is engaged with the fourth wheel 52.
- the second hand constituting the hand unit 11 is attached to the rotation shaft of the fourth wheel and pinion 52, and the second hand is driven as the fourth wheel and pinion 52 rotates.
- the third car 53 is engaged with the kana 52A of the fourth car 52
- the second car 54 is engaged with the third car 53 53A.
- the minute hand constituting the hand unit 11 is attached to the rotation shaft of the second wheel & pinion 54, and the minute hand is driven as the second wheel & pinion 54 rotates.
- the second car 54, the Kana 54A has a sun gear 55 on it.
- An hour wheel (not shown) is engaged with the rotation shaft, and when the hour wheel rotates, the hour hand constituting the pointer unit 11 attached to the rotation shaft of the hour wheel is driven.
- day reverse car 55 is engaged with the day reverse middle car 56.
- the intermediate car 56 of this day is connected to the crown 58 via the time correction wheel train 57.
- a pointer unit 11 having a hand such as a second hand, a minute hand, and an hour hand is connected to the wheel train 18.
- the crystal oscillator 14 is configured to oscillate a tuning fork type crystal oscillator, and outputs a first oscillation signal SX1 of, for example, 32. 768 kHz.
- the divider circuit 15 is configured by connecting a plurality of dividers including a 1Z2 divider circuit with a data set function that functions to give a logic delay amount in multiple stages, and generates the first oscillation signal SX1 as the second oscillation. Using the signal SX2 as a correction reference, it divides it to 1 Hz and outputs a 1 Hz clock signal CLK.
- the atomic oscillator 13 is intermittently driven (driven every three hours in the present embodiment) from the viewpoint of reducing power consumption.
- FIG. 18 is an operation flowchart focusing on the oscillation operation.
- a counter (not shown) is reset to start clocking (step S1), and based on the count value of the counter, it is determined whether or not the force stop period (3 hours) of atomic oscillator 13 has elapsed. Determine (step S2).
- step S2 if it is still the drive stop period of the atomic oscillator 13 (step S2; n), the divider circuit 15 is previously set in the 1Z2 divider circuit with data set function (not shown). Based on the correction data (or in the first case, predetermined correction data), the frequency of the first oscillation signal SX1 is divided while the logic of the first oscillation signal SX1 is slowed down, and the 1 Hz clock signal CLK is divided. Output to watch drive circuit 16.
- the timepiece drive circuit 16 drives the motor 17.
- the rotor 17A of the motor 17 rotationally drives the fifth wheel 51 and drives the fourth wheel 52 via the pinion 51A of the fifth wheel 51. And, the second hand is driven along with the rotation of this fourth wheel 52 Will be
- the third car 53 is driven via the kana 52A of the fourth car 52, and the second car 54 is driven via the kana 53A of the third car 53. Then, with the rotation of the second wheel & pinion 54, the minute hand is driven.
- day back wheel 55 engaged with the second wheel 54's cana 54A is driven, and the hour wheel is driven by driving an hour wheel (not shown).
- step S 3 if it is determined in step S 2 that the drive stop period of atomic oscillator 13 has elapsed (step S 2; y), electric power is supplied to atomic oscillator 13 to start operation of atomic oscillator unit 31. (Step S3).
- the frequency / phase comparison circuit 19 determines the frequency difference between the first oscillation signal SX1 and the second oscillation signal SX2 and The phase difference is measured (step S4), and correction data is output to the divider circuit 15 based on the frequency difference and the phase difference.
- step S7 the amount of phase shift of 1 Hz clock signal CLK based on the correction data (logic delay amount) stored in the 1Z2 frequency divider with data set function. Correction is made on the basis of the frequency difference and phase difference between the second oscillation signal SX2 output from the atomic oscillator 13 and the first oscillation signal SX1 output from the crystal oscillator 14 every three hours.
- the process of updating the data (logic delay amount) and correcting the phase shift amount of the clock signal CLK is repeated.
- the frequency dividing circuit 15 divides the frequency of the first oscillation signal SX1 while performing logic relaxation of the first oscillation signal SX1 based on the newly set correction data, and generates a 1 Hz clock.
- the signal CLK is output to the clock drive circuit 16.
- the timepiece drive circuit 16 drives the motor 17.
- the rotor 17A of the motor 17 rotationally drives the fifth wheel 51 and drives the fourth wheel 52 via the pinion 51A of the fifth wheel 51. Then, with the rotation of the fourth wheel 52, the second hand is driven.
- the third car 53 is driven via the kana 52A of the fourth car 52, and the second car 54 is driven via the kana 53A of the third car 53. Then, with the rotation of the second wheel & pinion 54, the minute hand is driven.
- the power loss associated with the heat generation of the heater for heating the atomic oscillator 13 can be reduced, and hence the power consumption can be reduced.
- the frequency comparison is performed between the first oscillation signal SX1 and the second oscillation signal SX2, and the first oscillation signal SX1 output from the crystal oscillator 11 is generated based on the frequency of the second oscillation signal SX2 output from the atomic oscillator 13
- the oscillation frequency may be corrected.
- the logic easing method is employed as a correction method for the reference clock signal CLK.
- the logic easing method and the capacity variable method of the crystal oscillator may be used in combination.
- the adjustment range of the reference clock signal CLK can be expanded by using both the logic speed adjustment method and the variable capacity method.
- a capacitor for variable capacitance may be provided outside the crystal oscillation circuit.
- the present invention is not limited to this and any time may be used.
- the atomic oscillator unit 31 may be a force atomic oscillator other than the cesium atomic oscillator (for example, a rubidium atomic oscillator).
- the crystal oscillator 11 may be any crystal oscillator such as an oscillator used in an annual clock or a monthly clock.
- power loss associated with heat generation can be reduced, and as a result, power consumption can be reduced.
- the product portable watch or electronic device
- Power loss can also be reduced, resulting in reduced power consumption.
- FIG. 19 is an explanatory view of a first modified example.
- the laser diode 42, the photodiode 44 and the laser temperature sensor 45 may be insulated. That is, the atomic oscillator unit 31 (shown by the heat insulating portion A1 in FIG. 17) may be thermally insulated.
- heat insulation part A1 is comprised with the heat insulating material. According to the above configuration, the operating temperature of the laser diode 42 having temperature characteristics can be kept constant, so that the output fluctuation of the reference clock signal CLK0 can be completely eliminated.
- FIG. 20 is an explanatory view of a second modified example.
- the cell 41, the heater 43, the cell temperature sensor 46, the laser diode 42, the photodiode 44, and the laser temperature sensor 45 are thermally insulated.
- the cell 41, the heater 43, and the cell temperature sensor 46 may be thermally insulated (shown by the thermal insulation portion A2 in FIG. 18).
- the thermal insulation portion A2 is made of a thermal insulator.
- cesium atomic oscillator is used as the atomic oscillator 13 in the above description, other atomic oscillators (for example, rubidium atomic oscillator) may be used.
- the battery 23 the kinetic energy of a coin type primary battery such as a lithium battery or a silver battery, or a rotational panel moving by a solar panel or gravity is transmitted to the rotor of the generator to transfer kinetic energy to the electricity.
- a power generation unit such as a power generation unit that converts energy into energy may be disposed, and a secondary battery may be used as the battery 23. Alternatively, both a primary battery and a secondary battery may be used.
- Receive GPS signals and correct the time GPS clocks, pocket clocks, clocks such as clocks, etc. can be widely applied to all clocks.
- the present invention can be widely applied to portable electronic devices such as ng System devices or electronic devices that can be driven by devices other than commercial power sources such as standard oscillators and notebook personal computers.
- the present invention can be widely applied to electronic devices that can be driven by a commercial power supply, including an operation module (which may or may not include a clock module) that operates based on the reference clock signal.
- radio waves when applied to a radio-controlled clock, it is a situation where radio waves can not be received, for example, a place where radio waves do not reach (in a building, underground, underwater, near a noise source) or a place without radio waves (standard time Stations, space, etc.), or the antenna direction is inappropriate, radio frequency or time code is different during periodical inspection of radio waves, or conditions such as a decrease in the electric field strength due to weather occur.
- data communication equipment such as a cellular phone
- high reliability and high speed communication can be performed by using the reference clock signal CLK0 from the atomic oscillator 13 as a reference signal for transmission bit rate determination. I can.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electric Clocks (AREA)
Abstract
基準クロック信号を生成し出力する原子発振器13と、基準クロック信号に基づいて動作する時計モジュール12と、を備え、原子発振器13と時計モジュール12とは熱的に分離すべく別体に配置される。また、第1発振信号を生成し出力する水晶発振器と、第1発振信号よりも高精度の第2発振信号を生成し出力する原子発振器と、第1発振信号および第2発振信号に基づいて動作する時計モジュールと、原子発振器と、水晶発振器11および時計モジュール12とを、熱的に分離する熱的分離部と、を備える。これにより、基準発振器に原子発振器を用いた場合でも、その発熱の影響を低減しつつ、消費電力を低減可能な携帯時計および電子機器を構成できる。
Description
携帯時計および電子機器
技術分野
[0001] 本発明は、携帯して持ち歩くことが可能な携帯時計および電子機器に係り、特に基 準クロック信号を生成する原子発振器を備えた腕時計および電子機器に関する。 背景技術
[0002] 電子機器である電子時計においては、基準発振器から出力される基準クロック信 号を分周して例えば 1Hzの信号を生成し、この 1Hzの信号に基づいて時刻を計時す るものがある。この種の電子時計には、基準発振器に、温度補償水晶発振器 (Tempe rature Compensated Crystal Oscillator)を用いて、年差士数十秒以内を実現した年 差時計が知られて!/ヽる(例えば、特公平 6 - 31731号公報参照)。
また、近年では、原子発振器を使った標準発振器が提案されている (例えば、米国 特許第 6806784号、米国特許第 6265945号参照)。
発明の開示
発明が解決しょうとする課題
[0003] ところで、電子時計の基準発振器に原子発振器を使用しょうとする場合には、従来 の水晶発振器を用いた時計と同様の構成を採用すると、原子発振器の熱 (例えば、 セルの温度保持に起因するヒータの熱、レーザダイオードの発熱などであり、 85°C程 度)のために、輪列機構等の駆動体の材料、それらを円滑に駆動させるための潤滑 油、電力を供給する電池などがその温度上昇に起因して悪影響を受けるという問題 点、が生じることとなる。
[0004] 具体的には、原子発振器からの熱により、時計駆動体 (ムーブメント)を構成する要 素 (潤滑油、発振回路、駆動回路、電池など)が変形、変質、特性劣化などの悪影響 を受ける可能性が生じる。
また、発熱に伴って電力ロスが大きくなり、結果として消費電力が増加するという問 題点ち生じる。
そこで、本発明の目的は、基準発振器に原子発振器を用いた場合でも、その熱の
影響を低減し、消費電力の低減も図ることが可能な携帯時計あるいは電子機器、特 に腕時計として構成された携帯時計を提供することにある。
課題を解決するための手段
[0005] 上記課題を解決するため、携帯時計は、基準クロック信号を生成し出力する原子発 振器と、前記基準クロック信号に基づいて動作する時計モジュールと、前記原子発振 器と前記時計モジュールとを、熱的に分離する熱的分離部と、を備えたことを特徴と している。
上記構成によれば、原子発振器と時計モジュールとは熱的分離部により熱的に分 離されているので、比較的小型の携帯時計においても時計モジュールが原子発振 器の熱の影響を受けることがなぐ機械的部品精度の低下や潤滑油の劣化などの発 生を抑制することができる。
[0006] この場合にお 、て、好ましくは、ケースを備え、前記原子発振器は、前記ケースに 配置されるとともに、前記原子発振器と前記時計モジュールとの間に前記熱的分離 部として空気層あるいは断熱材のうち少なくとも ヽずれかを配置して!/ヽるようにしても よい。
また、好ましくは、前記原子発振器は、前記時計モジュールに対して位置決めされ 、当該時計モジュールと一体とされて 、るようにしてもょ 、。
また、好ましくは、前記ケースは、前記時計モジュールを収納するモジュール収納 部を有するとともに、前記原子発振器は、前記モジュール収納部の周囲に配置され るようにしてちょい。
[0007] また、好ましくは、前記ケース内に配置されるとともに、前記時計モジュールを支持 するとともに、前記熱的分離部として機能する断熱材で形成された中枠を有し、前記 モジュール収納部は、前記中枠に支持された前記時計モジュールを収納するように してちよい。
また、好ましくは、前記原子発振器と前記時計モジュールとは、 3次元空間的に分 離されて配置されて 、るようにしてもょ 、。
[0008] また、好ましくは、前記時計モジュールおよび前記原子発振器の所定平面に対す る正射影が重ならな 、ように前記時計モジュールおよび前記原子発振器が配置され
ているようにしてもよい。
また、好ましくは、前記ケースは裏蓋を備え、前記原子発振器は、前記裏蓋に支持 されているようにしてちょい。
また、好ましくは、前記携帯時計は、当該携帯時計を腕に装着するための時計バン ドを備えた腕時計として構成されて 、るようにしてもょ 、。
また、好ましくは、前記原子発振器は、前記時計バンドに支持されているようにして ちょい。
[0009] また、好ましくは、時刻表示用の文字板を備え、前記原子発振器は、前記文字板に 支持されて 、るようにしてもょ 、。
また、好ましくは、前記原子発振器は、原子を封入したセルと、前記セルを加熱する ヒータと、前記セルに対して、前記原子の励起に伴う励起状態のエネルギー準位と、 基底状態のエネルギー準位とのエネルギー差に相当する周波数を参照するとともに 、前記ヒータを制御し前記セルを所定温度に維持する制御装置と、を備えているよう にしてもよい。
また、好ましくは、上記各構成において、原子発振器と時計モジュールとの間を電 気的に接続する信号線の材料としては、その熱抵抗が原子発振器側カゝら時計モジュ ールに伝わる熱を必要十分に阻止可能な値を有するものを用いるようにするのが望 ましい。
[0010] また、電子機器は、基準クロック信号を生成し出力する原子発振器と、前記基準ク ロック信号に基づ 、て動作する動作モジュールと、前記原子発振器と前記動作モジ ユールとを、熱的に分離する熱的分離部と、を備えたことを特徴としている。
上記構成によれば、原子発振器と動作モジュールとは熱的分離部により熱的に分 離されて!/、るので、比較的小型の電子機器にぉ 、ても動作モジュールが原子発振 器の熱の影響を受けることがなぐ機械的部品精度の低下や潤滑油の劣化などの発 生を抑制することができる。
[0011] この場合において、好ましくは、ケースを備え、前記原子発振器は、前記ケースに 配置されるとともに、前記原子発振器と前記動作モジュールとの間に前記熱的分離 部として空気層あるいは断熱材のうち少なくとも ヽずれかを配置して!/ヽるようにしても
よい。
[0012] また、電子機器は、第 1発振信号を生成し出力する水晶発振器と、前記第 1発振信 号よりも高精度の第 2発振信号を生成し出力する原子発振器と、前記第 1発振信号 および前記第 2発振信号に基づ 、て動作する動作モジュールと、前記原子発振器と 、前記水晶発振器および前記動作モジュールとを、熱的に分離する熱的分離部と、 を備えたことを特徴として!/ヽる。
上記構成によれば、原子発振器と、水晶発振器および動作モジュールとは熱的分 離部により熱的に分離されるので、水晶発振器および動作モジュールは原子発振器 の発熱の影響を受けることがなぐ正常な動作状態を長期にわたって維持することが 可能となる。
[0013] この場合において、好ましくは、水晶発振器と動作モジュールとは一体的に配置さ れているようにしてもよい。
また、好ましくは、前記原子発振器は、前記動作モジュールと一体的に配置されて いるようにしてちょい。
また、好ましくは、前記熱的分離部は、空気層あるいは断熱材のうち少なくともいず れかを含むようにしてもよい。
[0014] また、好ましくは、前記動作モジュールを収納するモジュール収納部を有するケー スを備え、前記原子発振器は、前記ケースのモジュール収納部の周囲に配置される ようにしてもよい。
また、好ましくは、前記動作モジュールを支持する断熱材で形成された中枠を有し 、前記モジュール収納部は、前記中枠に支持された前記動作モジュールを収納する ようにしてもよい。
また、好ましくは、前記原子発振器と前記動作モジュールとは、 3次元空間的に分 離されて配置されて 、るようにしてもょ 、。
また、好ましくは、前記動作モジュールおよび前記原子発振器の所定平面に対す る正射影が重ならな 、ように前記動作モジュールおよび前記原子発振器が配置され ているようにしてもよい。
[0015] また、好ましくは、前記電子機器は、計時装置を構成しており、前記動作モジユー
ルは、時計駆動回路を含んで 、るようにしてもょ 、。
また、好ましくは、当該電子機器は、腕時計として構成されており、前記腕時計を人 体に装着するための時計バンドを備え、前記原子発振器は、前記時計バンドに支持 されているようにしてちょい。
また、好ましくは、当該電子機器は、腕時計として構成されており、前記原子発振器 は、前記腕時計を人体に装着するための時計バンドに支持されているようにしてもよ い。
また、好ましくは、時刻表示用の文字板を備え、前記原子発振器は、前記文字板に 支持されて 、るようにしてもょ 、。
[0016] また、好ましくは、前記原子発振器は、原子を封入したセルと、前記セルを加熱する ヒータと、前記セルに対して、前記原子の励起に伴う励起状態のエネルギー準位と、 基底状態のエネルギー準位とのエネルギー差に相当する周波数を参照するとともに 、前記ヒータを制御し前記セルを所定温度に維持する制御装置と、を備えているよう にしてもよい。
発明の効果
[0017] 本発明によれば、携帯時計あるいは電子機器に基準発振器として原子発振器を用 いた場合でも、その熱の影響を低減しつつ、携帯時計あるいは電子機器を構成する ことができ、消費電力も低減できる。
図面の簡単な説明
[0018] [図 1]実施形態の時計の概要構成を示すブロック図である。
[図 2]第 1実施形態の時計を正面側力 見た場合の部品実装状態の説明図である。
[図 3]第 1実施形態の時計の要部断面図である。
[図 4]第 1実施形態の原子発振器の固定状態の説明図である。
[図 5]原子発振器および第 1実施形態の断熱部の説明図である。
[図 6]第 2実施形態の時計を正面側力 見た場合の部品実装状態の説明図である。
[図 7]第 2実施形態の時計の要部断面図である。
[図 8]第 3実施形態の説明図である。
[図 9]第 4実施形態の時計を正面側力 見た場合の部品実装状態の説明図である。
[図 10]第 4実施形態の時計の要部断面図である。
[図 11]第 5実施形態の説明図である。
[図 12]第 6実施形態の時計の平面図である。
[図 13]第 6実施形態の第 1の態様の説明図である。
[図 14]第 6実施形態の第 2の態様の説明図である。
[図 15]第 7実施形態の説明図である。
[図 16]第 8実施形態の説明図である。
[図 17]第 9実施形態の時計の概要構成を示すブロック図である。
[図 18]発振動作を中心とした動作フローチャートである。
[図 19]第 1変形例の説明図である。
[図 20]第 2変形例の説明図である。
符号の説明
[0019] 10 腕時計 (電子時計)
11 指針部
12 時計モジュール
13 原子発振器
14 水晶発振器
15 分周回路
16 時計駆動回路
17 モータ
18 輪列
19 比較回路
21 ケース
50 断熱材
発明を実施するための最良の形態
[0020] 以下、本発明の好適な実施の形態について図面を参照して説明する。
[1]第 1実施形態
図 1は、実施形態の時計の概要構成を示すブロック図である。
携帯時計としての腕時計 (電子時計) 10は、大別すると、時刻表示を行う複数の指 針を有する指針部 11と、基準クロック信号 CLK0に基づいて指針部 11を駆動する動 作モジュールとしての時計モジュール 12と、基準クロック信号 CLK0を生成し出力す る原子発振器 13と、を備えている。
この場合において、時計モジュール 12と、原子発振器 13とは、 3次元空間的に分 離されて配置されており、より詳細には、時計モジュール 12および原子発振器 13の 所定平面 (表示面に平行な平面)に対する正射影が重ならな 、ように配置されて 、る
[0021] さらに、時計モジュール 12は、基準クロック信号 CLK0を分周して、動作クロック信 号 CLKを生成し、出力する分周回路 15と、動作クロック信号 CLKに基づいて計時 機構を駆動する時計駆動回路 16と、計時機構を構成し、時計駆動回路 16により制 御されるモータ 17と、モータ 17の駆動力を伝達する輪列 18と、を備えている。
分周回路 15は、論理緩急量を付与すべく機能するデータセット機能付き 1Z2分周 回路を含む複数の分周器を多段に接続して構成されており、基準クロック信号 CLK 0を 1Hzまで分周し、 1Hzの動作クロック信号 CLKを出力する。
[0022] 図 2は、第 1実施形態の時計を正面側から見た場合の部品実装状態の説明図であ る。
図 3は、第 1実施形態の時計の要部断面図である。
図 4は、第 1実施形態の原子発振器の固定状態の説明図である。
時計 10は、ケース 21を備えている。このケース 21は、金属(チタン、ステンレス、ァ ルミなど)あるいは榭脂で形成されて 、る。
ケース 21の周縁部寄りに収納される原子発振器 13の周囲の全部または一部は熱 的分離部として機能する断熱材 50で構成されている。本第 1実施形態の場合、図3 に示すように、原子発振器 13の周囲全部が断熱材 50に覆われている。ここで、用い る断熱材 50の材料としては、アクリル、ポリエチレン、ポリスチレン等の樹脂が挙げら れる。
[0023] また、断熱材 50で周囲が覆われた原子発振器 13は、さらに金属製の原子発振器 ケース 13Aに収納されている。ここで、原子発振器ケース 13 Aとして金属製の原子発
振器ケース 13Aを用いているのは、耐磁のためである。この金属製の原子発振器ケ ース 13Aを用いることによって、原子発振器 13とモータ 17とを近接配置することが可 能になる。したがって、原子発振器 13を電子時計のケース 21内に配置する際のレイ アウト制約が小さくなり、時計の薄型化、小型化が可能になる。さらに原子発振器ケ ース 13Aは、セラミック、榭脂などをコーティングすることにより断熱構造としてもよい。
[0024] また、ケース 21の原子発振器周辺にセラミックコーティング、榭脂コーティングなど を施すことで断熱構造としても良い。
さらに、ケース 21の中央部分には、断熱材で形成され、熱的分離部として機能する 中枠 22が収納されている。
この中枠 22内には、電源としての電池 23と、原子発振器 13、時計モジュール 12を 構成する分周回路 15および時計駆動回路 16として機能する時計用 IC24と、モータ 17と、輪列 18と、が収納されている。
[0025] この場合において、原子発振器 13は、断熱材で構成された中枠 22の内周側に配 置されている。原子発振器 13を中枠 22の内周側に配置することによって、ケース 21 の外部に温度変化が生じた場合に、その温度変化を緩和させることが可能になり、 原子発振器 13の温度変化による特性劣化を低減させることが可能になる。
中枠 22を構成する断熱材の材料としては、アクリル、ポリエチレン、ポリスチレン等 の榭脂、セラミック、ソーダガラス、鉛ガラス、などが挙げられる。
[0026] また、本第 1実施形態においては、時計モジュール 12は、コの字形状をなしており 、原子発振器 13を収容した原子発振器ケース 13Aは、時計モジュール 12の窪んだ 部分に配置されている。
そして、原子発振器ケース 13Aの一端力もは、図 2中、左右方向に支持部 13A1が 延びており、図 4に示すように、ねじ SCが地板 BPにねじ込まれることにより、押さえ板 FPおよび地板 BPに挟持されて、時計モジュール 12の配線が形成された基板 12A1 および原子発振器 13の配線が形成された回路基板 13Bが電気的に接続されている この時計モジュール 12において、後述するモータ 17のロータ 17Aは、 5番車 51に 嚙み合っており、この 5番車 51のカナ 51Aには、 4番車 52が嚙み合っている。
[0027] この 4番車 52の回転軸には、指針部 11を構成する秒針が取り付けられており、 4番 車 52の回転に伴って秒針が駆動されることとなる。
支持部 13A1としては、左右方向に形成されたものに限定せずに、 1つ以上の支持 部で時計モジュール 12に位置決め固定されればよい。さらには、ねじ SCを用いずに 周知の位置決め固定手段で位置決め固定されたものであってもよ!/ヽ。
そして、 4番車 52のカナ 52Aには、 3番車 53が嚙み合っており、 3番車 53のカナ 5 3Aには、 2番車 54が嚙み合っている。この 2番車 54の回転軸には、指針部 11を構 成する分針が取り付けられており、 2番車 54の回転に伴って分針が駆動されることと なる。また、 2番車 54のカナ 54Aには、日の裏車 55が嚙み合っている。 日の裏車の 回転軸には、図示しない筒車が嚙み合っており、この筒車が回転することにより、筒 車の回転軸に取り付けられた指針部 11を構成する時針が駆動されることとなる。
[0028] さらに日の裏車 55は、日の裏中間車 56に嚙み合っている。この日の裏中間車 56 は、時刻修正輪列 57を介してリュウズ 58につながっている。
すなわち、原子発振器 13と時計モジュール 12とは、以下のような理由から、熱的に 分離されている必要がある。
(1)原子発振器は、必要に応じて加熱して所定温度に維持する必要があり、時計 モジュールあるいは外部空間に熱が逃げて、加熱の必要が生じることに伴う消費電 力増加の防止
(2)時計モジュールを構成する構造材、歯車などの材料の変形'変質防止
(3)歯車などに塗布された潤滑油の変質防止
(4)電池の劣化防止
(5)回路の変形'変質防止
[0029] この場合に、原子発振器 13と時計モジュール 12とを結ぶ素材の熱伝導率を λ、断 面積を Α、両者間の距離を Xとすると、両者の間の熱抵抗 Rは、次式により表される。
R=x/ ( X -A)
したがって、原子発振器 13と時計モジュール 12と熱的に分離するためには熱抵抗 Rを大きくすれば良いので、両者を結ぶ場合には、距離 Xを大きくし、熱伝導率えが 小さぐ断面積 Aを小さくするのが好ましい。
[0030] し力しながら、原子発振器 13と時計モジュール 12との間で信号のやり取りを行うた めに設けられる信号線は、微小な信号伝送を行う必要上、すなわち、不要なノイズな どを拾わな 、ように、距離 Xはあまり大きくすることはできな 、。
そこで、本実施形態では、原子発振器 13を収容した原子発振器ケース 13Aは、動 作モジュールの窪んだ部分に配置して空間的に分離することにより、実効的な熱伝 導率 λを小さくし、熱抵抗 Rを大きくするようにして 、る。
[0031] 図 5は、原子発振器および第 1実施形態の断熱部の説明図である。
原子発振器 13を構成する原子発振器ユニット 31は、大別すると、アルカリ金属 (セ シゥム)が封入されたセル 41と、セル 41に対し励起用のレーザ光を出射するレーザ ダイオード 42と、セル 41を加熱するヒータ 43と、セル 41から出射された光を受光する フォトダイオード 44と、レーザダイオード 42の温度を測定するレーザ温度センサ 45と 、セル 41の温度を測定するセル温度センサ 46と、を備えている。
[0032] 原子発振器 13は、原子発振器ユニット 31としてセシウム原子発振器が用いられて おり、この原子発振器ユニット 31は、後述する制御回路 47の制御下で局部発振器 4 8が生成した発振信号の周波数が所定周波数( = 9. 2GHz)であるか否かを所定の 物理現象を利用して検証する。
制御回路部 33は、レーザ温度センサ 45の測定したレーザダイオードの温度に基 づ 、てレーザダイオード 42の出力制御を行 、、セル温度センサ 46の測定したセル 4 1の温度にも基づいてヒータ 43の制御を行い、フォトダイオード 44の出力信号を処理 する制御回路 47と、 制御回路 47を介して出力されるフォトダイオード 44の出力信号 の周波数を所定周波数までダウンコンバートして出力する局部発振器 48と、局部発 振器 48の出力信号を分周して、基準クロック信号 CLK0として出力する分周回路 49 と、を備えている。
[0033] ここで、制御回路部 33は、セル 41に対して、セシウム原子の励起に伴う励起状態 のエネルギー準位と、基底状態のエネルギー準位とのエネルギー差に相当する周波 数を参照するとともに、ヒータ 43を制御しセル 41を所定温度に維持している。より詳 細には、レーザダイオード 42は、その出力の上側サイドバンドと下側サイドバンドの 周波数差がセシウム原子の固有振動数に一致するように変調されており、セル 41内
の透過レーザ光量は上側サイドバンドと下側サイドバンドの周波数差がセシウム原子 の固有周波数と一致したときに最も大きくなるので、フォトダイオード 44の出力が最大 となるようにレーザダイオードの変調周波数を調整することにより、変調周波数がセシ ゥム原子の固有周波数を基準として安定化される。その結果、基準クロック信号 CLK 0もセシウム原子の固有周波数を基準として安定化されることとなる。
[0034] この場合において、原子発振器 13全体(図 5中、断熱部 AOで示す)が断熱された 構成を採っている。ここで、断熱部 AOは、断熱材で構成されている。
この構成によれば、温度特性のある局部発振器 48とレーザダイオード 42の動作温 度を一定に保つことができるので、基準クロック信号 CLK0の出力変動を皆無にでき る。
以上の説明では、断熱的な構造についてのみ述べている力 現実的には、耐磁性 の観点から、原子発振器 13およびその断熱構造の形状および配置も考慮している。
[0035] 次に実施形態の動作について説明する。
原子発振器 13に電力が供給され、原子発振器 13が基準クロック信号 CLK0を生 成すると、分周回路 15は予めデータセット機能付き 1Z2分周回路に設定された補 正データに基づいて、基準クロック信号 CLK0の論理緩急を行いつつ、基準クロック 信号 CLK0の周波数を分周し、 1Hzの動作クロック信号 CLKを時計駆動回路 16〖こ 出力する。
これにより、時計駆動回路 16は、モータ 17を駆動する。
この結果、モータ 17のロータ 17Aは、 5番車 51を回転駆動し、 5番車 51のカナ 51 Aを介して 4番車 52を駆動する。そして、この 4番車 52の回転に伴って秒針が駆動さ れることとなる。
[0036] さらに、 4番車 52のカナ 52Aを介して 3番車 53が駆動され、この 3番車 53のカナ 53 Aを介して 2番車 54が駆動される。そして、この 2番車 54の回転に伴って分針が駆動 されることとなる。
以上の説明のように、本第 1実施形態によれば、原子発振器 13と時計モジュール 1 2とは、熱的に分離されて配置されているので、時計モジュール 12を構成する構造 材、歯車などの材料の変形や変質防止、歯車などに塗布された潤滑油の変質防止、
電池 23の劣化防止、回路の変形'変質防止が図れる。このため、これらに起因する 時刻表示精度の低下を防止することができるとともに、原子発振器 13が生成した超 高精度の基準クロック信号 CLK0に基づく動作クロック信号 CLKを生成するので、よ り一層の時刻表示精度の高精度化を図ることが可能となる。したがって、精度が要求 される地下鉄等の鉄道駅員や列車運転者が使用する鉄道用腕時計として構成する ことが可能になる。
さらに原子発振器 13を加熱するためのヒータの発熱に伴う電力ロスも低減すること ができ、ひいては、電力消費を低減することができる。
[0037] [2]第 2実施形態
以上の第 1実施形態は、原子発振器 13を中枠 22の内周側に収納配置するもので あつたが、本第 2実施形態は、原子発振器 13を中枠 22の外周側のケース 21の一部 に配置する場合の実施形態である。
図 6は、第 2実施形態の時計を正面側力 見た場合の部品実装状態の説明図であ る。
図 7は、第 2実施形態の時計の要部断面図である。
時計 10は、ケース 21を備えている。このケース 21は、金属(チタン、ステンレス、ァ ルミなど)あるいは榭脂で形成されて 、る。
[0038] ケース 21の周縁部寄りに収納される原子発振器 13の周囲の全部または一部は、 熱的分離部として機能する断熱材 50で構成されており、用いる断熱材としては、ァク リル、ポリエチレン、ポリスチレン等の榭脂である。さらにケース 21の原子発振器周辺 にセラミックコーティング、榭脂コーティングなどを施して断熱構造としても良い。 また、ケース 21の中央部分には、断熱材で形成され、熱的分離部として機能する 中枠 22が収納されている。
[0039] 原子発振器 13は、熱的分離部(断熱材 50、中枠 22)とケース 21とを利用して固定 配置されている。
この中枠 22内には、電源としての電池 23と、時計モジュール 12 (動作モジュール) を構成する分周回路 15および時計駆動回路 16として機能する時計用 IC24と、モー タ 17と、輪列 18と、が収納されている。
モータ 17のロータ 17Aは、 5番車 51に嚙み合っており、この 5番車 51のカナ 51A には、 4番車 52が嚙み合っている。
[0040] この 4番車 52の回転軸には、指針部 11を構成する秒針が取り付けられており、 4番 車 52の回転に伴って秒針が駆動されることとなる。
そして、 4番車 52のカナ 52Aには、 3番車 53が嚙み合っており、 3番車 53のカナ 5 3Aには、 2番車 54が嚙み合っている。この 2番車 54の回転軸には、指針部 11を構 成する分針が取り付けられており、 2番車 54の回転に伴って分針が駆動されることと なる。また、 2番車 54のカナ 54Aには、日の裏車 55が嚙み合っている。 日の裏車の 回転軸には、図示しない筒車が嚙み合っており、この筒車が回転することにより、筒 車の回転軸に取り付けられた指針部 11を構成する時針が駆動されることとなる。
[0041] さらに日の裏車 55は、日の裏中間車 56に嚙み合っている。この日の裏中間車 56 は、時刻修正輪列 57を介してリュウズ 58につながっている。
ケース 21には、中枠 22を介して時計モジュール 12とは熱的に分離された状態で、 原子発振器 13が内蔵されている。この原子発振器 13は、大別すると、原子発振器ュ ニット 31と、制御回路部 33と、を備えており、この制御回路部 33と、時計モジュール 1 2とは、フレキシブル基板 34を介して電気的に接続されて 、る。
制御回路部 33は、制御回路 47と、局部発振器 48と、分周回路 49と、を備えている
[0042] ここで、原子発振器 13と時計モジュール 12とは、前述した熱的に分離する理由(1) 〜 (4)及び熱抵抗 Rとの関係を考慮して、本第 2実施形態では、熱伝導率 λを小さく できるとともに、断面積 Αを小さく構成できるフレキシブル基板 34を用いることとした。 原子発振器 13を中枠 22の外周側に配置することによって、既存の時計モジュール を利用した商品展開が可能になる。すなわち、例えば、既存の時計モジュールから 回路基板と時計用 ICとを変更し、この部品変更された時計モジュールに原子発振器 13を接続することによって、既存の時計ムーブメントを利用した商品展開が可能にな る。この結果、低コストで商品化することが可能になる。
[0043] [3]第 3実施形態
図 8は、第 3実施形態の説明図である。
以上の第 2実施形態は、原子発振器 13をケース 21の一部に配置する構成を採つ ていたが、ケース 21の周縁部に時計のムーブメント M (=時計モジュール 12B+電 池 23など)を取り囲むように原子発振器 13 (図 8中、斜線で示す)を配置するように構 成することも可能である。
[0044] [4]第 4実施形態
図 9は、第 4実施形態の時計を正面側力 見た場合の部品実装状態の説明図であ る。
図 10は、第 4実施形態の時計の要部断面図である。
以上の第 1実施形態および第 2実施形態は、原子発振器 13をケース 21の一部に 配置するものであつたが、本第 4実施形態は、原子発振器 13を中枠 22内に収納す る場合の実施形態である。
[0045] この場合において、中枠 22は、断熱材で形成されており、原子発振器 13は断熱材 で覆われるようにされて 、る。
断熱材の材料としては、アクリル、ポリエチレン、ポリスチレン等の榭脂セラミック、ソ ーダガラス、 10ガラス、などが挙げられる。
また、原子発振器 13は金属ケースにより覆われている。この金属ケースは、セラミツ ク、榭脂などをコーティングすることにより断熱構造としてもよい。
[0046] [5]第 5実施形態
図 11は、第 5実施形態の説明図である。
以上の各実施形態は、原子発振器 13を平面視でムーブメント Mの周囲のいずれ 力に配置させるものであつたが、本第 5実施形態は、原子発振器 13をムーブメント M の裏面側に重ねて配置する場合の実施形態である。
原子発振器 13は、ムーブメント Mの裏面側(指針部 11とは反対側)に裏蓋 60およ び断熱材 61に囲まれた状態で収納されており、裏蓋 60に載置されている。
[0047] そしてムーブメント Mと原子発振器 13とは、コイルばね 62により電気的に接続され 、信号伝送がなされている。特に、コイルばね 62を用いる場合には、基準クロック信 号 CLK0の出力周波数を変更して商品展開する場合であっても、コイルばね 62の線 径、卷数、外径のうち、少なくともいずれかを変更するだけで、他の構成部品を変更
することなぐ最適な信号伝送を容易に形成することが可能となる。
[0048] このコイルばね 62を用いることにより、ムーブメント Mと原子発振器 13ととの間の距 離 Xをより大きくとることができる。その結果、熱抵抗 R (前述の熱抵抗 Rの式を参照) を大きくすることが可能となり、原子発振器 13からムーブメント Mへの熱の伝導を小さ くすることが可能となり、断熱性の向上が図れる。
[0049] また、このコイルばね 62に代えて、導電性ゴムを用いるように構成することも可能で ある。
裏蓋 60は、金属あるいは金属に断熱コーティングとして、セラミック、榭脂がコーテ イングされたものが用いられる。この場合に、原子発振器ユニット 31を構成するセル 4 1を金属ケースで覆うようにしてもよい。
断熱材 61の材料としては、アクリル、ポリエチレン、ポリスチレン等の榭脂、セラミック 、ソーダガラス、鉛ガラス、などが挙げられる。
[0050] [6]第 6実施形態
図 12は、第 6実施形態の時計の平面図である。
図 13は、第 6実施形態の第 1の態様の説明図である。
図 14は、第 6実施形態の第 2の態様の説明図である。
以上の第 5実施形態は、原子発振器 13をムーブメント Mの裏面側に重ねて配置す るものであつたが、本第 6実施形態は、原子発振器 13を文字板に配置する場合の実 施形態である。
[0051] 原子発振器 13は、断熱手段である断熱材 80に覆われているとともに、文字板 65の 下面に配置した断熱手段である第 2の断熱材 81の上に配置され、内部のムーブメン ト Mから熱的に分離されている。この場合において、原子発振器 13および断熱材 80 は、図 13に示すように、分針 Hmの回転軌跡を含む平面よりも文字板 65側に配置さ れ、かつ、時針 Hhの先端の回転軌跡 EHよりも外側に配置されている。さらに、原子 発振器 13および断熱材 80は、文字板 65に設けられた孔に下方より挿入され、その 上面が文字板 65から上方に突設されている。
[0052] ここで、文字板 65の構成としては、基材のみで文字板を構成してもよ!/ヽし、基材の 上面、下面、両面のいずれにセラミック、榭脂がコーティングされたものを用いてもよ
い。
[0053] 以上の説明は、原子発振器 13および断熱材 80が、文字板 65に設けられた孔に下 方より挿入され、その上面が文字板 65から上方に突設されて ヽる場合のものであつ た力 図 14に示すように、文字板 65に透明セラミック、ソーダガラス、鉛ガラスのよう に透光性の材料を設けた視認窓 65Wを形成し、その下方に視認窓 65Wを介して原 子発振器 13 (および断熱材 80)を視認可能に配置するようにしてもよい。あるいは、 前記視認窓 65Wは設けず、断熱材 80の上面を文字板 65の視認側表面と同じ高さ で構成してもよい。さらには、ムーブメント Mを文字板 65と第 2の断熱材 81との間に 配置する構成としてもよい。
[0054] 上述したように、本第 6実施形態によれば、原子発振器 13を文字板 65上に配置、 あるいは、文字板 65を介して視認可能な位置に配置することによって、原子発振器 1 3を搭載した時計であることを時計の外観カゝら容易に認識できるとともに、デザインバ リエーシヨンに幅を持たせた商品展開が可能となる。
[0055] [7]第 7実施形態
図 15は、第 7実施形態の説明図である。
以上の各実施形態は、原子発振器 13をケース 21内に配置するものであつたが、本 第 7実施形態は、時計バンド内に収納する場合の実施形態である。
原子発振器 13は、時計バンド 67内に収納されている。
この場合において、時計バンド 67が断熱材で構成されているカゝ、あるいは、原子発 振器 13が断熱材で覆われて 、るようにされて 、る。
時計バンド 67を断熱材で構成する場合には、アクリル、ポリエチレン、ポリスチレン 等の榭脂、ゴム、などで構成する。
時計バンド 67を金属で構成する場合には、セラミック、榭脂などのコーティングによ り原子発振器 13の周囲を断熱構造とするようにしてもよ!ヽ。
[0056] この場合においては、原子発振器 13が時計モジュールを含むムーブメント Mとの 距離が離れているため、信号線が長くなり、ノイズなどを拾いやすくなるため、原子発 振器 13内に信号増幅用のアンプを備えるのが望ましい。
原子発振器 13を時計バンド 67内に配置することによって、原子発振器 13を搭載し
た時計の薄型化、小型化が容易に実現できる。さらには、前述と同様に既存の時計 ムーブメントを利用した商品化展開が容易になる。
[0057] [8]第 8実施形態
図 16は、第 8実施形態の説明図である。
以上の各実施形態は、腕時計を例として説明したが、本第 8実施形態は、置き時計 として構成した場合の実施形態である。
図 16において、図 1、図 2および図 5と同様の部分には同一の符号を付すものとす る。
時計 (電子時計) 70は、携帯型置き時計として構成されており、大別すると、土台 7 1と、土台 71に立設された支柱 72を介して上部に配置された時計モジュール 12Cお よび指針部 11と、土台 71部分に収納され、交流電力が供給された状態では、交流 電力を直流電力に変換する ACZDCコンバータユニット 73と、 ACZDCコンバータ ユニット 73から供給された直流電力を蓄えるバッテリ 74と、土台 71に載置された原 子発振器 13と、を備えている。
[0058] この場合において、原子発振器 13は断熱材 75により覆われている。
また、原子発振器 13と時計モジュール 12Cとの距離が離れているため、信号線が 長くなり、ノイズなどを拾いやすくなるため、原子発振器 13内には信号増幅用のアン プを備えている。
時計 70の動作については、上記各実施形態と同様であるためのその詳細な説明 は省略する。
[0059] 以上の説明のように、上記第 2〜8実施形態によっても、原子発振器 13と時計モジ ユール(12、 12B、 12C)とは、熱的に分離されて配置されているので、時計モジユー ル(12、 12B、 12C)を構成する構造材、歯車などの材料の変形や変質防止、歯車 などに塗布された潤滑油の変質防止、電池 23の劣化防止、回路の変形'変質防止 が図れるため、これらに起因する時刻表示精度の低下を防止することができる。
さらに発熱に伴う電力ロスも低減することができ、ひいては、電力消費を低減する ことができる。
[0060] [9]第 9実施形態
図 17は、第 9実施形態の時計の概要構成を示すブロック図である。図 17において 、図 1の第 1実施形態と同様の部分には同一の符号を付すものとする。
時計 (電子時計) 10Xは、腕時計として構成されており、大別すると、第 1発振信号 SX1を生成し出力する水晶発振器 14を備えた動作モジュールとしての時計モジユー ル 12Xと、第 1発振信号 SX1よりも高精度の第 2発振信号 SX2を生成し出力する原 子発振器 13と、を備えている。
[0061] この場合においても、上記各実施形態と同様に、時計モジュール 12Xと、原子発振 器 13とは、 3次元空間的に分離されて配置されており、より詳細には、時計モジユー ル 12Xおよび原子発振器 13の所定平面 (表示面に平行な平面)に対する正射影が 重ならな 、ように配置されて 、る。
さらに、時計モジュール 12Xは、上述した水晶発振器 14と、水晶発振器 14が生成 した第 1発振信号 SX1と原子発振器 13が生成した第 2発振信号 SX2の周波数およ び位相比較を行う周波数,位相比較回路 19と、第 1発振信号 SX1を周波数,位相比 較回路 19の比較結果に基づいて分周して、基準クロック信号 CLKを生成し、出力す る分周回路 15と、基準クロック信号 CLKに基づいて計時機構を駆動する時計駆動 回路 16と、計時機構を構成し、時計駆動回路 16により制御されるモータ 17と、モー タ 17の駆動力を伝達する輪列 18と、を備えている。
[0062] この場合において、時計モジュール 12Xは、水晶発振器 14および比較回路 19を 備えた以外は、第 1実施形態の時計モジュール 12と同様の構成となっている。したが つて、以下においては、図 2ないし図 5を参照して説明するものとする。
この時計モジュール 12Xにおいて、後述するモータ 17のロータ 17Aは、 5番車 51 に嚙み合っており、この 5番車 51のカナ 51Aには、 4番車 52が嚙み合っている。 この 4番車 52の回転軸には、指針部 11を構成する秒針が取り付けられており、 4番 車 52の回転に伴って秒針が駆動されることとなる。
[0063] そして、 4番車 52のカナ 52Aには、 3番車 53が嚙み合っており、 3番車 53のカナ 5 3Aには、 2番車 54が嚙み合っている。この 2番車 54の回転軸には、指針部 11を構 成する分針が取り付けられており、 2番車 54の回転に伴って分針が駆動されることと なる。また、 2番車 54のカナ 54Aには、日の裏車 55が嚙み合っている。 日の裏車の
回転軸には、図示しない筒車が嚙み合っており、この筒車が回転することにより、筒 車の回転軸に取り付けられた指針部 11を構成する時針が駆動されることとなる。
[0064] さらに日の裏車 55は、日の裏中間車 56に嚙み合っている。この日の裏中間車 56 は、時刻修正輪列 57を介してリュウズ 58につながっている。
さらに輪列 18には、秒針、分針、時針等の指針を備えた指針部 11が接続されてい る。
水晶発振器 14は、音叉型水晶振動子を発振させる構成を採っており、例えば 32. 768kHzの第 1発振信号 SX1を出力する。
分周回路 15は、論理緩急量を付与すべく機能するデータセット機能付き 1Z2分周 回路を含む複数の分周器を多段に接続して構成されており、第 1発振信号 SX1を第 2発振信号 SX2を補正基準として、 1Hzまで分周し、 1Hzのクロック信号 CLKを出力 する。
[0065] 次に第 9実施形態の動作について説明する。
本実施形態においては、腕時計などの小型携帯型時計を前提としているため、消 費電力低減の観点から、原子発振器 13を間欠駆動 (本実施形態では、 3時間毎に 駆動)している。
[0066] 図 18は、発振動作を中心とした動作フローチャートである。
前回の間欠動作終了後、図示しないカウンタをリセットして計時を開始させ (ステツ プ S1)、当該カウンタのカウント値に基づいて原子発振器 13の駆動停止期間(3時間 )が経過した力否かを判定する (ステップ S 2)。
そして、ステップ S2の判別において、未だ原子発振器 13の駆動停止期間である場 合には (ステップ S2 ;n)、分周回路 15は図示しない、データセット機能付き 1Z2分 周回路に前回設定された補正データ (あるいは初回の場合には、所定の補正データ )に基づいて、第 1発振信号 SX1の論理緩急を行いつつ、第 1発振信号 SX1の周波 数を分周し、 1Hzのクロック信号 CLKを時計駆動回路 16に出力する。
[0067] これにより、時計駆動回路 16は、モータ 17を駆動する。
この結果、モータ 17のロータ 17Aは、 5番車 51を回転駆動し、 5番車 51のカナ 51 Aを介して 4番車 52を駆動する。そして、この 4番車 52の回転に伴って秒針が駆動さ
れることとなる。
さらに、 4番車 52のカナ 52Aを介して 3番車 53が駆動され、この 3番車 53のカナ 53 Aを介して 2番車 54が駆動される。そして、この 2番車 54の回転に伴って分針が駆動 されることとなる。
さらにまた、 2番車 54のカナ 54Aに嚙み合っている日の裏車 55が駆動され、図示 しない筒車が駆動されることにより、時針が駆動されることとなる。
以上の結果、現在時刻が表示されることとなる。
[0068] 一方、ステップ S2の判別において、原子発振器 13の駆動停止期間が経過した場 合には (ステップ S2 ;y)、原子発振器 13に電力が供給され、原子発振器ユニット 31 の動作を開始させる (ステップ S3)。
続いて、電力供給開始力 原子発振器 13の発振周波数が安定するのに十分な時 間が経過した後に、周波数 ·位相比較回路 19は、第 1発振信号 SX1と第 2発振信号 SX2の周波数差および位相差を測定し (ステップ S4)、周波数差および位相差に基 づ 、て補正データを分周回路 15に出力する。
分周回路 15のデータセット機能付 1Z2分周回路に出力し、補正データを格納させ る。
[0069] その後、原子発振器 13への電力供給を開始して力 上述の処理が完了するに十 分な駆動期間 (例えば、 10秒)が経過すると、原子発振器 13への電力供給を再び遮 断し、再び、処理をステップ S1に移行する (ステップ S 7)。以下、同様にして、原子発 振器 13の動作停止中は、データセット機能付 1Z2分周回路に記憶された補正デー タ (論理緩急量)に基づいて、 1Hzのクロック信号 CLKの位相ずれ量が補正されると ともに、 3時間経過毎に、原子発振器 13の出力する第 2発振信号 SX2および水晶発 振器 14の出力する第 1発振信号 SX1との周波数差および位相差に基づいて、補正 データ (論理緩急量)が更新され、クロック信号 CLKの位相ずれ量が補正される、と いう処理が繰り返される。
これと並行して、分周回路 15は新たに設定された補正データに基づいて、第 1発 振信号 SX1の論理緩急を行いつつ、第 1発振信号 SX1の周波数を分周し、 1Hzの クロック信号 CLKを時計駆動回路 16に出力する。
[0070] これにより、時計駆動回路 16は、モータ 17を駆動する。
この結果、モータ 17のロータ 17Aは、 5番車 51を回転駆動し、 5番車 51のカナ 51 Aを介して 4番車 52を駆動する。そして、この 4番車 52の回転に伴って秒針が駆動さ れることとなる。
さらに、 4番車 52のカナ 52Aを介して 3番車 53が駆動され、この 3番車 53のカナ 53 Aを介して 2番車 54が駆動される。そして、この 2番車 54の回転に伴って分針が駆動 されることとなる。
[0071] 以上の説明のように、本第 9実施形態によれば、原子発振器 13と時計モジュール 1 2Xとは、熱的に分離されて配置されているので、時計モジュール 12Xを構成する構 造材、歯車などの材料の変形や変質防止、歯車などに塗布された潤滑油の変質防 止、電池 23の劣化防止、回路の変形'変質防止が図れる。このため、これらに起因 する時刻表示精度の低下を防止することができるとともに、原子発振器 13が生成し た超高精度の基準クロック信号(=発振信号 SX2に相当)に基づくクロック信号 CLK を生成するので、より一層の時刻表示精度の高精度化を図ることが可能となる。した がって、精度が要求される地下鉄等の鉄道駅員や列車運転者が使用する鉄道用腕 時計として構成することが可能になる。
さらに原子発振器 13を加熱するためのヒータの発熱に伴う電力ロスも低減すること ができ、ひいては、電力消費を低減することができる。
[0072] 以下に本第 9実施形態の変形例について説明する。
[9. 1]第 1変形例
以上の説明では、水晶発振器 11の出力する第 1発振信号 SX1と原子発振器 13の 出力する第 2発振信号 SX2との周波数'位相比較を行う場合を例示したが、第 1発振 信号 SX1と第 2発振信号 SX2の周波数が一致している場合であれば、位相のみを 比較するように構成することも可能である。
また、第 1発振信号 SX1と第 2発振信号 SX2との周波数比較を行い、原子発振器 1 3の出力する第 2発振信号 SX2の周波数を基準に水晶発振器 11の出力する第 1発 振信号 SX1の発振周波数を補正してもよい。
[0073] [9. 2]第 2変形例
以上の説明では、基準クロック信号 CLKの補正方式として、論理緩急方式を採用 していたが、論理緩急方式と水晶発振器の容量可変方式とを併用するように構成し てもよい。この場合、論理緩急方式と容量可変方式とを併用することで、基準クロック 信号 CLKの調整範囲を広げることができる。なお、水晶発振回路内に容量可変用の コンデンサを設ける場合に限らず、水晶発振回路の外に、容量可変用のコンデンサ を設けるようにしてもよい。
[0074] [9. 3]第 3変形例
以上の説明では、原子発振器 13の駆動停止期間を 3時間に設定し、駆動期間を 1 0秒に設定する場合を例示したが、これに限らず、任意の時間で構わない。
また、間欠駆動周期を等間隔にせずに、例えば、駆動停止期間を昼間時間帯は短 くし (例えば 2時間)、夜間時間帯は長くする (例えば 4時間)等、間欠駆動周期を不 等間隔にしてもよい。
[0075] [9. 4]第 4変形例
以上の説明では、原子発振器ユニット 31として、セシウム原子発振器を用いていた 力 それ以外の原子発振器 (例えばルビジウム原子発振器)を使用してもよい。また、 水晶発振器 11は、年差時計又は月差時計等で使用される発振器等の任意の水晶 発振器でよい。
[0076] [10]実施形態の効果
上記各実施形態によれば、携帯時計あるいは電子機器に基準発振器として原子 発振器を用いた場合でも、その熱の影響を低減しつつ、携帯時計あるいは電子機器 を構成することが可能となる。
また、発熱に伴う電力ロスも低減でき、結果として消費電力を低減できる。さらに、ま た、比較的小型でレイアウトの自由度が低い携帯時計あるいは電子機器に適用した 場合、商品 (携帯時計あるいは電子機器)を小型に構成できる点で、特に有用である さらに、発熱に伴う電力ロスも低減でき、結果として消費電力を低減できる。
[0077] [11]実施形態の変形例
上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲
内で任意に変形が可能である。
[0078] [11. 1]第 1変形例
図 19は、第 1変形例の説明図である。
以上の説明においては、原子発振器 13全体(図 5中、断熱部 AOで示す)が断熱さ れた構成を採っていた力 原子発振器 13のうち、セル 41、ヒータ 43、セル温度セン サ 46、レーザダイオード 42、フォトダイオード 44およびレーザ温度センサ 45を断熱 する構成としてもよい。すなわち、原子発振器ユニット 31 (図 17中、断熱部 A1で示す )を断熱する構成としてもよい。ここで、断熱部 A1は、断熱材で構成されている。 上記構成によれば、温度特性のあるレーザダイオード 42の動作温度を一定に保つこ とができるので、基準クロック信号 CLK0の出力変動を皆無にできる。
[0079] [11. 2]第 2変形例
図 20は、第 2変形例の説明図である。
上記第 1変形例の説明においては、原子発振器 13のうち、セル 41、ヒータ 43、セ ル温度センサ 46、レーザダイオード 42、フォトダイオード 44およびレーザ温度センサ 45について断熱する構成を採っていた力 原子発振器 13のうち、セル 41、ヒータ 43 およびセル温度センサ 46を断熱する構成(図 18中、断熱部 A2で示す)としてもよい oここで、断熱部 A2は、断熱材で構成されている。
上記構成によれば、最も温度変化の影響を受けやす 、セル 41の動作温度を一定 に保つことができるので、基準クロック信号 CLK0の出力変動を皆無にできる。
[0080] [11. 3]第 3変形例
以上の説明では、原子発振器 13として、セシウム原子発振器を用いていたが、そ れ以外の原子発振器 (例えばルビジウム原子発振器)を使用してもよい。
[0081] [11. 4]第 4変形例
以上においては、電池 23として、リチウム電池や銀電池等のコイン型の一次電池、 あるいは、ソーラパネルまたは重力等により回転運動する回転錐の運動エネルギー を発電機のロータに伝達して運動エネルギーを電気エネルギーに変換する発電装 置等の発電手段を配置し、電池 23として、二次電池を用いるようにしてもよい。また は、一次電池と二次電池との両方を用いてもよい。
[0082] [11. 5]第 5変形例
以上の説明では、腕時計あるいは置き時計の場合について説明した力 針以外の 表示手段を用いて時刻表示を行うデジタル時計、カレンダ機構を具備する時計、タイ ムコードが重畳された電波を受信してタイムコードに基づき時刻を補正する電波時計
、 GPS信号を受信して時刻を補正する GPS時計、懐中時計及び掛け時計等の時計 全般に広く適用が可能である。若しくは、前記基準クロック信号に基づいて動作する 動作モジュール (時計モジュールを含んでも含まなくとも良 、)を備えた、携帯電話機 、 PDA (Personal Digital Assistants)、携帯型計測器、携帯型 GPS (Global Positioni ng System)装置等の携帯可能な電子機器、又は、標準発振器、ノート型パーソナル コンピュータ等の商用電源以外で駆動可能な電子機器に広く適用が可能である。若 しくは、前記基準クロック信号に基づ 、て動作する動作モジュール(時計モジュール を含んでも含まなくとも良い)を備え、商用電源で駆動可能な電子機器にも広く適用 することが可能である。
[0083] 特に、電波時計に適用した場合、電波を受信できない状況、例えば、電波が届か ない場所 (ビルの中、地下、水中、ノイズ源の近く)であったり、電波のない場所 (標準 時報局のない場所、宇宙等)であったり、アンテナの向きが不適切、電波の定期点検 中、電波周波数やタイムコードが異なっていたり、気象上の電界強度低下等の状況 が生じている場合でも、十分に正確な時刻を表示することが可能になり、様々な状況 下でも高精度な電波時計を提供することが可能になる。また、携帯電話機等のデー タ通信機器に適用した場合には、原子発振器 13からの基準クロック信号 CLK0を通 信ビットレート決定用基準信号として使用することで、高信頼でかつ高速な通信を行 うことができる。
Claims
[1] 基準クロック信号を生成し出力する原子発振器と、
前記基準クロック信号に基づいて動作する時計モジュールと、
前記原子発振器と前記時計モジュールとを、熱的に分離する熱的分離部と、 を備えたことを特徴とする携帯時計。
[2] 請求項 1記載の携帯時計において、
ケースを備え、
前記原子発振器は、前記ケースに配置されるとともに、前記原子発振器と前記時計 モジュールとの間に前記熱的分離部として空気層あるいは断熱材のうち少なくともい ずれかを配置して!/、ることを特徴とする携帯時計。
[3] 請求項 1または請求項 2記載の携帯時計にお 、て、
前記原子発振器は、前記時計モジュールに対して位置決めされ、当該時計モジュ ールと一体とされて 、ることを特徴とする携帯時計。
[4] 請求項 2または請求項 3記載の携帯時計にお 、て、
前記ケースは、前記時計モジュールを収納するモジュール収納部を有するとともに 前記原子発振器は、前記モジュール収納部の周囲に配置されることを特徴とする 携帯時計。
[5] 請求項 4記載の携帯時計にぉ 、て、
前記ケース内に配置されるとともに、前記時計モジュールを支持するとともに、前記 熱的分離部として機能する断熱材で形成された中枠を有し、
前記モジュール収納部は、前記中枠に支持された前記時計モジュールを収納する ことを特徴とする携帯時計。
[6] 請求項 1な!、し請求項 5の 、ずれかに記載の携帯時計にぉ 、て、
前記原子発振器と前記時計モジュールとは、 3次元空間的に分離されて配置され て!、ることを特徴とする携帯時計。
[7] 請求項 6記載の携帯時計にぉ 、て、
前記時計モジュールおよび前記原子発振器の所定平面に対する正射影が重なら
な 、ように前記時計モジュールおよび前記原子発振器が配置されて 、ることを特徴と する携帯時計。
[8] 請求項 1な!、し請求項 7の 、ずれかに記載の携帯時計にぉ 、て、
前記ケースは裏蓋を備え、
前記原子発振器は、前記裏蓋に支持されて!ヽることを特徴とする携帯時計。
[9] 請求項 1な!、し請求項 7の 、ずれかに記載の携帯時計にぉ 、て、
前記携帯時計は、当該携帯時計を腕に装着するための時計バンドを備えた腕時計 として構成されて!、ることを特徴とする携帯時計。
[10] 請求項 9記載の携帯時計において、
前記原子発振器は、前記時計バンドに支持されて ヽることを特徴とする携帯時計。
[11] 請求項 1な 、し請求項 10の 、ずれかに記載の携帯時計にぉ 、て、
時刻表示用の文字板を備え、
前記原子発振器は、前記文字板に支持されて!ヽることを特徴とする携帯時計。
[12] 請求項 1な!、し請求項 11の 、ずれかに記載の携帯時計にぉ 、て、
前記原子発振器は、原子を封入したセルと、
前記セルを加熱するヒータと、
前記セルに対して、前記原子の励起に伴う励起状態のエネルギー準位と、基底状 態のエネルギー準位とのエネルギー差に相当する周波数を参照するとともに、前記ヒ ータを制御し前記セルを所定温度に維持する制御装置と、
を備えて!/、ることを特徴とする携帯時計。
[13] 基準クロック信号を生成し出力する原子発振器と、
前記基準クロック信号に基づいて動作する動作モジュールと、
前記原子発振器と前記動作モジュールとを、熱的に分離する熱的分離部と、 を備えたことを特徴とする電子機器。
[14] 請求項 13記載の電子機器において、
ケースを備え、
前記原子発振器は、前記ケースに配置されるとともに、前記原子発振器と前記動作 モジュールとの間に前記熱的分離部として空気層あるいは断熱材のうち少なくともい
ずれかを配置して!/ヽることを特徴とする電子機器。
[15] 第 1発振信号を生成し出力する水晶発振器と、
前記第 1発振信号よりも高精度の第 2発振信号を生成し出力する原子発振器と、 前記第 1発振信号および前記第 2発振信号に基づいて動作する動作モジュールと 前記原子発振器と、前記水晶発振器および前記動作モジュールとを、熱的に分離 する熱的分離部と、を備えたことを特徴とする電子機器。
[16] 請求項 15記載の電子機器において、
前記水晶発振器と前記動作モジュールとは一体的に配置されていることを特徴と する電子機器。
[17] 請求項 15記載の電子機器において、
前記原子発振器は、前記動作モジュールと一体的に配置されていることを特徴と する電子機器。
[18] 請求項 15な 、し請求項 17の 、ずれかに記載の電子機器にぉ 、て、
前記熱的分離部は、空気層あるいは断熱材のうち少なくともいずれかを含むことを 特徴とする電子機器。
[19] 請求項 15な 、し請求項 18の 、ずれかに記載の電子機器にぉ 、て、
前記動作モジュールを収納するモジュール収納部を有するケースを備え、 前記原子発振器は、前記ケースのモジュール収納部の周囲に配置されることを特 徴とする電子機器。
[20] 請求項 19記載の電子機器において、
前記動作モジュールを支持する断熱材で形成された中枠を有し、
前記モジュール収納部は、前記中枠に支持された前記動作モジュールを収納する ことを特徴とする電子機器。
[21] 請求項 15な 、し請求項 20の 、ずれかに記載の電子機器にぉ 、て、
前記原子発振器と前記動作モジュールとは、 3次元空間的に分離されて配置され て!、ることを特徴とする電子機器。
[22] 請求項 21記載の電子機器において、
前記動作モジュールおよび前記原子発振器の所定平面に対する正射影が重なら な 、ように前記動作モジュールおよび前記原子発振器が配置されて 、ることを特徴と する電子機器。
[23] 請求項 15な 、し請求項 22の 、ずれかに記載の電子機器にぉ 、て、
前記電子機器は、計時装置を構成しており、
前記動作モジュールは、時計駆動回路を含んで!/、ることを特徴とする電子機器。
[24] 請求項 23記載の電子機器において、
当該電子機器は、腕時計として構成されており、
前記原子発振器は、前記腕時計のケースを構成する裏蓋に支持されて 、ることを 特徴とする電子機器。
[25] 請求項 23記載の電子機器において、
当該電子機器は、腕時計として構成されており、
前記腕時計を人体に装着するための時計バンドを備え、
前記原子発振器は、前記時計バンドに支持されて ヽることを特徴とする電子機器。
[26] 請求項 23記載の電子機器において、
時刻表示用の文字板を備え、
前記原子発振器は、前記文字板に支持されて ヽることを特徴とする電子機器。
[27] 請求項 15な 、し請求項 26の 、ずれかに記載の電子機器にぉ 、て、
前記原子発振器は、原子を封入したセルと、
前記セルを加熱するヒータと、
前記セルに対して、前記原子の励起に伴う励起状態のエネルギー準位と、基底状 態のエネルギー準位とのエネルギー差に相当する周波数を参照するとともに、前記ヒ ータを制御し前記セルを所定温度に維持する制御装置と、
を備えて ヽることを特徴とする電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE602006021749T DE602006021749D1 (de) | 2005-07-21 | 2006-07-21 | Tragbare uhr und elektronische einrichtung |
EP06768358A EP1906271B1 (en) | 2005-07-21 | 2006-07-21 | Portable clock and electronic device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005211846 | 2005-07-21 | ||
JP2005-211940 | 2005-07-21 | ||
JP2005211940 | 2005-07-21 | ||
JP2005-211846 | 2005-07-21 | ||
JP2006182360A JP2007052002A (ja) | 2005-07-21 | 2006-06-30 | 電子機器 |
JP2006-182518 | 2006-06-30 | ||
JP2006182518A JP5011850B2 (ja) | 2005-07-21 | 2006-06-30 | 携帯時計および電子機器 |
JP2006-182360 | 2006-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007011024A1 true WO2007011024A1 (ja) | 2007-01-25 |
Family
ID=37668895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314480 WO2007011024A1 (ja) | 2005-07-21 | 2006-07-21 | 携帯時計および電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7697377B2 (ja) |
EP (1) | EP1906271B1 (ja) |
DE (1) | DE602006021749D1 (ja) |
WO (1) | WO2007011024A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2498151B1 (fr) | 2011-03-09 | 2014-09-24 | Rolex Sa | Montre bracelet avec oscillateur atomique |
US10171095B2 (en) | 2013-09-27 | 2019-01-01 | Seiko Epson Corporation | Atomic oscillator, electronic apparatus, moving object, and manufacturing method of atomic oscillator |
US9983131B2 (en) * | 2014-02-12 | 2018-05-29 | Honeywell International Inc. | Atomic source with heater on thermal isolation die |
US10553846B1 (en) * | 2016-03-29 | 2020-02-04 | Amazon Technologies, Inc. | System for thermal management of a battery |
JP6520970B2 (ja) * | 2017-02-27 | 2019-05-29 | カシオ計算機株式会社 | 電子機器及び時計 |
WO2024112804A1 (en) * | 2022-11-21 | 2024-05-30 | Fieldline, Inc. | Thermal package for an atomic device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872689U (ja) * | 1981-11-11 | 1983-05-17 | セイコーインスツルメンツ株式会社 | 携帯時計のデジタル表示部構造 |
JPS604980U (ja) * | 1983-06-23 | 1985-01-14 | 富士計器株式会社 | 裏蓋による反射板支持構造 |
JPH029894U (ja) * | 1988-07-05 | 1990-01-22 | ||
JPH0241194U (ja) * | 1988-09-13 | 1990-03-22 | ||
JPH05300016A (ja) * | 1991-12-31 | 1993-11-12 | Westinghouse Electric Corp <We> | 原子周波数標準器 |
JP3038579U (ja) * | 1996-12-09 | 1997-06-20 | 株式会社電通 | タイマ装置 |
JPH09197064A (ja) * | 1996-01-24 | 1997-07-31 | Citizen Watch Co Ltd | 指針位置検出機構 |
JPH11249754A (ja) * | 1998-02-27 | 1999-09-17 | Casio Comput Co Ltd | 電子装置 |
JP2000004095A (ja) * | 1998-06-15 | 2000-01-07 | Fujitsu Ltd | 磁気シールド構造及びルビジウム原子発振器 |
JP2000315121A (ja) * | 1999-04-30 | 2000-11-14 | Toshiba Corp | Rtc回路 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4322833A (en) * | 1977-05-09 | 1982-03-30 | Micro Display Systems, Inc. | Electronic timepiece having conductive face cover for implementing display function |
JPS5838882A (ja) | 1981-09-01 | 1983-03-07 | Citizen Watch Co Ltd | 電子時計のム−ブメント |
JPH0631731B2 (ja) | 1984-08-13 | 1994-04-27 | セイコーエプソン株式会社 | 温度補償機能付時計装置 |
FR2628226B1 (fr) * | 1988-03-03 | 1991-06-07 | Rech Const Electro Et | Horloge atomique |
JPH0338579U (ja) | 1989-08-22 | 1991-04-15 | ||
US5168478A (en) * | 1990-03-02 | 1992-12-01 | Itt Corporation | Time standard assembly with upset protection and recovery means |
US5670914A (en) * | 1995-09-25 | 1997-09-23 | Northrop Grumman Corporation | Miniature atomic frequency standard |
US6265945B1 (en) * | 1999-10-25 | 2001-07-24 | Kernco, Inc. | Atomic frequency standard based upon coherent population trapping |
US6806784B2 (en) * | 2001-07-09 | 2004-10-19 | The National Institute Of Standards And Technology | Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel |
US6630872B1 (en) * | 2001-07-20 | 2003-10-07 | Cmc Electronics, Inc. | Digital indirectly compensated crystal oscillator |
JP2003242727A (ja) | 2002-02-12 | 2003-08-29 | Nippon Sogo Seisaku Kk | デジタルオーディオ用基準発振器を採用した記録再生方法 |
JP4222208B2 (ja) * | 2002-03-01 | 2009-02-12 | セイコーエプソン株式会社 | 圧電アクチュエータおよび圧電アクチュエータを備えた時計並びに携帯機器 |
US7046584B2 (en) * | 2003-07-09 | 2006-05-16 | Precision Drilling Technology Services Group Inc. | Compensated ensemble crystal oscillator for use in a well borehole system |
JP2005045531A (ja) * | 2003-07-22 | 2005-02-17 | Niigata Seimitsu Kk | 腕時計型携帯電話機 |
JP2005175221A (ja) * | 2003-12-11 | 2005-06-30 | Fujitsu Ltd | 原子発振器の静磁場印加構造 |
US7675218B2 (en) * | 2004-03-10 | 2010-03-09 | Seiko Epson Corporation | Drive apparatus of piezoelectric actuator, electronic apparatus, drive method of electronic apparatus, drive control program of electronic apparatus, and medium |
JP2006066879A (ja) * | 2004-07-29 | 2006-03-09 | Seiko Epson Corp | 気密パッケージ、圧電デバイス、及び圧電発振器 |
US20070236301A1 (en) * | 2006-03-21 | 2007-10-11 | Romi Mayder | Inexpensive low phase noise high speed stabilized time base |
-
2006
- 2006-07-21 US US11/490,084 patent/US7697377B2/en active Active
- 2006-07-21 EP EP06768358A patent/EP1906271B1/en not_active Ceased
- 2006-07-21 WO PCT/JP2006/314480 patent/WO2007011024A1/ja active Application Filing
- 2006-07-21 DE DE602006021749T patent/DE602006021749D1/de active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872689U (ja) * | 1981-11-11 | 1983-05-17 | セイコーインスツルメンツ株式会社 | 携帯時計のデジタル表示部構造 |
JPS604980U (ja) * | 1983-06-23 | 1985-01-14 | 富士計器株式会社 | 裏蓋による反射板支持構造 |
JPH029894U (ja) * | 1988-07-05 | 1990-01-22 | ||
JPH0241194U (ja) * | 1988-09-13 | 1990-03-22 | ||
JPH05300016A (ja) * | 1991-12-31 | 1993-11-12 | Westinghouse Electric Corp <We> | 原子周波数標準器 |
JPH09197064A (ja) * | 1996-01-24 | 1997-07-31 | Citizen Watch Co Ltd | 指針位置検出機構 |
JP3038579U (ja) * | 1996-12-09 | 1997-06-20 | 株式会社電通 | タイマ装置 |
JPH11249754A (ja) * | 1998-02-27 | 1999-09-17 | Casio Comput Co Ltd | 電子装置 |
JP2000004095A (ja) * | 1998-06-15 | 2000-01-07 | Fujitsu Ltd | 磁気シールド構造及びルビジウム原子発振器 |
JP2000315121A (ja) * | 1999-04-30 | 2000-11-14 | Toshiba Corp | Rtc回路 |
Also Published As
Publication number | Publication date |
---|---|
US7697377B2 (en) | 2010-04-13 |
EP1906271B1 (en) | 2011-05-04 |
EP1906271A1 (en) | 2008-04-02 |
US20070025187A1 (en) | 2007-02-01 |
DE602006021749D1 (de) | 2011-06-16 |
EP1906271A4 (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7391273B2 (en) | Clock signal output apparatus and control method of same, and electric apparatus and control method of same | |
WO2007011024A1 (ja) | 携帯時計および電子機器 | |
JP3536852B2 (ja) | 電子時計 | |
CN102331705B (zh) | 电子钟表 | |
JP6136380B2 (ja) | 電子時計 | |
US20140247700A1 (en) | Electronic Timepiece and Time Correction Method of Electronic Timepiece | |
WO2004099884A1 (ja) | 無線通信機能付電子時計 | |
JP5578103B2 (ja) | 電子時計及び電子時計の受信制御方法 | |
JP2007036555A (ja) | 発振器における加熱構造、発振器、及び、電子機器 | |
JP6458941B2 (ja) | 電子時計 | |
US20070097795A1 (en) | Timepiece with a calendar function and/or a time setting function, and method of assembling the timepiece | |
CN102314150A (zh) | 电子钟表 | |
JP6772700B2 (ja) | 測位装置、電子時計、測位制御方法、及びプログラム | |
US20140247701A1 (en) | Electronic Timepiece | |
JP2007036556A (ja) | 発振器における加熱構造、発振器、及び、電子機器 | |
CN100580584C (zh) | 便携式钟表以及电子设备 | |
EP0935178A2 (en) | Radio-controlled watch | |
JP5011850B2 (ja) | 携帯時計および電子機器 | |
JP2007052002A (ja) | 電子機器 | |
JPWO2008108417A1 (ja) | 電波修正時計 | |
CN113267988A (zh) | 钟表 | |
JP7195965B2 (ja) | 時計 | |
JP2007052003A5 (ja) | ||
JP6821474B2 (ja) | 電波時計 | |
WO2018116232A1 (en) | A hybrid mechanical smart timekeeper such as a watch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680026321.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006768358 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |