WO2007010134A1 - Adapteur d'impedance automatique coaxial - Google Patents

Adapteur d'impedance automatique coaxial Download PDF

Info

Publication number
WO2007010134A1
WO2007010134A1 PCT/FR2006/001759 FR2006001759W WO2007010134A1 WO 2007010134 A1 WO2007010134 A1 WO 2007010134A1 FR 2006001759 W FR2006001759 W FR 2006001759W WO 2007010134 A1 WO2007010134 A1 WO 2007010134A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
adapter according
transmission line
coaxial
impedance adapter
Prior art date
Application number
PCT/FR2006/001759
Other languages
English (en)
Inventor
Nicolas Vellas
Christophe Gaquiere
Frédéric BUE
Damien Ducatteau
Original Assignee
Centre National De La Recherche Scientifique - Cnrs
Universite Des Sciences Et Technologies De Lille U.S.T.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs, Universite Des Sciences Et Technologies De Lille U.S.T.L. filed Critical Centre National De La Recherche Scientifique - Cnrs
Priority to US11/988,953 priority Critical patent/US7936233B2/en
Priority to JP2008522016A priority patent/JP4782833B2/ja
Priority to EP06778882.8A priority patent/EP1905120B1/fr
Publication of WO2007010134A1 publication Critical patent/WO2007010134A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • the present invention relates to the field of electronics and communication technologies.
  • the present invention relates more particularly to a coaxial automatic impedance adapter.
  • the displacement of the divers according to the two axes is carried out by means of piloted motors.
  • the plunger For displacement along the axis Oy, ie perpendicular to the axis of the coaxial line, the plunger approaches or moves away from the central conductor locally varying the distance between the central line and the plunger, that is to say say the characteristic impedance of the line.
  • the tuner has an impedance equal to 50 ⁇ .
  • These automatic coaxial tuners have the major advantage of being calibrated before measuring the components.
  • the input and output of the tuner are connected to a vector network analyzer.
  • a control software of the vector network analyzer and the tuner makes it possible to acquire the dispersion parameters of the tuner at several frequencies.
  • Calibration of the tuner being completed it is possible to very quickly characterize a power component and / or noise easily without assembly and disassembly of the measurement system.
  • Coaxial tuners have excellent performance but these are quickly reduced by the insertion losses of the tuner related to the transition between the coaxial connector and the central conductor. The higher the losses at the transition, the lower the modulus of the reflection coefficient of the load impedance achieved. Therefore, it will not be possible to synthesize all the impedances of the Smith chart.
  • Coaxial tuners have the advantage of being broadband and allowing the passage of DC voltages, but loss of insertions reduces their performance at high frequency. These tuners are also very bulky and heavy which presents a great disadvantage when the components are measured directly on "wafer” (cake) using microwave spikes. Indeed, given the size of the tuner, the latter is connected to the component by a cable with losses. The distance separating the tuner from the component is increased and the insertion losses between the tuner and the component as well. Under these conditions, the dead zone is then larger. In order to reduce this area, a pre-adaptation system is placed between the tip and the tuner. However, this device does not completely eliminate the limitation mentioned above. In addition, this pre-adaptation is very rigid. This considerably increases the vibrations, in the plane of the microwave peaks, induced by the displacement of the blocks.
  • tuners have, as we have already mentioned, a translational movement of the blocks along the axis Ox.
  • the rapid movement of these blocks (trolley + engine + plunger), whose mass is important, causes significant inertia movements and therefore vibrations.
  • these vibrations quickly degrade the quality of the contacts between the tips and the component and therefore the quality of the measurement.
  • this effect can cause the destruction of this one and spikes especially if the component is polarized at high voltage.
  • the present invention intends to overcome the drawbacks of the prior art by proposing a coaxial tuner with double "slug” (double probes).
  • This new impedance adapter best meets the characterization of power and noise transistors.
  • This tuner is designed to operate for wide frequency bands and has only a lateral translational movement along the axis Ox.
  • the present invention relates, in its most general sense, a coaxial impedance adapter having two probes (“slugs”) and only has a lateral translational movement along the Ox axis.
  • a coaxial impedance adapter for a transmission line comprising in the longitudinal direction a conductive central line Ox axis, the adapter having two probes in the transmission line adapted to move according to a translational movement along the axis Ox, and two motors driving in translation, each, one of said probes, said motors being isolated from the probes by elastic couplings.
  • said impedance adapter operates in the frequency band extending from 0.25 GHz to 240 GHz.
  • said probes are of circular section and slide longitudinally in the transmission line. They adapt particularly well to transmission guides of circular section. In the case where these guides are of rectangular section or any other shape, probes of identical section will preferably be chosen in order to "fill" the zone of the waveguide.
  • "resonator" probes which comprise a stack of metal layers separated by at least one insulating layer in the longitudinal direction, or "broadband” probes formed of metal cylinders whose faces side have a recess centered towards the inside of the cylinder.
  • a dielectric is deposited on the center line of the impedance adapter or on the slugs (outer and inner diameter). This is to limit short circuits and improve microwave performance.
  • the probes are interchangeable. It is noted that motors are isolated from the rest of the system via resilient couplings to minimize vibration.
  • the principle of the double slug tuner is based on the displacement of two ends of a characteristic impedance line different from 50 ⁇ inside a cylinder closed on both sides by standard connectors.
  • the principle of this tuner is based on the displacement of two impedance characteristic slugs different from 50 ⁇ in a 50 ohm coaxial line.
  • said probes have a characteristic impedance different from the characteristic impedance of said transmission line, which is 50 ohms in many waveguides.
  • the first slug locally decreases the impedance of the line by changing the value of the diameter D of the outer conductor.
  • Automatic piloting is provided, for example by computer and / or electronic means, probes to allow accurate and reproducible positioning thereof.
  • each probe is secured to a carriage by the elastic coupling, the adapter further comprising motors adapted to drive the carriages in translation in the longitudinal direction of the transmission line. The motors are then driven automatically.
  • each motor is a rotary motor which rotates a precision ground screw driving a corresponding translational carriage to which an associated probe is connected.
  • said motors are optimized in order to have low travel times as well as precise control of the acceleration and servo profiles.
  • one of the so-called pre-adaptation probes is arranged to move over a distance of ⁇ / 2, where ⁇ is the working wavelength, and the second probe is arranged to move over a distance of ⁇ / 2 relative to said pre-adaptation probe.
  • the impedance adapter has a reflection coefficient greater than 0.98 at 10 GHz.
  • the advantages of the coaxial automatic tuner according to the present invention are as follows: - Microwave performance significantly better than existing systems. Indeed, according to the present invention, the system offers a very high flexibility of impedance synthesis with a high reflection coefficient.
  • the frequency band that can be realized for coaxial tuners ranges from 0.25 GHz to 240 GHz.
  • the proposed system proposes a very high repeatability with a high reflection coefficient - a single displacement along the transmission line exists whereas in the existing systems, there are two movements of which one of them is perpendicular to the line of transmission (with displacements very close to this line).
  • the moving probe In conventional systems, the moving probe must approach the suspended central line (a few tens of microns) and this over a long distance. This causes great fragility. In our system, this problem is totally avoided.
  • the tuner can even operate on an inclined plane without loss of efficiency.
  • the deposition of a dielectric improves performance and avoid short circuits.
  • the proposed system is much more stable (from a vibratory point of view) than conventional systems. Indeed, the motors are isolated from the rest of the system via elastic couplings. This is a very important point when measuring under spikes.
  • the motors and the associated electronics have been optimized to provide low travel times and accurate control of acceleration and servo profiles (to minimize vibration problems). Under these conditions, the cost of implementation is significantly lower than existing systems.
  • the system according to the invention allows a great strength of the central line. Indeed, it is maintained at a constant distance: there is no suspended line as in the tuners according to the prior art.
  • the tuner according to the invention does not pose a problem for transport.
  • the tuner according to the invention supports high polarization voltages thanks to the design of the tuner.
  • FIG. impedance according to the prior art illustrates an exemplary arrangement of the probes in an impedance adapter according to the present invention
  • FIG. 3 illustrates the operation of an impedance adapter according to the invention
  • Figure 4 shows two examples of interchangeable probes used in the present invention.
  • This tuner is based on the displacement of two characteristic impedance slugs different from 50 ⁇ in a 50 ohm coaxial line.
  • the characteristic impedances of coaxial slugs are given by relation (1) below.
  • This impedance adapter is shown in Figure 2.
  • ⁇ r is the dielectric constant of the medium.
  • FIG. 2 shows the cylindrical transmission line 4 comprising in the longitudinal direction and at its center a conductive central line 5.
  • the transmission line 4 has a diameter of 6.91 mm and the central line 5 has a diameter of 3 mm. .
  • the set "transmission line + central line" thus composed has a characteristic impedance of 50 ohms.
  • the probes (“slugs”) 6a and 6b are cylindrical in shape of length 3.75 mm and outer diameter slightly smaller than the internal diameter of the transmission line, about 6.9 mm. They have a longitudinal bore at its center of diameter 3.1 mm allowing the passage of the central line 5. The probes can easily slide along the center line (see the arrows in Figure 2). Each probe has a characteristic impedance significantly different from that of the transmission line, in this case by the aforementioned dimensions, the impedance of the probes is about 2 ohms.
  • Figure 4 illustrates two examples of probes that can be used in pairs.
  • the probe of FIG. 4a is a "resonator" probe of cylindrical shape and composed in the longitudinal direction of two metal layers separated by an insulating layer. This arrangement reduces the frequency band so that the probe behaves like a resonator.
  • the advantage of reducing the frequency band at which the slug takes effect lies in the ability to control the value of the reflection coefficient presented to the component under test not at one frequency but at several.
  • the probe of FIG. 4b is made of cylindrical metal having at both end faces a progressive recess from the outside towards the center, where the conductive central line 5 slides. This recess has the effect of increasing the band of frequency of the probe. The latter behaves like a broadband probe.
  • the slug locally varies the impedance of the line by changing the value of the diameter D of the outer conductor. This local variation of impedance modifies the reflection coefficient of the tuner so the impedance of it.
  • the impedance of the tuner moves on a constant TOS (steady state wave) circle centered on Z 0 .
  • a displacement of ⁇ / 2 makes it possible to describe the whole circle on the Smith chart.
  • the radius of the circle, on the Smith chart varies. It is then impossible to cover the entire abacus with a single slug with non-parametric characteristics.
  • the impedance of the tuner no longer moves on a circle with constant TOS. If we move the first slug 6b by a distance ⁇ / 2 along the conductor, we describe the entire circle on the chart around the pre-adaptation impedance.
  • the adapter made was automated using two stepper motors of very high precision associated with an encoding system to achieve the removal of slugs.
  • the motors rotate, each, a precision ground screw that drives a carriage.
  • Each carriage mounted on a screw moves a slug.
  • the tuner could be placed closer to the component under test, thus not affecting the size of the dead zone.
  • automatic tuner calibration can be used to characterize a component in minutes and accurately.
  • the motor (1) is linear type allowing, unlike rotary engines, to limit the vibrations generated during its operation.
  • the probes 6a and 6b are each connected to a block "carriage 2 + motor 1 + guide 3" by a coupling arm 7 provided with elastic vibration absorption means. Vibration absorption is performed at the coupling arm by means of a tongue of flexible material sandwiched between the two metal parts located respectively to the block "motor + carriage + guide” and to the probe.
  • the outer conductor 4 of the transmission line is provided with a slot in the longitudinal direction of the line.

Abstract

La présente invention se rapporte à un adaptateur d'impédance coaxial caractérisé en ce qu'il comporte deux sondes (« slugs ») et ne présente qu'un mouvement de translation latéral suivant l'axe Ox. Le principe du tuner double slugs est basé sur le déplacement de deux bouts de ligne d'impédance caractéristique différente de 50 Ω à l'intérieur d'un cylindre fermé de part et d'autre par des connecteurs standard.

Description

ADAPTEUR D' IMPEDANCE AUTOMATIQUE COAXIAL
La présente invention se rapporte au domaine de l'électronique et des technologies de communication. La présente invention se rapporte plus particulièrement à un adaptateur d'impédance automatique coaxial.
L'art antérieur connaît déjà, par le brevet américain US 3 792 385 (« RCA »), un tuner (adaptateur d'impédance) magnétique à sonde coaxial. Une sonde magnétique d'adaptation déplaçable couplée de façon capacitive au conducteur central et au conducteur extérieur d'une ligne de transmission électromagnétique est utilisée pour fournir une impédance de ligne de transmission en réponse à un champ magnétique appliqué.
L'art antérieur connaît également, par le brevet américain US 6 297 649 (« Focus Microwaves »), un tuner (adaptateur d'impédance) coaxial capable de réaliser de la réjection d'harmoniques.
Les deux principaux fabricants d'adaptateurs d'impédance : « Maury Microwave Corporation » et « Focus Microwaves » (marques déposées) utilisent' un ou plusieurs plongeurs qui se déplacent indépendamment l'un par rapport à l'autre suivant l'axe Ox et Oy comme l'indiquent les flèches de la figure 1.
Le déplacement des plongeurs suivant les deux axes est réalisé par l'intermédiaire de moteurs pilotés.
Pour le déplacement suivant l'axe Ox, c'est-à- dire dans l'axe de la ligne coaxiale, tout le bloc (moteurs + plongeur) se déplace grâce à un axe de guidage. Un logiciel de commande permet d'éviter les collisions entre les deux blocs puisqu'ils se déplacent sur le même axe de guidage .
Pour le déplacement suivant l'axe Oy, soit perpendiculairement à l'axe de la ligne coaxiale, le plongeur s'approche ou s'éloigne du conducteur central faisant varier localement la distance entre la ligne centrale et le plongeur, c'est-à-dire l'impédance caractéristique de la ligne. Lorsque le ou les plongeur(s) se trouve (nt) le plus éloigné(s) possible de la ligne centrale (plongeurs sortis), le tuner présente une impédance égale à 50Ω.
Ces tuners coaxiaux automatiques présentent l'avantage majeur de pouvoir être étalonnés avant la mesure des composants. L'entrée et la sortie du tuner sont connectées à un analyseur de réseaux vectoriel. Pour plusieurs centaines de positions, un logiciel de commande de l'analyseur de réseaux vectoriel et du tuner permet de faire l'acquisition des paramètres de dispersion du tuner à plusieurs fréquences. Le calibrage du tuner étant terminé, il est possible de caractériser très rapidement un composant en puissance et/ou en bruit aisément sans montage et démontage du système de mesure. Les tuners coaxiaux présentent d'excellentes performances mais ces dernières sont rapidement réduites par les pertes d'insertion du tuner liées à la transition entre le connecteur coaxial et le conducteur central. Plus les pertes au niveau de la transition sont importantes, plus le module du coefficient de réflexion de l'impédance de charge réalisée est faible. Par conséquent, il ne sera pas possible de synthétiser toutes les impédances de l'abaque de Smith.
On pourra remarquer sur un abaque de Smith qu'il y a des « zones mortes » : la zone comprise entre le « bord » de l'abaque et le cercle d'impédance à une fréquence donnée est dite « zone morte » . Les impédances présentes dans cette zone ne seront pas réalisables à la fréquence donnée.
Les tuners coaxiaux présentent l'avantage d'être large bande et de permettre le passage des tensions continues mais les pertes d'insertions réduisent leurs performances à haute fréquence. Ces tuners sont également très volumineux et lourds ce qui présente un grand désavantage lorsque les composants sont mesurés directement sur « wafer » (galette) à l'aide de pointes hyperfréquences . Effectivement, étant donné la taille du tuner, ce dernier est relié au composant par un câble présentant des pertes. La distance séparant le tuner du composant est augmentée et les pertes d'insertion entre le tuner et le composant également. Dans ces conditions, la zone morte est alors plus importante. Afin de réduire cette zone, un système de préadaptation est placé entre la pointe et le tuner. Cependant ce dispositif ne permet pas de supprimer totalement la limitation précédemment citée. De plus, cette préadaptation est très rigide. Ceci augmente considérablement les vibrations, dans le plan des pointes hyperfréquence , induites par le déplacement des blocs.
Ces tuners ont, comme nous l'avons déjà évoqué, un mouvement de translation des blocs suivant l'axe Ox. Le déplacement rapide de ces blocs (chariot + moteur + plongeur), dont la masse est importante, provoque des mouvements d'inertie importants et donc des vibrations. Or, en mesure sous pointes, ces vibrations dégradent rapidement la qualité des contacts entre les pointes et le composant et donc de la qualité de la mesure. Lorsque le composant est sous test, cet effet peut engendrer la destruction de celui-ci et des pointes surtout si le composant est polarisé à forte tension.
On connaît également, par les brevets US-2 403 252 et US-3 792 385, des tuners manuels d'adaptation d'impédance dont le fonctionnement d'ajustement est très fastidieux, notamment par l'utilisation de vis à desserrer pour déplacer un élément d'adaptation.
On connaît également, par les documents US-6 297 649 et US-2003/0122633, des adaptateurs d'impédance comprenant deux modules type plongeurs tels que décrits précédemment. Ces plongeurs sont des éléments saillants venant occuper une partie, généralement haute, de la ligne de transmission. De tels plongeurs occupent inégalement l'espace de la ligne de transmission et peuvent provoquer des fuites de charge. En outre, la dissymétrie engendrée par ces plongeurs n'est pas propice à une utilisation de l'adaptateur sur un plan incliné.
Les solutions décrites dans ces deux documents ainsi que la solution décrite dans le document JP-57063901 reposent sur l'utilisation de chariots mobiles équipés de moteurs. Une problématique évoquée précédemment subsiste alors : les vibrations engendrées par le fonctionnement des moteurs sont susceptibles d'altérer les sondes à l'intérieur de la ligne de transmission ou de rendre inopérante toute mesure hyperfréquence à l'aide de pointes.
La présente invention entend remédier aux inconvénients de l'art antérieur en proposant un tuner coaxial à double « slug » (à double sondes). Ce nouvel adaptateur d'impédance répond au mieux à la caractérisation des transistors de puissance et de bruit. Ce tuner est prévu pour fonctionner pour des larges bandes de fréquence et ne présente qu'un mouvement de translation latéral suivant l'axe Ox. A cet effet, la présente invention concerne, dans son acception la plus générale, un adaptateur d'impédance coaxial comportant deux sondes (« slugs ») et ne présente qu'un mouvement de translation latéral suivant l'axe Ox.
Selon un mode de réalisation, il s'agit d'un adaptateur d'impédance coaxial pour ligne de transmission comprenant dans le sens longitudinal une ligne centrale conductrice d'axe Ox, l'adaptateur comportant deux sondes dans la ligne de transmission aptes à se déplacer selon un mouvement de translation suivant l'axe Ox, et deux moteurs entraînant en translation, chacun, une desdites sondes, lesdits moteurs étant isolés des sondes par des accouplements élastiques. On obtient ainsi à la fois un dispositif efficace pour parcourir l'ensemble des impédances de l'abaque de Smith et un adaptateur stable quant aux vibrations émises par les moteurs .
Avantageusement, ledit adaptateur d'impédance fonctionne dans la bande de fréquence s 'étendant de 0.25 GHz à 240 GHz.
Selon un mode de réalisation, lesdites sondes sont de section circulaire et coulissent longitudinalement, dans la ligne de transmission. Elles s'adaptent particulièrement bien à des guides de transmission de section circulaire. Dans le cas où ces guides sont à section rectangulaire ou tout autre forme, on choisira de préférence des sondes de section identique afin de « remplir » la zone du guide d'ondes.
Selon les application souhaitées, on recherche des sondes « résonateur » comprenant un empilement de couches métalliques séparées par au moins une couche isolante dans le sens longitudinal, ou des sondes « large bande » formées des cylindres métalliques dont les faces latérales présentent un renfoncement centré vers l'intérieur du cylindre. En jouant sur des combinaisons de sondes, grâce à leur interchangeabilité, l'on peut obtenir une efficacité accrue dans le recouvrement des impédances de l'abaque Smith tout en évitant des fuites de charge ou autre interférence hyperfréquence .
Afin d'éviter des courts-circuits, un diélectrique est déposé sur la ligne centrale de l'adaptateur d'impédance ou sur les slugs (diamètre extérieur et intérieur) . Ceci afin de limiter les courts- circuits et d'améliorer les performances hyperfréquences .
Avantageusement, les sondes (« slugs ») sont interchangeables . On note que les moteurs sont isolés du reste du système via des accouplements élastiques afin de minimiser les vibrations.
Selon un aspect, le principe du tuner double slugs est basé sur le déplacement de deux bouts de ligne d'impédance caractéristique différente de 50 Ω à l'intérieur d'un cylindre fermé de part et d'autre par des connecteurs standard.
Selon un second aspect, le principe de ce tuner est basé sur le déplacement de deux slugs d'impédance caractéristique différente de 50 Ω dans une ligne coaxiale 50 ohms.
Généralement il est donc choisi que lesdites sondes ont une impédance caractéristique différente de l'impédance caractéristique de ladite ligne de transmission, laquelle est de 50 ohms dans de nombreux guides d'onde.
Avantageusement, le premier slug fait diminuer localement l'impédance de la ligne en changeant la valeur du diamètre D du conducteur extérieur. On prévoit un pilotage automatique, par exemple par des moyens informatiques et/ou électroniques, des sondes pour permettre un positionnement précis et reproductible de celles-ci. Dans ce dessein, chaque sonde est solidaire d'un chariot par l'accouplement élastique, l'adaptateur comprenant, en outre, des moteurs aptes à entraîner les chariots en translation dans le sens longitudinal de la ligne de transmission. Les moteurs sont alors pilotés automatiquement.
Eventuellement, lesdits moteurs sont des moteurs linéaires pas-à-pas ou piézoélectriques et les chariots sont montés sur des guides parallèles à la ligne de transmission et entraînés par les moteurs. Selon une alternative, chaque moteur est un moteur rotatif qui met en rotation une vis rectifiée de précision entraînant un chariot correspondant en translation auquel est reliée une sonde associée.
Avantageusement, lesdits moteurs sont optimisés afin de présenter des temps de déplacements faibles ainsi qu'un contrôle précis des profils d'accélérations et d'asservissements.
En fonctionnement, l'une des sondes dite de pré-adaptation est agencée pour se déplacer sur une distance de λ/2, où λ est la longueur d'onde de travail, et la deuxième sonde est agencée pour se déplacer sur une distance de λ/2 relativement à ladite sonde de préadaptation.
Selon un mode de réalisation, l'adaptateur d'impédance présente un coefficient de réflexion supérieur à 0,98 à 10 GHz.
Les avantages du tuner automatique coaxial selon la présente invention sont les suivants : - Des performances hyperfréquences nettement meilleures que les systèmes existants. En effet, selon la présente invention, Le système propose une très grande souplesse de synthèse d'impédance à fort coefficient de réflexion.
- La bande de fréquence pouvant être réalisée pour les tuners coaxiaux s'étend de 0.25 GHz à 240 GHz.
- Possibilité d' interchanger aisément les slugs pour des applications spécifiques afin d'adapter les performances du tuner au regard des composants étudiés .
- Le système proposé propose une très grande répétabilité à fort coefficient de réflexion - un seul déplacement selon la ligne de transmission existe alors que dans les systèmes existants, il y a deux mouvements dont l'un d'entre eux est perpendiculaire à la ligne de transmission (avec des déplacements très proches de cette ligne). - Une très forte robustesse par rapport aux systèmes existants. Dans les systèmes classiques, la sonde mobile doit s'approcher de la ligne centrale suspendue (à quelques dizaines de μm) et cela sur une longue distance. Cela provoque une grande fragilité. Dans notre système, ce problème est totalement éludé. Le tuner peut même fonctionner sur un plan incliné sans pertes d'efficacité. De plus, le dépôt d'un diélectrique permet d'améliorer les performances et d'éviter les courts-circuits. - Le système proposé est beaucoup plus stable (d'un point de vue vibratoire) que les systèmes classiques. En effet, les moteurs sont isolés du reste du système via des accouplements élastiques. Ceci est un point très important lors de mesures sous pointes.
- Masse des slugs très faible n'induisant pas de problème de centre de gravité mobile. - Le système de maintien des slugs (remplaçant le système de plongeurs des systèmes classiques) permet un positionnement précis ainsi qu'une très bonne reproductibilité.
- Les moteurs et l'électronique associée ont été optimisés afin de présenter des temps de déplacements faibles ainsi qu'un contrôle précis des profils d'accélérations et d'asservissements (afin de minimiser les problèmes de vibrations). Dans ces conditions, le coût de réalisation est nettement plus faible que les systèmes existants.
Il n'y a pas de modification du centre de gravité grâce à la position des moteurs isolés des slugs et à la légèreté du système.
Le système selon l'invention permet une grande robustesse de la ligne centrale. En effet, celle-ci est maintenue à distance constante : il n'y a pas de ligne suspendue comme dans les tuners selon l'art antérieur. Le tuner selon l'invention ne pose pas de problème pour le transport. - Le tuner selon l'invention supporte de fortes tensions de polarisation grâce à la conception du tuner.
On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, d'un mode de réalisation de l'invention, en référence aux figures annexées : la figure 1 illustre un exemple d'adaptateur d'impédance selon l'art antérieur ; la figure 2 illustre un exemple d'agencement des sondes dans un adaptateur d'impédance selon la présente invention ; la figure 3 illustre le fonctionnement d'un adaptateur d'impédance selon l'invention ; et la figure 4 représente deux exemples de sondes interchangeables utilisées dans la présente invention.
Le principe de ce tuner est basé sur le déplacement de deux slugs d'impédance caractéristique différente de 50 Ω dans une ligne coaxiale 50 ohms. Les impédances caractéristiques des slugs coaxiaux sont données par la relation (1) ci-dessous. Cet adaptateur d'impédance est représenté Figure 2.
Figure imgf000012_0001
Où εr est la constante diélectrique du milieu.
La figure 2 montre la ligne de transmission 4 de forme cylindrique comprenant dans le sens longitudinal et en son centre une ligne centrale conductrice 5. La ligne de transmission 4 a un diamètre de 6,91 mm et la ligne centrale 5 un diamètre de 3 mm. L'ensemble « ligne de transmission + ligne centrale » ainsi composé présente une impédance caractéristique de 50 ohms.
Les sondes ( « slugs » ) 6a et 6b sont de forme cylindrique de longueur 3,75 mm et de diamètre extérieur légèrement inférieur au diamètre intérieur de la ligne de transmission, soit environ 6,9 mm. Elles présentent un perçage longitudinal en son centre de diamètre 3,1 mm permettant le passage de la ligne centrale 5. Les sondes peuvent ainsi aisément coulisser le long de la ligne centrale (voir les flèches de la figure 2). Chaque sonde présente une impédance caractéristique nettement différente de celle de la ligne de transmission, en l'occurrence, par les dimensions susmentionnées, l'impédance des sondes est d'environ 2 ohms.
La figure 4 illustre deux exemples de sondes qui peuvent être utilisées par paire. La sonde de la figure 4a est une sonde « résonateur » de forme cylindrique et composée dans le sens longitudinal de deux couches de métal séparées par une couche d'isolant. Cet agencement réduit la bande de fréquence de telle sorte que la sonde se comporte telle un résonateur. L'avantage de la réduction de la bande de fréquence à laquelle le slug fait effet réside dans la possibilité de contrôler la valeur du coefficient de réflexion présenté au composant sous test non pas à une fréquence mais à plusieurs.
La sonde de la figure 4b est en métal de forme cylindrique présentant aux deux faces d'extrémité un renfoncement progressif de l'extérieur vers le centre, là où coulisse la ligne centrale conductrice 5. Ce renfoncement a pour effet d'augmenter la bande de fréquence de la sonde. Cette dernière se comporte donc comme une sonde large bande.
Toute autre forme de la ligne de transmission 4
(par exemple section carré ou rectangulaire) peut également convenir pour autant que les sondes utilisées aient sensiblement la même section que la ligne de transmission et épousent au mieux la forme intérieure de cette ligne de transmission à l'exception de la ligne centrale conductrice 5 sur laquelle coulissent les sondes.
Le slug fait varier localement l'impédance de la ligne en changeant la valeur du diamètre D du conducteur extérieur. Cette variation locale d'impédance modifie le coefficient de réflexion du tuner donc l'impédance de celui-ci.
Si on coulisse le slug 6b sur la ligne d'impédance Z0, l'impédance du tuner se déplace sur un cercle à TOS (taux d'onde stationnaire) constant centré sur Z0. Un déplacement de λ/2 (où λ représente la longueur d'onde de travail) permet de décrire l'ensemble du cercle sur l'abaque de Smith. Selon les caractéristiques du slug (diamètre intérieur et longueur), le rayon du cercle, sur l'abaque de Smith, varie. Il est alors impossible de couvrir l'ensemble de l'abaque avec un seul slug aux caractéristiques non paramétrables. On ajoute alors un deuxième slug 6a devant le premier. Celui-ci va permettre d'effectuer une pré-adaptation ou « prématching » : en déplaçant le centre du cercle décrit.
L'impédance du tuner ne se déplace plus sur un cercle à TOS constant. Si on déplace le premier slug 6b d'une distance λ/2 le long du conducteur, on décrit le cercle entier sur l'abaque autour de l'impédance de préadaptation.
Si on fait varier la position du second slug, le centre du cercle décrit se déplace sur un cercle à TOS constant. Parcourir une distance de λ/2 avec le deuxième slug, et pour chaque position de celui-ci balayer une distance de λ/2 avec le premier permet de tracer une multitude de cercles qui permettent de couvrir l'abaque de Smith dans sa globalité.
Les caractéristiques des cercles tracés
(rayon, cercle à TOS constant sur lequel se déplace le centre) dépendent des caractéristiques des slugs utilisés. Ainsi, par exemple, une combinaison de slugs permettra d'avoir de nombreux points au bord de l'abaque tandis qu'une autre combinaison permettra une meilleure couverture de l'abaque. Ceci ajoute une souplesse supplémentaire d'utilisation.
L'adaptateur réalisé a été automatisé en utilisant deux moteurs pas à pas de très grande précision associés à un système d'encodage pour réaliser le déplacement des slugs. Les moteurs font tourner, chacun, une vis rectifiée de précision qui entraîne un chariot. Chaque chariot monté sur une vis entraîne le déplacement d'un slug.
Le tuner pourrait être placé au plus près du composant sous test, n'affectant pas ainsi la taille de la zone morte. Comme pour les tuners commerciaux, l'étalonnage automatique du tuner permet de caractériser un composant en quelques minutes et de façon précise.
En référence à la figure 3, un mode de réalisation de l'adaptateur d'impédance est proposé. Il comprend :
- un conducteur intérieur de diamètre dx (5) et un conducteur extérieur de diamètre d2 ( 4 ) , l ' ensemble constituant une ligne de transmission, ainsi que deux sondes 6a et 6b. Cet ensemble est similaire à celui décrit en référence à la figure 2 ;
- un connecteur coaxial standard (non représenté) de chaque côté de la ligne de transmission ;
- un chariot (2) équipée d'un moteur (1) permettant de coulisser le long d'un guide (3). Le moteur (1) est de type linéaire permettant, à l'inverse des moteurs rotatifs, de limiter les vibrations engendrées lors de son fonctionnement. Les sondes 6a et 6b sont chacune reliées à un bloc « chariot 2 + moteur 1 + guide 3 » par un bras d'accouplement 7 muni de moyens élastiques d'absorption de vibration. L'absorption des vibrations est réalisée au niveau du bras d'accouplement à l'aide d'une languette de matériau souple prise en sandwich entre les deux parties métalliques situées respectivement vers le bloc « moteur + chariot + guide » et vers la sonde.
Pour permettre le déplacement des sondes 6 par les bras de liaison 7, le conducteur extérieur 4 de la ligne de transmission est pourvu d'une fente dans le sens longitudinal de la ligne.

Claims

REVENDICATIONS
1. Adaptateur d'impédance coaxial pour ligne de transmission (4, 5) comprenant dans le sens longitudinal une ligne centrale conductrice (5) d'axe Ox, l'adaptateur étant caractérisé en ce qu'il comporte deux sondes (6) dans la ligne de transmission aptes à se déplacer selon un mouvement de translation suivant l'axe Ox, et deux moteurs (1) entraînant en translation, chacun, une desdites sondes (6), lesdits moteurs (1) étant isolés des sondes par des accouplements élastiques ( 7 ) .
2. Adaptateur d'impédance coaxial selon la revendication 1, caractérisé en ce que lesdites sondes sont de section circulaire et coulissent longitudinalement, dans la ligne de transmission.
3. Adaptateur d'impédance coaxial selon la revendication précédente, caractérisé en ce que lesdites sondes comprennent un empilement de couches métalliques séparées par au moins une couche isolante dans le sens longitudinal.
4. Adaptateur d'impédance coaxial selon la revendication 2, caractérisé en ce que lesdites sondes sont des cylindres métalliques dont les faces latérales présentent un renfoncement centré vers l'intérieur du cylindre .
5. Adaptateur d'impédance coaxial selon l'une des revendications précédentes, caractérisé en ce qu'un diélectrique est déposé sur ladite ligne centrale conductrice .
6. Adaptateur d'impédance coaxial selon l'une des revendications 1 à 4, caractérisé en ce qu'un diélectrique est déposé sur l'un des diamètres intérieur et extérieur desdites sondes.
7. Adaptateur d'impédance coaxiale selon l'une au moins des revendications précédentes, caractérisé en ce que lesdites sondes ont une impédance caractéristique différente de l'impédance caractéristique de ladite ligne de transmission.
8. Adaptateur d'impédance coaxial selon la revendication précédente, caractérisé en ce que ladite ligne de transmission a une impédance caractéristique de 50 ohms.
9. Adaptateur d'impédance coaxial selon l'une au moins des revendications précédentes, caractérisé en ce que chaque sonde est solidaire d'un chariot par l'accouplement élastique, l'adaptateur comprenant, en outre, des moteurs aptes à entraîner les chariots en translation dans le sens longitudinal de la ligne de transmission.
10. Adaptateur d'impédance coaxial selon la revendication précédente, caractérisé en ce que lesdits moteurs sont des moteurs linéaires et les chariots sont montés sur des guides parallèles à la ligne de transmission.
11. Adaptateur d'impédance coaxial selon l'une quelconque des revendications précédentes, caractérisé en ce que l'une des sondes dite de pré-adaptation (6a) est agencée pour se déplacer sur une distance de λ/2, où λ est la longueur d'onde de travail, et la deuxième sonde (6b) est agencée pour se déplacer sur une distance de λ/2 relativement à ladite sonde de pré-adaptation (6a).
12. Adaptateur d'impédance coaxial selon l'une au moins des revendications précédentes, caractérisé en ce qu'il présente un coefficient de réflexion supérieur à 0,98 à 10 GHz.
PCT/FR2006/001759 2005-07-18 2006-07-18 Adapteur d'impedance automatique coaxial WO2007010134A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/988,953 US7936233B2 (en) 2005-07-18 2006-07-18 Coaxial automatic impedance adaptor
JP2008522016A JP4782833B2 (ja) 2005-07-18 2006-07-18 同軸自動インピーダンス・アダプタ
EP06778882.8A EP1905120B1 (fr) 2005-07-18 2006-07-18 Adapteur d'impedance automatique coaxial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507607 2005-07-18
FR0507607A FR2888670B1 (fr) 2005-07-18 2005-07-18 Adapteur d'impedance automatique coaxial

Publications (1)

Publication Number Publication Date
WO2007010134A1 true WO2007010134A1 (fr) 2007-01-25

Family

ID=36088428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001759 WO2007010134A1 (fr) 2005-07-18 2006-07-18 Adapteur d'impedance automatique coaxial

Country Status (5)

Country Link
US (1) US7936233B2 (fr)
EP (1) EP1905120B1 (fr)
JP (1) JP4782833B2 (fr)
FR (1) FR2888670B1 (fr)
WO (1) WO2007010134A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151007A1 (fr) * 2007-05-02 2010-02-10 ViaSat, Inc. Interface coaxiale d'impédance à faible perte pour des circuits intégrés
FR2972858A1 (fr) * 2011-03-18 2012-09-21 Arnaud Curutchet Synthetiseur d'impedance coaxial

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525518B1 (en) * 2008-11-04 2013-09-03 The Florida State University Research Foundation, Inc. Impedance matching in NMR probe with an adjustable segmented transmission line
JP4852091B2 (ja) * 2008-12-22 2012-01-11 株式会社日立メディコ 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法
US8259025B2 (en) * 2009-03-26 2012-09-04 Laird Technologies, Inc. Multi-band antenna assemblies
JP5502070B2 (ja) 2009-03-27 2014-05-28 東京エレクトロン株式会社 チューナおよびマイクロ波プラズマ源
US8203348B1 (en) * 2009-05-01 2012-06-19 Christos Tsironis Autonomous impedance tuner with human control interface
US8823392B2 (en) 2011-04-06 2014-09-02 Maury Microwave, Inc. Web-enabled controller for impedance tuner systems
JP6444782B2 (ja) * 2015-03-17 2018-12-26 東京エレクトロン株式会社 チューナおよびマイクロ波プラズマ源
KR20200026848A (ko) * 2020-02-21 2020-03-11 박상규 마이크로파 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403252A (en) * 1944-11-16 1946-07-02 Hazeltine Research Inc High-frequency impedance-matching device
US3792385A (en) * 1972-11-06 1974-02-12 Rca Corp Coaxial magnetic slug tuner
JPS5763901A (en) * 1980-10-07 1982-04-17 Toshiba Corp High-frequency impedance variable device
JPH09317824A (ja) * 1996-03-29 1997-12-12 Nok Megurasutikku Kk 防振マウント
US6297649B1 (en) * 1999-09-30 2001-10-02 Focus Microwaves Inc. Harmonic rejection load tuner
US20030122633A1 (en) * 2001-12-31 2003-07-03 Christos Tsironis High frequency, high reflection pre-matching tuners with variable zero initialization
JP2004316782A (ja) * 2003-04-16 2004-11-11 Toyo Tire & Rubber Co Ltd モータ用防振ゴム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2017999A1 (de) * 1970-04-15 1971-10-28 Jörn, Raoul, Dipl.-Ing., 8990 Lindau Federelement, insbesondere zur elastischen Lagerung von Motoren
JPS49112552A (fr) * 1973-02-24 1974-10-26
JPS5229041A (en) * 1975-08-31 1977-03-04 Toshinori Chiyo Foot pedal vehicle
JP3845598B2 (ja) * 2002-05-21 2006-11-15 長野日本無線株式会社 同軸型インピーダンス整合器
JP2004031678A (ja) 2002-06-26 2004-01-29 Mitsubishi Electric Corp 半導体装置および半導体素子搭載用保持具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403252A (en) * 1944-11-16 1946-07-02 Hazeltine Research Inc High-frequency impedance-matching device
US3792385A (en) * 1972-11-06 1974-02-12 Rca Corp Coaxial magnetic slug tuner
JPS5763901A (en) * 1980-10-07 1982-04-17 Toshiba Corp High-frequency impedance variable device
JPH09317824A (ja) * 1996-03-29 1997-12-12 Nok Megurasutikku Kk 防振マウント
US6297649B1 (en) * 1999-09-30 2001-10-02 Focus Microwaves Inc. Harmonic rejection load tuner
US20030122633A1 (en) * 2001-12-31 2003-07-03 Christos Tsironis High frequency, high reflection pre-matching tuners with variable zero initialization
JP2004316782A (ja) * 2003-04-16 2004-11-11 Toyo Tire & Rubber Co Ltd モータ用防振ゴム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151007A1 (fr) * 2007-05-02 2010-02-10 ViaSat, Inc. Interface coaxiale d'impédance à faible perte pour des circuits intégrés
FR2972858A1 (fr) * 2011-03-18 2012-09-21 Arnaud Curutchet Synthetiseur d'impedance coaxial
WO2012126900A1 (fr) * 2011-03-18 2012-09-27 Arnaud Curutchet Synthétiseur d'impédance coaxial
US9325289B2 (en) 2011-03-18 2016-04-26 Arnaud Curutchet Coaxial-impedance synthesizer

Also Published As

Publication number Publication date
FR2888670A1 (fr) 2007-01-19
JP2009502075A (ja) 2009-01-22
JP4782833B2 (ja) 2011-09-28
EP1905120B1 (fr) 2017-08-30
FR2888670B1 (fr) 2009-11-20
EP1905120A1 (fr) 2008-04-02
US7936233B2 (en) 2011-05-03
US20090146757A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
EP1905120B1 (fr) Adapteur d'impedance automatique coaxial
EP2068164B1 (fr) Procédé de réglage d'un circuit d'excitation et détection pour résonance magnétique nucléaire
EP0047203B1 (fr) Filtre hyperfréquence à résonateur diélectrique, accordable dans une grande largeur de bande
EP2690703B1 (fr) Filtre passe bande accordable en fréquence pour onde hyperfréquence
EP2156201A2 (fr) Système d'émission d'impulsion électrique et dispositif de découplage capacitif pour un tel système
EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
EP0468857A1 (fr) Dispositif de réception sans fil pour appareils d'imagerie par résonance magnétique nucléaire
EP1955081B1 (fr) Mesure deportee du courant traversant une charge
EP2853004B1 (fr) Synthétiseur d'impédance coaxial
EP0534826B1 (fr) Dispositif pour tests hyperfréquences à large bande réalisés in situ
EP2887451A1 (fr) Filtre hyperfréquence passe-bande accordable par rotation d'un élément diélectrique
WO2006131638A1 (fr) Adaptateur d’impedance automatique compact en guide d’onde
CA2194470A1 (fr) Transformateur d'impedance a haute frequence
EP3477709B1 (fr) Commutateur
FR2696009A1 (fr) Dispositif de calibrage pour ajuster en hyperfréquence les plans de référence d'un appareillage de mesure des paramètres de dispersion d'éléments de circuits intégrés.
FR3122496A1 (fr) Porte échantillon destiné à la caractérisation des propriétés diélectriques et/ou magnétiques d’un échantillon
EP0487388A1 (fr) Inductance, notamment pour ondes courtes
FR2885446A1 (fr) Sonde coaxiale, son procede de fabrication et dispositif de mesure en champ proche electromagnetique sur des systemes a distance submicrometrique
FR2670296A1 (fr) Dispositif de mesure de l'impedance de transfert d'un cable.
BE475527A (fr)
FR2617290A1 (fr) Dispositif de test de circuit integre
WO1989004969A1 (fr) Dispositif de caracterisation electrique d'echantillons et application a la cartographie electrique d'echantillons semi-conducteurs de grande surface
EP3301751A1 (fr) Dispositif électronique à antenne isolée
FR2904736A1 (fr) Modulateur de phase pour faisceau laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008522016

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006778882

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006778882

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006778882

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11988953

Country of ref document: US