EP2690703B1 - Filtre passe bande accordable en fréquence pour onde hyperfréquence - Google Patents

Filtre passe bande accordable en fréquence pour onde hyperfréquence Download PDF

Info

Publication number
EP2690703B1
EP2690703B1 EP13177704.7A EP13177704A EP2690703B1 EP 2690703 B1 EP2690703 B1 EP 2690703B1 EP 13177704 A EP13177704 A EP 13177704A EP 2690703 B1 EP2690703 B1 EP 2690703B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
input
output
cavity
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13177704.7A
Other languages
German (de)
English (en)
Other versions
EP2690703A1 (fr
Inventor
Aurélien Perigaud
Damien Pacaud
Nicolas Delhote
Olivier Tantot
Stéphane BILA
Serge Verdeyme
Laetitia Estagerie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2690703A1 publication Critical patent/EP2690703A1/fr
Application granted granted Critical
Publication of EP2690703B1 publication Critical patent/EP2690703B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • H01P1/2086Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present invention relates to the field of frequency filters in the field of microwave waves, typically frequencies between 1GHz to 30GHz. More particularly, the present invention relates to frequency tunable band pass filters.
  • microwave wave for example received by a satellite
  • the processing of a microwave wave requires the development of specific components, allowing the propagation, amplification, and filtering of this wave.
  • a microwave received by a satellite must be amplified before being sent back to the ground.
  • This amplification is only possible by separating all the frequencies received into channels, each corresponding to a given frequency band. The amplification is then carried out channel by channel. Channel separation requires the development of bandpass filters.
  • tunable bandpass filters in the microwave domain is the use of passive semiconductor components, such as PIN diodes, continuously variable capacitors, or capacitive switches.
  • passive semiconductor components such as PIN diodes, continuously variable capacitors, or capacitive switches.
  • MEMS micro electromechanical systems
  • the technology of the filters based on dielectric elements is known. It allows non-tunable band pass filters.
  • the figure 1 describes an example of a filter based on dielectric elements for non-tunable microwave wave.
  • An input excitation means 10 introduces the wave into the cavity, this element is typically a conducting medium such as a coaxial cable (or probe).
  • the cavity 13 is a closed cavity made of metal, typically aluminum or invar.
  • An output excitation means 11 typically a conducting medium such as a coaxial cable (or probe), makes it possible to cause the wave to exit the cavity.
  • the dielectric element 12 is round or square in shape and disposed inside the metal cavity 13.
  • the dielectric material is typically zirconia, alumina or BMT.
  • a filter typically comprises at least one resonator comprising a metal cavity and a dielectric element.
  • a resonance mode of the filter corresponds to a particular distribution of the electromagnetic field which is excited at a particular frequency.
  • a bandpass filter allows the propagation of a wave over a certain frequency range and attenuates this wave for the other frequencies. This defines a bandwidth and a central frequency of the filter. For frequencies around its center frequency, a bandpass filter has high transmission and low reflection.
  • these filters may be composed of a plurality of resonators coupled together.
  • the center frequency and the filter bandwidth depend on both the geometry of the cavities and the dielectric elements, as well as the coupling resonators between them as well as couplings to the input and output excitation means of the filter.
  • Coupling means are for example openings or slots called iris, electrical or magnetic probes or microwave lines.
  • the bandwidth of the filter is characterized in different ways depending on the nature of the filter.
  • Parameter S is a parameter that accounts for filter performance in terms of reflection and transmission.
  • S11, or S22 corresponds to a measurement of the reflection and S12, or S21, to a measurement of the transmission.
  • a filter performs a filtering function.
  • This function can generally be approximated via mathematical models (iterative functions such as Chebychev, Bessel, etc. functions). These functions are usually based on polynomial relationships.
  • the filter bandwidth is determined at S11 (or S22) equi-ripple, for example at 15 dB or 20 dB of reflection reduction with respect to its level. out of band.
  • the band is taken at -3dB (when S21 crosses S11).
  • FIG. 2 An example of a characteristic of the parameters S11 and S12 of a filter is illustrated figure 2 .
  • the curve 21 corresponds to the reflection S11 of the wave on the filter as a function of its frequency.
  • the bandwidth equi-ripple at 20 dB of reflection is noted 26.
  • the filter has a center frequency corresponding to the frequency of the middle of the bandwidth.
  • Curve 22 of the figure 2 corresponds to the transmission S12 of the filter as a function of the frequency.
  • the filter thus passes a signal whose frequency is located in the bandwidth, but the signal is nevertheless attenuated by the losses of the filter.
  • the tuning of the filter making it possible to obtain a transmission maximum for a given frequency band is very difficult to produce and depends on all the parameters of the filter. It is moreover dependent on the temperature.
  • the resonance frequencies of the filter resonators can be very slightly modified using metal screws, but this process carried out empirically, is very expensive in time and allows a very low frequency tunability, typically of the order of a few%.
  • the objective is not the tunability but the obtaining of a precise value of the central frequency, and it is desired to obtain a reduced sensitivity of the frequency of each resonator with respect to the depth of the screw.
  • the circular or square symmetry of the resonators simplifies the design of the filter and the selection of the mode (TE for Transverse Electric or TM for Transverse Magnetic) that propagates in the filter.
  • the document US 7705694 discloses a bandwidth-tunable filter composed of a plurality of dielectric resonators coupled together, non-uniformly radially and uniformly shaped along an axis z perpendicular to the direction of propagation. Each resonator is able to rotate about the z-axis between two positions, which induces a change in the value of the width of the bandwidth, typically from 51Mz to 68Mz.
  • This device allows tunability on the value of the width of the bandwidth of the filter, but not on its central frequency.
  • the document EP1684374 and the document JPS61136302 describe dielectric resonators that change their resonant frequency by dielectric rotation or by an external screw.
  • the object of the present invention is to provide tunable filters in central frequency that do not have the aforementioned drawbacks.
  • the input dielectric element and the output dielectric element are respectively located substantially in the center of the input cavity and the output cavity.
  • the input and output dielectric elements are U-shaped.
  • the filter comprises coupling means adapted to couple the input and output resonators directly.
  • the filter further comprises at least one intermediate resonator arranged in series between the input resonator and the output resonator, comprising an intermediate metal cavity and an intermediate dielectric element disposed inside the cavity and capable of disturbing the resonance mode of the microwave wave in the cavity, each dielectric element having a flattened shape having a height of at least a factor of 3 to the smallest dimension in a plane perpendicular to the direction carrying the height and being able to rotate about an axis of intermediate rotation, the filter comprising coupling means adapted to couple the intermediate resonators in pairs in series.
  • the coupling means are slots.
  • the dielectric elements have an identical angular position corresponding to an identical rotation, a value of the angle of rotation corresponding to a central frequency value of the filter.
  • the axes of rotation are parallel to each other.
  • the axes of rotation are perpendicular to the Z axis.
  • the intermediate dielectric elements are substantially identical.
  • the dielectric elements are integral with respective dielectric rods capable of rotating along the corresponding axis of rotation.
  • the rotational angles are variable as a function of the temperature so as to maintain the values of the central frequencies constant during a temperature variation.
  • the invention also relates to a microwave circuit comprising at least one such filter.
  • the invention consists in producing a tunable band pass filter in central frequency by rotation of dielectric elements in metal cavities, the input and output dielectric elements having a specific shape.
  • the filter according to the invention operates in a disturbed cavity mode.
  • An empty metal cavity has, according to its geometry, one or more resonance modes characterized by a frequency f of the microwave wave present in the cavity and by a particular distribution of the electromagnetic field.
  • resonance modes TE for Transverse Electrique
  • TM for Transverse Magn
  • a cavity containing a dielectric element (called disturbing element) disturbing the electromagnetic field inside the cavity is also able to resonate.
  • the figure 4 discloses a frequency-tunable bandpass filter 100 according to one aspect of the invention.
  • the microwave wave propagates along a Z axis.
  • the filter 100 comprises an input resonator R1 comprising a metal inlet cavity C1 and an input dielectric element E1 disposed inside the cavity.
  • the dielectric element E1 is able to disturb the resonance mode of the microwave wave in the input cavity.
  • the intrinsic nature of the mode, corresponding to the resonance mode of the cavity without the dielectric element, is not modified, but the mode of the cavity is very disturbed by the addition of the dielectric element E1.
  • the element E1 adds a capacitive effect which disturbs the resonance mode of the microwave wave in the cavity, and modifies the resonant frequency of the initial resonator formed by the cavity without the dielectric element.
  • the filter 100 also includes an output resonator RN comprising a metallic CN output cavity and an output dielectric element EN disposed within the CN cavity.
  • the output dielectric element EN has the same properties as those of the input dielectric element E1.
  • a TM mode is chosen on which it is easier to obtain a capacitive effect.
  • a TM mode is chosen on which it is easier to obtain a capacitive effect.
  • a parallel association resistance-capacitance-inductance resonator RLC
  • This circuit has a resonance frequency function of the product L.C. When playing on the capacitive effect, the resonance frequency varies.
  • the filter 100 comprises an input excitation means S1 of elongate shape along the Z axis penetrating inside the input cavity C1 .
  • This excitation means is typically a probe, such as a coaxial probe, of elongate shape, such as a cable.
  • the filter 100 comprises an Z-shaped elongated output excitation means Z penetrating inside the output cavity CN.
  • This excitation means is typically a probe, such as a coaxial probe, of elongate shape, such as a cable.
  • the inlet and outlet cavities are coupled to each other and respectively coupled to the input and output excitation means, so that the microwave wave introduced by the input excitation means into the filter 100 , propagates in the resonators in a resonance mode, and comes out of the filter.
  • the input and output dielectric elements according to the invention have a specific shape which has a recess.
  • the input energizing means penetrates inside the recess 41 of the input dielectric element so that the input dielectric element disturbs the electromagnetic field in the vicinity of the excitation means. 'Entrance.
  • the output excitation means penetrates inside the recess 42 of the output dielectric element so that the output dielectric element disturbs the electromagnetic field in the vicinity of the output excitation means.
  • the input dielectric element is adapted to rotate about an input rotation axis X1, the recess being adapted to allow rotation of the dielectric element while maintaining the element of input excitation inside the recess.
  • the output dielectric element is adapted to rotate about an output rotation axis XN, the recess being adapted to allow rotation of the dielectric element while maintaining the excitation element of exit inside the recess.
  • the excitation element inside the recess makes it possible to maintain a strong disturbance of the electromagnetic field in the vicinity of the element while ensuring a controlled coupling between excitation and resonator. This is essential for controlling the bandwidth, and for adapting the filter.
  • the distance between the excitation elements S1, SN and the respective dielectric elements E1, EN inside the recess is chosen as a function of the desired filter.
  • a broad bandpass filter requires strong coupling and therefore a distance as small as possible, limited by mechanical manufacturing tolerances and costs, typically a hundred microns.
  • a narrow bandwidth filter requires a lower coupling and therefore a slightly larger distance, typically from 1 to a few mm.
  • the rotations of the dielectric elements modify the capacitive effect, disturbing the electric field differently depending on the angular position of the dielectric elements.
  • the filter operates for a TM mode.
  • TM mode the magnetic field is perpendicular to the propagation direction Z and the electric field E is collinear with Z.
  • the preferred TM mode is of the TM 010 type.
  • the maximum of the electric field E is concentrated in the center of the cavity of the resonator.
  • the cavities of the resonators of the filter according to the invention are aligned, and the Z direction corresponds to the axis passing through the center of the cavities. The maximum field E is concentrated near Z.
  • the capacitive effect induced by the presence of a disturbing dielectric is a function of the amount of dielectric material (dielectric permittivity) "seen" by the field E. Increasing the amount of dielectric "seen” by the electric field increases the capacitive effect of the resonator. the contrast obtained on the capacitive effect is maximized when this variation is localized on a maximum of electric field.
  • a plane Pe is defined for each dielectric element. This plane is perpendicular to the height h (smaller dimension) of the dielectric element.
  • h small dimension
  • the quantity of material traversed by the field E in the vicinity of Z is much smaller than when the planes Pe of the dielectric elements comprise the Z axis. A high contrast of effect capacitive between the two positions is obtained, which induces a central frequency variation of the larger filter.
  • the rotation of a dielectric element takes place at a teta angle with respect to a given reference point.
  • the value of the center frequency of the filter fc is a function of the teta angle that the element E1 makes and the tetab angle that the element E2 makes.
  • a center frequency corresponds to an angular position of the dielectric elements.
  • the dielectric element E1 has a flattened shape respectively having a height h1 smaller than the external dimensions in a plane Pe perpendicular to the direction carrying the height h1.
  • the outer dimensions are the largest dimensions (I1 and L1 in the example of the figure 4 ) dielectric elements not taking into account the recess.
  • the dielectric element EN has a flattened shape respectively having a height hN less than the external dimensions (IN and LN in the example of FIG. figure 4 ) in a plane Pe perpendicular to the direction carrying the height hN.
  • the height is at least a factor 3 smaller than the smallest dimension in the plane Pe perpendicular to the direction carrying the height.
  • the figure 7a describes an example of a filter according to the invention when E1 and EN make an identical angle teta0, and equal to 0 ° by convention, corresponding to a central frequency value fc0.
  • the figure 7b describes the filter according to the invention when E1 and E2 make an identical teta90 angle, and equal to 90 ° with respect to the first position of E1 and E2, corresponding to a central frequency value fc90.
  • the filter according to the invention is a band pass filter whose central frequency can be chosen in a frequency range depending on the angular orientation of the dielectric elements.
  • the center frequency can be chosen continuously in the range of variation.
  • a correction (readjustment of the central frequency) according to the temperature is possible.
  • the adjustment of the angular positions is effected by means of control means, such as a motor.
  • the input dielectric element E1 and the output dielectric element EN are respectively located substantially in the center of the input cavity and of the output cavity. A maximum concentration of the electric field is thus obtained in the vicinity of the input and output excitation means, which makes it possible to ensure the sufficient and controlled coupling of the excitations with the resonators 1 and N.
  • the input dielectric elements E1 and output EN are U-shaped.
  • the shape comprises a body and two branches so as to make the recess 41 or 42; the dielectric elements are thus easy to manufacture. There is no flatness constraint on the shape of the dielectric elements.
  • the input and output excitation means are coaxial probes arranged along the same axis Z.
  • the filter comprises only two resonators, the input resonator R1 and the output resonator RN.
  • the two resonators are coupled together by coupling means, such as one or more slots.
  • the input dielectrics E1 and output EN are substantially identical, in shape and in material.
  • the figure 5 describes a preferred embodiment of an aspect of the invention for which the filter 100 further comprises at least one intermediate resonator Ri, a resonator being indexed according to an index i ranging from 2 to N-1, depending on the number of resonators intermediate.
  • the figure 5a describes a perspective view of the filter.
  • Each intermediate resonator Ri comprises an intermediate metal cavity Ci and an intermediate dielectric element Ei disposed inside the cavity Ci and capable of disturbing the resonance mode of the microwave wave in the cavity, the dielectric element Ei being adapted to rotate around an intermediate axis of rotation Xi.
  • each intermediate dielectric element Ei also has a flattened shape having a height hi less than the dimensions Li and Li (with Ii ⁇ Li for the example of the figure 5 ) in a plane Pe perpendicular to the direction bearing hi.
  • the height hi is at least a factor of 3 smaller than the smallest dimension li in the plane Pe perpendicular to the direction carrying the height hi. .
  • the intermediate dielectric elements have a flattened solid shape which does not necessarily have a recess as they are coupled to each other and not to an elongated excitation element such as the input and output dielectric elements.
  • the resonators are coupled two to two i / i + 1 in series, by coupling means, such as slots. These slots make it possible to couple at the same time a part of the electric field E and a part of the magnetic field H.
  • a coupling by field E has a sign opposite to a coupling by field H. identical proportions, the two couplings cancel each other out.
  • the positions and the dimensions of the slots are determined by optimization so that the resulting bandwidth is substantially constant during the rotation of the dielectric elements.
  • the input means S1 is a coaxial probe.
  • the axes of rotation of X1, X2 .. X1 to XN are perpendicular to the Z axis.
  • the axes of rotation X1, X2 .. Xi to XN are concurrent with the Z axis.
  • the intermediate elements symmetrical with respect to the medium of the filter are identical in shape, size and material.
  • the intermediate elements Ei are substantially identical in shape, size and material.
  • the filter is easier to calculate and to manufacture.
  • the rectangular shape of the dielectric elements shown is purely schematic and does not correspond to a preferred form.
  • the figure 6a corresponds to an element Ei intermediate in a cavity Ci in top view, the figure 6b in profile view.
  • the dotted area 61 illustrates a configuration where the capacitive effect is low.
  • the Figure 6c corresponds to the input dielectric element E1 in the cavity C1 when viewed from above, the figure 6d in profile view.
  • Dotted area 62 illustrates a configuration where the capacitive effect is low.
  • the figure 7a corresponds to an element Ei intermediate in a cavity Ci in top view, the figure 7b in profile view.
  • Dotted area 71 illustrates a configuration where the capacitive effect is strong.
  • the Figure 7c corresponds to the input dielectric element E1 in the cavity C1 when viewed from above, the figure 7d in profile view.
  • the dashed area 72 illustrates a configuration where the capacitive effect is strong.
  • a gradual and synchronous rotation of the dielectric elements E1, E1, EN makes it possible to continuously vary the central frequency fc of the filter.
  • each dielectric element E1, Ei, EN varies the amount of material traversed by the electric field E in the center of the cavities of the resonators, which has the effect of varying the capacitive effect of the resonator.
  • the figures 8 and 9 illustrate an embodiment of a filter according to the invention and the filter characteristics obtained.
  • the filter comprises 3 resonators R1, R2, RN comprising cavities C1, C2, CN of substantially square shape.
  • the size of the cavities C1 and CN is 16 mm, the dimension of C2 is 17 mm.
  • the 3 cavities have a height of 4.5 mm.
  • the dielectric elements E1, E2, EN are made of zirconia.
  • the input dielectric elements E1 and output EN have a dimension of 3.8 mm ⁇ 6.1 mm ⁇ 1.2 mm.
  • the height h of 1.2 mm is small compared to other dimensions by about a factor of 3 with the smaller of the other two dimensions.
  • the intermediate dielectric element E2 has dimensions of 4 mm x 4.1 mm x 1.2 mm (height h of 1.2 mm).
  • Resonators R2 and RN are connected by two slots of dimension 7mm x 2.5 mm, 5.5 mm apart. Unrepresented screws (6 per cavity) allow fine tuning of TM mode resonance and couplings.
  • the figure 8a represents a profile view of the filter and the figure 8b a perspective view.
  • the figure 9a represents a profile view of the filter and the figure 9b a perspective view
  • the flattened shapes of the dielectric elements are optimized to maximize the difference in capacitive effect and thus the frequency shift.
  • the dielectric elements E1, E2, EN are integral with holding means, preferably respective rods T1, T2, TN also of dielectric material capable of rotating
  • a rod and the dielectric element which is integral therewith form a single block of the same dielectric material which is manufactured in one piece.
  • the rod is made of dielectric material, it contributes to the disruptive effect of the dielectric element.
  • the rods Ti pass right through the associated disturbing element Ei and the cavity Ci, which ensures a better mechanical retention of the dielectric element in the cavity than with a single point of maintenance.
  • the curve S21 (0 °) corresponds to the transmission of the filter and the curve S11 (0 °) to reflection.
  • the bandwidth at -20 dB is deltaf (0 °) and the center frequency fc (0 °) is equal to 11.5 GHz.
  • Curve S21 (90 °) corresponds to the transmission of the wire and curve S11 (90 °) to reflection.
  • the bandwidth at -20 dB is deltaf (90 °) and the center frequency fc (90 °) is equal to 9.65 GHz.
  • the center frequency has changed from 9.65 GHz to 11.5 GHz.
  • the figure 10 illustrates another embodiment of a filter according to the invention in the same spirit as the described filter figures 8 and 9 .
  • the figure 10a discloses a perspective view of the filter for dielectric elements generally parallel to the Z axis and the figure 10b discloses a perspective view of the filter for dielectric elements generally perpendicular to the Z axis.
  • the filter comprises 6 resonators.
  • the figure 10c describes the transmission of the filter S12 for different angular positions of the dielectric elements between 0 ° and 90 °.
  • the center frequency varies according to the angle of inclination of the dielectric elements, between 9.65 GHz and 11.5 GHz.
  • the adaptation is of the order of 15 dB and the losses of the filter between 0.3 and 0.5 dB whatever the value of the angle of rotation.
  • the input and the output play a symmetrical role.
  • the temperature variations (typically a few tens of degrees) in the filter induce fluctuations in the dimensions of the cavities and dielectric elements, which generates central frequency variations for the same filter geometry.
  • rotation angles of the dielectric elements have variable values as a function of the temperature so as to correct the effects of the temperature on the central frequencies and thus maintain the values of these central frequencies. constant during a temperature change.
  • each central frequency value corresponds to an identical rotation angle for all the dielectric elements of the filter according to the invention and the value of this angle is temperature-controlled so as to maintain the central frequency at a determined value independent of the temperature. .
  • the invention also relates to a microwave circuit comprising at least one filter according to the invention.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention concerne le domaine des filtres en fréquence dans le domaine des ondes hyperfréquences, typiquement de fréquences comprises entre 1GHz à 30GHz. Plus particulièrement la présente invention concerne les filtres passe bande accordables en fréquence.
  • ETAT DE LA TECHNIQUE
  • Le traitement d'une onde hyperfréquence, par exemple reçue par un satellite, nécessite le développement de composants spécifiques, permettant la propagation, l'amplification, et le filtrage de cette onde.
  • Par exemple une onde hyperfréquence reçue par un satellite doit être amplifiée avant d'être renvoyée vers le sol. Cette amplification n'est possible qu'en séparant l'ensemble des fréquences reçues en canaux, correspondant chacun à une bande de fréquence donnée. L'amplification est alors réalisée canal par canal. La séparation des canaux nécessite le développement de filtres passe-bandes.
  • Le développement des satellites et la complexité accrue du traitement du signal à effectuer, par exemple une reconfiguration des canaux en vol, a conduit à la nécessité de mettre en oeuvre de filtres passe bande accordables en fréquence, c'est-à-dire pour lesquels il est possible de régler la fréquence centrale de filtrage couramment dénommée fréquence d'accord du filtre.
  • Une des technologies connues de filtres passe-bande accordables dans le domaine des ondes hyperfréquence est l'utilisation de composants semiconducteurs passifs, tel que des diodes PIN, des capacités continûment variables ou des commutateurs capacitifs. Une autre technologie est l'utilisation de MEMS (pour micro systèmes électromécaniques) de type ohmiques ou capacitifs.
  • Ces technologies sont complexes, consommatrices d'énergie électrique et peu fiables. Ces solutions sont également limitées au niveau de la puissance de signal traité. De plus l'accordabilité en fréquence a pour conséquence une dégradation significative des performances du filtre, tel que son facteur de qualité Q.
  • Par ailleurs, la technologie des filtres à base d'éléments diélectriques est connue. Elle permet de réaliser des filtres passe bande non accordables.
  • La figure 1 décrit un exemple de filtre à base d'éléments diélectriques pour onde hyperfréquence non accordable.
  • Un moyen d'excitation d'entrée 10 introduit l'onde dans la cavité, cet élément est typiquement un milieu conducteur tel un câble (ou sonde) coaxial.
  • La cavité 13 est une cavité fermée constituée de métal, typiquement de l'aluminium ou de l'invar.
  • Un moyen d'excitation de sortie 11, typiquement un milieu conducteur tel un câble (ou sonde) coaxial, permet de faire sortir l'onde de la cavité.
  • L'élément diélectrique 12 est de forme ronde ou carrée et disposé à l'intérieur de la cavité métallique 13. Le matériau diélectrique est typiquement de la zircone, de l'alumine ou du BMT.
  • Un filtre comprend typiquement au moins un résonateur comprenant une cavité métallique et un élément diélectrique. Un mode de résonance du filtre correspond à une distribution particulière du champ électromagnétique qui est excité à une fréquence particulière.
  • Un filtre passe-bande permet la propagation d'une onde sur une certaine plage de fréquence et atténue cette onde pour les autres fréquences. On définit ainsi une bande passante et une fréquence centrale du filtre. Pour des fréquences autour de sa fréquence centrale, un filtre passe-bande présente une transmission élevée et une réflexion faible.
  • Afin d'augmenter leur sélectivité, c'est-à-dire leur capacité à atténuer le signal hors de la bande passante, ces filtres peuvent être composés d'une pluralité de résonateurs couplés entre eux.
  • La fréquence centrale et la bande passante du filtre dépendent à la fois de la géométrie des cavités et des éléments diélectriques, ainsi que du couplage des résonateurs entre eux ainsi que des couplages aux moyens d'excitation d'entrée et de sortie du filtre.
  • Des moyens de couplages sont par exemple des ouvertures ou fentes dénommées iris, des sondes électriques ou magnétiques ou des lignes hyperfréquence.
  • La bande passante du filtre est caractérisée de différentes manières suivant la nature du filtre.
  • Le paramètre S est un paramètre qui rend compte des performances du filtre en termes de réflexion et de transmission. S11, ou S22, correspond à une mesure de la réflexion et S12, ou S21, à une mesure de la transmission.
  • Un filtre réalise une fonction de filtrage. Cette fonction peut généralement s'approximer via des modèles mathématiques (des fonctions itératives comme des fonctions Chebychev, Bessel, ...). Ces fonctions sont généralement fondées sur des rapports de polynômes.
  • Pour un filtre réalisant une fonction de filtrage de type Chebychev ou Chebychev généralisé, la bande passante du filtre est déterminée à équi-ondulation du S11 (ou S22), par exemple à 15dB ou 20 dB de réduction de la réflexion par rapport à son niveau hors bande. Pour un filtre réalisant une fonction de type Bessel, on prend la bande à -3dB (lorsque S21 croise S11).
  • Un exemple de caractéristique des paramètres S11 et S12 d'un filtre est illustré figure 2. La courbe 21 correspond à la réflexion S11 de l'onde sur le filtre en fonction de sa fréquence. La bande passante équi-ondulation à 20 dB de réflexion est notée 26. Le filtre présente une fréquence centrale correspondant à la fréquence du milieu de la bande passante. La courbe 22 de la figure 2 correspond à la transmission S12 du filtre en fonction de la fréquence. Le filtre laisse ainsi passer un signal dont la fréquence est située dans la bande passante, mais le signal est néanmoins atténué par les pertes du filtre.
  • L'accord du filtre permettant d'obtenir un maxima de transmission pour une bande de fréquence donnée est très délicat à réaliser et dépend de l'ensemble des paramètres du filtre. Il est de plus dépendant de la température.
  • Afin d'effectuer un réglage du filtre pour obtenir une fréquence centrale précise du filtre, les fréquences de résonance des résonateurs du filtre peuvent être très légèrement modifiée à l'aide de vis métalliques, mais ce procédé effectué de manière empirique, est très couteux en temps et ne permet qu'une très faible accordabilité en fréquence, typiquement de l'ordre de quelques %. Dans ce cas, l'objectif n'est pas l'accordabilité mais l'obtention d'une valeur précise de la fréquence centrale, et l'on souhaite obtenir une sensibilité réduite de la fréquence de chaque résonateur vis-à-vis de la profondeur de la vis.
  • La symétrie circulaire ou carrée des résonateurs simplifie la conception du filtre et la sélection du mode (TE pour Transverse Electrique ou TM pour Transverse Magnétique) qui se propage dans le filtre.
  • Le document US 7705694 décrit un filtre accordable en bande passante composé d'une pluralité de résonateurs diélectriques couplés entre eux, de forme non uniforme radialement et uniforme selon un axe z perpendiculaire à la direction de propagation. Chaque résonateur est apte à effectuer une rotation autour de l'axe z entre deux positions, qui induit un changement de la valeur de la largeur de la bande passante, typiquement de 51Mz à 68 Mz.
  • Ce dispositif permet une accordabilité sur la valeur de la largeur de la bande passante du filtre, mais pas sur sa fréquence centrale.
  • Le document EP1684374 et le document JPS61136302 décrivent des résonateurs diélectriques qui changent leur fréquence de résonance par le biais d'une rotation du diélectrique ou par une vis extérieure.
  • BUT DE L'INVENTION
  • La présente invention a pour but de réaliser des filtres accordables en fréquence centrale ne présentant pas les inconvénients précités.
  • DESCRIPTION DE L'INVENTION
  • A cet effet l'invention a pour objet un filtre passe bande (100) pour onde hyperfréquence accordable en fréquence et présentant une fréquence centrale, l'onde hyperfréquence se propageant selon un axe Z, le filtrecomprenant :
    • un résonateur d'entrée comprenant une cavité d'entrée métallique et un élément diélectrique d'entrée, disposé à l'intérieur de la cavité d'entrée et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité d'entrée,
    • un résonateur de sortie comprenant une cavité de sortie métallique et un élément diélectrique de sortie, disposé à l'intérieur de la cavité de sortie, et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité de sortie, un moyen d'excitation d'entrée de forme allongée pénétrant dans la cavité d'entrée pour permettre à l'onde hyper fréquence de pénétrer dans la cavité d'entrée, un moyen d'excitation de sortie de forme allongée pénétrant dans la cavité de sortie pour permettre à l'onde hyper fréquence de sortir de la cavité de sortie, les résonateurs d'entré et de sortie étant couplés, caractérisé en ce que :
      • les éléments diélectriques d'entrée et de sortie présentent un évidement
      • le moyen d'excitation d'entrée de forme allongée selon l'axe Z pénètre à l'intérieur de l'évidement de l'élément diélectrique d'entrée de manière à ce que l'élément diélectrique d'entrée perturbe le champ électromagnétique à proximité du moyen d'excitation d'entrée,
      • le moyen d'excitation de sortie de forme allongée selon l'axe Z pénètre à l'intérieur de l'évidement de l'élément diélectrique de sortie de manière à ce que l'élément diélectrique de sortie perturbe le champ électromagnétique à proximité du moyen d'excitation de sortie,
      • l'élément diélectrique d'entrée est apte à effectuer une rotation autour d'un axe de rotation d'entrée, l'évidement étant adapté pour permettre la rotation de l'élément diélectrique tout en maintenant l'élément d'excitation d'entrée à l'intérieur de l'évidement,-l'élément diélectrique de sortie est apte à effectuer une rotation autour d'un axe de rotation de sortie, l'évidement étant adapté pour permettre la rotation de l'élément diélectrique tout en maintenant l'élément d'excitation de sortie à l'intérieur de l'évidement,
      • chaque élément diélectrique présente une forme aplatie présentant une hauteur inférieure d'au moins un facteur 3 à la plus petite dimension extérieure dans un plan perpendiculaire à la direction portant la hauteur,
      • les rotations des éléments diélectriques permettant la modification de la fréquence centrale du filtre.
  • Selon un mode de réalisation, l'élément diélectrique d'entrée et l'élément diélectrique de sortie sont disposés respectivement sensiblement au centre de la cavité d'entrée et de la cavité de sortie.
  • Avantageusement, les éléments diélectrique d'entrée et de sortie sont en forme de U.
  • Selon un mode de réalisation, le filtre comprend des moyens de couplage adaptés pour coupler les résonateurs d'entrée et de sortie directement.
  • Selon un mode de réalisation, le filtre comprend en outre au moins un résonateur intermédiaire disposé en série entre le résonateur d'entrée et le résonateur de sortie, comprenant une cavité métallique intermédiaire et un élément diélectrique intermédiaire disposé à l'intérieur de la cavité et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité, chaque élément diélectrique présentant une forme aplatie présentant une hauteur inférieure d'au moins un facteur 3 à la plus petite dimension dans un plan perpendiculaire à la direction portant la hauteur et étant apte à effectuer une rotation autour d'un axe de rotation intermédiaire, le filtre comprenant des moyens de couplage adaptés pour coupler les résonateurs intermédiaires deux à deux en série.
  • Avantageusement, les moyens de couplage sont des fentes.
  • Avantageusement, les éléments diélectriques présentent une position angulaire identique correspondant à une rotation identique, une valeur de l'angle de rotation correspondant à une valeur de fréquence centrale du filtre.
  • Avantageusement, les axes de rotation sont parallèles entre eux.
  • Avantageusement, les axes de rotation sont perpendiculaires à l'axe Z.
  • Avantageusement, les éléments diélectriques intermédiaires sont sensiblement identiques.
  • Selon un mode de réalisation les éléments diélectriques sont solidaires de tiges diélectriques respectives aptes à effectuer une rotation selon l'axe de rotation correspondant.
  • Selon un mode de réalisation, les angles de rotations sont variables en fonction de la température de manière à maintenir les valeurs des fréquences centrales constantes lors d'une variation de température.
  • L'invention a également pour objet un circuit hyperfréquence comprenant au moins un tel filtre.
  • D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
    • La figure 1 illustre un exemple de filtre à résonateur diélectrique selon l'état de la technique comprenant un résonateur.
    • La figure 2 décrit la courbe de transmission et de réflexion d'un filtre passe bande.
    • La figure 3 illustre les modes de résonnance d'une cavité circulaire vide.
    • La figure 4 décrit un filtre selon un aspect de l'invention.
    • La figure 5 décrit un filtre selon un aspect de l'invention vu en perspective.
    • La figure 6 décrit la position des éléments diélectriques du filtre décrit figure 5 pour une valeur déterminée d'angle de rotation
    • La figure 7 décrit la position des éléments diélectriques du filtre décrit figure 5 pour une autre valeur déterminée d'angle de rotation
    • La figure 8 illustre un exemple de réalisation d'un filtre selon un aspect de l'invention comprenant trois résonateurs, pour une valeur déterminée d'angle de rotation, ainsi que la courbe fréquentielle correspondante.
    • La figure 9 illustre l'exemple de réalisation d'un filtre décrit figure 8 pour une autre valeur déterminée d'angle de rotation, ainsi que la courbe fréquentielle correspondante.
    • La figure 10 illustre un exemple de réalisation d'un filtre selon un aspect de l'invention comprenant six résonateurs, pour une valeur déterminée d'angle de rotation, ainsi que la courbe fréquentielle correspondante.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • L'invention consiste à réaliser un filtre passe bande accordable en fréquence centrale par rotation d'éléments diélectriques dans des cavités métalliques, les éléments diélectriques d'entrée et de sortie présentant une forme spécifique.
  • Le filtre selon l'invention fonctionne selon un mode de cavité perturbée.
  • Une cavité métallique vide présente selon sa géométrie un ou plusieurs modes de résonance caractérisés par une fréquence f de l'onde hyperfréquence présente dans la cavité et par une distribution particulière du champ électromagnétique. Par exemple des modes de résonance TE (pour Transverse Electrique) ou TM (pour Transverse Magnétiques) présentant un certains nombres de maximas d'énergie repérés par des indices, peuvent être excités dans une cavité métallique vide. La figure 3 décrit à titre d'exemple les différents modes de résonance pour une cavité circulaire vide en fonction des dimensions de la cavité (diamètre D et hauteur H), et de la fréquence f.
  • Une cavité contenant un élément diélectrique (dénommé élément perturbateur) perturbant le champ électromagnétique à l'intérieur de la cavité est également apte à résonner.
  • La figure 4 décrit un filtre passe bande 100 accordable en fréquence selon un aspect de l'invention. L'onde hyperfréquence se propage selon un axe Z.
  • Le filtre 100 comprend un résonateur d'entrée R1 comprenant une cavité d'entrée C1 métallique et un élément diélectrique d'entrée E1, disposé à l'intérieur de la cavité. L'élément diélectrique E1 est apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité d'entrée. La nature intrinsèque du mode, correspondant au mode de résonnance de la cavité sans l'élément diélectrique, n'est pas modifiée, mais le mode de la cavité est très perturbé par l'ajout de l'élément diélectrique E1. L'élément E1 ajoute un effet capacitif qui perturbe le mode de résonance de l'onde hyperfréquence dans la cavité, et modifie la fréquence de résonance du résonateur initial constitué par la cavité sans l'élément diélectrique.
  • Le filtre 100 comprend également un résonateur de sortie RN comprenant une cavité de sortie CN métallique et un élément diélectrique de sortie EN disposé à l'intérieur de la cavité CN. L'élément diélectrique de sortie EN a les mêmes propriétés que celles de l'élément diélectrique d'entrée E1.
  • Avantageusement, on choisi un mode TM sur lequel il est plus aisé d'obtenir un effet capacitif. En effet il est possible d'approximer le comportement fréquentiel d'un résonateur par un circuit électrique équivalent : une association parallèle résistance-capacité-inductance (résonateur RLC). Ce circuit possède une fréquence de résonance fonction du produit L.C. Lorsqu'on joue sur l'effet capacitif, la fréquence de résonance varie.
  • Pour le mode TM choisi il est aisé d'ajouter un effet capacitif en augmentant la permittivité au centre du résonateur (lieu des lignes de champ E les plus fortes) comme décrit plus loin.
  • Pour permettre à l'onde hyperfréquence de pénétrer dans la cavité d'entrée C1, le filtre 100 comprend un moyen d'excitation d'entrée S1 de forme allongée selon l'axe Z pénétrant à l'intérieur de la cavité d'entrée C1. Ce moyen d'excitation est typiquement une sonde, telle une sonde coaxiale, de forme allongée, tel un câble.
  • Pour permettre à l'onde hyperfréquence de sortir de la cavité de sortie CN, le filtre 100 comprend un moyen d'excitation de sortie SN de forme allongée selon l'axe Z pénétrant à l'intérieur de la cavité de sortie CN. Ce moyen d'excitation est typiquement une sonde, telle une sonde coaxiale, de forme allongée, tel un câble.
  • Les cavités d'entrée et de sortie sont couplées entre elles et couplées respectivement aux moyens d'excitation d'entrée et de sortie, de manière à ce que l'onde hyperfréquence introduite par le moyen d'excitation d'entrée dans le filtre 100, se propage dans les résonateurs selon un mode de résonance, et ressorte du filtre.
  • Les éléments diélectriques d'entrée et de sortie selon l'invention ont une forme spécifique qui présente un évidement.
  • Le moyen d'excitation d'entrée pénètre à l'intérieur de l'évidement 41 de l'élément diélectrique d'entrée de manière à ce que l'élément diélectrique d'entrée perturbe le champ électromagnétique à proximité du moyen d'excitation d'entrée.
  • Le moyen d'excitation de sortie pénètre à l'intérieur de l'évidement 42 de l'élément diélectrique de sortie de manière à ce que l'élément diélectrique de sortie perturbe le champ électromagnétique à proximité du moyen d'excitation de sortie.
  • Du fait de l'existence de cette perturbation, la fréquence centrale du filtre est modifiée.
  • De plus, l'élément diélectrique d'entrée est apte à effectuer une rotation autour d'un axe de rotation d'entrée X1, l'évidement étant adapté pour permettre la rotation de l'élément diélectrique tout en maintenant l'élément d'excitation d'entrée à l'intérieur de l'évidement. De même, l'élément diélectrique de sortie est apte à effectuer une rotation autour d'un axe de rotation de sortie XN, l'évidement étant adapté pour permettre la rotation de l'élément diélectrique tout en maintenant l'élément d'excitation de sortie à l'intérieur de l'évidement.
  • Maintenir l'élément d'excitation à l'intérieur de l'évidement permet de maintenir une perturbation forte du champ électromagnétique au voisinage de l'élément tout en assurant un couplage maîtrisé entre excitation et résonateur. Ceci est indispensable à la maîtrise de la bande passante, et pour l'adaptation du filtre.
  • La distance entre les éléments d'excitation S1, SN et les éléments diélectriques respectifs E1, EN à l'intérieur de l'évidement est choisie en fonction du filtre souhaité. Un filtre à large bande passante nécessite un couplage fort et donc une distance aussi faible que possible, limitée par les tolérances mécaniques de fabrication et les coûts, typiquement une centaine de µm. Un filtre à bande passante étroite nécessite un couplage plus faible et donc une distance un peu plus grande, typiquement de 1 à quelques mm. Les rotations des éléments diélectriques modifient l'effet capacitif, perturbant le champ électrique de manière différente en fonction de la position angulaire des éléments diélectriques.
  • Selon un mode préféré le filtre fonctionne pour un mode TM. Pour un mode TM, le champ magnétique est perpendiculaire à la direction de propagation Z et le champ électrique E est colinéaire à Z. Le mode TM préféré est du type TM010. Dans un mode de ce type, le maximum du champ électrique E est concentré au centre de la cavité du résonateur. Selon un mode préféré, les cavités des résonateurs du filtre selon l'invention sont alignées, et la direction Z correspond à l'axe passant par le centre des cavités. Le maximum de champ E est concentré au voisinage de Z. L'effet capacitif induit par la présence d'un diélectrique perturbateur est fonction de la quantité de matière diélectrique (permittivité diélectrique) « vue » par le champ E. Une augmentation de la quantité de diélectrique « vue » par le champ électrique augmente l'effet capacitif du résonateur. le contraste obtenu sur l'effet capacitif est maximisé lorsque cette variation est localisée sur un maxima de champ électrique.
  • Pour chaque élément diélectrique, un plan Pe est défini. Ce plan est perpendiculaire à la hauteur h (plus petite dimension) de l'élément diélectrique. Lorsque chaque plan Pe des éléments diélectriques est globalement perpendiculaire à Z, la quantité de matière traversée par le champ E au voisinage de Z est beaucoup plus faible que lorsque les plans Pe des éléments diélectrique comprennent l'axe Z. Un contraste élevé d'effet capacitif entre les deux positions est obtenu, ce qui induit une variation de fréquence centrale du filtre plus importante.
  • La rotation d'un élément diélectrique s'effectue selon un angle teta par rapport à un repère donné. Ainsi la valeur de la fréquence centrale du filtre fc est une fonction de l'angle tetaa que fait l'élément E1 et de l'angle tetab que fait l'élément E2.
  • Ainsi, une fréquence centrale correspond à une position angulaire des éléments diélectriques.
  • L'élément diélectrique E1 présente une forme aplatie présentant respectivement une hauteur h1 inférieure aux dimensions extérieures dans un plan Pe perpendiculaire à la direction portant la hauteur h1. On entend par dimensions extérieures les plus grandes dimensions (I1 et L1 dans l'exemple de la figure 4) des éléments diélectriques ne tenant pas compte de l'évidement.
  • L'élément diélectrique EN présente une forme aplatie présentant respectivement une hauteur hN inférieure aux dimensions extérieures (IN et LN dans l'exemple de la figure 4) dans un plan Pe perpendiculaire à la direction portant la hauteur hN.
  • Cette forme aplatie permet d'obtenir une forte amplitude de la variation de l'effet capacitif entre les positons angulaires extrêmes des éléments diélectriques, comme décrit plus haut. Pour l'obtention d'une amplitude de variation d'effet capacitif suffisante pour les applications visées, la hauteur est inférieure d'au moins un facteur 3 à la plus petite dimension dans le plan Pe perpendiculaire à la direction portant la hauteur.
  • Selon une variante préférée, les éléments E1 et EN effectuent une rotation identique, soit tetaa = tetab. La figure 7a décrit un exemple de filtre selon l'invention lorsque E1et EN font un angle teta0 identique, et égal à 0° par convention, correspondant à une valeur de fréquence centrale fc0. La figure 7b décrit le filtre selon l'invention lorsque E1 et E2 font un angle teta90 identique, et égal à 90° par rapport à la première position de E1 et E2, correspondant à une valeur de fréquence centrale fc90.
  • Ainsi lorsque les éléments diélectriques E1 et EN ont leur plan Pe sensiblement perpendiculaires à l'axe Z (hauteurs h1 hN selon l'axe Z correspondant à teta = 0°), la hauteur de diélectrique vue par le champ E (au centre, où il est le plus fort) est plus faible que lorsque les éléments diélectriques ont leur plan Pe comprenant sensiblement l'axe Z (hauteurs h1, hN perpendiculaires à Z correspondant à teta = 90°). Ainsi l'effet capacitif est plus faible pour la position de éléments diélectriques selon teta=0° que pour la position teta = 90°.
  • Ainsi, le filtre selon l'invention est un filtre passe bande dont la fréquence centrale peut être choisie dans une plage de fréquence fonction de l'orientation angulaire des éléments diélectriques. De plus, la fréquence centrale peut être choisie continument dans l'intervalle de variation.
  • Une correction (réajustement de la fréquence centrale) en fonction de la température est possible.
  • Selon un mode de réalisation, le réglage des positions angulaires s'effectue à l'aide de moyens de commande, tel qu'un moteur.
  • Selon une variante préférée, l'élément diélectrique d'entrée E1 et l'élément diélectrique de sortie EN sont disposés respectivement sensiblement au centre de la cavité d'entrée et de la cavité de sortie. On obtient alors une concentration maximale du champ électrique au voisinage des moyens d'excitation d'entrée et de sortie, ce qui permet d'assurer le couplage suffisant et maîtrisé des excitations avec les résonateurs 1 et N.
  • Selon une variante préférée, les éléments diélectriques d'entrée E1 et de sortie EN sont en forme de U. La forme comprend un corps et deux branches de manière à réaliser l'évidement 41 ou 42; les éléments diélectriques sont ainsi faciles à fabriquer. Il n'y a aucune contrainte de planéité sur la forme des éléments diélectriques.
  • Selon un mode de réalisation, les moyens d'excitation d'entrée et de sortie sont des sondes coaxiales disposées le long d'un même axe Z.
  • Selon un aspect de l'invention, le filtre ne comprend que deux résonateurs, le résonateur d'entrée R1 et le résonateur de sortie RN. Les deux résonateurs sont couplés entre eux par des moyens de couplage, tel qu'une ou plusieurs fentes. Selon une variante préférée, les diélectriques d'entrée E1 et de sortie EN sont sensiblement identiques, en forme et en matériau.
  • La figure 5 décrit un mode de réalisation préféré d'un aspect de l'invention pour lequel le filtre 100 comprend entre outre au moins un résonateur intermédiaire Ri, un résonateur étant indicé selon un indice i variant de 2 à N-1, fonction du nombre de résonateurs intermédiaires. La figure 5a décrit une vue en perspective du filtre.
  • Chaque résonateur intermédiaire Ri comprend une cavité métallique intermédiaire Ci et un élément diélectrique intermédiaire Ei disposé à l'intérieur de la cavité Ci et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité, l'élément diélectrique Ei étant apte à effectuer une rotation autour d'un axe de rotation intermédiaire Xi.
  • Selon une variante préférée, chaque élément diélectrique intermédiaire Ei présente également une forme aplatie présentant une hauteur hi inférieure aux dimensions Li et li (avec Ii<Li pour l'exemple de la figure 5) dans un plan Pe perpendiculaire à la direction portant hi. Pour l'obtention d'une amplitude de variation d'effet capacitif suffisante pour les applications visées, la hauteur hi est inférieure d'au moins un facteur 3 à la plus petite dimension li dans le plan Pe perpendiculaire à la direction portant la hauteur hi.
  • Les éléments diélectriques intermédiaires présentent une forme aplatie pleine qui présente pas nécessairement d'évidement car ils sont couplés entre eux et non pas à un élément d'excitation de forme allongée comme les éléments diélectriques d'entrée et de sortie.
  • Les résonateurs sont couplés deux à deux i/i+1 en série, par des moyens de couplage, tel que des fentes. Ces fentes permettent de coupler à la fois une partie du champ électrique E et une partie du champ magnétique H. Un couplage par champ E a un signe opposé à un couplage par champ H. En proportions identiques, les deux couplages s'annulent. Lors de la rotation des éléments diélectriques voisins Ei/Ei+1, pour une position et une dimension de fente donnée, le couplage par champ E (ou H) varie.
  • Selon une variante, on détermine par optimisation les positions et les dimensions des fentes de telle sorte que la bande passante résultante soit sensiblement constante lors de la rotation des éléments diélectriques.
  • Le moyen d'entrée S1 est une sonde coaxiale.
  • Les figures 6 et 7 décrivent un exemple de deux positions angulaires des éléments diélectriques du mode de réalisation préféré de l'invention décrit figure 5.
  • Selon une variante préférée représentée figures 6 et 7 les axes de rotation de X1, X2 .. Xi à XN sont parallèles entre eux.
  • Selon une autre variante également représentée figures 6 et 7 les axes de rotation de X1, X2 .. Xi à XN sont perpendiculaires à l'axe Z. Avantageusement, les axes de rotations X1, X2 .. Xi à XN sont concourants avec l'axe Z.
  • Avantageusement, les éléments intermédiaires symétriques par rapport au milieu du filtre sont identiques en forme, en dimension et en matériau. Avantageusement, les éléments intermédiaires Ei sont sensiblement identiques en forme, dimension et en matériau.
  • Dans cette géométrie, le filtre est plus aisé à calculer et à fabriquer.
  • La forme rectangulaire des éléments diélectriques représentée est purement schématique et ne correspond pas à une forme préférée.
  • La figure 6 décrit la structure des éléments diélectriques pour une valeur de teta = 0°. La figure 6a correspond à un élément Ei intermédiaire dans une cavité Ci en vue de dessus, la figure 6b en vue de profil. La zone en pointillé 61 illustre une configuration où l'effet capacitif est faible. La figure 6c correspond à l'élément diélectrique d'entrée E1 dans la cavité C1 en vue de dessus, la figure 6d en vue de profil. La zone en pointillé 62 illustre une configuration où l'effet capacitif est faible. Sur la figure 6c l'évidement 41 et la forme en U de E1 sont visibles. A cette position teta=0°, correspondant aux éléments diélectriques positionnés perpendiculairement à l'axe Z, est associée une fréquence centrale du filtre fc0.
  • La figure 7 décrit la structure des éléments diélectriques pour une valeur de teta = 90°. La figure 7a correspond à un élément Ei intermédiaire dans une cavité Ci en vue de dessus, la figure 7b en vue de profil. La zone en pointillé 71 illustre une configuration où l'effet capacitif est fort. La figure 7c correspond à l'élément diélectrique d'entrée E1 dans la cavité C1 en vue de dessus, la figure 7d en vue de profil. La zone en pointillé 72 illustre une configuration où l'effet capacitif est fort. Sur la figure 7c l'évidement 41 et la forme en U de E1 sont visibles. A cette position teta=90° est associée une fréquence centrale du filtre fc90.
  • Des fréquences centrales intermédiaires sont obtenue pour des valeurs de teta comprises en 0° et 90°.
  • Préférentiellement, tous les éléments diélectriques E1, Ei, EN présentent une position angulaire identique correspondant à une rotation identique, une valeur de l'angle de rotation teta correspondant à une valeur de fréquence centrale : fc = f teta
    Figure imgb0001
  • Une rotation progressive et synchrone des éléments diélectriques E1, Ei, EN permet de faire varier continûment la fréquence centrale fc du filtre.
  • Pour obtenir un changement de fréquence centrale lors de la rotation des éléments perturbateurs E1, Ei, EN, aucun de ces éléments ne présente de symétrie de révolution autour de son axe de rotation respectif.
  • Ainsi la rotation effectuée par chaque élément diélectrique E1, Ei, EN fait varier la quantité de matière traversée par le champ électrique E au centre des cavités des résonateurs, ce qui a pour effet de faire varier effet capacitif du résonateur.
  • Les figures 8 et 9 illustrent un exemple de réalisation d'un filtre selon l'invention et les caractéristiques de filtre obtenues.
  • Le filtre comprend 3 résonateurs R1, R2, RN comprenant des cavités C1, C2, CN de forme sensiblement carrées.
  • La dimension des cavités C1 et CN est de 16 mm, la dimension de C2 est de 17 mm. Les 3 cavités ont une hauteur de 4.5 mm.
  • Les éléments diélectriques E1, E2, EN sont en zircone. Les éléments diélectriques d'entrée E1 et de sortie EN ont une dimension de 3.8 mm x 6.1 mm x 1.2 mm. La hauteur h de 1.2 mm est faible par rapport aux autres dimensions d'environ un facteur 3 avec la plus petite des deux autres dimensions.
  • L'élément diélectrique intermédiaire E2 a pour dimensions 4mm x 4.1 mm x 1.2 mm (hauteur h de 1.2 mm).
  • Les résonateurs R2 et RN sont reliés par deux fentes de dimension 7mm x 2.5 mm, distantes de 5.5 mm. Des vis non représentées (6 par cavités) permettent un réglage fin de la résonance du mode TM et des couplages.
  • La figure 8 correspond à une valeur d'angle teta = 0°, les éléments sont globalement perpendiculaires à l'axe Z (hauteur h selon Z, plan Pe perpendiculaire à Z), correspondant à un effet capacitif faible. La figure 8a représente une vue de profil du filtre et la figure 8b une vue en perspective.
  • La figure 9 correspond à une valeur d'angle teta = 90° d'angle de rotation des éléments diélectriques, les éléments sont globalement parallèles à l'axe Z (hauteur h perpendiculaire à Z, plan Pe comprenant l'axe Z), correspondant à un effet capacitif fort. La figure 9a représente une vue de profil du filtre et la figure 9b une vue en perspective
  • Dans cet exemple, les formes aplaties des éléments diélectriques sont optimisées pour maximiser la différence d'effet capacitif et donc le décalage en fréquence.
  • Selon une variante préférée représentée sur les figures 8 et 9, les éléments diélectriques E1, E2, EN sont solidaires de moyens de maintient, préférentiellement de tiges respectives T1, T2, TN également en matériau diélectrique aptes à effectuer une rotation
  • Avantageusement une tige et l'élément diélectrique qui lui est solidaire forment un bloc unique d'un même matériau diélectrique qui est fabriqué d'une pièce. Dans ce cas , et plus généralement lorsque la tige est en matériau diélectrique, elle contribue à l'effet perturbateur de l'élément diélectrique. Préférentiellement les tiges Ti traversent de part en part l'élément pertubateur associé Ei ainsi que la cavité Ci, ce qui assure un meilleur maintien mécanique de l'élément diélectrique dans la cavité qu'avec un seul point de maintient.
  • Ces tiges peuvent effectuer une rotation selon l'axe de rotation correspondant X1, X2, XN à l'aide d'une liaison pivot avec les parois de la cavité C1, C2, CN dans laquelle elles se trouvent. Il y a ainsi moins d'étapes technologiques pour la fabrication du filtre.
  • La figure 8c illustre le comportement fréquentiel du filtre passe bande obtenu pour teta = 0°. La courbe S21(0°) correspond à la transmission du filtre et la courbe S11(0°) à la réflexion. La bande passante à -20 dB est deltaf(0°) et la fréquence centrale fc(0°) est égale à 11.5 GHz.
  • La figure 9c illustre le comportement fréquentiel du filtre passe bande obtenu pour teta = 90°. La courbe S21(90°) correspond à la transmission du fil et la courbe S11(90°) à la réflexion. La bande passante à -20 dB est deltaf(90°) et la fréquence centrale fc(90°) est égale à 9.65 GHz.
  • Ainsi par rotation d'un angle de 90°, la fréquence centrale s'est modifiée de 9.65 GHz à 11.5 GHz.
  • La figure 10 illustre un autre mode de réalisation d'un filtre selon l'invention dans le même esprit que le filtre décrit figures 8 et 9. La figure 10a décrit une vue en perspective du filtre pour des éléments diélectriques globalement parallèles à l'axe Z et la figure 10b décrit une vue en perspective du filtre pour des éléments diélectriques globalement perpendiculaires à l'axe Z. le filtre comprend 6 résonateurs. La figure 10c décrit la transmission du filtre S12 pour différentes postions angulaires des éléments diélectriques entre 0° et 90°. La fréquence centrale varie en fonction de l'angle d'inclinaison des éléments diélectriques, entre 9.65 GHz et 11.5 GHz.
  • L'adaptation est de l'ordre de 15 dB et les pertes du filtre comprises entre 0.3 et 0.5 dB quel que soit la valeur de l'angle de rotation.
  • Pour les filtres selon l'invention, l'entrée et la sortie jouent un rôle symétrique.
  • Les variations de température (typiquement quelques dizaines de degrés) dans le filtre induisent des fluctuations dans les dimensions des cavités et des éléments diélectriques, ce qui génère des variations de fréquence centrale pour une même géométrie de filtre.
  • Selon un mode de réalisation du filtre selon l'invention, des angles de rotations des éléments diélectriques présentent des valeurs variables en fonction de la température de manière à corriger les effets de la température sur les fréquences centrales et donc maintenir les valeurs de ces fréquences centrales constantes lors d'une variation de température.
  • Préférentiellement, chaque valeur de fréquence centrale correspond à un angle de rotation identique pour tous les éléments diélectriques du filtre selon l'invention et la valeur de cet angle est asservie en température de manière à maintenir la fréquence centrale à une valeur déterminée indépendante de la température.
  • Selon un autre aspect, l'invention porte également sur un circuit hyperfréquence comprenant au moins un filtre selon l'invention.

Claims (13)

  1. Filtre passe bande (100) pour onde hyperfréquence accordable en fréquence et présentant une fréquence centrale (fc), l'onde hyperfréquence se propageant selon un axe Z, le filtre comprenant
    - un résonateur d'entrée (R1) comprenant une cavité d'entrée (C1) métallique et un élément diélectrique d'entrée (E1), disposé à l'intérieur de la cavité d'entrée et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité d'entrée,
    - un résonateur de sortie (RN) comprenant une cavité de sortie (CN) métallique et un élément diélectrique de sortie (EN), disposé à l'intérieur de la cavité de sortie, et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité de sortie,
    - un moyen d'excitation d'entrée (S1) de forme allongée selon l'axe Z pénétrant dans la cavité d'entrée (C1) pour permettre à l'onde hyper fréquence de pénétrer dans la cavité d'entrée,
    - un moyen d'excitation de sortie (SN) de forme allongée selon l'axe Z pénétrant dans la cavité de sortie (CN) pour permettre à l'onde hyper fréquence de sortir de la cavité de sortie,
    - les résonateurs d'entré (R1) et de sortie (RN) étant couplés, et
    - les éléments diélectriques d'entrée (E1) et de sortie (EN) présentent un évidement (41,42),
    - le moyen d'excitation d'entrée (S1) pénètre à l'intérieur de l'évidement (41) de l'élément diélectrique d'entrée (E1) de manière à ce que l'élément diélectrique d'entrée (E1) perturbe le champ électromagnétique à proximité du moyen d'excitation d'entrée (S1),
    - le moyen d'excitation de sortie (SN) pénètre à l'intérieur de l'évidement (42) de l'élément diélectrique de sortie (EN) de manière à ce que l'élément diélectrique de sortie (EN) perturbe le champ électromagnétique à proximité du moyen d'excitation de sortie,
    - l'élément diélectrique d'entrée (E1) est apte à effectuer une rotation autour d'un axe de rotation d'entrée (X1), l'évidement (41) étant adapté pour permettre la rotation de l'élément diélectrique (E1) tout en maintenant l'élément d'excitation d'entrée (S1) à l'intérieur de l'évidement (41),
    - l'élément diélectrique de sortie (EN) est apte à effectuer une rotation autour d'un axe de rotation de sortie (XN), l'évidement (42) étant adapté pour permettre la rotation de l'élément diélectrique (E2) tout en maintenant l'élément d'excitation de sortie (SN) à l'intérieur de l'évidement (42),
    - chaque élément diélectrique (E1, EN) présente une forme aplatie présentant une hauteur inférieure d'au moins un facteur 3 à la plus petite dimension extérieure dans un plan perpendiculaire à la direction portant la hauteur,
    - les rotations des éléments diélectriques (E1, EN) permettant la modification de la fréquence centrale du filtre.
  2. Filtre selon la revendication dans lequel l'élément diélectrique d'entrée (E1) et l'élément diélectrique de sortie (EN) sont disposés respectivement sensiblement au centre de la cavité d'entrée (C1) et de la cavité de sortie (CN).
  3. Filtre selon l'une des revendications précédentes dans lequel les éléments diélectrique d'entrée (E1) et de sortie (EN) sont en forme de U.
  4. Filtre selon l'une des revendications précédentes comprenant des moyens de couplage adaptés pour coupler les résonateurs d'entrée (R1) et de sortie (RN) directement.
  5. Filtre selon l'une des revendications 1 à 3 comprenant en outre au moins un résonateur intermédiaire (Ri) disposé en série entre le résonateur d'entrée (R1) et le résonateur de sortie (RN), comprenant une cavité métallique intermédiaire (Ci) et un élément diélectrique intermédiaire (Ei) disposé à l'intérieur de la cavité (Ci) et apte à perturber le mode de résonance de l'onde hyperfréquence dans la cavité, chaque élément diélectrique (Ei) présentant une forme aplatie présentant une hauteur inférieure d'au moins un facteur 3 à la plus petite dimension dans un plan perpendiculaire à la direction portant la hauteur et étant apte à effectuer une rotation autour d'un axe de rotation intermédiaire (Xi), ledit filtre comprenant des moyens de couplage adaptés pour coupler les résonateurs intermédiaires deux à deux en série.
  6. Filtre selon l'une des revendications précédentes dans lequel les moyens de couplage sont des fentes.
  7. Filtres selon l'une des revendications précédentes dans lequel les éléments diélectriques (R1, RN, Ri) présentent une position angulaire identique correspondant à une rotation identique, une valeur de l'angle de rotation correspondant à une valeur de fréquence centrale du filtre.
  8. Filtre selon l'une des revendications précédentes dans lequel les axes de rotation (X1, XN, Xi) sont parallèles entre eux.
  9. Filtre selon l'une des revendications précédentes dans lequel les axes de rotation (X1, XN, Xi) sont perpendiculaires à l'axe Z.
  10. Filtre selon l'une des revendications 5 à 9 dans lequel les éléments diélectriques intermédiaires (Ei) sont sensiblement identiques.
  11. Filtre selon l'une des revendications précédentes dans lequel les éléments diélectriques (E1, EN, Ei) sont solidaires de tiges diélectriques respectives (T1, TN, Ti) aptes à effectuer une rotation selon l'axe de rotation correspondant (X1, XN, Xi).
  12. Filtre selon l'une des revendications précédentes dans lequel des valeurs des angles de rotations sont fonction de la température de manière à maintenir les valeurs des fréquences centrales constantes lors d'une variation de température.
  13. Circuit hyperfréquence comprenant au moins un filtre selon l'une des revendications précédentes.
EP13177704.7A 2012-07-27 2013-07-23 Filtre passe bande accordable en fréquence pour onde hyperfréquence Active EP2690703B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1202127A FR2994028B1 (fr) 2012-07-27 2012-07-27 Filtre passe bande accordable en frequence pour onde hyperfrequence

Publications (2)

Publication Number Publication Date
EP2690703A1 EP2690703A1 (fr) 2014-01-29
EP2690703B1 true EP2690703B1 (fr) 2018-10-10

Family

ID=47624123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13177704.7A Active EP2690703B1 (fr) 2012-07-27 2013-07-23 Filtre passe bande accordable en fréquence pour onde hyperfréquence

Country Status (4)

Country Link
US (1) US9343792B2 (fr)
EP (1) EP2690703B1 (fr)
CA (1) CA2822129C (fr)
FR (1) FR2994028B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558747A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种谐振腔及其构成的滤波器
CN108574130B (zh) * 2017-03-13 2019-08-02 电子科技大学 微带滤波电路、微带双工器及相关电子器件
US11264690B2 (en) * 2018-05-04 2022-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Tunable waveguide resonator
FR3083015B1 (fr) 2018-06-21 2021-12-17 Thales Sa Systeme hyperfrequence accordable
US10957960B2 (en) 2018-12-14 2021-03-23 Gowrish Basavarajappa Tunable filter with minimum variations in absolute bandwidth and insertion loss using a single tuning element
CN111384560A (zh) * 2018-12-31 2020-07-07 深圳市大富科技股份有限公司 介质滤波器、通信设备、制备介质块及介质滤波器的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136302A (ja) * 1984-12-06 1986-06-24 Murata Mfg Co Ltd 誘電体共振器
US6147577A (en) * 1998-01-15 2000-11-14 K&L Microwave, Inc. Tunable ceramic filters
IT1320543B1 (it) * 2000-07-20 2003-12-10 Cselt Centro Studi Lab Telecom Cavita' caricata dielettricamente per filtri ad alta frequenza.
US20050200437A1 (en) * 2004-03-12 2005-09-15 M/A-Com, Inc. Method and mechanism for tuning dielectric resonator circuits
US7388457B2 (en) * 2005-01-20 2008-06-17 M/A-Com, Inc. Dielectric resonator with variable diameter through hole and filter with such dielectric resonators
US7705694B2 (en) 2006-01-12 2010-04-27 Cobham Defense Electronic Systems Corporation Rotatable elliptical dielectric resonators and circuits with such dielectric resonators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2690703A1 (fr) 2014-01-29
US9343792B2 (en) 2016-05-17
FR2994028A1 (fr) 2014-01-31
CA2822129A1 (fr) 2014-01-27
US20140028415A1 (en) 2014-01-30
FR2994028B1 (fr) 2015-06-19
CA2822129C (fr) 2020-12-22

Similar Documents

Publication Publication Date Title
EP2690703B1 (fr) Filtre passe bande accordable en fréquence pour onde hyperfréquence
EP2887450B1 (fr) Filtre hyperfréquence passe bande accordable par rotation relative d&#39;une section d&#39;insert et d&#39;un elément dieléctrique
EP0114140B1 (fr) Filtre hyperfréquence accordable, à résonateurs diélectriques en mode TM010
EP0117178B1 (fr) Filtre hyperfréquence à résonateurs linéaires
EP1905120B1 (fr) Adapteur d&#39;impedance automatique coaxial
EP0014115A2 (fr) Oscillateur accordable hyperfréquence à ondes magnétostatiques
Lv et al. Frequency-selective-surface-based mechanically reconfigurable terahertz bandpass filter
EP0108003A1 (fr) Résonateurs bi-rubans et filtres réalisés à partir de ces résonateurs (11111)
EP2887451B1 (fr) Filtre hyperfréquence passe-bande accordable par rotation d&#39;un élément diélectrique
EP2690702A1 (fr) Filtre accordable en fréquence à résonateur diélectrique
EP2486656B1 (fr) Transpondeur à modes résonants couplés intégrant une charge variable
EP2279557B1 (fr) Filtre resonant a base de matrice de n/mems
EP3032742B1 (fr) Dispositif de capteur à ondes élastiques de surface interrogable à distance
EP3729557B1 (fr) Composant micro-ondes et procede de fabrication associe
EP3249823B1 (fr) Excitateur radiofréquence compact bi-polarisation et multi-fréquences pour source primaire d&#39;antenne et une source primaire d&#39;antenne equipée d&#39;un tel excitateur radiofréquence
WO2003047022A1 (fr) Filtre hyperfrequence quadri-modes en guide d&#39;ondes et possedant des zeros de transmission
FR3027684A1 (fr) Methode d&#39;obtention d&#39;une cible-etalon a faible ser monostatique dans une direction determinee
WO2007031639A1 (fr) Filtre a guide d&#39;onde pour micro-ondes a parois non paralleles
FR2519475A1 (fr) Dispositif selectif accordable a ondes magnetostatiques de volume
EP4262024A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur bande de fréquence et procédé de fabrication
FR2538958A1 (fr) Filtre hyperfrequence a frequence de coupure accordable et son application au melangeur hyperfrequence et au radar fonctionnant en mode diversite
FR2694406A1 (fr) Dispositif de mesure des caractéristiques diélectriques et magnétiques de matériaux.
FR2738400A1 (fr) Polariseur a iris pour source primaire d&#39;antenne
EP0757403A1 (fr) Dispositif de couplage magnétique entre un conducteur principal d&#39;une ligne TEM et un guide d&#39;ondes formant résonateur en gamma g/2
FR3041486A1 (fr) Dispositif de filtrage hyperfrequence accordable en frequence a guide d&#39;onde de liaison a longueur electrique ajustable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

17P Request for examination filed

Effective date: 20140630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1052313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013044752

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1052313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013044752

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230613

Year of fee payment: 11