WO2007009861A2 - Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens - Google Patents

Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens Download PDF

Info

Publication number
WO2007009861A2
WO2007009861A2 PCT/EP2006/063643 EP2006063643W WO2007009861A2 WO 2007009861 A2 WO2007009861 A2 WO 2007009861A2 EP 2006063643 W EP2006063643 W EP 2006063643W WO 2007009861 A2 WO2007009861 A2 WO 2007009861A2
Authority
WO
WIPO (PCT)
Prior art keywords
arc furnace
electric arc
furnace
electrodes
acoustic
Prior art date
Application number
PCT/EP2006/063643
Other languages
English (en)
French (fr)
Inventor
Thomas Matschullat
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US11/916,908 priority Critical patent/US20080307926A1/en
Priority to BRPI0613762-8A priority patent/BRPI0613762A2/pt
Priority to MX2008000311A priority patent/MX2008000311A/es
Priority to EP06763939A priority patent/EP1907594A2/de
Priority to CA002615927A priority patent/CA2615927A1/en
Publication of WO2007009861A2 publication Critical patent/WO2007009861A2/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for determining the nature of the content of an electric arc furnace for melting a feedstock.
  • a feed for example scrap
  • energy is supplied to the feedstock in an electric arc furnace to produce steel, wherein an arc is formed with the aid of electrodes.
  • additional fuels which are e.g. at least partially coal and / or oxygen, chemical energy coupled.
  • the process taking place in the electric arc furnace depends essentially on the nature of the contents of the electric arc furnace. It is known to sort and classify scrap and sorted scrap the electric arc furnace and fed under consideration of a Chargierplans. Due to the scrap sorting ⁇ and due to the Chargierplans can then gen Aussa- be made about the state in the furnace interior, which, however, have a relatively high probability of uncertainty and error ⁇ .
  • the object of the invention is to provide an improved method for determining the nature of the content of an electric arc furnace ⁇ .
  • the object is achieved by a method for determining the nature of the contents of an arc furnace, in particular an electric arc furnace, said acoustic Signa ⁇ le be measured at the electric arc furnace.
  • a method for determining the nature of the contents of an arc furnace, in particular an electric arc furnace said acoustic Signa ⁇ le be measured at the electric arc furnace.
  • the nature of the content of the arc furnace, in particular of the electric arc furnace much more accurately and reliably ⁇ siger be determined.
  • the inventively improved method for determining the nature of the content of an electric arc furnace, the energy input in the arc furnace, in particular electric arc furnace can be better regulated locally and in terms of quantity.
  • the acoustic signals Minim ⁇ is used for measuring least an acoustic sensor, the other on the furnace vessel and / or on parts of the electric arc furnace, in particular electric arc furnace is arranged.
  • the Elektrolichtbo- genofens additional electrical signals, in particular current, voltage and / or energy, a measured elekt ⁇ step sensor using at least.
  • an electric sensor elekt ⁇ generic signals, particularly current, voltage and / or energy between at least two electrodes to measure the electric arc furnace ge ⁇ .
  • the quality of the starting material which preferably consists at least partly of scrap, is advantageously determined.
  • measured values and / or data obtained from the measured values are stored in a database.
  • the object is also solved by a method for Operator Op ⁇ ben an electric arc furnace, in which information on the Be ⁇ integrity of the contents of the arc furnace, which were determined by a method described above, of the arc furnace are used to control or to regulate.
  • the power supply to the electrodes is controlled to avoid breakage of one or more of the electrodes.
  • the position of the electrodes is regulated.
  • the arc furnace is deliberately driven asymmetrically, i. the position of the electrodes and / or the energy supply to the electrodes is set at least temporarily not symmetrical.
  • the supply of chemical energy is regulated in the light ⁇ arc furnace.
  • the object is also solved by a device having With ⁇ stuffs the a method described above are suitable for carrying out, the apparatus arc furnace ⁇ a light having acoustic sensors.
  • FIG 3 shows a segment of the furnace vessel
  • FIG 4 schematically shows an example of the propagation of acoustic signals in the furnace vessel.
  • the 1 shows an electric arc furnace 1 which is formed in an exemplary embodiment as an electric arc furnace.
  • the arc furnace 1 has several, in the example shown three,
  • Electrodes 3a, 3b, 3c which are preferably arranged variable in position and at least partially protrude into the furnace vessel 2 of the electric arc furnace.
  • electric current may flow between the electrodes 3a, 3b, 3c and or between the electrodes 3a, 3b, 3c and the furnace container 2.
  • an electric arc 6 forms in the furnace vessel 2.
  • the arc 6 is indicated only symbolically in the drawing.
  • an electrical sensor 4a is provided for measuring electrical signals ES.
  • Acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are arranged around the arc furnace 1, with the aid of which acoustic signals N d , N e , N g (see FIG. 4) from the interior of the arc furnace 1 be recorded.
  • Messda ⁇ th the acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are supplied to suitable evaluation means 11. If appropriate, the suitable evaluation means 11 are also supplied with measurement data of the at least one electrical sensor 4a.
  • the acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are arranged around the furnace vessel 2 in the example shown.
  • Acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t may be arranged not only on the furnace vessel 2 but alternatively or additionally, for example, also on a lid, not shown, of the arc furnace 1.
  • Acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t for example, indirectly with the furnace vessel 2 and / or with the electric arc furnace 1 and / or be arranged directly connected.
  • the arrangement of the acoustic sensor 5 a, 5 b, 5 c, 5 e, 5 g, 5 h, 5 s, 5 t directly on the furnace container 2 and / or on the cover of the electric arc furnace 1, not shown, is particularly advantageous.
  • a computing device 10 is provided, which is coupled to the electric arc furnace 1.
  • the computing device 10 outputs control signals CS to the electric arc furnace, for example, the position of the electrodes 3a, 3b, 3c and / or the
  • the computing device 10 has a control module 12.
  • the computing device 10 preferably has evaluation means 11, with the aid of which measurement data which are transmitted by the plurality of acoustic sensors 5 a, 5 b, 5 c, 5 e, 5 g, 5 h, 5 s, 5 t and / or the at least one electrical sensor 4 a, if appropriate prepared and analyzed. From ⁇ by the signals of the acoustic sensors 5a, 5b evaluation, 5c, 5e, 5g, 5h, 5s, 5t is performed an acoustic emission analysis.
  • the segments S n to a unit ⁇ current angular ⁇ n.
  • the angle ⁇ n may be different from segment S m to segment S n . It is possible, for example, the furnace vessel 2 so te in Segmen ⁇ S n divide that the segments S n at least approximately ⁇ are arranged in point symmetry.
  • at least one acoustic sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t is provided per segment S n .
  • no acoustic sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t is provided in one or more segments S n. According to the invention, however, at least one acoustic sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t is provided. Preferably, at least two acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are provided.
  • a segment S, n can at an angle ⁇ n further hsi in Horizontal segments hs vsi 2, ..., hs n and / or vertical segments, vs 2, ... are decomposed n vs to the arrangement of the acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t.
  • FIG. 4 shows schematically a section of an arc furnace 1, wherein in particular the contents of the furnace vessel 2 as ⁇ the electrode 3a are shown only schematically.
  • the feedstock 7, in particular scrap which is melted down ⁇ under the help of at least one electrode 3a to melt 8, in particular to liquid steel.
  • the melting of the feed stock 7 takes place in particular in that under the action of the arc 6 is only symbolically shown, which, in particular, between the electrode 3a and the feedstock 7 or the melt 8 is formed, the interior of the arc furnace 1 Ener ⁇ is energy supplied.
  • slag 9 can form above the melt.
  • the feedstock 7 is formed in several pieces and is preferably present in solid phase before ⁇ preferably.
  • the nature of the contents of the arc furnace 1, in particular the nature of the feed stock 7 is mainly character- ized 7 by the lumpiness of the feedstock the Particulate ⁇ ness of the feed material 7 is characterized, for example, by length, width, height, position, shape, weight and / or Dich ⁇ te of the feedstock 7 and the gut 7 forming Stü ⁇ bridge.
  • the lumpiness and, in particular the position of the hardening guts 7, in particular scrap affects the introduction of energy into the arc furnace 1.
  • Suitable control can better exploit the performance of one or more furnace transformers.
  • At the furnace vessel 2 are to particular on the wall of Ofenge ⁇ fäßes 2 is preferably a plurality of acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t provided for structure-borne noise measurement, from those in Figures 1 and 4, some are exemplified.
  • the acoustic sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are arranged at suitable measuring points around the furnace, and optionally also on the furnace lid.
  • a structure-borne noise analysis can be carried out.
  • available current signals ie electrical signals ES (see FIG. 1)
  • ES electrical signals
  • suitable measuring methods preferably made of two measuring methods (electrical and acoustically ⁇ diagram measurement) are available signals using egg ner or more algorithms in the form of a hybrid system to evaluation data processed.
  • the acoustic signals N d , N e , N g are generated in particular by the arc 6 between the electrode and the starting material 7 or melt 8. A part of the acoustic signals N g , N e is deflected on the crop 7, in particular scrap. This results in reflected acoustic signals N d . Acoustic Sig ⁇ signals will be passed through the feedstock 7 and / or reflected therefrom. Both are possibly several times and for different acoustic signals N d , N e , N g in under ⁇ different manner. The acoustic signals are transmitted to the wall (walls, panels and also covers) of the oven container 2, in particular through the solids of the feedstock 7. directed.
  • the electric arc furnace in particular due to the determination of a scrap density, can be deliberately driven asymmetrically, ie the electrodes 3a, 3b, 3c energy can be supplied unbalanced and / or the position of the electrodes 3a, 3b, 3c can be changed asymmetrically.
  • the electrodes 3a, 3b, 3c are preferably arranged to be vertically displaceable.
  • the scrap density is therefore particularly relevant information, because scrap melts ge ⁇ ringere density faster than scrap of higher density.
  • the energy input can be reduced, for example because of non-existent foamed slag.
  • the energy input can be increased by a corresponding amount.
  • the supply of chemical energy into the electric arc furnace 1 can be regulated become.
  • the supply of chemical energy affects or causes a burning process inside the arc furnace 1.
  • the supply of chemical energy into the electric arc furnace 1 can, for example, by manipulation of a lance, not shown in the figures and / or with the aid of so-called "Coherent Jets" SUC ⁇ gen.
  • the measurement data obtained from the acoustic measurements are processed with the aid of evaluation means 11 into evaluation data.
  • Evaluation data can be used, for example, as described above , to optimize the energy input into the electric arc furnace 1. With the help of the evaluation data also probable scrapping crashes can be determined in advance. Evaluation data are preferably also determined with the aid of electrical measurements. Messda ⁇ th and / or evaluation data can be stored in a database, not shown in the drawings, and advantageously be used for a forward-looking control of the arc furnace 1. In the database are preferably used for the nature of the contents of the Lichtbo ⁇ genofens characteristic data, hereinafter referred to as characterization rintegrating stored. As a collapse characteristic, for example, signal sequences can be stored in advance of a scrap ⁇ collapse.
  • a preferably self learning system is trained using the database and stored therein characteristics of which the power supply can be controlled to the electric arc furnace, in particular to the electrodes 3a, 3b, 3c in such a way with the help of that future ⁇ term Schrotteinstze or electrode breakages can be avoided.
  • the number of segments S n and the horizontal or vertical segments hsi, hs 2 ,..., Hs n or vsi, vs 2 ,..., Vs n is determined by the representation of the accuracy or by the for a given reliability value for the operation of the electric arc furnace 1 ⁇ or for a certain quality of the melt 8 he ⁇ ford variable accuracy.
  • the invention relates to a method for determining the nature of the content of an arc furnace 1 for melting ⁇ a starting material 7, in particular for melting scrap, said acoustic signals N e , N g , N d , with the aid of at least one, preferably a plurality of acoustic Sensors 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t are preferably measured ⁇ in conjunction with electrical signals that are measured with the aid of at least one electrical sensor 4a, are evaluated, in particular to avoid electrode breaks.
  • the productivity of the Lichtbo ⁇ is genofens 1 increased, by ⁇ ranges by appropriate control of the arc furnace 1 has a higher specific melting capacity and downtime can be reduced.
  • the spe ⁇ -specific melting energy is reduced by redistribution of energy in the electric arc furnace. 1
  • the wall wear in the electric arc furnace 1 is reduced by reducing the radiant energy to the inner walls of the furnace vessel 2 of the Lichtbo ⁇ genofens 1.
  • the electrode consumption can be reduced according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Beschreibung
Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens
Die Erfindung betrifft ein Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens zum Schmelzen eines Einsatzguts.
In einem Lichtbogenofen wird ein Einsatzgut, beispielsweise Schrott, durch Zufuhr von Energie eingeschmolzen. So wird beispielsweise in einem Elektrolichtbogenofen zur Erzeugung von Stahl dem Einsatzgut Energie zugeführt, wobei unter zur Hilfenahme von Elektroden ein Lichtbogen ausgebildet wird. Dabei wird vorzugsweise auch über Zusatzbrennstoffe, welche z.B. zumindest teilweise Kohle und/oder Sauerstoff aufweisen, chemische Energie eingekoppelt.
Der im Lichtbogenofen ablaufende Prozess hängt wesentlich von der Beschaffenheit des Inhalts des Elektrolichtbogenofens ab. Es ist bekannt, Schrott zu sortieren und zu klassifizieren und Schrott dem Elektrolichtbogenofen sortiert und unter Beachtung eines Chargierplans zuzuführen. Aufgrund der Schrott¬ sortierung und aufgrund des Chargierplans können dann Aussa- gen über den Zustand im Ofeninneren getroffen werden, die jedoch mit einer verhältnismäßig hohen Unsicherheit und Fehler¬ wahrscheinlichkeit behaftet sind.
Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogen¬ ofens bereitzustellen.
Die Aufgabe wird gelöst, durch ein Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens, insbe- sondere eines Elektrolichtbogenofens, wobei akustische Signa¬ le am Lichtbogenofen gemessen werden. Derart und insbesondere durch Auswertung der gemessenen akustischen Signale kann die Beschaffenheit des Inhalts des Lichtbogenofens, insbesondere des Elektrolichtbogenofens, wesentlich genauer und zuverläs¬ siger bestimmt werden. Durch das erfindungsgemäß verbesserte Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens lässt sich der Energieeintrag in den Lichtbo- genofen, insbesondere Elektrolichtbogenofen, örtlich und mengenmäßig besser regeln.
Mit Vorteil wird zum Messen der akustischen Signale mindes¬ tens ein akustischer Sensor verwendet, der am Ofengefäß und/oder an anderen Teilen des Lichtbogenofens, insbesondere des Elektrolichtbogenofens, angeordnet ist.
Mit Vorteil werden zur Bestimmung der Beschaffenheit des In¬ halts des Lichtbogenofens, insbesondere des Elektrolichtbo- genofens zusätzlich elektrische Signale, insbesondere Strom, Spannung und/oder Energie, mit Hilfe mindestens eines elekt¬ rischen Sensors gemessen. Dadurch können, insbesondere durch gemeinsame Auswertung der sowohl aus akustischer als auch aus elektrischer Messung gewonnenen Messdaten, wesentlich genaue- re Informationen über die Beschaffenheit des Inhalts des Lichtbogenofens gewonnen werden.
Mit Vorteil werden mittels eines elektrischen Sensors elekt¬ rische Signale, insbesondere Strom, Spannung und/oder Energie zwischen mindestens zwei Elektroden des Lichtbogenofens ge¬ messen .
Mit Vorteil wird die Beschaffenheit des Einsatzguts, welches vorzugsweise zumindest teilweise aus Schrott besteht, be- stimmt.
Mit Vorteil werden zur Früherkennung von Einstürzen des Einsatzguts Messwerte und/oder aus den Messwerten gewonnene Daten in einer Datenbank gespeichert.
Mit Vorteil werden aktuelle Messwerte und/oder aus den aktu¬ ellen Messwerten gewonnene Daten mit Messwerten und/oder mit entsprechenden Daten, die in der Datenbank gespeichert sind, verglichen. Derart kann eine Beschaffenheit des Inhalts des Lichtbogenofens, die mit hoher Wahrscheinlichkeit zu einem Einsturz des Einsatzguts und/oder zu Beschädigungen an den Elektroden führt besonders frühzeitig erkannt werden. Es wird somit möglich, derartigen Ereignissen rechtzeitig entgegenzuwirken .
Die Aufgabe wird auch gelöst, durch ein Verfahren zum Betrei¬ ben eines Lichtbogenofens, wobei Informationen über die Be¬ schaffenheit des Inhalts des Lichtbogenofens, die mit Hilfe eines vorangehend beschriebenen Verfahrens ermittelt wurden, zum Steuern bzw. zum Regeln des Lichtbogenofens verwendet werden .
Mit Vorteil wird die Energiezufuhr zu den Elektroden geregelt um einen Bruch einer oder mehrerer der Elektroden zu vermeiden .
Mit Vorteil wird die Position der Elektroden geregelt.
Mit Vorteil wird der Lichtbogenofen gezielt unsymmetrisch gefahren, d.h. die Position der Elektroden und/oder die Energiezufuhr zu den Elektroden wird zumindest zeitweise nicht symmetrisch eingestellt.
Mit Vorteil wird die Zufuhr chemischer Energie in den Licht¬ bogenofen geregelt.
Die Aufgabe wird auch gelöst, durch eine Vorrichtung mit Mit¬ teln die zur Durchführung eines vorangehend beschriebenen Verfahrens geeignet sind, wobei die Vorrichtung einen Licht¬ bogenofen mit akustischen Sensoren aufweist.
Weitere Vorteile und Einzelheiten der Erfindung werden nachfolgend anhand von Beispielen in Verbindung mit den Zeichnun- gen beschrieben. Es zeigen: FIG 1 schematisch einen mit einer Rechenvorrichtung gekoppelten Lichtbogenofen mit einem Ofengefäß,
FIG 2 in schematischer Darstellung das Ofengefäß,
FIG 3 ein Segment des Ofengefäßes, FIG 4 schematisch ein Beispiel für die Ausbreitung akustischer Signale im Ofengefäß.
FIG 1 zeigt einen Lichtbogenofen 1 der in beispielhafter Ausgestaltung als Elektrolichtbogenofen ausgebildet ist. Der Lichtbogenofen 1 weist mehrere, im gezeigten Beispiel drei,
Elektroden 3a, 3b, 3c auf, die vorzugsweise in ihrer Position veränderbar angeordnet sind und zumindest teilweise in das Ofengefäß 2 des Elektrolichtbogenofens hineinragen.
Vorzugsweise kann zwischen den Elektroden 3a, 3b, 3c und oder zwischen den Elektroden 3a, 3b, 3c und dem Ofenbehälter 2 elektrischer Strom fließen. Dadurch bedingt bildet sich im Ofengefäß 2 ein elektrischer Lichtbogen 6 aus. Der Lichtbogen 6 ist in der Zeichnung lediglich symbolisch angedeutet. Zum Messen elektrischer Signale ES, beispielsweise zum Messen des Stroms zwischen den Elektroden 3a, 3b, 3c ist ein elektrischer Sensor 4a vorgesehen. Um den Lichtbogenofen 1 sind a- kustische Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t angeordnet, mit Hilfe derer akustische Signale Nd, Ne, Ng (siehe FIG 4) aus dem Inneren des Lichtbogenofens 1 erfasst werden. Messda¬ ten der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t werden geeigneten Auswertemitteln 11 zugeführt. Gegebenenfalls werden den geeigneten Auswertemitteln 11 auch Messdaten des mindestens einen elektrischen Sensors 4a zugeführt.
Die akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t sind im gezeigten Beispiel um das Ofengefäß 2 herum angeordnet. Akustische Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t können nicht nur am Ofengefäß 2 sondern alternativ oder zusätzlich beispielsweise auch an einem nicht näher dargestellten Deckel des Lichtbogenofens 1 angeordnet sein. Akustische Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t können beispielsweise mit dem Ofengefäß 2 und/oder mit dem Lichtbogenofen 1 mittelbar und/oder unmittelbar verbunden angeordnet sein. Besonders vorteilhaft ist jedoch die Anordnung der akustischen Sensor 5a, _5b, _5c, _5e, 5g, 5h, 5s, 5t unmittelbar am Ofenbehälter 2 und/oder am nicht näher dargestellten Deckel des Lichtbogen- ofens 1.
Vorzugsweise ist eine Rechenvorrichtung 10 vorgesehen, die mit dem Lichtbogenofen 1 gekoppelt ist. Die Rechenvorrichtung 10 gibt Steuersignale CS an den Lichtbogenofen um beispiels- weise die Position der Elektroden 3a, 3b, 3c und/oder die
Energiezufuhr zu den Elektroden 3a, 3b, 3c zu beeinflussen. Hierzu weist die Rechenvorrichtung 10 ein Steuermodul 12 auf. Die Rechenvorrichtung 10 weist vorzugsweise Auswertemittel 11 auf, mit Hilfe derer Messdaten, die von den mehreren akusti- sehen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t und/oder dem mindestens einen elektrischen Sensor 4a übermittelt werden, gegebenenfalls aufbereitet und analysiert werden. Durch Aus¬ wertung der Signale der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t wird eine Körperschallanalyse durchgeführt.
Wie in FIG 2 schematisch dargestellt, lässt sich das Ofenge¬ fäß 2 in ein oder mehrere Segmente Sn mit einem Winkel αn un¬ terteilen. Vorzugsweise weisen die Segmente Sn einen einheit¬ lichen Winkel αn auf. In alternativer Ausgestaltung kann der Winkel αn von Segment Sm zu Segment Sn verschieden sein. Es ist beispielsweise möglich, das Ofengefäß 2 derart in Segmen¬ te Sn aufzuteilen, dass die Segmente Sn zumindest näherungs¬ weise in Punktsymmetrie angeordnet sind. Vorzugsweise ist je Segment Sn mindestens ein akustischer Sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t vorgesehen. In beispielhafter Ausgestaltung der Erfindung ist es möglich, dass in einem oder in mehreren Segmenten Sn kein akustischer Sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t vorgesehen ist. Erfindungsgemäß ist jedoch mindestens ein akustischer Sensor 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t vorge- sehen. Vorzugsweise sind mindestens zwei akustische Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t vorgesehen. Wie in FIG 3 schematisch angedeutet, kann ein Segment Sn mit einem Winkel αn weiter in Horizontalsegmente hsi, hs2,...,hsn und/oder Vertikalsegmente vsi, vs2, ...vsn zerlegt werden um die Anordnung der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t festzulegen.
FIG 4 zeigt schematisch einen Ausschnitt eines Lichtbogenofens 1, wobei insbesondere der Inhalt des Ofengefäßes 2 so¬ wie die Elektrode 3a lediglich schematisch dargestellt sind. Im Ofengefäß 2 befindet sich das Einsatzgut 7, insbesondere Schrott, das unter zur Hilfenahme mindestens einer Elektrode 3a zu Schmelze 8, insbesondere zu flüssigem Stahl, aufge¬ schmolzen wird. Das Aufschmelzen des Einsatzguts 7 erfolgt insbesondere dadurch, dass unter Einwirken des lediglich sym- bolisch dargestellten Lichtbogens 6, der sich insbesondere zwischen der Elektrode 3a und dem Einsatzgut 7 bzw. der Schmelze 8 ausbildet, dem Inneren des Lichtbogenofens 1 Ener¬ gie zugeführt wird. Im Inneren des Lichtbogenofens 1 kann sich oberhalb der Schmelze 8 Schlacke 9 ausbilden.
Das Einsatzgut 7 ist mehrstückig ausgebildet und liegt vor¬ zugsweise im wesentlichen in fester Phase vor. Die Beschaffenheit des Inhalts des Lichtbogenofens 1, insbesondere die Beschaffenheit des Einsatzguts 7, ist vor allem charakteri- siert durch die Stückigkeit des Einsatzgutes 7. Die Stückig¬ keit des Einsatzgutes 7 ist gekennzeichnet beispielsweise durch Länge, Breite, Höhe, Lage, Form, Gewicht und/oder Dich¬ te des Einsatzguts 7 bzw. der das Einsatzgut 7 bildenden Stü¬ cke. Die Stückigkeit und insbesondere die Lage des Einsatz- guts 7, insbesondere Schrott, beeinflusst das Einbringen von Energie in den Lichtbogenofen 1. Die genannten Kennzeichen bzw. die Charakteristik des Einsatzgutes 7, also die Beschaf¬ fenheit des Inhalts des Lichtbogenofens 1 kann Schrottein¬ stürze verursachen, die zu Elektrodenbrüchen und somit zum Stillstand des Lichtbogenofens 1 führen können. Die Energie¬ einbringung in den Lichtbogenofen 1 schwankt aufgrund von Inhomogenität und/oder Inkonsistenz des Einsatzguts 7, weshalb die Leistungsfähigkeit eines oder mehrerer in den Zeichnungen nicht näher dargestellter Ofentransformatoren die mit den Elektroden 3a, 3b, 3c gekoppelt sind, nicht vollständig aus¬ genutzt werden kann. Mit Hilfe der Erfindung können Einstürze des Einsatzguts 7, Elektrodenbrüche und Ofenstillstände wei- testgehend vermieden werden.
Durch geeignete Regelung kann die Leistungsfähigkeit der ein oder mehreren Ofentransformatoren besser ausgenutzt werden. Am Ofengefäß 2 sind dazu insbesondere an der Wand des Ofenge¬ fäßes 2 vorzugsweise mehrere akustische Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t zur Körperschallmessung vorgesehen, von denen in den Figuren 1 und 4 einige beispielhaft dargestellt sind. Zur Körperschallmessung sind die akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t an geeigneten Messstellen um den Ofen herum, und gegebenenfalls zusätzlich auch auf dem Ofendeckel angeordnet. Mit Hilfe der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t kann eine Körperschallanalyse durchgeführt werden. Gleichzeitig werden zur Verfügung ste- hende Stromsignale, d.h. elektrische Signale ES (siehe FIG 1) durch geeignete Messverfahren aufbereitet und analysiert. Mit Hilfe der in FIG 1 dargestellten Auswertemittel 11 werden die vorzugsweise aus beiden Messverfahren (elektrische und akus¬ tische Messung) zur Verfügung stehenden Signale mit Hilfe ei- ner oder mehrere Algorithmen in Form eines Hybridsystems zu Auswertedaten verarbeitet .
Die akustischen Signale Nd, Ne, Ng werden insbesondere durch den Lichtbogen 6 zwischen Elektrode und Einsatzgut 7 bzw. Schmelze 8 erzeugt. Ein Teil der akustischen Signale Ng, Ne wird am Einsatzgut 7, insbesondere Schrott, abgelenkt. So entstehen reflektierte akustische Signale Nd. Akustische Sig¬ nale werden durch das Einsatzgut 7 hindurchgeleitet und/oder an ihm reflektiert. Beides geschieht gegebenenfalls mehrfach und für verschiedene akustische Signale Nd, Ne, Ng in unter¬ schiedlicher Weise. Die akustischen Signale werden an die Wandung (Wände, Panels und auch Deckel) des Ofenbehälters 2, insbesondere durch die Festkörper des Einsatzguts 7, weiter- geleitet. Durch Verknüpfung der mit Hilfe der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t ermittelten Messdaten können Informationen über die Dichte des Einsatzguts 7 gewonnen werden, insbesondere lässt sich beispielsweise ermitteln, an welchen Orten die höchsten bzw. niedrigste Schrottdichte vorliegt. Durch Auswerten der mit Hilfe der akustischen Sensoren, 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t gewonnenen Messdaten lassen sich Informationen über Stückigkeit und/oder Lage des Einsatzguts 7 im Lichtbogenofen 1 gewinnen. Gegebenenfalls werden beim Auswerten auch die elektrischen Signale ES berücksichtigt. Infolge dessen kann der Lichtbogenofen, insbesondere aufgrund der Ermittlung einer Schrottdichte, bewusst unsymmetrisch gefahren werden, d.h. den Elektroden 3a, 3b, 3c kann unsymmetrisch Energie zugeführt werden und/oder die Po- sition der Elektroden 3a, 3b, 3c kann unsymmetrisch verändert werden. Die Elektroden 3a, 3b, 3c sind vorzugsweise senkrecht verschiebbar angeordnet. Die Schrottdichte ist insbesondere deshalb eine besonders relevante Information, da Schrott ge¬ ringere Dichte schneller schmilzt als Schrott höherer Dichte. In Zonen mit geringerer Schrottdichte kann, beispielsweise auch wegen nicht vorhandener Schaumschlacke, die Energieeinbringung gesenkt werden. Dafür kann in Zonen mit höherer Schrottdichte die Energieeinbringung um einen entsprechenden Betrag erhöht werden.
Basierend auf der Auswertung der mit Hilfe der akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t gewonnenen Messdaten, wobei gegebenenfalls beim Auswerten auch die elektrischen Signale ES berücksichtigt werden, kann die Zufuhr chemischer Energie in den Lichtbogenofen 1 geregelt werden. Die Zufuhr chemischer Energie beeinflusst oder bewirkt einen Brennvorgang im Inneren des Lichtbogenofens 1. Die Zufuhr chemischer Energie in den Lichtbogenofen 1 kann beispielsweise durch Manipulation einer in den Figuren nicht näher dargestellten Lanze und/oder mit Hilfe sogenannter "Coherent Jets" erfol¬ gen . Die aus den akustischen Messungen gewonnenen Messdaten werden mit Hilfe von Auswertemitteln 11 zu Auswertedaten verarbeitet. Auswertedaten können beispielsweise wie vorangehend be¬ schrieben, zur Optimierung der Energieeinbringung in den Lichtbogenofen 1 herangezogen werden. Mit Hilfe der Auswertedaten können auch wahrscheinliche Schrotteinstürze im Voraus ermittelt werden. Auswertedaten werden vorzugsweise auch unter zur Hilfenahme elektrischer Messungen ermittelt. Messda¬ ten und/oder Auswertedaten können in einer in den Zeichnungen nicht näher dargestellten Datenbank, gespeichert werden, und vorteilhafter Weise zu einer vorausschauenden Regelung des Lichtbogenofens 1 genutzt werden. In der Datenbank werden vorzugsweise für die Beschaffenheit des Inhalts des Lichtbo¬ genofens charakteristische Daten, nachfolgend als Charakte- ristik bezeichnet, gespeichert. Als Einsturzcharakteristik können beispielsweise Signalfolgen im Vorfeld eines Schrott¬ einsturzes abgespeichert werden. Mit Hilfe der Datenbank und der darin gespeicherten Charakteristika wird ein vorzugsweise selbstlernendes System ausgebildet, mit Hilfe dessen die Energiezufuhr zum Elektrolichtbogenofen, insbesondere zu den Elektroden 3a, 3b, 3c derart geregelt werden kann, dass künf¬ tige Schrotteinstürze bzw. Elektrodenbrüche vermieden werden können .
Zur Körperschallanalyse bzw. zur Anordnung der akustischen
Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t wird das Ofengefäß 2 wie in den Figuren 2 und 3 angedeutet, vorzugsweise als zy¬ linderförmiges Gefäß idealisiert, in Segmente Sn zerlegt. Die Anzahl der Segmente Sn und der Horizontal- bzw. Vertkalseg- mente hsi, hs2,...,hsn bzw. vsi, vs2, ... , vsn bestimmt sich durch die Repräsentanz der Genauigkeit bzw. durch die für einen bestimmten Zuverlässigkeitswert für den Betrieb des Lichtbogen¬ ofens 1 bzw. für eine bestimmte Qualität der Schmelze 8 er¬ forderliche Genauigkeit .
Der wesentliche der Erfindung zugrunde liegende Gedanke lässt sich wie folgt zusammenfassen: Die Erfindung betrifft ein Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens 1 zum Schmel¬ zen eines Einsatzguts 7, insbesondere zum Schmelzen von Schrott, wobei akustische Signale Ne, Ng, Nd, die mit Hilfe von mindestens einem, vorzugsweise mehreren akustischen Sensoren 5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t gemessen werden vorzugs¬ weise in Verbindung mit elektrischen Signalen, die mit Hilfe mindestens eines elektrischen Sensors 4a gemessen werden, ausgewertet werden, um insbesondere Elektrodenbrüche zu ver- meiden. Erfindungsgemäß wird die Produktivität des Lichtbo¬ genofens 1 erhöht, indem durch entsprechende Regelung des Lichtbogenofens 1 eine höhere spezifische Schmelzleistung er¬ reicht wird und Stillstandszeiten verringert werden. Die spe¬ zifische Schmelzenergie wird durch Umverteilung von Energie im Lichtbogenofen 1 reduziert. Außerdem wird der Wandverschleiß im Lichtbogenofen 1 durch Verminderung der Strahlungsenergie an die Innenwände des Ofengefäßes 2 des Lichtbo¬ genofens 1 reduziert. Auch der Elektrodenverbrauch kann erfindungsgemäß reduziert werden.

Claims

Patentansprüche
1. Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens (1) zum Schmelzen eines Einsatzguts (7) , dadurch gekennzeichnet, dass akustische Signale (Ne, Ng, Nd) am Lichtbogenofen (1) gemessen werden.
2. Verfahren nach Anspruch 1, wobei zum Messen der akustischen Signale (Ne, Ng, Nd) mindestens ein akustischer Sensor (5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t) verwendet wird, der am Ofen¬ gefäß (2) und/oder an anderen Teilen des Lichtbogenofens (1) angeordnet ist.
3. Verfahren nach Anspruch 1 oder 2, wobei zur Bestimmung der Beschaffenheit des Inhalts des Lichtbogenofens (1) zusätzlich elektrische Signale (ES) mit Hilfe mindestens eines elektri¬ schen Sensors (4a) gemessen werden.
4. Verfahren nach Anspruch 3, wobei mittels eines elektri- sehen Sensors (4a) elektrische Signale (ES) zwischen mindes¬ tens zwei Elektroden (3a, 3b, 3c) des Lichtbogenofens (1) ge¬ messen werden.
5. Verfahren nach einem der vorangehenden Ansprüche zur Be- Stimmung der Beschaffenheit des Einsatzguts (7).
6. Verfahren nach einem der vorangehenden Ansprüche, dass zur Früherkennung von Einstürzen des Einsatzguts (7)Messwerte und/oder aus den Messwerten gewonnene Daten in einer Daten- bank gespeichert werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass Messwerte und/oder aus den Messwerten gewonnene Daten mit Messwerten und/oder mit Daten, die in der Datenbank gespei- chert sind, verglichen werden.
8. Verfahren zum Betreiben eines Lichtbogenofens (1), wobei mit Hilfe eines Verfahrens nach einem der vorangehenden Ansprüche ermittelte Informationen über die Beschaffenheit des Inhalts des Lichtbogenofens (1) zum Steuern bzw. zum Regeln des Lichtbogenofens (1) verwendet werden.
9. Verfahren nach Anspruch 8, wobei um einen Bruch einer oder mehrerer der Elektroden (3a, 3b, 3c) zu vermeiden, die Energiezufuhr zu den Elektroden (3a, 3b, 3c) geregelt wird.
10. Verfahren nach Anspruch 8 oder 9, wobei die Position der Elektroden (3a, 3b, 3c) geregelt wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, wobei der Lichtbogenofen (1) gezielt unsymmetrisch gefahren wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, wobei die Zufuhr chemischer Energie in den Lichtbogenofen (1) geregelt wird.
13. Vorrichtung mit zur Durchführung eines Verfahrens nach einem der vorangehenden Ansprüche geeigneten Mitteln, mit einem Lichtbogenofen (1) mit akustischen Sensoren (5a, 5b, 5c, 5e, 5g, 5h, 5s, 5t) .
PCT/EP2006/063643 2005-07-22 2006-06-28 Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens WO2007009861A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/916,908 US20080307926A1 (en) 2005-07-22 2006-06-28 Method for Determining the Properties of the Content of an Arc Furnace
BRPI0613762-8A BRPI0613762A2 (pt) 2005-07-22 2006-06-28 método de determinar o estado do conteúdo de um forno a arco e aparelho para sua realização
MX2008000311A MX2008000311A (es) 2005-07-22 2006-06-28 Procedimiento para la determinacion de la naturaleza del contenido de un horno de arco.
EP06763939A EP1907594A2 (de) 2005-07-22 2006-06-28 Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens
CA002615927A CA2615927A1 (en) 2005-07-22 2006-06-28 Method for determining the status of the content of an arc furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005034378.3 2005-07-22
DE102005034378A DE102005034378A1 (de) 2005-07-22 2005-07-22 Verfahren zur Bestimmung der Beschaffenheit des Inhalts eines Lichtbogenofens

Publications (1)

Publication Number Publication Date
WO2007009861A2 true WO2007009861A2 (de) 2007-01-25

Family

ID=37023160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063643 WO2007009861A2 (de) 2005-07-22 2006-06-28 Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens

Country Status (9)

Country Link
US (1) US20080307926A1 (de)
EP (1) EP1907594A2 (de)
CN (1) CN101228284A (de)
BR (1) BRPI0613762A2 (de)
CA (1) CA2615927A1 (de)
DE (1) DE102005034378A1 (de)
MX (1) MX2008000311A (de)
RU (1) RU2378390C2 (de)
WO (1) WO2007009861A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412474B2 (en) 2008-01-31 2013-04-02 Siemens Aktiengesellschaft Method for determining a radiation measurement for thermal radiation, arc furnace, a signal processing device programme code and storage medium for carrying out said method
US8410800B2 (en) 2008-01-31 2013-04-02 Siemens Aktiengesellschaft Method for determining the size and shape measure of a solid material in an arc furnace, an arc furnace, a signal processing device and program code and a memory medium
US9175359B2 (en) 2008-01-31 2015-11-03 Siemens Aktiengesellschaft Method for operating an arc furnace comprising at least one electrode, regulating and/or control device, machine-readable program code, data carrier and arc furnace for carrying out said method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034353A1 (de) 2008-12-15 2010-06-24 Siemens Aktiengesellschaft Schmelzofen
MX2011005635A (es) * 2009-02-03 2011-06-24 Siemens Ag Procedimiento y dispositivo para regural la salida de monoxido de carbono de un horno de arco electrico.
DE102009053169A1 (de) * 2009-09-28 2011-04-21 Siemens Aktiengesellschaft Verfahren zur Kontrolle eines Schmelzvorganges in einem Lichtbogenofen sowie Signalverarbeitungseinrichtung, Programmcode und Speichermedium zur Durchführung dieses Verfahrens
CN103547876B (zh) 2011-05-20 2015-08-05 哈茨有限公司 炉结构完整性监测系统和方法
EP2549833A1 (de) * 2011-07-19 2013-01-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Lichtbogenofens und Schmelzanlage mit einem nach diesem Verfahren betriebenen Lichtbogenofen
FI125220B (en) 2013-12-30 2015-07-15 Outotec Finland Oy Method and arrangement for measuring electrode paste in an electrode column in an arc furnace
DE102016219261B3 (de) * 2016-10-05 2017-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Positionsbestimmung der Spitze einer Elektroofen-Elektrode, insbesondere einer Söderberg-Elektrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATA155793A (de) * 1993-08-04 1996-04-15 Voest Alpine Ind Anlagen Verfahren zum herstellen einer metallschmelze und anlage zur durchführung des verfahrens
DE4425089C1 (de) * 1994-07-15 1996-01-11 Hamburger Stahlwerke Gmbh Verfahren zur Steuerung der Schaumschlackebildung im Drehstromlichtbogenofen
DE19801295B4 (de) * 1998-01-16 2007-06-06 Siemens Ag Einrichtung zur Regelung eines Lichtbogenofens
US6039472A (en) * 1998-05-13 2000-03-21 Accusteel Ltd. Method for measuring the temperature of a metallurgical furnace using an acoustic noise parameter and rate of consumption of electrical power
US6969416B2 (en) * 2003-04-01 2005-11-29 American Air Liquide, Inc. Method for controlling slag characteristics in an electric arc furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412474B2 (en) 2008-01-31 2013-04-02 Siemens Aktiengesellschaft Method for determining a radiation measurement for thermal radiation, arc furnace, a signal processing device programme code and storage medium for carrying out said method
US8410800B2 (en) 2008-01-31 2013-04-02 Siemens Aktiengesellschaft Method for determining the size and shape measure of a solid material in an arc furnace, an arc furnace, a signal processing device and program code and a memory medium
RU2499371C2 (ru) * 2008-01-31 2013-11-20 Сименс Акциенгезелльшафт Способ определения меры излучения для теплового излучения, электродуговая печь, устройство для обработки сигналов, а также программный код и носитель информации для выполнения способа
US9175359B2 (en) 2008-01-31 2015-11-03 Siemens Aktiengesellschaft Method for operating an arc furnace comprising at least one electrode, regulating and/or control device, machine-readable program code, data carrier and arc furnace for carrying out said method

Also Published As

Publication number Publication date
DE102005034378A1 (de) 2007-01-25
EP1907594A2 (de) 2008-04-09
RU2378390C2 (ru) 2010-01-10
CN101228284A (zh) 2008-07-23
CA2615927A1 (en) 2007-01-25
US20080307926A1 (en) 2008-12-18
BRPI0613762A2 (pt) 2011-02-01
RU2008106784A (ru) 2009-08-27
MX2008000311A (es) 2008-04-07

Similar Documents

Publication Publication Date Title
EP1907594A2 (de) Verfahren zur bestimmung der beschaffenheit des inhalts eines lichtbogenofens
EP2215191B1 (de) Planiervorrichtung und verfahren zum befüllen einer ofenkammer einer koksofenbatterie
EP1910763A1 (de) Verfahren zur bestimmung mindestens einer zustandsgrösse eines elektrolichtbogenofens und elektrolichtbogenofen
EP2235221B1 (de) Verfahren zum betreiben eines lichtbogenofens mit wenigstens einer elektrode, regel- und/oder steuerungseinrichtung, maschinenlesbarer programmcode, datenträger und lichtbogenofen zur durchführung des verfahrens
EP2238805B1 (de) Verfahren zur ermittlung eines strahlungsmasses für eine thermische strahlung, lichtbogenofen, eine signalverarbeitungseinrichtung sowie programmcode und ein speichermedium zur durchführung des verfahrens
DE102005034409B3 (de) Verfahren zur Bestimmung mindestens einer Zustandsgröße eines Elektrolichtbogenofens und Elektrolichtbogenofen
WO1999011844A1 (de) Vorrichtung und verfahren für die überwachung einer schmelze für die herstellung von kristallen
EP2367961B1 (de) Verfahren und vorrichtung zur kontrolle von vibrationen eines metallurgischen gefässes
DE2948960A1 (de) Verfahren zum steuern der schlackenbildung, zum vorausbestimmen des wallens und zum steuern des blasens in einem ld-konverter
WO2014095447A1 (de) Verfahren und vorrichtung zur vorhersage, steuerung und/oder regelung von stahlwerksprozessen
DE102012209733A1 (de) Verfahren und Einrichtung zur Bestimmung des Verbrauchs an Elektrodenmaterial beim Betrieb eines Elektroofens
EP2366033B1 (de) Schmelzofen
EP2511638A1 (de) Verfahren zum Betrieb eines Elektrolichtbogenofens, Vorrichtung zur Durchführung des Verfahrens sowie ein Elektrolichtbogenofen mit einer solchen Vorrichtung
WO2016124165A1 (de) Verfahren und anordnung zur analyse eines stoffstroms
WO2007054513A1 (de) Vorrichtung zum ermitteln der lage mindestens einer phasengrenze durch auswertung von schallsignalen
EP3108017B1 (de) Verfahren zum umwälzen eines metallbades und ofenanlage
EP2527800B1 (de) Verfahren und Vorrichtung zur Bestimmung der Pegelstandshöhe eines Mediums in metallurgischen Gefäßen
EP3464654A1 (de) Vorrichtung und verfahren zum erfassen einer förderrate eines flüssigen materials
DE2210172A1 (de) Verfahren und Vorrichtung zur Steuerung des Kohlenstoffgehaltes bei einem Verfahren zur Stahlherstellung
EP0896067B1 (de) Verfahren und Vorrichtung zur Erfassung des Schlackezustandes und der Lichtbogenstabilität in Lichtbogenöfen
DE102005007172A1 (de) Verfahren und Befüllvorrichtung zum Befüllen wenigstens einer Ofenkammer eines Koksofens mit Kohle
EP0703956B1 (de) Verfahren zum vollständigen und emissionsfreien füllen von horizontalkammerverkokungsöfen mit kohle
DE212020000746U1 (de) Mehrfachstahlgussvorrichtungen
DE102018102082A1 (de) Verfahren und Elektronenstrahlanlage zur additiven Herstellung eines Werkstücks
DE69830740T2 (de) Sondenabtastsystem zum kontrollieren der verteilung von einsatzgut in einem metallurgischen ofen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006763939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 28/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/000311

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2615927

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200680026856.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2008106784

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006763939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916908

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0613762

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080122