WO2007007580A1 - Vibration isolation device and vibration isolation method - Google Patents

Vibration isolation device and vibration isolation method Download PDF

Info

Publication number
WO2007007580A1
WO2007007580A1 PCT/JP2006/313243 JP2006313243W WO2007007580A1 WO 2007007580 A1 WO2007007580 A1 WO 2007007580A1 JP 2006313243 W JP2006313243 W JP 2006313243W WO 2007007580 A1 WO2007007580 A1 WO 2007007580A1
Authority
WO
WIPO (PCT)
Prior art keywords
support mechanism
vibration isolation
vibration
displacement
actuator
Prior art date
Application number
PCT/JP2006/313243
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Mizuno
Original Assignee
National University Corporation Saitama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Saitama University filed Critical National University Corporation Saitama University
Priority to JP2006541533A priority Critical patent/JPWO2007007580A1/en
Publication of WO2007007580A1 publication Critical patent/WO2007007580A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to a vibration isolation device and a vibration isolation method that suppress transmission of vibrations, and in particular, achieves excellent vibration isolation characteristics at low cost.
  • a vibration isolator is applied to the manufacturing apparatus to prevent intrusion of disturbances such as vibration.
  • the vibration propagates from the floor to the equipment (this is called ground disturbance).
  • a “passive vibration isolation device” that supports a vibration isolation object such as a device or table with a low-rigidity mechanical panel or air panel has been widely used.
  • vibration F is generated by the disturbance F that directly acts on the vibration isolation object (this is called direct disturbance). Vibration cannot be suppressed.
  • the object 10 for vibration isolation is supported by the actuator 13, the vibration of the object 10 for vibration isolation is detected by the acceleration sensor 11, and the controller 12 2 cancels the vibration.
  • Both the “active vibration isolator” that drives the actuator 13 and the conventional force are used.
  • the active vibration isolator is about 10 times more expensive than the passive vibration isolator.
  • Patent Document 1 the present inventors have combined a support mechanism using a panel and a zero power magnetic levitation control mechanism to reduce vibrations caused by ground motion disturbance and linear motion disturbance. Propose.
  • the zero-power magnetic levitation control mechanism is a mechanism that achieves magnetic levitation using the electromagnet 22 and the permanent magnet 21 attached to the levitation object 28 so as to oppose the electromagnet 22 as shown in FIG. 12 (b). .
  • the suction of the permanent magnet 21 I balance the force and gravity, and the mass m
  • mass Am is applied to the upper object 28, in order to obtain an increase in attractive force commensurate with the increase in gravity, the energization of the electromagnet 22 is increased, and the permanent magnet 21 is further attracted to the electromagnet 22 side. Is called.
  • a normal panel having a positive stiffness increases in length as the mass increases due to an increase in mass Am.
  • the zero power magnetic levitation control mechanism can be viewed as a panel having negative rigidity because the distance between the electromagnet 22 and the permanent magnet 21 is shortened when gravity is increased by increasing the mass ⁇ m.
  • kc kl -k2 / (kl + k2)
  • the vibration isolator of Patent Document 1 has zero power that acts as a panel with positive stiffness (kl) 26 and a panel with negative stiffness (one kl), as shown in FIG.
  • the overall rigidity (kc) is set to infinity, and vibration of the vibration isolation table 24 due to linear motion disturbance is suppressed.
  • Fig. 15 (a) when a direct acting disturbance is applied to the vibration isolation table 24, as shown in Fig. 15 (b), the intermediate is directly connected to the panel 26 with respect to the base 25. Only the base 23 moves and the vibration isolation table 24 does not move.
  • vibration due to ground disturbance can be eliminated by setting the panel 26 stiffness (kl) to a small value.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-81498
  • the vibration isolator of Patent Document 1 has a problem that when the linear motion disturbance is large, the vibration cannot be completely suppressed following the linear motion disturbance (that is, zero compliance cannot be realized). There is.
  • FIG. 16 shows various loads applied to the vibration isolation table 24 of this vibration isolation device.
  • the relative displacement of the vibration isolation table 24 with respect to the intermediate base 23, the displacement of the intermediate base 23 with respect to the base 25, and the base 25 The result of measuring the displacement between 24 and 25 is shown. Yes.
  • the horizontal axis indicates the magnitude of the downward load in N (Newton), and the vertical axis indicates the magnitude of the upward displacement in mm.
  • the displacement of the vibration isolation table 24 relative to the base 25 is obtained by accounting for the relative displacement of the vibration isolation table 24 relative to the intermediate base 23 and the displacement of the intermediate base relative to the base.
  • 0 2 ZX 3 is the negative stiffness.
  • the magnitude of negative stiffness is proportional to the third power of the reciprocal of the gap.
  • the distance between the intermediate base 23 and the base 25 decreases in proportion to the weight (indicated by a negative displacement in FIG. 16).
  • the gap between the magnet 22 and the permanent magnet 21 of the zero-power magnetic levitation control mechanism is reduced and the magnitude of the negative stiffness is increased, so how to increase the relative displacement of the vibration isolation table 24 relative to the intermediate platform 23 is Get smaller. Therefore, the displacement of the vibration isolation table 24 with respect to the base 25 is shifted to the negative side.
  • the present invention solves these conventional problems, and can eliminate vibrations due to ground disturbance and linear disturbance, and can achieve zero compliance over a wide load range. Therefore, the object is to provide a low-cost vibration isolator and a vibration isolation method.
  • the support mechanism for supporting the vibration isolation object includes an active first support mechanism having an actuator, and a low-rigidity structure arranged in series with the first support mechanism.
  • the position of the object to be isolated does not change even if vibrations occur due to ground motion disturbance or linear motion disturbance.
  • the first support mechanism and the second support mechanism are connected in series in the vertical direction so that the second support mechanism is positioned above the first support mechanism. Can be arranged.
  • the first support mechanism and the second support mechanism are connected in series in the vertical direction so that the first support mechanism is positioned above the second support mechanism. Can be arranged.
  • the mass driven by the actuator can be reduced only to the vibration isolation table, so that the effect of reducing the size of the actuator can be obtained.
  • the first support mechanism and the second support mechanism can be arranged in series in the horizontal direction.
  • vibration isolation in the horizontal direction can be performed.
  • the vibration isolator of the present invention includes an intermediate base supported by an active first support mechanism having an actuator with respect to the floor, and a second rigid low relative to the intermediate base.
  • the vibration isolation table supported by the support mechanism, the measurement means for measuring the displacement of the second support mechanism, and the first support so as to cancel the displacement of the second support mechanism based on the measurement result of the measurement means Control means for controlling the displacement of the actuator of the support mechanism.
  • the vibration isolator of the present invention is a medium supported by the second support mechanism having low rigidity with respect to the floor.
  • a voice coil motor or a piezoelectric actuator can be used as the actuator of the first support mechanism, and a mechanical panel or an air panel can be used as the second support mechanism.
  • the vibration isolation method of the present invention includes an active first support mechanism including an actuator and a low-rigidity second support mechanism arranged in series with the first support mechanism.
  • This is a vibration isolation method that suppresses the linear motion disturbance acting on the vibration isolation object by supporting the object and blocks the ground motion disturbance transmitted from the floor to the vibration isolation object. Then, based on the measurement result, the displacement of the actuator of the first support mechanism is controlled so as to cancel the displacement of the second support mechanism.
  • the position of the object to be isolated does not change even if vibrations occur due to ground motion disturbance or linear motion disturbance.
  • the vibration isolation device of the present invention is capable of vibration isolation due to ground disturbance and linear disturbance, and can achieve zero compliance over a wide load range, and has high reliability. is doing. Also, this device can be manufactured at low cost.
  • the vibration isolation method of the present invention can achieve zero compliance over a wide load range using this vibration isolation device.
  • FIG. 1 is a diagram showing a configuration of a vibration isolation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a displacement canceling operation of the vibration isolation device according to the embodiment of the present invention.
  • [3] A diagram showing a displacement cancellation control system of the vibration isolation device in the embodiment of the present invention.
  • FIG. 5 is a diagram showing a vibration isolator arranged horizontally in the embodiment of the present invention.
  • FIG. 6 is a diagram showing an apparatus used for measurement of vibration isolation characteristics of the vibration isolation apparatus in the embodiment of the present invention.
  • FIG. 7 A diagram showing a block diagram of a control system for controlling the VCM of the measuring device.
  • FIG. 9 A diagram showing another displacement cancellation control system of the vibration isolation device in the embodiment of the present invention.
  • FIG. 14 is a diagram showing the configuration of a conventional vibration isolator
  • FIG. 15 is a diagram for explaining the vibration isolation operation of a conventional vibration isolation device.
  • FIG. 16 is a diagram showing vibration isolation characteristics of a conventional vibration isolation device
  • the vibration isolator includes a base 35, an intermediate base 33, a vibration isolation table 34, and a first base that is on the base 35 and supports the intermediate base 33.
  • the support mechanism 31 and the second support mechanism 32 provided on the intermediate base 33 and supporting the vibration isolation table 34 are provided with a low rigidity. It expands and contracts in response to the applied linear motion disturbance.
  • the second support mechanism 32 absorbs vibration due to ground motion disturbance that propagates through the base 35 and suppresses propagation of the vibration to the vibration isolation table 34.
  • the first support mechanism 31 is an active support mechanism having an actuator, and the actuator is controlled so as to cancel the displacement of the distance between the vibration isolation table 34 and the intermediate base 33, and this control is immediately performed. It has a quick response.
  • FIG. 2 shows the first support mechanism 31 and the second support mechanism when a linear motion disturbance is applied to the vibration isolation table 34.
  • the state of displacement of the support mechanism 32 is shown.
  • the second support mechanism 32 keeps the distance between the vibration isolation table 34 and the intermediate base 33 at xl, and the first support mechanism 31 sets the distance between the intermediate base 33 and the base 35 to x2.
  • a linear motion disturbance is applied to the vibration isolation table 34
  • the second support mechanism 32 contracts as shown in Fig. 2 (b)
  • the distance between the vibration isolation table 34 and the intermediate base 33 becomes (xl Assume that ⁇ X) has changed.
  • the displacement of the distance between the vibration isolation table 34 and the intermediate base 33 is detected by, for example, a mechanical or optical gap sensor or the like, and the first support mechanism 31 determines that the intermediate base 33 It is controlled to keep the distance between the bases 35 at ( ⁇ 2 + ⁇ ). As a result, the distance L between the vibration isolation table 34 and the base 35 is
  • the original distance is maintained (note that the thickness of the intermediate stage 33 is assumed to be 0 for the sake of simplicity).
  • the displacement information of the second support mechanism 32 is input to the controller 41 that controls the actuator of the first support mechanism 31, and the controller 41 is Then, a control signal for generating a displacement that cancels out the displacement of the second support mechanism 32 to the first support mechanism 31 is generated.
  • This control signal is amplified by the amplifier 42 and input to the first support mechanism 31, and the first support mechanism 31 is displaced according to the control signal. As a result, the displacement of the second support mechanism 32 is canceled out.
  • FIG. 4 is a block diagram illustrating an example of a control system that controls the first support mechanism 31.
  • This control system includes a VCM (Voice Coil Motor) 43 that constitutes the actuator of the first support mechanism 31, a strain gauge sensor 44 that measures the displacement x of the movable part of the VCM 43, and a strain amplifier 45 that converts strain into an electrical signal.
  • a DSP (Digital Signal Processor) 46 that constructs a control system for IPD control (proportional derivative precedence type PID control), and an amplifier 51 that converts the voltage output from the DSP 46 into current.
  • the DSP 46 also includes a subtractor 49 that subtracts the input signal from the command value ei (V) force, an integrator 48 that performs the integration operation of the output of the subtractor 49, and a PD unit that performs the proportional operation and differentiation operation of the input signal. And a subtractor 50 for subtracting the output of the PD unit 47 from the output of the integrator 48. finger
  • the command value ei is given a signal that cancels out the displacement of the second support mechanism 32.
  • VCM43 shows the transfer function of VCM
  • Ki is the VCM thrust coefficient (N / A)
  • m is the mass of the moving part of VCM (kg)
  • k is the panel constant of the panel in VCM ( NZm)
  • s is a variable.
  • C of the strain gauge sensor 44 indicates a sensor gain ( ⁇ Zm).
  • Ka of the distortion amplifier 45 indicates the distortion amplifier gain (VZ ⁇ ).
  • DSP46's Pi, Pd, and Pv represent integral gain, proportional gain, and differential gain.
  • Kb of the amplifier 51 indicates the amplifier gain (AZV)! /
  • the base 35, the first support mechanism 31, the intermediate base 33, the second support mechanism 32, and the vibration isolation table 34 are arranged horizontally, and the intermediate base 33 and the vibration isolation table 34 are The vibration isolator supported by the linear slider 36 was used so that the table 34 could move without friction with the ground.
  • Figure 6 shows the vibration isolation device actually used for the measurement.
  • the first support mechanism 31 is composed of VCM
  • the second support mechanism 32 is composed of VCM so that arbitrary rigidity can be obtained.
  • FIG. 7 shows a control system that controls the VCM of the second support mechanism 32. Compared to the control system in Fig. 4, this control system is configured to input a signal specifying the initial displacement of the second support mechanism as the command value ei, and to construct a control system for PD control with DSP46.
  • the points are different.
  • the VCM37 for generating disturbance is installed in the equipment shown in Fig. 6.
  • a gap sensor 38 with a strain gauge attached to the panel panel is connected between the vibration isolation table 34 and the intermediate base 33, and the intermediate base 33. Place yourself between 33 and base 35!
  • Fig. 8 shows the VCM 37 for disturbance generation, where a horizontal load was applied to the vibration isolation table 34, and the “displacement of the distance between the vibration isolation table 34 and the intermediate base 33” “intermediate base 33—base 35” The results of the measurement of the “displacement of the distance between” and “the displacement of the distance between the vibration isolation table 34 and the base 35” are shown.
  • the horizontal axis shows the load in N (Newton) and the vertical axis shows the magnitude of displacement in mm.
  • “Displacement of the distance between the vibration isolation table 34 and the base 35” refers to “Displacement of the distance between the vibration isolation table 34 and the intermediate base 33” and “Displacement of the distance between the intermediate base 33 and the base 35”. It will be added.
  • the displacement of the distance between the vibration isolation table 34 and the base 35 is substantially zero over a wide range of loads, and zero compliance is realized.
  • this vibration isolation device is capable of vibration isolation due to ground motion disturbance and linear motion disturbance, and can realize zero compliance over a wide load range.
  • an expensive servo-type acceleration sensor is not required !, it can be manufactured at low cost.
  • the first support mechanism 31 is configured by VCM, the one having the rapid response that can be applied to the displacement cancellation control. If so, the first support mechanism 31 can be used.
  • the second support mechanism 32 may be a machine panel or an air panel having low rigidity.
  • the vibration isolator in which the vibration isolator is simply installed vertically, it can be arranged horizontally and used for suppressing horizontal vibration.
  • a first support mechanism 31 having an actuator is disposed between the base 35 and the intermediate base 33, and a second low-rigidity second is provided between the intermediate base 33 and the vibration isolation table 34.
  • the case where the support mechanism 32 is disposed has been described.
  • the second support mechanism 32 is disposed between the base 35 and the intermediate base 33, and the first support mechanism 31 is disposed. It may be arranged between the intermediate table 33 and the vibration isolation table 34. With this arrangement, the mass driven by the actuator can be made only by the vibration isolation table, so that the effect of reducing the size of the actuator can be obtained.
  • the vibration isolator of the present invention includes a semiconductor manufacturing system, an ultraprecision measuring device such as a scanning tunneling microscope (STM) and an atomic force microscope (AFM), an ultraprecision processing machine that performs laser processing and nanoscale processing. Or, it can be widely used for vibration isolation of various devices that do not like vibration, such as devices in the cutting-edge fields that handle bio micro-duplication and nanotechnology.
  • STM scanning tunneling microscope
  • AFM atomic force microscope

Abstract

[PROBLEMS] To provide a low cost vibration isolation device capable of isolating vibration caused by ground motion disturbance and direct acting disturbance and realizing zero-compliance over a wide load range. [MEANS FOR SOLVING PROBLEMS] This vibration isolation device comprises a support mechanism supporting a vibration-isolated member (34) having an active first support mechanism (31) with an actuator and a low rigid second support mechanism (32) arranged in series with the first support mechanism (31). The displacement of the actuator of the first support mechanism (31) is controlled to offset the displacement of the second support mechanism (32). Accordingly, even if the vibration due to the ground motion disturbance and the direct acting disturbance occurs, the position of the vibration-isolated member (34) is not changed. The vibration isolation device can isolate the vibration caused by the ground motion disturbance and the direct acting disturbance, realize the zero-compliance over the wide load range, and comprises high reliability. Furthermore, the vibration isolation device can be manufactured at low cost.

Description

明 細 書  Specification
除振装置及び除振方法  Vibration isolator and vibration isolation method
技術分野  Technical field
[0001] 本発明は、振動の伝達を抑える除振装置及び除振方法に関し、特に、低コストで良 好な除振特性を実現するものである。  TECHNICAL FIELD [0001] The present invention relates to a vibration isolation device and a vibration isolation method that suppress transmission of vibrations, and in particular, achieves excellent vibration isolation characteristics at low cost.
背景技術  Background art
[0002] 近年、半導体デバイス製造システムでは、製品の精度を高めるため、製造装置に 除振装置を適用して、振動等の外乱の侵入を防いでいる。  In recent years, in a semiconductor device manufacturing system, in order to increase the accuracy of a product, a vibration isolator is applied to the manufacturing apparatus to prevent intrusion of disturbances such as vibration.
振動は、図 10に示すように、床から機器に伝播する(これを地動外乱と言う)。この 地動外乱を吸収するために、従来から、低剛性の機械パネや空気パネで機器ゃテ 一ブル等の除振対象物を支える"パッシブ除振装置"が広く使われている。しかし、 低剛性のパネだけで支持した場合は、除振対象物に直接作用する外乱 F (これを直 動外乱と言う)によって除振対象物に振動が発生し、パッシブ除振装置では、この振 動を抑えることができない。  As shown in Fig. 10, the vibration propagates from the floor to the equipment (this is called ground disturbance). In order to absorb this ground motion disturbance, a “passive vibration isolation device” that supports a vibration isolation object such as a device or table with a low-rigidity mechanical panel or air panel has been widely used. However, if it is supported only by a low-stiffness panel, vibration F is generated by the disturbance F that directly acts on the vibration isolation object (this is called direct disturbance). Vibration cannot be suppressed.
[0003] また、図 11に示すように、除振対象物 10をァクチユエータ 13で支持し、除振対象 物 10の振動を加速度センサ 11で検知して、その振動を打ち消すようにコントローラ 1 2でァクチユエータ 13を駆動する"アクティブ除振装置"も従来力も使用されて 、る。 しかし、この装置では、低周波の振動まで感度良く検出できるサーボ型加速度センサ を複数個(x、 y、 z面に 2個ずつ配置する場合は 6個)用いる必要があるが、このセン サは高価であり、そのため、アクティブ除振装置は、パッシブ除振装置の 10倍程度の コストが掛かる。 In addition, as shown in FIG. 11, the object 10 for vibration isolation is supported by the actuator 13, the vibration of the object 10 for vibration isolation is detected by the acceleration sensor 11, and the controller 12 2 cancels the vibration. Both the “active vibration isolator” that drives the actuator 13 and the conventional force are used. However, with this device, it is necessary to use multiple servo-type acceleration sensors that can detect even low-frequency vibrations with high sensitivity (six if two are placed on the x, y, and z planes). Therefore, the active vibration isolator is about 10 times more expensive than the passive vibration isolator.
[0004] 本発明者等は、下記特許文献 1において、パネによる支持機構と、ゼロパワー磁気 浮上制御機構とを組み合わせて、地動外乱及び直動外乱による振動を除振する低 コストの除振装置を提案して 、る。  [0004] In the following Patent Document 1, the present inventors have combined a support mechanism using a panel and a zero power magnetic levitation control mechanism to reduce vibrations caused by ground motion disturbance and linear motion disturbance. Propose.
ゼロパワー磁気浮上制御機構は、図 12 (b)に示すように、電磁石 22と、これと対向 するように浮上対象物 28に取り付けた永久磁石 21とを用いて磁気浮上を達成する 機構である。永久磁石 21の吸弓 I力と重力とがバランスして浮上して 、る質量 mの浮 上対象物 28に質量 A mが加わると、重力の増加に見合う吸引力の増加を得るため に、電磁石 22への通電を増やして、永久磁石 21をさらに電磁石 22の側に引き付け る制御が行われる。 The zero-power magnetic levitation control mechanism is a mechanism that achieves magnetic levitation using the electromagnet 22 and the permanent magnet 21 attached to the levitation object 28 so as to oppose the electromagnet 22 as shown in FIG. 12 (b). . The suction of the permanent magnet 21 I balance the force and gravity, and the mass m When mass Am is applied to the upper object 28, in order to obtain an increase in attractive force commensurate with the increase in gravity, the energization of the electromagnet 22 is increased, and the permanent magnet 21 is further attracted to the electromagnet 22 side. Is called.
[0005] 正の剛性を有する通常のパネは、図 12 (a)に示すように、質量 A mの増加により重 力が増すと、長さが伸びる。これに対して、ゼロパワー磁気浮上制御機構は、質量 Δ mの増加により重力が増すと、電磁石 22と永久磁石 21との距離が短くなり、負の剛 性を有するパネとして見ることができる。  [0005] As shown in FIG. 12 (a), a normal panel having a positive stiffness increases in length as the mass increases due to an increase in mass Am. On the other hand, the zero power magnetic levitation control mechanism can be viewed as a panel having negative rigidity because the distance between the electromagnet 22 and the permanent magnet 21 is shortened when gravity is increased by increasing the mass Δm.
図 13に示すように、剛性が klのパネと k2のパネとを直列接続した場合、合成パネ の剛性 kcは次式のようになる。  As shown in Fig. 13, when a panel with stiffness kl and a panel with k2 are connected in series, the stiffness kc of the composite panel is given by the following equation.
kc=kl -k2/ (kl +k2)  kc = kl -k2 / (kl + k2)
従って、 kl =—k2を満たすならば、 I kc I = +∞とすることができる。  Therefore, if kl = -k2 is satisfied, I kc I = + ∞.
[0006] 特許文献 1の除振装置は、こうした発想の基に、図 14に示すように、正の剛性 (kl) のパネ 26と、負の剛性(一 kl)のパネとして作用するゼロパワー磁気浮上制御機構と を直列に組み合わせて、全体の剛性 (kc)を無限大に設定し、直動外乱による除振 テーブル 24の振動を抑制している。その結果、図 15 (a)に示すように、除振テープ ル 24に直動外乱が加えられると、図 15 (b)に示すように、ベース 25に対して、パネ 2 6に直結する中間台 23だけが動き、除振テーブル 24は動かな 、。  [0006] Based on this idea, the vibration isolator of Patent Document 1 has zero power that acts as a panel with positive stiffness (kl) 26 and a panel with negative stiffness (one kl), as shown in FIG. Combined with the magnetic levitation control mechanism in series, the overall rigidity (kc) is set to infinity, and vibration of the vibration isolation table 24 due to linear motion disturbance is suppressed. As a result, as shown in Fig. 15 (a), when a direct acting disturbance is applied to the vibration isolation table 24, as shown in Fig. 15 (b), the intermediate is directly connected to the panel 26 with respect to the base 25. Only the base 23 moves and the vibration isolation table 24 does not move.
また、地動外乱による振動は、パネ 26の剛性 (kl)を小さい値に設定することで除く ことができる。  In addition, vibration due to ground disturbance can be eliminated by setting the panel 26 stiffness (kl) to a small value.
特許文献 1 :特開 2002— 81498号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-81498
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかし、特許文献 1の除振装置は、直動外乱が大きい場合に、直動外乱に追従し て振動を完全に抑制することができない (即ち、ゼロコンプライアンスが実現できない )という問題点がある。 [0007] However, the vibration isolator of Patent Document 1 has a problem that when the linear motion disturbance is large, the vibration cannot be completely suppressed following the linear motion disturbance (that is, zero compliance cannot be realized). There is.
図 16は、この除振装置の除振テーブル 24に種々の荷重をカ卩え、そのときの中間台 23に対する除振テーブル 24の相対変位、ベース 25に対する中間台 23の変位、及 びベース 25に対する除振テーブル 24 -ベース 25間の変位を測定した結果を示して いる。図 16では、横軸に下向きの荷重の大きさを N (ニュートン)で示し、縦軸に上向 きの変位の大きさを mmで示している。ベース 25に対する除振テーブル 24の変位は 、中間台 23に対する除振テーブル 24の相対変位とベースに対する中間台の変位と をカ卩えたものとなる。 FIG. 16 shows various loads applied to the vibration isolation table 24 of this vibration isolation device. At that time, the relative displacement of the vibration isolation table 24 with respect to the intermediate base 23, the displacement of the intermediate base 23 with respect to the base 25, and the base 25 The result of measuring the displacement between 24 and 25 is shown. Yes. In Fig. 16, the horizontal axis indicates the magnitude of the downward load in N (Newton), and the vertical axis indicates the magnitude of the upward displacement in mm. The displacement of the vibration isolation table 24 relative to the base 25 is obtained by accounting for the relative displacement of the vibration isolation table 24 relative to the intermediate base 23 and the displacement of the intermediate base relative to the base.
[0008] この図 16から明らかなように、荷重が約 6N以上になると、除振テーブル 24—べ一 ス 25間の距離の変位は 0から外れ、ゼロコンプライアンスが実現していない。これは、 永久磁石の吸引力 Fが、次式で示すように、ギャップ距離 (X)の 1ZX2に比例するこ とが原因している。 As is apparent from FIG. 16, when the load is about 6 N or more, the displacement of the distance between the vibration isolation table 24 and the base 25 deviates from 0, and zero compliance is not realized. This attraction force F of the permanent magnets, as shown in the following equation, and because the proportional child to 1ZX 2 gap distance (X).
F= μ μ Ν Ι  F = μ μ Ν Ι
o ソ X2 o So X 2
ここで、 はギャップの比透磁率 (空気の場合 1)、 μ は真空透磁率、 Νはコイル卷  Where is the relative permeability of the gap (1 for air), μ is the vacuum permeability, Ν is the coil 卷
0  0
数、 Sはギャップ断面積、 Iは、永久磁石の起磁力から決まる等価電流を表す。ギヤッ プが Xから X— Δ Χに変化したとすると、上式は、次のように表すことができる。  The number, S is the gap cross section, and I is the equivalent current determined by the magnetomotive force of the permanent magnet. If the gear changes from X to X—Δ 上, the above equation can be expressed as follows.
F= μ μ N2Sf/ (X— Δ Χ) 2 F = μ μ N 2 Sf / (X— Δ Χ) 2
o  o
μ Ν Ι22 + 2 μ N μ Ν Ι 2 / Χ 2 + 2 μ N
ο ο 2SlVx3) Δ Χ ο ο 2 SlVx 3 ) Δ Χ
ここで、左辺第 2項の係数 2 μ N2SI Where the coefficient of the second term on the left side is 2 μ N 2 SI
0 2ZX3)が負の剛性の大きさとなる。即ち、負 の剛性の大きさは、ギャップの逆数の 3乗に比例する。除振テーブル 24に下向きの 加重を加えると、中間台 23—ベース 25間の距離は、加重に比例して短くなる(図 16 中では、マイナスの変位で表している)。一方、ゼロパワー磁気浮上制御機構の電磁 石 22と永久磁石 21とのギャップは小さくなり、負の剛性の大きさが大きくなるので、中 間台 23に対する除振テーブル 24の相対変位の増え方は小さくなる。そのため、ベ ース 25に対する除振テーブル 24の変位が—側にずれる。 0 2 ZX 3 ) is the negative stiffness. In other words, the magnitude of negative stiffness is proportional to the third power of the reciprocal of the gap. When a downward load is applied to the vibration isolation table 24, the distance between the intermediate base 23 and the base 25 decreases in proportion to the weight (indicated by a negative displacement in FIG. 16). On the other hand, the gap between the magnet 22 and the permanent magnet 21 of the zero-power magnetic levitation control mechanism is reduced and the magnitude of the negative stiffness is increased, so how to increase the relative displacement of the vibration isolation table 24 relative to the intermediate platform 23 is Get smaller. Therefore, the displacement of the vibration isolation table 24 with respect to the base 25 is shifted to the negative side.
[0009] 本発明は、こうした従来の問題点を解決するものであり、地動外乱及び直動外乱に よる振動の除振が可能であって、且つ、広い荷重範囲に渡ってゼロコンプライアンス を実現できる、低コストの除振装置を提供し、また、その除振方法を提供することを目 的としている。 [0009] The present invention solves these conventional problems, and can eliminate vibrations due to ground disturbance and linear disturbance, and can achieve zero compliance over a wide load range. Therefore, the object is to provide a low-cost vibration isolator and a vibration isolation method.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の除振装置は、除振対象物を支持する支持機構が、ァクチユエータを備え た能動型の第 1の支持機構と、第 1の支持機構と直列に配置された低剛性の第 2の 支持機構と、第 2の支持機構の変位を測定する測定手段とを有し、第 1の支持機構 のァクチユエータの変位が、前記測定手段の測定結果に基づいて第 2の支持機構の 変位を相殺するように制御される。 [0010] In the vibration isolation device of the present invention, the support mechanism for supporting the vibration isolation object includes an active first support mechanism having an actuator, and a low-rigidity structure arranged in series with the first support mechanism. Second A support mechanism and a measurement means for measuring the displacement of the second support mechanism, and the displacement of the actuator of the first support mechanism cancels the displacement of the second support mechanism based on the measurement result of the measurement means. To be controlled.
そのため、地動外乱及び直動外乱による振動が発生しても、除振対象物の位置は 変動しない。  For this reason, the position of the object to be isolated does not change even if vibrations occur due to ground motion disturbance or linear motion disturbance.
[0011] また、本発明の除振装置では、第 1の支持機構と第 2の支持機構とを、第 1の支持 機構の上方に第 2の支持機構が位置するように、垂直方向に直列に配置することが できる。  [0011] Further, in the vibration isolator of the present invention, the first support mechanism and the second support mechanism are connected in series in the vertical direction so that the second support mechanism is positioned above the first support mechanism. Can be arranged.
このような配置にした場合、直動外乱によって生じる第 2の支持機構の変位を速や かに検出できるため、直動外乱に対する応答を良好にする効果が得られる。  In such an arrangement, since the displacement of the second support mechanism caused by the linear motion disturbance can be detected quickly, the effect of improving the response to the linear motion disturbance can be obtained.
[0012] また、本発明の除振装置では、第 1の支持機構と第 2の支持機構とを、第 2の支持 機構の上方に第 1の支持機構が位置するように、垂直方向に直列に配置することが できる。 In the vibration isolation device of the present invention, the first support mechanism and the second support mechanism are connected in series in the vertical direction so that the first support mechanism is positioned above the second support mechanism. Can be arranged.
このような配置にした場合、ァクチユエータの駆動する質量を除振テーブルだけに 減らすことができるため、ァクチユエータを小型にできるという効果が得られる。  In such an arrangement, the mass driven by the actuator can be reduced only to the vibration isolation table, so that the effect of reducing the size of the actuator can be obtained.
[0013] また、本発明の除振装置では、第 1の支持機構と第 2の支持機構とを水平方向に直 列に配置することができる。  [0013] Further, in the vibration isolation device of the present invention, the first support mechanism and the second support mechanism can be arranged in series in the horizontal direction.
こうした構成で、水平方向の振動の除振を行うことができる。  With such a configuration, vibration isolation in the horizontal direction can be performed.
[0014] また、本発明の除振装置は、床に対してァクチユエータを備えた能動型の第 1の支 持機構で支持された中間台と、該中間台に対して低剛性の第 2の支持機構で支持さ れた除振テーブルと、第 2の支持機構の変位を測定する測定手段と、この測定手段 の測定結果に基づいて第 2の支持機構の変位を相殺するように第 1の支持機構のァ クチユエータの変位を制御する制御手段とを備えている。  [0014] Further, the vibration isolator of the present invention includes an intermediate base supported by an active first support mechanism having an actuator with respect to the floor, and a second rigid low relative to the intermediate base. The vibration isolation table supported by the support mechanism, the measurement means for measuring the displacement of the second support mechanism, and the first support so as to cancel the displacement of the second support mechanism based on the measurement result of the measurement means Control means for controlling the displacement of the actuator of the support mechanism.
この装置では、除振テーブルに対する地動外乱及び直動外乱が吸収され、除振テ 一ブルに載置された物品には振動が伝わらない。特に、除振テーブルへの直動外 乱によって生じる第 2の支持機構の変位を速やかに検出することができるため、直動 外乱に対して良好な応答性を有して 、る。  In this device, ground disturbance and linear disturbance to the vibration isolation table are absorbed, and vibration is not transmitted to the article placed on the vibration isolation table. In particular, since the displacement of the second support mechanism caused by the linear motion disturbance to the vibration isolation table can be detected quickly, it has a good response to the linear motion disturbance.
[0015] また、本発明の除振装置は、床に対して低剛性の第 2の支持機構で支持された中 間台と、該中間台に対してァクチユエータを備えた能動型の第 1の支持機構で支持 された除振テーブルと、第 2の支持機構の変位を測定する測定手段と、この測定手 段の測定結果に基づいて第 2の支持機構の変位を相殺するように第 1の支持機構の ァクチユエータの変位を制御する制御手段とを備えている。 [0015] Further, the vibration isolator of the present invention is a medium supported by the second support mechanism having low rigidity with respect to the floor. An intermediate table, an anti-vibration table supported by an active first support mechanism having an actuator with respect to the intermediate table, a measurement means for measuring the displacement of the second support mechanism, and a Control means for controlling the displacement of the actuator of the first support mechanism so as to cancel out the displacement of the second support mechanism based on the measurement result.
この装置では、除振テーブルに対する地動外乱及び直動外乱が吸収され、除振テ 一ブルに載置された物品には振動が伝わらない。また、ァクチユエータは、除振テー ブルとその上に載置された物品とを駆動するだけでょ 、ため、ァクチユエータを小型 にできる。  In this device, ground disturbance and linear disturbance to the vibration isolation table are absorbed, and vibration is not transmitted to the article placed on the vibration isolation table. Further, since the actuator only needs to drive the vibration isolation table and the article placed thereon, the actuator can be reduced in size.
[0016] また、本発明の除振装置では、前記第 1の支持機構のァクチユエータに、ボイスコィ ルモータまたは圧電ァクチユエータを用い、前記第 2の支持機構に、機械パネまたは 空気パネを用いることができる。  In the vibration isolator of the present invention, a voice coil motor or a piezoelectric actuator can be used as the actuator of the first support mechanism, and a mechanical panel or an air panel can be used as the second support mechanism.
[0017] また、本発明の除振方法は、ァクチユエータを備えた能動型の第 1の支持機構と、 第 1の支持機構と直列に配置された低剛性の第 2の支持機構とで除振対象物を支持 することにより、除振対象物に作用する直動外乱を抑制し、床から除振対象物に伝わ る地動外乱を遮断する除振方法であって、第 2の支持機構の変位を測定し、その測 定結果に基づいて、第 2の支持機構の変位を相殺するように、第 1の支持機構のァク チユエータの変位を制御する。  [0017] Further, the vibration isolation method of the present invention includes an active first support mechanism including an actuator and a low-rigidity second support mechanism arranged in series with the first support mechanism. This is a vibration isolation method that suppresses the linear motion disturbance acting on the vibration isolation object by supporting the object and blocks the ground motion disturbance transmitted from the floor to the vibration isolation object. Then, based on the measurement result, the displacement of the actuator of the first support mechanism is controlled so as to cancel the displacement of the second support mechanism.
そのため、地動外乱及び直動外乱による振動が発生しても、除振対象物の位置は 変動しない。  For this reason, the position of the object to be isolated does not change even if vibrations occur due to ground motion disturbance or linear motion disturbance.
発明の効果  The invention's effect
[0018] 本発明の除振装置は、地動外乱及び直動外乱による振動の除振が可能であり、ま た、広い荷重範囲に渡ってゼロコンプライアンスを実現することができ、高い信頼性を 有している。また、この装置は低コストで製作することができる。  [0018] The vibration isolation device of the present invention is capable of vibration isolation due to ground disturbance and linear disturbance, and can achieve zero compliance over a wide load range, and has high reliability. is doing. Also, this device can be manufactured at low cost.
また、本発明の除振方法は、この除振装置を用いて、広い荷重範囲に渡るゼロコン プライアンスを実現することができる。  In addition, the vibration isolation method of the present invention can achieve zero compliance over a wide load range using this vibration isolation device.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の実施形態における除振装置の構成を示す図 FIG. 1 is a diagram showing a configuration of a vibration isolation device according to an embodiment of the present invention.
[図 2]本発明の実施形態における除振装置の変位相殺の動作を説明する図 圆 3]本発明の実施形態における除振装置の変位相殺制御系を示す図 FIG. 2 is a diagram for explaining a displacement canceling operation of the vibration isolation device according to the embodiment of the present invention. [3] A diagram showing a displacement cancellation control system of the vibration isolation device in the embodiment of the present invention.
圆 4]本発明の実施形態における除振装置の制御系のブロックダイアグラムを示す図[4] A diagram showing a block diagram of a control system of the vibration isolator in the embodiment of the present invention
[図 5]本発明の実施形態における水平に配置した除振装置を示す図 FIG. 5 is a diagram showing a vibration isolator arranged horizontally in the embodiment of the present invention.
[図 6]本発明の実施形態における除振装置の除振特性の測定に用いた装置を示す 図  FIG. 6 is a diagram showing an apparatus used for measurement of vibration isolation characteristics of the vibration isolation apparatus in the embodiment of the present invention.
[図 7]測定装置の VCMを制御する制御系のブロックダイアグラムを示す図 圆 8]本発明の実施形態における除振装置の除振特性を示す図  [FIG. 7] A diagram showing a block diagram of a control system for controlling the VCM of the measuring device.
圆 9]本発明の実施形態における除振装置の他の変位相殺制御系を示す図 [9] A diagram showing another displacement cancellation control system of the vibration isolation device in the embodiment of the present invention.
[図 10]地動外乱及び直動外乱を説明する図  [Fig.10] Diagram explaining ground motion disturbance and linear motion disturbance
圆 11]従来のアクティブ除振装置の構成を示す図 圆 11] Diagram showing the configuration of a conventional active vibration isolator
圆 12]ゼロパワー磁気浮上制御機構の説明図 圆 12] Illustration of zero power magnetic levitation control mechanism
[図 13]従来の除振装置の除振原理を説明する図  FIG. 13 is a diagram for explaining the vibration isolation principle of a conventional vibration isolation device
[図 14]従来の除振装置の構成を示す図  FIG. 14 is a diagram showing the configuration of a conventional vibration isolator
[図 15]従来の除振装置の除振動作を説明する図  FIG. 15 is a diagram for explaining the vibration isolation operation of a conventional vibration isolation device.
[図 16]従来の除振装置の除振特性を示す図  FIG. 16 is a diagram showing vibration isolation characteristics of a conventional vibration isolation device
符号の説明 Explanation of symbols
10 除振対象物  10 Anti-vibration object
11 加速度センサ  11 Accelerometer
12 コントローラ  12 Controller
13 ァクチユエータ  13 Actuator
21 永久磁石  21 Permanent magnet
22 電磁石  22 Electromagnet
23 中間台  23 Intermediate stand
24 除振テーブル  24 Vibration isolation table
25 ベース  25 base
26 ノ^ネ  26
28 浮上対象物  28 Ascent object
31 第 1支持機構 32 第 2支持機構 31 First support mechanism 32 Second support mechanism
33 中間台  33 Intermediate stand
34 除振テーブル  34 Vibration isolation table
35 ベース  35 base
36 リニアスライダ  36 Linear slider
41 コントローラ  41 Controller
42 増幅器  42 Amplifier
43 VCM  43 VCM
44 歪みゲージセンサ  44 Strain gauge sensor
45 歪みアンプ  45 Distortion amplifier
46 DSP  46 DSP
47 PD部  47 PD section
48 積分器  48 integrator
49 減算器  49 Subtractor
50 減算器  50 Subtractor
51 増幅器  51 amplifier
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の実施形態における除振装置は、図 1に示すように、ベース 35と、中間台 3 3と、除振テーブル 34と、ベース 35上にあって中間台 33を支持する第 1支持機構 31 と、中間台 33上にあって除振テーブル 34を支持する第 2支持機構 32とを備えている 第 2支持機構 32は、低剛性を有しており、除振テーブル 34に加わる直動外乱に応 じて伸縮する。また、第 2支持機構 32は、ベース 35を通じて伝播する地動外乱による 振動を吸収し、その振動の除振テーブル 34への伝播を抑制する。  As shown in FIG. 1, the vibration isolator according to the embodiment of the present invention includes a base 35, an intermediate base 33, a vibration isolation table 34, and a first base that is on the base 35 and supports the intermediate base 33. 1 The support mechanism 31 and the second support mechanism 32 provided on the intermediate base 33 and supporting the vibration isolation table 34 are provided with a low rigidity. It expands and contracts in response to the applied linear motion disturbance. In addition, the second support mechanism 32 absorbs vibration due to ground motion disturbance that propagates through the base 35 and suppresses propagation of the vibration to the vibration isolation table 34.
一方、第 1支持機構 31は、ァクチユエータを備えた能動型支持機構であり、除振テ 一ブル 34—中間台 33間の距離の変位を相殺するようにァクチユエータが制御され、 この制御に即時に対応できる速応性を備えている。  On the other hand, the first support mechanism 31 is an active support mechanism having an actuator, and the actuator is controlled so as to cancel the displacement of the distance between the vibration isolation table 34 and the intermediate base 33, and this control is immediately performed. It has a quick response.
[0022] 図 2は、除振テーブル 34に直動外乱が加わった場合の第 1支持機構 31及び第 2 支持機構 32の変位の様子を示している。図 2 (a)に示すように、第 2支持機構 32が 除振テーブル 34—中間台 33間の距離を xlに保ち、第 1支持機構 31が中間台 33— ベース 35間の距離を x2に保っているとき、除振テーブル 34に直動外乱が加わり、図 2 (b)に示すように、第 2支持機構 32が縮んで、除振テーブル 34—中間台 33間の距 離が(xl Δ X)に変化したとする。 FIG. 2 shows the first support mechanism 31 and the second support mechanism when a linear motion disturbance is applied to the vibration isolation table 34. The state of displacement of the support mechanism 32 is shown. As shown in Fig. 2 (a), the second support mechanism 32 keeps the distance between the vibration isolation table 34 and the intermediate base 33 at xl, and the first support mechanism 31 sets the distance between the intermediate base 33 and the base 35 to x2. When this is maintained, a linear motion disturbance is applied to the vibration isolation table 34, the second support mechanism 32 contracts as shown in Fig. 2 (b), and the distance between the vibration isolation table 34 and the intermediate base 33 becomes (xl Assume that ΔX) has changed.
[0023] 除振テーブル 34—中間台 33間の距離の変位は、例えば、機械的あるいは光学的 なギャップセンサー等によって検出され、第 1支持機構 31は、その検出値に基づい て、中間台 33 ベース 35間の距離を (χ2+ Δ χ)に保つように制御される。その結果 、除振テーブル 34—ベース 35間の距離 Lは、 [0023] The displacement of the distance between the vibration isolation table 34 and the intermediate base 33 is detected by, for example, a mechanical or optical gap sensor or the like, and the first support mechanism 31 determines that the intermediate base 33 It is controlled to keep the distance between the bases 35 at (χ2 + Δχ). As a result, the distance L between the vibration isolation table 34 and the base 35 is
L = (χ1 - Δ χ) + (χ2+ Δ χ)  L = (χ1-Δ χ) + (χ2 + Δ χ)
= xl +x2  = xl + x2
となり、元の距離に保たれる(なお、ここでは、説明を簡単にするため、中間台 33の厚 さを 0と仮定している)。  Thus, the original distance is maintained (note that the thickness of the intermediate stage 33 is assumed to be 0 for the sake of simplicity).
[0024] このように、この除振装置では、図 3に示すように、第 2支持機構 32の変位情報が、 第 1支持機構 31のァクチユエータを制御するコントローラ 41に入力し、コントローラ 4 1は、第 2支持機構 32の変位が相殺される変位を第 1支持機構 31に与える制御信号 を生成する。この制御信号は、増幅器 42で増幅されて第 1支持機構 31に入力し、第 1支持機構 31は、制御信号に従って変位する。その結果、第 2支持機構 32の変位 は、相殺される。  In this way, in this vibration isolation device, as shown in FIG. 3, the displacement information of the second support mechanism 32 is input to the controller 41 that controls the actuator of the first support mechanism 31, and the controller 41 is Then, a control signal for generating a displacement that cancels out the displacement of the second support mechanism 32 to the first support mechanism 31 is generated. This control signal is amplified by the amplifier 42 and input to the first support mechanism 31, and the first support mechanism 31 is displaced according to the control signal. As a result, the displacement of the second support mechanism 32 is canceled out.
[0025] 図 4は、第 1支持機構 31を制御する制御系の一例をブロックダイアグラムで示して いる。この制御系は、第 1支持機構 31のァクチユエータを構成する VCM (Voice Coil Motor) 43と、 VCM43の可動部の変位 xを測定する歪みゲージセンサ 44と、歪みを 電気信号に変換する歪みアンプ 45と、 I PD制御 (比例微分先行型 PID制御)の制 御系を構築する DSP (Digital Signal Processor) 46と、 DSP46から出力された電圧を 電流に変換する増幅器 51とを備えている。  FIG. 4 is a block diagram illustrating an example of a control system that controls the first support mechanism 31. This control system includes a VCM (Voice Coil Motor) 43 that constitutes the actuator of the first support mechanism 31, a strain gauge sensor 44 that measures the displacement x of the movable part of the VCM 43, and a strain amplifier 45 that converts strain into an electrical signal. And a DSP (Digital Signal Processor) 46 that constructs a control system for IPD control (proportional derivative precedence type PID control), and an amplifier 51 that converts the voltage output from the DSP 46 into current.
また、 DSP46は、指令値 ei (V)力も入力信号を減算する減算器 49と、減算器 49の 出力の積分動作を行う積分器 48と、入力信号の比例動作及び微分動作を行う PD部 47と、積分器 48の出力から PD部 47の出力を減算する減算器 50とを備えている。指 令値 eiには、第 2支持機構 32の変位を相殺する信号が与えられる。 The DSP 46 also includes a subtractor 49 that subtracts the input signal from the command value ei (V) force, an integrator 48 that performs the integration operation of the output of the subtractor 49, and a PD unit that performs the proportional operation and differentiation operation of the input signal. And a subtractor 50 for subtracting the output of the PD unit 47 from the output of the integrator 48. finger The command value ei is given a signal that cancels out the displacement of the second support mechanism 32.
[0026] VCM43における式は、 VCMの伝達関数を示しており、 Kiは VCM推力係数(N /A)、 mは VCMの可動部の質量(kg)、 kは VCM内のパネのパネ定数(NZm)、 s は変数である。歪みゲージセンサ 44の Cは、センサゲイン ε Zm)を示している。 歪みアンプ 45の Kaは、歪みアンプゲイン (VZ ε )を示している。 DSP46の Pi、 P d、 Pvは、積分ゲイン、比例ゲイン、微分ゲインを表している。また、増幅器 51の Kb は、アンプゲイン (AZV)を示して!/、る。 [0026] The equation in VCM43 shows the transfer function of VCM, Ki is the VCM thrust coefficient (N / A), m is the mass of the moving part of VCM (kg), k is the panel constant of the panel in VCM ( NZm), s is a variable. C of the strain gauge sensor 44 indicates a sensor gain (ε Zm). Ka of the distortion amplifier 45 indicates the distortion amplifier gain (VZ ε). DSP46's Pi, Pd, and Pv represent integral gain, proportional gain, and differential gain. Also, Kb of the amplifier 51 indicates the amplifier gain (AZV)! /
この制御系の制御パラメータを実験的に求めた後、相殺制御が実行される。  After the control parameters of this control system are obtained experimentally, cancellation control is executed.
[0027] 次に、この除振装置の特性について説明する。 Next, characteristics of the vibration isolator will be described.
この特性を測定するため、図 5に示すように、ベース 35、第 1支持機構 31、中間台 33、第 2支持機構 32及び除振テーブル 34を水平方向に配置し、中間台 33及び除 振テーブル 34を、地面と摩擦せずに移動できるようにリニアスライダ 36で支持した除 振装置を使用した。図 6は、実際に測定に使用した除振装置を示している。この装置 では、第 1支持機構 31を VCMで構成するとともに、第 2支持機構 32を、任意の剛性 が得られるように VCMで構成している。図 7は、第 2支持機構 32の VCMを制御する 制御系を示している。この制御系は、図 4の制御系に比べて、指令値 eiとして,第 2支 持機構の初期変位を指定する信号を入力している点、及び、 DSP46で PD制御の 制御系を構築して 、る点が相違して 、る。  In order to measure this characteristic, as shown in FIG. 5, the base 35, the first support mechanism 31, the intermediate base 33, the second support mechanism 32, and the vibration isolation table 34 are arranged horizontally, and the intermediate base 33 and the vibration isolation table 34 are The vibration isolator supported by the linear slider 36 was used so that the table 34 could move without friction with the ground. Figure 6 shows the vibration isolation device actually used for the measurement. In this apparatus, the first support mechanism 31 is composed of VCM, and the second support mechanism 32 is composed of VCM so that arbitrary rigidity can be obtained. FIG. 7 shows a control system that controls the VCM of the second support mechanism 32. Compared to the control system in Fig. 4, this control system is configured to input a signal specifying the initial displacement of the second support mechanism as the command value ei, and to construct a control system for PD control with DSP46. However, the points are different.
また、図 6の装置では、外乱発生用の VCM37を設置している。また、除振テープ ル 34及び中間台 33の水平方向の変位を測定するため、板パネにひずみゲージを 取り付けたギャップセンサー 38を、除振テーブル 34と中間台 33との間、及び、中間 台 33とベース 35との間に酉己置して!/ヽる。  In addition, the VCM37 for generating disturbance is installed in the equipment shown in Fig. 6. In addition, in order to measure the horizontal displacement of the vibration isolation table 34 and the intermediate base 33, a gap sensor 38 with a strain gauge attached to the panel panel is connected between the vibration isolation table 34 and the intermediate base 33, and the intermediate base 33. Place yourself between 33 and base 35!
[0028] 図 8は、外乱発生用 VCM37で除振テーブル 34に水平方向の荷重を加え、そのと きの「除振テーブル 34—中間台 33間の距離の変位」「中間台 33—ベース 35間の距 離の変位」及び「除振テーブル 34—ベース 35間の距離の変位」を測定した結果に ついて示している。横軸には荷重を N (ニュートン)で示し、縦軸には変位の大きさを mmで示している。「除振テーブル 34—ベース 35間の距離の変位」は、「除振テープ ル 34—中間台 33間の距離の変位」と「中間台 33—ベース 35間の距離の変位」とを 加えたものとなる。 [0028] Fig. 8 shows the VCM 37 for disturbance generation, where a horizontal load was applied to the vibration isolation table 34, and the “displacement of the distance between the vibration isolation table 34 and the intermediate base 33” “intermediate base 33—base 35” The results of the measurement of the “displacement of the distance between” and “the displacement of the distance between the vibration isolation table 34 and the base 35” are shown. The horizontal axis shows the load in N (Newton) and the vertical axis shows the magnitude of displacement in mm. “Displacement of the distance between the vibration isolation table 34 and the base 35” refers to “Displacement of the distance between the vibration isolation table 34 and the intermediate base 33” and “Displacement of the distance between the intermediate base 33 and the base 35”. It will be added.
この図から明らかなように、除振テーブル 34—ベース 35間の距離の変位は、荷重 の広い範囲に渡って略 0であり、ゼロコンプライアンスが実現している。  As is clear from this figure, the displacement of the distance between the vibration isolation table 34 and the base 35 is substantially zero over a wide range of loads, and zero compliance is realized.
[0029] このように、この除振装置は、地動外乱及び直動外乱による振動の除振が可能で あり、また、広い荷重範囲に渡ってゼロコンプライアンスを実現できる。また、高価な サーボ型加速度センサを必要としな!/、ので、低コストで製造することができる。  [0029] As described above, this vibration isolation device is capable of vibration isolation due to ground motion disturbance and linear motion disturbance, and can realize zero compliance over a wide load range. In addition, since an expensive servo-type acceleration sensor is not required !, it can be manufactured at low cost.
[0030] なお、ここでは、第 1支持機構 31を VCMで構成する例について示した力 その他 のァクチユエータ (例えば、圧電ァクチユエータ等)であっても、変位相殺制御に適応 できる速応性を備えたものであれば、第 1支持機構 31としての使用が可能である。ま た、第 2支持機構 32には、低剛性を有する機械パネや空気パネ等を使用することも できる。  [0030] It should be noted that here, even with the force and other actuators (for example, piezoelectric actuators, etc.) shown in the example in which the first support mechanism 31 is configured by VCM, the one having the rapid response that can be applied to the displacement cancellation control. If so, the first support mechanism 31 can be used. Further, the second support mechanism 32 may be a machine panel or an air panel having low rigidity.
また、この除振装置は、垂直に設置するだけでなぐ図 5に示すように、水平に配置 して、水平方向の振動の抑制に利用することもできる。  In addition, as shown in FIG. 5 in which the vibration isolator is simply installed vertically, it can be arranged horizontally and used for suppressing horizontal vibration.
[0031] また、ここでは、ベース 35と中間台 33との間に、ァクチユエータを備えた第 1支持機 構 31を配置し、中間台 33と除振テーブル 34との間に低剛性の第 2支持機構 32を配 置する場合について説明したが、それを逆にして、図 9に示すように、第 2支持機構 3 2をベース 35と中間台 33との間に、第 1支持機構 31を中間台 33と除振テーブル 34 との間に配置しても良い。このような配置とすることによってァクチユエータの駆動す る質量を除振テーブルだけにできるので、ァクチユエータを小型にできるという効果 が得られる。 [0031] Also, here, a first support mechanism 31 having an actuator is disposed between the base 35 and the intermediate base 33, and a second low-rigidity second is provided between the intermediate base 33 and the vibration isolation table 34. The case where the support mechanism 32 is disposed has been described. Conversely, as shown in FIG. 9, the second support mechanism 32 is disposed between the base 35 and the intermediate base 33, and the first support mechanism 31 is disposed. It may be arranged between the intermediate table 33 and the vibration isolation table 34. With this arrangement, the mass driven by the actuator can be made only by the vibration isolation table, so that the effect of reducing the size of the actuator can be obtained.
産業上の利用可能性  Industrial applicability
[0032] 本発明の除振装置は、半導体製造システム、走査型トンネル顕微鏡 (STM)や原 子間力顕微鏡 (AFM)等の超精密計測機器、レーザ加工やナノスケール加工を行う 超精密加工機、あるいは、バイオのマイクロマ-ュピレーシヨンやナノテクノロジーを 扱う最先端分野の機器等、振動を嫌う各種装置の除振のために広く利用することが できる。 [0032] The vibration isolator of the present invention includes a semiconductor manufacturing system, an ultraprecision measuring device such as a scanning tunneling microscope (STM) and an atomic force microscope (AFM), an ultraprecision processing machine that performs laser processing and nanoscale processing. Or, it can be widely used for vibration isolation of various devices that do not like vibration, such as devices in the cutting-edge fields that handle bio micro-duplication and nanotechnology.

Claims

請求の範囲 The scope of the claims
[1] 除振対象物を支持する支持機構が、ァクチユエータを備えた能動型の第 1の支持 機構と、前記第 1の支持機構と直列に配置された低剛性の第 2の支持機構と、前記 第 2の支持機構の変位を測定する測定手段とを有し、前記第 1の支持機構のァクチ ユエータの変位が、前記測定手段の測定結果に基づ 、て前記第 2の支持機構の変 位を相殺するように制御されることを特徴とする除振装置。  [1] The support mechanism for supporting the vibration isolation object includes an active first support mechanism including an actuator, and a low-rigidity second support mechanism arranged in series with the first support mechanism; Measuring means for measuring the displacement of the second support mechanism, and the displacement of the actuator of the first support mechanism is changed based on the measurement result of the measurement means. An anti-vibration device controlled to cancel the position.
[2] 請求項 1に記載の除振装置であって、前記第 1の支持機構と前記第 2の支持機構 とが、前記第 1の支持機構の上方に前記第 2の支持機構が位置するように、垂直方 向に直列に配置されていることを特徴とする除振装置。  [2] The vibration isolation device according to claim 1, wherein the first support mechanism and the second support mechanism are located above the first support mechanism. Thus, the vibration isolator is arranged in series in the vertical direction.
[3] 請求項 1に記載の除振装置であって、前記第 1の支持機構と前記第 2の支持機構 とが、前記第 2の支持機構の上方に前記第 1の支持機構が位置するように、垂直方 向に直列に配置されていることを特徴とする除振装置。  [3] The vibration isolation device according to claim 1, wherein the first support mechanism and the second support mechanism are located above the second support mechanism. Thus, the vibration isolator is arranged in series in the vertical direction.
[4] 請求項 1に記載の除振装置であって、前記第 1の支持機構と前記第 2の支持機構 とが水平方向に直列に配置されていることを特徴とする除振装置。  4. The vibration isolation device according to claim 1, wherein the first support mechanism and the second support mechanism are arranged in series in the horizontal direction.
[5] 床に対して、ァクチユエータを備えた能動型の第 1の支持機構で支持された中間台 と、該中間台に対して、低剛性の第 2の支持機構で支持された除振テーブルと、前記 第 2の支持機構の変位を測定する測定手段と、前記測定手段の測定結果に基づ!/ヽ て前記第 2の支持機構の変位を相殺するように前記第 1の支持機構のァクチユエ一 タの変位を制御する制御手段とを備えることを特徴とする除振装置。  [5] An intermediate base supported by an active first support mechanism having an actuator with respect to the floor, and a vibration isolation table supported by the second support mechanism having a low rigidity with respect to the intermediate base Measuring means for measuring the displacement of the second support mechanism; and based on the measurement result of the measurement means, the first support mechanism is configured to cancel out the displacement of the second support mechanism. A vibration isolation device comprising: control means for controlling the displacement of the actuator.
[6] 床に対して、低剛性の第 2の支持機構で支持された中間台と、該中間台に対して、 ァクチユエータを備えた能動型の第 1の支持機構で支持された除振テーブルと、前 記第 2の支持機構の変位を測定する測定手段と、前記測定手段の測定結果に基づ いて前記第 2の支持機構の変位を相殺するように前記第 1の支持機構のァクチユエ ータの変位を制御する制御手段とを備えることを特徴とする除振装置。  [6] An intermediate table supported by a low-stiffness second support mechanism with respect to the floor, and an anti-vibration table supported by the active first support mechanism having an actuator with respect to the intermediate table And measuring means for measuring the displacement of the second support mechanism, and the first support mechanism actuating so as to cancel the displacement of the second support mechanism based on the measurement result of the measurement means. And a vibration control device for controlling the displacement of the vibration isolator.
[7] 請求項 1〜6に記載の除振装置であって、前記第 1の支持機構のァクチユエータが 、ボイスコイルモータまたは圧電ァクチユエータであり、前記第 2の支持機構が、機械 パネまたは空気パネであることを特徴とする除振装置。  [7] The vibration isolator according to any one of claims 1 to 6, wherein the actuator of the first support mechanism is a voice coil motor or a piezoelectric actuator, and the second support mechanism is a mechanical panel or an air panel. An anti-vibration device characterized by
[8] ァクチユエータを備えた能動型の第 1の支持機構と、前記第 1の支持機構と直列に 配置された低剛性の第 2の支持機構とで除振対象物を支持することにより、除振対象 物に作用する直動外乱を抑制し、床力 除振対象物に伝わる地動外乱を遮断する 除振方法であって、 [8] An active first support mechanism including an actuator, and the first support mechanism in series By supporting the vibration isolation object with the low-stiffness second support mechanism, the linear motion disturbance acting on the vibration isolation object is suppressed, and the ground disturbance transmitted to the floor vibration isolation object is blocked. A vibration isolation method,
前記第 2の支持機構の変位を測定し、その測定結果に基づいて、前記第 2の支持 機構の変位を相殺するように、前記第 1の支持機構のァクチユエータの変位を制御 することを特徴とする除振方法。  The displacement of the second support mechanism is measured, and the displacement of the actuator of the first support mechanism is controlled so as to cancel the displacement of the second support mechanism based on the measurement result. Vibration isolation method.
PCT/JP2006/313243 2005-07-13 2006-07-03 Vibration isolation device and vibration isolation method WO2007007580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006541533A JPWO2007007580A1 (en) 2005-07-13 2006-07-03 Vibration isolator and vibration isolation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-204076 2005-07-13
JP2005204076 2005-07-13

Publications (1)

Publication Number Publication Date
WO2007007580A1 true WO2007007580A1 (en) 2007-01-18

Family

ID=37636976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313243 WO2007007580A1 (en) 2005-07-13 2006-07-03 Vibration isolation device and vibration isolation method

Country Status (2)

Country Link
JP (1) JPWO2007007580A1 (en)
WO (1) WO2007007580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044711A (en) * 2011-08-26 2013-03-04 Saitama Univ Power measuring device
WO2019111950A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration damping device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136845A (en) * 1998-10-30 2000-05-16 Canon Inc Active vibration insulating device and exposure device using it
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120766A (en) * 1998-10-13 2000-04-25 Canon Inc Hybrid active vibration isolation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136845A (en) * 1998-10-30 2000-05-16 Canon Inc Active vibration insulating device and exposure device using it
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044711A (en) * 2011-08-26 2013-03-04 Saitama Univ Power measuring device
WO2019111950A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration damping device
JPWO2019111950A1 (en) * 2017-12-05 2020-11-26 株式会社東芝 Vibration damping device

Also Published As

Publication number Publication date
JPWO2007007580A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP6253778B2 (en) Halbach array and magnetic floating damper employing the Halbach array
WO2005026573A1 (en) Method and device for vibration resistance
JP5524649B2 (en) Combination motion sensor for use in a feedback control system for vibration isolation
JP2012529607A (en) Active vibration isolation and damping system
CN102705431A (en) Angular-displacement-free active and passive combined vibration reduction system and method
US10184539B2 (en) Vibration isolation system
JP4157393B2 (en) Vibration isolator
JP4727151B2 (en) Vibration isolation method and apparatus
JP4225456B2 (en) Apparatus and method for vibration isolation support of load
JP4421130B2 (en) Vibration isolation method and apparatus
JP4827813B2 (en) Active vibration isolation mount mechanism
JP2978162B1 (en) Active vibration isolation device
WO2007007580A1 (en) Vibration isolation device and vibration isolation method
JPH11150062A (en) Vibration isolator, aligner, and method for canceling vibration of vibration canceling base
JP2004302639A (en) Vibration controller
JP2006037995A (en) Active vibration eliminating device and active vibration eliminating mount
JP4421605B2 (en) Vibration isolation method and apparatus
JP5242943B2 (en) Active vibration isolator
JP2013029137A (en) Damping device
JP2016114141A (en) Active vibration removal device
JP5912338B2 (en) Force measuring device
JP4219162B2 (en) Active dynamic damper device
JP2000136844A (en) Displacement generation type actuator active vibration insulating device
JP5090392B2 (en) Stage equipment
JP2013029136A (en) Active damping device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006541533

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780747

Country of ref document: EP

Kind code of ref document: A1