JP4157393B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP4157393B2
JP4157393B2 JP2003039770A JP2003039770A JP4157393B2 JP 4157393 B2 JP4157393 B2 JP 4157393B2 JP 2003039770 A JP2003039770 A JP 2003039770A JP 2003039770 A JP2003039770 A JP 2003039770A JP 4157393 B2 JP4157393 B2 JP 4157393B2
Authority
JP
Japan
Prior art keywords
vibration isolation
electromagnet
isolation table
support
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003039770A
Other languages
Japanese (ja)
Other versions
JP2004251317A (en
Inventor
毅 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003039770A priority Critical patent/JP4157393B2/en
Publication of JP2004251317A publication Critical patent/JP2004251317A/en
Application granted granted Critical
Publication of JP4157393B2 publication Critical patent/JP4157393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、除振装置に関し、より詳細には、精密加工,計測等の分野における各種機器の加工テーブルを外乱から絶縁するための除振装置に関する。
【0002】
【従来の技術】
現在、半導体デバイス製造システムや極微小領域計測システムでは、急速に高精度化、高性能化してきており、これらのシステムにおいて、振動等の外乱を除去するための除振、防振装置の重要性が増大してきている。このような除振装置で除去すべき振動外乱は、設置床からの振動に起因する地動外乱と、装置の防振部材に入力される直動外乱とに大きく分けることができる。前者の場合、低剛性の機構が適しており、後者には高剛性の機構が適している。
【0003】
従来の除振装置として、地動外乱を絶縁して除振するパッシブ型除振装置があるが、これは、床からの振動伝達率を低くするためにばね定数kを小さくしてばね剛性を小さくすると、除振テーブル上の質量変化や、除振テーブルに作用する荷重の変化等のばね上での外乱に対して弱くなってしまう。そのため、ばね上での外乱に対してはある程度ばね剛性を大きくする必要がある。このように除振装置には、地動外乱吸収のための低剛性機構と、位置や姿勢保持のための高剛性機構とを両立させるための特性が要求される。通常の正のばね定数を有するばねを直列に結合すると、結合してできたばね定数は、結合前のばね定数より小さくなってしまう。従って、これらの従来のばねのみを使用した除振装置では質量変化や振動等のばね上での外乱に対して高い剛性を確保することは極めて困難であることから、アクティブ型除振装置が提案されている。
【0004】
上記除振装置において、永久磁石間の反発力を利用する磁気浮上機構を用いたものがある。これは、通常の除振装置でよく用いられている空気ばねに代わるばね要素として利用することができる。最近の永久磁石材料の高性能化は目覚しく、小さな磁石でもかなり大きな支持力を得ることができる。この磁気浮上機構では、浮上側と支持側に用いる物質の組み合わせによって、各種の方式が可能となる。これらの中で除振装置に主に利用されているのは、
(1)永久磁石間の反発力を利用する方式
(2)常電導電磁石と強磁性体との間に働く吸引力を利用する方式
等がある。
【0005】
図9は、ばねを直列に結合した状態を示す図である。ばね定数k1,k2を持つ2つのばねを直列に結合して1つのばねを作ると、そのばね定数kcは下記の式(1)により求まる。
kc=k1・k2/k1+k2 式(1)
ここで、仮に負のばね定数を持つばねが実現できた場合、
k1=−k2 式(2)
という関係を満たすようになれば、
|kc|=∞ 式(3)
すなわち、理論上無限大の剛性を得ることができる。
【0006】
上記関係を利用すると、地動外乱に対する振動絶縁特性を保ちながら、直動外乱に対しては高い剛性を有する支持機構を実現できる可能性がある。具体的には、それぞれの剛性を低くすることによって振動絶縁特性を確保し、両者の大きさを一致させることにより、直動外乱に対する剛性を無限大とする。そして、負のばね特性を持つ支持機構は、零パワー磁気浮上機構を用いることによって実現することができる。
【0007】
上記した零パワー磁気浮上制御は、電磁石と永久磁石とを組み合わせた複合磁石を用いた吸引形磁気浮上系において、浮上対象物の重量を永久磁石だけで支持し、電磁石の制御電流を定常的には零に保つ制御方法である。
図10は、零パワー磁気浮上機構の特徴を説明するための図である。図10(A),(B)において、31は質量mの物体、32は荷重、33はばね、34は電磁石、35は永久磁石である。図10(A)に示すように、通常のばね系では、ばね33で支持されている質量mの物体31に作用する重力がΔmg、つまり荷重32の質量Δmだけ増えたとすると、ばね33は伸びるので、物体は重力と同じ方向へ変移する。これに対し、零パワー磁気浮上機構では、図10(B)に示すように、電磁石34から引き離す方向に一定の外力が浮上対象物(物体31+荷重32)に作用すると、定常的には電磁石34と浮上対象物との間のギャップが減少する。言い換えると、あたかも「負」の剛性を持っているかのように動作する。
【0008】
上記零パワー磁気浮上機構を用いた除振装置として、地動外乱に対する振動絶縁性能を損なうことなく、直動外乱に対する高い剛性を確保して、高い除振機能を発揮して精密加工等を可能としたものが開示されている。(例えば、特許文献1、非特許文献1参照)
【0009】
図11は、従来の零パワー磁気浮上機構を用いた除振装置の基本的な構成例について示した図で、図中、41は中間台、42は除振テーブル、43は永久磁石、44は電磁石、45はばね定数kを持つばね、46は床面、47は減衰要素である。このばね係数kを持つ正のばね45及び減衰要素47によって支持された中間台41には、磁気浮上用の電磁石44が固定されている。除振テーブル42において、電磁石44に面する箇所には、零パワー磁気浮上用の永久磁石43と強磁性体が取り付けられている。この除振装置の除振テーブル42に作用する直動外乱に対する挙動は、以下のようになる。
電磁石44の吸引力/変位係数をksとする(これが負の剛性の大きさとなる)。除振テーブル42に下向きに一定の力が加わると、零パワー制御の作用によって、電磁石44と除振テーブル42とのギャップは狭くなっていく。言い換えると、除振テーブル42は上向き変位しようとする。ところが、ギャップが狭くなって磁石の吸引力が増加すると、この力によってばね45は圧縮されるので、中間台41は下向きに変位する。この2つの変位がちょうど相殺されるように設定されていると、すなわちk=ksとなるように設定されていると、結果的には除振テーブル42は全く変位しないことになる。
【0010】
【特許文献1】
特開2002−81498号公報
【非特許文献1】
精密工学会誌 VOL.68,No.9,2002(1180頁〜1
183頁)
【0011】
【発明が解決しようとする課題】
しかしながら、上記した零パワー磁気浮上機構では、永久磁石の吸引力を応用して浮上力を得ているため、浮上ギャップと吸引力の関係には非線形性を有する。すなわち、除振テーブル上の質量、つまり浮上対象物の質量が変化すると浮上ギャップが変化し、その結果、零パワー磁気浮上機構が有する剛性が変化してしまう。「正の剛性」には線形ばねを利用しているため、除振テーブル上の質量の増減に伴い、除振装置が有する剛性は理論的にも有限値となり、直動外乱除去性能は低下してしまう。言い換えると、「正の剛性」のばねは線形性を有し、「負の剛性」の零パワー磁気浮上機構は非線形性を有することから、除振装置が有する剛性は有限となり、直動外乱に対する除振性能が低下することになる。
【0012】
本発明は、上述のごとき実情に鑑みてなされたものであり、「負の剛性」に非線形性要素を用いると共に、「正の剛性」にも非線形性を有する要素を用いることにより、1つの線形要素を構成し、地動外乱に対する振動絶縁特性を確保しつつ、任意の直動外乱に対して高い剛性を確保して安定した除去性能を発揮することができる除振装置を提供すること、をその目的とし、より具体的には、正の剛性k1を持った要素と負の剛性k2を持った要素とを直列接続する場合に、任意の負荷に対して、k1=−k2を成立させるような非線形性を有する正の剛性を持った要素を導入することにより、除振装置の剛性を略無限大とすること、を目的としてなされたものである。
【0013】
【課題を解決するための手段】
請求項1の発明は、一対の永久磁石の反発力によって底面に対して浮上支持された中間支持体と、該中間支持体の下部に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた浮上中間部材と、該浮上中間部材と連結され前記中間支持体の上部側に支持された除振テーブルとを有し、前記中間支持体を前記底面に対して支持する前記一対の永久磁石は所定の正のばね定数を有し、前記除振テーブルを前記中間支持体に対して支持する前記浮上中間部材は所定の負のばね定数を有し、前記一対の永久磁石と前記浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴としたものである。
【0014】
請求項2の発明は、請求項1の発明において、前記浮上中間部材は、前記除振テーブルに荷重されていない静止状態において、前記除振テーブルを該除振テーブルに設けた永久磁石の吸引力により前記中間支持体に対して支持すると共に、該中間支持体に設けた電磁石のコイル電流をゼロに保持し、前記除振テーブルに荷重された荷重状態において、該荷重による外力に応じた電流を前記電磁石に流して該電磁石に吸引力を発生させ、該発生させた吸引力と前記外力とが釣り合うように制御されることを特徴としたものである。
【0015】
請求項3の発明は、請求項1の発明において、前記浮上中間部材は、前記除振テーブルに荷重されていない静止状態において、前記中間支持体を該中間支持体に設けた永久磁石の吸引力により前記除振テーブルに対して支持すると共に、該除振テーブルに設けた電磁石のコイル電流をゼロに保持し、前記除振テーブルに荷重された荷重状態において、該荷重による外力に応じた電流を前記電磁石に流して該電磁石に吸引力を発生させ、該発生させた吸引力と前記外力とが釣り合うように制御されることを特徴としたものである。
【0016】
請求項4の発明は、請求項1乃至3のいずれか1の発明において、前記中間支持体又は前記除振テーブルは、電磁石と永久磁石とを組み合わせた複合磁石を有し、前記除振テーブル又は前記中間支持体は、前記複合磁石に対向する位置に強磁性体を有することを特徴としたものである。
【0017】
請求項5の発明は、一対の永久磁石の反発力によって底面に対して浮上支持された複数の中間支持体と、該各中間支持体の下部に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた複数の浮上中間部材と、該各浮上中間部材と連結され前記各中間支持体の上部側に支持された除振テーブルとを有し、前記各中間支持体を前記底面に対して支持する前記各一対の永久磁石は所定の正のばね定数を有し、前記除振テーブルを前記各中間支持体に対して支持する前記各浮上中間部材は所定の負のばね定数を有し、前記各一対の永久磁石と前記各浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴としたものである。
【0018】
請求項6の発明は、底面に対して逆L字型に立設した支柱と、該支柱の前記底面に対向する面に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた浮上中間部材と、該浮上中間部材に連結された中間支持体と、該中間支持体との間に設けられた一対の永久磁石の反発力によって前記支柱の上部側に浮上支持された除振テーブルとを有し、前記除振テーブルを前記中間支持体に対して支持する前記一対の永久磁石は所定の正のばね定数を有し、前記中間支持体を前記支柱に対して支持する前記浮上中間部材は所定の負のばね定数を有し、前記一対の永久磁石と前記浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴としたものである。
【0025】
【発明の実施の形態】
図1は、本発明の一実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図で、図中、1は中間台(中間支持体)、2は除振テーブル、3は永久磁石、4は電磁石、51及び52は永久磁石、6は床である。本実施形態の除振装置において、Aは支持機構で、該支持機構Aは、床6に設置した永久磁石52と、中間台1の下部に設けた永久磁石51とを反発させた磁気ばねからなり、この磁気ばねは正のばね特性、すなわち床6に対して所定の正のばね定数k1(N/m)を有すると共に、非線形特性を有するものとする。また、Bは前記した零パワー特性を有する磁気浮上機構(浮上中間部材)で、該磁気浮上機構Bは、除振テーブル2に設けた永久磁石3と、中間台1の下部に設けた電磁石4とからなり、負のばね特性、すなわち中間台1に対して所定の負のばね定数k2(N/m)を有すると共に、非線形特性を有するものとする。この支持機構Aと磁気浮上機構Bとを直列に接続することによって、本除振装置上で発生する直動外乱に対して略無限大の剛性を有すると共に、床6に対して振動を絶縁することができる。すなわち、支持機構Aにより床6から中間台1に伝わる振動を絶縁すると共に、磁気浮上機構Bにより中間台1から除振テーブル2に伝わる振動を絶縁する。
【0026】
図1において、同一荷重での特性曲線(磁石間ギャップと荷重との関係を示す)の傾きが一致すれば、支持機構A及び磁気浮上機構B双方の剛性の絶対値が等しいことになる。同様な非線形特性を有する支持機構A及び磁気浮上機構Bの双方、すなわち2つの非線形要素を組み合わせることにより、1つの線形要素を構成することが可能となる。これによって、除振テーブル2に加えた荷重によるそれぞれの変位はうち消され、除振テーブル2の変位はなくなる。すなわち、本除振装置は、略無限大の剛性を安定して有せしめることができる。
【0027】
なお、永久磁石による吸引力を増加させるために、永久磁石3と併用して強磁性体(図示せず)を除振テーブル2側に配設してもよく、また、永久磁石3を電磁石4の鉄心に埋め込んで複合磁石とし、除振テーブル2側には強磁性体のみを配設するようにしてもよい。また、電磁石4と永久磁石3の配置を逆、すなわち除振テーブル2側に電磁石4を、中間台1側に永久磁石3を配設し、電磁石4の吸引力を除振テーブル2に作用する荷重の増減に応じて増減させるようにしてもよい。この場合においても、永久磁石3と併用して強磁性体を中間台1側に配設してもよく、また、永久磁石3を電磁石4の鉄心に埋め込んで複合磁石とし、中間台1側には強磁性体のみを配設するようにしてもよい。
【0028】
ここで、零パワー特性を有する磁気浮上機構Bについて説明する。
零パワー制御とは、電磁石と永久磁石とを組み合わせて構成される吸引型磁気浮上系で、図1に示すように、除振テーブル2の質量を永久磁石3の吸引力のみで支持すると共に、中間台1側の電磁石4のコイル電流を定常的にゼロに保持する制御方法のことをいう。上記磁気浮上機構Bは、この零パワー特性を備えたものである。この零パワー制御を行うための制御系については、後述の図3において説明するものとし、ここでの説明は省略するものとする。
【0029】
ここで、支持機構Aの非線形要素には、上記した所定の正のばね定数を有する磁気ばねの他に、例えば空気ばね等を含む非線形ばね、能動制御されたアクチュエータのいずれかを用いてもよい。また、磁気浮上機構Bの非線形要素には、上記した所定の負のばね定数を有する磁気浮上機構の他に、例えば、能動制御されたアクチュエータを用いてもよい。この所定の正のばね定数又は所定の負のばね定数を有する能動制御されたアクチュエータには、例えば、ボイスコイルモータ,リニアモータ,空気圧アクチュエータ,油圧アクチュエータ,圧電アクチュエータ,磁歪アクチュエータ等を好適に用いることができる。本発明の除振装置は、その用途に応じて上記した各種アクチュエータや、非線形ばね等を適宜組み合わせて構成することができるため、適用範囲が広い。
【0030】
図2は、本除振装置の除振テーブル2に荷重を負荷した場合の状態遷移の一例について示した図である。図2に示すように、中間台1に設けられた電磁石4の吸引力を、永久磁石3を設けた除振テーブル2に付加された荷重による質量Δmの増減に応じて増減させるように図示しない制御系によって適宜制御する。図2(A)は、本除振装置の静止状態を示し、図2(B)は、除振テーブル2に質量Δmの荷重をかけた場合の状態を示している。
【0031】
ここで、電磁石4の吸引力/変位係数をk2(N/m)とし(これが負の剛性の大きさとなる)、また、永久磁石51及び52を反発させた磁気ばねのばね定数をk1(N/m)とする。除振テーブル2に下向きに一定の力が加わると、零パワー制御の作用によって、電磁石4と除振テーブル2とのギャップは狭くなっていく。言い換えると、除振テーブル2は上向き変位しようとする。ところが、ギャップが狭くなって磁石の吸引力が増加すると、この力によって磁気ばね(永久磁石51及び52)は圧縮されるので、中間台1は下向きに変位する。この2つの変位がちょうど相殺されるように設定されていると、すなわちk1(N/m)=k2(N/m)となるように設定されていると、結果的には除振テーブル2は全く変位しないことになる。
【0032】
図3は、本発明に係わる零パワー磁気浮上制御系の特徴を説明するための図で、図中、11は支持固定部、12は除振テーブル、13は永久磁石、14は電磁石である。図3(A)に示すように、除振テーブル12は力が釣り合った状態で静止位置に停まっているが、図3(B)に示すように、Δmの荷重がされた場合、除振テーブル12に下向きの一定の外力が加わると、電磁石14のコイルに電流を流して除振テーブル12を引き上げようとする吸引力を発生させ、永久磁石13による吸引力と下向きの力が釣り合うように制御され、図3(C)に示すように、ギャップが狭くなる位置で電磁石14のコイルに流れる電流がゼロとなり静止状態となる。
【0033】
上記のような動作を制御するための制御系20は、図3(D)に示すように、除振テーブル12の支持固定部11(図1に示した中間台1に相当)に対する位置を検出する変位センサ21と、変位センサ21からの出力信号に基づいて電磁石14のコイル電流を定常的にゼロに保持しつつ除振テーブル12を浮上保持するための制御信号を生成する制御回路22と、制御回路22からの出力に従って電磁石14のコイルに所定の電流を流す電力増幅器23とを有する。これらの構成に基づいて上記零パワー制御を実現することができる。
【0034】
図4は、本発明の除振装置における特性曲線の一例について示した図である。図4(A)及び(B)において、縦軸に永久磁石間のギャップ(単位:mm)、横軸に荷重(単位:N)をとる。図4(A)に示すように、支持機構Aを構成する磁気ばねは非線形特性を示す。従来技術において示したような線形特性を有するばねを支持機構Aに用いた場合、磁気浮上機構Bが非線形特性を示すことから、同一荷重において各機構の磁石間のギャップに差が生じ、直動外乱除去性能は低下してしまう。また、図4(B)に示すように、一方の磁気浮上機構Bも同様に非線形特性を示す。このように、双方の特性において同一荷重での特性曲線の傾きが一致すれば剛性の絶対値が等しいことになり、同様の特性を備えた2つの非線形要素を組み合わせることにより、1つの線形要素を構築することが可能となる。
【0035】
図5は、本発明に係わる除振テーブルが示す特性曲線の一例を示した図である。正のばね定数k1(N/m)を有する支持機構A(磁気ばね)と、負のばね定数k2(N/m)を有する零パワー磁気浮上機構Bによって、除振テーブル上に加えられた荷重によるそれぞれの変位は打ち消され、除振テーブルの変位は見られなくなる。
【0036】
図6は、本発明の除振装置の構成に基づく実験結果の一例について示した図で、図中、■は除振テーブルの変位を表す特性曲線、●は磁気ばねの変位を表す特性曲線、▲は零パワー磁気浮上機構の変位を表す特性曲線である。このように、磁気ばねと零パワー磁気浮上機構に同様な非線形特性を持たせたことで、除振テーブルの変位は見られなくなったことがわかる。この際、上記磁気ばねの代わりに線形特性を有するばね等を用いた場合には、上記零パワー磁気浮上機構が非線形特性を有することから、両者の特性の違いから除振装置の剛性は理論的に有限なものとなり、直動外乱除去性能は低下してしまう。本発明は、両者に同様の非線形特性を持たせたことで略無限大の剛性を安定して保持することができる。
【0037】
ここで、図1に示した除振装置において、前記した式(1)に基づいて変位制御について説明すると、除振テーブル2に対して荷重され、下向きの一定の外力F0が加わると、零パワー制御の作用によって、中間台1に設けた電磁石4と、除振テーブル2との距離はF0/k2だけ変位する(短くなる)。ここでk2は零パワー制御によって実現される負のばね定数である。従って、k2=k1となる関係を満たすように除振装置が設計されていれば、除振テーブル2は全く変位しないことになる。すなわち前記式(1)、kc=k1・k2/(k1+k2)によると、k1=−k2となる関係を負のばね定数を導入すれば、|kc|=∞となるばね定数を得ることができる。本除振装置において、ばね定数の大きさ(絶対値)が等しい正のばねと負のばねとを結合することにより、ばね定数が無限大のばねを得ることができる。これは、すなわちコンプライアンスがゼロとなることを意味する。
【0038】
ここで、前述の図1に示した本発明の除振装置の他の実施形態について説明する。
図7は、本発明の他の実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図で、図中、1は中間台(中間支持体)、21は除振テーブル、3は永久磁石、4は電磁石、51及び52は永久磁石、6は床、7は可動ステージ、8は移動負荷である。本実施形態の除振装置において、図1に示した実施形態との相違は、複数の支持機構及び磁気浮上機構で除振テーブル21を支持、除振する点である。
【0039】
ここで、床6に設置した永久磁石52と、中間台1の底面に設けた永久磁石51とを反発させた磁気ばねは、正のばね特性、すなわち床6に対して所定の正のばね定数k1(N/m)を有すると共に、非線形特性を有するものとする。また、除振テーブル21に設けた永久磁石3と、中間台1の下部に設けた電磁石4とからなる磁気浮上機構は、負のばね特性、すなわち中間台1に対して所定の負のばね定数k2(N/m)を有すると共に、非線形特性を有するものとする。上記磁気ばねと磁気浮上機構とを直列に接続することによって、本除振装置上で発生する直動外乱に対して略無限大の剛性を有すると共に、床6に対して振動を絶縁することができる。本実施形態の磁気浮上機構及び磁気ばねにおいて、一つの除振テーブル21に対して、磁気ばね及び磁気浮上機構が複数箇所配設されている構成となり、配設箇所それぞれにおいて、k1(N/m)=k2(N/m)となる関係を満たすようにする。
【0040】
なお、上記特性に基づいて除振テーブル21上に可動ステージ7を設置した場合、移動負荷8がどの位置にあっても除振テーブル21は変位せず、その姿勢を水平に保つことができる。
【0041】
図8は、本発明の他の実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図で、図中、1は中間台(中間支持体)、22は除振テーブル、3は永久磁石、4は電磁石、51及び52は永久磁石、6は床、9は支柱である。本実施形態の除振装置において、図1に示した実施形態との相違は、支柱9と中間台1との間に磁気浮上機構を設けた点である。ここで、永久磁石51及び52からなる磁気ばねは、正のばね特性、すなわち中間台1に対して所定の正のばね定数k1(N/m)を有すると共に、非線形特性を有するものとする。また、中間台1に設けた永久磁石3と、支柱9に設けた電磁石4とからなる磁気浮上機構は、負のばね特性、すなわち支柱9に対して所定の負のばね定数k2(N/m)を有すると共に、非線形特性を有するものとする。上記磁気ばねと磁気浮上機構とを直列に接続することによって、本除振装置上で発生する直動外乱に対して略無限大の剛性を有すると共に、床6に対して振動を絶縁することができる。本実施形態においても、図1に示した除振装置と同様に、k1(N/m)=k2(N/m)となる関係を満たすようにする。
【0042】
【発明の効果】
本発明によると、「負の剛性」に非線形性要素を用いると共に、「正の剛性」にも非線形性を有する要素を用いることにより、1つの線形要素を構成し、地動外乱に対する振動絶縁特性を確保しつつ、任意の直動外乱に対して高い剛性を確保して安定した除去性能を発揮することができる除振装置を提供することができる。
また、正の剛性k1を持った要素と負の剛性k2を持った要素とを直列接続する場合に、任意の負荷に対して、k1=−k2を成立させるような非線形性を有する正の剛性を持った要素を導入することにより、除振装置の剛性を略無限大とすることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図である。
【図2】 本除振装置の除振テーブルに荷重を負荷した場合の状態遷移の一例について示した図である。
【図3】 本発明に係わる零パワー磁気浮上制御系の特徴を説明するための図である。
【図4】 本発明の除振装置における特性曲線の一例について示した図である。
【図5】 本発明に係わる除振テーブルが示す特性曲線の一例を示した図である。
【図6】 本発明の除振装置の構成に基づく実験結果の一例について示した図である。
【図7】 本発明の他の実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図である。
【図8】 本発明の他の実施形態に係わる零パワー磁気浮上機構を有する除振装置の基本的な構成例を示す図である。
【図9】 ばねを直列に結合した状態を示す図である。
【図10】 零パワー磁気浮上機構の特徴を説明するための図である。
【図11】 従来の零パワー磁気浮上機構を用いた除振装置の基本的な構成例について示した図である。
【符号の説明】
1,41…中間台(中間支持体)、2,21,22,12,42…除振テーブル、3,13,35,43…永久磁石、4,14,34,44…電磁石、51,52…永久磁石、6,46…床、7…可動ステージ、8…移動負荷、9…支柱、11…支持固定部、20…制御系、21…変位センサ、22…制御回路、23…電力増幅器、31…物体、32…荷重、33,45…ばね、47…減衰要素。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-vibration device, and more particularly to an anti-vibration device for insulating a processing table of various devices from disturbances in the fields of precision processing, measurement, and the like.
[0002]
[Prior art]
At present, semiconductor device manufacturing systems and ultra-small area measurement systems are rapidly becoming highly accurate and high-performance. In these systems, the importance of vibration isolation and vibration isolation devices to remove disturbances such as vibrations. Is increasing. Such vibration disturbances to be removed by the vibration isolator can be broadly divided into ground disturbances caused by vibrations from the installation floor and linear motion disturbances input to the vibration isolation member of the apparatus. In the former case, a low-rigidity mechanism is suitable, and for the latter a high-rigidity mechanism is suitable.
[0003]
As a conventional vibration isolator, there is a passive vibration isolator that insulates and isolates ground disturbance, but this reduces the spring constant k to reduce the spring stiffness in order to reduce the vibration transmissibility from the floor. Then, it becomes weak against disturbances on the spring such as a change in mass on the vibration isolation table and a change in load acting on the vibration isolation table. Therefore, it is necessary to increase the spring rigidity to some extent against disturbance on the spring. As described above, the vibration isolator is required to have a characteristic for achieving both a low-rigidity mechanism for absorbing ground disturbance and a high-rigidity mechanism for maintaining position and posture. When a spring having a normal positive spring constant is coupled in series, the spring constant formed by the coupling becomes smaller than the spring constant before the coupling. Therefore, it is extremely difficult to secure high rigidity against disturbances on the spring such as mass change and vibration with these conventional vibration isolation devices. Therefore, an active vibration isolation device is proposed. Has been.
[0004]
Some of the above-described vibration isolation devices use a magnetic levitation mechanism that uses a repulsive force between permanent magnets. This can be used as a spring element in place of the air spring often used in ordinary vibration isolation devices. Recently, the performance of permanent magnet materials has been remarkably improved, and a considerably large supporting force can be obtained even with a small magnet. In this magnetic levitation mechanism, various methods are possible depending on the combination of materials used on the floating side and the support side. Of these, the main use for vibration isolation devices is
(1) A system that uses the repulsive force between permanent magnets
(2) A system that uses an attractive force acting between a normal conductive magnet and a ferromagnetic material
Etc.
[0005]
FIG. 9 is a diagram showing a state in which springs are coupled in series. When two springs having spring constants k1 and k2 are connected in series to form one spring, the spring constant kc is obtained by the following equation (1).
kc = k1 · k2 / k1 + k2 Equation (1)
Here, if a spring with a negative spring constant is realized,
k1 = −k2 Formula (2)
If you satisfy the relationship
| Kc | = ∞ Formula (3)
That is, theoretically infinite rigidity can be obtained.
[0006]
When the above relationship is used, there is a possibility that a support mechanism having high rigidity against linear motion disturbance can be realized while maintaining vibration isolation characteristics against ground motion disturbance. Specifically, the vibration insulation characteristics are ensured by lowering the rigidity of each, and the rigidity against the direct acting disturbance is made infinite by matching the magnitudes of the two. A support mechanism having a negative spring characteristic can be realized by using a zero power magnetic levitation mechanism.
[0007]
The above-described zero power magnetic levitation control is a suction type magnetic levitation system using a composite magnet that combines an electromagnet and a permanent magnet. The weight of the levitation object is supported only by the permanent magnet, and the control current of the electromagnet is steadily adjusted. Is a control method that keeps zero.
FIG. 10 is a diagram for explaining the characteristics of the zero-power magnetic levitation mechanism. 10A and 10B, 31 is an object of mass m, 32 is a load, 33 is a spring, 34 is an electromagnet, and 35 is a permanent magnet. As shown in FIG. 10A, in the normal spring system, if the gravity acting on the object 31 having the mass m supported by the spring 33 increases by Δmg, that is, the mass Δm of the load 32, the spring 33 extends. So the object changes in the same direction as gravity. On the other hand, in the zero power magnetic levitation mechanism, as shown in FIG. 10B, when a constant external force acts on the levitating object (object 31 + load 32) in the direction away from the electromagnet 34, the electromagnet 34 is steadily applied. And the gap between the flying object is reduced. In other words, it behaves as if it has “negative” stiffness.
[0008]
As a vibration isolator using the above-mentioned zero-power magnetic levitation mechanism, high rigidity against linear motion disturbance is ensured without impairing vibration insulation performance against ground motion disturbance, enabling high-performance vibration isolation functions and precision machining, etc. Has been disclosed. (For example, see Patent Document 1 and Non-Patent Document 1)
[0009]
FIG. 11 is a diagram showing a basic configuration example of a vibration isolator using a conventional zero power magnetic levitation mechanism. In the figure, 41 is an intermediate stand, 42 is a vibration isolation table, 43 is a permanent magnet, 44 is An electromagnet, 45 is a spring having a spring constant k, 46 is a floor, and 47 is a damping element. An electromagnet 44 for magnetic levitation is fixed to the intermediate base 41 supported by the positive spring 45 and the damping element 47 having the spring coefficient k. In the vibration isolation table 42, a permanent magnet 43 for levitation of zero power and a ferromagnetic material are attached to a portion facing the electromagnet 44. The behavior of the vibration isolator against the direct acting disturbance acting on the vibration isolation table 42 is as follows.
Let the attractive force / displacement coefficient of the electromagnet 44 be ks (this is the magnitude of the negative stiffness). When a certain downward force is applied to the vibration isolation table 42, the gap between the electromagnet 44 and the vibration isolation table 42 becomes narrow due to the action of zero power control. In other words, the vibration isolation table 42 tends to be displaced upward. However, when the gap is narrowed and the attractive force of the magnet is increased, the spring 45 is compressed by this force, so that the intermediate table 41 is displaced downward. If these two displacements are set so as to cancel each other out, that is, if k = ks is set, as a result, the vibration isolation table 42 is not displaced at all.
[0010]
[Patent Document 1]
JP 2002-81498 A
[Non-Patent Document 1]
Journal of Precision Engineering VOL. 68, no. 9, 2002 (1180 to 1)
183)
[0011]
[Problems to be solved by the invention]
However, in the above-described zero power magnetic levitation mechanism, since the levitation force is obtained by applying the attraction force of the permanent magnet, the relationship between the levitation gap and the attraction force has nonlinearity. That is, when the mass on the vibration isolation table, that is, the mass of the levitation object changes, the levitation gap changes, and as a result, the rigidity of the zero power magnetic levitation mechanism changes. Since “linear stiffness” is used for “positive rigidity”, the rigidity of the vibration isolator theoretically becomes a finite value as the mass on the vibration isolation table increases / decreases, and the linear motion disturbance removal performance decreases. End up. In other words, the “positive stiffness” spring has linearity, and the “negative stiffness” zero-power magnetic levitation mechanism has non-linearity. The vibration isolation performance will be reduced.
[0012]
The present invention has been made in view of the above circumstances, and uses a non-linear element for the “negative stiffness” and also uses a non-linear element for the “positive stiffness”. Providing an anti-vibration device capable of exhibiting a stable removal performance by securing high rigidity against an arbitrary linear motion disturbance while constituting a component and ensuring vibration isolation characteristics against ground disturbance More specifically, when an element having a positive stiffness k1 and an element having a negative stiffness k2 are connected in series, k1 = −k2 is established for an arbitrary load. The purpose of this is to make the rigidity of the vibration isolator almost infinite by introducing an element with positive rigidity having non-linearity.
[0013]
[Means for Solving the Problems]
The invention of claim 1 A pair of An intermediate support that is levitated and supported from the bottom by the repulsive force of the permanent magnet, an electromagnet or a permanent magnet is provided below the intermediate support, and a permanent magnet or an electromagnet is provided at a position facing the electromagnet or the permanent magnet. A pair of permanent magnets that support the intermediate support body with respect to the bottom surface, and a vibration isolation table connected to the floating intermediate member and supported on an upper side of the intermediate support body. The floating intermediate member having a predetermined positive spring constant and supporting the vibration isolation table with respect to the intermediate support has a predetermined negative spring constant, and the pair of permanent magnets, the floating intermediate member, Has a non-linearity such that the absolute values of the positive and negative spring constants are equal for an arbitrary load applied on the vibration isolation table. It is characterized by that.
[0014]
The invention of claim 2 In the invention according to claim 1, the floating intermediate member is fixed to the intermediate support by the attractive force of a permanent magnet provided on the vibration isolation table in a stationary state where the vibration isolation table is not loaded. The coil current of the electromagnet provided on the intermediate support is kept at zero, and in a load state loaded on the vibration isolation table, a current corresponding to an external force caused by the load is passed through the electromagnet. Is controlled so that the generated suction force is balanced with the external force. It is characterized by that.
[0015]
The invention of claim 3 In the invention according to claim 1, the floating intermediate member is placed against the vibration isolation table by a suction force of a permanent magnet provided on the intermediate support in the stationary state where no load is applied to the vibration isolation table. The coil current of the electromagnet provided on the vibration isolation table is kept at zero, and in a load state loaded on the vibration isolation table, a current corresponding to the external force due to the load is passed through the electromagnet Is controlled so that the generated suction force is balanced with the external force. It is characterized by that.
[0016]
A fourth aspect of the present invention provides the intermediate support according to any one of the first to third aspects. Alternatively, the vibration isolation table includes a composite magnet in which an electromagnet and a permanent magnet are combined, and the vibration isolation table or the intermediate support is a ferromagnetic body at a position facing the composite magnet. It is characterized by having.
[0017]
The invention of claim 5 A plurality of intermediate supports that are levitated and supported with respect to the bottom by the repulsive force of a pair of permanent magnets, and an electromagnet or permanent magnet is provided below each of the intermediate supports, and the permanent magnet is positioned opposite the electromagnet or permanent magnet. Or a plurality of floating intermediate members provided with electromagnets, and a vibration isolation table connected to the floating intermediate members and supported on the upper side of the intermediate support members, and the intermediate support members with respect to the bottom surface Each of the pair of permanent magnets that are supported has a predetermined positive spring constant, and each of the floating intermediate members that support the vibration isolation table with respect to each of the intermediate supports has a predetermined negative spring constant. The pair of permanent magnets and the floating intermediate members have nonlinearity such that the absolute values of the positive and negative spring constants are equal to an arbitrary load applied on the vibration isolation table. It is characterized by that.
[0018]
The invention of claim 6 A levitation in which an upright L-shaped support is provided with respect to the bottom surface and an electromagnet or permanent magnet is provided on the surface of the support facing the bottom surface, and a permanent magnet or electromagnet is provided at a position facing the electromagnet or permanent magnet. An intermediate member, an intermediate support coupled to the floating intermediate member, and a vibration isolation table that is levitated and supported on the upper side of the column by a repulsive force of a pair of permanent magnets provided between the intermediate support and the intermediate support And the pair of permanent magnets that support the vibration isolation table with respect to the intermediate support have a predetermined positive spring constant, and the floating intermediate member that supports the intermediate support with respect to the support column Has a predetermined negative spring constant, and the pair of permanent magnets and the floating intermediate member have the same absolute value of the positive and negative spring constants for any load applied on the vibration isolation table. Have non-linearity like It is characterized by that.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a basic configuration example of a vibration isolator having a zero power magnetic levitation mechanism according to an embodiment of the present invention. In the figure, 1 is an intermediate stand (intermediate support), and 2 is a vibration isolator. Table, 3 is permanent magnet, 4 is electromagnet, 5 1 And 5 2 Is a permanent magnet and 6 is a floor. In the vibration isolator of the present embodiment, A is a support mechanism, and the support mechanism A is a permanent magnet 5 installed on the floor 6. 2 And a permanent magnet 5 provided at the bottom of the intermediate stand 1 1 The magnetic spring has a positive spring characteristic, that is, a predetermined positive spring constant k1 (N / m) with respect to the floor 6 and a non-linear characteristic. B is a magnetic levitation mechanism (a levitation intermediate member) having the above-described zero power characteristics. The magnetic levitation mechanism B includes a permanent magnet 3 provided on the vibration isolation table 2 and an electromagnet 4 provided below the intermediate stand 1. And a negative spring characteristic, that is, a predetermined negative spring constant k2 (N / m) with respect to the intermediate platform 1, and a non-linear characteristic. By connecting the support mechanism A and the magnetic levitation mechanism B in series, the support mechanism A and the magnetic levitation mechanism B have substantially infinite rigidity against the linear motion disturbance generated on the vibration isolator, and also insulate the vibration from the floor 6. be able to. That is, the vibration transmitted from the floor 6 to the intermediate platform 1 is insulated by the support mechanism A, and the vibration transmitted from the intermediate platform 1 to the vibration isolation table 2 is insulated by the magnetic levitation mechanism B.
[0026]
In FIG. 1, if the slopes of the characteristic curves at the same load (indicating the relationship between the gap between magnets and the load) match, the absolute values of the rigidity of both the support mechanism A and the magnetic levitation mechanism B are equal. By combining both the support mechanism A and the magnetic levitation mechanism B having similar nonlinear characteristics, that is, two nonlinear elements, one linear element can be configured. As a result, each displacement due to the load applied to the vibration isolation table 2 is eliminated, and the displacement of the vibration isolation table 2 is eliminated. That is, this vibration isolator can stably have an almost infinite rigidity.
[0027]
In order to increase the attractive force by the permanent magnet, a ferromagnetic material (not shown) may be disposed on the vibration isolation table 2 side in combination with the permanent magnet 3, and the permanent magnet 3 may be disposed on the electromagnet 4. Alternatively, a composite magnet may be embedded in the iron core and only the ferromagnetic material may be disposed on the vibration isolation table 2 side. Further, the arrangement of the electromagnet 4 and the permanent magnet 3 is reversed, that is, the electromagnet 4 is arranged on the vibration isolation table 2 side and the permanent magnet 3 is arranged on the intermediate stand 1 side, and the attractive force of the electromagnet 4 acts on the vibration isolation table 2. You may make it increase / decrease according to increase / decrease in a load. Also in this case, the ferromagnetic material may be disposed on the intermediate stand 1 side in combination with the permanent magnet 3, or the permanent magnet 3 is embedded in the iron core of the electromagnet 4 to form a composite magnet, and on the intermediate stand 1 side. May be provided with only a ferromagnetic material.
[0028]
Here, the magnetic levitation mechanism B having zero power characteristics will be described.
Zero power control is an attraction type magnetic levitation system configured by combining an electromagnet and a permanent magnet. As shown in FIG. 1, the mass of the vibration isolation table 2 is supported only by the attraction force of the permanent magnet 3, This is a control method in which the coil current of the electromagnet 4 on the intermediate platform 1 side is constantly kept at zero. The magnetic levitation mechanism B has this zero power characteristic. The control system for performing the zero power control will be described later with reference to FIG. 3, and description thereof will be omitted here.
[0029]
Here, in addition to the above-described magnetic spring having the predetermined positive spring constant, for example, a nonlinear spring including an air spring or an active controlled actuator may be used as the nonlinear element of the support mechanism A. . In addition to the above-described magnetic levitation mechanism having a predetermined negative spring constant, for example, an actively controlled actuator may be used as the nonlinear element of the magnetic levitation mechanism B. As the actively controlled actuator having the predetermined positive spring constant or the predetermined negative spring constant, for example, a voice coil motor, a linear motor, a pneumatic actuator, a hydraulic actuator, a piezoelectric actuator, a magnetostrictive actuator, or the like is preferably used. Can do. Since the vibration isolator of the present invention can be configured by appropriately combining the various actuators described above, nonlinear springs, and the like according to the application, the application range is wide.
[0030]
FIG. 2 is a diagram illustrating an example of state transition when a load is applied to the vibration isolation table 2 of the vibration isolation device. As shown in FIG. 2, the attraction force of the electromagnet 4 provided on the intermediate platform 1 is not shown so as to increase or decrease in accordance with the increase or decrease of the mass Δm due to the load applied to the vibration isolation table 2 provided with the permanent magnet 3. Control appropriately by the control system. FIG. 2A shows the stationary state of the vibration isolation device, and FIG. 2B shows the state when a load of mass Δm is applied to the vibration isolation table 2.
[0031]
Here, the attractive force / displacement coefficient of the electromagnet 4 is set to k2 (N / m) (this is the magnitude of negative rigidity), and the permanent magnet 5 1 And 5 2 Let the spring constant of the magnetic spring repelled by k1 (N / m). When a certain downward force is applied to the vibration isolation table 2, the gap between the electromagnet 4 and the vibration isolation table 2 becomes narrow due to the action of zero power control. In other words, the vibration isolation table 2 tends to be displaced upward. However, when the gap becomes narrower and the attractive force of the magnet increases, this force causes the magnetic spring (permanent magnet 5). 1 And 5 2 ) Is compressed, the intermediate platform 1 is displaced downward. If these two displacements are set so as to cancel each other out, that is, if k1 (N / m) = k2 (N / m) is set, as a result, the vibration isolation table 2 is It will not be displaced at all.
[0032]
FIG. 3 is a diagram for explaining the features of the zero power magnetic levitation control system according to the present invention. In the figure, 11 is a support fixing portion, 12 is a vibration isolation table, 13 is a permanent magnet, and 14 is an electromagnet. As shown in FIG. 3A, the vibration isolation table 12 is stopped at a stationary position in a state where the forces are balanced, but when a load of Δm is applied as shown in FIG. When a constant downward external force is applied to the table 12, an attraction force is generated to pull up the vibration isolation table 12 by passing an electric current through the coil of the electromagnet 14, so that the attraction force by the permanent magnet 13 and the downward force are balanced. As shown in FIG. 3C, the current flowing through the coil of the electromagnet 14 becomes zero at a position where the gap is narrowed, and a stationary state is obtained.
[0033]
The control system 20 for controlling the operation as described above detects the position of the vibration isolation table 12 with respect to the support fixing portion 11 (corresponding to the intermediate table 1 shown in FIG. 1), as shown in FIG. A displacement sensor 21, and a control circuit 22 for generating a control signal for floatingly holding the vibration isolation table 12 while constantly holding the coil current of the electromagnet 14 based on an output signal from the displacement sensor 21; And a power amplifier 23 for supplying a predetermined current to the coil of the electromagnet 14 in accordance with the output from the control circuit 22. The zero power control can be realized based on these configurations.
[0034]
FIG. 4 is a diagram showing an example of a characteristic curve in the vibration isolation device of the present invention. 4A and 4B, the vertical axis represents the gap between the permanent magnets (unit: mm), and the horizontal axis represents the load (unit: N). As shown in FIG. 4A, the magnetic spring constituting the support mechanism A exhibits nonlinear characteristics. When a spring having a linear characteristic as shown in the prior art is used for the support mechanism A, the magnetic levitation mechanism B exhibits a non-linear characteristic. Disturbance removal performance is degraded. Further, as shown in FIG. 4B, one of the magnetic levitation mechanisms B similarly exhibits nonlinear characteristics. In this way, if the slopes of the characteristic curves at the same load match in both characteristics, the absolute value of the stiffness is equal. By combining two nonlinear elements having similar characteristics, one linear element can be obtained. It becomes possible to construct.
[0035]
FIG. 5 is a diagram showing an example of a characteristic curve indicated by the vibration isolation table according to the present invention. Load applied on the vibration isolation table by the support mechanism A (magnetic spring) having a positive spring constant k1 (N / m) and the zero power magnetic levitation mechanism B having a negative spring constant k2 (N / m) The respective displacements due to are canceled, and the displacement of the vibration isolation table is not seen.
[0036]
FIG. 6 is a diagram showing an example of an experimental result based on the configuration of the vibration isolation device of the present invention. In the figure, ■ is a characteristic curve representing displacement of the vibration isolation table, ● is a characteristic curve representing displacement of the magnetic spring, ▲ is a characteristic curve representing the displacement of the zero power magnetic levitation mechanism. Thus, it can be seen that the displacement of the vibration isolation table can no longer be seen by giving the same non-linear characteristics to the magnetic spring and the zero power magnetic levitation mechanism. In this case, if a spring having linear characteristics is used instead of the magnetic spring, the zero power magnetic levitation mechanism has a nonlinear characteristic. Therefore, the linear motion disturbance removal performance is reduced. According to the present invention, substantially the same infinite rigidity can be stably maintained by giving both the same non-linear characteristics.
[0037]
Here, the displacement control in the vibration isolator shown in FIG. 1 will be described based on the above-described equation (1). When the load is applied to the vibration isolation table 2 and a constant downward external force F0 is applied, zero power is applied. As a result of the control, the distance between the electromagnet 4 provided on the intermediate platform 1 and the vibration isolation table 2 is displaced (shortened) by F0 / k2. Here, k2 is a negative spring constant realized by zero power control. Therefore, if the vibration isolation device is designed so as to satisfy the relationship of k2 = k1, the vibration isolation table 2 will not be displaced at all. That is, according to the above equation (1), kc = k1 · k2 / (k1 + k2), if a negative spring constant is introduced into the relation of k1 = −k2, a spring constant that | kc | = ∞ can be obtained. . In this vibration isolator, a spring having an infinite spring constant can be obtained by combining a positive spring and a negative spring having the same spring constant (absolute value). This means that the compliance is zero.
[0038]
Here, another embodiment of the vibration isolator of the present invention shown in FIG. 1 will be described.
FIG. 7 is a diagram showing a basic configuration example of a vibration isolator having a zero power magnetic levitation mechanism according to another embodiment of the present invention, in which 1 is an intermediate stand (intermediate support), 2 1 Is a vibration isolation table, 3 is a permanent magnet, 4 is an electromagnet, 5 1 And 5 2 Is a permanent magnet, 6 is a floor, 7 is a movable stage, and 8 is a moving load. In the vibration isolator of the present embodiment, the difference from the embodiment shown in FIG. 1 is that a vibration isolating table 2 includes a plurality of support mechanisms and a magnetic levitation mechanism. 1 This is the point that supports and isolates the vibration.
[0039]
Here, the permanent magnet 5 installed on the floor 6 2 And a permanent magnet 5 provided on the bottom surface of the intermediate stand 1 1 It is assumed that the magnetic spring having the repulsive force has a positive spring characteristic, that is, a predetermined positive spring constant k1 (N / m) with respect to the floor 6 and a non-linear characteristic. Moreover, the vibration isolation table 2 1 The magnetic levitation mechanism comprising the permanent magnet 3 provided on the base plate 1 and the electromagnet 4 provided on the lower side of the intermediate stand 1 has a negative spring characteristic, that is, a predetermined negative spring constant k2 (N / m) with respect to the intermediate stand 1. And non-linear characteristics. By connecting the magnetic spring and the magnetic levitation mechanism in series, it has substantially infinite rigidity against the linear motion disturbance generated on the vibration isolator, and can insulate the vibration from the floor 6. it can. In the magnetic levitation mechanism and magnetic spring of the present embodiment, one vibration isolation table 2 1 On the other hand, the magnetic spring and the magnetic levitation mechanism are arranged at a plurality of locations so that the relationship of k1 (N / m) = k2 (N / m) is satisfied at each location.
[0040]
The vibration isolation table 2 is based on the above characteristics. 1 When the movable stage 7 is installed on the top, the vibration isolation table 2 no matter where the moving load 8 is located. 1 Does not displace and keeps its posture horizontal.
[0041]
FIG. 8 is a diagram showing a basic configuration example of a vibration isolation device having a zero power magnetic levitation mechanism according to another embodiment of the present invention, in which 1 is an intermediate stand (intermediate support), 2 2 Is a vibration isolation table, 3 is a permanent magnet, 4 is an electromagnet, 5 1 And 5 2 Is a permanent magnet, 6 is a floor, and 9 is a support. The vibration isolator of this embodiment is different from the embodiment shown in FIG. 1 in that a magnetic levitation mechanism is provided between the support column 9 and the intermediate platform 1. Here, the permanent magnet 5 1 And 5 2 It is assumed that the magnetic spring made of has a positive spring characteristic, that is, a predetermined positive spring constant k1 (N / m) with respect to the intermediate stand 1 and a non-linear characteristic. Further, the magnetic levitation mechanism comprising the permanent magnet 3 provided on the intermediate platform 1 and the electromagnet 4 provided on the column 9 has a negative spring characteristic, that is, a predetermined negative spring constant k2 (N / m with respect to the column 9). ) And nonlinear characteristics. By connecting the magnetic spring and the magnetic levitation mechanism in series, it has substantially infinite rigidity against the linear motion disturbance generated on the vibration isolator, and can insulate the vibration from the floor 6. it can. Also in this embodiment, the relationship of k1 (N / m) = k2 (N / m) is satisfied as in the case of the vibration isolation device illustrated in FIG.
[0042]
【The invention's effect】
According to the present invention, by using a non-linear element for “negative stiffness” and using an element having non-linearity for “positive stiffness” as well, one linear element is formed, and vibration isolation characteristics against ground disturbance are reduced. It is possible to provide a vibration isolation device that can secure a high rigidity against an arbitrary linear motion disturbance and can exhibit a stable removal performance while ensuring.
Further, when an element having a positive stiffness k1 and an element having a negative stiffness k2 are connected in series, a positive stiffness having nonlinearity that establishes k1 = −k2 for an arbitrary load. By introducing an element having a, the rigidity of the vibration isolator can be made almost infinite.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration example of a vibration isolation device having a zero power magnetic levitation mechanism according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of state transition when a load is applied to a vibration isolation table of the vibration isolation device.
FIG. 3 is a diagram for explaining the characteristics of a zero power magnetic levitation control system according to the present invention.
FIG. 4 is a diagram showing an example of a characteristic curve in the vibration isolation device of the present invention.
FIG. 5 is a diagram showing an example of a characteristic curve indicated by a vibration isolation table according to the present invention.
FIG. 6 is a diagram showing an example of an experimental result based on the configuration of the vibration isolation device of the present invention.
FIG. 7 is a diagram showing a basic configuration example of a vibration isolation device having a zero power magnetic levitation mechanism according to another embodiment of the present invention.
FIG. 8 is a diagram showing a basic configuration example of a vibration isolation device having a zero power magnetic levitation mechanism according to another embodiment of the present invention.
FIG. 9 is a view showing a state in which springs are coupled in series.
FIG. 10 is a diagram for explaining the characteristics of a zero-power magnetic levitation mechanism.
FIG. 11 is a diagram showing a basic configuration example of a vibration isolator using a conventional zero power magnetic levitation mechanism.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,41 ... Intermediate stand (intermediate support body), 2, 21, 22, 12, 42 ... Vibration isolation table, 3, 13, 35, 43 ... Permanent magnet, 4, 14, 34, 44 ... Electromagnet, 5 1 , 5 2 DESCRIPTION OF SYMBOLS Permanent magnet, 6,46 ... Floor, 7 ... Movable stage, 8 ... Moving load, 9 ... Strut, 11 ... Support fixing part, 20 ... Control system, 21 ... Displacement sensor, 22 ... Control circuit, 23 ... Power amplifier, 31 ... object, 32 ... load, 33, 45 ... spring, 47 ... damping element.

Claims (6)

一対の永久磁石の反発力によって底面に対して浮上支持された中間支持体と、該中間支持体の下部に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた浮上中間部材と、該浮上中間部材と連結され前記中間支持体の上部側に支持された除振テーブルとを有し、
前記中間支持体を前記底面に対して支持する前記一対の永久磁石は所定の正のばね定数を有し、前記除振テーブルを前記中間支持体に対して支持する前記浮上中間部材は所定の負のばね定数を有し、
前記一対の永久磁石と前記浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴とする除振装置。
An intermediate support that is levitated and supported by the repulsive force of a pair of permanent magnets, an electromagnet or a permanent magnet is provided below the intermediate support, and a permanent magnet or an electromagnet is provided at a position facing the electromagnet or the permanent magnet. A provided floating intermediate member, and a vibration isolation table connected to the floating intermediate member and supported on the upper side of the intermediate support,
The pair of permanent magnets that support the intermediate support with respect to the bottom surface have a predetermined positive spring constant, and the floating intermediate member that supports the vibration isolation table with respect to the intermediate support has a predetermined negative Having a spring constant of
The pair of permanent magnets and the floating intermediate member have nonlinearity such that absolute values of the positive and negative spring constants are equal to an arbitrary load applied on the vibration isolation table. Vibration isolator.
請求項1に記載の除振装置において、前記浮上中間部材は、前記除振テーブルに荷重されていない静止状態において、前記除振テーブルを該除振テーブルに設けた永久磁石の吸引力により前記中間支持体に対して支持すると共に、該中間支持体に設けた電磁石のコイル電流をゼロに保持し、前記除振テーブルに荷重された荷重状態において、該荷重による外力に応じた電流を前記電磁石に流して該電磁石に吸引力を発生させ、該発生させた吸引力と前記外力とが釣り合うように制御されることを特徴とする除振装置。 2. The vibration isolation device according to claim 1, wherein the floating intermediate member is configured such that, in a stationary state where no load is applied to the vibration isolation table, the intermediate vibration is generated by a suction force of a permanent magnet provided on the vibration isolation table. While supporting the support, the coil current of the electromagnet provided on the intermediate support is kept at zero, and in the load state loaded on the vibration isolation table, a current corresponding to the external force due to the load is supplied to the electromagnet. The vibration isolator is controlled so as to cause the electromagnet to generate an attractive force and to balance the generated attractive force with the external force . 請求項1に記載の除振装置において、前記浮上中間部材は、前記除振テーブルに荷重されていない静止状態において、前記中間支持体を該中間支持体に設けた永久磁石の吸引力により前記除振テーブルに対して支持すると共に、該除振テーブルに設けた電磁石のコイル電流をゼロに保持し、前記除振テーブルに荷重された荷重状態において、該荷重による外力に応じた電流を前記電磁石に流して該電磁石に吸引力を発生させ、該発生させた吸引力と前記外力とが釣り合うように制御されることを特徴とする除振装置。 2. The vibration isolation device according to claim 1, wherein the floating intermediate member is moved by the attraction force of a permanent magnet provided on the intermediate support in a stationary state where no load is applied to the vibration isolation table. While supporting the vibration table, the coil current of the electromagnet provided on the vibration isolation table is held at zero, and in the load state loaded on the vibration isolation table, a current corresponding to the external force due to the load is supplied to the electromagnet. The vibration isolator is controlled so as to cause the electromagnet to generate an attractive force and to balance the generated attractive force with the external force . 請求項1乃至3のいずれか1に記載の除振装置において、前記中間支持体又は前記除振テーブルは、電磁石と永久磁石とを組み合わせた複合磁石を有し、前記除振テーブル又は前記中間支持体は、前記複合磁石に対向する位置に強磁性体を有することを特徴とする除振装置。4. The vibration isolation device according to claim 1, wherein the intermediate support or the vibration isolation table includes a composite magnet in which an electromagnet and a permanent magnet are combined, and the vibration isolation table or the intermediate support is provided. The vibration isolator according to claim 1, wherein the body has a ferromagnetic body at a position facing the composite magnet . 一対の永久磁石の反発力によって底面に対して浮上支持された複数の中間支持体と、該各中間支持体の下部に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた複数の浮上中間部材と、該各浮上中間部材と連結され前記各中間支持体の上部側に支持された除振テーブルとを有し、
前記各中間支持体を前記底面に対して支持する前記各一対の永久磁石は所定の正のばね定数を有し、前記除振テーブルを前記各中間支持体に対して支持する前記各浮上中間部材は所定の負のばね定数を有し、
前記各一対の永久磁石と前記各浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴とする除振装置。
A plurality of intermediate supports that are levitated and supported with respect to the bottom surface by the repulsive force of a pair of permanent magnets, and an electromagnet or permanent magnet provided at the lower part of each intermediate support, and a permanent magnet at a position facing the electromagnet or permanent magnet Or a plurality of floating intermediate members provided with electromagnets, and a vibration isolation table connected to each floating intermediate member and supported on the upper side of each intermediate support,
The pair of permanent magnets that support the intermediate supports with respect to the bottom surface have a predetermined positive spring constant, and the floating intermediate members that support the vibration isolation table with respect to the intermediate supports. Has a predetermined negative spring constant,
Each of the pair of permanent magnets and each of the floating intermediate members has nonlinearity such that the absolute values of the positive and negative spring constants are equal to an arbitrary load applied on the vibration isolation table. The vibration isolator.
底面に対して逆L字型に立設した支柱と、該支柱の前記底面に対向する面に電磁石又は永久磁石を設けると共に該電磁石又は永久磁石に対向する位置に永久磁石又は電磁石を設けた浮上中間部材と、該浮上中間部材に連結された中間支持体と、該中間支持体との間に設けられた一対の永久磁石の反発力によって前記支柱の上部側に浮上支持された除振テーブルとを有し、
前記除振テーブルを前記中間支持体に対して支持する前記一対の永久磁石は所定の正のばね定数を有し、前記中間支持体を前記支柱に対して支持する前記浮上中間部材は所定の負のばね定数を有し、
前記一対の永久磁石と前記浮上中間部材とは、前記除振テーブル上に加えられた任意の負荷に対して前記正負のばね定数の絶対値が等しくなるような非線形性を有することを特徴とする除振装置。
A levitation in which an upright L-shaped support is erected with respect to the bottom surface, and an electromagnet or permanent magnet is provided on the surface of the support facing the bottom surface, and a permanent magnet or electromagnet is provided at a position facing the electromagnet or permanent magnet. An intermediate member, an intermediate support coupled to the floating intermediate member, and a vibration isolation table that is levitated and supported on the upper side of the column by a repulsive force of a pair of permanent magnets provided between the intermediate support and the intermediate support Have
The pair of permanent magnets that support the vibration isolation table with respect to the intermediate support have a predetermined positive spring constant, and the floating intermediate member that supports the intermediate support with respect to the support column has a predetermined negative Having a spring constant of
The pair of permanent magnets and the floating intermediate member have nonlinearity such that absolute values of the positive and negative spring constants are equal to an arbitrary load applied on the vibration isolation table. Vibration isolator.
JP2003039770A 2003-02-18 2003-02-18 Vibration isolator Expired - Lifetime JP4157393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039770A JP4157393B2 (en) 2003-02-18 2003-02-18 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039770A JP4157393B2 (en) 2003-02-18 2003-02-18 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2004251317A JP2004251317A (en) 2004-09-09
JP4157393B2 true JP4157393B2 (en) 2008-10-01

Family

ID=33023851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039770A Expired - Lifetime JP4157393B2 (en) 2003-02-18 2003-02-18 Vibration isolator

Country Status (1)

Country Link
JP (1) JP4157393B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328036B1 (en) 2011-08-31 2013-11-13 광주과학기술원 Microscope assembly with vibrational isolation structure
WO2020108156A1 (en) * 2018-11-27 2020-06-04 华中科技大学 Multi-dimensional magnetic negative-stiffness mechanism and multi-dimensional magnetic negative-stiffness damping system composed thereof
CN111677800A (en) * 2020-06-29 2020-09-18 哈尔滨工业大学 Horizontal two-degree-of-freedom electromagnetic vibration isolation device based on positive and negative rigidity parallel connection
CN111677798A (en) * 2020-06-29 2020-09-18 哈尔滨工业大学 Horizontal two-degree-of-freedom electromagnetic vibration isolation device based on magnetic attraction positive and negative stiffness parallel connection

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922114B2 (en) * 2007-09-21 2012-04-25 川崎重工業株式会社 Seismic isolation equipment and semiconductor manufacturing equipment
JP2009256055A (en) * 2008-04-17 2009-11-05 Toshiba Elevator Co Ltd Elevator vibration control device
KR100943346B1 (en) 2008-09-17 2010-02-22 전남대학교산학협력단 Eddy current damper having ionic polymer metal composite
JP5389457B2 (en) * 2009-01-17 2014-01-15 国立大学法人埼玉大学 Rotating sphere wind tunnel test equipment
CN103116249A (en) * 2012-12-12 2013-05-22 清华大学 Negative stiffness system for gravity compensation of micropositioner
KR101624577B1 (en) 2014-10-15 2016-05-26 주식회사 테크노믹스 Shock absorbing bed of ambulance
JP6812738B2 (en) * 2016-10-12 2021-01-13 三菱電機株式会社 Anti-vibration suspension device
CN113787897B (en) * 2021-08-16 2023-10-13 岚图汽车科技有限公司 Magnetic suspension and power assembly supporting device
CN115075642B (en) * 2022-06-24 2023-07-21 福州市规划设计研究院集团有限公司 Magnetic suspension-spring hybrid suspension shock insulation device and installation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201944A (en) * 1985-03-04 1986-09-06 Yoshiro Nakamatsu Magnetic spring
JPH0662247U (en) * 1993-02-08 1994-09-02 鹿島建設株式会社 Actuator for three-dimensional vibration isolation device
JP3566764B2 (en) * 1994-11-15 2004-09-15 デルタ工業株式会社 Magnetic levitation cushion
JPH08270725A (en) * 1995-03-28 1996-10-15 Agency Of Ind Science & Technol Repulsion type magnetic damper, repulsion type magnetic actuator and repulsion type magnetic vibration proof base
JP4421130B2 (en) * 2000-06-30 2010-02-24 独立行政法人科学技術振興機構 Vibration isolation method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328036B1 (en) 2011-08-31 2013-11-13 광주과학기술원 Microscope assembly with vibrational isolation structure
WO2020108156A1 (en) * 2018-11-27 2020-06-04 华中科技大学 Multi-dimensional magnetic negative-stiffness mechanism and multi-dimensional magnetic negative-stiffness damping system composed thereof
US11255406B2 (en) 2018-11-27 2022-02-22 Huazhong University Of Science And Technology Multi-dimensional magnetic negative-stiffness mechanism and multi-dimensional magnetic negative-stiffness vibration isolation system composed thereof
CN111677800A (en) * 2020-06-29 2020-09-18 哈尔滨工业大学 Horizontal two-degree-of-freedom electromagnetic vibration isolation device based on positive and negative rigidity parallel connection
CN111677798A (en) * 2020-06-29 2020-09-18 哈尔滨工业大学 Horizontal two-degree-of-freedom electromagnetic vibration isolation device based on magnetic attraction positive and negative stiffness parallel connection

Also Published As

Publication number Publication date
JP2004251317A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP5166253B2 (en) System and method for actively dampening vibrations
JP4157393B2 (en) Vibration isolator
WO2005026573A1 (en) Method and device for vibration resistance
JP3729888B2 (en) Rigid actuator active vibration isolator
US9429209B2 (en) Magnetically suspended and plane-drove vibration isolator
JP4727151B2 (en) Vibration isolation method and apparatus
JP4421130B2 (en) Vibration isolation method and apparatus
KR100870108B1 (en) Active passive vibration isolator using voice coil motor
Hoque et al. A 3-DOF modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness
JP2001271871A (en) Active vibration control device
JP4421605B2 (en) Vibration isolation method and apparatus
JP2000234646A (en) Vibration control device
JP4219162B2 (en) Active dynamic damper device
JPH08270725A (en) Repulsion type magnetic damper, repulsion type magnetic actuator and repulsion type magnetic vibration proof base
Hoque et al. Application of feedforward control to a vibration isolation system using negative stiffness suspension
JPWO2007007580A1 (en) Vibration isolator and vibration isolation method
Hoque et al. Magnetic levitation technique for active vibration control
JPH03219141A (en) Active damping base
JPH0674297A (en) Electromagnetic actuator
Qian et al. Design and optimization of Lorentz motors in a precision active isolator
Sato et al. A novel single degree-of-freedom active vibration isolation system
JPH0642582A (en) Damping device
Hoque et al. A Modular-Type Three-Axis Vibration Isolation System Using Negative Stiffness
JPH06294444A (en) Vibration resisting device
JPH04262145A (en) Active vibration isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term