WO2007004449A1 - 化成処理方法、化成処理剤、及び化成処理部材 - Google Patents

化成処理方法、化成処理剤、及び化成処理部材 Download PDF

Info

Publication number
WO2007004449A1
WO2007004449A1 PCT/JP2006/312642 JP2006312642W WO2007004449A1 WO 2007004449 A1 WO2007004449 A1 WO 2007004449A1 JP 2006312642 W JP2006312642 W JP 2006312642W WO 2007004449 A1 WO2007004449 A1 WO 2007004449A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
conversion treatment
zirconium
less
group
Prior art date
Application number
PCT/JP2006/312642
Other languages
English (en)
French (fr)
Inventor
Mitsuo Shinomiya
Katsutoshi Ando
Yasuhito Murai
Original Assignee
Honda Motor Co., Ltd.
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd., Nippon Paint Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to CA2613639A priority Critical patent/CA2613639C/en
Priority to CN2006800233607A priority patent/CN101208460B/zh
Priority to EP06767259A priority patent/EP1900846B1/en
Priority to US11/922,941 priority patent/US20090090889A1/en
Publication of WO2007004449A1 publication Critical patent/WO2007004449A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • Chemical conversion treatment method Chemical conversion treatment method, chemical conversion treatment agent, and chemical conversion treatment member
  • the present invention relates to a chemical conversion treatment method, and in particular, a chemical conversion treatment method suitable for pre-coating treatment of general industrial products, particularly automobile bodies, a chemical conversion treatment agent that can be used in this chemical conversion treatment method, and a chemical conversion treatment method. It relates to the formed chemical conversion treatment member.
  • an automobile body has been constructed based on a metal structure such as a bare steel material, a mild steel plate such as a zinc-plated steel plate, or aluminum.
  • the surface treatment technology includes zinc phosphate treatment, and the corrosion resistance and adhesion of coating are ensured by depositing a zinc phosphate film on the surface of the material (see Patent Document 1).
  • Metal structures differ in required properties such as strength and elongation depending on the body part to be applied. For example, there are various types of strengths ranging from 270 MPa class to 1500 MPa class or more. Of these, generally, a steel plate of 440 MPa or more is called a high-tensile steel plate, and a steel plate of less than 440 MPa is called a mild steel plate.
  • the composition and manufacturing method of the metal structures differ depending on the required characteristics.
  • the amount of Si component increases, the etchability of the surface of the material deteriorates, and the conventional phosphine tan treatment technology causes variations in the depositability of the phosphine phosphide film, ensuring the corrosion resistance and adhesion of the coating film. Not easy.
  • Patent Document 2 discloses a chemical conversion treatment method having the following configuration. That is, this chemical conversion treatment method is a chemical conversion treatment method in which a metal structure is treated with a chemical conversion treatment agent to form a chemical conversion film, and the chemical conversion treatment agent is an alkoxysilane containing zirconium, fluorine, and an amino group. And an alkoxysilane containing a hydroxyl group.
  • dinoleconium acts as a film forming component of the chemical conversion film
  • fluorine acts as an etchant for the metal structure, whereby the corrosion resistance and adhesion of the metal structure can be improved. Furthermore, the adhesion between them can be improved by the action of the alkoxysilane containing an amino group on both the chemical conversion film and the coating film formed thereafter.
  • Patent Document 1 JP-A-10-204649
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-218070
  • a chemical conversion treatment film capable of forming a chemical conversion treatment film capable of obtaining a sufficient base hiding property, coating film adhesion, and corrosion resistance can be formed.
  • No processing method has been established so far. Therefore, it is very useful to establish such a chemical conversion treatment method for, for example, automobile bodies and parts for automobiles composed of these materials.
  • the present invention has been made in view of the problems as described above, and the object thereof is to obtain sufficient substrate hiding, coating adhesion, and corrosion resistance on any metal structure surface. It is intended to provide a chemical conversion treatment method capable of forming a chemical conversion treatment film that can be formed, a chemical conversion treatment agent that can be used in this chemical conversion treatment method, and a chemical conversion treatment member formed by this chemical conversion treatment method.
  • the present inventors have intensively studied in view of the above problems. As a result, in addition to zirconium, fluorine, and alkoxysilanes containing amino groups, alkoxy containing hydroxyl groups It has been found that the above-mentioned problems can be solved by using a specific chemical conversion treatment agent further containing silane, and the present invention has been completed. More specifically, the present invention provides the following.
  • a chemical conversion treatment method for forming a chemical conversion film by treating a metal structure with a chemical conversion treatment agent wherein the chemical conversion treatment agent comprises zirconium, fluorine, and an alkoxysilane containing an amino group. And an alkoxysilane containing a hydroxyl group, in the chemical conversion treatment agent
  • the zirconium content is in the range of lOOppm to 700ppm in terms of metal, and the amino group-containing alkoxysilane content is 50ppm to 500ppm in terms of solid content.
  • the chemical conversion treatment method wherein the molar ratio of the fluorine to the zirconium is 3.5 or more and 7.0 or less, and the pH of the chemical conversion treatment agent is 2.8 or more and 4.5 or less.
  • R represents an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • R represents an alkylene group having carbon numbers:! To 6;
  • Y represents a darconamide group or a formula RRN;
  • R is a hydroxyalkyl group having 1 to 6 carbon atoms or 1 to 6 carbon atoms.
  • R represents a hydroxyalkyl group having 1 to 6 carbon atoms.
  • a chemical conversion treatment agent comprising dinoleconium, fluorine, an alkoxysilane containing an amino group, and an alkoxysilane containing a hydroxyl group, wherein the zirconium content is lOOppm or more and 700ppm in terms of metal
  • the content of the amino group-containing alkoxysilane is from 50 ppm to 500 ppm in terms of solid content
  • the content of the alkoxysilane containing the hydroxyl group is from 1 Oppm to lOO ppm in terms of solid content
  • the chemical conversion treating agent wherein the molar ratio of fluorine to zirconium is 3.5 or more and 7.0 or less, and the pH is 2.8 or more and 4.5 or less.
  • cold-rolled steel plates soft steel plates, high-tensile steel plates
  • hot-rolled steel plates soft steel plates, high-tensile steel plates
  • galvanized steel plates aluminum-plated steel plates, etc., aluminum plates, etc.
  • An agent and a chemical conversion treatment member formed by this chemical conversion treatment method can be provided.
  • the chemical conversion treatment member having the desired characteristics can secure a sufficient film amount and a sufficient substrate. It becomes possible to provide it while obtaining concealability and coating film adhesion. In addition, it is possible to easily form a film at the edge of the material, and it is possible to prevent the occurrence of red wrinkles that were conventionally concerned about the exposed parts of the iron base due to plating cracks and scratches during molding. .
  • the present invention relates to a chemical conversion treatment method for forming a chemical conversion film by treating a metal structure with a chemical conversion treatment agent, wherein the chemical conversion treatment agent comprises zirconium, fluorine, an alkoxysilane containing an amino group, and a hydroxyl group. And a chemical conversion treatment agent containing an alkoxysilane containing is there.
  • Zirconium contained in the chemical conversion treatment agent is a chemical film forming component.
  • a chemical conversion film containing dinoleconium By forming a chemical conversion film containing dinoleconium on the metal structure, the corrosion resistance and wear resistance of the base material can be improved.
  • the metal ions eluted in the chemical conversion treatment agent are dissolved in the ZrF 2_ by the dissolution reaction of the metal constituting the metal structure.
  • the pH at the interface also rises when the fluorine is extracted.
  • the chemical conversion treatment agent used in the present invention is a reactive chemical conversion treatment agent, it can be used for immersion treatment of metal structures having complicated shapes. Moreover, since a chemical conversion film firmly attached to the metal structure can be obtained by a chemical reaction, it can be washed with water after the treatment.
  • the supply source of zirconium is not particularly limited.
  • K ZrF K ZrF
  • Soluble fluorozirconate such as F, zirconium fluoride, zirconium oxide, dinitrate
  • the content of zirconium contained in the chemical conversion treatment agent used in the present invention is in the range of lOOppm or more and 700ppm or less in terms of metal. If it is less than lOOppm, a sufficient amount of film cannot be obtained on the metal structure. On the other hand, if it exceeds 700ppm, no further effect can be expected, which is economically disadvantageous.
  • This content is more preferably 200 ppm or more and 550 ppm or less in terms of metal.
  • Fluorine contained in the chemical conversion treatment agent used in the present invention plays a role as an etching agent for metal structures and a complexing agent for zirconium.
  • the source of fluorine is not particularly limited, but examples thereof include hydrofluoric acid, ammonium fluoride, and fluorine. There may be mentioned foods such as borohydride, ammonium hydrogen fluoride, sodium fluoride, sodium hydrogen fluoride and the like. It is also possible to use a complex fluoride as a supply source, for example, hexafluorosilicate, specifically, key hydrofluoric acid, zinc key hydrofluoride, manganese key hydrofluoride, magnesium key hydrofluorate. And key hydrofluoric acid nickel, key iron hydrofluoride, key calcium hydrofluoride, and the like.
  • the content of fluorine contained in the chemical conversion treatment agent used in the present invention is in a range where the molar ratio of fluorine to zirconium is 3.5 or more and 7.0 or less. If the molar ratio of fluorine to zirconium is less than 3.5, the solution may become unstable and precipitation may occur. On the other hand, if it exceeds 7.0, the zirconium fluoride complex will be stabilized and the etching power will be increased. Decreases, and film formation is not sufficiently performed, which is inconvenient. This molar ratio is more preferably 3.8 or more and 7.0 or less.
  • the alkoxysilane containing an amino group contained in the chemical conversion treatment agent used in the present invention has at least one alkyl chain in the molecule, at least one alkyl chain has at least one amino group, and
  • the compound is a functional group alkoxy group bonded to the remaining bond of the silicon. Since the alkoxysilane containing an amino group acts on both the chemical conversion film and the coating film formed thereafter, it is possible to improve the adhesion between the two.
  • the alkoxysilane containing an amino group contained in the chemical conversion film forms a chemical bond not only in the metal structure but also in the coating film formed thereafter, the mutual adhesion is improved. It is considered to have an action.
  • the alkoxysilane containing an amino group is not particularly limited.
  • KBM-602, KBM-603, KBE-603, KBM-903, KBE-9103, KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.), XS1003 (Chisso) are commercially available as alkoxysilanes containing amino groups. Etc.) can be used as they are.
  • 3- Aminopropyltriethoxysilane (APS-S) and 3-aminopropyltrimethoxysilane are preferred.
  • the content of the alkoxysilane containing an amino group contained in the chemical conversion treatment agent used in the present invention is preferably in the range of 50 ppm or more and 500 ppm or less in terms of solid content concentration. If the content is less than 50 ppm, sufficient coating film adhesion may not be obtained. On the other hand, if it exceeds 500 ppm, no further effect can be expected, which is economically disadvantageous.
  • This content is more preferably in the range of 15 Oppm or more and 250 ppm or less, more preferably from 10 ppm to 300 ppm in terms of solid content.
  • the alkoxysilane containing a hydroxyl group contained in the chemical conversion treatment agent used in the present invention has at least one alkyl chain in the molecule, and at least one alkyl chain has at least one hydroxyl group, and A compound in which the functional group bonded to the remaining bond of the cage is an alkoxy group. Since the alkoxysilane containing a hydroxyl group acts on both the chemical conversion film and the coating film formed thereafter, the adhesion between the two can be improved.
  • the alkoxysilane containing a hydroxyl group contained in the chemical conversion treatment agent used in the present invention is preferably nitrogen-containing (for example, an amino group or an amide group).
  • alkoxysilane containing a hydroxyl group contained in the chemical conversion treatment agent used in the present invention can be represented by the following general formula (1).
  • R represents an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • R represents an alkylene group having carbon numbers:! To 6;
  • Y represents a darconamide group or a formula RRN;
  • R is a hydroxyalkyl group having 1 to 6 carbon atoms or 1 to 6 carbon atoms.
  • R represents a hydroxyalkyl group having 1 to 6 carbon atoms.
  • the alkoxysilane containing a hydroxyl group is not particularly limited.
  • Arco containing a hydroxyl group contained in the chemical conversion treatment agent used in the present invention The content is preferably in the range of lOppm or more and lOOppm or less in terms of solid content concentration. If the content is less than lOppm, sufficient coating adhesion may not be obtained. On the other hand, if it exceeds lOOppm, no further effect can be expected, which is economically disadvantageous. This content is more preferably in the range of 40 ppm to 60 ppm, more preferably 20 ppm to 80 ppm in terms of solid content concentration.
  • the ⁇ of the chemical conversion treatment agent used in the present invention is preferably 2.8 or more and 4.5 or less. If the pH is less than 2.8, etching may be excessive and sufficient film formation may not be possible, or the film may become uneven and adversely affect the appearance of the coating. On the other hand, if it exceeds 4.5, etching is insufficient and a good film cannot be obtained. More preferably, this pH is 2.8 or more and 4.2 or less. 2. More preferably, the pH is in the range of 8 or more and 3.7 or less.
  • the pH of the chemical conversion treatment agent can be adjusted using an acidic compound such as nitric acid or sulfuric acid and a basic compound such as sodium hydroxide, potassium hydroxide or ammonia.
  • an acidic compound such as nitric acid or sulfuric acid
  • a basic compound such as sodium hydroxide, potassium hydroxide or ammonia.
  • the chemical conversion treatment agent used in the present invention further includes at least one adhesion selected from the group consisting of iron ions, magnesium ions, zinc ions, calcium ions, aluminum ions, gallium ions, indium ions, and copper ions, and It is preferable to contain a corrosion resistance imparting agent.
  • a chemical conversion film having better adhesion and corrosion resistance can be obtained by including an adhesion and corrosion resistance imparting agent.
  • the content of the adhesion and corrosion resistance imparting agent optionally added to the chemical conversion treatment agent used in the present invention is preferably in the range of 1 ppm to 5000 ppm. If the blending amount is less than lpp m, the effect of imparting sufficient adhesion and corrosion resistance cannot be obtained, which is preferable. On the other hand, if it exceeds 5000 ppm, further improvement of the effect is not observed and it is economically unsatisfactory, and adhesion after coating may be reduced. More preferably, it is in the range of 25 ppm or more and lOOOppm or less.
  • the chemical conversion treatment agent used in the present invention may be used in combination with optional components as necessary.
  • examples of components that can be used include silica. By adding such components, it is possible to improve the corrosion resistance after painting.
  • the chemical conversion treatment agent does not substantially contain phosphate ions.
  • substantially free of phosphate ions means that phosphate ions are not contained so much as to act as a component in the chemical conversion treatment agent.
  • phosphorus generated when using a zinc phosphate treatment agent is used. Generation of sludge such as iron oxide and zinc phosphate can be prevented.
  • the chemical conversion treatment method of the present invention can be carried out by bringing the chemical conversion treatment agent and the surface of the metal structure into contact with each other under ordinary treatment conditions, which are not particularly limited.
  • a dipping method, a spray method, a roll coating method, and the like can be given.
  • the treatment temperature in the chemical conversion treatment is preferably in the range of 20 ° C. or more and 70 ° C. or less. Below 20 ° C, there is a possibility that sufficient film formation may not be performed, and there are inconveniences such as the need for temperature adjustment in summer. Even if it is above 70 ° C, there is no particular effect Economical It is only disadvantageous.
  • the treatment temperature is more preferably in the range of 30 ° C or more and 50 ° C or less.
  • the formation time in the conversion treatment is preferably in the range of 5 seconds to 1100 seconds. If it is 5 seconds or less, it is inconvenient because a sufficient film amount cannot be obtained, and if it is 1100 seconds or more, it is meaningless because an effect cannot be obtained even if the film amount is increased beyond this.
  • the formation time is more preferably in the range of 30 seconds to 120 seconds.
  • the chemical conversion treatment method of the present invention does not require a surface conditioning treatment as compared with a treatment using a zinc phosphate chemical conversion treatment agent that has been put into practical use. For this reason, it becomes possible to perform the chemical conversion treatment of the metal structure with fewer steps.
  • the steel sheet includes any of a cold-rolled steel sheet or a hot-rolled steel sheet, and a mild steel sheet or a high-tensile steel sheet, and is not particularly limited.
  • an iron-based substrate, an aluminum-based substrate, and a zinc-based substrate are not particularly limited.
  • An iron-based substrate is a substrate made of iron and Z or an alloy thereof
  • an aluminum substrate is a substrate made of aluminum and Z or an alloy thereof
  • a zinc-based substrate is a substrate made of zinc and / or an alloy thereof. means.
  • a sufficient amount of the ginolecon coating film can be secured even for, for example, an aluminum-plated steel sheet after hot stamping, which has been a problem in the past. Sufficient paint adhesion can be obtained even with other metal structures.
  • the chemical conversion treatment method of the present invention is simultaneously applied to a metal structure including a plurality of metal substrates such as an iron-based substrate, an aluminum-based substrate, and a zinc-based substrate.
  • a metal structure including a plurality of metal substrates such as an iron-based substrate, an aluminum-based substrate, and a zinc-based substrate.
  • Auto bodies and parts for automobiles are composed of various metal structures such as iron, zinc, and aluminum.
  • such automobile bodies and parts for automobiles can be used.
  • a good chemical conversion treatment can be performed at a time.
  • the iron-based substrate used as the metal structure of the present invention is not particularly limited, and examples thereof include a cold-rolled steel plate and a hot-rolled steel plate.
  • the aluminum base material is not particularly limited, and examples thereof include a 5000 series anodremium alloy, a 6000 series anoreminum alloy, an aluminum-plated steel sheet such as an aluminum-based electroplating, a fusion-bonding, and a vapor-deposition-bonding. be able to.
  • a zinc-type base material For example, a zinc plating steel plate, a zinc-nickenore steel plate, a zinc-iron plating steel plate, a zinc-chrome plating steel plate, a zinc-aluminum plating steel plate, zinc-titanium Examples include zinc-based steel plating, zinc-magnesium-plated steel plate, zinc-manganese-plated steel plate, etc. . There are various grades of high-strength steel sheets depending on the strength and manufacturing method. For example, JSC440J, 440P, 440W, 590R, 590T, 590Y, 780mm, 780mm, 980mm, 1180Y can be cited as the strength. [0052] [Average amount of conversion coating]
  • the average coating amount of the chemical conversion film obtained by the chemical conversion treatment method of the present invention is preferably in the range of 0.1 mg / m 2 or more and 500 mgZm 2 or less in terms of the total amount of metals contained in the chemical conversion treatment agent. If it is less than lmgZm 2 , a uniform chemical conversion film cannot be obtained, and good adhesion may not be obtained. On the other hand, if it exceeds 500 mg / m 2 , no further effect can be obtained, which is economically disadvantageous.
  • the average coating amount is more preferably in the range of 5 mgZm 2 or more and 15 Omg / m 2 or less.
  • a sufficient amount of zircon film can be secured even for an aluminum-plated steel sheet after hot stamping, which has been a problem in the past. Even in metal structures such as steel plates, sufficient paint adhesion can be obtained. For this reason, even when a chemical structure is simultaneously applied to a metal structure composed of a plurality of metal substrates including an aluminum-plated steel sheet, sufficient coating adhesion can be obtained. According to the chemical conversion treatment method of the present invention, it is possible to secure 10 mg / m 2 or more as an average coating amount of a chemical conversion coating even for, for example, an aluminum plated steel sheet.
  • the coating film formed on the chemical conversion film is, for example, a conventionally known paint such as a cationic electrodeposition paint, a solvent paint, an aqueous paint, or a powder paint. Mention may be made of the coating film to be formed.
  • Cationic electrodeposition coatings are made of a resin having functional groups that are reactive or compatible with amino groups and hydroxyl groups. Therefore, alkoxysilanes containing amino groups and hydroxyl groups contained in chemical conversion treatment agents are used. This is because the adhesion between the electrodeposition coating film and the chemical conversion film can be further enhanced by the action of silane.
  • the cationic electrodeposition coating is not particularly limited, and examples thereof include known cationic electrodeposition coatings composed of an aminated epoxy resin, an aminated acrylic resin, a sulfonium-modified epoxy resin, and the like.
  • the metal structure of the present invention is formed on the surface of the metal structure before performing the chemical conversion treatment.
  • a water washing treatment is performed to remove oil, dirt and dirt that adheres to the surface of the metal structure and is usually 30 ° C to 55 ° C with a degreasing agent such as a phosphorus-free and nitrogen-free degreasing solution. Immersion is performed for several minutes at ° C. If desired, a preliminary degreasing process can be performed before the degreasing process.
  • the water washing treatment after the degreasing treatment is performed by spraying at least once with a large amount of washing water in order to wash the degreasing agent with water.
  • the chemical conversion treatment member on which the chemical conversion film is formed by the chemical conversion treatment method of the present invention is preferably subjected to a water washing treatment before forming a coating film to be subsequently applied.
  • the water washing treatment after the chemical conversion treatment is performed at least once in order not to adversely affect the adhesion and corrosion resistance after the various coatings. In this case, it is appropriate that the final washing is performed with pure water.
  • washing can be carried out by combining these methods, which may be either spray water washing or immersion water washing. After the chemical conversion treatment and the water washing treatment, it is dried as necessary according to a known method, and then a coating film is formed by various coatings.
  • Zirconium nitrate as a zirconium (manufactured by Nippon Light Metal Co., Ltd.), hydrogen fluoride as a fluorine (manufactured by Wako Pure Chemical Industries, Ltd.), “KBM-603 (trade name)” as an alkoxysilane containing an amino group (N— 2 (aminoethyl) 3 —Aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), “SIB114.0.0 (trade name)” (bis (2-hydroxyethyl) —3-aminopropyltriethoxy) as an alkoxysilane containing a hydroxyl group Silane (manufactured by GELEST) was used to prepare a chemical conversion treatment agent having a zirconium concentration of 500 ppm, a fluorine concentration of 420 ppm, an alkoxysilane concentration of 200 ppm containing amino groups as
  • Each metal structure subjected to chemical conversion treatment was sprayed with tap water for 30 seconds. Next, spraying was performed for 10 seconds with ion-exchanged water.
  • Cationic electrodeposition paint “Power Nitas 150 Gray (trade name)” (made by Nippon Paint Co., Ltd.) is applied to each wet metal structure that has been subjected to water washing after chemical conversion treatment. A coating film was formed. Thereafter, each metal structure was washed with water and then baked by heating at 170 ° C for 25 minutes to form an electrodeposition coating film. The film thickness after baking and drying of the formed electrodeposition coating film was 25 ⁇ m.
  • the top coat “Super Lac M-95HB YR—511P (trade name)” (manufactured by Nippon Paint Co., Ltd.) is spray-coated on the intermediate coat, and baked at 140 ° C for 20 minutes to form the top coat. Formed. The film thickness of the formed top coat film after baking and drying was 15 zm. In this way, a test plate was obtained. Table 1 shows the measurement results of the test plates obtained.
  • test plate was obtained in the same procedure as in Example 1 except that the alkoxysilane containing a hydroxyl group was not added to the chemical conversion treatment agent. Table 1 shows the measurement results of the test plates obtained.
  • 5% NaCl aqueous solution kept at 35 ° C was continuously sprayed for 2 hours.
  • the chemical conversion treatment member obtained by the present invention has sufficient base hiding, coating adhesion, and corrosion resistance on any metal structure surface. It is preferably used in fields where painting treatments such as vehicle outer panels such as car bodies, various parts, container outer surfaces, and coil coating are subsequently applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

 いずれの金属構造物表面上においても、十分な素地隠蔽性、塗膜密着性、及び耐食性を得ることができる化成処理皮膜を形成できる化成処理方法を提供する。  金属構造物を化成処理剤で処理して化成皮膜を形成する化成処理方法であって、前記化成処理剤を、ジルコニウムと、フッ素と、アミノ基を含有するアルコキシシランと、水酸基を含有するアルコキシシランと、を含むものとし、前記ジルコニウムの含有量を金属換算で100ppm以上700ppm以下とし、前記アミノ基含有アルコキシシランの含有量を固形分濃度で50ppm以上500ppm以下とし、前記ジルコニウムに対する前記フッ素のモル比を3.5以上7.0以下とし、pHを2.8以上4.5以下とした。

Description

明 細 書
化成処理方法、化成処理剤、及び化成処理部材
技術分野
[0001] 本発明は、化成処理方法に関し、特に、一般工業品とりわけ自動車車体の塗装前 処理に適した化成処理方法、この化成処理方法に用いることができる化成処理剤、 及びこの化成処理方法により形成された化成処理部材に関する。
背景技術
[0002] 従来から、 自動車車体は、鉄裸材、亜鉛めつき鋼板等の軟鋼板やアルミニウム等の 金属構造物をベースに構築されている。その表面処理技術としては、リン酸亜鉛処 理が挙げられ、リン酸亜鉛皮膜を素材表面に析出させることにより、塗装の耐食性及 び密着性が確保されている(特許文献 1参照)。
[0003] ところが、最近では、 自動車車体の軽量化に伴い、車体に用いられる金属構造物 の素材が多種多様化し、特に、高張力鋼板の適用が急増している。金属構造物は、 適用される車体部位によって、求められる強度、伸び等の特性が異なり、例えば、強 度としては、 270MPaクラスから 1500MPaクラス以上の様々な種類が存在している 。尚、このうち一般に、 440MPa以上の鋼板は高張力鋼板と呼ばれ、 440MPa未満 は軟鋼板と呼ばれている。
[0004] このような金属構造物の素材の多種多様化に伴レ、、その必要とされる特性に応じて 、金属構造物の組成や製法が異なったものとなる。特に Si成分量の増加に伴い素材 表面のエッチング性が悪くなり、従来のリン酸亜鈴処理技術ではリン酸亜鈴皮膜の析 出性にバラツキを生じ、塗膜の耐食性や密着性を確保するのが容易でない。更に、 強度が lOOOMPaを超える超高張力鋼板においては、通常のコールドスタンプ製法 では成型寸法の精度に欠けることから、成型後に高周波焼入れ等の加熱焼入れを 行ったり、あるいは、成型時に加熱するホットスタンプ製法等が用いられたりするため 、塗膜の密着性や耐食性の確保がより困難となる。
[0005] そこで、非晶質皮膜析出系の表面処理技術が検討されてレ、る。例えば、特許文献 2には、以下の構成からなる化成処理方法が開示されている。 即ち、この化成処理方法は、金属構造物を化成処理剤で処理して化成皮膜を形成 する化成処理方法であって、前記化成処理剤を、ジルコニウムと、フッ素と、アミノ基 を含有するアルコキシシランと、水酸基を含有するアルコキシシランと、を含むものと する。
この化成処理方法によれば、ジノレコニゥムは化成皮膜の皮膜形成成分として、フッ 素は金属構造物に対するエッチング剤として、それぞれ作用することにより、金属構 造物の耐食性や密着性を向上させることができる。更に、アミノ基を含有するアルコキ シシランが化成皮膜と、その後に形成される塗膜の双方に作用することにより、両者 の密着性を向上させることができる。
特許文献 1 :特開平 10— 204649号公報
特許文献 2:特開 2004— 218070号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 2のジルコン皮膜系の表面処理方法では、例えば高張力 鋼板に対する表面処理にっレ、て、検討されてレ、なレ、。
[0007] このように、例えば、高張力鋼版を含む、いずれの金属構造物においても、十分な 素地隠蔽性、塗膜密着性、及び耐食性を得ることができる化成処理皮膜を形成でき る化成処理方法は、これまでのところ確立されていない。従って、これらの素材から構 成される例えば自動車車体や自動車用部品等において、このような化成処理方法を 確立することは非常に有益である。
[0008] 本発明は、以上のような課題に鑑みてなされたものであり、その目的は、いずれの 金属構造物表面上においても、十分な素地隠蔽性、塗膜密着性、及び耐食性を得 ることができる化成処理皮膜を形成できる化成処理方法、この化成処理方法に用い ることができる化成処理剤、及び、この化成処理方法により形成された化成処理部材 を提供することにある。
課題を解決するための手段
[0009] 本発明者らは上述の課題に鑑み鋭意研究した。その結果、ジルコニウムと、フッ素 と、アミノ基を含有するアルコキシシランと、に加えて、水酸基を含有するアルコキシ シランを更に含む、特定の化成処理剤を用いることにより、上記課題を解決できること を見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなもの を提供する。
[0010] (1) 金属構造物を化成処理剤で処理して化成皮膜を形成する化成処理方法であ つて、前記化成処理剤を、ジルコニウムと、フッ素と、アミノ基を含有するアルコキシシ ランと、水酸基を含有するアルコキシシランと、を含むものとし、前記化成処理剤中の
、前記ジルコニウムの含有量を金属換算で lOOppm以上 700ppm以下とし、前記ァ ミノ基含有アルコキシシランの含有量を固形分濃度で 50ppm以上 500ppm以下とし
、前記ジルコニウムに対する前記フッ素のモル比を 3. 5以上 7. 0以下とし、前記化成 処理剤の pHを 2. 8以上 4. 5以下とする化成処理方法。
[0011] (2) 前記化成処理剤中の前記水酸基を含有するアルコキシシランの含有量を、 固形分濃度で 1 Oppm以上 1 OOppm以下とする( 1 )記載の化成処理方法。
[0012] (3) 前記水酸基を含有するアルコキシシランは、下記一般式(1)で表される(1)又 は(2)記載の化成処理方法。
[化 1]
Figure imgf000004_0001
OR1
(式中 Rは、炭素数 1〜4のアルキル基を表し、同一若しくは異なっていてもよレ、。 R は、炭素数:!〜 6のアルキレン基を表す。 Yは、ダルコナミド基又は式 R R N—で表
2 3 4 されるアミノ基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基又は炭素数 1〜6
3
のアルキル基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基を表す。) [0013] (4) (1)から(3)いずれか記載の化成処理方法により化成皮膜が形成された化成 処理部材。
[0014] (5) ジノレコニゥムと、フッ素と、アミノ基を含有するアルコキシシランと、水酸基を含 有するアルコキシシランと、を含む化成処理剤であって、前記ジルコニウムの含有量 は金属換算で lOOppm以上 700ppm以下であり、前記アミノ基含有アルコキシシラ ンの含有量は固形分濃度で 50ppm以上 500ppm以下であり、前記水酸基を含有す るアルコキシシランの含有量は固形分濃度で lOppm以上 lOOppm以下であり、前記 ジルコニウムに対する前記フッ素のモル比は 3. 5以上 7. 0以下であり、 pHは 2. 8以 上 4. 5以下である化成処理剤。
発明の効果
[0015] 本発明によれば、例えば、冷延鋼板 (軟鋼板、高張力鋼板)、熱延鋼板 (軟鋼板、 高張力鋼板)、亜鉛めつき鋼板、アルミニウムめっき鋼板等の鋼板、アルミニウム板等 のいずれの金属構造物表面上においても、十分な素地隠蔽性、塗膜密着性、及び 耐食性を得ることができる化成処理皮膜を形成できる化成処理方法、この化成処理 方法に用いることができる化成処理剤、及び、この化成処理方法により形成された化 成処理部材を提供することができる。
[0016] このため、本発明によれば、金属構造物の組成の多種多様化にも対応できるため、 所望の特性を備える化成処理部材を、十分な皮膜量を確保し、且つ、十分な素地隠 蔽性及び塗膜密着性を得つつ、提供することができるようになる。また、素材エッジ部 においても容易に皮膜を形成できるうえ、成形時のめっき割れ、傷付き等により、従 来、鉄素地が露出する部分について懸念されていた赤鲭発生を防止することができ る。
発明を実施するための形態
[0017] 以下、本発明の実施形態について説明する。
[0018] <化成処理剤 >
本発明は、金属構造物を化成処理剤で処理して化成皮膜を形成する化成処理方 法であって、前記化成処理剤を、ジルコニウムと、フッ素と、アミノ基を含有するアルコ キシシランと、水酸基を含有するアルコキシシランと、を含む化成処理剤とするもので ある。
[0019] [ジルコニウム成分]
前記化成処理剤に含まれるジルコニウムは、化成皮膜形成成分である。金属構造 物にジノレコニゥムを含む化成皮膜が形成されることにより、基材の耐食性ゃ耐磨耗 性を向上させることができる。
[0020] 本発明に用いられるジノレコニゥムを含有する化成処理剤により金属構造物の表面 処理を行うと、金属構造物を構成する金属の溶解反応により、化成処理剤中に溶出 した金属イオンが ZrF 2_のフッ素を引き抜くことにより、また、界面の pHが上昇するこ
6
とにより、ジルコニウムの水酸化物又は酸化物が生成される。そして、このジルコニゥ ムの水酸化物又は酸化物力 金属構造物の表面に析出していると考えられる。本発 明に用いられる化成処理剤は反応型化成処理剤であるため、複雑な形状を有する 金属構造物の浸漬処理にも用いることが可能である。また、化学反応により強固に金 属構造物に付着した化成皮膜を得ることができるため、処理後に水洗を行うことも可 能である。
[0021] ジルコニウムの供給源としては特に限定されるものではないが、例えば、 K ZrF等
2 6 のアルカリ金属フルォロジルコネート、(NH ) ZrF等のフルォロジルコネート、 H Zr
4 2 6 2
F等の可溶性フルォロジルコネート、フッ化ジルコニウム、酸化ジルコニウム、硝酸ジ
6
ルコニル、炭酸ジルコニウム、等を挙げること力 Sできる。
[0022] [ジルコニウムの含有量]
本発明に用いられる化成処理剤に含まれるジルコニウムの含有量は、金属換算で lOOppm以上 700ppm以下の範囲内である。 lOOppm未満であると、金属構造物上 に十分な皮膜量が得られず、一方で 700ppmを超えると、それ以上の効果は望めず 経済的に不利となる。この含有量は、金属換算で 200ppm以上 550ppm以下である ことがより好ましい。
[0023] [フッ素成分]
本発明に用いられる化成処理剤に含まれるフッ素は、金属構造物のエッチング剤 及びジルコニウムの錯化剤としての役割を果たすものである。フッ素の供給源として は特に限定されるものではないが、例えば、フッ化水素酸、フッ化アンモニゥム、フッ 化ホウ素酸、フッ化水素アンモニゥム、フッ化ナトリウム、フッ化水素ナトリウム等のフッ ィ匕物を挙げることができる。また、錯フッ化物を供給源とすることも可能であり、例えば 、へキサフルォロケィ酸塩、具体的には、ケィフッ化水素酸、ケィフッ化水素酸亜鉛、 ケィフッ化水素酸マンガン、ケィフッ化水素酸マグネシウム、ケィフッ化水素酸ニッケ ル、ケィフッ化水素酸鉄、ケィフッ化水素酸カルシウム等を挙げることができる。
[0024] [フッ素成分の含有量]
本発明に用いられる化成処理剤に含まれるフッ素の含有量としては、ジルコニウム に対するフッ素のモル比を、 3. 5以上 7. 0以下とする範囲である。ジルコニウムに対 するフッ素のモル比が 3. 5未満であると、溶液が不安定となり沈殿が生じる場合があ り、一方で、 7. 0を超えると、ジルコニウムフッ素錯体として安定化し、かつエッチング 力が低下して十分に皮膜形成が行われないので不都合となる。このモル比は、 3. 8 以上 7. 0以下であることがより好ましい。
[0025] [アミノ基を含有するアルコキシシラン]
本発明に用いられる化成処理剤に含まれるアミノ基を含有するアルコキシシランは 、分子中に少なくとも 1つのアルキル鎖を有し、少なくともその一つのアルキル鎖は、 少なくとも一つのアミノ基を有し、かつ、ケィ素の残りの結合手に結合している官能基 力 アルコキシ基である化合物である。アミノ基を含有するアルコキシシランは、化成 皮膜と、その後に形成される塗膜の双方に作用するため、両者の密着性を向上する こと力 Sできる。
[0026] このような効果は、アルコキシ基が加水分解して生成するシラノール力 金属構造 物の表面ないしは、ジノレコニゥム皮膜の表面に共有結合的に吸着されるために生じ る。
[0027] また、化成皮膜に含まれるアミノ基を含有するアルコキシシランは、金属構造物の みならず、その後に形成される塗膜にも化学結合を形成するため、相互の密着性を 向上させる作用を有すると考えられる。
[0028] アミノ基を含有するアルコキシシランとしては特に限定されるものではなレ、が、例え ば、 N— 2 (アミノエチル) 3—ァミノプロピルメチルジメトキシシラン、 N_ 2 (アミノエチ ル) 3—ァミノプロピルトリメトキシシラン、 N— 2 (アミノエチル) 3—ァミノプロピルトリエト キシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3—トリエトキシシリノレ _N_ (1, 3_ジメチル一ブチリデン)プロピルァミン、 N—フエ ニル _ 3—ァミノプロビルトリメトキシシラン、 N, N—ビス〔3_ (トリメトキシシリル)プロ ピル〕エチレンジァミン、 3—ァミノプロピルトリクロロシラン等の公知のアルコキシシラ ン等を挙げることができる。また、アミノ基を含有するアルコキシシランとして市販され てレヽる KBM— 602、 KBM— 603、 KBE— 603、 KBM— 903、 KBE— 9103、 KB M— 573 (信越化学工業社製)、 XS1003 (チッソ社製)等をそのまま使用することも 可能である。これらの中では、 N— 2 (アミノエチル) 3—ァミノプロピルトリエトキシシラ ン (APS— L)、 N— 2 (アミノエチル) 3 -ァミノプロピルトリメトキシシラン (APS - L)、 3 -ァミノプロピルトリエトキシシラン(APS— S)、 3—ァミノプロピルトリメトキシシラン が好ましい。
[0029] [アミノ基を含有するアルコキシシランの含有量]
本発明で用いられる化成処理剤に含まれるアミノ基を含有するアルコキシシランの 含有量は、固形分濃度で 50ppm以上 500ppm以下の範囲内であることが好ましい。 含有量が 50ppm未満であると、充分な塗膜密着性を得ることができない場合がある 。一方で、 500ppmを超えても、それ以上の効果は望めず、経済的に不利となる。こ の含有量は、固形分濃度で lOOppm以上 300ppm以下であることがより好ましぐ 15 Oppm以上 250ppm以下の範囲であることが更に好ましい。
[0030] [水酸基を含有するアルコキシシラン]
本発明に用いられる化成処理剤に含まれる水酸基を含有するアルコキシシランは、 分子中に少なくとも 1つのアルキル鎖を有し、少なくともその一つのアルキル鎖は、少 なくとも一つの水酸基を有し、かつ、ケィ素の残りの結合手に結合している官能基が 、アルコキシ基である化合物である。水酸基を含有するアルコキシシランは、化成皮 膜と、その後に形成される塗膜の双方に作用するため、両者の密着性を向上するこ とがでさる。
[0031] このような効果は、アルコキシ基が加水分解して生成するシラノールが、金属構造 物の表面ないしは、ジノレコニゥム皮膜の表面に共有結合的に吸着されるために生じ る。 [0032] また、化成皮膜に含まれる水酸基を含有するアルコキシシランは、金属構造物のみ ならず、その後に形成される塗膜にも作用するため、相互の密着性を向上させる作 用を有すると考えられる。水酸基を含有するアルコキシシランは、特に、カチオン電 着塗料による塗膜に対しても密着性向上の効果を発揮できる。
[0033] なお、本発明に用いられる化成処理剤に含まれる水酸基を含有するアルコキシシ ランは、含窒素(例えば、アミノ基ゃアミド基等)であることが好ましい。
[0034] また、本発明に用いられる化成処理剤に含まれる水酸基を含有するアルコキシシラ ンは、下記一般式(1)で表すことができる。
[0035] [化 2]
Figure imgf000009_0001
OR1
1
(式中 Rは、炭素数 1〜4のアルキル基を表し、同一若しくは異なっていてもよレ、。 R は、炭素数:!〜 6のアルキレン基を表す。 Yは、ダルコナミド基又は式 R R N—で表
2 3 4 されるアミノ基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基又は炭素数 1〜6
3
のアルキル基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基を表す。)
4
[0036] 水酸基を含有するアルコキシシランとしては、特に限定されることはないが、例えば
、ビス(2—ヒドロキシェチル)一3—ァミノプロピルトリエトキシシラン、 N— (ヒドロキシ ェチル)一N—メチルァミノプロピルトリメトキシシラン、及び N— (3—トリエトキシシリ ルプロピル)グノレコナミド等を挙げることができる。
[0037] [水酸基を含有するアルコキシシランの含有量]
本発明で用いられる化成処理剤に含まれる水酸基を含有するアルコ: 含有量は、固形分濃度で lOppm以上 lOOppm以下の範囲内であることが好ましい。 含有量が lOppm未満であると、充分な塗膜密着性を得ることができない場合がある 。一方で、 lOOppmを超えると、それ以上の効果は望めず、経済的にも不利となる。 この含有量は、固形分濃度で 20ppm以上 80ppm以下であることがより好ましぐ 40 ppm以上 60ppm以下の範囲であることが更に好ましい。
[0038] [化成処理剤の pH]
本発明で用いられる化成処理剤の ρΗは、 2. 8以上 4. 5以下であることが好ましレ、 。 pHが 2. 8未満であると、エッチングが過剰となり充分な皮膜形成ができなくなる場 合や、皮膜が不均一となり、塗装外観に悪影響を与える場合がある。一方で、 4. 5を 超えると、エッチングが不充分となり良好な皮膜が得られなレ、。この pHは、 2. 8以上 4. 2以下であることがより好ましぐ 2. 8以上 3. 7以下の範囲であることが更に好まし い。
[0039] なお、化成処理剤の pHは、硝酸、硫酸等の酸性化合物、及び、水酸化ナトリウム、 水酸化カリウム、アンモニア等の塩基性化合物を使用して調整することができる。
[0040] [密着性及び耐食性付与剤]
本発明に用いられる化成処理剤は、更に、鉄イオン、マグネシウムイオン、亜鉛ィォ ン、カルシウムイオン、アルミニウムイオン、ガリウムイオン、インジウムイオン及び銅ィ オンからなる群より選ばれる少なくとも一種の密着性及び耐食性付与剤を含有するこ とが好ましい。本発明においては、密着性及び耐食性付与剤を含有することにより、 より良好な密着性及び耐食性を有する化成皮膜を得ることができる。
[0041] [密着性及び耐食性付与剤の含有量]
本発明に用いられる化成処理剤に任意に添加される密着性及び耐食性付与剤の 含有量は、 lppm以上 5000ppm以下の範囲内であることが好ましレ、。配合量が lpp m未満であると、充分な密着性及び耐食性付与の効果を得ることができず好ましくな レ、。一方で、 5000ppmを超えると、それ以上の効果の向上はみられず経済的に不 禾であり、また、塗装後の密着性が低下する場合もありうる。より好ましくは、 25ppm 以上 lOOOppm以下の範囲である。
[0042] [その他成分] 本発明に用いられる化成処理剤は、上記成分の他に、必要に応じて、任意の成分 を併用するものであってもよい。使用することができる成分としては、シリカ等を挙げる こと力 Sできる。このような成分を添加することで、塗装後耐食性を向上させることが可 能である。
[0043] また、化成処理剤は、実質的にリン酸イオンを含有しないものであることが好ましレヽ 。実質的にリン酸イオンを含まないとは、リン酸イオンが化成処理剤中の成分として作 用するほどに含まれていないことを意味する。実質的にリン酸イオンを含まない化成 処理剤を用いることにより、環境負荷の原因となるリンを実質的に使用することがなく 、また、リン酸亜鉛系処理剤を使用する場合に発生するリン酸鉄、リン酸亜鉛等のよう なスラッジの発生を防止することができる。
[0044] <化成処理方法 >
本発明の化成処理方法は、特に限定されるものではなぐ通常の処理条件によつ て化成処理剤と金属構造物の表面とを接触させることによって行うことができる。例え ば、浸漬法、スプレー法、ロールコート法等を挙げることができる。
[0045] [化成処理条件]
化成処理における処理温度は、 20°C以上 70°C以下の範囲内であることが好ましい 。 20°C以下では、十分な皮膜形成が行われない可能性があり、また、夏場に温度調 整が必要となるなどの不都合があり、 70°C以上にしても、特に効果はな 経済的に 不利となるだけである。この処理温度は、 30°C以上 50°C以下の範囲であることがより 好ましい。
[0046] 化成処理における化成時間は、 5秒以上 1100秒以下の範囲内であることが好まし レ、。 5秒以下では、十分な皮膜量が得られないので不都合であり、 1100秒以上では 、これ以上の皮膜量を増加させても効果が得られないので無意味である。この化成 時間は、 30秒以上 120秒以下の範囲であることがより好ましい。
[0047] 本発明の化成処理方法は、従来から実用化されているリン酸亜鉛系化成処理剤に よる処理と比較して、表面調整処理を行わなくてもよい。このため、より少ない工程で 金属構造物の化成処理を行うことが可能となる。
[0048] [金属構造物] 本発明の化成処理方法において用いられる金属構造物としては、特に限定される ものではないが、例えば、鋼板、アルミニウム板等を挙げることができる。鋼板は、冷 延鋼板又は熱延鋼板、及び軟鋼板又は高張力鋼板のいずれをも含むものであり、特 に限定されず、例えば鉄系基材、アルミニウム系基材、及び、亜鉛系基材等を挙げる ことができる。鉄系基材とは鉄及び Z又はその合金からなる基材、アルミニウム基材と はアルミニウム及び Z又はその合金からなる基材、亜鉛系基材とは亜鉛及び/又は その合金からなる基材を意味する。
[0049] 特に、本発明においては、従来から課題となっていた、例えばホットスタンプ後のァ ルミニゥムめっき鋼板等に対しても、ジノレコン皮膜量を十分に確保することができ、ァ ルミニゥムめっき鋼板等の金属構造物においても十分な塗装密着性を得ることができ る。
[0050] また、本発明の化成処理方法は、鉄系基材、アルミニウム系基材、及び、亜鉛系基 材等の複数の金属基材からなる金属構造物に対しても、同時に適用することができ る。 自動車車体や自動車用部品等は、鉄、亜鉛、アルミニウム等の種々の金属構造 物により構成されているが、本発明の化成処理方法によれば、このような自動車車体 や自動車用部品等に対しても、一回で良好な化成処理を施すことができる。
[0051] 本発明の金属構造物として用いられる鉄系基材としては、特に限定されず、例えば 、冷延鋼板、熱延鋼板等を挙げることができる。また、アルミニウム系基材としては、 特に限定されず、例えば、 5000番系ァノレミニゥム合金、 6000番系ァノレミニゥム合金 、アルミニウム系の電気めつき、溶融めつき、蒸着めつき等のアルミニウムめっき鋼板 等を挙げることができる。また、亜鉛系基材としては、特に限定されず、例えば、亜鉛 めっき鋼板、亜鉛—ニッケノレめつき鋼板、亜鉛—鉄めつき鋼板、亜鉛—クロムめつき 鋼板、亜鉛—アルミニウムめっき鋼板、亜鉛—チタンめつき鋼板、亜鉛—マグネシゥ ムめっき鋼板、亜鉛—マンガンめっき鋼板等の亜鉛系の電気めつき、溶融めつき、蒸 着めつき鋼板等の亜鉛又は亜鉛系合金めつき鋼板等を挙げることができる。高張力 鋼板としては、強度や製法により多種多様なグレードが存在するが、例えば JSC440 J、 440P、 440W、 590R、 590T、 590Y、 780Τ、 780Υ、 980Υ、 1180Y等を挙げ ること力 Sできる。 [0052] [化成皮膜の平均皮膜量]
本発明の化成処理方法により得られる化成皮膜の平均皮膜量は、化成処理剤に 含まれる金属の合計量で、 0. lmg/m2以上 500mgZm2以下の範囲内であること が好ましい。 0. lmgZm2未満であると、均一な化成皮膜が得られず、良好な密着性 を得られない場合があるので好ましくなレ、。一方で、 500mg/m2を超えると、それ以 上の効果は得られず、経済的に不利である。この平均皮膜量は、 5mgZm2以上 15 Omg/m2以下の範囲であることがより好ましい。
[0053] 特に、本発明の化成処理方法においては、従来から課題となっていた、例えばホッ トスタンプ後のアルミニウムめっき鋼板等に対しても、ジルコン皮膜量を十分に確保 することができ、アルミニウムめっき鋼板等の金属構造物においても、十分な塗装密 着性を得ることが可能である。このため、アルミニウムめっき鋼板等を含む複数の金 属基材からなる金属構造物に対して同時に化成処理を施した場合においても、十分 な塗装密着性を得ることができる。本発明の化成処理方法によれば、例えばアルミ二 ゥムめっき鋼板に対しても、化成皮膜の平均皮膜量として 10mg/m2以上を確保す ること力 Sできる。
[0054] [その後形成される塗膜]
本発明の化成処理方法により化成皮膜を形成した後に、化成皮膜上に形成される 塗膜としては、例えば、カチオン電着塗料、溶剤塗料、水性塗料、粉体塗料等の従 来公知の塗料により形成される塗膜を挙げることができる。
[0055] このうち、カチオン電着塗料を用いてその後塗膜を形成することが好ましい。カチォ ン電着塗料はァミノ基及び水酸基との反応性又は相溶性を示す官能基を有する樹 脂からなるため、化成処理剤に含まれるアミノ基を含有するアルコキシシラン及び水 酸基を含有するアルコキシシランの働きにより、電着塗膜と化成皮膜の密着性をより 高めることができるからである。カチオン電着塗料としては、特に限定されず、例えば アミノ化エポキシ樹脂、アミノ化アクリル樹脂、スルホ二ゥム化エポキシ樹脂等からなる 公知のカチオン電着塗料を挙げることができる。
[0056] [金属構造物の前処理]
本発明の金属構造物は、上記の化成処理を実施する前に、金属構造物の表面を 脱脂処理した後、水洗処理を行うことが好ましい。脱脂処理は、金属構造物の表面 に付着してレ、る油分や汚れを除去するために行われるものであり、無リン'無窒素脱 脂洗浄液等の脱脂剤により、通常 30°C〜55°Cにおいて数分間程度の浸漬処理が なされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。また 、脱脂処理後の水洗処理は、脱脂剤を水洗するために、大量の水洗水によって少な くとも 1回以上、スプレー処理により行われる。
[0057] [化成処理部材の後処理]
本発明の化成処理方法により化成皮膜が形成された化成処理部材は、その後実 施される塗膜形成の前に水洗処理を行うことが好ましレ、。化成処理後の水洗処理は 、その後の各種塗装後の密着性、耐食性等に悪影響を及ぼさないようにするために 、少なくとも 1回以上実施される。この場合、最終の水洗は、純水で実施されることが 適当である。この化成処理後の水洗処理においては、スプレー水洗又は浸漬水洗の いずれであってもよぐこれらの方法を組み合わせて水洗することもできる。化成処理 後に水洗処理を実施した後には、公知の方法に従って必要に応じて乾燥され、その 後、各種塗装により塗膜を形成する。
実施例
[0058] 次に、本発明を実施例および比較例を挙げてさらに具体的に説明するが、本発明 はこれらの実施例にのみ限定されるものではない。なお、配合量は特に断りのない限 り、質量部を表す。
[0059] <実施例 1 >
市販の冷間圧延鋼板(SPCC— SD、 日本テストパネル社製、 70mm X I 50mm X 0. 8mm)、亜鉛めつき鋼板(GA、 日本テストパネル社製、 70mm X 150mm X 0. 8 mm)、 6K21自動車用アルミニウム板(AL、神戸製鋼社製、 70mm X 150mm X 0. 8mm)、高張力鋼板 JSC590R、新日本製鐡社製、 70mm X 150mm X 0. 8mm) 、高張力鋼板 JSC780T、新日本製鐡社製、 70mm X I 50mm X O. 8mm)、及び 高張力鋼板 aSC1180Y、新日本製鐡社製、 70mm X 150mm X 2. 3mm)を金属 構造物として用意した。
[0060] [化成処理前の金属構造物の前処理] 〔脱脂処理〕
具体的には、アルカリ脱脂処理剤として「サーフクリーナー SD250 (商品名)」(日 本ペイント社製)の「A剤」を 1. 5質量%、「8斉 を 0. 9質量%含有する水溶液中に、 上記の金属構造物を浸漬させ、 43°Cで 2分間、脱脂処理を行った。
[0061] 〔脱脂処理後の水洗処理〕
脱脂処理をした後、水洗槽で浸漬洗浄した後、水道水で約 30秒間スプレー洗浄を 行った。
[0062] [化成処理]
ジルコニウムとして硝酸ジノレコニゥム(日本軽金属社製)、フッ素としてフッ化水素( 和光純薬社製)、アミノ基を含有するアルコキシシランとして「KBM— 603 (商品名)」 (N— 2 (アミノエチル) 3—ァミノプロピルトリメトキシシラン:信越化学工業社製)、水酸 基を含有するアルコキシシランとして「SIB1140. 0 (商品名)」(ビス(2—ヒドロキシェ チル)—3—ァミノプロピルトリエトキシシラン: GELEST社製)を使用し、ジルコニウム 濃度 500ppm、フッ素濃度 420ppm、固形分としてアミノ基を含有するアルコキシシ ラン濃度 200ppm、水酸基を含有するアルコキシシラン濃度 50ppmの化成処理剤を 調製した。この化成処理剤を水酸化ナトリウム水溶液を用いて、 pHを 2. 8に調整した 。化成処理剤の温度を 40°Cに調整し、その後、金属構造物を 60秒間浸漬処理した
[0063] [化成処理後の水洗処理]
化成処理を施したそれぞれの金属構造物に対して、水道水で 30秒間のスプレー 処理を実施した。次いで、イオン交換水で 10秒間のスプレー処理を行った。
[0064] [電着塗装]
化成処理後の水洗処理を施されたウエットな状態にある各々の金属構造物に対し、 カチオン電着塗料「パワー二タス 150グレー(商品名)」 (日本ペイント社製)を塗布し 、電着塗膜を形成した。その後、各々の金属構造物を水洗した後、 170°Cで 25分間 加熱して焼付けることで、電着塗膜を形成した。形成された電着塗膜の焼付け乾燥 後の膜厚は、 25 μ mであった。
[0065] [中塗り塗装] 電着塗膜上に、中塗り塗料「オルガ P_ 5A N- 2. 0 (商品名)」(日本ペイント社 製)をスプレー塗装し、温度 140°Cで 20分間焼付けることで、中塗り塗膜を形成した 。形成された中塗り塗膜の焼付け乾燥後の膜厚は、 35 z mであった。
[0066] [上塗り塗装]
中塗り塗膜上に、上塗り塗料「スーパーラック M— 95HB YR— 511P (商品名)」( 日本ペイント社製)をスプレー塗装し、温度 140°Cで 20分間焼付けることで、上塗り 塗膜を形成した。形成された上塗り塗膜の焼付け乾燥後の膜厚は、 15 z mであった 。このようにして、試験板を得た。得られた試験板の測定結果を表 1に示した。
[0067] <実施例 2 >
水酸基を含有するアルコキシシランとして、実施例 1で使用したビス(2—ヒドロキシ ェチル)一3—ァミノプロピルトリエトキシシランに代えて、「SIT8189. 0 (商品名)」( N— (3—トリエトキシシリルプロピル)ダルコナミド: GELEST社製)を使用した以外は 、実施例 1と同様の手順で、試験板を得た。得られた試験板の測定結果を表 1に示し た。
[0068] <比較例 1 >
水酸基を含有するアルコキシシランを化成処理剤に加えなかったこと以外は、実施 例 1と同様の手順で、試験板を得た。得られた試験板の測定結果を表 1に示した。
[0069] <試験 >
[二次密着性試験 (SDT) ]
実施例:!〜 2及び比較例 1で得られた試験板に、素地まで達する縦平行カットを 2 本入れ、 5質量%NaCl水溶液中にて、 55°Cで 240時間の浸漬を行った。次いで、 水洗及び風乾を行った後、カット部に接着テープ「CT405A_ 24 (商品名)」(ニチ バン社製)を密着させ、更に接着テープを急激に剥離した。剥離した接着テープに 付着した塗料の最大幅の大きさを測定した。結果を表 1に示す。
[0070] [表 1]
Figure imgf000016_0001
(単位は全て m m) [0071] [サイクル腐食試験(CCT) ]
実施例:!〜 2及び比較例 1で得られた試験板 (ALを除く)に、素地まで達する縦平 衡カットを入れた後、 35°C、湿度 95%に保たれた塩水噴霧試験器中で、 35°Cに保 温した 5%NaCl水溶液を 2時間連続噴霧した。次いで、 60°C、湿度 20〜30%の条 件下で 4時間乾燥した後、 50°C、湿度 95%以上の湿潤下で 2時間保持した。これを 24時間で 3回繰り返したものを 1サイクルとし、これを 50サイクル行った。 50サイクノレ 行った後、カット部からの片側最大膨れ幅を測定した。結果を表 2に示す。
[0072] [表 2]
Figure imgf000017_0001
(単位は全て mm)
[0073] 表 1に示される通り、金属構造物が SPC、 AL、 590R、 780Tの場合、実施例 1及 び 2においては、塗料の剥離が見られなかった。また、金属構造物が GA、 1180Yの 場合、実施例 1及び 2のいずれにおいても、比較例 1よりも、塗料の剥離が顕著に少 なかった。従って、本発明によれば、いずれの金属構造物に対して化成処理する場 合であっても、より十分な素地隠蔽性及び塗膜密着性を得ることができることが分か つた。
[0074] 表 2に示される通り、金属構造物がいずれであっても、実施例 1及び 2は、比較例 1 よりも、顕著に腐食が抑えられていた。従って、本発明によれば、いずれの金属構造 物に対して化成処理する場合であっても、より十分な耐食性を得ることができることが 分かった。
産業上の利用可能性
[0075] 本発明により得られる化成処理部材は、いずれの金属構造物表面上においても、 十分な素地隠蔽性、塗膜密着性、及び耐食性を備えるため、例えば、塗装前の自動 車車体、二輪車車体等の乗物外板、各種部品、容器外面、コイルコーティング等の、 塗装処理がその後施される分野において好ましく使用される。

Claims

請求の範囲
[1] 金属構造物を化成処理剤で処理して化成皮膜を形成する化成処理方法であって 前記化成処理剤を、ジルコニウムと、フッ素と、アミノ基を含有するアルコキシシラン と、水酸基を含有するアルコキシシランと、を含むものとし、
前記化成処理剤中の、前記ジルコニウムの含有量を金属換算で lOOppm以上 70 Oppm以下とし、前記アミノ基含有アルコキシシランの含有量を固形分濃度で 50pp m以上 500ppm以下とし、前記ジルコニウムに対する前記フッ素のモル比を 3. 5以 上 7. 0以下とし、
前記化成処理剤の pHを 2. 8以上 4. 5以下とする化成処理方法。
前記化成処理剤中の前記水酸基を含有するアルコキシシランの含有量を、固形分 濃度で lOppm以上 lOOppm以下とする請求項 1記載の化成処理方法。
前記水酸基を含有するアルコキシシランは、下記一般式(1)で表される請求項 1又 は 2記載の化成処理方法。
[化 1]
Figure imgf000018_0001
OR1
1
(式中 Rは、炭素数 1〜4のアルキル基を表し、同一若しくは異なっていてもよレ、。 R
1 2 は、炭素数 1〜6のアルキレン基を表す。 Yは、ダルコナミド基又は式 R R N—で表さ
3 4
れるァミノ基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基又は炭素数 1〜6の
3
アルキル基を表す。 Rは、炭素数 1〜6のヒドロキシアルキル基を表す。) [4] 請求項 1から 3いずれか記載の化成処理方法により化成皮膜が形成された化成処 理部材。
[5] ジルコニウムと、フッ素と、アミノ基を含有するアルコキシシランと、水酸基を含有す るアルコキシシランと、を含む化成処理剤であって、
前記ジルコニウムの含有量は金属換算で lOOppm以上 700ppm以下であり、前記 アミノ基含有アルコキシシランの含有量は固形分濃度で 50ppm以上 500PPm以下 であり、前記水酸基を含有するアルコキシシランの含有量は固形分濃度で lOppm以 上 lOOppm以下であり、
前記ジルコニウムに対する前記フッ素のモル比は 3. 5以上 7. 0以下であり、 pHは 2. 8以上 4. 5以下である化成処理剤。
PCT/JP2006/312642 2005-07-01 2006-06-23 化成処理方法、化成処理剤、及び化成処理部材 WO2007004449A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2613639A CA2613639C (en) 2005-07-01 2006-06-23 Method and agent for chemical conversion treatment and chemically conversion-treated members
CN2006800233607A CN101208460B (zh) 2005-07-01 2006-06-23 化学转化处理方法、化学转化处理剂以及化学转化处理构件
EP06767259A EP1900846B1 (en) 2005-07-01 2006-06-23 Method and agent for chemical conversion treatment and chemically conversion-treated members
US11/922,941 US20090090889A1 (en) 2005-07-01 2006-06-23 Method and agent for chemical conversion treatment and chemically conversion-Treated members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-193430 2005-07-01
JP2005193430A JP4473185B2 (ja) 2005-07-01 2005-07-01 化成処理方法、化成処理剤、及び化成処理部材

Publications (1)

Publication Number Publication Date
WO2007004449A1 true WO2007004449A1 (ja) 2007-01-11

Family

ID=37604319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312642 WO2007004449A1 (ja) 2005-07-01 2006-06-23 化成処理方法、化成処理剤、及び化成処理部材

Country Status (6)

Country Link
US (1) US20090090889A1 (ja)
EP (1) EP1900846B1 (ja)
JP (1) JP4473185B2 (ja)
CN (1) CN101208460B (ja)
CA (1) CA2613639C (ja)
WO (1) WO2007004449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133916A3 (en) * 2007-04-24 2009-04-09 Momentive Performance Mat Inc Method of applying an anti-corrosion and/or adhesion promoting coating to a metal and resulting coated metal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234458B2 (ja) * 1995-07-13 2001-12-04 三洋電機株式会社 Fm多重放送受信機
JP4996409B2 (ja) * 2007-09-28 2012-08-08 新日本製鐵株式会社 化成処理被覆鋼板の製造方法
US20100243108A1 (en) * 2009-03-31 2010-09-30 Ppg Industries Ohio, Inc. Method for treating and/or coating a substrate with non-chrome materials
JP5231377B2 (ja) * 2009-10-23 2013-07-10 日本ペイント株式会社 鉄系基材を粉体塗膜で被覆する方法
CA2831402C (en) * 2011-03-29 2014-04-15 Nippon Steel & Sumitomo Metal Corporation Surface-treated steel sheet and method of manufacturing the same
EP2743376B1 (de) 2012-12-11 2017-10-18 Alufinish Gesellschaft für Verfahrenstechnik und Spezialfabrikation von Produkten zur Metalloberflächenbehandlung mbH & Co. KG Wässriges Mittel und Beschichtungsverfahren zur korrosionsschützenden Behandlung metallischer Substrate
JP6226148B2 (ja) * 2015-03-04 2017-11-08 Jfeスチール株式会社 耐遅れ破壊特性に優れた鋼板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204649A (ja) 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd 金属表面のりん酸塩処理水溶液及び処理方法
JP2004218070A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 塗装前処理方法
JP2006161110A (ja) * 2004-12-08 2006-06-22 Nippon Paint Co Ltd 車両のシャシ用金属表面の塗装前処理方法及び粉体塗料の塗装方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591652A (en) * 1985-04-12 1986-05-27 Scm Corporation Polyhydroxyl silanes or siloxanes
US5470500A (en) * 1994-01-10 1995-11-28 Blue Coral, Inc. Composition for cleaning and waterproofing a substrate and inhibiting the build-up of static electricity on said substrate
US5720902A (en) * 1995-09-21 1998-02-24 Betzdearborn Inc. Methods and compositions for inhibiting low carbon steel corrosion
US5711996A (en) * 1995-09-28 1998-01-27 Man-Gill Chemical Company Aqueous coating compositions and coated metal surfaces
US5693371A (en) * 1996-10-16 1997-12-02 Betzdearborn Inc. Method for forming chromium-free conversion coating
US6203854B1 (en) * 1997-09-17 2001-03-20 Brent International Plc Methods of and compositions for preventing corrosion of metal substrates
DE19940293A1 (de) * 1999-08-25 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzventil
US6488357B2 (en) * 2000-12-05 2002-12-03 Xerox Corporation Corrision resistant hydrophobic liquid level control plate for printhead of ink jet printer and process
CN1381532A (zh) * 2001-04-19 2002-11-27 日本油漆株式会社 非铬酸盐金属表面处理剂,表面处理方法和处理过的钢材
EP1764118B1 (en) * 2002-02-15 2010-08-25 Gilead Palo Alto, Inc. Polymer coating for medical devices
ES2316706T3 (es) * 2002-12-24 2009-04-16 Chemetall Gmbh Metodo de pre-tratamiento para revestir.
US20060151070A1 (en) * 2005-01-12 2006-07-13 General Electric Company Rinsable metal pretreatment methods and compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204649A (ja) 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd 金属表面のりん酸塩処理水溶液及び処理方法
JP2004218070A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 塗装前処理方法
JP2006161110A (ja) * 2004-12-08 2006-06-22 Nippon Paint Co Ltd 車両のシャシ用金属表面の塗装前処理方法及び粉体塗料の塗装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1900846A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133916A3 (en) * 2007-04-24 2009-04-09 Momentive Performance Mat Inc Method of applying an anti-corrosion and/or adhesion promoting coating to a metal and resulting coated metal
CN101809068A (zh) * 2007-04-24 2010-08-18 莫门蒂夫性能材料股份有限公司 向金属施用防腐和/或助粘涂层的方法和所得的涂布的金属
US7875318B2 (en) 2007-04-24 2011-01-25 Momentive Performance Materials Inc. Method of applying an anti-corrosion and/or adhesion promoting coating to a metal and resulting coated metal
US8501314B2 (en) 2007-04-24 2013-08-06 Momentive Performance Materials Inc. Method of applying an anti-corrosion and/or adhesion promoting coating to a metal and resulting coated metal
CN101809068B (zh) * 2007-04-24 2015-07-01 莫门蒂夫性能材料股份有限公司 向金属施用防腐和/或助粘涂层的方法和所得的涂布的金属

Also Published As

Publication number Publication date
JP2007009289A (ja) 2007-01-18
EP1900846B1 (en) 2011-09-28
CA2613639C (en) 2011-05-31
JP4473185B2 (ja) 2010-06-02
EP1900846A1 (en) 2008-03-19
US20090090889A1 (en) 2009-04-09
CN101208460A (zh) 2008-06-25
CN101208460B (zh) 2010-05-26
CA2613639A1 (en) 2007-01-11
EP1900846A4 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4989842B2 (ja) 塗装前処理方法
CA2454042C (en) Pretreatment method for coating
US7510612B2 (en) Chemical conversion coating agent and surface-treated metal
EP1455002B1 (en) Pretreatment method for coating
WO2007004449A1 (ja) 化成処理方法、化成処理剤、及び化成処理部材
US20090078340A1 (en) Method of chemical treatment and chemically treated member
JP4276530B2 (ja) 化成処理剤及び表面処理金属
WO2007100017A1 (ja) 金属表面処理用組成物、金属表面処理方法、及び金属材料
EP1669475B1 (en) Pretreatment method and powder coating step for coating surface of metal for vehicle chassis
EP1433878A1 (en) Chemical conversion coating agent and surface-treated metal
JPWO2007100018A1 (ja) 金属表面処理用組成物、金属表面処理方法、及び金属材料
JP2006152267A (ja) 接着剤塗布前処理方法及びアルミニウム合金製部材
JP2004218073A (ja) 化成処理剤及び表面処理金属
JP2008184690A (ja) 塗装前処理方法
WO2013054905A1 (ja) 塗布型塗装用の塗装前処理剤及び塗布型塗装方法
JP2006241579A (ja) 化成処理剤及び表面処理金属
JP2003155578A (ja) 鉄及び/又は亜鉛系基材用化成処理剤
JP2003253461A (ja) 金属表面処理用組成物
JP2009161830A (ja) ブロック化イソシアネート基含有オルガノシロキサン、およびこれを用いた金属表面処理用組成物
CN110869535A (zh) 使用包含阳离子性聚氨酯树脂的脱磷酸锌处理剂的处理方法和经处理的汽车部件
CN110869534A (zh) 化成处理剂、涂装前处理方法和金属构件
KR20040058037A (ko) 화성 처리제 및 표면 처리 금속

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023360.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2613639

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11922941

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767259

Country of ref document: EP