WO2007004384A1 - Pulse doppler ultrasonic flowmeter and program thereof - Google Patents

Pulse doppler ultrasonic flowmeter and program thereof Download PDF

Info

Publication number
WO2007004384A1
WO2007004384A1 PCT/JP2006/311414 JP2006311414W WO2007004384A1 WO 2007004384 A1 WO2007004384 A1 WO 2007004384A1 JP 2006311414 W JP2006311414 W JP 2006311414W WO 2007004384 A1 WO2007004384 A1 WO 2007004384A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
doppler shift
shift frequency
range
value
Prior art date
Application number
PCT/JP2006/311414
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Ohmuro
Toshihiro Yamamoto
Hironobu Yao
Kazuyuki Yamada
Original Assignee
Fuji Electric Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co., Ltd. filed Critical Fuji Electric Systems Co., Ltd.
Priority to JP2007523383A priority Critical patent/JP4548485B2/en
Publication of WO2007004384A1 publication Critical patent/WO2007004384A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift

Definitions

  • the present invention relates to a pulsed Doppler ultrasonic flow meter.
  • a clamp-on type ultrasonic flowmeter is equipped with an ultrasonic transducer (a module that transmits and receives an ultrasonic pulse of an arbitrary frequency) on a part of the outer peripheral surface of a tubular body such as a water pipe. This is a flow meter that measures the flow velocity of the fluid flowing through the outside of the tubular body.
  • Clamp-on type ultrasonic flowmeters can be broadly classified into the propagation time difference type and the pulse-Doppler type.
  • the propagation time difference equation is the difference in time required for ultrasonic waves to travel in the forward and return paths by reciprocating the ultrasonic waves in a path that crosses the fluid flowing inside the tubular body diagonally. In other words, the flow rate of the fluid is measured.
  • the pulse-Doppler method is based on the assumption that suspended particles and bubbles contained in a fluid move at the same speed as the fluid, and measures the flow rate of the fluid from the moving speed of the suspended particles and bubbles. It is. This is because the frequency of the ultrasonic wave that is transmitted to the fluid and reflected by suspended particles changes due to the Doppler effect, so the flow velocity distribution of the fluid is calculated based on the frequency deviation, and the flow velocity distribution Is used to calculate the fluid flow rate.
  • Such a pulse-Doppler flow measurement technique as described in Patent Document 1, for example, enables non-contact and highly accurate measurement of a non-steady state fluid.
  • an ultrasonic pulse with a frequency f is repeatedly applied to the fluid to be measured at a constant frequency f.
  • the Doppler shift frequency is calculated to determine the flow velocity distribution of the fluid to be measured, and the flow rate can be measured by deriving the flow rate by integration based on this flow velocity distribution.
  • Patent Document 2 discloses that the flow rate measurement range is doubled by shifting the flow rate measurement range to either positive or negative. A flow rate switching technique is presented.
  • the pulse-Doppler method is a method for obtaining a flow rate by calculating Doppler shift frequencies at a plurality of points (hereinafter referred to as channels) in a pipe, calculating a flow velocity thereof, and integrating the cross section of the pipe.
  • the flow velocity is also calculated by the following equation (1) for the Doppler shift frequency force:
  • the Doppler shift frequency f can be measured only within a range determined by the pulse repetition frequency f (a range of 1 f / 2 to f / 2) according to the sampling theorem.
  • the measurement range that has been assigned equally to positive and negative is assigned only to positive or only negative. Therefore, doubling the measurement range does not really double the measurement range itself. In other words, if only positive, the measurement range is 0 to f, and if only negative, the measurement range is only f to 0. In other words, the measurement range is the value of the pulse repetition frequency f after all, and cannot be increased any further.
  • the above positive and negative mean the flow direction of the fluid (positive direction, negative direction).
  • Patent Document 1 JP 2000-97742 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-61109
  • the problem of the present invention is to correct the Doppler shift frequency measurement value as appropriate even if it exceeds the measurement range determined by the Doppler shift frequency force repetition frequency.
  • the present invention is to provide a pulsed Doppler type ultrasonic flowmeter that can determine the Doppler shift frequency distribution and can cope with the case where the measurement range is greatly exceeded.
  • the pulse Doppler type ultrasonic flowmeter of the present invention is a pulse Doppler type ultrasonic flowmeter that measures the flow rate of a fluid to be measured that flows in a pipe using ultrasonic Doppler shift. Delivering ultrasonic pulses to the fluid under measurement at a pulse repetition frequency; A first channel force in the vicinity of the pipe wall of the pipe, and a Doppler shift frequency measuring means for measuring the Doppler shift frequency of each channel up to the m-th channel in the center of the pipe; and the Doppler shift frequency measurement Based on the Doppler shift frequency distribution up to the m-th channel, the first channel force obtained from the measurement results obtained by the means is used to determine the channel range affected by the aliasing, and each channel within the calculated channel range is obtained.
  • the Doppler shift frequency distribution correction means for correcting the measured value of the Doppler shift frequency using the correction value obtained based on the measurement range of the Doppler shift frequency, and the Doppler shift corrected by the Doppler shift frequency distribution correction means
  • a flow rate calculating means for determining a flow rate of the fluid to be measured using a frequency distribution. Configured to.
  • the measurement range of the Doppler shift frequency is determined by the pulse repetition frequency f.
  • Doppler shift frequency force this
  • the measurement value is obtained as an incorrect value affected by the aliasing.
  • the Doppler shift frequency measurement value is affected by the aliasing by the Doppler shift frequency distribution correcting unit. Are determined, and the measured Doppler shift frequency value of each channel is corrected using the correction value.
  • the Doppler shift frequency distribution correcting means determines the channel where the aliasing occurs and also already aliases in the first channel. If the first channel is not affected by folding, the first channel force Doppler of each channel in the range up to the channel where the folding occurs is determined. The measured value of the shift frequency is not corrected, the measured value of the Doppler shift frequency of each channel in the range from the channel where the aliasing occurs to the m-th channel, and the measured range of the Doppler shift frequency is the corrected value. As a correction.
  • the flow velocity of the fluid to be measured is not uniform at the center of the tube but faster than the vicinity of the tube wall. Therefore, the absolute value of the Doppler shift frequency is larger in the center of the tube than in the vicinity of the tube wall.
  • the channel in the vicinity of the tube wall is affected by folding, but the channel in the center of the tube is folded. It is usually not possible to be unaffected by repeated actions.
  • the channel near the tube wall is not affected by folding, but the channel in the center of the tube is affected by folding.
  • the channel in the range up to the center of the tube is also affected by the fold-back, and correction is performed using the measurement range f as a correction value.
  • the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and also already in the first channel. When it is determined whether or not the force is affected by folding, if the first channel is affected by folding, the first channel force is also applied to each channel in the range up to the channel where the folding occurs.
  • the measured value of the Doppler shift frequency is corrected using the measurement range of the Doppler shift frequency as the correction value, and the Doppler shift frequency of each channel in the range from the channel where the aliasing occurs to the m-th channel is performed.
  • the measurement value is corrected with the correction value being twice the measurement range of the Doppler shift frequency.
  • All channels may be affected by aliasing.
  • the channel in the range of the force to the center of the pipe is double affected by the turn-up. Therefore, for channels in this range, twice the measurement range (2f) is used as the correction value.
  • twice the measurement range (2f) is used as the correction value.
  • the measurement range f is used as a correction value for correction.
  • the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs, and already in the first channel. It is determined whether or not the force is affected by the folding, and if the first channel is not affected by the folding and there are a plurality of places where the folding occurs, 1 is determined from the first channel. The measured value of the Doppler shift frequency of each channel in the range up to the channel where the first fold occurs is not corrected, and the range from the channel where the first fold occurs to the m-th channel is an even number.
  • the channel force at the occurrence of the fold The range up to the channel where the fold occurs is not corrected, and the range from the odd number of the fold occurrence channel to the even number of the fold occurrence channel is!
  • the measured value of the Doppler shift frequency of each channel is corrected using the measured range of the Doppler shift frequency as the correction value.
  • the Doppler shift frequency distribution up to the tube center force is, for example, the flow is in the positive direction.
  • the force is basically increasing. If there is a local flow velocity fluctuation, it may decrease partially. In this case, there may be multiple places where wrapping occurs.
  • the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and also already in the first channel. It is determined whether or not the force is influenced by folding, and when the first channel is affected by folding and there are a plurality of places where the folding occurs, the first channel is Correct the measured value of the Doppler shift frequency of each channel in the range up to the channel where the first aliasing occurs, using the measurement range of the Doppler shift frequency as the correction value, and the location where the first aliasing occurs For the range from the channel No. to the m-th channel, the odd-numbered aliasing loops from the channel where the folding occurs.
  • the measured value of the Doppler shift frequency of each channel in the range is corrected using the measured range of the Doppler shift frequency as the correction value.
  • Channel force at the place where the fold occurs For the range up to the channel where the fold occurs at the even number, the measured value of the Doppler shift frequency of each channel within the range is double the measurement range of the Doppler shift frequency. The correction value is corrected.
  • the Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured, and the determined flow direction. Is the positive direction, the correction is a process of adding the correction value to the measured value of the Doppler shift frequency of each channel.
  • the Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured, and determines the determination.
  • the correction is a process of subtracting the correction value from the measured value of the Doppler shift frequency of each channel.
  • the flow direction of the fluid to be measured is determined from the range from the first channel to the channel where the folding occurs or the channel where the measured value of the first channel force and the Doppler shift frequency crosses zero. Calculate the cumulative addition value or average value of the measured values of the Doppler shift frequency of each channel in the range, and if the calculated cumulative addition value or average value is a positive value, the value is positive or negative. Is the negative direction.
  • the object to be measured is one in which the flow direction of the fluid to be measured is reversed depending on, for example, the time zone
  • the flow direction is automatically determined without any human intervention at any time by the above configuration, and the flow Correction processing can be performed according to the direction, and it can be handled by installing only one flow meter.
  • the pulse Doppler ultrasonic flowmeter of the present invention even when the Doppler shift frequency exceeds the measurement range determined by the repetition frequency, a correct Doppler shift frequency distribution can be obtained by performing correction processing.
  • the measurable range of the Doppler shift frequency can be made larger than the measurement range determined by the repetition frequency.
  • the Doppler shift frequency force is a value that cannot be measured using the method of Patent Document 2, it can be measured. Furthermore, it is possible to deal with both positive Z and negative as well as only one of positive Z and negative.
  • FIG. 1 is a block diagram of a pulse Doppler ultrasonic flow meter.
  • FIG. 2A is an example of a measurement result of a Doppler shift frequency exceeding the measurement range.
  • FIG. 2B is an example of a measurement result of the Doppler shift frequency exceeding the measurement range.
  • FIG. 3A An example (part 1) of the measurement result of the Doppler shift frequency exceeding the measurement range.
  • FIG. 3B is a diagram showing flow direction determination for the example of FIG. 3A.
  • FIG. 3C An example of frequency correction of the measurement result of FIG. 3A.
  • FIG. 3D This is an example (part 2) of the measurement result of the Doppler shift frequency exceeding the measurement range.
  • FIG. 3E is a diagram showing flow direction determination for the example of FIG. 3D.
  • FIG. 3F An example of frequency correction of the measurement result of FIG. 3D.
  • FIG. 4A An example (part 3) of the measurement result of the Doppler shift frequency exceeding the measurement range.
  • FIG. 4B is a diagram showing the flow direction determination for the example of FIG. 4A.
  • FIG. 4C An example of frequency correction of the measurement result of FIG. 4A.
  • FIG. 4D An example of measurement results of the Doppler shift frequency exceeding the measurement range (No. 4).
  • FIG. 4E is a diagram showing the flow direction determination for the example of FIG. 4D.
  • FIG. 4F An example of frequency correction of the measurement result of FIG. 4D.
  • FIG. 5 is a flowchart schematically showing the entire flow rate calculation process.
  • FIG. 6 is a detailed flowchart of the process of step S2 of FIG.
  • FIG. 7 is a detailed flowchart of the process of step S3 of FIG.
  • FIG. 8 is a detailed flowchart of the process of step S38 of FIG.
  • FIG. 9 is a detailed flowchart of the process in step S39 of FIG.
  • FIG. 10 is a detailed flowchart of the process of step S41 of FIG.
  • FIG. 11 is a detailed flowchart of the process of step S42 of FIG.
  • FIG. 12B is a diagram showing the flow direction determination for the example of FIG. 12A.
  • FIG. 12C is an example of frequency correction of the measurement result of FIG. 12A.
  • FIG. 13A is an example of a measurement object whose fluid flow direction changes.
  • FIG. 13B is an example of a measurement object whose fluid flow direction changes.
  • FIG. 1 is a block diagram showing the configuration of the pulse Doppler type ultrasonic flowmeter of the present embodiment.
  • the illustrated pulse Doppler type ultrasonic flowmeter includes an ultrasonic transducer 1, an emitter 2, a transmitter 3, an amplifier 4, an AZD converter 5, a display device 6, and a CPU 10.
  • the periodic signal output from the transmitter 3 is input to the emitter 2, and the emitter 2 generates an electrical pulse for causing the ultrasonic transducer 1 to transmit an ultrasonic pulse from the periodic signal, and the ultrasonic transformer. Enter into user 1.
  • the ultrasonic transducer 1 sends an ultrasonic pulse into the fluid through the pipe wall by this electric pulse, and receives a reflected echo.
  • the reflected echo is converted into an electrical signal by the ultrasonic transducer 1 and amplified by the amplifier 4.
  • the amplified electrical signal and the periodic signal of the transmitter 3 (that is, the signal of the transmission wave and the reception wave) are converted into a digital signal by the AZD converter 5 and input to the CPU 10.
  • the ultrasonic transducer 1 is installed on the pipe wall 7 of the pipe, transmits an ultrasonic pulse toward the pipe wall 8 on the opposite side, and is in the middle (included in the fluid, Receives reflected echoes reflected by reflectors 9 such as bubbles (moving at approximately the same speed as the fluid)
  • the CPU 10 includes a Doppler frequency distribution measurement unit 11, a frequency distribution correction processing unit 12, and a flow rate calculation processing unit 13.
  • the Doppler frequency distribution measurement unit 11 measures the Doppler shift frequency of each channel to obtain the Doppler frequency distribution in the range from the tube wall 8 to the center of the tube as shown in FIG. That is, the frequency difference between the transmission wave and the reception wave output from the AZD transformation 5 is obtained.
  • the frequency distribution correction processing unit 12 uses the Doppler shift frequency of each channel obtained by the Doppler frequency distribution measurement unit 11 to calculate the cross section of the pipe (actually the pipe center force pipe wall 8 (the opposite pipe wall)). Range) Doppler shift frequency distribution.
  • the flow rate calculation processing unit 13 obtains a flow velocity distribution based on the Doppler shift frequency distribution, and calculates a flow rate based on the flow velocity distribution.
  • the Doppler frequency distribution measurement unit 11 may be realized by a dedicated circuit. In this case, the output of AZD Transform 5 is input to this Doppler frequency distribution measurement circuit. The Doppler frequency distribution power obtained by this circuit is input to CPU10. In any case, the Doppler frequency distribution measurement unit 11, the above circuit, and the flow rate calculation processing unit 13 are existing configurations, and thus will not be described in detail.
  • a feature of the present invention resides in the frequency distribution correction processing unit 12. That is, in the conventional frequency distribution calculation processing unit, when the flow velocity is fast, that is, there is a portion where the Doppler shift frequency exceeds the range determined by the repetition frequency f (range of 1 f / 2 to f / 2). is there
  • the frequency distribution correction processing unit 12 corrects the Doppler shift frequency distribution in which the “folding” has occurred to the correct one. . This makes it possible to calculate the correct flow velocity distribution and flow rate even when “turning” occurs.
  • Figures 2A and 2B show the Doppler shift frequency distribution when "folding" occurs.
  • FIG. 2A shows an example in which the flow is in the positive direction
  • FIG. 2B shows an example in which the flow is in the negative direction
  • the flow is positive or negative when the transmission direction of ultrasonic pulses is upstream of the flow, and the flow is normal when the flow direction is opposite. Distinguishes from “negative direction”.
  • the Doppler shift frequency is a positive value, it can be identified as “flow is positive”, and if the Doppler shift frequency is a negative value, it is identified as “flow is negative”.
  • the Doppler shift frequency is a negative value
  • the value of the Doppler shift frequency near the pipe wall 8 (range from channel 0 to channel i) is correct! /, So that no wrapping occurs, so in Figure 2A the Doppler around the pipe wall 8 Since the shift frequency is positive, the flow can be determined as the positive direction, and similarly, the flow can be determined as the negative direction in Fig. 2B. The method of determining the flow direction when "folding" occurs will be described later.
  • the Doppler shift frequency of channel i + 1 becomes approximately ⁇ f / 2 due to “folding”, and the value of the Doppler shift frequency after channel i + 2 is ⁇ f
  • the channel range up to channel m (i + l to m) is affected by 'folding', and the Doppler shift frequency value is wrong.
  • the Doppler shift frequency value gradually decreases from the channel near the tube wall 8 toward the center of the tube (the absolute value of the flow is fast because the center of the tube is fast). As it increases, when it exceeds f / 2, it becomes f / 2 by "wrapping" and from there
  • FIG. 3 and FIG. 4 show examples of Doppler shift frequency distributions when the above “folding” occurs and examples of Doppler shift frequency distributions corrected by the frequency distribution correction processing unit 12.
  • the Doppler shift frequency distribution when the “turnback” occurs is roughly divided into four patterns. That is, there are four patterns shown in FIGS. 3A, 3D, 4A, and 4D. Of these, FIGS. 3A and 4A are the same as those shown in FIGS. 2A and 2B. That is, the channel near the tube wall 8 is not affected by “folding”, and the measured value of the Doppler shift frequency is a correct value. Somewhere in the range from the channel to the channel m in the center of the tube. In the range up to the channel “m” in the center of the tube where “folding” occurs, the measured value of the Doppler shift frequency is incorrect due to the influence of “folding”. It's something that gets value.
  • FIGS. 3D and 4D show patterns in which “folding” has already occurred in a channel (channel 0 or the like) near the tube wall 8. Further, in this example, “folding” occurs immediately before channel i + 1. In other words, in the range from channel i + 1 to channel m, it is doubly affected by “folding.” The same applies to FIG.
  • FIG. 3C shows the frequency distribution corrected by the frequency distribution correction processing unit 12 in FIG. 3A.
  • F is the frequency distribution corrected by the frequency distribution correction processing unit 12. Naturally, the corrected frequency distribution is correct.
  • the frequency distribution shown in FIG. 3A is correct for channel 0 to channel, but is incorrect for channel i + 1 and later, and in fact for channel i + 1 and later, all exceed f / 2.
  • the frequency distribution correction processing unit 12 first determines which of the above four patterns corresponds, and executes correction processing for the corresponding pattern, thereby correcting the wrong frequency distribution to the correct one. To do.
  • the channel where the “folding” occurs can be determined by the fact that the difference from the previous channel i is f / 2 or more, as shown in FIG. Channel i and chir prf
  • the frequency difference from the channel i + 1 is very large (approximately f) and the adjacent channel
  • the threshold for judging the occurrence of “folding” should be “f / 2 or more”.
  • the channel 0 to channel i values are also affected by the “turnback”. Further, the channel i + 1 to the channel m are affected by “folding” twice, so that in the case of FIG. 3D, the Doppler shift frequency of the channel 0 to the channel i is basically changed. Adds f, channel i + 1 to channel
  • the Doppler shift frequency of the channel m at the center of the tube exceeds 3f / 2.
  • the flow velocity / flow rate calculation result can be obtained correctly by correcting the measured Doppler shift frequency distribution.
  • FIG. 5 is a flowchart schematically showing the entire flow rate calculation processing by the CPU 10.
  • the Doppler frequency distribution measuring unit 11 determines the Doppler shift frequency of each channel.
  • the frequency distribution correction processing unit 12 first determines which of the above four patterns corresponds to the flow direction etc. by determining the flow direction (step S2). By executing the frequency shift process using the processing flow (step S3), the Doppler shift frequency distribution is corrected and corrected to eliminate the influence of “folding”.
  • step S4 the conventional flow rate calculation process (step S4) and flow rate calculation process (step S5) can be performed by the flow rate calculation processing unit 13 using the modified Doppler shift frequency distribution, the flow velocity of the fluid The flow velocity / flow rate can be calculated correctly even when the measurement exceeds the measurement range.
  • FIG. 6 is a detailed flowchart of the flow direction determination process in step S2.
  • the channel closest to the wall is set as the current channel. That is, first, the channel closest to the wall is set as an object of processing in steps S12 to S15.
  • the channel closest to the wall is channel 0 that is closest to the wall 8 above.
  • Steps S12 to S15 are repeatedly executed (steps S16 and S17).
  • Step S12 Processing in steps S12 to S15 will be described.
  • This process is basically a process of finding and recording the “folding” occurrence point.
  • the difference Pi of the Doppler shift frequency between the current channel and the next channel is calculated (the next channel i +
  • the Doppler shift frequency of 1 is the Doppler frequency of the current channel i, and this is the difference value p for the current channel i (Step S12), and the absolute value of this difference value p is a predetermined threshold (as described above, here Then f / 2
  • step S13, YES turn on the phase displacement flag corresponding to the next channel i + 1 (step S14), and if it is below the threshold (step S13, NO),
  • step S13, NO The phase displacement flag corresponding to channel i + 1 is kept OFF (step S15).
  • a first table in which a phase displacement flag is associated with each channel is prepared in advance. All phase displacement flags are OFF by default.
  • the difference value P is temporarily stored. Also, as already mentioned, the above threshold is limited to f / 2.
  • next channel is a channel adjacent to the current channel in the center of the tube.
  • step S21, YES When the processing of steps S19 and S20 is executed for all channels from channel 0 to channel m (step S21, YES), the current flow direction of the fluid to be measured is determined depending on whether the variable P is positive or negative. judge. That is, if variable P (cumulative addition of difference value p) is positive (step S23, YES), the flow is determined to be positive (step S24), and if variable P is negative (step S23) In step S23, NO), it is determined that the flow is in the negative direction (step S25).
  • variable P cumulative addition of difference value p
  • step S19 When the determination in step S19 is NO, the difference value ⁇ of the channel is not added to the variable ⁇ , so the influence of “folding” is eliminated, and the flow direction without any problem due to the variable ⁇ That is, as described above, the flow is faster in the center of the tube than in the vicinity of the tube wall. Since the flow of the next channel is faster than that of the next channel (that is, the Doppler shift frequency is large), the above difference value p. Is basically a positive value (this is influenced by “folding”). Even within this range, it is basically a positive value). However, in some cases, as shown in Fig. 12, there is a possibility that a part where the above difference value becomes a negative value partially due to local flow velocity fluctuations. Judges positive Z negative. Furthermore, since the difference value P becomes a large minus (almost –f) at the “turnback” location, in step S19 “
  • the value of the variable P is always positive if the flow is in the positive direction.
  • FIG. 7 shows a detailed flowchart of the frequency shift process.
  • the flow direction can be determined by the above processing, for example, when the flow is in the direction, it can be seen that the pattern is one of FIGS. 3A and 3D. 3A or 3D, as described above, whether or not the force that has already been affected by “folding” in the channel 0 nearest to the tube wall 8 that is the processing start channel (the processing reference).
  • the process of Fig. 7 in addition to the result of determining the flow direction described above, it is determined whether or not the force has already been affected by the "turnback" in the channel 0 closest to the pipe wall 8. It is determined which one of the two patterns is applicable, and according to the determination result, one of steps S38, S39, S41, and S42 of Fig. 7 is executed, and a detailed flow chart of step S38
  • FIG. 9 shows a detailed flowchart of step S39
  • FIG. 10 shows a detailed flowchart of step S41
  • FIG. 11 shows a detailed flowchart of step S42.
  • the average value of the Doppler shift frequency in the range up to the channel where the channel force phase displacement flag closest to the wall is ON, or the range from the closest wall to the Doppler shift frequency crossing 0 is obtained.
  • the average value of the Doppler shift frequency is obtained.
  • channel 0 closest to the wall 8 is defined as the current channel (channel to be processed) (step S31), and channel 1, 2, 3,... Sequentially, each channel is set as a processing target channel (step S35), and until the channel whose phase displacement flag is ON becomes the current channel or until the Doppler shift frequency exceeds 0 (that is, NO in step S32). Until it becomes YES in step S34), the Doppler shift frequency of each channel is cumulatively added (step S33).
  • the determination method of whether or not the Doppler shift frequency crosses over 0 is, for example, by comparing the Doppler shift frequency of the current channel i with the Doppler shift frequency of the next channel i + 1. If the value is positive and the other is negative, it is determined that the Doppler shift frequency has crossed zero.
  • the variable (accumulated addition value) Q obtained by the above processing is the Doppler shift frequency of each channel in the range A shown in the example of Fig. 3 if the pattern of Fig. 3A is used.
  • the cumulative addition value Q of is obtained.
  • NO is determined in step S3 2
  • the accumulated addition value Q of the channel Doppler shift frequency of each channel in the range A is about the channel 0 force and the channel i + 1 immediately before the channel i + 1 where the phase displacement flag is ON. It will be required.
  • the pattern shown in FIG. 3D is used, the cumulative addition value Q of the Doppler shift frequencies of each channel in the range E shown in the figure is obtained.
  • YES is obtained in step S34, and the accumulated calorific value Q of the Doppler shift frequency of each channel up to the channel immediately before the Doppler shift frequency crosses 0 is obtained. It will be.
  • the cumulative addition value Q is a positive value
  • the cumulative addition value Q is a negative value
  • the measured value of the Doppler shift frequency in the range A from the channel 0 immediately before the tube wall 8 to the channel just before the “folding” occurrence point is correct ( Since it is a value that is not affected by “wrapping”, it is a positive value.
  • the cumulative addition value for the entire range A is obtained (therefore, the variable Q is added to the cumulative addition value). For example, it may be an average value).
  • the region of the range B shown in the figure (the range from the channel 0 immediately adjacent to the tube wall 8 to the channel just before the “turn-back” occurrence point) is also affected by Therefore, the Doppler shift frequency becomes wrong, and in such a case, the Doppler shift frequency of each channel in the region near the wall 8 (range E in the figure) where the flow velocity is relatively low is usually shown in the figure. As shown, although the flow direction is positive, a negative value is a component.
  • the region near the tube wall 8 is affected by the “turnback”.
  • the variable Q becomes a negative value, and the “turnback” When affected, the variable Q is positive.
  • step S36, YES when the flow is in the positive direction (step S36, YES) and the variable Q is a positive value (step S37, NO), the Doppler shift frequency corresponding to the pattern of FIG. 3A.
  • the correction process (process a) is executed (step S38).
  • step S37, YES if the flow is in the positive direction (step S36, YES) and the variable Q is negative (step S37, YES), the Doppler shift frequency correction process corresponding to the pattern in FIG. 3D ( Process b) is executed (step S39).
  • step S40, YES when the flow is in the negative direction (step S36, NO) and the variable Q is a positive value (step S40, YES), the Doppler shift frequency correction process corresponding to the pattern of FIG.
  • Process d is executed (step S42). Similarly, when the flow is in the negative direction (step S36, NO) and the variable Q is negative (step S40, NO), the Doppler shift frequency correction process (process) corresponding to the pattern in FIG. 4A is performed. c) is executed (step S41).
  • Range frequency R means the amount of correction for the Doppler shift frequency.
  • R 0
  • the range frequency R is set to f in step S56.
  • step S51 the phase-displaced flag is set to OFF.
  • This phase-shifted flag and the processing in steps S54 to S56 are not necessary in the case of the example shown in FIG. 3A.
  • the case in Figure 3A can be Sometimes it becomes.
  • an arbitrary range F within the range C becomes a value within the measurement range (here, less than f / 2) because the value of the Doppler shift frequency is partially reduced due to local variation. It has become.
  • the number value is correct and does not need to be corrected. From this situation, the phase-shifted flag is used to distinguish whether the current channel is a force that needs to be corrected.
  • This process is a process that does not use the phase-shifted flag in the process of FIG. That is, the process of setting the phase-shifted flag to OFF in step S51 is not necessary. Instead of the processes of steps S54 to S56, the process of simply setting the range frequency R to f may be executed. From this, the range frequency R is initialized to prf in step S51.
  • the phase displacement flag of the current channel is ON (step S53, YES)
  • the force which performed "the process to prf" differs in performing the process of step S54-S56 instead.
  • phase displacement flags of the three channels k and 1 are turned ON.
  • the Doppler shift frequency is partially reduced, so the Doppler shift frequency in the range from channel k to channel 1 is again measured.
  • FIG. 12C shows the corrected Doppler shift frequency distribution, that is, the original (correct) Doppler shift frequency distribution.
  • the Doppler shift frequency in the range of channel k to channel 1 is correct! /, So there is no need to correct it.
  • the processing that does not take into account the local variation described above from channel j to the center of the tube All channels in the range up to channel m are corrected uniformly.
  • step S53 is YES
  • steps S54 to S56 is performed.
  • the process of step S55 is executed, and if it is OFF, the process of step S56 is executed.
  • step S53 determines whether the current channel becomes channel k.
  • the determination in step S53 is YES and the phase-shifted flag is ON (step S54, YES), so the process of step S55 is executed.
  • the current range frequency R is f
  • the process in FIG. 9 is the same as the process in FIG. 8 except that the initial value 3 ⁇ 4 of the range frequency R is set in step S61.
  • the range is set in step S61.
  • step S67 is performed for each channel in the range corresponding to the range of channel k to channel 1 above.
  • Doppler shift frequency measured value of Doppler shift frequency + f "
  • the process is the same as the process in FIG.
  • the initial value of the range frequency R is set to 1 f in step S81, and the processing power of steps S85 and S86 is shown in steps S55 and 56 of FIG.
  • correction is performed by subtracting 2f from the Doppler shift frequency measurement value, and channel k to
  • a correction is made by subtracting f from the measured Doppler shift frequency, and prf is applied to each channel corresponding to channel 1 to channel m above. In this case, 2f is subtracted from the measured Doppler shift frequency.
  • correction is performed by subtracting f from the measured Doppler shift frequency.
  • the pulse Doppler ultrasonic flowmeter of the present example considers local fluctuations, but does not consider the situation where the flow direction is partially reversed due to local fluctuations. .
  • the reason for determining the flow direction of the fluid to be measured in this example is to cope with a system in which the flow direction of the fluid becomes positive or negative depending on, for example, a time zone.
  • reservoirs are created above and below the power plant, such as pumped-storage power generation, and the water in the lower pond is pumped up to the upper pond using nighttime power with low electricity consumption.
  • the flow direction may be switched between nighttime and daytime when power is generated by using the drop between the upper and lower ponds.
  • water is supplied from a water purification plant to multiple water stations, but it is necessary to adjust the amount of water between the water stations according to the downstream load. The direction may change.
  • stop valves ⁇ and ⁇ and flow from valve C to valve D (Fig. 13 ⁇ ).
  • the pulse Doppler ultrasonic flowmeter of the present invention even when the Doppler shift frequency exceeds the measurement range determined by the repetition frequency, a correct Doppler shift frequency distribution can be obtained by performing correction processing.
  • the measurable range of the Doppler shift frequency can be made larger than the measurement range determined by the repetition frequency.
  • the Doppler shift frequency force is a value that cannot be measured using the method of Patent Document 2, it can be measured. Furthermore, it is possible to deal with both positive Z and negative as well as only one of positive Z and negative.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A Doppler frequency distribution measuring part (11) measures a Doppler shift frequency distribution. A frequency distribution correcting part (12) determines a part of the Doppler shift frequency distribution that is affected by 'aliasing', and corrects the measurement value of the Doppler shift frequency of that part, thereby obtaining a correct Doppler shift frequency distribution. When the actual value of the Doppler shift frequency exceeds a measurement limit defined by the repetition frequency, the measurement value is a value as affected by the 'aliasing'.

Description

明 細 書  Specification
パルス'ドップラー式超音波流量計、そのプログラム  Pulsed Doppler ultrasonic flow meter, its program
技術分野  Technical field
[0001] 本発明は、パルス'ドップラー式超音波流量計に関する。  [0001] The present invention relates to a pulsed Doppler ultrasonic flow meter.
背景技術  Background art
[0002] クランプオン型超音波流量計は、水道管等の管状体の外周面の一部に超音波トラ ンスジユーサ (任意周波数の超音波パルスを送受信するモジュール)を装着し、この 管状体の内部を流れる流体の流速'流量を、管状体の外側から測定する方式の流量 計である。クランプオン型超音波流量計は、大別して、伝搬時間差式とパルス ·ドッブ ラー式とに分類できる。  [0002] A clamp-on type ultrasonic flowmeter is equipped with an ultrasonic transducer (a module that transmits and receives an ultrasonic pulse of an arbitrary frequency) on a part of the outer peripheral surface of a tubular body such as a water pipe. This is a flow meter that measures the flow velocity of the fluid flowing through the outside of the tubular body. Clamp-on type ultrasonic flowmeters can be broadly classified into the propagation time difference type and the pulse-Doppler type.
[0003] 伝搬時間差式は、超音波を、管状体の内部を流れる流体を斜めに横切るような経 路で往復させて、超音波が往路と復路のそれぞれを伝搬するのに要する時間の差か ら、流体の流量を測定する方法である。  [0003] The propagation time difference equation is the difference in time required for ultrasonic waves to travel in the forward and return paths by reciprocating the ultrasonic waves in a path that crosses the fluid flowing inside the tubular body diagonally. In other words, the flow rate of the fluid is measured.
[0004] 一方、パルス ·ドップラー式は、流体中に含まれる浮遊粒子や気泡等が、流体と同 じ速度で移動すると仮定し、浮遊粒子や気泡等の移動速度から流体の流量を測定 する方法である。これは、流体中に超音波を発信して、浮遊粒子等に反射された超 音波の周波数がドップラー効果により変化することから、その周波数ズレに基づき流 体の流速分布を算出し、更に流速分布を積分演算して流体の流量を算出するもの である。  [0004] On the other hand, the pulse-Doppler method is based on the assumption that suspended particles and bubbles contained in a fluid move at the same speed as the fluid, and measures the flow rate of the fluid from the moving speed of the suspended particles and bubbles. It is. This is because the frequency of the ultrasonic wave that is transmitted to the fluid and reflected by suspended particles changes due to the Doppler effect, so the flow velocity distribution of the fluid is calculated based on the frequency deviation, and the flow velocity distribution Is used to calculate the fluid flow rate.
[0005] この様なパルス ·ドップラー式の流量測定技術は、例えば特許文献 1に開示されて いるように、非定常状態の流体に対し、非接触で高精度な測定を可能としている。同 技術では、周波数 fの超音波パルスを被測定流体に対して繰返し周波数 f の一定の  [0005] Such a pulse-Doppler flow measurement technique as described in Patent Document 1, for example, enables non-contact and highly accurate measurement of a non-steady state fluid. In this technology, an ultrasonic pulse with a frequency f is repeatedly applied to the fluid to be measured at a constant frequency f.
0 prf 間隔で送信し、測線上の反射体にて反射した超音波エコーを受信する。これをもと〖こ 、ドップラーシフト周波数を算出し被測定流体の流速分布を求め、この流速分布に基 づいて積分演算により流量を導くことで、流量計測を可能としている。  0 Transmits at prf intervals and receives ultrasonic echoes reflected by reflectors on the survey line. Based on this, the Doppler shift frequency is calculated to determine the flow velocity distribution of the fluid to be measured, and the flow rate can be measured by deriving the flow rate by integration based on this flow velocity distribution.
[0006] 上記パルス ·ドップラー法を用いた流量測定技術に関して、特許文献 2には、流速 の測定範囲を正/負の何れか一方にシフトすることで、流速の測定範囲を 2倍とする 流速切換え手法が提示されて ヽる。 [0006] Regarding the flow rate measurement technique using the pulse-Doppler method, Patent Document 2 discloses that the flow rate measurement range is doubled by shifting the flow rate measurement range to either positive or negative. A flow rate switching technique is presented.
[0007] パルス ·ドップラー法では、配管内の複数点 (以降、チャネルと称す)のドップラーシ フト周波数を求め、それを流速算出し、配管断面で積分することで流量を求める方式 である。流速は、ドップラーシフト周波数力も以下の(1)式によって算出する:  [0007] The pulse-Doppler method is a method for obtaining a flow rate by calculating Doppler shift frequencies at a plurality of points (hereinafter referred to as channels) in a pipe, calculating a flow velocity thereof, and integrating the cross section of the pipe. The flow velocity is also calculated by the following equation (1) for the Doppler shift frequency force:
[0008] [数 1]  [0008] [Equation 1]
c  c
2 x /0 x sin α 2 x / 0 x sin α
/。:送信周波数、 :流体の最大速度、 Cw :流体の音速、 /. : Transmission frequency,: Maximum fluid velocity, Cw : Fluid sound velocity,
a :水中入射角、 ffd ドッ ラ -シフト周波数 , , ,( 1 ) a: Underwater incident angle, f fd Doller-shift frequency,,, ( 1 )
[0009] 但し、ドップラーシフト周波数 f は、サンプリング定理により、パルス繰返し周波数 f によって決められる範囲(一 f /2〜f /2の範囲)でしか計測できない。 However, the Doppler shift frequency f can be measured only within a range determined by the pulse repetition frequency f (a range of 1 f / 2 to f / 2) according to the sampling theorem.
これより、上記特許文献 2の技術では、従来では測定範囲を正、負に均等に割り当 てていたものを、正のみ、又は負のみに割り当てるようにしている。よって、測定範囲 を 2倍にするといっても、本当に測定範囲自体が 2倍になるわけではない。すなわち、 正のみの場合には測定範囲を 0〜f とし、負のみの場合には測定範囲を f 〜0と しているだけである。つまり、測定範囲は、結局、パルス繰返し周波数 f の値そのも のであり、それ以上大きくはできない。尚、上記正、負とは、流体の流れ方向を意味 する (正方向、負方向)。  Thus, in the technique of Patent Document 2 described above, the measurement range that has been assigned equally to positive and negative is assigned only to positive or only negative. Therefore, doubling the measurement range does not really double the measurement range itself. In other words, if only positive, the measurement range is 0 to f, and if only negative, the measurement range is only f to 0. In other words, the measurement range is the value of the pulse repetition frequency f after all, and cannot be increased any further. The above positive and negative mean the flow direction of the fluid (positive direction, negative direction).
特許文献 1:特開 2000— 97742号公報  Patent Document 1: JP 2000-97742 A
特許文献 2 :特開 2004— 61109号公報 本発明の課題は、ドップラーシフト周波数 力 繰返し周波数によって決められる測定範囲を超える場合でも、ドップラーシフト周 波数計測値に対して適宜補正を行うことで、正し 、ドップラーシフト周波数分布を求 めることができ、特に上記測定範囲を大幅に超える場合にも対応できるパルス 'ドッブ ラー式超音波流量計を提供することである。  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-61109 The problem of the present invention is to correct the Doppler shift frequency measurement value as appropriate even if it exceeds the measurement range determined by the Doppler shift frequency force repetition frequency. However, the present invention is to provide a pulsed Doppler type ultrasonic flowmeter that can determine the Doppler shift frequency distribution and can cope with the case where the measurement range is greatly exceeded.
発明の開示  Disclosure of the invention
[0010] 本発明のパルスドップラー式超音波流量計は、超音波のドップラーシフトを利用し て配管内を流れる被測定流体の流量を測定するパルスドップラー式超音波流量計 にお 、て、所定のパルス繰返し周波数で超音波パルスを前記被測定流体に送出し、 その超音波エコーを受信して、前記配管の管壁直近の第 1チャネル力 管中央の第 mチャネルまでの各チャネルのドップラーシフト周波数を計測するドップラーシフト周 波数計測手段と、該ドップラーシフト周波数計測手段による計測結果によって得られ る、前記第 1チャネル力も第 mチャネルまでのドップラーシフト周波数分布にぉ 、て、 折り返しの影響を受けているチャネル範囲を求め、該求めたチャネル範囲内の各チ ャネルのドップラーシフト周波数の計測値を、ドップラーシフト周波数の測定範囲に 基づ 、て得られる補正値を用いて補正するドップラーシフト周波数分布補正手段と、 該ドップラーシフト周波数分布補正手段による補正後のドップラーシフト周波数分布 を用いて前記被測定流体の流量を求める流量算出手段とを有するように構成する。 [0010] The pulse Doppler type ultrasonic flowmeter of the present invention is a pulse Doppler type ultrasonic flowmeter that measures the flow rate of a fluid to be measured that flows in a pipe using ultrasonic Doppler shift. Delivering ultrasonic pulses to the fluid under measurement at a pulse repetition frequency; A first channel force in the vicinity of the pipe wall of the pipe, and a Doppler shift frequency measuring means for measuring the Doppler shift frequency of each channel up to the m-th channel in the center of the pipe; and the Doppler shift frequency measurement Based on the Doppler shift frequency distribution up to the m-th channel, the first channel force obtained from the measurement results obtained by the means is used to determine the channel range affected by the aliasing, and each channel within the calculated channel range is obtained. The Doppler shift frequency distribution correction means for correcting the measured value of the Doppler shift frequency using the correction value obtained based on the measurement range of the Doppler shift frequency, and the Doppler shift corrected by the Doppler shift frequency distribution correction means A flow rate calculating means for determining a flow rate of the fluid to be measured using a frequency distribution. Configured to.
[0011] 上記の通り、パルスドップラー式超音波流量計では、ドップラーシフト周波数の測定 範囲は、パルス繰返し周波数 f によって決められる。ドップラーシフト周波数力 この [0011] As described above, in the pulse Doppler ultrasonic flowmeter, the measurement range of the Doppler shift frequency is determined by the pulse repetition frequency f. Doppler shift frequency force this
prf  prf
測定範囲を超える場合、その計測値は、折り返しの影響を受けた、間違った値として 得られる。  If the measurement range is exceeded, the measurement value is obtained as an incorrect value affected by the aliasing.
[0012] これより、上記本発明のノルスドップラー式超音波流量計では、上記ドップラーシフ ト周波数分布補正手段によって、そのドップラーシフト周波数計測値が折り返しの影 響を受けたものとなって 、るチャネルを全て判別し、この判別した各チャネルのドッブ ラーシフト周波数計測値は、上記補正値を用いて補正する。  Accordingly, in the above-described Norsdoppler ultrasonic flowmeter of the present invention, the Doppler shift frequency measurement value is affected by the aliasing by the Doppler shift frequency distribution correcting unit. Are determined, and the measured Doppler shift frequency value of each channel is corrected using the correction value.
[0013] 上記構成のパルスドップラー式超音波流量計にお!ヽて、例えば、前記ドップラーシ フト周波数分布補正手段は、前記折り返しの発生箇所のチャネルを判別すると共に 、前記第 1チャネルにおいて既に折り返しの影響を受けているか否かを判定し、前記 第 1チャネルが折り返しの影響を受けていない場合には、該第 1チャネル力 前記折 り返しの発生箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波数の計 測値は補正せず、前記折り返しの発生箇所のチャネルから前記第 mチャネルまでの 範囲の各チャネルのドップラーシフト周波数の計測値を、前記ドップラーシフト周波 数の測定範囲を前記補正値として補正する。  [0013] In the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correcting means determines the channel where the aliasing occurs and also already aliases in the first channel. If the first channel is not affected by folding, the first channel force Doppler of each channel in the range up to the channel where the folding occurs is determined. The measured value of the shift frequency is not corrected, the measured value of the Doppler shift frequency of each channel in the range from the channel where the aliasing occurs to the m-th channel, and the measured range of the Doppler shift frequency is the corrected value. As a correction.
[0014] 被測定流体の流速は、一様ではなぐ管中央の方が管壁近傍よりも早い。よって、 ドップラーシフト周波数の絶対値は、管中央の方が管壁近傍よりも大きい。これより、 管壁近傍のチャネルは折り返しの影響を受けて 、るのに、管中央側のチャネルは折 り返しの影響を受けていない、等ということは、通常はあり得ない。その逆に、管壁近 傍のチャネルは折り返しの影響を受けていないが、管中央側のチャネルは折り返し の影響を受けている、ということはあり得る。これより、上記構成では、折り返しの発生 箇所があった場合には、そこ力も管中央までの範囲のチャネルが、折り返しの影響を 受けているものとし、測定範囲 f を補正値として用いて補正を行う。 [0014] The flow velocity of the fluid to be measured is not uniform at the center of the tube but faster than the vicinity of the tube wall. Therefore, the absolute value of the Doppler shift frequency is larger in the center of the tube than in the vicinity of the tube wall. As a result, the channel in the vicinity of the tube wall is affected by folding, but the channel in the center of the tube is folded. It is usually not possible to be unaffected by repeated actions. Conversely, it is possible that the channel near the tube wall is not affected by folding, but the channel in the center of the tube is affected by folding. Thus, in the above configuration, if there is a fold-back location, the channel in the range up to the center of the tube is also affected by the fold-back, and correction is performed using the measurement range f as a correction value. Do.
prf  prf
[0015] また、上記構成のパルスドップラー式超音波流量計にお!、て、例えば、前記ドッブ ラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネルを判別する と共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否かを判定し 、前記第 1チャネルが折り返しの影響を受けている場合には、該第 1チャネル力も前 記折り返しの発生箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波数 の計測値を、前記ドップラーシフト周波数の測定範囲を前記補正値として、前記補正 を行 、、前記折り返しの発生箇所のチャネルから前記第 mチャネルまでの範囲の各 チャネルのドップラーシフト周波数の計測値を、前記ドップラーシフト周波数の測定 範囲の 2倍を前記補正値として補正する。  [0015] Further, in the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and also already in the first channel. When it is determined whether or not the force is affected by folding, if the first channel is affected by folding, the first channel force is also applied to each channel in the range up to the channel where the folding occurs. The measured value of the Doppler shift frequency is corrected using the measurement range of the Doppler shift frequency as the correction value, and the Doppler shift frequency of each channel in the range from the channel where the aliasing occurs to the m-th channel is performed. The measurement value is corrected with the correction value being twice the measurement range of the Doppler shift frequency.
[0016] 全てのチャネルが折り返しの影響を受けている場合もあり得る。この場合において、 折り返しの発生箇所があった場合には、そこ力も管中央までの範囲のチャネルは、折 り返しの影響を二重に受けていることになる。よって、この範囲のチャネルに対しては 、測定範囲の 2倍 (2f )を補正値として用いる。勿論、第 1チャネルから折り返しの発 [0016] All channels may be affected by aliasing. In this case, if there is a turn-up point, the channel in the range of the force to the center of the pipe is double affected by the turn-up. Therefore, for channels in this range, twice the measurement range (2f) is used as the correction value. Of course, the return from the first channel
prf  prf
生箇所までの範囲の各チャネルに対しても、測定範囲 f を補正値として用いて補正  For each channel in the range up to the raw location, the measurement range f is used as a correction value for correction.
prf  prf
を行う。  I do.
[0017] また、上記構成のパルスドップラー式超音波流量計にお!、て、例えば、前記ドッブ ラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネルを判別する と共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否かを判定し 、前記第 1チャネルが折り返しの影響を受けていない場合であって、前記折り返しの 発生箇所が複数存在する場合には、該第 1チャネルから 1番目の前記折り返しの発 生箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波数の計測値は補 正せず、前記 1番目の折り返しの発生箇所のチャネルから前記第 mチャネルまでの 範囲については、偶数番目の前記折り返しの発生箇所のチャネル力 奇数番目の 前記折り返しの発生箇所のチャネルまでの範囲については補正せず、奇数番目の 前記折り返しの発生箇所のチャネルから偶数番目の前記折り返しの発生箇所のチヤ ネルまでの範囲につ!、ては、該範囲内の各チャネルのドップラーシフト周波数の計 測値を、前記ドップラーシフト周波数の測定範囲を前記補正値として補正する。 [0017] Further, in the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs, and already in the first channel. It is determined whether or not the force is affected by the folding, and if the first channel is not affected by the folding and there are a plurality of places where the folding occurs, 1 is determined from the first channel. The measured value of the Doppler shift frequency of each channel in the range up to the channel where the first fold occurs is not corrected, and the range from the channel where the first fold occurs to the m-th channel is an even number. The channel force at the occurrence of the fold The range up to the channel where the fold occurs is not corrected, and the range from the odd number of the fold occurrence channel to the even number of the fold occurrence channel is! The measured value of the Doppler shift frequency of each channel is corrected using the measured range of the Doppler shift frequency as the correction value.
[0018] 上記の通り、ドップラーシフト周波数の絶対値は、管中央の方が管壁近傍よりも大き いので、管壁近傍力 管中央までのドップラーシフト周波数分布は、例えば流れが正 方向である場合には、基本的には増加していくものである力 局所的な流速変動が あった場合、部分的に減少する場合がある。この場合、折り返しの発生箇所が複数 存在する場合がある。上記構成では、流速の局所的な変動があった場合にも、問題 なぐドップラーシフト周波数の測定値を補正して、正しいドップラーシフト周波数分 布を得ることができる。 [0018] As described above, since the absolute value of the Doppler shift frequency is greater in the center of the tube than in the vicinity of the tube wall, the Doppler shift frequency distribution up to the tube center force, for example, near the tube wall is, for example, the flow is in the positive direction. In some cases, the force is basically increasing. If there is a local flow velocity fluctuation, it may decrease partially. In this case, there may be multiple places where wrapping occurs. With the above configuration, even when there is a local fluctuation in the flow velocity, it is possible to correct the measured value of the Doppler shift frequency without any problem and obtain a correct Doppler shift frequency distribution.
[0019] また、上記構成のパルスドップラー式超音波流量計にお!、て、例えば、前記ドッブ ラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネルを判別する と共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否かを判定し 、前記第 1チャネルが折り返しの影響を受けている場合であって、前記折り返しの発 生箇所が複数存在する場合には、該第 1チャネルから 1番目の前記折り返しの発生 箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波数の計測値を、前記 ドップラーシフト周波数の測定範囲を前記補正値として補正し、前記 1番目の折り返 しの発生箇所のチャネルから前記第 mチャネルまでの範囲については、偶数番目の 前記折り返しの発生箇所のチャネルから奇数番目の前記折り返しの発生箇所のチヤ ネルまでの範囲につ!、ては、該範囲内の各チャネルのドップラーシフト周波数の計 測値を、前記ドップラーシフト周波数の測定範囲を前記補正値として補正し、奇数番 目の前記折り返しの発生箇所のチャネル力 偶数番目の前記折り返しの発生箇所の チャネルまでの範囲については、該範囲内の各チャネルのドップラーシフト周波数の 計測値を、前記ドップラーシフト周波数の測定範囲の 2倍を前記補正値として補正す る。  [0019] Further, in the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and also already in the first channel. It is determined whether or not the force is influenced by folding, and when the first channel is affected by folding and there are a plurality of places where the folding occurs, the first channel is Correct the measured value of the Doppler shift frequency of each channel in the range up to the channel where the first aliasing occurs, using the measurement range of the Doppler shift frequency as the correction value, and the location where the first aliasing occurs For the range from the channel No. to the m-th channel, the odd-numbered aliasing loops from the channel where the folding occurs. For the range up to the channel where the occurrence occurred, the measured value of the Doppler shift frequency of each channel in the range is corrected using the measured range of the Doppler shift frequency as the correction value. Channel force at the place where the fold occurs For the range up to the channel where the fold occurs at the even number, the measured value of the Doppler shift frequency of each channel within the range is double the measurement range of the Doppler shift frequency. The correction value is corrected.
[0020] 上記構成にぉ 、ても、流速の局所的な変動があった場合にも、問題なぐドッブラ 一シフト周波数の測定値を補正して、正し 、ドップラーシフト周波数分布を得ることが できる。 [0020] Even in the above configuration, even when there is a local fluctuation in the flow velocity, it is possible to correct the measurement value of the problematic Doppler shift frequency and correct to obtain a Doppler shift frequency distribution. it can.
[0021] また、上記構成のパルスドップラー式超音波流量計にお!、て、例えば、前記ドッブ ラーシフト周波数分布補正手段は、更に、前記被測定流体の流れ方向を判別し、該 判別した流れ方向が正方向である場合には、前記補正は、前記各チャネルのドッブ ラーシフト周波数の計測値に、前記補正値を加算する処理とする。  [0021] Further, in the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured, and the determined flow direction. Is the positive direction, the correction is a process of adding the correction value to the measured value of the Doppler shift frequency of each channel.
[0022] 同様に、上記構成のパルスドップラー式超音波流量計にお!、て、例えば、前記ドッ ブラーシフト周波数分布補正手段は、更に、前記被測定流体の流れ方向を判別し、 該判別した流れ方向が負方向である場合には、前記補正は、前記各チャネルのドッ ブラーシフト周波数の計測値から、前記補正値を減算する処理とする。  Similarly, in the pulse Doppler type ultrasonic flowmeter having the above-described configuration, for example, the Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured, and determines the determination. When the flow direction is a negative direction, the correction is a process of subtracting the correction value from the measured value of the Doppler shift frequency of each channel.
[0023] 前記被測定流体の流れ方向の判別は、前記第 1チャネルから前記折り返しの発生 箇所のチャネルまでの範囲又は前記第 1チャネル力 前記ドップラーシフト周波数の 計測値が 0を跨ぐ箇所のチャネルまでの範囲における各チャネルのドップラーシフト 周波数の計測値の累積加算値又は平均値を算出し、該算出した累積加算値又は平 均値が正の値である場合には正方向、負の値の場合は負方向とするものである。  [0023] The flow direction of the fluid to be measured is determined from the range from the first channel to the channel where the folding occurs or the channel where the measured value of the first channel force and the Doppler shift frequency crosses zero. Calculate the cumulative addition value or average value of the measured values of the Doppler shift frequency of each channel in the range, and if the calculated cumulative addition value or average value is a positive value, the value is positive or negative. Is the negative direction.
[0024] 被測定対象が、例えば時間帯によって被測定流体の流れ方向が逆転するものであ る場合でも、上記構成により随時、人手を介することなく自動的に、流れ方向を判定 して、流れ方向に応じた補正処理を行うことができ、また、一台の流量計を設置する だけで対応できる。  [0024] Even when the object to be measured is one in which the flow direction of the fluid to be measured is reversed depending on, for example, the time zone, the flow direction is automatically determined without any human intervention at any time by the above configuration, and the flow Correction processing can be performed according to the direction, and it can be handled by installing only one flow meter.
[0025] 本発明のパルス'ドップラー式超音波流量計によれば、ドップラーシフト周波数が、 繰返し周波数によって決められる測定範囲を超える場合でも、補正処理を行うことで 、正しいドップラーシフト周波数分布を求めることができ、実質的にドップラーシフト周 波数の測定可能範囲を、繰返し周波数によって決められる測定範囲よりも大きくする ことができる。特に、ドップラーシフト周波数力 上記特許文献 2の方法を用いても測 定できないような値であっても、測定可能とすることができる。更に、正 Z負の何れか 一方にしか対応できないのではなぐ正 Z負の両方に対応できる。  According to the pulse Doppler ultrasonic flowmeter of the present invention, even when the Doppler shift frequency exceeds the measurement range determined by the repetition frequency, a correct Doppler shift frequency distribution can be obtained by performing correction processing. In effect, the measurable range of the Doppler shift frequency can be made larger than the measurement range determined by the repetition frequency. In particular, even if the Doppler shift frequency force is a value that cannot be measured using the method of Patent Document 2, it can be measured. Furthermore, it is possible to deal with both positive Z and negative as well as only one of positive Z and negative.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]パルスドップラー式超音波流量計の構成図である。  FIG. 1 is a block diagram of a pulse Doppler ultrasonic flow meter.
[図 2A]測定範囲を超えるドップラーシフト周波数の計測結果の一例である。 [図 2B]測定範囲を超えるドップラーシフト周波数の計測結果の一例である。 FIG. 2A is an example of a measurement result of a Doppler shift frequency exceeding the measurement range. FIG. 2B is an example of a measurement result of the Doppler shift frequency exceeding the measurement range.
[図 3A]測定範囲を超えるドップラーシフト周波数の計測結果の一例(その 1)である。  [Fig. 3A] An example (part 1) of the measurement result of the Doppler shift frequency exceeding the measurement range.
[図 3B]図 3Aの例についての流れ方向判定を示す図である。  FIG. 3B is a diagram showing flow direction determination for the example of FIG. 3A.
[図 3C]図 3Aの計測結果を周波数修正した例である。  [FIG. 3C] An example of frequency correction of the measurement result of FIG. 3A.
[図 3D]測定範囲を超えるドップラーシフト周波数の計測結果の一例(その 2)である。  [Fig. 3D] This is an example (part 2) of the measurement result of the Doppler shift frequency exceeding the measurement range.
[図 3E]図 3Dの例についての流れ方向判定を示す図である。 FIG. 3E is a diagram showing flow direction determination for the example of FIG. 3D.
[図 3F]図 3Dの計測結果を周波数修正した例である。 [FIG. 3F] An example of frequency correction of the measurement result of FIG. 3D.
[図 4A]測定範囲を超えるドップラーシフト周波数の計測結果の一例(その 3)である。  [Fig. 4A] An example (part 3) of the measurement result of the Doppler shift frequency exceeding the measurement range.
[図 4B]図 4Aの例につ 、ての流れ方向判定を示す図である。 FIG. 4B is a diagram showing the flow direction determination for the example of FIG. 4A.
[図 4C]図 4Aの計測結果を周波数修正した例である。 [FIG. 4C] An example of frequency correction of the measurement result of FIG. 4A.
[図 4D]測定範囲を超えるドップラーシフト周波数の計測結果の一例(その 4)である。  [Fig. 4D] An example of measurement results of the Doppler shift frequency exceeding the measurement range (No. 4).
[図 4E]図 4Dの例につ 、ての流れ方向判定を示す図である。  FIG. 4E is a diagram showing the flow direction determination for the example of FIG. 4D.
[図 4F]図 4Dの計測結果を周波数修正した例である。  [FIG. 4F] An example of frequency correction of the measurement result of FIG. 4D.
圆 5]流量算出処理全体を概略的に示すフローチャート図である。 [5] FIG. 5 is a flowchart schematically showing the entire flow rate calculation process.
[図 6]図 5のステップ S2の処理の詳細フローチャート図である。  FIG. 6 is a detailed flowchart of the process of step S2 of FIG.
[図 7]図 5のステップ S3の処理の詳細フローチャート図である。  FIG. 7 is a detailed flowchart of the process of step S3 of FIG.
[図 8]図 7のステップ S38の処理の詳細フローチャート図である。  FIG. 8 is a detailed flowchart of the process of step S38 of FIG.
[図 9]図 7のステップ S39の処理の詳細フローチャート図である。  FIG. 9 is a detailed flowchart of the process in step S39 of FIG.
[図 10]図 7のステップ S41の処理の詳細フローチャート図である。  FIG. 10 is a detailed flowchart of the process of step S41 of FIG.
[図 11]図 7のステップ S42の処理の詳細フローチャート図である。  FIG. 11 is a detailed flowchart of the process of step S42 of FIG.
圆 12A]測定範囲を超え且つ局所的な変動があるドップラーシフト周波数の計測結 果の一例である。 [12A] This is an example of a measurement result of the Doppler shift frequency that exceeds the measurement range and has local variations.
[図 12B]図 12Aの例につ 、ての流れ方向判定を示す図である。  FIG. 12B is a diagram showing the flow direction determination for the example of FIG. 12A.
[図 12C]図 12Aの計測結果を周波数修正した例である。 FIG. 12C is an example of frequency correction of the measurement result of FIG. 12A.
[図 13A]流体の流れ方向が変わる被測定対象の例である。 FIG. 13A is an example of a measurement object whose fluid flow direction changes.
[図 13B]流体の流れ方向が変わる被測定対象の例である。 FIG. 13B is an example of a measurement object whose fluid flow direction changes.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面を参照して本発明の実施の形態について説明する。 図 1は、本実施形態のパルスドップラー式超音波流量計の構成を示すブロック図で ある。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the pulse Doppler type ultrasonic flowmeter of the present embodiment.
[0028] 図示のパルスドップラー式超音波流量計は、超音波トランスジユーサ 1、ェミッタ 2、 発信器 3、増幅器 4、 AZD変換器 5、表示装置 6、及び CPU10より成る。  The illustrated pulse Doppler type ultrasonic flowmeter includes an ultrasonic transducer 1, an emitter 2, a transmitter 3, an amplifier 4, an AZD converter 5, a display device 6, and a CPU 10.
発信器 3から出力された周期信号が、ェミッタ 2に入力され、ェミッタ 2は、この周期 信号から、超音波トランスジユーサ 1に超音波パルスを送出させるための電気パルス を生成し、超音波トランスジユーサ 1に入力する。超音波トランスジユーサ 1は、この電 気パルスによって超音波パルスを配管の管壁を介して流体内に送出し、反射エコー を受信する。反射エコーは超音波トランスジユーサ 1によって電気信号に変換され、 増幅器 4で増幅される。増幅された電気信号及び発信器 3の周期信号 (すなわち送 信波と受信波の信号)は、 AZD変換器 5でデジタル信号に変換されて CPU10に入 力される。  The periodic signal output from the transmitter 3 is input to the emitter 2, and the emitter 2 generates an electrical pulse for causing the ultrasonic transducer 1 to transmit an ultrasonic pulse from the periodic signal, and the ultrasonic transformer. Enter into user 1. The ultrasonic transducer 1 sends an ultrasonic pulse into the fluid through the pipe wall by this electric pulse, and receives a reflected echo. The reflected echo is converted into an electrical signal by the ultrasonic transducer 1 and amplified by the amplifier 4. The amplified electrical signal and the periodic signal of the transmitter 3 (that is, the signal of the transmission wave and the reception wave) are converted into a digital signal by the AZD converter 5 and input to the CPU 10.
[0029] 超音波トランスジユーサ 1は、配管の管壁 7に設置されており、その反対側の管壁 8 に向けて超音波パルスを送信し、その途中にある(流体中に含まれ、流体の速度とほ ぼ同じ速度で移動する)気泡等の反射体 9によって反射される反射エコーを受信する  [0029] The ultrasonic transducer 1 is installed on the pipe wall 7 of the pipe, transmits an ultrasonic pulse toward the pipe wall 8 on the opposite side, and is in the middle (included in the fluid, Receives reflected echoes reflected by reflectors 9 such as bubbles (moving at approximately the same speed as the fluid)
[0030] CPU10は、ドップラー周波数分布計測部 11、周波数分布補正処理部 12、及び流 量演算処理部 13を有する。ドップラー周波数分布計測部 11は、各チャネルのドッブ ラーシフト周波数を計測することで、例えば図 2等に示すような、管壁 8から管中央ま での範囲のドップラー周波数分布を求める。すなわち、 AZD変 5から出力され る送信波と受信波のディジタル信号から、両者の周波数差を求める。周波数分布補 正処理部 12は、ドップラー周波数分布計測部 11によって求められた各チャネルのド ップラーシフト周波数より、配管の断面上 (実際には配管中央力 管壁 8 (反対側の 管壁)までの範囲)のドップラーシフト周波数の分布を求める。流量演算処理部 13は 、このドップラーシフト周波数分布に基づいて流速分布を求め、この流速分布に基づ いて流量を算出する。 The CPU 10 includes a Doppler frequency distribution measurement unit 11, a frequency distribution correction processing unit 12, and a flow rate calculation processing unit 13. The Doppler frequency distribution measurement unit 11 measures the Doppler shift frequency of each channel to obtain the Doppler frequency distribution in the range from the tube wall 8 to the center of the tube as shown in FIG. That is, the frequency difference between the transmission wave and the reception wave output from the AZD transformation 5 is obtained. The frequency distribution correction processing unit 12 uses the Doppler shift frequency of each channel obtained by the Doppler frequency distribution measurement unit 11 to calculate the cross section of the pipe (actually the pipe center force pipe wall 8 (the opposite pipe wall)). Range) Doppler shift frequency distribution. The flow rate calculation processing unit 13 obtains a flow velocity distribution based on the Doppler shift frequency distribution, and calculates a flow rate based on the flow velocity distribution.
[0031] 尚、ドップラー周波数分布計測部 11は、専用の回路によって実現してもよい。この 場合には、 AZD変翻 5の出力は、このドップラー周波数分布計測回路に入力され 、この回路によって得られたドップラー周波数分布力 CPU10に入力される。何れに しても、ドップラー周波数分布計測部 11や上記回路、及び流量演算処理部 13は、 既存の構成であるので、特に詳細には説明しな 、。 Note that the Doppler frequency distribution measurement unit 11 may be realized by a dedicated circuit. In this case, the output of AZD Transform 5 is input to this Doppler frequency distribution measurement circuit. The Doppler frequency distribution power obtained by this circuit is input to CPU10. In any case, the Doppler frequency distribution measurement unit 11, the above circuit, and the flow rate calculation processing unit 13 are existing configurations, and thus will not be described in detail.
[0032] 本発明の特徴は、周波数分布補正処理部 12にある。すなわち、従来の周波数分 布演算処理部では、流速が早い場合、すなわちドップラー 'シフト周波数が上記"繰 返し周波数 f によって決められる範囲(一 f /2〜f /2の範囲)"を越える部分がある A feature of the present invention resides in the frequency distribution correction processing unit 12. That is, in the conventional frequency distribution calculation processing unit, when the flow velocity is fast, that is, there is a portion where the Doppler shift frequency exceeds the range determined by the repetition frequency f (range of 1 f / 2 to f / 2). is there
prf prf prf  prf prf prf
場合には、 "折り返じ'が発生する為、求められたドップラーシフト周波数の分布が間 違ったものとなる。流速分布、流量は、このドップラーシフト周波数分布に基づいて算 出されるので、流速分布、流量の算出結果も間違ったものとなってしまうという問題が あった。本発明の周波数分布補正処理部 12では、 "折り返じ'が発生したドップラー シフト周波数分布を正しいものへと補正する。これによつて、 "折り返じ'が発生した場 合でも、正しぐ流速分布、流量を算出できる。  In this case, since the “folding” occurs, the distribution of the calculated Doppler shift frequency is wrong, and the flow velocity distribution and flow rate are calculated based on this Doppler shift frequency distribution. The frequency distribution correction processing unit 12 according to the present invention corrects the Doppler shift frequency distribution in which the “folding” has occurred to the correct one. . This makes it possible to calculate the correct flow velocity distribution and flow rate even when “turning” occurs.
[0033] ここで、上記"折り返じ'について説明する。  Here, the “folding” will be described.
図 2A、図 2Bに、 "折り返じ'が発生したときのドップラーシフト周波数分布を示す。  Figures 2A and 2B show the Doppler shift frequency distribution when "folding" occurs.
[0034] 図 2Aは流れが正方向、図 2Bは流れが負方向である場合の例を示す。尚、流れの 正、負とは、通常、図 1に示すように、超音波パルスの送信方向が流れの上流である 場合には流れは"正方向"、その逆である場合には流れは"負方向"であるものと区別 している。そして、通常は、ドップラーシフト周波数が正の値であれば"流れは正"、ド ップラーシフト周波数が負の値であれば"流れは負"であるものと識別できる。しかし、 "折り返じ'が発生した場合、図 2A,図 2Bに示す通り、ドップラーシフト周波数が正の 部分と負の部分の両方が存在する。詳しくは後述するが、図 2A,図 2Bの例では、管 壁 8近辺(チャネル 0〜チャネル iの範囲)のドップラーシフト周波数の値は正し!/、もの であり(折り返しは発生していない)、従って図 2Aでは管壁 8近辺のドップラーシフト 周波数は正であるので流れは正方向と判定でき、同様に図 2Bでは流れが負方向と 判定できる。 "折り返じ'が発生した場合の流れ方向の判定方法については後に説明 する。  FIG. 2A shows an example in which the flow is in the positive direction, and FIG. 2B shows an example in which the flow is in the negative direction. In addition, as shown in Fig. 1, the flow is positive or negative when the transmission direction of ultrasonic pulses is upstream of the flow, and the flow is normal when the flow direction is opposite. Distinguishes from “negative direction”. Usually, if the Doppler shift frequency is a positive value, it can be identified as “flow is positive”, and if the Doppler shift frequency is a negative value, it is identified as “flow is negative”. However, when "folding" occurs, there are both a positive part and a negative part of the Doppler shift frequency as shown in Fig. 2A and Fig. 2B. In the example, the value of the Doppler shift frequency near the pipe wall 8 (range from channel 0 to channel i) is correct! /, So that no wrapping occurs, so in Figure 2A the Doppler around the pipe wall 8 Since the shift frequency is positive, the flow can be determined as the positive direction, and similarly, the flow can be determined as the negative direction in Fig. 2B.The method of determining the flow direction when "folding" occurs will be described later.
[0035] 図 2Aの例では流れが正方向であるので、管壁 8近傍のチャネル 0力 管中央に向 かって徐々にドップラーシフト周波数の値が増大していき(上記の通り、管中央の方 が流速が早いので)、図示の任意のチャネル iにおけるドップラーシフト周波数がほぼ f /2となり、次のチャネル i+ 1のドップラーシフト周波数が f /2を越えた場合を示して prf prf [0035] In the example of Fig. 2A, since the flow is in the positive direction, the channel 0 force near the tube wall 8 gradually increases toward the center of the tube (as described above, the value of the Doppler shift frequency increases). Prf prf shows the case where the Doppler shift frequency in the channel i shown is almost f / 2, and the Doppler shift frequency of the next channel i + 1 exceeds f / 2
いる。この場合、図示の通り、チャネル i+ 1のドップラーシフト周波数は"折り返し"に よってほぼ—f /2となり、チャネル i+ 2以降のドップラーシフト周波数の値は、この—f  Yes. In this case, as shown in the figure, the Doppler shift frequency of channel i + 1 becomes approximately −f / 2 due to “folding”, and the value of the Doppler shift frequency after channel i + 2 is −f
prf  prf
/2から再び徐々に増加していく。すなわち、この例では、チャネル i+ 1から管中央 prf  It gradually increases again from / 2. That is, in this example, channel i + 1 to the center pipe prf
のチャネル mまでのチャネル範囲(i+ l〜m)カ '折り返し"の影響を受けており、その ドップラーシフト周波数の値は間違ったものとなっている。  The channel range up to channel m (i + l to m) is affected by 'folding', and the Doppler shift frequency value is wrong.
[0036] 図 2Bの例は、図 2Aとは逆に、管壁 8近辺のチャネルから管中央に向かって徐々に ドップラーシフト周波数の値が減少していき(流れは管中央が速いので絶対値として は増加していく)、— f /2を越えた場合には"折り返じ'によって f /2となり、そこから [0036] In the example of Fig. 2B, in contrast to Fig. 2A, the Doppler shift frequency value gradually decreases from the channel near the tube wall 8 toward the center of the tube (the absolute value of the flow is fast because the center of the tube is fast). As it increases, when it exceeds f / 2, it becomes f / 2 by "wrapping" and from there
prf prf  prf prf
減少していく。  It will decrease.
[0037] 図 3、図 4に、上記"折り返し"が発生したときのドップラーシフト周波数分布の例と、 これらを周波数分布補正処理部 12によって修正したドップラーシフト周波数分布の 例とを示す。  FIG. 3 and FIG. 4 show examples of Doppler shift frequency distributions when the above “folding” occurs and examples of Doppler shift frequency distributions corrected by the frequency distribution correction processing unit 12.
[0038] "折り返し"が発生したときのドップラーシフト周波数分布は、大別して、 4つのパター ンに分けられる。すなわち、図 3A、図 3D、図 4A、図 4Dに示す 4つのパターンがある 。このうち、図 3A、図 4Aは図 2A、図 2Bに示したものと同じである。すなわち、管壁 8 近傍のチャネルは"折り返じ'の影響を受けておらず、そのドップラーシフト周波数の 計測値は正しい値となっている力 そこから管中央のチャネル mまでの範囲の何処か で、 "折り返じ'が発生しており、この"折り返し"発生チャネル 管中央のチャネル mまでの範囲では、 "折り返じ'の影響を受けて、そのドップラーシフト周波数の計測 値が間違った値となって ヽるものである。  [0038] The Doppler shift frequency distribution when the “turnback” occurs is roughly divided into four patterns. That is, there are four patterns shown in FIGS. 3A, 3D, 4A, and 4D. Of these, FIGS. 3A and 4A are the same as those shown in FIGS. 2A and 2B. That is, the channel near the tube wall 8 is not affected by “folding”, and the measured value of the Doppler shift frequency is a correct value. Somewhere in the range from the channel to the channel m in the center of the tube. In the range up to the channel “m” in the center of the tube where “folding” occurs, the measured value of the Doppler shift frequency is incorrect due to the influence of “folding”. It's something that gets value.
[0039] 一方、図 3D、図 4Dには、管壁 8近傍のチャネル (チャネル 0等)で既に"折り返し" が発生しているパターンを示している。また、この例では、更に、チャネル i+ 1の直前 で"折り返し"が発生している。つまり、チャネル i+ 1〜チャネル mまでの範囲では、 " 折り返じ'の影響を二重に受けている。図 4Dも同様である。  On the other hand, FIGS. 3D and 4D show patterns in which “folding” has already occurred in a channel (channel 0 or the like) near the tube wall 8. Further, in this example, “folding” occurs immediately before channel i + 1. In other words, in the range from channel i + 1 to channel m, it is doubly affected by “folding.” The same applies to FIG.
[0040] 図 3 Aの周波数分布を周波数分布補正処理部 12によって修正したものが図 3Cで ある。同様に、図 3Dに対しては図 3F、図 4Aに対しては図 4C、図 4Dに対しては図 4 Fが、周波数分布補正処理部 12によって修正した周波数分布である。当然、修正後 の周波数分布が正しい内容である。 FIG. 3C shows the frequency distribution corrected by the frequency distribution correction processing unit 12 in FIG. 3A. Similarly, Figure 3F for Figure 3D, Figure 4C for Figure 4A, and Figure 4 for Figure 4D. F is the frequency distribution corrected by the frequency distribution correction processing unit 12. Naturally, the corrected frequency distribution is correct.
[0041] 図 3Cに示す通り、図 3Aに示す周波数分布は、チャネル 0〜チャネルほでは正し いが、チャネル i+ 1以降は間違いであり、本当はチャネル i+ 1以降は全て f /2を越 [0041] As shown in FIG. 3C, the frequency distribution shown in FIG. 3A is correct for channel 0 to channel, but is incorrect for channel i + 1 and later, and in fact for channel i + 1 and later, all exceed f / 2.
prf えており、更に管中央付近では f を越えており、 3Z2f に近い値となっている。よつ  Furthermore, it exceeds f near the center of the pipe, and is close to 3Z2f. Yotsu
prf prf  prf prf
て、特許文献 2の手法を用いても、 f を越えた部分については"折り返じ'が発生して  Thus, even if the method of Patent Document 2 is used, “folding” occurs in the portion beyond f.
prf  prf
しまい、ドップラーシフト周波数分布は間違った内容となり、流量計測結果は間違つ た値となる。  As a result, the Doppler shift frequency distribution is incorrect and the flow rate measurement result is incorrect.
[0042] 周波数分布補正処理部 12では、まず、上記 4つのパターンの何れに該当するかを 判定し、該当したパターン用の修正処理を実行することで、間違った周波数分布を 正しいものへと修正する。  [0042] The frequency distribution correction processing unit 12 first determines which of the above four patterns corresponds, and executes correction processing for the corresponding pattern, thereby correcting the wrong frequency distribution to the correct one. To do.
[0043] 図 3Aに示す周波数分布を修正する場合には、基本的には、 "折り返じ'が発生した 箇所(チャネル i+ 1)を求め、このチャネル i+ 1以降の全てのチャネル(チャネル i+ 1 〜管中央のチャネル mまで)のドップラーシフト周波数に f を加算すればよい(これは  [0043] When the frequency distribution shown in FIG. 3A is corrected, basically, the portion where the “folding” occurs (channel i + 1) is obtained, and all channels after this channel i + 1 (channel i +) are obtained. Add f to the Doppler shift frequency (from 1 to the channel m in the middle of the tube)
prf  prf
、図 4Aのパターンでも同様である。但し、「加算」ではなく「減算」となる)。但し、後に 説明する処理例のように、局所的な変動にも対応できるようにすることが望ま 、。  The same applies to the pattern of FIG. 4A. However, “addition” is not “subtraction”). However, it is desirable to be able to cope with local fluctuations, as in the processing example described later.
[0044] "折り返じ'発生箇所のチャネルは、例えば図 3Bに示すように、前のチャネル iとの 差が f /2以上であることを以つて、求めることができる。上記の通り、チャネル iとチヤ prf [0044] The channel where the “folding” occurs can be determined by the fact that the difference from the previous channel i is f / 2 or more, as shown in FIG. Channel i and chir prf
ネル i+ 1との周波数差は、非常に大きい値(ほぼ f 程度)であり、且つ隣のチャネル  The frequency difference from the channel i + 1 is very large (approximately f) and the adjacent channel
ρπ  ρπ
との周波数差カ^ /2以上となることは通常あり得ない("折り返し"が発生したときだけ  It is usually not possible to have a frequency difference of more than ^ / 2 (only when "folding" occurs)
prf  prf
)からである。よって、当然、 "折り返じ'発生箇所判定の為の閾値は、「f /2以上」に  ) Therefore, of course, the threshold for judging the occurrence of “folding” should be “f / 2 or more”.
prf  prf
限らず、通常はあり得ない値であれば何でもよい(例えば「2f /3以上」等)。これは、  Any value is possible as long as it is not normally possible (for example, “2f / 3 or more”). this is,
prf  prf
他のパターンにおいても同様である(図 3E、図 4B、図 4Eに示す通り)。  The same applies to other patterns (as shown in FIGS. 3E, 4B, and 4E).
[0045] 一方、図 3D、図 4Dのパターンの場合には、チャネル 0〜チャネル iの部分も"折り 返し"の影響を受けた値となっている。更に、チャネル i+ 1〜チャネル mの部分は、 2 回分の"折り返じ'の影響を受ける。これより、図 3Dの場合、基本的には、チャネル 0 〜チャネル iの部分のドップラーシフト周波数には f を加算し、チャネル i+ 1〜チヤネ On the other hand, in the case of the patterns of FIGS. 3D and 4D, the channel 0 to channel i values are also affected by the “turnback”. Further, the channel i + 1 to the channel m are affected by “folding” twice, so that in the case of FIG. 3D, the Doppler shift frequency of the channel 0 to the channel i is basically changed. Adds f, channel i + 1 to channel
prf  prf
ル mの部分のドップラーシフト周波数には 2 Xf を加算すればよい。但し、後に説明 する処理例のように、局所的な変動にも対応できるようにすることが望ましい。これに よって、図 3Fに示すドップラーシフト周波数分布が得られる。図 4Dの場合も同様で あるが、「加算」ではなく「減算」となる。 Add 2 Xf to the Doppler shift frequency of the part m. However, later explained It is desirable to be able to cope with local fluctuations as in the processing example. As a result, the Doppler shift frequency distribution shown in FIG. 3F is obtained. The same is true for Figure 4D, but “subtraction”, not “addition”.
[0046] 図 3Fに示す通り、管中央のチャネル mのドップラーシフト周波数は、 3f /2を越えて [0046] As shown in FIG. 3F, the Doppler shift frequency of the channel m at the center of the tube exceeds 3f / 2.
prf  prf
おり、従来技術では (特許文献 2の手法を用いても)測定できな 、ものである。  Therefore, the conventional technology cannot measure (even using the method of Patent Document 2).
以上述べたように、本例のパルスドップラー式超音波流量計によれば、流速が非常 に早い為に、ドップラーシフト周波数の値力 Sパルス繰返し周波数 f によって決められ  As described above, according to the pulse Doppler ultrasonic flowmeter of this example, since the flow velocity is very fast, it is determined by the Doppler shift frequency value force S pulse repetition frequency f.
prf  prf
る測定範囲を大幅に超える場合でも(2倍以上、 3倍以上)、計測されたドップラーシ フト周波数分布を補正することで、正し 、流速 ·流量算出結果が得られるようになる。  Even if the measurement range is greatly exceeded (more than 2 times or more than 3 times), the flow velocity / flow rate calculation result can be obtained correctly by correcting the measured Doppler shift frequency distribution.
[0047] 以上、周波数分布補正処理部 12による処理について概略的に説明した力 以下、 図 5〜図 11に示すフローチャート図を用いて詳細に説明する。尚、概略的に説明し た処理、及び図 5〜図 11に示すフローチャート図の処理は、不図示のメモリ(ROM、 フラッシュメモリ等)に格納された所定のアプリケーションプログラムや閾値等の各種 設定値を、 CPU10が読出し'実行することにより実現される。これは、ドップラーシフト 周波数分布の算出処理や流速 ·流量算出処理につ!、ても同様である。  [0047] The force schematically described above for the processing by the frequency distribution correction processing unit 12 will be described in detail below with reference to the flowcharts shown in Figs. Note that the processing described schematically and the processing in the flowcharts shown in FIGS. 5 to 11 are various set values such as predetermined application programs and threshold values stored in a memory (ROM, flash memory, etc.) not shown. Is realized by the CPU 10 'reading' and executing. The same applies to the Doppler shift frequency distribution calculation process and the flow velocity / flow rate calculation process.
[0048] 図 5は、 CPU10による流量算出処理全体を概略的に示すフローチャート図である 図 5に示す通り、 CPU10においては、まず、ドップラー周波数分布計測部 11によ つて各チャネルのドップラーシフト周波数が算出され (ステップ S1)、続いて周波数分 布補正処理部 12によって、まず流れ方向等を求めることで上記 4つのパターンの何 れに該当するかを判定し (ステップ S2)、判定したパターン用の処理フローを用いて 周波数シフト処理を実行することで (ステップ S3)、ドップラーシフト周波数分布を"折 り返し"の影響を排した正し 、ものへと修正する。  FIG. 5 is a flowchart schematically showing the entire flow rate calculation processing by the CPU 10. As shown in FIG. 5, in the CPU 10, first, the Doppler frequency distribution measuring unit 11 determines the Doppler shift frequency of each channel. After being calculated (step S1), the frequency distribution correction processing unit 12 first determines which of the above four patterns corresponds to the flow direction etc. by determining the flow direction (step S2). By executing the frequency shift process using the processing flow (step S3), the Doppler shift frequency distribution is corrected and corrected to eliminate the influence of “folding”.
[0049] その後は、修正されたドップラーシフト周波数分布を用いて、流量演算処理部 13に よって、従来通りの流速演算処理 (ステップ S4)、流量演算処理 (ステップ S5)を行え ば、流体の流速が測定範囲を超えるような状況であっても正しく流速 ·流量を算出で きる。 [0049] After that, if the conventional flow rate calculation process (step S4) and flow rate calculation process (step S5) can be performed by the flow rate calculation processing unit 13 using the modified Doppler shift frequency distribution, the flow velocity of the fluid The flow velocity / flow rate can be calculated correctly even when the measurement exceeds the measurement range.
[0050] 図 6は、上記ステップ S2の流れ方向判定処理の詳細フローチャート図である。 図 6の処理では、まず、壁直近チャネルを現チャネルとする。すなわち、まず、壁直 近チャネルをステップ S 12〜S 15の処理の対象とする。壁直近チャネルとは上記管 壁 8に最も近いチャネル 0である。その後は、チャネル 1、チャネル 2、 · · ·というように 、管壁 8直近のチャネル 0から管中央のチャネル mまでの全てのチャネルにつ!/、て、 順次、各チャネルを処理対象として、ステップ S12〜S 15の処理を繰り返し実行する (ステップ S16, S17)。すなわち、処理対象チャネルをチャネル i (i=0〜m)とし、最 初は i=0とし、ステップ S17で i=i+ lの処理を行いながら、 i=mとなるまで、ステップ S 12〜S 15の処理を繰り返し実行する。 FIG. 6 is a detailed flowchart of the flow direction determination process in step S2. In the processing of Fig. 6, first, the channel closest to the wall is set as the current channel. That is, first, the channel closest to the wall is set as an object of processing in steps S12 to S15. The channel closest to the wall is channel 0 that is closest to the wall 8 above. After that, all the channels from the channel 0 closest to the tube wall 8 to the channel m at the center of the tube, such as channel 1, channel 2, etc.! Steps S12 to S15 are repeatedly executed (steps S16 and S17). In other words, the channel to be processed is channel i (i = 0 to m), i = 0 at the beginning, and i = i + 1 is performed in step S17 until i = m. Repeat step 15.
[0051] ステップ S12〜S15の処理について説明する。この処理は、基本的には、上記"折 り返じ'発生箇所を求めて記録しておく処理である。まず、現チャネルと次チャネルの ドップラーシフト周波数の差分 Piを計算し (次チャネル i+ 1のドップラーシフト周波数 現チャネル iのドップラー周波数)、これを現チャネル iに関する差分値 pとする (ステ ップ S12)。そして、この差分値 pの絶対値が所定の閾値 (上記の通り、ここでは f /2 [0051] Processing in steps S12 to S15 will be described. This process is basically a process of finding and recording the “folding” occurrence point.First, the difference Pi of the Doppler shift frequency between the current channel and the next channel is calculated (the next channel i + The Doppler shift frequency of 1 is the Doppler frequency of the current channel i, and this is the difference value p for the current channel i (Step S12), and the absolute value of this difference value p is a predetermined threshold (as described above, here Then f / 2
1 prf とする)以上の場合は (ステップ S13, YES)、次チャネル i+ 1に対応する位相変位フ ラグを ONにし (ステップ S14)、閾値未満である場合には (ステップ S13, NO)、次チ ャネル i+ 1に対応する位相変位フラグは OFFのままとする(ステップ S 15)。尚、特に 図示しな!、が、予め各チャネル毎に位相変位フラグを対応付けた第 1のテーブルを 用意しており、デフォルトでは全ての位相変位フラグは OFFとなっている。また、上記 差分値 Pは一時的に記憶しておく。また、既に述べた通り、上記閾値は f /2に限るも  1 prf) or higher (step S13, YES), turn on the phase displacement flag corresponding to the next channel i + 1 (step S14), and if it is below the threshold (step S13, NO), The phase displacement flag corresponding to channel i + 1 is kept OFF (step S15). Although not shown in particular, a first table in which a phase displacement flag is associated with each channel is prepared in advance. All phase displacement flags are OFF by default. The difference value P is temporarily stored. Also, as already mentioned, the above threshold is limited to f / 2.
1 ρπ  1 ρπ
のではなぐ "折り返じ'が発生した場合以外では通常起こり得な!/、値であれば何でも よい。  This is usually not possible except when "wrapping" occurs! Any value is acceptable.
[0052] 尚、次チャネルとは、現チャネルの管中央方向での隣のチャネルである。  Note that the next channel is a channel adjacent to the current channel in the center of the tube.
以上述べた処理によって上記第 1のテーブルを作成'更新することで、その位相変位 フラグが ONであるチャネル力 "折り返じ'発生箇所であることが分かる。  By creating and updating the first table by the processing described above, it can be seen that the channel force “folding” is generated where the phase displacement flag is ON.
[0053] 次に、再び、管壁 8直近のチャネル 0を現チャネルとし (ステップ S 18)、上記処理と 同様にこのチャネル 0から管中央のチャネル mまでの全てのチャネルを順次処理対 象としながら (ステップ S21, S22)、ステップ S19、 S20の処理を繰り返し実行する。 尚、図には示していないが、ステップ S18の処理の際に、上記差分値 pの累積加算 値を示す変数 Pを初期化 (P = 0)とする。 [0053] Next, again, channel 0 closest to tube wall 8 is set as the current channel (step S18), and all channels from channel 0 to channel m at the center of the tube are sequentially processed in the same manner as in the above processing. However (steps S21 and S22), the processes of steps S19 and S20 are repeatedly executed. Although not shown in the figure, during the processing of step S18, the cumulative addition of the difference value p is performed. The variable P indicating the value is initialized (P = 0).
[0054] ステップ S19, S20の処理は、まず、上記第 1のテーブルを参照して、現在の処理 対象チャネル iの次チャネル i+ 1に対応する位相変位フラグが OFFか否かを判定し( ステップ S19)、 ONである場合には(ステップ S19, NO)何も処理を行わず、 OFFで ある場合には (ステップ S19, YES)、この現チャネル iの上記差分値 pを上記変数 P に加算する(P = P + P )処理を行う(ステップ S 20)。  In the processing of steps S19 and S20, first, referring to the first table, it is determined whether or not the phase displacement flag corresponding to the next channel i + 1 of the current processing target channel i is OFF (step If it is ON (step S19, NO), no processing is performed. If it is OFF (step S19, YES), the difference value p of the current channel i is added to the variable P. (P = P + P) is performed (step S20).
[0055] チャネル 0からチャネル mまでの全てのチャネルについて上記ステップ S 19, S20 の処理を実行したら (ステップ S21, YES)、上記変数 Pが正力負かによって現在の 測定対象流体の流れ方向を判定する。すなわち、変数 P (差分値 pの累積加算値) が正の場合には (ステップ S23, YES)、流れは正方向であると判定し (ステップ S24 )、変数 Pが負である場合には (ステップ S23, NO)、流れは負方向であると判定する (ステップ S25)。  [0055] When the processing of steps S19 and S20 is executed for all channels from channel 0 to channel m (step S21, YES), the current flow direction of the fluid to be measured is determined depending on whether the variable P is positive or negative. judge. That is, if variable P (cumulative addition of difference value p) is positive (step S23, YES), the flow is determined to be positive (step S24), and if variable P is negative (step S23) In step S23, NO), it is determined that the flow is in the negative direction (step S25).
[0056] 上記ステップ S19の判定が NOである場合にはそのチャネルの差分値 ϋは変数 Ρに 加算しないので、 "折り返じ'による影響を排除しており、上記変数 Ρによって問題なく 流れ方向を判定できる。すなわち、上述してある通り、管壁近くよりも管中央の方が流 れが速いものであり、例えば正方向の流れであった場合には、基本的には、現チヤ ネルよりも次チャネルの方が流れが速い(つまり、ドップラーシフト周波数が大きい)の で、上記差分値 p.は基本的には正の値となる(これは、 "折り返じ'の影響を受けてい る範囲でも基本的には正の値となる)。但し、場合によっては、後に図 12に示すよう に、局所的な流速変動によって部分的に上記差分値 が負の値となる箇所が発生す る可能性がある為、上記の通り、累積加算値により正 Z負を判断している。更に、 "折 り返し"箇所では差分値 Pは大きなマイナス(ほぼ—f )になるので、ステップ S19で"  [0056] When the determination in step S19 is NO, the difference value ϋ of the channel is not added to the variable Ρ, so the influence of “folding” is eliminated, and the flow direction without any problem due to the variable Ρ That is, as described above, the flow is faster in the center of the tube than in the vicinity of the tube wall. Since the flow of the next channel is faster than that of the next channel (that is, the Doppler shift frequency is large), the above difference value p. Is basically a positive value (this is influenced by “folding”). Even within this range, it is basically a positive value). However, in some cases, as shown in Fig. 12, there is a possibility that a part where the above difference value becomes a negative value partially due to local flow velocity fluctuations. Judges positive Z negative. Furthermore, since the difference value P becomes a large minus (almost –f) at the “turnback” location, in step S19 “
1 prf  1 prf
折り返じ'箇所の差分値を除外して 、るので、正方向の流れであれば変数 Pの値は 必ず正の値となる。  Since the difference value at the “turn-back” part is excluded, the value of the variable P is always positive if the flow is in the positive direction.
[0057] 尚、流れが負方向の場合には、上記正方向の場合と逆であると考えればよい。つま り、この場合も当然、管壁近くよりも管中央の方が流れが速い (よって、上記差分値 p の絶対値は、管中央の方が大きい)が、流れが負方向であることから、基本的には管 壁直近力 管中央に向けて各チャネルのドップラーシフト周波数は減少していくこと になるので、上記差分値 は(上記一部の変動部分を除けば)負の値となり、よって 変数 Pも負の値となる。 [0057] It should be noted that when the flow is in the negative direction, it can be considered to be the reverse of the case of the positive direction. In other words, in this case, naturally, the flow is faster in the center of the tube than near the tube wall (therefore, the absolute value of the difference value p is larger in the center of the tube), but the flow is in the negative direction. Basically, the force closest to the tube wall The Doppler shift frequency of each channel decreases toward the center of the tube. Therefore, the difference value is a negative value (except for some of the above fluctuations), so the variable P is also a negative value.
[0058] 上記処理によって、 "折り返じ'が発生している場合や局所的な流速変動が生じて V、る場合でも、間違 、なく流れ方向を判定できる。  [0058] According to the above processing, even when "turning" occurs or when a local flow velocity fluctuation occurs and V, the flow direction can be determined without error.
上記図 6の流れ方向判定処理が終了したら、続いて、図 5のステップ S3の周波数シ フト処理を実行する。  When the flow direction determination process in FIG. 6 is completed, the frequency shift process in step S3 in FIG. 5 is subsequently executed.
[0059] 図 7に、この周波数シフト処理の詳細フローチャート図を示す。  FIG. 7 shows a detailed flowchart of the frequency shift process.
上記処理によって流れ方向が判別できたことで、例えば流れが方向である場合に は、図 3Aか図 3Dの何れかのパターンであることが分かる。図 3Aか図 3Dかは、上述 してある通り、処理開始チャネルである(処理の基準となる)管壁 8直近のチャネル 0 において、既に"折り返じ'の影響を受けている力否かによって判別できる。図 7の処 理では、上記流れ方向の判別結果に加えて、管壁 8直近のチャネル 0において既に "折り返し"の影響を受けている力否かを判別することによって、上記 4つのパターン のどれに該当するのかを判定し、この判定結果に応じて図 7のステップ S38、 S39、 S 41、 S42の何れかの処理を実行するものである。そして、ステップ S38の詳細フロー チャートを図 8に示し、ステップ S39の詳細フローチャートを図 9に示し、ステップ S41 の詳細フローチャートを図 10に示し、ステップ S42の詳細フローチャートを図 11に示 してある。  Since the flow direction can be determined by the above processing, for example, when the flow is in the direction, it can be seen that the pattern is one of FIGS. 3A and 3D. 3A or 3D, as described above, whether or not the force that has already been affected by “folding” in the channel 0 nearest to the tube wall 8 that is the processing start channel (the processing reference). In the process of Fig. 7, in addition to the result of determining the flow direction described above, it is determined whether or not the force has already been affected by the "turnback" in the channel 0 closest to the pipe wall 8. It is determined which one of the two patterns is applicable, and according to the determination result, one of steps S38, S39, S41, and S42 of Fig. 7 is executed, and a detailed flow chart of step S38 FIG. 9 shows a detailed flowchart of step S39, FIG. 10 shows a detailed flowchart of step S41, and FIG. 11 shows a detailed flowchart of step S42.
[0060] 図 7の処理では、壁直近のチャネル力 位相変位フラグが ONであるチャネルまで の範囲のドップラーシフト周波数の平均値を求め、あるいは壁直近からドップラーシ フト周波数が 0を跨ぐまでの範囲のドップラーシフト周波数の平均値を求める。  [0060] In the process of FIG. 7, the average value of the Doppler shift frequency in the range up to the channel where the channel force phase displacement flag closest to the wall is ON, or the range from the closest wall to the Doppler shift frequency crossing 0 is obtained. The average value of the Doppler shift frequency is obtained.
[0061] すなわち、まず、管壁 8直近のチャネル 0を現チャネル(処理対象チャネル)とし (ス テツプ S31)、このチャネル 0から管中央に向けてチャネル 1, 2, 3、 · ·というように順 次、各チャネルを処理対象チャネルとしながら (ステップ S35)、その位相変位フラグ が ONであるチャネルが現チャネルとなるまで、又はドップラーシフト周波数が 0を跨 ぐまで(すなわち、ステップ S32で NOとなる力ステップ S34で YESとなるまで)、各チ ャネルのドップラーシフト周波数を順次累積加算していく(ステップ S33)。すなわち、 チャネル iのドップラーシフト周波数を f とし、ドップラーシフト周波数の累積加算値を 示す変数を Qとし、ステップ S31の際に変数 Qを初期化 (Q = 0)とすると、ステップ S3 3の処理は Q = Q+f となる。 [0061] That is, first, channel 0 closest to the wall 8 is defined as the current channel (channel to be processed) (step S31), and channel 1, 2, 3,... Sequentially, each channel is set as a processing target channel (step S35), and until the channel whose phase displacement flag is ON becomes the current channel or until the Doppler shift frequency exceeds 0 (that is, NO in step S32). Until it becomes YES in step S34), the Doppler shift frequency of each channel is cumulatively added (step S33). That is, let the Doppler shift frequency of channel i be f and the cumulative addition value of the Doppler shift frequency be If the variable shown is Q and the variable Q is initialized (Q = 0) in step S31, the process of step S33 is Q = Q + f.
fdi  fdi
[0062] 尚、上記ドップラーシフト周波数が 0を跨 、だ力否かの判定方法は、例えば、現チヤ ネル iのドップラーシフト周波数と次チャネル i+ 1のドップラーシフト周波数とを比較し て、一方が正の値、他方が負の値である場合には、ドップラーシフト周波数が 0を跨 いだと判定する。  [0062] It should be noted that the determination method of whether or not the Doppler shift frequency crosses over 0 is, for example, by comparing the Doppler shift frequency of the current channel i with the Doppler shift frequency of the next channel i + 1. If the value is positive and the other is negative, it is determined that the Doppler shift frequency has crossed zero.
[0063] 上記処理によって求められる変数 (累積加算値) Qの値は、図 3の例では、もし図 3 Aのパターンであった場合には、図示の範囲 Aにおける各チャネルのドップラーシフ ト周波数の累積加算値 Qが求められることになる。すなわち、この場合はステップ S3 2で NOとなり、チャネル 0力ら、位相変位フラグが ONであるチャネル i+ 1の直前のチ ャネルほでの範囲 Aの各チャネルのドップラーシフト周波数の累積加算値 Qが求め られることになる。また、もし図 3Dのパターンであった場合には図示の範囲 Eにおけ る各チャネルのドップラーシフト周波数の累積加算値 Qが求められることになる。すな わち、この場合には、ステップ S34で YESとなり、チヤネノレ 0力ゝら、ドップラーシフト周 波数が 0を跨ぐ直前のチャネルまでの各チャネルのドップラーシフト周波数の累積カロ 算値 Qが求められることになる。  [0063] The variable (accumulated addition value) Q obtained by the above processing is the Doppler shift frequency of each channel in the range A shown in the example of Fig. 3 if the pattern of Fig. 3A is used. The cumulative addition value Q of is obtained. In other words, in this case, NO is determined in step S3 2, and the accumulated addition value Q of the channel Doppler shift frequency of each channel in the range A is about the channel 0 force and the channel i + 1 immediately before the channel i + 1 where the phase displacement flag is ON. It will be required. If the pattern shown in FIG. 3D is used, the cumulative addition value Q of the Doppler shift frequencies of each channel in the range E shown in the figure is obtained. In other words, in this case, YES is obtained in step S34, and the accumulated calorific value Q of the Doppler shift frequency of each channel up to the channel immediately before the Doppler shift frequency crosses 0 is obtained. It will be.
[0064] 図 3A、図 3Dを見れば明らかなように、図 3Aの場合には累積加算値 Qは正の値と なり、図 3Dの場合には累積加算値 Qは負の値となる。図 3Aのようなパターンの場合 、既に述べたように、管壁 8直近のチャネル 0から"折り返じ'発生箇所直前のチヤネ ルほでの範囲 Aのドップラーシフト周波数の計測値は、正しい("折り返じ'の影響を 受けていない)値であるので、正の値となる。但し、局所的な変動によって部分的にド ップラーシフト周波数が負となるチャネルが存在する可能性を考慮して、範囲 A全体 の累積加算値を求めている (よって、変数 Qは、累積加算値に限らず、例えば平均値 等であってもよい)。  As apparent from FIGS. 3A and 3D, in the case of FIG. 3A, the cumulative addition value Q is a positive value, and in the case of FIG. 3D, the cumulative addition value Q is a negative value. In the case of the pattern shown in Fig. 3A, as already mentioned, the measured value of the Doppler shift frequency in the range A from the channel 0 immediately before the tube wall 8 to the channel just before the “folding” occurrence point is correct ( Since it is a value that is not affected by “wrapping”, it is a positive value. However, taking into account the possibility that some channels have a negative Doppler shift frequency due to local fluctuations, the cumulative addition value for the entire range A is obtained (therefore, the variable Q is added to the cumulative addition value). For example, it may be an average value).
[0065] 一方、図 3Dのパターンの場合、図示の範囲 Bの領域(管壁 8直近のチャネル 0から "折り返じ'発生箇所直前のチャネルほでの範囲)も"折り返じ'の影響を受けてドッブ ラーシフト周波数が間違った値となり、更にこの様な場合特に比較的流速が低い管 壁 8近傍の領域(図示の範囲 E)の各チャネルのドップラーシフト周波数は、通常、図 示の通り、流れ方向が正であるにも係わらず、負の値となることが分力つている。 [0065] On the other hand, in the case of the pattern of FIG. 3D, the region of the range B shown in the figure (the range from the channel 0 immediately adjacent to the tube wall 8 to the channel just before the “turn-back” occurrence point) is also affected by Therefore, the Doppler shift frequency becomes wrong, and in such a case, the Doppler shift frequency of each channel in the region near the wall 8 (range E in the figure) where the flow velocity is relatively low is usually shown in the figure. As shown, although the flow direction is positive, a negative value is a component.
[0066] 図 4A、図 4Dのパターンは、その逆に、管壁 8近傍の領域が"折り返し"の影響を受 けて 、な 、場合には変数 Qは負の値となり、 "折り返し"の影響を受けて 、る場合には 変数 Qは正の値となる。  [0066] On the other hand, in the patterns of FIGS. 4A and 4D, the region near the tube wall 8 is affected by the “turnback”. In this case, the variable Q becomes a negative value, and the “turnback” When affected, the variable Q is positive.
[0067] これより、流れが正方向であり(ステップ S36, YES)且つ上記変数 Qが正の値であ る場合には (ステップ S37, NO)、図 3Aのパターンに対応したドップラーシフト周波 数の修正処理 (処理 a)を実行する (ステップ S38)。同様に、流れが正方向であり(ス テツプ S36, YES)且つ上記変数 Qが負の値である場合には(ステップ S37, YES) , 図 3Dのパターンに対応したドップラーシフト周波数の修正処理 (処理 b)を実行する( ステップ S39)。同様に、流れが負方向であり(ステップ S36, NO)且つ上記変数 Qが 正の値である場合には(ステップ S40, YES) ,図 4Dのパターンに対応したドップラ 一シフト周波数の修正処理 (処理 d)を実行する (ステップ S42)。同様に、流れが負 方向であり(ステップ S36, NO)且つ上記変数 Qが負の値である場合には (ステップ S40, NO)、図 4Aのパターンに対応したドップラーシフト周波数の修正処理(処理 c )を実行する (ステップ S41)。  [0067] From this, when the flow is in the positive direction (step S36, YES) and the variable Q is a positive value (step S37, NO), the Doppler shift frequency corresponding to the pattern of FIG. 3A. The correction process (process a) is executed (step S38). Similarly, if the flow is in the positive direction (step S36, YES) and the variable Q is negative (step S37, YES), the Doppler shift frequency correction process corresponding to the pattern in FIG. 3D ( Process b) is executed (step S39). Similarly, when the flow is in the negative direction (step S36, NO) and the variable Q is a positive value (step S40, YES), the Doppler shift frequency correction process corresponding to the pattern of FIG. 4D ( Process d) is executed (step S42). Similarly, when the flow is in the negative direction (step S36, NO) and the variable Q is negative (step S40, NO), the Doppler shift frequency correction process (process) corresponding to the pattern in FIG. 4A is performed. c) is executed (step S41).
[0068] 以下、図 8〜図 11を参照して、上記処理 a, b, c, dについて詳細に説明する。  Hereinafter, the processes a, b, c, and d will be described in detail with reference to FIGS.
まず、図 8に示す処理 aの詳細フローチャートについて説明する。すなわち、流れが 正方向で且つ管壁 8近傍の領域力 折り返じ'の影響を受けて 、な 、場合のドッブラ 一シフト周波数の修正処理にっ 、て説明する。  First, a detailed flowchart of process a shown in FIG. 8 will be described. That is, the correction process of the Doppler shift frequency in the case where the flow is in the positive direction and is affected by the area force folding near the tube wall 8 will be described.
[0069] 図 8の処理では、まず、レンジ周波数 Rを初期化する(R=0) (ステップ S51)。レン ジ周波数 Rとは、ドップラーシフト周波数の補正量を意味する。図 3Aの例の場合、上 述してある通り、図示の範囲 Aについては補正する必要はないので R=0とし、 "折り 返し"の影響を受けている図示の範囲 Cに関しては、各チャネルのドップラーシフト周 波数に一律 f を加算すればよいので、ステップ S56でレンジ周波数 Rを f にしている  In the process of FIG. 8, first, the range frequency R is initialized (R = 0) (step S51). Range frequency R means the amount of correction for the Doppler shift frequency. In the case of the example in FIG. 3A, as described above, there is no need to correct the range A shown in the figure, so R = 0, and for the range C shown in FIG. Since it is only necessary to add f uniformly to the Doppler shift frequency, the range frequency R is set to f in step S56.
prf prf  prf prf
[0070] また、ステップ S51では、位相変位済みフラグを OFFに設定する。この位相変位済 みフラグ及びステップ S54〜S56の処理は、図 3Aのような例の場合には必要ない。 しかしながら、局所的な変動によって、図 3Aのケースが、例えば図 12Aに示す状態 になる場合もある。図 12Aの例では、範囲 C内における任意の範囲 Fが、局所的な変 動によってドップラーシフト周波数の値が部分的に減少した為に再び測定範囲内の 値 (ここでは f /2未満)となっている。この場合、範囲 Fにおけるドップラーシフト周波 [0070] In step S51, the phase-displaced flag is set to OFF. This phase-shifted flag and the processing in steps S54 to S56 are not necessary in the case of the example shown in FIG. 3A. However, due to local variations, the case in Figure 3A can be Sometimes it becomes. In the example of Fig. 12A, an arbitrary range F within the range C becomes a value within the measurement range (here, less than f / 2) because the value of the Doppler shift frequency is partially reduced due to local variation. It has become. In this case, the Doppler shift frequency in range F
prf  prf
数の値は正しいので、修正する必要はない。この様な状況から、現チャネルが修正 する必要があるものである力否かを区別する為に、位相変位済みフラグを用いる。  The number value is correct and does not need to be corrected. From this situation, the phase-shifted flag is used to distinguish whether the current channel is a force that needs to be corrected.
[0071] 但し、ここでは、図 8の処理の説明の前に、まず、局所的な変動を考慮しない場合 の処理について説明する。この処理は、図 8の処理において、位相変位済みフラグを 用いない処理となる。すなわち、ステップ S51で位相変位済みフラグを OFFに設定 する処理は必要なぐまたステップ S54〜S56の処理に代えて、単にレンジ周波数 R を f にする処理を実行すればよい。これより、ステップ S 51でレンジ周波数 Rを初期 prf [0071] However, prior to the description of the processing in FIG. 8, first, the processing in the case where local variation is not considered will be described. This process is a process that does not use the phase-shifted flag in the process of FIG. That is, the process of setting the phase-shifted flag to OFF in step S51 is not necessary. Instead of the processes of steps S54 to S56, the process of simply setting the range frequency R to f may be executed. From this, the range frequency R is initialized to prf in step S51.
化したら、まず、現チャネル iを管壁 8直近のチャネル 0 (i=0)とし、上記第 1のテープ ルを参照して、現チャネルの位相変位フラグが ONであるかを判定する(ステップ S53 )。チャネル 0の場合はフラグ OFFであるので (ステップ S53, NO)、そのままステップ S57の処理に進む。ステップ S57では、現チャネルのドップラーシフト周波数を、測 定されたドップラーシフト周波数にレンジ周波数 Rを加算した値へと補正とする。チヤ ネル 0の場合は、 R=0であるので、ドップラーシフト周波数は測定値のままである (修 正しない)。  First, the current channel i is set to channel 0 (i = 0) closest to the tube wall 8, and it is determined whether the phase displacement flag of the current channel is ON with reference to the first table (step S53). In the case of channel 0, since the flag is OFF (step S53, NO), the process proceeds to step S57 as it is. In step S57, the Doppler shift frequency of the current channel is corrected to a value obtained by adding the range frequency R to the measured Doppler shift frequency. In the case of channel 0, since R = 0, the Doppler shift frequency remains the measured value (not corrected).
[0072] そして、現チャネルが管中央のチャネル mとなるまで、チャネル 0〜チャネル mまで の各チャネルを、順次、現チャネルとして、上記と同様の処理を繰り返し実行する。チ ャネル 1以降も、その位相変位フラグが ONであるチャネルが現チャネルとなるまでは 、レンジ周波数 Rは 0のままなので、ドップラーシフト周波数は測定値のままである(修 正しない)。そして、現チャネルの位相変位フラグが ONの場合には(ステップ S53, Y ES)、上記「レンジ周波数 Rを f にする処理」を行う。これによつて、本チャネル力 管  [0072] Then, until the current channel becomes channel m at the center of the tube, the same processing as described above is repeatedly executed by sequentially setting each channel from channel 0 to channel m to the current channel. Also after channel 1, until the channel whose phase displacement flag is ON becomes the current channel, the range frequency R remains 0, so the Doppler shift frequency remains the measured value (not corrected). Then, when the phase shift flag of the current channel is ON (step S53, YES), the above-mentioned “processing for setting the range frequency R to f” is performed. As a result, this channel force tube
prf  prf
中央のチャネル mまでの全てのチャネルについて、ステップ S57の処理は「ドッブラ 一シフト周波数 =ドップラーシフト周波数の測定値 +f 」となる。  For all the channels up to the center channel m, the process of step S57 is “Doppler shift frequency = measured value of Doppler shift frequency + f”.
prf  prf
[0073] 尚、図 10の処理を局所的な変動を考慮しない処理とした場合には、レンジ周波数 Rがー f になる点以外は、上記処理と同じである。  [0073] If the processing in Fig. 10 is a processing that does not consider local fluctuations, it is the same as the above processing except that the range frequency R becomes -f.
prf  prf
続いて、図 8の処理について、図 12Aの例を参照しながら、上述した図 3Aの例に 対応した処理との違いにつ!ヽて説明する。 Next, with respect to the processing of FIG. 8, referring to the example of FIG. Differences with compatible processing! I will explain in a moment.
[0074] この場合、まず、ステップ S51でレンジ周波数 Rを初期化する (R=0)と共に、位相 変位済みフラグを OFFにする点が異なる。そして、上記処理では現チャネルの位相 変位フラグが ONである場合には(ステップ S53, YES)、単に「レンジ周波数 R¾f に  In this case, first, the range frequency R is initialized (R = 0) in step S51, and the phase-shifted flag is turned OFF. In the above processing, when the phase displacement flag of the current channel is ON (step S53, YES), simply “range frequency R¾f
prf する処理」を行った力 その代わりにステップ S54〜S56の処理を行う点が異なる。  The force which performed "the process to prf" differs in performing the process of step S54-S56 instead.
[0075] 図 12Aの例では、チャネル k、 1の 3つのチャネルの位相変位フラグが ONになる。 In the example of FIG. 12A, the phase displacement flags of the three channels k and 1 are turned ON.
すなわち、まずチャネル jにおいてー且、計測範囲 f /2を超えることから、 "折り返し"  That is, first in channel j and beyond the measurement range f / 2,
prf  prf
が生じる力 この例では図 12Cに示すように、部分的にドップラーシフト周波数が減 少する為、チャネル k〜チャネル 1の範囲のドップラーシフト周波数は再び計測範囲 f  In this example, as shown in Figure 12C, the Doppler shift frequency is partially reduced, so the Doppler shift frequency in the range from channel k to channel 1 is again measured.
prf prf
/2未満となる。尚、図 12Cには、修正後のドップラーシフト周波数分布、すなわち本 来の(正し 、)ドップラーシフト周波数分布を示してある。 Less than / 2. FIG. 12C shows the corrected Doppler shift frequency distribution, that is, the original (correct) Doppler shift frequency distribution.
[0076] この場合、チャネル k〜チャネル 1の範囲のドップラーシフト周波数は正し!/、ので、補 正する必要はないが、上述した局所的な変動を考慮しない処理では、チャネル jから 管中央のチャネル mまでの範囲の全てのチャネルは、一律に、補正されてしまう。 [0076] In this case, the Doppler shift frequency in the range of channel k to channel 1 is correct! /, So there is no need to correct it. However, in the processing that does not take into account the local variation described above, from channel j to the center of the tube All channels in the range up to channel m are corrected uniformly.
[0077] この場合、図 12Aに示す通り、チャネル k、 1においても"折り返し"が生じることから、 図 6の処理により、チャネル jだけでなくチャネル k、 1も、その位相変位フラグが ONに なっている。 In this case, as shown in FIG. 12A, “folding” occurs in channels k and 1, so that the phase displacement flag is turned ON not only for channel j but also for channels k and 1 by the processing of FIG. It has become.
[0078] 以上の事から、図 8の処理を行うことで、図 12の様の局所的な変動が生じている場 合も問題なぐドップラーシフト周波数分布を修正できる。  From the above, by performing the processing of FIG. 8, it is possible to correct the Doppler shift frequency distribution without any problem even when local fluctuations as shown in FIG. 12 occur.
すなわち、図 8の処理によれば、図 12の例の場合、現チャネルがチャネル j, k, 1のと きにステップ S53の判定が YESとなり、ステップ S54〜S56の処理を行うことになり、 そのときに位相変位済みフラグが ONの場合にはステップ S55の処理を実行し、 OF Fの場合にはステップ S56の処理を実行する。  That is, according to the processing of FIG. 8, in the example of FIG. 12, when the current channel is channel j, k, 1, the determination of step S53 is YES, and the processing of steps S54 to S56 is performed. At that time, if the phase-shifted flag is ON, the process of step S55 is executed, and if it is OFF, the process of step S56 is executed.
[0079] まず、現チャネルがチャネル jのときには、ステップ S51によって位相変位済みフラ グが OFFになったままであるので、ステップ S56の処理を実行する。ステップ S56で は、現在のレンジ周波数 (補正値) Rに f を加算する (R=R+f )と共に位相変位済 [0079] First, when the current channel is channel j, since the phase-shifted flag remains OFF in step S51, the process of step S56 is executed. In step S56, f is added to the current range frequency (correction value) R (R = R + f) and the phase has been shifted.
prf prf  prf prf
みフラグを ONにする。ここでは、レンジ周波数 Rはステップ S51で初期化された状態 のままであるので、 R=0+f =f となる。これより、チャネル j力もチャネル k—1まで の各チャネルについては、ステップ S57の処理は「ドップラーシフト周波数 =ドップラ 一シフト周波数の測定値 +f 」となり、ドップラーシフト周波数の修正が行われること Set the flag to ON. Here, the range frequency R remains in the state initialized in step S51, so R = 0 + f = f. From this, channel j force is also up to channel k-1 For each channel, the processing of step S57 is “Doppler shift frequency = measured value of Doppler shift frequency + f”, and the Doppler shift frequency is corrected.
prf  prf
になる。  become.
[0080] そして、現チャネルがチャネル kになると、ステップ S53の判定が YESとなり、位相 変位済みフラグは ONであるので (ステップ S54, YES)、ステップ S55の処理を実行 する。ステップ S55の処理では、現在のレンジ周波数 Rから f を減算する(R=R— f  [0080] When the current channel becomes channel k, the determination in step S53 is YES and the phase-shifted flag is ON (step S54, YES), so the process of step S55 is executed. In step S55, f is subtracted from the current range frequency R (R = R — f
prf prf prf prf
)と共に位相変位済みフラグを OFFにする。ここでは、現在のレンジ周波数 Rは f で ) And turn off the phase displacement flag. Here, the current range frequency R is f
prf あるので、 R=f -f =0となる。これより、チャネル kからチャネル 1—1までの各チヤ  Since prf exists, R = f -f = 0. From this, each channel from channel k to channel 1-1
prf prf  prf prf
ネルについては、ステップ S57の処理は「ドップラーシフト周波数 =ドップラーシフト 周波数の測定値 +0」となり、実質的にはドップラーシフト周波数の修正は行われな いことになる。  For the channel, the processing of step S57 is “Doppler shift frequency = measured value of Doppler shift frequency + 0”, and the Doppler shift frequency is not substantially corrected.
[0081] その後、現チャネルが 1になったときには、上記チャネル jのときと同じ処理が行われ ることになり、チャネル 1からチャネル mまでの各チャネルについては、ステップ S57の 修正処理は「ドップラーシフト周波数 =ドップラーシフト周波数の測定値 +f 」となり、  [0081] After that, when the current channel becomes 1, the same processing as that for channel j is performed. For each channel from channel 1 to channel m, the correction processing in step S57 is "Doppler". Shift frequency = measured value of Doppler shift frequency + f ''
prf ドップラーシフト周波数の修正が行われることになる。  prf Doppler shift frequency will be corrected.
[0082] 次に図 9に示す処理 bについて説明する。図 9の処理は、ステップ S61においてレ ンジ周波数 Rの初期値 ¾ΐ をとする点以外は、図 8の処理と同じである。但し、レンジ Next, the process b shown in FIG. 9 will be described. The process in FIG. 9 is the same as the process in FIG. 8 except that the initial value ¾ of the range frequency R is set in step S61. However, the range
prf  prf
周波数 Rの初期値を f としていることから、図 3Dに示す範囲 B内の各チャネルに関し  Since the initial value of frequency R is f, for each channel in range B shown in Fig. 3D,
prf  prf
ては、ステップ S67の処理は「ドップラーシフト周波数 =ドップラーシフト周波数の測 定値 +f 」となり、範囲 D内の各チャネルに関しては、ステップ S67の処理は「ドッブラ prf  Therefore, the processing in step S67 is “Doppler shift frequency = measured value of Doppler shift frequency + f”, and for each channel in range D, the processing in step S67 is “Doppler prf
一シフト周波数 =ドップラーシフト周波数の測定値 + 2f 」となる。また、図 12のような  One shift frequency = measured value of Doppler shift frequency + 2f ". Also, as shown in Figure 12
prf  prf
局所的な変動により位相変位フラグが ONとなっているチャネルが複数ある場合には 、上記チャネル k〜チャネル 1の範囲に相当する範囲の各チャネルに対しては、ステツ プ S67の処理は、「ドップラーシフト周波数 =ドップラーシフト周波数の測定値 +f 」  If there are multiple channels for which the phase displacement flag is ON due to local fluctuations, the processing in step S67 is performed for each channel in the range corresponding to the range of channel k to channel 1 above. Doppler shift frequency = measured value of Doppler shift frequency + f "
prf となる。  prf.
[0083] また、図 10に示す処理 cのフローについても、そのステップ S75, S76の処理力 図 8のステップ S55, 56の処理の「減算」が「加算」となり「加算」が「減算」となって!/、るこ とから、ステップ S77の修正処理が「修正無し」又は「ドップラーシフト周波数 =ドッブ ラーシフト周波数の測定値—f 」となる点以外は、図 8の処理と同じであるので、詳し [0083] Also, with regard to the flow of process c shown in FIG. 10, the processing power of steps S75 and S76 is “addition” in the processing of steps S55 and S56 in FIG. 8, and “addition” is “subtraction”. Because of this, the correction process in step S77 is “No correction” or “Doppler shift frequency = Dob The process is the same as the process in FIG.
prf  prf
い説明は省略する。図 10の処理によれば、上記チャネル jに相当するチャネルにつ いてステップ S76によってレンジ周波数 Rを R=R—f = -f とし、その後、上記チヤ  The description is omitted. According to the processing of FIG. 10, the range frequency R is set to R = R—f = −f in step S76 for the channel corresponding to the channel j, and then the above-described check is performed.
prf prf  prf prf
ネル kに相当するチャネルについてステップ S75によって R=R+f =0とすることで「  For the channel corresponding to channel k, R = R + f = 0 in step S75
prf  prf
修正なし」の状態に戻し、更に上記チャネル 1に相当するチャネルについてステップ S 76によってレンジ周波数 Rを再び R=R—f = -f とすることになる。  Then, the range frequency R is again set to R = R−f = −f in step S76 for the channel corresponding to channel 1 above.
prf prf  prf prf
[0084] 同様に、図 11に示す処理 dのフローについても、ステップ S81においてレンジ周波 数 Rの初期値を一 f とし、そのステップ S85, S86の処理力 図 8のステップ S55, 56  Similarly, in the flow of process d shown in FIG. 11, the initial value of the range frequency R is set to 1 f in step S81, and the processing power of steps S85 and S86 is shown in steps S55 and 56 of FIG.
prf  prf
の処理の「減算」が「加算」となり「加算」が「減算」となって!/、ることから、ステップ S87 の処理が「ドップラーシフト周波数 =ドップラーシフト周波数の測定値 f 」又は「ドッ  Since the “subtraction” in the process in step “addition” and “addition” in the process becomes “subtraction”! /, The processing in step S87 is “Doppler shift frequency = measured value f of Doppler shift frequency”
prf  prf
ブラーシフト周波数 =ドップラーシフト周波数の測定値 2f 」となる点以外は、図 8  Except for the point that `` Blur shift frequency = measured value of Doppler shift frequency 2f '', Figure 8
prf  prf
の処理と同じであるので、詳しい説明は省略する。  Since this process is the same as that in FIG.
[0085] 図 4Aのようなパターンにおいて図 12のような局所的な変動が生じた場合には、図 11の処理によって、上記チャネル j〜チャネル k 1に相当する各チャネルにつ!/、て は、そのドップラーシフト周波数計測値から f を減算する補正を行い、上記チャネル k When a local variation as shown in FIG. 12 occurs in the pattern as shown in FIG. 4A, the process shown in FIG. Compensates by subtracting f from the measured Doppler shift frequency, and the channel k
ρπ  ρπ
〜チャネル 1 1に相当する各チャネルについては補正は行わず、上記チャネル 1〜 チャネル mに相当する各チャネルについては、そのドップラーシフト周波数計測値か ら f を減算する補正を行うことになる。勿論、チャネル 0からチャネル j—1に相当する prf  Correction is not performed for each channel corresponding to ~ channel 11 and correction for subtracting f from the measured Doppler shift frequency is performed for each channel corresponding to channel 1 to channel m. Of course, prf corresponding to channel 0 to channel j-1
チャネルまでの各チャネルについては、補正は行わないことになる。  Correction is not performed for each channel up to the channel.
[0086] 図 11の処理によれば、上記チャネル jに相当するチャネルについてステップ S86に よってレンジ周波数 Rを R=R— f = - 2f とし、その後、上記チャネル kに相当する According to the processing of FIG. 11, the range frequency R is set to R = R—f = −2f in step S86 for the channel corresponding to the channel j, and then corresponds to the channel k.
prf prf  prf prf
チャネルについてステップ S85によって R=R+f = -f とし、更に上記チャネル 1に  For channel, R = R + f = -f by step S85, and further to channel 1 above
prf prf  prf prf
相当するチャネルについてステップ S86によってレンジ周波数 Rを再び R=R—f =  For the corresponding channel, the range frequency R is again set to R = R—f =
prf prf
- 2f とすることになる。 -It will be 2f.
prf  prf
[0087] この場合、上記チャネル j〜チャネル k 1に相当する各チャネルについては、その ドップラーシフト周波数計測値から 2f を減算する補正を行い、上記チャネル k〜チヤ  In this case, for each channel corresponding to channel j to channel k 1, correction is performed by subtracting 2f from the Doppler shift frequency measurement value, and channel k to
prf  prf
ネル 1 1に相当する各チャネルについては、そのドップラーシフト周波数計測値から f を減算する補正を行い、上記チャネル 1〜チャネル mに相当する各チャネルについ prf ては、そのドップラーシフト周波数計測値から 2f を減算する補正を行うことになる。 For each channel corresponding to channel 1 1, a correction is made by subtracting f from the measured Doppler shift frequency, and prf is applied to each channel corresponding to channel 1 to channel m above. In this case, 2f is subtracted from the measured Doppler shift frequency.
prf  prf
勿論、チャネル 0からチャネル j 1に相当するチャネルまでの各チャネルについては 、そのドップラーシフト周波数計測値から f を減算する補正を行うことになる。  Of course, for each channel from channel 0 to the channel corresponding to channel j1, correction is performed by subtracting f from the measured Doppler shift frequency.
prf  prf
[0088] 上記本例のパルスドップラー式超音波流量計は、局所的な変動は考慮しているが 、局所的な変動によって部分的に流れ方向が逆向きになるような状況は考慮してい ない。本例において被測定流体の流れ方向を判定するのは、例えば時間帯等によ つて流体の流れ方向が正方向になったり負方向になったりするシステムに対応する 為である。  [0088] The pulse Doppler ultrasonic flowmeter of the present example considers local fluctuations, but does not consider the situation where the flow direction is partially reversed due to local fluctuations. . The reason for determining the flow direction of the fluid to be measured in this example is to cope with a system in which the flow direction of the fluid becomes positive or negative depending on, for example, a time zone.
[0089] すなわち、例えば揚水発電のように、発電所の上下に貯水池を作り,電気の消費が 少ない夜間の電力を利用して下池の水を上池へくみ上げておき,昼間,電力の必要 量に応じて,上池と下池の落差を利用して発電する場合に、夜間と昼間で流れ方向 が入れ替わる場合がある。また、大規模な浄水所の場合、浄水所から複数の給水所 へ給水するが、下流の負荷に応じて給水所間で水量を調整する必要があり、その折 に給水所間で水の流れ方向が変わる場合がある。  [0089] That is, for example, reservoirs are created above and below the power plant, such as pumped-storage power generation, and the water in the lower pond is pumped up to the upper pond using nighttime power with low electricity consumption. Depending on the situation, the flow direction may be switched between nighttime and daytime when power is generated by using the drop between the upper and lower ponds. In the case of large-scale water purification plants, water is supplied from a water purification plant to multiple water stations, but it is necessary to adjust the amount of water between the water stations according to the downstream load. The direction may change.
[0090] 更に、図 13に示す配管において、  [0090] Further, in the piping shown in FIG.
(1)ある時は Α,Βの弁を止めて、弁 Cから弁 Dへ流す(図 13Α)。  (1) In some cases, stop valves Β and Β and flow from valve C to valve D (Fig. 13Α).
(2)それ以外は C,Dの弁を止めて、弁 Aから弁 Bへ流す(図 13B)  (2) Otherwise, stop valves C and D and flow from valve A to valve B (Fig. 13B)
場合がある。この時に配管の X地点では、(1)の場合と(2)の場合とでは、流れ方向 が逆になる。この為、 X地点に設置した流量計が流れ方向を判別する機能を有して V、れば、一台の流量計で計測できると!、うメリットがある。  There is a case. At this time, at the point X of the pipe, the flow direction is reversed between (1) and (2). For this reason, if the flow meter installed at point X has the function of discriminating the flow direction, V can be measured with a single flow meter!
[0091] 本発明のパルス'ドップラー式超音波流量計によれば、ドップラーシフト周波数が、 繰返し周波数によって決められる測定範囲を超える場合でも、補正処理を行うことで 、正しいドップラーシフト周波数分布を求めることができ、実質的にドップラーシフト周 波数の測定可能範囲を、繰返し周波数によって決められる測定範囲よりも大きくする ことができる。特に、ドップラーシフト周波数力 上記特許文献 2の方法を用いても測 定できないような値であっても、測定可能とすることができる。更に、正 Z負の何れか 一方にしか対応できないのではなぐ正 Z負の両方に対応できる。 [0091] According to the pulse Doppler ultrasonic flowmeter of the present invention, even when the Doppler shift frequency exceeds the measurement range determined by the repetition frequency, a correct Doppler shift frequency distribution can be obtained by performing correction processing. In effect, the measurable range of the Doppler shift frequency can be made larger than the measurement range determined by the repetition frequency. In particular, even if the Doppler shift frequency force is a value that cannot be measured using the method of Patent Document 2, it can be measured. Furthermore, it is possible to deal with both positive Z and negative as well as only one of positive Z and negative.

Claims

請求の範囲 The scope of the claims
[1] 超音波のドップラーシフトを利用して配管内を流れる被測定流体の流量を測定する パルスドップラー式超音波流量計にお 1ヽて、  [1] Using the ultrasonic Doppler shift, measure the flow rate of the fluid to be measured flowing in the pipe.
所定のパルス繰返し周波数で超音波パルスを前記被測定流体に送出し、その超 音波エコーを受信して、前記配管の管壁直近の第 1チャネル力 管中央の第 mチヤ ネルまでの各チャネルのドップラーシフト周波数を計測するドップラーシフト周波数計 測手段と、  An ultrasonic pulse is sent to the fluid to be measured at a predetermined pulse repetition frequency, the ultrasonic echo is received, and the first channel force closest to the pipe wall of the pipe is set to the m-th channel in the center of the pipe. Doppler shift frequency measurement means for measuring the Doppler shift frequency,
該ドップラーシフト周波数計測手段による計測結果によって得られる、前記第 1チヤ ネル力 第 mチャネルまでのドップラーシフト周波数分布にぉ 、て、折り返しの影響 を受けて 、るチャネル範囲を求め、該求めたチャネル範囲内の各チャネルのドップラ 一シフト周波数の計測値を、ドップラーシフト周波数の測定範囲に基づ 、て得られる 補正値を用いて補正するドップラーシフト周波数分布補正手段と、  Based on the Doppler shift frequency distribution up to the first channel force m-th channel obtained by the measurement result by the Doppler shift frequency measuring means, a channel range affected by the aliasing is obtained, and the obtained channel is obtained. Doppler shift frequency distribution correction means for correcting the measured value of the Doppler shift frequency of each channel within the range using the correction value obtained based on the measurement range of the Doppler shift frequency;
該ドップラーシフト周波数分布補正手段による補正後のドップラーシフト周波数分 布を用いて前記被測定流体の流量を求める流量算出手段と、  A flow rate calculating means for determining a flow rate of the fluid under measurement using the Doppler shift frequency distribution corrected by the Doppler shift frequency distribution correcting means;
を有することを特徴とするパルスドップラー式超音波流量計。  A pulse Doppler type ultrasonic flowmeter characterized by comprising:
[2] 前記ドップラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネル を判別すると共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否 かを判定し、 [2] The Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and determines whether the force is already affected by the aliasing in the first channel.
前記第 1チャネルが折り返しの影響を受けていない場合には、該第 1チャネルから 前記折り返しの発生箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波 数の計測値は補正せず、前記折り返しの発生箇所のチャネル力 前記第 mチャネル までの範囲の各チャネルのドップラーシフト周波数の計測値を、前記ドップラーシフト 周波数の測定範囲を前記補正値として補正することを特徴とする請求項 1記載のパ ルスドップラー式超音波流量計。  If the first channel is not affected by aliasing, the measured Doppler shift frequency of each channel in the range from the first channel to the channel where the aliasing occurs is not corrected and the aliasing 2. The pulse according to claim 1, wherein the measured channel force of each channel in the range up to the m-th channel is corrected using the measured range of the Doppler shift frequency as the correction value. Doppler ultrasonic flow meter.
[3] 前記ドップラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネル を判別すると共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否 かを判定し、 [3] The Doppler shift frequency distribution correction means determines the channel where the aliasing occurs and determines whether the force is already affected by the aliasing in the first channel.
前記第 1チャネルが折り返しの影響を受けている場合には、該第 1チャネル力も前 記折り返しの発生箇所のチャネルまでの範囲の各チャネルのドップラーシフト周波数 の計測値を、前記ドップラーシフト周波数の測定範囲を前記補正値として、前記補正 を行 、、前記折り返しの発生箇所のチャネルから前記第 mチャネルまでの範囲の各 チャネルのドップラーシフト周波数の計測値を、前記ドップラーシフト周波数の測定 範囲の 2倍を前記補正値として補正することを特徴とする請求項 1又は 2記載のパル スドップラー式超音波流量計。 If the first channel is affected by folding, the first channel force is also The measured value of the Doppler shift frequency of each channel in the range up to the channel where the aliasing occurs is used as the correction value, and the correction is performed, and from the channel where the aliasing occurs, the correction is performed. 3. The pulse Doppler according to claim 1, wherein the measured value of the Doppler shift frequency of each channel in the range up to the m-th channel is corrected using twice the measurement range of the Doppler shift frequency as the correction value. Type ultrasonic flowmeter.
[4] 前記ドップラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネル を判別すると共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否 かを判定し、 [4] The Doppler shift frequency distribution correcting means determines the channel where the aliasing occurs, and determines whether or not the force is already affected by the aliasing in the first channel.
前記第 1チャネルが折り返しの影響を受けて 、な 、場合であって、前記折り返しの 発生箇所が複数存在する場合には、  In the case where the first channel is affected by folding, and there are a plurality of places where the folding occurs,
該第 1チャネルから 1番目の前記折り返しの発生箇所のチャネルまでの範囲の各チヤ ネルのドップラーシフト周波数の計測値は補正せず、  The measured value of the Doppler shift frequency of each channel in the range from the first channel to the first channel where the aliasing occurred is not corrected,
前記 1番目の折り返しの発生箇所のチャネル力 前記第 mチャネルまでの範囲に ついては、偶数番目の前記折り返しの発生箇所のチャネルから奇数番目の前記折り 返しの発生箇所のチャネルまでの範囲については補正せず、奇数番目の前記折り 返しの発生箇所のチャネルから偶数番目の前記折り返しの発生箇所のチャネルまで の範囲については、該範囲内の各チャネルのドップラーシフト周波数の計測値を、前 記ドップラーシフト周波数の測定範囲を前記補正値として補正することを特徴とする 請求項 1記載のパルスドップラー式超音波流量計。  The channel force at the first fold occurrence point is corrected for the range from the even-numbered fold occurrence point channel to the odd-numbered fold occurrence point channel. First, for the range from the odd-numbered channel where the aliasing occurs to the even-numbered channel where the aliasing occurs, the measured value of the Doppler shift frequency of each channel within the range is the Doppler frequency. The pulse Doppler ultrasonic flowmeter according to claim 1, wherein the measurement range is corrected as the correction value.
[5] 前記ドップラーシフト周波数分布補正手段は、前記折り返しの発生箇所のチャネル を判別すると共に、前記第 1チャネルにおいて既に折り返しの影響を受けている力否 かを判定し、 [5] The Doppler shift frequency distribution correction means determines the channel where the aliasing occurs, and determines whether the force has already been affected by the aliasing in the first channel,
前記第 1チャネルが折り返しの影響を受けて 、る場合であって、前記折り返しの発 生箇所が複数存在する場合には、  If the first channel is affected by folding and there are multiple places where the folding occurs,
該第 1チャネルから 1番目の前記折り返しの発生箇所のチャネルまでの範囲の各チ ャネルのドップラーシフト周波数の計測値を、前記ドップラーシフト周波数の測定範 囲を前記補正値として補正し、 前記 1番目の折り返しの発生箇所のチャネル力 前記第 mチャネルまでの範囲に ついては、 Correcting the measured value of the Doppler shift frequency of each channel in the range from the first channel to the first channel where the aliasing occurs, using the measured range of the Doppler shift frequency as the correction value, Channel force at the location where the first fold occurs The range up to the m-th channel is as follows:
偶数番目の前記折り返しの発生箇所のチャネル力 奇数番目の前記折り返しの発 生箇所のチャネルまでの範囲については、該範囲内の各チャネルのドップラーシフト 周波数の計測値を、前記ドップラーシフト周波数の測定範囲を前記補正値として補 正し、  The channel force at the occurrence site of the even-numbered folds For the range up to the channel at the occurrence site of the odd-numbered folds, the measured value of the Doppler shift frequency of each channel within the range is the measurement range of the Doppler shift frequency. As the correction value,
奇数番目の前記折り返しの発生箇所のチャネル力 偶数番目の前記折り返しの発 生箇所のチャネルまでの範囲については、該範囲内の各チャネルのドップラーシフト 周波数の計測値を、前記ドップラーシフト周波数の測定範囲の 2倍を前記補正値とし て補正することを特徴とする請求項 1記載のパルスドップラー式超音波流量計。  The channel force at the occurrence site of the odd-numbered aliasing For the range to the channel at the occurrence site of the even-numbered aliasing, the measured value of the Doppler shift frequency of each channel within the range is the measurement range of the Doppler shift frequency. 2. The pulse Doppler ultrasonic flowmeter according to claim 1, wherein the correction value is corrected to twice the correction value.
[6] 前記ドップラーシフト周波数分布補正手段は、更に、前記被測定流体の流れ方向 を判別し、 [6] The Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured,
該判別した流れ方向が正方向である場合には、前記補正は、前記各チャネルのド ップラーシフト周波数の計測値に、前記補正値を加算する処理とすることを特徴とす る請求項 1〜5の何れかに記載のパルスドップラー式超音波流量計。  6. The correction is performed by adding the correction value to the measured value of the Doppler shift frequency of each channel when the determined flow direction is a positive direction. The pulse Doppler ultrasonic flowmeter according to any one of the above.
[7] 前記ドップラーシフト周波数分布補正手段は、更に、前記被測定流体の流れ方向 を判別し、 [7] The Doppler shift frequency distribution correction means further determines the flow direction of the fluid to be measured,
該判別した流れ方向が負方向である場合には、前記補正は、前記各チャネルのド ップラーシフト周波数の計測値から、前記補正値を減算する処理とすることを特徴と する請求項 1〜5の何れかに記載のパルスドップラー式超音波流量計。  6. The correction according to claim 1, wherein when the determined flow direction is a negative direction, the correction is a process of subtracting the correction value from a measured value of the Doppler shift frequency of each channel. The pulse Doppler type ultrasonic flowmeter according to any one of the above.
[8] 各チャネル毎に、自チャネルの前記ドップラーシフト周波数の計測値とその隣のチ ャネルの前記ドップラーシフト周波数の計測値との差分の絶対値を求め、該絶対値 が所定の閾値以上であるチャネルを、前記折り返しの発生箇所のチャネルとすること を特徴とする請求項 2〜7の何れかに記載のパルスドップラー式超音波流量計。  [8] For each channel, an absolute value of a difference between the measured value of the Doppler shift frequency of the own channel and the measured value of the Doppler shift frequency of the adjacent channel is obtained, and the absolute value is equal to or greater than a predetermined threshold value. The pulse Doppler type ultrasonic flowmeter according to any one of claims 2 to 7, wherein a channel is used as a channel where the folding occurs.
[9] 前記被測定流体の流れ方向の判別は、  [9] The flow direction of the fluid to be measured is determined as follows:
前記第 1チャネルから前記折り返しの発生箇所のチャネルまでの範囲又は前記第 1 チャネル力 前記ドップラーシフト周波数の計測値力 ^を跨ぐ箇所のチャネルまでの 範囲における各チャネルのドップラーシフト周波数の計測値の累積加算値又は平均 値を算出し、該算出した累積加算値又は平均値が正の値である場合には正方向、 負の値の場合は負方向とすることを特徴とする請求項 2〜8の何れかに記載のパル スドップラー式超音波流量計。 Accumulation of measured values of the Doppler shift frequency of each channel in the range from the first channel to the channel where the fold occurs or the range of the first channel force measured value of the Doppler shift frequency ^ Addition value or average The value is calculated, and when the calculated cumulative added value or average value is a positive value, the positive direction is set, and when the negative value is a negative value, the negative direction is set. The pulse Doppler type ultrasonic flowmeter described.
超音波のドップラーシフトを利用して配管内を流れる被測定流体の流量を測定する パルスドップラー式超音波流量計のコンピュータに、  Using the ultrasonic Doppler shift, measure the flow rate of the fluid to be measured flowing in the pipe.
所定のパルス繰返し周波数で超音波パルスを前記被測定流体に送出し、その超 音波エコーを受信して、前記配管の管壁直近の第 1チャネル力 管中央の第 mチヤ ネルまでの各チャネルのドップラーシフト周波数を計測する第 1の機能と、  An ultrasonic pulse is sent to the fluid to be measured at a predetermined pulse repetition frequency, the ultrasonic echo is received, and the first channel force closest to the pipe wall of the pipe is set to the m-th channel in the center of the pipe. The first function to measure the Doppler shift frequency,
該第 1の機能による計測結果によって得られる、前記第 1チャネル力も第 mチヤネ ルまでのドップラーシフト周波数分布にぉ 、て、折り返しの影響を受けて 、るチヤネ ル範囲を求め、該求めたチャネル範囲内の各チャネルのドップラーシフト周波数の計 測値を、ドップラーシフト周波数の測定範囲に基づいて得られる補正値を用いて補 正する第 2の機能と、  The first channel force obtained from the measurement result of the first function is also influenced by the aliasing of the Doppler shift frequency distribution up to the m-th channel, and the channel range obtained is determined. A second function for correcting the measured value of the Doppler shift frequency of each channel within the range by using a correction value obtained based on the measurement range of the Doppler shift frequency;
該第 2の機能による補正後のドップラーシフト周波数分布を用いて前記被測定流体 の流量を求める第 3の機能と、  A third function for determining the flow rate of the fluid under measurement using the Doppler shift frequency distribution corrected by the second function;
を実現させる為のプログラム。  A program to realize
PCT/JP2006/311414 2005-06-30 2006-06-07 Pulse doppler ultrasonic flowmeter and program thereof WO2007004384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523383A JP4548485B2 (en) 2005-06-30 2006-06-07 Pulse doppler type ultrasonic flow meter, its program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191566 2005-06-30
JP2005191566 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004384A1 true WO2007004384A1 (en) 2007-01-11

Family

ID=37604259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311414 WO2007004384A1 (en) 2005-06-30 2006-06-07 Pulse doppler ultrasonic flowmeter and program thereof

Country Status (2)

Country Link
JP (1) JP4548485B2 (en)
WO (1) WO2007004384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374720A1 (en) * 2011-09-15 2014-12-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence element using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097742A (en) * 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The Doppler-type ultrasonic flowmeter
JP2004061109A (en) * 2002-06-04 2004-02-26 Tokyo Electric Power Co Inc:The Doppler-type flowmeter, method for measuring flow rate using the same, and program for measuring flow rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097742A (en) * 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The Doppler-type ultrasonic flowmeter
JP2004061109A (en) * 2002-06-04 2004-02-26 Tokyo Electric Power Co Inc:The Doppler-type flowmeter, method for measuring flow rate using the same, and program for measuring flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374720A1 (en) * 2011-09-15 2014-12-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence element using same
US9634255B2 (en) * 2011-09-15 2017-04-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence element using same

Also Published As

Publication number Publication date
JP4548485B2 (en) 2010-09-22
JPWO2007004384A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CN104797908B (en) Flow measurement device and its method of calculating flux
CN100449275C (en) Doppler ultrasonic flowmeter, processor and computer readable medium for the same
JP2007529009A (en) Method and system for calculating the travel time of an ultrasonic pulse
CN103403503A (en) Treatment liquid flow rate meter
JP2011145289A (en) Flow rate measuring device
JP5982640B2 (en) Large flow rate measuring device
WO2007004384A1 (en) Pulse doppler ultrasonic flowmeter and program thereof
JP4835068B2 (en) Fluid flow measuring device
JP5948566B2 (en) Flow measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP4758673B2 (en) Flow meter and flow meter correction method
JP2006308439A (en) Flow measuring device of fluid
JP4572546B2 (en) Fluid flow measuring device
JP2010223855A (en) Ultrasonic flowmeter
JP6652840B2 (en) Ultrasonic flow meter
JP2007298347A (en) Ultrasonic flowmeter
WO2007083713A1 (en) Doppler type ultrasonic flow meter, flow metering method, and computer program
JP2005241545A (en) Doppler ultrasonic flowmeter, equipment/method for controlling received voltage level thereof and program
JP5990770B2 (en) Ultrasonic measuring device
JP2002116069A (en) Apparatus and method for measuring flow rate
JP5585402B2 (en) Flow measuring device
JP5974280B2 (en) Large flow rate measuring device
JP3945530B2 (en) Flow measuring device
JP6767628B2 (en) Flow measuring device
JP2008175706A (en) Measuring instrument for flow velocity or flow rate and its program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523383

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757121

Country of ref document: EP

Kind code of ref document: A1