JP4572546B2 - Fluid flow measuring device - Google Patents

Fluid flow measuring device Download PDF

Info

Publication number
JP4572546B2
JP4572546B2 JP2004066866A JP2004066866A JP4572546B2 JP 4572546 B2 JP4572546 B2 JP 4572546B2 JP 2004066866 A JP2004066866 A JP 2004066866A JP 2004066866 A JP2004066866 A JP 2004066866A JP 4572546 B2 JP4572546 B2 JP 4572546B2
Authority
JP
Japan
Prior art keywords
voltage
time difference
reference voltage
flow rate
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004066866A
Other languages
Japanese (ja)
Other versions
JP2005257359A (en
Inventor
修 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004066866A priority Critical patent/JP4572546B2/en
Publication of JP2005257359A publication Critical patent/JP2005257359A/en
Application granted granted Critical
Publication of JP4572546B2 publication Critical patent/JP4572546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は超音波を利用してガス、水などの流体の流れを計測する流体の流れ計測装置に関するものである。   The present invention relates to a fluid flow measuring device that measures the flow of a fluid such as gas or water using ultrasonic waves.

従来のこの種の流体の流れ計測装置は、図10に示すようなものが一般的であった(例えば、特許文献1参照)。この装置は流体の流れる流路31に設置した第1超音波振動子32および第2超音波振動子33と、第1超音波振動子32、第2超音波振動子33の送受信を切り換える切換手段34と、第1超音波振動子32及び第2超音波振動子33を駆動する送信手段35と、受信側の超音波振動子で受信し切換手段34を通過した信号を所定の振幅まで増幅する増幅手段36と、増幅手段36で増幅された受信信号の電圧と基準電圧とを比較する基準比較手段37と、図11に示すように基準比較手段37で基準電圧と比較し大小関係が反転した後の増幅信号の最初のゼロクロス点aで繰り返し手段39へ出力信号Dを出力する判定手段38と、この判定手段38からの信号をカウントし予め設定された回数だけカウントすると共に判定手段38からの信号を制御手段42へ出力する繰り返し手段39と、繰り返し手段39で予め設定された回数をカウントした時間を計時する計時手段40と、計時手段40の計時した時間に応じて流量を算出する流量算出手段41と、流量算出手段41から算出された流量出力、繰り返し手段39からの信号を受け送信手段35の動作を制御する制御手段42と、判定手段38、繰り返し手段39、計時手段40、流量算出手段41、制御手段42から構成されている。   A conventional fluid flow measuring apparatus of this type is generally as shown in FIG. 10 (see, for example, Patent Document 1). This apparatus includes a first ultrasonic transducer 32 and a second ultrasonic transducer 33 installed in a flow path 31 through which fluid flows, and switching means for switching between transmission and reception of the first ultrasonic transducer 32 and the second ultrasonic transducer 33. 34, transmission means 35 for driving the first ultrasonic transducer 32 and the second ultrasonic transducer 33, and a signal received by the ultrasonic transducer on the reception side and passed through the switching means 34 are amplified to a predetermined amplitude. The amplifying means 36, the reference comparing means 37 for comparing the voltage of the received signal amplified by the amplifying means 36 with the reference voltage, and the reference comparing means 37, as shown in FIG. The determination means 38 that outputs the output signal D to the repetition means 39 at the first zero cross point a of the subsequent amplified signal, the signal from the determination means 38 is counted and counted a preset number of times and from the determination means 38 A repetition means 39 for outputting a signal to the control means 42; a timing means 40 for counting the time set by the repetition means 39; and a flow rate calculation for calculating the flow rate according to the time counted by the timing means 40. The control means 42 which controls the operation | movement of the transmission means 35 in response to the means 41, the flow output calculated from the flow rate calculation means 41, the signal from the repetition means 39, the determination means 38, the repetition means 39, the time measuring means 40, the flow rate calculation It comprises means 41 and control means 42.

この装置は制御手段42により送信手段35を動作させ超音波振動子32で発信された超音波信号が、流れの中を伝搬し第2超音波振動子33で受信され、増幅手段36で増幅後、基準比較手段37と判定手段38で信号処理され、繰り返し手段39を通り制御手段42に入力される。この動作を予め設定されたn回数繰り返し行い、この間の時間を計時手段40により測定する。そして、第1超音波振動子32と第2超音波振動子33とを切換手段34により切り替えて、同様な動作を行い、被測定流体の上流から下流(この方向を正流とする)と下流から上流(この方向を逆流とする)のそれぞれの伝搬時間を測定し、被測定流体の流速を求め、式1より流量Qを求めていた。   In this apparatus, the transmission means 35 is operated by the control means 42 and the ultrasonic signal transmitted from the ultrasonic vibrator 32 propagates in the flow and is received by the second ultrasonic vibrator 33, and is amplified by the amplification means 36. The signal is processed by the reference comparison unit 37 and the determination unit 38, and is input to the control unit 42 through the repetition unit 39. This operation is repeated n times set in advance, and the time between them is measured by the time measuring means 40. Then, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched by the switching means 34, and the same operation is performed. From the upstream to the downstream of the fluid to be measured (this direction is a positive flow) and the downstream Then, the propagation time of each upstream (in this direction as a reverse flow) was measured, the flow velocity of the fluid to be measured was obtained, and the flow rate Q was obtained from Equation 1.

ここで、超音波振動子間の流れ方向の有効距離をL、上流から下流へのn回分の測定時間をt1、下流から上流へのn回分の測定時間をt2、被測定流体の流速をv、流路の断面積をS、センサ角度をφ、流量をQとする。   Here, the effective distance in the flow direction between the ultrasonic transducers is L, the measurement time for n times from upstream to downstream is t1, the measurement time for n times from downstream to upstream is t2, and the flow velocity of the fluid to be measured is v The cross-sectional area of the flow path is S, the sensor angle is φ, and the flow rate is Q.

Q=S・v=S・L/2・cosφ((n/t1)−(n/t2))・・・(式1)
実際には、式1に流量に応じた係数をさらに乗じて流量を算出する。
Q = S · v = S · L / 2 · cos φ ((n / t1) − (n / t2)) (Expression 1)
Actually, the flow rate is calculated by further multiplying Equation 1 by a coefficient corresponding to the flow rate.

また、増幅手段36のゲインは、受信側の超音波振動子で受信した信号を一定振幅となるようゲインを調整しており、受信信号のピーク電圧値が所定の電圧範囲に入るように調整される。これは繰り返し手段39に設定された回数の計測を繰り返し中に、図12の点線で示す受信信号bに示すように受信信号のピーク電圧値が所定の電圧範囲の下限より下回った回数と、同じく図12の点線で示す受信信号cに示すように所定の電圧範囲の上限より上回った回数をカウントしておきその大小関係で次回の流量計測時のゲインを調整する。例えば下限より下回った回数が多ければゲインをアップして、図12の実線で示す受信信号aのように電圧範囲の上限、下限の内に入るようにする。   The gain of the amplifying unit 36 is adjusted so that the signal received by the ultrasonic transducer on the receiving side has a constant amplitude, and is adjusted so that the peak voltage value of the received signal falls within a predetermined voltage range. The This is the same as the number of times that the peak voltage value of the received signal falls below the lower limit of the predetermined voltage range as indicated by the received signal b shown by the dotted line in FIG. As indicated by the received signal c indicated by the dotted line in FIG. 12, the number of times that exceeds the upper limit of the predetermined voltage range is counted, and the gain at the next flow rate measurement is adjusted according to the magnitude. For example, if the number of times below the lower limit is large, the gain is increased so that it falls within the upper and lower limits of the voltage range as in the received signal a shown by the solid line in FIG.

また、増幅手段36により増幅された受信信号の電圧と比較する基準比較手段37の基準電圧は判定手段38により検知するゼロクロス点の位置を決めるもので図11を例にすると受信信号の3波目のゼロクロス点aを判定手段38により検知するよう、受信信号の2波と3波のピーク電圧の中点の電圧に設定される。そうすることにより何らかの原因で受信信号の2波のピーク電圧が上昇、または3波のピーク電圧が減少しても双方に対してマージンをとれ、安定に判定手段38により3波目のゼロクロス点aが検知できるものである。
特開2003−106882号公報
Further, the reference voltage of the reference comparing means 37 for comparing with the voltage of the received signal amplified by the amplifying means 36 determines the position of the zero cross point detected by the determining means 38. Taking FIG. 11 as an example, the third wave of the received signal is determined. The zero-cross point a of the received signal is set to the midpoint voltage of the peak voltage of the two waves and three waves of the received signal so that the determination means 38 detects the zero cross point a. By doing so, even if the peak voltage of the two waves of the received signal rises for some reason or the peak voltage of the three waves decreases, a margin is provided for both, and the zero crossing point a of the third wave is stably obtained by the determination means 38. Can be detected.
JP 2003-106882 A

しかしながら上記従来の流体の流れ計測装置は、基準比較手段37において所定の振幅レベルに増幅された受信信号と比較する基準電圧の電圧設定方法として、固定抵抗器と半固定抵抗器を用い抵抗分圧で設定することが多く用いられてきた。この方法では所定の電圧を発生するように基準電圧を監視しながら半固定抵抗器を手動で調節を行うので基準電圧設定に時間が掛かり、また、調整ミスの発生の可能性も有していた。   However, the above conventional fluid flow measuring device uses a fixed resistor and a semi-fixed resistor as a voltage setting method of the reference voltage to be compared with the received signal amplified to a predetermined amplitude level in the reference comparing means 37, and resistance dividing voltage. It has been used a lot in setting. In this method, since the semi-fixed resistor is manually adjusted while monitoring the reference voltage so as to generate a predetermined voltage, it takes time to set the reference voltage, and there is a possibility of occurrence of an adjustment error. .

さらに調整後の経年変化、また、機械振動、熱衝撃等を受けることによって調整位置が変化することもあった。そして温度変化や流量の変化、または超音波振動子の経年変化等でその感度が変化すると再度、基準電圧を設定し直す必要があるという課題を有していた。また、このような流体の流れ計測装置は電池を電源とするので低消費電力であることが求められている。   Further, the adjustment position may change due to secular change after adjustment, mechanical vibration, thermal shock, or the like. When the sensitivity changes due to temperature change, flow rate change, aging change of the ultrasonic vibrator, etc., there is a problem that the reference voltage needs to be set again. Such a fluid flow measuring device is required to have low power consumption because it uses a battery as a power source.

本発明は、前記従来の課題を解決するもので、基準電圧の設定を迅速かつ、精度良く行い、常に最適な基準電圧に保ち、かつ低消費電力である流体の流れ計測装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a fluid flow measuring device that quickly and accurately sets a reference voltage, always maintains an optimum reference voltage, and has low power consumption. Objective.

前記従来の課題を解決するために、本発明の流体の流れ計測装置は基準設定手段の基準電圧を最小から最大に変化させたときの時間差計時手段の計時する時間差により受信波の各波のピーク電圧位置を認識してこのピーク電圧比を基に受信波の特定の波の間に基準電圧を設定するようにしたものである。   In order to solve the above-mentioned conventional problems, the fluid flow measuring device according to the present invention provides a peak of each wave of the received wave due to the time difference measured by the time difference measuring means when the reference voltage of the reference setting means is changed from the minimum to the maximum. The voltage position is recognized, and the reference voltage is set between specific waves of the received wave based on the peak voltage ratio.

これによって基準設定手段が設定する基準電圧は超音波信号の受信波に基づき、受信波の特定の波のピーク電圧間に設定され、時間差計時手段が計時する時間差が最適となる基準電圧に人手を介することなく、設定動作が迅速かつ、精度良く行われ、かつ継続的に最適な基準電圧に保つ流体の流れ計測装置とすることができる。   As a result, the reference voltage set by the reference setting means is set between the peak voltages of specific waves of the received wave based on the received wave of the ultrasonic signal, and the reference voltage that optimizes the time difference measured by the time difference measuring means is manually adjusted. Therefore, the fluid flow measuring device can be configured so that the setting operation can be performed quickly and accurately, and continuously maintained at the optimum reference voltage.

本発明の流体の流れ計測装置は、基準電圧を最小から最大に変化させ、そのときの時間差計時手段の計時する時間差が大きく変化する複数の変曲点の内、基準電圧を最小から最大に変化させ、そのときの時間差計時手段の計時する時間差が大きく変化する複数の変曲点から受信波の各波のピーク電圧を認識し、ピーク電圧の比より特定の2波、3波のピーク電圧間の中点の電圧、または任意の点に基準電圧を自動的に設定する基準設定手段としたことにより、超音波の受信波の中で受信信号の電圧変動に対して、一番安定して超音波信号の到達時期を検知出来る電圧に設定出来、また、流量計測時の時間差計時手段の計時する時間差が基準電圧を設定した際の時間差を基に決定される所定の時間差の幅から逸脱した場合に基準電圧の再設定が行われる。   The fluid flow measuring device of the present invention changes the reference voltage from the minimum to the maximum, and changes the reference voltage from the minimum to the maximum among a plurality of inflection points where the time difference measured by the time difference measuring means changes greatly. The peak voltage of each wave of the received wave is recognized from a plurality of inflection points where the time difference measured by the time difference measuring means at that time changes greatly, and between the peak voltage of specific two waves or three waves from the ratio of the peak voltage By using the reference setting means that automatically sets the reference voltage at the midpoint voltage or an arbitrary point, it is the most stable against the voltage fluctuation of the received signal among the received waves of ultrasonic waves. Can be set to a voltage that can detect the arrival time of the sound wave signal, and the time difference measured by the time difference measuring means during flow measurement deviates from the predetermined time difference determined based on the time difference when the reference voltage is set The reference voltage is reset Divide.

これにより基準電圧の設定が人手を介することなく迅速に行われかつ、設定後、流量計測時に基準電圧が最適な電圧に保つことの出来る流体の流れ計測装置とすることが出来る効果がある。   Accordingly, there is an effect that the reference voltage can be quickly set without human intervention, and the fluid flow measuring device can be configured so that the reference voltage can be maintained at an optimum voltage during flow rate measurement after the setting.

第1の発明は、流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記振動子を駆動する送信手段と、前記振動子の送受信を切り換える切換手段と、前記振動子の受信信号を増幅する増幅手段と、前記超音波信号の送受信の累積時間を計時する計時手段と、前記計時手段の計時した時間に基づいて流速及びまたは流量を算出する流量算出手段と、前記第1振動子及び前記第2振動子のうち受信側の振動子の受信信号の電圧と基準電圧とを比較する基準比較手段と、前記基準比較手段と前記増幅手段の出力とから超音波信号の到達時期を判定する判定手段と、前記基準比較手段と前記判定手段の出力の時間差を計時する時間差計時手段と、前記基準比較手段の基準電圧を設定する基準設定手段を備えた流体の流れ計測装置において、基準電圧を最小から最大に変化させたときの前記時間差計時手段の計時する時間差により受信波の各波のピーク電圧位置を認識してこのピーク電圧比を基に受信波の特定の波の間に基準電圧を設定する基準設定手段とした流体の流れ計測装置とすることにより、基準電圧の設定を迅速かつ、精度良く行い、超音波の受信信号の変動に対し一番安定な基準電圧に設定出来る流体の流れ計測装置とすることが出来る。   The first invention includes a first vibrator and a second vibrator that are provided in the fluid pipe line and transmit and receive an ultrasonic signal, a transmission unit that drives the vibrator, a switching unit that switches transmission and reception of the vibrator, Amplifying means for amplifying the received signal of the vibrator, time measuring means for measuring the accumulated time of transmission / reception of the ultrasonic signal, and flow rate calculating means for calculating a flow velocity and / or a flow rate based on the time measured by the time measuring means, Ultrasonic wave from the reference comparison means for comparing the voltage of the reception signal of the reception-side vibrator of the first vibrator and the second vibrator with the reference voltage, and the outputs of the reference comparison means and the amplification means Fluid flow comprising determination means for determining the arrival time of a signal, time difference timing means for measuring a time difference between outputs of the reference comparison means and the determination means, and reference setting means for setting a reference voltage of the reference comparison means Measuring equipment , The peak voltage position of each wave of the received wave is recognized by the time difference counted by the time difference measuring means when the reference voltage is changed from the minimum to the maximum, and the specific wave of the received wave is determined based on this peak voltage ratio. By using a fluid flow measuring device as a reference setting means for setting a reference voltage between them, the reference voltage can be set quickly and accurately and the most stable reference voltage against fluctuations in the received ultrasonic signal It can be set as the fluid flow measuring device which can be set up.

第2の発明は、時間差計時手段の計時する時間差を流体の流れ計測装置本体の調整時に記憶する時間差記憶手段を設け、前記時間差記憶手段に記憶されている時間差を流量計測後に基準設定手段が基準電圧を設定する際に用いる時間差の目標値とする1項記載の流体の流れ計測装置とすることにより、自動的に基準電圧の補正を行い、常に最適な基準電圧に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a second aspect of the present invention, there is provided time difference storage means for storing the time difference measured by the time difference measurement means when adjusting the fluid flow measuring device main body, and the reference setting means uses the time difference stored in the time difference storage means as a reference after measuring the flow rate. By using the fluid flow measuring device according to item 1, which is the target value of the time difference used when setting the voltage, the reference voltage is automatically corrected and the fluid flow which can always be maintained at the optimum reference voltage. It can be set as a measuring device.

第3の発明は、基準設定手段は流体の流れ計測装置本体の調整時に基準電圧を受信波の特定の波間に設定した際の特定の波のピーク電圧間に基準電圧の設定範囲を限定する請求項2記載の流体の流れ計測装置とすることにより、流量計測中の超音波の受信信号の変動により基準電圧との大小関係が崩れたことを検知して基準電圧を再設定することで、最適な基準電圧に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a third aspect of the invention, the reference setting means limits the setting range of the reference voltage between the peak voltages of the specific waves when the reference voltage is set between the specific waves of the received wave when adjusting the fluid flow measuring device body. By adopting the fluid flow measuring device according to Item 2, it is optimal to reset the reference voltage by detecting that the magnitude relationship with the reference voltage has broken due to fluctuations in the received signal of the ultrasonic wave during flow rate measurement. It is possible to provide a fluid flow measuring device that can maintain a constant reference voltage.

第4の発明は基準設定手段は流体の流れ計測装置本体の調整時に基準電圧を受信波の特定の波間に設定した際の特定の波のピーク電圧間の所定の割合の区間に基準電圧の設定範囲を限定する請求項2記載の流体の流れ計測装置とすることにより、より迅速に常に最適な基準電圧に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a fourth aspect of the present invention, the reference setting means sets the reference voltage in an interval of a predetermined ratio between the peak voltages of specific waves when the reference voltage is set between specific waves of the received wave when adjusting the fluid flow measuring device body. By using the fluid flow measuring device according to claim 2 that limits the range, it is possible to provide a fluid flow measuring device that can always keep the optimum reference voltage more quickly.

第5の発明は基準設定手段は流量算出手段が算出した流量が所定流量以上になるまで基準電圧調整動作を行わない請求項1〜4記載の流体の流れ計測装置とすることにより、設定が迅速で常に最適な基準電圧に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a fifth aspect of the present invention, the reference setting means does not perform the reference voltage adjustment operation until the flow rate calculated by the flow rate calculation means exceeds a predetermined flow rate. Therefore, it is possible to provide a fluid flow measuring device that can always maintain an optimum reference voltage.

第6の発明は基準設定手段は流量算出手段が算出した流量が所定流量以上の状態から流量ゼロに戻った際に、前回の流量ゼロ時の基準電圧位置と比較して所定以上異なれば受信波の特定の波の間に設定する基準電圧の初期化をやり直す請求項1〜5記載の流体の流れ計測装置とすることにより、流路を流れる流体の流量の影響により超音波信号の送受信の方向別に超音波の受信信号と基準電圧との大小関係が崩れたことを検知して超音波信号の送受信の方向別に増幅手段の増幅度を変更することで基準電圧を再設定することで、基準比較手段の基準電圧を最適に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a sixth aspect of the present invention, when the flow rate calculated by the flow rate calculation unit returns from the state where the flow rate calculation unit is equal to or higher than the flow rate to zero, the reference setting unit receives the received wave if the flow rate is different from the reference voltage position at the previous flow rate zero. 6. The direction of ultrasonic signal transmission / reception by the influence of the flow rate of the fluid flowing through the flow path by reinitializing the reference voltage set during the specific wave Separately, the reference voltage is reset by detecting that the magnitude relationship between the received ultrasonic signal and the reference voltage has collapsed and changing the amplification level of the amplification means according to the transmission / reception direction of the ultrasonic signal. The fluid flow measuring device can keep the reference voltage of the means optimal.

第7の発明は基準設定手段は流量算出手段が算出した流量が所定流量以上の状態から流量ゼロに戻った際に、前回の流量ゼロ時の基準電圧位置と比較して所定値以内であれば再度所定流量以上になるまで基準電圧調整動作を行わない請求項7記載の流体の流れ計測装置とすることにより、流路を流れる流体の流量の影響により超音波信号の送受信の方向で超音波の受信信号と基準電圧との大小関係が崩れた場合に超音波信号の送受信の方向毎に基準比較手段の基準電圧を設定することで、基準比較手段の基準電圧を最適に保つことの出来る流体の流れ計測装置とすることが出来る。   In the seventh invention, when the flow rate calculated by the flow rate calculation unit returns from the state where the flow rate calculation unit is equal to or higher than the predetermined flow rate to zero, the reference setting unit is within a predetermined value compared with the reference voltage position at the previous flow rate zero. 8. The fluid flow measuring device according to claim 7, wherein the reference voltage adjustment operation is not performed until the flow rate again exceeds a predetermined flow rate, so that the ultrasonic wave is transmitted and received in the direction of ultrasonic signal transmission / reception due to the influence of the flow rate of the fluid flowing through the flow path. When the magnitude relationship between the received signal and the reference voltage is broken, the reference voltage of the reference comparison means is set for each direction of ultrasonic signal transmission / reception, so that the reference voltage of the reference comparison means can be kept optimal. It can be a flow measuring device.

第8の発明は基準設定手段は流量算出手段が算出した流量が、予め設定された複数の流量域の中で流量域を移ったときに基準電圧の調整動作を行う請求項1〜7記載の流体の流れ計測装置とすることにより、時間差計時手段の計時した時間差の変曲点の判定を確実に行うことが出来、その変曲点の中点または任意の点の電圧を基準電圧とすることで基準比較手段の基準電圧を最適に保つことの出来る流体の流れ計測装置とすることが出来る。   According to an eighth aspect of the present invention, in the reference setting means, the reference voltage adjustment operation is performed when the flow rate calculated by the flow rate calculation means moves in a flow rate range among a plurality of preset flow rate ranges. By using a fluid flow measurement device, it is possible to reliably determine the inflection point of the time difference measured by the time difference measuring means, and use the voltage at the midpoint of the inflection point or any point as the reference voltage. Thus, a fluid flow measuring device capable of maintaining the reference voltage of the reference comparison means optimally can be obtained.

第9の発明は基準設定手段は増幅手段の増幅度を調整後に基準電圧の変更を行う第1〜8の発明の流体の流れ計測装置とすることにより、時間差計時手段の計時した時間差の変曲点の判定を確実に行うことが出来、その変曲点の中点または任意の点の電圧を基準電圧とすることで基準比較手段の基準電圧を最適に保つことの出来る流体の流れ計測装置とすることが出来る。   According to a ninth aspect of the present invention, the reference setting means is the fluid flow measuring device according to the first to eighth aspects of the invention, wherein the reference voltage is changed after adjusting the amplification degree of the amplifying means, whereby the time difference inflection measured by the time difference measuring means. A fluid flow measuring device that can reliably determine the point and can maintain the reference voltage of the reference comparison means optimally by using the voltage at the middle point of the inflection point or an arbitrary point as the reference voltage; I can do it.

第10の発明は第1〜9のいずれかの発明の流体の流れ計測装置の手段の全てもしくは一部としてコンピュータを機能させるためのプログラムである。そして、プログラムであるのでマイコンなどを用いて本発明の流量計側装置の一部あるいは全てを容易に実現することができ超音波振動子の変更または経年変化等の特性の変化や動作を実現するための設定条件や定数の変更が柔軟に対応に出来る。また記録媒体に記録したり通信回線を用いてプログラムを配信したりすることでプログラムの配布が簡単にできる。   A tenth invention is a program for causing a computer to function as all or part of the means of the fluid flow measuring device according to any one of the first to ninth inventions. Since it is a program, a part or all of the flowmeter side device of the present invention can be easily realized by using a microcomputer or the like, and changes in characteristics or operations such as changes in ultrasonic transducers or changes over time can be realized. The setting conditions and constants can be changed flexibly. Further, the program can be easily distributed by recording it on a recording medium or distributing the program using a communication line.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における流体の流れ計測装置のブロック図を示すものである。図2及び図5は同第1の実施例の流体の流れ計測装置の動作説明図であり、図3、及び図4は同フローチャートである。
(Embodiment 1)
FIG. 1 shows a block diagram of a fluid flow measuring apparatus according to Embodiment 1 of the present invention. 2 and 5 are operation explanatory views of the fluid flow measuring apparatus of the first embodiment, and FIGS. 3 and 4 are the flowcharts.

図1において、流路1の途中に超音波を送信する第1超音波振動子2(第1振動子)と受信する第2超音波振動子3(第2振動子)が流れ方向に対し、角度φで配置されている。5は第1超音波振動子2への送信手段であり、4は第1超音波振動子2、第2超音波振動子3の送受信を切り換える切換手段、6は受信側の超音波振動子で受信した信号を制御手段12からの指示によるゲインで増幅する増幅手段、7は前記増幅手段6で増幅された信号と基準電圧とを比較し信号を出力する基準比較手段である。   In FIG. 1, a first ultrasonic transducer 2 (first transducer) that transmits ultrasonic waves in the middle of a flow path 1 and a second ultrasonic transducer 3 (second transducer) that receives ultrasonic waves are in the flow direction. Arranged at an angle φ. 5 is a transmission means to the first ultrasonic transducer 2, 4 is a switching means for switching between transmission and reception of the first ultrasonic transducer 2 and the second ultrasonic transducer 3, and 6 is an ultrasonic transducer on the receiving side. Amplifying means 7 amplifies the received signal with a gain according to an instruction from the control means 12, and 7 is a reference comparing means for comparing the signal amplified by the amplifying means 6 with a reference voltage and outputting a signal.

8は基準比較手段7の出力と前記増幅手段6で増幅された信号とから超音波の到達時期を判定する判定手段、9は判定手段8の信号をカウントし予め設定された回数だけ制御手段12へ繰り返し信号を出力する繰り返し手段である。10は繰り返し手段9で予め設定された回数をカウントした時間を計時する計時手段であり、11は計時手段10の計時した時間に応じて流体の流速を検出し、さらに管路の大きさや流れの状態を考慮して流量を算出する流量算出手段(算出手段)である。   8 is a judging means for judging the arrival time of the ultrasonic wave from the output of the reference comparing means 7 and the signal amplified by the amplifying means 6, and 9 is a control means 12 which counts the signal of the judging means 8 and counts a preset number of times. It is a repeating means for outputting a repeating signal. Reference numeral 10 denotes a time counting means for counting the time counted in advance by the repeat means 9, and 11 detects the flow velocity of the fluid according to the time measured by the time measuring means 10, and further the size and flow of the pipe line. It is a flow rate calculation unit (calculation unit) that calculates the flow rate in consideration of the state.

また、12は流量算出手段11、繰り返し手段9からの信号を受け送信手段5、増幅手段6の動作を制御する制御手段である。13は基準比較手段7の出力と判定手段8の出力との時間差を計時する時間差計時手段、14は基準比較手段7の基準電圧を設定し、かつ2波と3波のピーク電圧値を記憶する基準設定手段、15は基準設定手段14が基準電圧を設定後の時間差計時手段13の計時する時間差を記憶する時間差記憶手段である。   A control unit 12 receives signals from the flow rate calculation unit 11 and the repetition unit 9 and controls operations of the transmission unit 5 and the amplification unit 6. 13 is a time difference timing means for measuring the time difference between the output of the reference comparison means 7 and the output of the determination means 8, and 14 is for setting the reference voltage of the reference comparison means 7 and storing the peak voltage values of 2 and 3 waves. Reference setting means 15 is a time difference storage means for storing the time difference measured by the time difference measuring means 13 after the reference setting means 14 sets the reference voltage.

以上のように構成された流体の流れ計測装置について、以下その動作、作用を説明する。   The operation and action of the fluid flow measuring apparatus configured as described above will be described below.

まず制御手段12は図示していないモード切替のための入力により製造工程時に製造工程専用のモードで以下の様に動作を開始する。電源投入後、制御手段12は、ゲイン調整のために暫定の基準電圧を設定する(図3のステップ1)。ゲイン調整は図2に示すように例えば受信波の最大振幅である5波のピーク電圧値を所定の電圧値になるようにゲインを調整し設定するものであり、このときの基準電圧は1波のピーク電圧より高く、5波のピーク電圧より低ければどのような値の電圧でもよい。また、ゲイン調整中は基準電圧は固定である。これは基準電圧を変更することで基準電圧が5波のピーク電圧以上になったり、1波のピーク電圧以下になり基準比較手段7、判定手段8が正しく動作しなくなることを防ぐためである。   First, the control means 12 starts operation in the following manner in a mode dedicated to the manufacturing process during the manufacturing process by an input for mode switching (not shown). After the power is turned on, the control means 12 sets a temporary reference voltage for gain adjustment (step 1 in FIG. 3). For example, as shown in FIG. 2, the gain adjustment is performed by adjusting the gain so that the peak voltage value of five waves, which is the maximum amplitude of the received wave, becomes a predetermined voltage value, and the reference voltage at this time is one wave. Any value can be used as long as it is higher than the peak voltage and lower than the peak voltage of the five waves. The reference voltage is fixed during gain adjustment. This is to prevent the reference voltage from becoming higher than the peak voltage of five waves by changing the reference voltage, or from being lower than the peak voltage of one wave, so that the reference comparison means 7 and the determination means 8 do not operate correctly.

流体の流れ計測装置のゲイン調整自体は従来例と同等であるので本実施の形態ではその説明は省略する。   Since the gain adjustment of the fluid flow measuring device is the same as that of the conventional example, the description thereof is omitted in the present embodiment.

最初に、受信側の第2超音波振動子3で受信した信号を一定振幅となるようゲインを調整した後(ステップ2)、基準設定手段14は基準電圧を設定範囲の最小電圧に設定する(ステップ3)。 First, after adjusting the gain so that the signal received by the second ultrasonic transducer 3 on the receiving side has a constant amplitude (step 2), the reference setting unit 14 sets the reference voltage to the minimum voltage in the setting range ( Step 3).

最低の基準電圧に設定後、制御手段12は繰り返し手段9の繰り返し回数を1回に設定して、送信手段5を動作させ第1超音波振動子2より超音波信号を送信する(ステップ4)。   After setting the lowest reference voltage, the control means 12 sets the number of repetitions of the repetition means 9 to 1 and operates the transmission means 5 to transmit an ultrasonic signal from the first ultrasonic transducer 2 (step 4). .

第1超音波振動子2より送信された超音波信号は流路1の流れの中を伝搬し、第2超音波振動子3で受信され、増幅手段6で増幅されて、基準比較手段7、判定手段8へ出力される。ここで図2に増幅後の受信信号の様子を示す。つまり図2に示すように基準比較手段7は増幅手段6の出力(受信信号A)と基準電圧とを比較し(図3のステップ5)、その大小関係が反転した時点(タイミングc)で時間差計時手段13と判定手段8に出力信号Cを出力する。   The ultrasonic signal transmitted from the first ultrasonic transducer 2 propagates through the flow path 1, is received by the second ultrasonic transducer 3, is amplified by the amplification means 6, It is output to the determination means 8. FIG. 2 shows the state of the received signal after amplification. That is, as shown in FIG. 2, the reference comparing means 7 compares the output (received signal A) of the amplifying means 6 with the reference voltage (step 5 in FIG. 3), and the time difference when the magnitude relationship is inverted (timing c). An output signal C is output to the time measuring means 13 and the determination means 8.

時間差計時手段13は基準比較手段7からの出力信号Cを入力すると計時を開始し(ステップ6)、判定手段8ではタイミングc以降の増幅手段6出力の符号が正から負に変わる最初の負のゼロクロス点aを超音波の到達ポイントと判定し(ステップ7)、出力信号Dを繰り返し手段9、時間差計時手段13に出力する。時間差計時手段13は、この判定手段8の出力信号Dを受けると計時を終了し(ステップ8)、計時した時間差Tdを基準設定手段14へ出力する。基準設定手段14は、基準電圧を基準電圧の可変範囲の1制御単位分(例えば2mV)だけ増加させる(ステップ9)。制御手段12は繰り返し手段9に設定された繰り返し回数が1回であるので、繰り返し動作が終了した旨の信号を繰り返し手段9より入力して、再度送信手段5を動作させ、第1超音波振動子2より超音波信号を送信する。基準設定手段14が基準電圧の設定範囲の最大電圧に基準電圧を設定するまで、ここまでの動作を繰り返す。   The time difference timing means 13 starts timing when the output signal C from the reference comparison means 7 is input (step 6). In the determination means 8, the sign of the output of the amplifying means 6 after the timing c is changed from positive to negative. The zero cross point a is determined as an ultrasonic arrival point (step 7), and the output signal D is output to the repetition means 9 and the time difference timing means 13. When receiving the output signal D from the determination means 8, the time difference timing means 13 ends the time measurement (step 8) and outputs the time difference Td measured to the reference setting means 14. The reference setting means 14 increases the reference voltage by one control unit (for example, 2 mV) in the reference voltage variable range (step 9). Since the number of repetitions set in the repetition unit 9 is one, the control unit 12 inputs a signal indicating that the repetition operation has been completed from the repetition unit 9, operates the transmission unit 5 again, and the first ultrasonic vibration An ultrasonic signal is transmitted from the child 2. Until the reference setting unit 14 sets the reference voltage to the maximum voltage in the reference voltage setting range, the above operation is repeated.

基準設定手段14が基準電圧の最大電圧まで設定が終わると、基準設定手段14は基準電圧を設定範囲の最小電圧から最大電圧に変化させたときの時間差計時手段13の計時する時間差が大きく変化する(例えば前回の時間差と比較して1.3倍以上変化するか)変曲点は複数存在している。 When the reference setting unit 14 finishes setting up to the maximum reference voltage, the reference setting unit 14 greatly changes the time difference counted by the time difference counting unit 13 when the reference voltage is changed from the minimum voltage to the maximum voltage in the setting range. (For example, is it changed 1.3 times or more compared to the previous time difference?) There are a plurality of inflection points.

この変曲点について図5、図6を用いて説明する。図5は基準設定手段14が基準電圧を設定範囲の最小電圧から最大電圧に変化させたときの時間差計時手段13の計時した時間差を示した図である。時間差計時手段13の計時した時間差は図2に示すように基準比較手段13と判定手段8の出力の時間差であるので受信信号の各波(1波、2波、3波...)のピーク電圧付近(図6において、それぞれp1、p2、p3...とする。)に基準電圧がある場合に時間差が最小(p1、p2、p3...に対応してそれぞれTp1、Tp2、Tp3...とする。)になり、その値は超音波の周期の約1/4(駆動周波数が500KHzの場合、500ns)になる。 This inflection point will be described with reference to FIGS. FIG. 5 is a diagram showing the time difference measured by the time difference measuring means 13 when the reference setting means 14 changes the reference voltage from the minimum voltage to the maximum voltage in the setting range . As shown in FIG. 2, the time difference measured by the time difference measuring means 13 is the time difference between the outputs of the reference comparing means 13 and the judging means 8, so that the peak of each wave (1 wave, 2 waves, 3 waves ...) of the received signal is obtained. When there is a reference voltage in the vicinity of the voltage (in FIG. 6, p1, p2, p3,...), The time difference is minimum (p1, p2, p3,... Corresponding to p1, p2, p3,. The value is about 1/4 of the period of the ultrasonic wave (500 ns when the drive frequency is 500 KHz).

そこから基準電圧を増加させ、各波のピーク電圧を超えると時間差計時手段13の計時した時間差は急に大きくなり、図5に示すように時間差の変曲点(時間差の最小であるTp1、Tp2、Tp3...)として現れる。例えば、基準電圧が2波のピークp2付近(但しp2を越えない)にあった場合から2波のピーク電圧p2を超えた場合、変曲点はTp2となる。これは時間差の変曲点になる基準電圧が受信信号の各波のピーク電圧付近の電圧となることを意味している。   When the reference voltage is increased from that point and exceeds the peak voltage of each wave, the time difference measured by the time difference measuring means 13 suddenly increases, and as shown in FIG. 5, the inflection points of the time difference (Tp1, Tp2 having the minimum time difference). , Tp3 ...). For example, when the reference voltage is near the peak p2 of two waves (but does not exceed p2) and exceeds the peak voltage p2 of two waves, the inflection point is Tp2. This means that the reference voltage that becomes the inflection point of the time difference becomes a voltage near the peak voltage of each wave of the received signal.

これらのピーク電圧の比は流路、センサによりほぼ一定の値となることが実験で確認されている。例えば図6に示すように1波のピーク電圧p1と2波のピーク電圧p2の比p2/p1≒2.5、2波のピーク電圧p2と3波のピーク電圧p3の比p3/p2≒1.8、更に3波のピーク電圧p3と4波のピーク電圧p4の比p4/p3≒1.3といった具合である。   It has been experimentally confirmed that the ratio of these peak voltages is almost constant depending on the flow path and the sensor. For example, as shown in FIG. 6, the ratio of the peak voltage p1 of one wave to the peak voltage p2 of two waves p2 / p1≈2.5, the ratio of the peak voltage p2 of two waves to the peak voltage p3 of three waves p3 / p2≈1. .8, and the ratio of the peak voltage p3 of 3 waves to the peak voltage p4 of 4 waves, p4 / p3≈1.3.

このように各波のピーク電圧の比が一定の値を示すことから、受信波の各波を認識することが可能である。つまり、あるピーク電圧と一つ前(基準電圧が低い方に一つ前)のピーク電圧との比が2.5倍程度となるピーク電圧は2波のピーク電圧であり、1.8倍程度となるのは3波のピーク電圧である。基準設定手段14では以上のようにピーク電圧の比を確認し、そのピーク電圧比によって受信波の特定の波(2波と3波)のピーク電圧を認識し、その特定の波(2波、3波)のピーク電圧の中点のVrefに基準電圧を設定する(図3のステップ11)。   Thus, since the ratio of the peak voltage of each wave shows a constant value, it is possible to recognize each wave of the received wave. In other words, the peak voltage at which the ratio of a certain peak voltage to the previous peak voltage (one before the lower reference voltage) is about 2.5 times is a peak voltage of two waves, about 1.8 times. Is the peak voltage of three waves. The reference setting unit 14 confirms the peak voltage ratio as described above, recognizes the peak voltage of a specific wave (2 waves and 3 waves) of the received wave based on the peak voltage ratio, and determines the specific wave (2 waves, A reference voltage is set to Vref at the midpoint of the peak voltage of (three waves) (step 11 in FIG. 3).

そしてこの特定の波(2波、3波)のピーク電圧の中点のVrefに基準電圧を設定した後の時間差計時手段13が計時する時間差を時間差記憶手段15が記憶し、また2波のピーク電圧と3波のピーク電圧(基準電圧の設定範囲)を基準設定手段が記憶して(ステップ12)、製造工程専用のモードを終了する。   Then, the time difference storage means 15 stores the time difference measured by the time difference timing means 13 after setting the reference voltage to the midpoint Vref of the peak voltage of this specific wave (2 waves, 3 waves), and the peak of the two waves The reference setting means stores the voltage and the peak voltage of three waves (reference voltage setting range) (step 12), and the mode dedicated to the manufacturing process is terminated.

2波のピーク電圧と3波のピーク電圧を記憶することで、製造工程時における超音波信号の到達時期を検知するためのポイント(例えば図2における3波の負のゼロクロス点a)を検知できる基準電圧の設定可能範囲が記憶される。   By storing the peak voltage of two waves and the peak voltage of three waves, it is possible to detect a point for detecting the arrival time of the ultrasonic signal during the manufacturing process (for example, the three-wave negative zero-cross point a in FIG. 2). The settable range of the reference voltage is stored.

基準電圧を2波、3波間に設定する意図はピーク電圧の幅が一番広い基準電圧範囲(図6において2波、3波のピーク電圧範囲)に基準電圧を設定すれば、受信信号の各波のピーク電圧差の一番大きい部分に設定することになり、例えば図5において2波、3波のピーク電圧の中点のVrefに基準電圧を設定すれば2波、3波のピーク電圧と基準電圧との間にマージンを大きく取ることが出来、受信信号の電圧変動に対して最も安定に判定手段8が超音波の受信信号の到達時期を検知出来るからである。   The intent of setting the reference voltage between 2 and 3 waves is to set each reference signal within the reference voltage range (the peak voltage range of 2 waves and 3 waves in FIG. 6) with the widest peak voltage. For example, in FIG. 5, if the reference voltage is set to Vref at the midpoint of the peak voltage of 2 waves and 3 waves in FIG. 5, the peak voltage of 2 waves and 3 waves is set. This is because a large margin can be taken between the reference voltage and the determination means 8 can detect the arrival time of the ultrasonic reception signal most stably with respect to the voltage fluctuation of the reception signal.

製造工程での基準電圧の設定後、流体の流れ計測装置の設置現場で、図示していないモード切替のための入力により制御手段12が通常モードに切り替後、電源を投入すると以下の様に動作を開始する。最初に受信側の超音波振動子で受信した信号を一定振幅となるようゲインを調整した後(図4のステップ21)、制御手段12は繰り返し手段9に繰り返し回数1回を設定して基準電圧の確認動作を開始する。動作を開始した後の基準設定手段14の動作を図4を用いて説明する。動作を開始すると制御手段12は送信手段5を動作させ第1超音波振動子2より超音波信号を送信し(ステップ22)、増幅手段6で増幅された第2超音波振動子3で受信された超音波信号は基準比較手段7、判定手段8へ出力され、基準比較手段7で受信信号と基準電圧とを比較し(ステップ23)、その大小関係が反転した時点から時間差計時手段13で計時を開始し(ステップ24)、判定手段8により増幅手段6出力の符号が正から負に変わる最初の負のゼロクロス点を検知するまで、時間差の計時を行う(ステップ25、26)。   After setting the reference voltage in the manufacturing process, when the power is turned on after the control means 12 is switched to the normal mode by an input for mode switching (not shown) at the installation site of the fluid flow measuring device, the following operation is performed. To start. After adjusting the gain so that the signal first received by the ultrasonic transducer on the receiving side has a constant amplitude (step 21 in FIG. 4), the control means 12 sets the repeat means 9 to be the repeat count once and sets the reference voltage. Start the confirmation operation. The operation of the reference setting unit 14 after starting the operation will be described with reference to FIG. When the operation is started, the control unit 12 operates the transmission unit 5 to transmit an ultrasonic signal from the first ultrasonic transducer 2 (step 22), and is received by the second ultrasonic transducer 3 amplified by the amplification unit 6. The ultrasonic signal is output to the reference comparison means 7 and the determination means 8, and the reference comparison means 7 compares the received signal with the reference voltage (step 23), and the time difference counting means 13 measures the time from when the magnitude relationship is reversed. Until the first negative zero cross point at which the sign of the output of the amplification means 6 changes from positive to negative is detected by the determination means 8 (steps 25 and 26).

時間差計時手段13で計時された時間差と時間差記憶手段15に記憶されている時間差とを比較して(ステップ27)、所定値以上であれば基準電圧設定をやり直す(ステップ28)。所定値以内(例えば±20%)であれば基準電圧の変更は行わず、流速計測,流量演算の処理へ移行する。つまり、製造時に時間差記憶手段15に記憶した時と被計測流体や構成部品の特性等の条件の変化が無ければ、ゲイン調整された受信波と基準電圧の関係には変化が無く、時間差記憶手段15に記憶された時間差とステップ26で時間差計時手段13が計時した時間差は同じになるが、何らかの要因で2つの時間差が所定値以上異なる場合は、基準電圧の設定をやり直す。図7に流量計測処理について示す。   The time difference measured by the time difference timing means 13 is compared with the time difference stored in the time difference storage means 15 (step 27), and if it is equal to or greater than a predetermined value, the reference voltage is set again (step 28). If it is within a predetermined value (for example, ± 20%), the reference voltage is not changed, and the flow proceeds to flow velocity measurement and flow rate calculation processing. That is, if there is no change in conditions such as the characteristics of the fluid to be measured and the component parts when stored in the time difference storage means 15 at the time of manufacture, there is no change in the relationship between the gain-adjusted received wave and the reference voltage, and the time difference storage means The time difference stored in 15 is the same as the time difference measured by the time difference measuring means 13 in step 26. However, if the two time differences differ by a predetermined value or more for some reason, the reference voltage is set again. FIG. 7 shows the flow rate measurement process.

制御手段12は繰り返し手段9に正規の繰り返し回数(例えば256回)を設定して流量計測を開始する。流量計測を開始すると制御手段12は送信手段5を動作させ第1超音波振動子2より超音波信号を送信し(図7のステップ32)、増幅手段6で増幅された第2超音波振動子3で受信された超音波信号は基準比較手段7、判定手段8へ出力され、基準比較手段7で受信信号と基準電圧とを比較し(ステップ33)、その大小関係が反転した時点から時間差計時手段13で計時を開始し(ステップ34)、判定手段8により増幅手段6出力の符号が正から負に変わる最初の負のゼロクロス点を検知するまで、時間差の計時を行う(ステップ35、36)。判定手段8によりゼロクロス点(超音波の到達ポイント)の検知後、制御手段12は送信手段5を再度動作させ超音波振動子2より超音波信号を送信する。この一連の動作を予め設定された256回数繰り返し行い(ステップ31)、所定の繰り返し回数終了後、基準設定手段14は繰り返し回数分の時間差計時手段13が計時した時間差の平均値を算出し(ステップ37)、これに基づいて流量算出手段11にて流速を算出して流量を算出する。   The control unit 12 sets a regular number of repetitions (for example, 256 times) in the repetition unit 9 and starts measuring the flow rate. When the flow rate measurement is started, the control unit 12 operates the transmission unit 5 to transmit an ultrasonic signal from the first ultrasonic transducer 2 (step 32 in FIG. 7), and the second ultrasonic transducer amplified by the amplification unit 6. 3 is output to the reference comparison means 7 and the determination means 8, and the reference comparison means 7 compares the received signal with the reference voltage (step 33), and measures the time difference from the time when the magnitude relationship is inverted. Time measurement is started by the means 13 (step 34), and the time difference is measured until the first negative zero cross point at which the sign of the output of the amplification means 6 changes from positive to negative by the determination means 8 (steps 35 and 36). . After the zero crossing point (ultrasonic arrival point) is detected by the determination unit 8, the control unit 12 operates the transmission unit 5 again to transmit an ultrasonic signal from the ultrasonic transducer 2. This series of operations is repeated 256 times preset (step 31), and after the predetermined number of repetitions, the reference setting means 14 calculates the average value of the time differences counted by the time difference counting means 13 for the number of repetitions (step 31). 37) Based on this, the flow rate is calculated by the flow rate calculation means 11 to calculate the flow rate.

流量算出手段11において算出された流量が所定の流量(例えば400L/h)以上か否かを判定し、所定流量以上であれば(ステップ38)、基準設定手段14の算出した時間差の平均値が予め設定された所定値(例えば製造時に設定された基準電圧が受信波の2波と3波の中点にある場合の時間差計時手段13が計時した時間差の120%)と比較する(ステップ39)。所定値以上であれば、現在の基準電圧が製造時に記憶した基準電圧の設定範囲の上限(製造工程時の3波のピーク電圧)を越えたか否かを判定し(ステップ43)、上限を越えていた場合は流量計測を終了する。設定範囲の上限を越えていなかった場合は基準電圧を1制御単位(2mV)分、基準電圧を増加させる(ステップ44)。   It is determined whether or not the flow rate calculated by the flow rate calculation unit 11 is equal to or higher than a predetermined flow rate (for example, 400 L / h). If the flow rate is equal to or higher than the predetermined flow rate (step 38), the average value of the time differences calculated by the reference setting unit 14 is Comparison with a predetermined value set in advance (for example, 120% of the time difference measured by the time difference measuring means 13 when the reference voltage set at the time of manufacture is at the midpoint between the two waves of the received wave and the third wave) (step 39). . If it is equal to or greater than the predetermined value, it is determined whether or not the current reference voltage exceeds the upper limit of the reference voltage setting range stored at the time of manufacture (three-wave peak voltage during the manufacturing process) (step 43). If so, the flow rate measurement is terminated. If the upper limit of the setting range is not exceeded, the reference voltage is increased by one control unit (2 mV) (step 44).

また、基準設定手段14の算出した時間差の平均値と予め設定されステップ24とは異なる別の所定値(例えば製造時に設定された基準電圧が受信波の2波と3波の中点にある場合の時間差の80%)と比較して(ステップ40)、所定値未満でなければ流量計測を終了する。所定値未満であった場合、現在の基準電圧が製造時に記憶した基準電圧の設定範囲の下限(製造工程時の2波のピーク電圧)を下回ったか否かを判定し(ステップ41)、下限を下回っていなかった場合は基準電圧を1制御単位(2mV)分、基準電圧を減少させる(ステップ42)。   Further, the average value of the time difference calculated by the reference setting means 14 and another predetermined value which is preset and different from step 24 (for example, when the reference voltage set at the time of manufacture is at the midpoint between the two waves of the received wave and the three waves) (Step 40), the flow rate measurement is terminated if it is not less than the predetermined value. When it is less than the predetermined value, it is determined whether or not the current reference voltage falls below the lower limit of the reference voltage setting range stored at the time of manufacture (two-wave peak voltage during the manufacturing process) (step 41). If not, the reference voltage is decreased by one control unit (2 mV) (step 42).

また、設定範囲の下限を下回った場合は流量計測を終了する。つまり所定流量(400L/h)以上で、基準設定手段14の算出した時間差の平均値が、製造時の基準電圧設定時の時間差の80〜120%内である場合は、基準電圧はそのままで、時間差の平均値が120%以上である場合に、基準電圧が製造工程時の3波のピーク電圧を越えない範囲で基準電圧を流量計測毎に増加させる。また、製造時の基準電圧設定時の時間差の平均値が80%未満である場合に、基準電圧が製造工程時の2波のピーク電圧を下回らない範囲で基準電圧を流量計測毎に減少させることになる。   If the lower limit of the set range is not reached, the flow rate measurement is terminated. That is, when the average value of the time difference calculated by the reference setting means 14 is within 80 to 120% of the time difference at the time of setting the reference voltage at the time of manufacture at a predetermined flow rate (400 L / h) or more, the reference voltage remains as it is. When the average value of the time difference is 120% or more, the reference voltage is increased for each flow measurement within a range where the reference voltage does not exceed the peak voltage of the three waves during the manufacturing process. In addition, when the average value of the time difference when setting the reference voltage at the time of manufacture is less than 80%, the reference voltage should be decreased for each flow measurement within the range where the reference voltage does not fall below the peak voltage of the two waves during the manufacturing process. become.

以上のように所定の繰り返し回数終了後、状況に応じて基準電圧を変更していく。また、計時手段10により流量計測開始から所定の繰り返し回数終了までの時間を測定して、第1超音波振動子2と第2超音波振動子3とを切換手段4により切り替えて、同様な動作を行い、被測定流体の上流から下流と下流から上流のそれぞれの伝搬時間を測定し、これらの時間差より流量算出手段11で流路の大きさや流れの状態を考慮して流量値を求める。   As described above, after the predetermined number of repetitions, the reference voltage is changed according to the situation. Further, the time from the start of the flow measurement to the end of the predetermined number of repetitions is measured by the time measuring means 10, and the first ultrasonic vibrator 2 and the second ultrasonic vibrator 3 are switched by the switching means 4, and the same operation is performed. Then, the respective propagation times from the upstream to the downstream and the downstream to the upstream of the fluid to be measured are measured, and the flow rate calculation unit 11 determines the flow rate value in consideration of the size of the flow path and the flow state from these time differences.

なお、図7のステップ43において基準設定手段14の算出した時間差の平均値が予め設定された所定値(例えば、製造時に設定された基準電圧が受信波の2波と3波の中点にある場合の時間差計時手段13が計時した時間差の120%)以上である場合に、現在の基準電圧が製造時に記憶した基準電圧の設定範囲の上限(製造工程時の3波のピーク電圧)を越えたか否かを判定したが、設定範囲の上限の90%を越えたか否かを判定するように、また、ステップ41で現在の基準電圧が製造時に記憶した基準電圧の設定範囲の下限(製造工程時の2波のピーク電圧)を下回ったか否かを判定したが、下限の10%増しの値を下回ったか否かを判定するようにしてもよく、この場合には基準設定手段14の設定する基準電圧が製造工程時の2波のピーク電圧と3波のピーク電圧間の10%〜90%間に安定して設定されることになる。   It should be noted that the average value of the time difference calculated by the reference setting means 14 in step 43 in FIG. 7 is a predetermined value set in advance (for example, the reference voltage set at the time of manufacture is at the midpoint between the two waves of the received wave and the third wave). The current reference voltage exceeds the upper limit of the reference voltage setting range stored at the time of manufacture (three-wave peak voltage during the manufacturing process) when the time difference of the time difference measuring means 13 is 120% or more) In order to determine whether or not 90% of the upper limit of the setting range has been exceeded, the lower limit of the reference voltage setting range stored at the time of manufacture in step 41 (during the manufacturing process) In this case, it may be determined whether or not the value is lower than 10% of the lower limit, and in this case, the reference set by the reference setting means 14 is determined. Voltage is 2 during manufacturing process Stably it would be set between 10% and 90% between the peak voltage and the third waveform of the peak voltage.

また、流量算出手段11は、流体の流速を検出し、さらに管路の大きさや流れの状態を考慮して流量を算出するものとしたが、流量を算出しない場合でも、求められた流体の流速により、流速の変化を判定できることとなり、流体の漏洩を検出することを可能とする。   Further, the flow rate calculation means 11 detects the flow velocity of the fluid, and further calculates the flow rate in consideration of the size of the pipe line and the flow state. However, even when the flow rate is not calculated, the obtained flow velocity of the fluid is calculated. Therefore, it is possible to determine the change in the flow velocity, and it is possible to detect the leakage of the fluid.

(実施の形態2)
また、図8を用いて基準設定手段14の他の動作を説明する。
(Embodiment 2)
Further, another operation of the reference setting unit 14 will be described with reference to FIG.

図8は基準設定手段14の他の動作を説明するフローチャートである。   FIG. 8 is a flowchart for explaining another operation of the reference setting means 14.

図8に於いて所定の繰り返し回数の動作を終え、時間差の平均値を算出するまでのステップ31〜37迄の動作は図7の動作と同じなので、時間差の平均値を算出後のステップ51から説明を行う。基準設定手段14が繰り返し回数分の時間差計時手段13が計時した時間差の平均値を算出すると、流量算出手段11により算出された流量が0L/hであったか否かを判定し(ステップ51)、0L/hであった場合は現在の基準電圧と製造時に設定した基準電圧との差を判定し(ステップ52)、予め設定された設定値以上異なれば、初期設定動作で行った基準電圧の設定動作を再度実行する(ステップ53)。所定値以内であれば基準電圧は変更せずそのまま処理を終了する。また、ステップ51での流量判定で0L/hでなかった場合、前述のステップ39以降の手順で基準電圧の設定を行う。   In FIG. 8, the operation from step 31 to step 37 until the average value of the time difference is calculated after finishing the predetermined number of repetitions is the same as the operation of FIG. Give an explanation. When the reference setting unit 14 calculates the average value of the time differences counted by the time difference counting unit 13 for the number of repetitions, it is determined whether or not the flow rate calculated by the flow rate calculation unit 11 is 0 L / h (step 51). If it is / h, the difference between the current reference voltage and the reference voltage set at the time of manufacture is determined (step 52). If the difference is more than a preset value, the reference voltage setting operation performed in the initial setting operation is performed. Is executed again (step 53). If it is within the predetermined value, the reference voltage is not changed and the process is terminated. If the flow rate determination at step 51 is not 0 L / h, the reference voltage is set by the procedure after step 39 described above.

(実施の形態3)
さらに図9を用いて基準設定手段14の他の動作を説明する。
(Embodiment 3)
Furthermore, another operation | movement of the reference | standard setting means 14 is demonstrated using FIG.

図9は基準設定手段14の他の動作を説明するフローチャートである。   FIG. 9 is a flowchart for explaining another operation of the reference setting means 14.

図9に於いて所定の繰り返し回数の動作を終え、時間差の平均値を算出するまでのステップ31〜37迄の動作は図7の動作と同じなので、時間差の平均値を算出後のステップ61から説明を行う。基準設定手段14が繰り返し回数分の時間差計時手段13が計時した時間差の平均値を算出すると、流量算出手段11により算出された流量により複数の流量ゾーン分けを行う(図9のステップ61)。   In FIG. 9, the operation from step 31 to step 37 after the operation of a predetermined number of repetitions is completed and the average value of the time difference is calculated is the same as the operation of FIG. Give an explanation. When the reference setting means 14 calculates the average value of the time differences counted by the time difference counting means 13 corresponding to the number of repetitions, a plurality of flow zones are divided by the flow rate calculated by the flow rate calculation means 11 (step 61 in FIG. 9).

例えば流量が0〜400L/h未満、400以上〜1000L/h未満、1000L/h以上の3つのゾーンに分け、所定の繰り返し回数の動作を終え、流量算出手段11により算出した流量が前回計測した流量の流量ゾーンと比較し、同じであれば(ステップ62)、基準電圧は変更せずそのまま処理を終了する。   For example, the flow rate is divided into three zones of 0 to less than 400 L / h, 400 to less than 1000 L / h, and 1000 L / h or more, the operation is repeated a predetermined number of times, and the flow rate calculated by the flow rate calculation unit 11 is measured last time. If it is the same as that in the flow rate flow zone (step 62), the reference voltage is not changed and the processing is terminated.

今回計測した流量が前回計測した流量ゾーンと異なれば、ステップ39以降の処理を行う。ステップ39以降は図7と同じであり、説明を省略する。   If the flow rate measured this time is different from the flow rate zone measured last time, the processing after step 39 is performed. Step 39 and subsequent steps are the same as those in FIG.

つまり、前回計測時 100L/hで、今回計測時が300L/hであれば同じ流量ゾーンであるので基準電圧はそのままで、前回計測時 100L/hで、今回計測時が500L/hであれば違う流量ゾーンになるのでステップ39以降の基準電圧の変更処理を行う。   That is, if the current measurement time is 100 L / h and the current measurement time is 300 L / h, the same flow rate zone is maintained, so the reference voltage remains unchanged, and the previous measurement is 100 L / h and the current measurement time is 500 L / h. Since the flow rate zone is different, the reference voltage changing process after step 39 is performed.

また、本実施の形態では、時間差計時手段13の計時する時間差が大きく変化する複数の変曲点の内、特定の波(2波と3波ピーク電圧)の変曲点間の中点に基準電圧を設定するとしたが、受信信号の電圧変動の方向(増加もしくは減少)に特徴があり、例えば受信信号の電圧変動が増加することは無く、減少することのみであれば基準電圧を時間差の変曲点間の中点ではなく、それよりも低い電圧に設定する方が受信信号の電圧変動(減少)に対して基準電圧とのマージンを大きく取れる。このような場合は、例えば時間差の最大間隔の変曲点間の1/3の点というように設定する基準電圧は受信信号の電圧変動に応じて任意の点に設定すればよい。   In the present embodiment, the reference point is the midpoint between the inflection points of specific waves (2 wave and 3 wave peak voltages) among a plurality of inflection points where the time difference measured by the time difference measuring means 13 changes greatly. Although the voltage is set, there is a characteristic in the direction (increase or decrease) of the voltage fluctuation of the received signal. For example, if the voltage fluctuation of the received signal does not increase but only decreases, the reference voltage is changed by the time difference. Setting a voltage lower than the midpoint between the inflection points can provide a larger margin with respect to the reference voltage against voltage fluctuation (decrease) in the received signal. In such a case, for example, the reference voltage that is set to be 1/3 between the inflection points of the maximum interval of time difference may be set to an arbitrary point according to the voltage fluctuation of the received signal.

製造時に於いて被計測流体(LPG等)を本流体の流れ計測装置に注入し基準電圧を受信波形の各波のピーク電圧比により自動的に特定の波間(2波−3波間)の中点に設定することで、設置現場に於いては被計測流体が流体の流れ計測装置に充填されてなくとも正しい基準電圧が設定され、動作開始後の基準電圧の自動調整により基準電圧が変更されても、製造時の特定の波間(2波−3波間)にその変更範囲を限定することで誤った電圧に設定されることを防ぐことが出来る。   At the time of manufacture, the fluid to be measured (LPG etc.) is injected into the fluid flow measurement device, and the reference voltage is automatically set to the midpoint of the specific wave (between 2 waves and 3 waves) according to the peak voltage ratio of each wave of the received waveform By setting to, the correct reference voltage is set even if the fluid to be measured is not filled in the fluid flow measuring device at the installation site, and the reference voltage is changed by automatic adjustment of the reference voltage after the operation starts. However, it is possible to prevent an incorrect voltage from being set by limiting the change range to a specific wave interval (between 2 waves and 3 waves) at the time of manufacture.

以上のように本実施の形態においては製造工程等のおける初期設定時に基準電圧を設定範囲の最小電圧から最大電圧に変化させ、そのときの時間差計時手段13の計時する時間差が大きく変化する複数の変曲点から受信波形の各波のピーク電圧を認識し、ピーク電圧の比より受信波形の波、例えば特定の2波、3波のピーク電圧間の中点の電圧、または任意の点に基準電圧を自動的に設定する基準設定手段14としたことにより、超音波の受信波形の中で受信信号の電圧変動に対して、一番安定して超音波信号の到達時期を検知出来る2波、3波のピーク電圧間に基準電圧を確実かつ自動で設定でき、また、製造時の基準
電圧の設定後、設置現場で流量計測を行う迄に何らかの要因で部品の特性に変化が起き、時間差記憶手段15に記憶されている製造時の時間差と時間差計時手段13が計時した時間差とを比較して大きく異なれば基準電圧を再設定する。2つの時間差が同じであれば、基準電圧を再設定なしに流量計測を開始する。さらに流量計測時の時間差計時手段13の計時する時間差が基準電圧を設定した際の時間差を基に決定される所定の時間差の幅から逸脱した場合に基準電圧の再設定が行われる。
As described above, in the present embodiment, the reference voltage is changed from the minimum voltage of the setting range to the maximum voltage at the initial setting in the manufacturing process or the like, and the time difference measured by the time difference measuring means 13 at that time is a plurality of changes. Recognize the peak voltage of each wave of the received waveform from the inflection point, and reference the wave of the received waveform based on the ratio of the peak voltage, for example, the midpoint voltage between the peak voltages of two specific waves or three waves, or any point By using the reference setting means 14 for automatically setting the voltage, two waves that can detect the arrival time of the ultrasonic signal most stably against the voltage fluctuation of the received signal in the ultrasonic reception waveform, The reference voltage can be set reliably and automatically between the peak voltages of the three waves. Also, after setting the reference voltage at the time of manufacturing, the characteristics of the parts change for some reason until the flow rate is measured at the installation site, and the time difference is stored. Stored in means 15 Time difference and the time difference counting means 13 during manufacture to reset the reference voltage Different larger than the time difference counting you are. If the two time differences are the same, flow measurement is started without resetting the reference voltage. Further, the reference voltage is reset when the time difference measured by the time difference measuring means 13 at the time of flow rate deviates from a predetermined time difference determined based on the time difference when the reference voltage is set.

これにより基準電圧の設定が人手を介することなく迅速に行われかつ、設定後も、流量計測時に基準電圧が最適な電圧に保つことの出来る流体の流れ計測装置とすることが出来る。さらに所定流量未満、または同一流量ゾーン等の必要以上に基準電圧の再設定を行わないので低消費電力で流量計測を行うことが出来る。   As a result, the reference voltage can be set quickly without human intervention, and the fluid flow measuring device can maintain the reference voltage at an optimum voltage during flow rate measurement even after the setting. Furthermore, since the reference voltage is not reset more than necessary, such as less than a predetermined flow rate or the same flow rate zone, the flow rate can be measured with low power consumption.

また、本実施の形態の流体の流れ計測装置の動作を実行させるプログラムを格納した記録媒体とすることにより、制御手段12や基準設定手段14の所定比率や繰り返し手段9の繰り返し回数等の設定値の変更や超音波振動子の変更または経年変化等にも柔軟に対応できるものである。   Further, by using a recording medium storing a program for executing the operation of the fluid flow measuring device of the present embodiment, set values such as a predetermined ratio of the control means 12 and the reference setting means 14 and the number of repetitions of the repetition means 9 It is possible to flexibly cope with changes in the ultrasonic wave, changes in the ultrasonic vibrator, or changes over time.

以上のように、本発明に係る流体の流れ計測装置は、基準電圧の設定を迅速かつ精度良く行うことが可能となるので、ガス,水などの流体の流速,流量などの計測に適用できる。   As described above, the fluid flow measuring device according to the present invention can quickly and accurately set the reference voltage, and thus can be applied to the measurement of the flow velocity and flow rate of fluid such as gas and water.

本発明の実施例1における流体の流れ計測装置のブロック図1 is a block diagram of a fluid flow measuring device according to a first embodiment of the present invention. 同装置の動作を説明する図Diagram explaining the operation of the device 同装置のフローチャートFlow chart of the device 同装置のフローチャートFlow chart of the device 同装置の動作を説明する図Diagram explaining the operation of the device 同装置の動作を説明する図Diagram explaining the operation of the device 同装置のフローチャートFlow chart of the device 同装置の他の動作を説明するフローチャートFlow chart explaining other operations of the apparatus 同装置の他の動作を説明するフローチャートFlow chart explaining other operations of the apparatus 従来の流体の流れ計測装置のブロック図Block diagram of a conventional fluid flow measurement device 従来の流体の流れ計測装置の動作説明図Operation explanatory diagram of a conventional fluid flow measuring device 従来の流体の流れ計測装置の増幅手段の動作説明図Operation explanatory diagram of the amplifying means of the conventional fluid flow measuring device

符号の説明Explanation of symbols

1 流路
2 第1超音波振動子(第1振動子)
3 第2超音波振動子(第2振動子)
4 切換手段
5 送信手段
6 増幅手段
7 基準比較手段
8 判定手段
9 繰り返し手段
10 計時手段
11 流量算出手段(算出手段)
12 制御手段
13 時間差計時手段
14 基準設定手段
15 時間差記憶手段
1 channel 2 first ultrasonic transducer (first transducer)
3 Second ultrasonic transducer (second transducer)
4 switching means 5 transmitting means 6 amplifying means 7 reference comparing means 8 determining means 9 repeating means 10 timing means 11 flow rate calculating means (calculating means)
12 Control means 13 Time difference counting means 14 Reference setting means 15 Time difference storage means

Claims (3)

流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、
前記第1振動子及び前記第2振動子を駆動する送信手段と、
前記第1振動子及び前記第2振動子の送受信を切り換える切換手段と、
前記第1振動子及び前記第2振動子の受信信号を増幅する増幅手段と、
前記超音波信号の送受信の累積時間を計時する計時手段と、
前記計時手段の計時した時間に基づいて流速及びまたは流量を算出する算出手段と、
前記増幅手段から出力される受信信号の電圧と基準電圧とを比較し、その大小関係が反転した時点で信号を出力する基準比較手段と、
前記基準比較手段から出力される信号を受信後、前記増幅手段から出力される受信信号の電圧が正から負に変わる最初の負のゼロクロス点を判定した時点で信号を出力する判定手段と、
前記基準比較手段と前記判定手段のそれぞれから出力される信号の時間差を計時する時間差計時手段と、
前記基準電圧を設定範囲の最小電圧から最大電圧に変化させたときの前記時間差計時手段の計時する時間差が急激に変化する値をピーク電圧として複数認識し、前記複数のピーク電圧のうち任意の第1ピーク電圧値と第2ピーク電圧値の比が所定の値となった場合に、前記第1ピーク電圧と前記第2ピーク電圧の中間の値を前記基準電圧として設定する基準設定手段と、
前記時間差計時手段の計時する時間差を前記基準電圧の設定時に記憶する時間差記憶手段と
を備えた流体の流れ計測装置において、
前記基準電圧の設定後に前記時間差計時手段が計時した値と前記時間差記憶手段に記憶された値との差が所定値以上であれば、前記基準設定手段に前記基準電圧を再度設定させ前記基準電圧の設定後に前記時間差計時手段が計時した値と前記時間差記憶手段に記憶された値との差が所定値未満であれば、流量測定を行い、前記流量測定により算出された流量が所定値以上の場合に前記基準電圧を変更する、
流体の流れ計測装置。
A first vibrator and a second vibrator that are provided in the fluid conduit and transmit and receive ultrasonic signals ;
Transmitting means for driving the first vibrator and the second vibrator ;
Switching means for switching between transmission and reception of the first vibrator and the second vibrator ;
Amplifying means for amplifying the received signals of the first vibrator and the second vibrator ;
Time measuring means for measuring the accumulated time of transmission and reception of the ultrasonic signal ;
Calculation means for calculating the flow velocity and / or flow rate based on the time measured by the time measuring means ;
A reference comparing means for comparing the voltage of the received signal output from the amplifying means with a reference voltage and outputting a signal when the magnitude relationship is inverted ;
A determination means for outputting a signal at the time of determining the first negative zero cross point at which the voltage of the reception signal output from the amplification means changes from positive to negative after receiving the signal output from the reference comparison means ;
Time difference timing means for timing the time difference between signals output from the reference comparison means and the determination means ;
When the reference voltage is changed from the minimum voltage of the setting range to the maximum voltage, a plurality of values in which the time difference measured by the time difference measuring means changes rapidly are recognized as peak voltages, and any of the plurality of peak voltages is recognized. Reference setting means for setting an intermediate value between the first peak voltage and the second peak voltage as the reference voltage when a ratio between the one peak voltage value and the second peak voltage value becomes a predetermined value ;
A time difference storing means for storing a time difference measured by the time difference measuring means when setting the reference voltage ;
In a fluid flow measuring device comprising:
If the difference between the value measured by the time difference timing means after setting the reference voltage and the value stored in the time difference storage means is greater than or equal to a predetermined value , the reference setting means sets the reference voltage again, and the reference If the difference between the value measured by the time difference measuring means after setting the voltage and the value stored in the time difference storage means is less than a predetermined value, the flow rate is measured, and the flow rate calculated by the flow measurement is equal to or greater than the predetermined value. The reference voltage is changed in the case of
Fluid flow measuring device.
前記基準設定手段は前記算出手段が算出した流量が、予め設定された複数の流量域の中で流量域を移ったときに前記基準電圧の調整動作を行う請求項記載の流体の流れ計測装置
The flow rate wherein the reference setting means calculates said calculation means, a plurality of preset the reference voltage adjusting operation fluid flow measuring device according to claim 1 to perform when moved a flow rate region in the flow rate range .
前記基準設定手段は前記増幅手段の増幅度を調整後に前記基準電圧の変更を行う請求項記載の流体の流れ計測装置。 The reference setting means the reference voltage fluid flow measuring device according to claim 1 for changing the after adjusting the amplification degree of said amplifying means.
JP2004066866A 2004-03-10 2004-03-10 Fluid flow measuring device Expired - Lifetime JP4572546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066866A JP4572546B2 (en) 2004-03-10 2004-03-10 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066866A JP4572546B2 (en) 2004-03-10 2004-03-10 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2005257359A JP2005257359A (en) 2005-09-22
JP4572546B2 true JP4572546B2 (en) 2010-11-04

Family

ID=35083235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066866A Expired - Lifetime JP4572546B2 (en) 2004-03-10 2004-03-10 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP4572546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389153A (en) * 2013-08-02 2013-11-13 浙江理工大学 Ultrasonic wave transit time measuring circuit by secondary reflection waves
WO2014002499A1 (en) 2012-06-26 2014-01-03 パナソニック株式会社 Flow measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8671775B2 (en) * 2009-12-16 2014-03-18 Panasonic Corporation Flow rate measuring device
JP5948566B2 (en) 2012-07-06 2016-07-06 パナソニックIpマネジメント株式会社 Flow measuring device
KR101473886B1 (en) 2013-12-27 2014-12-18 인하대학교 산학협력단 Date of extraction occurs of Meteo-tsunami
JP6500243B2 (en) * 2016-03-29 2019-04-17 パナソニックIpマネジメント株式会社 Flow measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283812A (en) * 1999-03-30 2000-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2003106882A (en) * 2001-10-02 2003-04-09 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2004069525A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766728B2 (en) * 1996-11-13 2006-04-19 愛知時計電機株式会社 Ultrasonic flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283812A (en) * 1999-03-30 2000-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2003106882A (en) * 2001-10-02 2003-04-09 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2004069525A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002499A1 (en) 2012-06-26 2014-01-03 パナソニック株式会社 Flow measurement device
CN104428637A (en) * 2012-06-26 2015-03-18 松下知识产权经营株式会社 Flow measurement device
US9212937B1 (en) 2012-06-26 2015-12-15 Panasonic Intellectual Property Management Co., Ltd. Flow meter device
CN104428637B (en) * 2012-06-26 2017-06-27 松下知识产权经营株式会社 Flow measuring apparatus
CN103389153A (en) * 2013-08-02 2013-11-13 浙江理工大学 Ultrasonic wave transit time measuring circuit by secondary reflection waves

Also Published As

Publication number Publication date
JP2005257359A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
WO2011083766A1 (en) Ultrasonic flowmeter
JP5796154B2 (en) Flow measuring device
JP6111422B2 (en) Flow measuring device
JP4572546B2 (en) Fluid flow measuring device
JP5948566B2 (en) Flow measuring device
JP2022034637A (en) Ultrasonic flow meter and flow measurement method
JP5884014B2 (en) Flow measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP3624642B2 (en) Fluid measuring device
JP2003106882A (en) Flow measuring instrument
WO2017168480A1 (en) Flow rate measurement device
JP4534421B2 (en) Flow measuring device
JP4013697B2 (en) Flow measuring device
JP2004069524A (en) Flow rate measuring apparatus
JP2018136276A (en) Ultrasonic flowmeter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP2009031134A (en) Ultrasonic flowmeter
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP2002340641A (en) Instrument for measuring flow rate
JP5990770B2 (en) Ultrasonic measuring device
JP2003172645A (en) Flow-rate measuring device
JP4689278B2 (en) Flow velocity or flow rate measuring device
JP3473606B2 (en) Flow rate measuring device and program for making this device function
JP2019211267A (en) Ultrasonic gas flowmeter
JP2007139519A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R151 Written notification of patent or utility model registration

Ref document number: 4572546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term