WO2007004349A1 - 流体加熱装置およびこれを備えた洗浄装置 - Google Patents

流体加熱装置およびこれを備えた洗浄装置 Download PDF

Info

Publication number
WO2007004349A1
WO2007004349A1 PCT/JP2006/308453 JP2006308453W WO2007004349A1 WO 2007004349 A1 WO2007004349 A1 WO 2007004349A1 JP 2006308453 W JP2006308453 W JP 2006308453W WO 2007004349 A1 WO2007004349 A1 WO 2007004349A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
case
heating
heat
heating device
Prior art date
Application number
PCT/JP2006/308453
Other languages
English (en)
French (fr)
Inventor
Shigeru Shirai
Keijirou Kunimoto
Kazushige Nakamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005193363A external-priority patent/JP2007010255A/ja
Priority claimed from JP2006011972A external-priority patent/JP2007192486A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800243064A priority Critical patent/CN101213408B/zh
Publication of WO2007004349A1 publication Critical patent/WO2007004349A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Definitions

  • the present invention relates to a fluid heating device that heats a fluid and a cleaning device including the fluid heating device.
  • Patent Document 1 a human body local cleaning device including a cleaning water heating device that heats cleaning water has been used (see, for example, Patent Document 1).
  • This human body local cleaning apparatus supplies cleaning water heated by a cleaning water heating apparatus to a local part of the human body.
  • a cleaning water heating device included in the human body local cleaning device described in Patent Document 1 will be briefly described with reference to the drawings.
  • FIG. 9 is a schematic diagram showing a cleaning water heating device provided in a conventional human body local cleaning device.
  • the washing water heating apparatus includes a pipe-like case 103 having an inlet 101 and a outlet 102.
  • a sheathed heater 105 is provided in the pipe-shaped case 103.
  • the sheathed heater 105 in the pipe-shaped case 103 is fixed. Positioning is performed. Note that both ends of the sheathed heater 105 in the pipe-like case 103 are sealed by a packing 107 made of rubber or the like.
  • the cleaning water flows into the pipe-shaped case 103 from the inlet 101, and instantaneously flows through the flow path 108 between the surface of the sheathed heater 105 and the inner surface of the pipe-shaped case 103. It becomes warm water by being heated. And hot water is discharged from the outlet 102.
  • Patent Document 2 a human body washing apparatus including a water heater that heats the local washing water is conventionally used (for example, see Patent Document 2).
  • This human body cleaning apparatus supplies local cleaning water (hot water) heated by a water heater to a local part of the human body.
  • hot water hot water
  • the following is a diagram of a water heater included in the human body cleaning apparatus described in Patent Document 2. This will be briefly described with reference to the surface.
  • FIG. 10 is a schematic diagram showing a water heater provided in a conventional human body cleaning apparatus.
  • the water heater has a double pipe structure including a cylindrical base pipe 1 and an outer cylinder 2.
  • a heating element 3 is provided on a part of the outer surface of the base pipe 1.
  • a spiral core 5 is provided in the inner hole 4 of the base pipe 1.
  • the water supplied into the water heater flows into the inner hole 4 of the base pipe 1 and flows along the plurality of threads 6 provided in the spiral core 5.
  • Patent Document 1 JP 2001-336203 A
  • Patent Document 2 JP 2001-279786 A
  • the instantaneous cleaning water heating device described in Patent Document 1 generally requires higher power consumption than a heater used in a hot water storage type human body local cleaning device.
  • the temperature of the washing water heating device when heating the purified water is higher than that of the heater.
  • the distance from 5 is small.
  • a control device that controls energization of the sheathed heater 105 or a sensor that detects the presence or absence (flow) of cleaning water fails, and the cleaning that flows in the noisy case 103 occurs.
  • the sheathed heater 105 is energized continuously.
  • the pipe-like case 103 is made of grease, the pipe-like case 103 burns and emits smoke due to the heat load of the sheathed heater 105. There is a risk.
  • the pipe-like case 103 is made of metal, the risk as described above is relatively low and the safety is high, but the inlet 101 and the water outlet 102 are formed in the nove-like case 103.
  • brazing or complicated pipe processing technology is required, which is not suitable for mass production.
  • each screw thread 6 of the spiral core 5 and the inner surface of the base pipe 1 are close to each other.
  • dissimilar metal contact corrosion or crevice corrosion occurs.
  • a hole is generated in the base pipe 1 and a situation occurs in which cleaning water leaks from the hole.
  • An object of the present invention is to provide a fluid heating device with which safety is ensured and a cleaning device including the fluid heating device.
  • Another object of the present invention is to provide a fluid heating device in which safety is ensured and workability is improved, and a cleaning device including the fluid heating device.
  • Still another object of the present invention is to provide a fluid heating device that ensures safety and prevents fluid from leaking to the outside, and a cleaning device including the fluid heating device.
  • a fluid heating apparatus includes a heating element having a heating part and a non-heating part, and a case containing the heating element and having a fluid inlet and a fluid outlet, and the heating element and the case
  • the case has a first structure that surrounds the heat generating part and a second structure that surrounds the non-heat generating part.
  • the first structure is a heat-resistant material. It consists of.
  • the heating element having the heat generating part and the non-heat generating part is accommodated in the case.
  • the fluid is heated by the heat generating portion of the heating element by being introduced into the case inflow and flowing through a flow path formed between the heating element and the case. Then, the fluid heated by the heating portion of the heating element flows out from the outlet of the case.
  • the case includes a first structure surrounding the heat generating portion and a second structure surrounding the non-heat generating portion.
  • the first structure also has heat-resistant material power, it receives a thermal load from surrounding the heat generating portion. This prevents the case from burning and generating smoke due to the thermal load even when the spacing force S between the outer surface of the heating element and the inner surface of the case is small. Therefore, safety is ensured.
  • the heating element by covering the heating element with the fluid flowing through the flow path, the heat of the heating element is prevented from escaping to the outside. Therefore, heat exchange efficiency can be improved.
  • the first structure may surround the heat generating part via the flow path, and the second structure may hold the non-heat generating part.
  • the first structure may be a metal or ceramic force.
  • the first structure does not receive a heat load from the heat generating part because it also has a metal or ceramic force. As a result, the first structure is prevented from burning and smoking, and safety is ensured.
  • the second structure may be made of grease. Since the second structure holds the non-heat-generating portion, safety is ensured even if the second structure is made of grease.
  • the fluid heating device may further include a heat-resistant sealing material that seals between the first structure and the second structure.
  • the heat-resistant seal is prevented from being burned and smoked by the heat of the first structural force.
  • the first structure and the second structure are sufficiently Sealed. Therefore, the fluid is prevented from leaking from the case to the outside.
  • the fluid heating apparatus may further include a heat insulating sealing material that seals between the first structure and the second structure.
  • the heat-insulating seal is prevented from burning and generating smoke due to the heat of the first structural force.
  • the first structure and the second structure are reliably sealed by the heat insulating seal. Therefore, the fluid is prevented from leaking from the case to the outside.
  • the inflow port and the outflow port may be provided in the second structure.
  • the second structure is made of resin, the processability of the inlet and outlet is improved.
  • the fluid heating device may further include a flow rate change mechanism that changes the flow rate of the fluid in at least a part of the flow path.
  • the flow velocity of the fluid flowing through the flow path is changed by the flow velocity variation, so that the scale component contained in the fluid is caused to flow downstream and adhere to the surface of the heating element is reduced. .
  • the lifetime of a heat generating body can be extended.
  • the scale components contained in the fluid are pulverized to a small extent due to the change in flow velocity in the process until the fluid flows downstream. This prevents clogging of scale components on the downstream side.
  • the flow velocity variable structure may have a potential lower than the potential of the heating element. In this case, corrosion occurs in the flow rate conversion mechanism with a low potential. As a result, the heating element does not corrode, and the insulation deterioration of the heating element can be prevented.
  • the flow velocity variation structure may have a lower potential than the case.
  • corrosion occurs in the flow rate conversion mechanism having a low potential. Thereby, corrosion does not arise in a case. Therefore, the fluid is prevented from leaking from the inside of the case.
  • the fluid heating device may further include a power supply device that supplies power to the heating element so that the heating element is heated to a predetermined temperature while the fluid flows to the inflow locus outlet / outlet.
  • the insulation resistance of the heating element is required. Even in such a case, as described above, the insulation resistance of the heating element due to corrosion is low. Since it can prevent deterioration, safety can be ensured.
  • a cleaning apparatus is a cleaning apparatus that ejects a fluid supplied from a water supply source to a portion to be cleaned of a human body, a fluid heating apparatus that heats the fluid supplied from the water supply source, and a fluid An ejection device that ejects the fluid heated by the heating device to the human body.
  • the fluid heating device contains a heating element having a heating part and a non-heating part, a heating element, a fluid inlet and a fluid flow.
  • a case having an outlet, and a flow path is formed in a space between the heating element and the case.
  • the case includes a first structure that surrounds the heating part and a second structure that surrounds the non-heating part.
  • the first structure has a heat-resistant material strength.
  • the fluid supplied as the water supply source is heated by the fluid heating device, and the heated fluid is ejected to the human body by the ejection device. As a result, the cleaned part of the human body is cleaned.
  • a cleaning device is a cleaning device that cleans an object to be cleaned using a fluid supplied from a water supply source, and includes a cleaning tank that houses the object to be cleaned and a fluid supplied from the water supply source.
  • the fluid heating device contains a heating element having a heating part and a non-heating part, and a heating element.
  • the fluid supplied to the water supply source is heated by the fluid heating device, and the heated fluid is supplied into the cleaning tank by the supply device. As a result, the object to be cleaned in the cleaning tank is cleaned.
  • the safety of the fluid heating device and the cleaning device is ensured.
  • the workability of the fluid heating device is improved.
  • fluid leakage from the inside of the case of the fluid heating device is prevented.
  • FIG. 1 is a cross-sectional view showing a fluid heating apparatus according to a first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA of the fluid heating apparatus of FIG.
  • FIG. 3 is a schematic diagram showing a flow velocity distribution in the fluid heating apparatus when the fluid flow velocity is low.
  • FIG. 4 is a schematic diagram showing the flow velocity distribution in the fluid heating apparatus when the fluid flow velocity is high.
  • FIG. 5 is a schematic cross-sectional view of a sanitary washing device according to a second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a clothes washing apparatus (washing machine) according to a third embodiment.
  • FIG. 7 is a cross-sectional view of the clothes washing apparatus of FIG. 6 taken along the line BB.
  • FIG. 8 is a schematic cross-sectional view of a tableware washing apparatus according to a fourth embodiment.
  • FIG. 9 is a schematic diagram showing a cleaning water heating device provided in a conventional local body cleaning device.
  • FIG. 10 is a schematic diagram showing a water heater provided in a conventional human body cleaning apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view showing the fluid heating apparatus according to the first embodiment.
  • the fluid heating device 54 mainly includes a sheathed heater 7, which is a heating element that heats a fluid (for example, water), such as metal (copper in the present embodiment) or ceramic force.
  • a sheathed heater 7 which is a heating element that heats a fluid (for example, water), such as metal (copper in the present embodiment) or ceramic force.
  • a case member 8 made of, for example, a resin
  • a case member 13 made of, for example, a resin.
  • the case member 8 is provided so as to surround the periphery of the sheathed heater 7.
  • a flow path 9 is formed which is formed by a space between the outer surface of the sheathed heater 7 and the inner surface of the case member 8 and through which a fluid flows.
  • the case member 11 has an inlet 10 for taking fluid into the flow path 9.
  • the case member 13 has an outlet 12 for taking out a heated fluid (for example, hot water) in the flow path 9.
  • Case member 8, case member 11, and case member 13 constitute case 100.
  • case member 8 and the case member 11 are connected via an O-ring 14 for sealing, and the case member 8 and the case member 13 are similarly connected via an O-ring 15 for sealing. Connected.
  • the sheathed heater 7 and the case member 11 are connected via an O-ring 16 for sealing, and the sheathed heater 7 and the case member 13 are connected via an O-ring 17 for sealing. It is.
  • a spiral coil 18 having a copper force is provided so as to surround the outer periphery of the sheathed heater 7 spirally in the flow path 9.
  • the case member 11 is provided with a helical coil fixing groove 40! /. After one end of the helical coil 18 is fitted into the helical coil fixing groove 40, the case member 8 is inserted and assembled to the case member 11 to hold the helical coil 18. With such a configuration, the helical coil 18 is reliably prevented from coming off and rotating in the flow path 9.
  • the case member 11 and the case member 13 are provided with a main body attachment portion 41 and a main body attachment portion 42, respectively.
  • the sheathed heater 7 is configured in a rod shape having a circular cross section.
  • the sheath 19 and the heater 7 are made of the sheath 19 having a copper pipe force with excellent thermal conductivity.
  • the present invention is not limited to this, depending on the type of fluid, stainless steel having high corrosion resistance, etc. You can use a sheath made of!
  • the sheathed heater 7 includes a heat generating portion 20 provided in the sheath 19 and non-heat generating portions 27 and 28 (shaded portions in FIG. 1) provided at each end in the sheath 19.
  • Heat generating part 20 is nickel -Consists of heater wires that have chrome strength.
  • the non-heat generating portions 27, 28 have current-carrying terminals 21, 22 therein, respectively. These conducting terminals 21 and 22 have little electrical resistance, so they hardly generate heat even when energized.
  • the heat generating part 20 and the current-carrying terminals 21 and 22 are electrically connected to each other!
  • the heat generating part 20 is filled with an insulating magnesium oxide powder at high density, and the heat of the heat generating part 20 is conducted to the sheath 19 through the magnesium oxide. With such a configuration, the fluid flowing on the surface of the sheath 19 is heated.
  • the O-rings 14, 15, 16, 17 have a role as a sealing material for preventing the fluid flowing in the case members 11, 8, 13 from leaking to the outside.
  • the O-ring 14 is fitted between the case member 8 and the case member 11 made of, for example, a copper pipe obtained by a discharge cache.
  • the presser plate 23 is fixed to the case casing 11 with screws or the like, thereby improving the adhesion between the case casing 8 and the case member 11 via the O-ring 14. With such a configuration, fluid is prevented from leaking from the inside of the case members 8 and 11 to the outside.
  • the O-ring 16 is fitted between the sheath 19 and the case member 11. In this state, fixing the holding plate 24 to the case member 11 with screws or the like improves the adhesion between the sheath 19 and the case member 11 via the O-ring 16. Such a configuration prevents fluid from leaking from the inside of the case member 11 to the outside.
  • the O-ring 15 is fitted between the case member 8 and the case member 13.
  • the presser plate 25 is fixed to the case member 13 with screws or the like, thereby improving the adhesion between the case member 8 and the case member 11 via the O-ring 15.
  • the fluid is prevented from leaking from the inside of the case members 8 and 13 to the outside.
  • the O-ring 17 is fitted between the sheath 19 and the case member 13.
  • the presser plate 26 is fixed to the case member 13 with screws or the like, thereby improving the adhesion between the sheath 19 and the case member 13 via the O-ring 17.
  • Such a configuration prevents fluid from leaking from the inside of the case member 13 to the outside.
  • the O-rings 16, 17 prevent the case member 11, 8, 13 internal fluid from leaking outside. In addition to the role of preventing, it also has a role of holding the sheathed heater 7.
  • the O-ring 16 comes into contact with the outer periphery of the non-heat generating portion 27 at one end portion of the sheathed heater 7 by being sandwiched between the pressing plate 23 and the case member 11.
  • the O-ring 17 is brought into contact with the outer periphery of the non-heating portion 28 at the other end of the sheath and the heater 7 by being sandwiched between the presser plate 26 and the case member 13.
  • the sheathed heater 7 is held in the case members 11, 8, and 13.
  • the fluid heating device 54 is provided with a triac 30 that is a heat generating electronic component and is a power control element that controls the sheathed heater 7.
  • the heat transfer plate 29 obtained by bending the copper plate is fixed with screws or the like so as to be in close contact with a part of the outer periphery of the case member 8. Then, the triac 30 is firmly fixed to the heat transfer plate 29 with screws or the like so that heat conduction is sufficiently possible.
  • a thermal fuse 31 serving as an overheat prevention means for cutting off the energization to the sheathed heater 7 when an abnormal temperature overheats is provided so that the heat transfer plate 29 and a part of the outer periphery of the case member 8 are sufficiently in contact with each other. It is provided between the heat transfer plate 29 and a part of the outer periphery of the case member 8.
  • One connecting portion of the temperature fuse 31 is electrically connected to the energizing terminal 21 by a conducting wire, and the other connecting portion of the temperature fuse 31 is electrically connected to one connecting portion of the triac 30 by a conducting wire. It is connected to the.
  • a thermistor 32 that detects the temperature of the fluid is attached to the outlet 12 of the case member 13.
  • the fluid heating device 54 is provided with a controller 33 that controls each component of the fluid heating device 54.
  • the other connection portion of the triac 30 is electrically connected to the controller 33 by a conductive wire.
  • the thermistor 32 is electrically connected to the controller 33 by a conductive wire.
  • the thermostat of the temperature switch can be used to prevent the temperature of the fluid from becoming excessively high.
  • connection portion of the thermostat 34 is electrically connected to the controller 33 by a conducting wire, and the other connection portion of the thermostat 34 is electrically connected to the energizing terminal 22 by a conducting wire.
  • the electrical contact is mechanically connected in the thermostat 34 so that the power supply to the energizing terminal 22 is stopped at a predetermined temperature. Can be switched to.
  • the controller 33 starts energizing the seed heater 7 via the triac 30.
  • the temperature of the fluid flowing out from the outlet 12 is detected by the thermistor 32.
  • the temperature detected by the thermistor 32 is given to the controller 33 as a detection signal.
  • the controller 33 controls the power supply to the sheath heater 7 via the triac 30 based on the detection signal from the thermistor 32, so that the temperature of the fluid flowing out from the outlet 12 becomes a predetermined temperature. To be.
  • the heat of the triac 30 is conducted to the heat transfer plate 29 by firmly fixing the triac 30 to the heat transfer plate 29 with screws or the like.
  • the heat conducted to the heat conducting plate 29 is released to the fluid flowing through the case member 8 through the case member 8.
  • the thermostat 34 is provided in the vicinity of the outlet 12 of the case member 13, even if an electrical failure occurs in the thermistor 32 or the controller 33 due to some abnormality, the heating is performed. When the temperature of the applied fluid exceeds the predetermined temperature, the energization to the sheathed heater 7 is cut off. This prevents the fluid temperature from becoming excessively high.
  • the thermal fuse 31 is sandwiched between the case member 8 and the heat transfer plate 29. Even if the thermistor 32 or the controller 33 fails, and the thermostat 34 also fails, if the temperature of the heated fluid exceeds a predetermined temperature, the sheath through the energizing terminal 21 is caused by the temperature fuse 31. Power to heater 7 is cut off.
  • the portion facing the heat generating portion 20 of the sheathed heater 7 is configured by the case member 8 having a heat resistant material force, so that the highest temperature can be obtained at the time of airing as described above.
  • the radiant heat from the exothermic part 20 and the sheathed heater 7 becomes the inner peripheral surface of the case member 8.
  • the heat on the inner peripheral surface of the case member 8 is conducted to the thermal fuse 31 and the heat transfer plate 29 that are provided in close contact with the outer peripheral surface of the case member 8. Then, the thermal fuse 31 is blown at a temperature in which safety is taken into consideration, and the energization to the sheathed heater 7 is cut off.
  • the case member 8 is made of a resin and is blown, there is a possibility that the case member 8 may emit smoke due to the high-temperature radiant heat of the sheathed heater 7.
  • the thermal conductivity of the resin is low, the thermal fuse 31 is not blown despite the high temperature of the sheath and the heater 7.
  • a hole may be formed in the case member 8 due to melting of the case member 8.
  • the structural body is constituted by a plurality of materials of the case members 11, 8, and 13.
  • the case member 8 that receives a heat load is made of a metal having high heat resistance (in this embodiment, copper), and the case members 11 and 13 that do not receive much heat load are made of resin.
  • the temperature of the sheath 19 in the region facing the non-heat generating portions 27, 28 is lower than the temperature of the sheath 19 in the region facing the heat generating portion 20. Therefore, keep the non-heating parts 27 and 28 respectively. Even when the case members 11 and 13 are used for holding, the temperature of the case members 11 and 13 does not exceed the heat resistant temperature of the resin. This prevents the case members 11 and 13 from burning and generating smoke.
  • the O-rings 14 and 15 are made of, for example, fluororubber, and the heat resistant temperature is about 200. C. Fluororubber has a heat resistance temperature approximately twice that of nitrile rubber or ethylene propylene rubber (approximately 100 ° C).
  • the O-rings 14 and 15 are made of the heat-resistant sealing material having a heat-resistant temperature of about 200 ° C, so that the sealing performance is ensured even when the case member 8 becomes hot. Therefore, it is possible to reliably prevent fluid from leaking outside.
  • the O-rings 16 and 17 are also made of fluororubber, the high-temperature heat SO rings 16 and 26 at both ends of the sheath 19 are blown before the thermal fuse 31 is blown during air blowing. Even when conducted to 17, the sealing performance can be reliably maintained, and fluid external leakage can be reliably prevented.
  • the O-rings 14, 15, 16, and 17 also have a function as a heat insulating material having an excellent heat insulating property that has a smaller thermal conductivity than a metal.
  • the sheathed heater 7 is configured to be slidable in the axial direction by the O-rings 16 and 17 as in the present embodiment, the effect of preventing cracks and the case members 11 and 13 can be prevented. And the effect of suppressing heat conduction.
  • the case members 11 and 13 are formed by a molding method such as injection molding. Can be easily formed.
  • the inlet 10 and the outlet 12 can be easily provided in the case members 11 and 13, respectively, and the thermistor 32 and the thermostat 34 can be integrally provided in the case member 13. As a result, the fluid heating device 54 can be compacted.
  • FIG. 2 is a cross-sectional view taken along line AA of the fluid heating device 54 of FIG.
  • the same effect can be obtained in the force case member 13 for explaining the configuration of the case member 11 and the operation and effect thereof.
  • the inlet 1 is deviated from the axial center of the sheathed heater 7 or the case member 8. 0 is provided. Thereby, the fluid flows while swirling on the surface of the sheathed heater 7 (sheath 19). This prevents the scale components from adhering to the sheathed heater 7 and the case member 8.
  • the case member 11 can be easily formed into a desired shape by using the grease. Can be formed. In addition, by using a resin, it can be formed so that the flow passage area of the inlet 10 changes smoothly. Thereby, the pressure loss is reduced.
  • a cylindrical flow path (donut flow path) is formed between the inner peripheral surface of the case member 8 and the outer peripheral surface of the sheathed heater 7.
  • the fluid that has flowed into the case member 8 flows along the axial direction of the sheathed heater 7 through the cylindrical flow path.
  • the flow path cross-sectional area of the spiral flow path 9 (area of the cross section perpendicular to the direction of the swirl flow) is equal to the flow path cross-sectional area of the cylindrical flow path (the axis of the sheathed heater 7).
  • the winding direction and the pitch P (FIG. 1) of the spiral coil 18 are set so as to be smaller than the area of the cross section perpendicular to the direction).
  • the helical coil 18 of the present embodiment functions as a flow rate conversion mechanism that increases the flow rate of the fluid, and also functions as a flow direction mechanism that converts the direction of the fluid flow into the swirl direction.
  • the apparent channel cross-sectional area is represented by the product of the gap between the sheathed heater 7 and the case member 8 and the pitch P of the helical coil 18.
  • turbulent flow is generated by increasing the flow velocity of the fluid flowing through the flow path 9.
  • the helical coil 18 of the present embodiment also functions as a turbulent flow generation mechanism that generates turbulent flow.
  • Turbulence is a flow that includes a flow that changes direction or a flow that changes velocity. It is a general term that means turbulence.
  • the cross-sectional area of the flow path when the spiral coil 18 does not exist Is approximately 30 mm 2
  • the apparent cross-sectional area of the flow path when the spiral coil 18 is present is approximately 7.5 mm 2 .
  • the cylindrical flow path surrounded by the case member 8 and the sheathed heater 7 has a flow path cross section with a large aspect ratio.
  • the fluid flowing in from the inlet 10 provided at a position where the central axial force of the case member 8 is also eccentric is initially flowed spirally along the outer peripheral surface of the sheathed heater 7, but the rectifying effect gradually works.
  • the flow component in the swiveling direction is lost, and the flow component in the axial direction becomes the main component.
  • the flow velocity of the fluid is substantially reduced near the outflow port 12 and in the downstream region.
  • the spiral flow path 9 is formed by the spiral coil 18.
  • FIG. 3 shows the flow velocity distribution in the fluid heating device 54 when the fluid flow velocity is low
  • FIG. 4 shows the flow velocity distribution in the fluid heating device 54 when the fluid flow velocity is high.
  • the scale Even if the scale is deposited, the scale has a high flow rate and is pulverized small by the turbulent fluid while being pushed downstream by the fast flow. As a result, the scale does not adhere to the fluid heating device 54 and is not clogged downstream in the fluid heating device 54. Further, the scale adhered in the fluid heating device 54 has a high flow velocity and is peeled off by the turbulent fluid. Thus, the helical coil 18 of the present embodiment also functions as an impurity removal mechanism. As a result, the life of the fluid heating device 54 can be extended.
  • the fluid heating device 54 can be further downsized. Further, the spiral flow path 9 formed on the outer periphery of the sheathed heater 7 prevents the heat of the sheathed heater 7 from escaping to the outside. Therefore, the heat exchange efficiency can be further improved.
  • the fluid has a high flow velocity, the generation of bubbles is reduced, and the surface temperature of the sheath 19 of the sheathed heater 7 is suppressed to a low level, so that the generation of boiling noise can be reduced.
  • the spiral coil 18 functioning as a flow velocity conversion mechanism, a flow direction transformation mechanism, and a turbulent flow generation mechanism causes the fluid flow to become turbulent. Force that increases the flow velocity Even if the fluid flow is in a laminar flow state, the flow velocity between the fluid and the sheath 19 can be increased by increasing the fluid flow velocity with the helical coil 18. The thickness of the boundary layer 38 can be reduced. Thereby, the effect of reducing the scale can be obtained.
  • the helical coil 18 is formed by a member different from the sheathed heater 7 and the case member 8, and is not completely fixed to the sheath 19 or the case member 8 of the sheathed heater 7.
  • the separate helical coil 18 can be easily removed from the fluid heating device 54. Therefore, when the fluid heating device 54 is used in an area where the scale component in the fluid (tap water) is low or in an area where the tap water pressure is low, the spiral coil 18 as a separate member is removed and the shape of the spiral coil 18 is pressurized. The loss can be altered or the helical coil 18 can be mounted in the fluid heating device 54 at a point where the flow velocity is reduced. Thereby, the pressure loss in the fluid heating device 54 becomes lower and the flow velocity becomes higher. As a result, scale adhesion can be sufficiently prevented or reduced. Further, since the spiral coil 18 can be easily replaced in the event of an abnormality, the maintainability is improved.
  • the pitch P of the helical coil 18 (Fig. 1) is constant, but the pitch P of the helical coil 18 is partially narrowed or widened, or the pitch P of the helical coil 18 is set. May be gradually changed. Also in this case, the helical coil 18 functions as a flow velocity variation, a flow direction variation, a turbulent flow generation mechanism, and an impurity removal mechanism, and can prevent or reduce adhesion of scale.
  • the force spiral coil 18 in which the spiral coil 18 is provided in the entire flow path 9 may be provided in a part of the flow path 9.
  • the helical coil 18 functions as a flow rate conversion mechanism, a flow direction conversion mechanism, a turbulent flow generation mechanism, and an impurity removal mechanism, and can prevent or reduce the adhesion of scale.
  • a spiral coil 18 is used as a flow velocity conversion mechanism, a flow direction conversion mechanism, a turbulent flow generation mechanism, and an impurity removal mechanism.
  • a flow velocity conversion mechanism, a flow direction conversion mechanism, a turbulent flow generation mechanism, and an impurity removal mechanism may be realized by a member having another shape such as a blade or a guide. Even in this case The effect of preventing or reducing the scale adhesion can be obtained.
  • sheath 19, sheath coil 18 and case member 8 of sheathed heater 7 are each made of copper. Hereinafter, this function and effect will be described.
  • the sheath 19, the helical coil 18, and the case member 8 are each made of copper, thereby eliminating the potential difference between the components. As a result, the occurrence of potential corrosion such as contact corrosion or crevice corrosion of dissimilar metals can be prevented. As a result, the life of the fluid heating device 54 can be extended.
  • copper having excellent thermal conductivity, low cost, and excellent workability is used as the material constituting the sheath 19, the helical coil 18, and the case member 8.
  • other materials may be used depending on the fluid to be used or the performance required for the fluid heating device 54 without being limited thereto.
  • the strength can be improved by using stainless steel, and the weight can be reduced by using aluminum. Even in this case, the life of the fluid heating device 54 can be extended without causing a potential difference between the components.
  • the materials constituting the sheath 19, the spiral coil 18, and the case member 8 must be changed between the parts, copper (for example, the potential of copper in seawater is 1 • 36V) It is preferable to use a material having a small potential difference between them, such as a combination of stainless steel and stainless steel (the potential of SUS304 in seawater is -0.08 V). As a result, the potential Corrosion is less likely to occur, and the life of the fluid heating device 54 is extended.
  • the material constituting the helical coil 18 is a material having a lower potential than the sheath 19 and the case member 8 (metal Material). This is because potential corrosion occurs in parts on the lower potential side.
  • the sheath 19 and the case member 8 are made of copper (standard electrode potential +0.
  • the helical coil 18 is made of iron (standard electrode potential: -0.44V), which has excellent caulking properties and is low in cost, potential corrosion occurs when the iron coil has a low potential. It becomes the spiral coil 18. Therefore, external leakage of the fluid and deterioration of insulation due to potential corrosion occurring in the sheath 19 and the case member 8 can be prevented.
  • iron standard electrode potential: -0.44V
  • the fluid flows in a cylindrical axial flow path 9 formed between the inner peripheral surface of the case member 8 and the outer peripheral surface of the sheath 19.
  • the sheath 19 and the case member 8 are made of a material having a small potential difference between them, preferably the same material with no potential difference, thereby preventing external leakage of the fluid and insulation deterioration due to potential corrosion. it can.
  • the holding plates 23, 24, 25, and 26 are configured so as not to touch the fluid flowing in the flow path 9 by the O-rings 14, 15, 16, and 17, so that the sheath 19 There is no potential corrosion between the case member 8 and the case member 8. Therefore, it is not necessary to specify the material of the holding plates 23, 24, 25, 26. However, if there is a possibility that water droplets may adhere between the retainer plates 23, 24, 25, 2 6 and the sheath 19 or the case member 8, such as when used in places with high humidity, the sheath 19 and the case
  • the holding plate 23, 24, 25, 26 is preferably made of a material having a small potential difference from the member 8! /, A material, preferably the same material as the sheath 19 and the case member 8.
  • case members 11 and 13 are configured close to the sheath 19 and the case member 8, the case members 11 and 13 are in contact with the fluid flowing in the flow path 9, but as in the present embodiment, the case member 11 , 13 is made of grease, no potential corrosion occurs between the sheath 19 and the case member 8. If the case members 11 and 13 are made of a metal material, the case By configuring the metal members 11, 13 and the sheath 19 and the case member 8 with a metal material having a small potential difference between them, preferably the same metal material, external leakage of fluid and insulation deterioration due to potential corrosion can be prevented. .
  • each part is made of a metal material having a small potential difference, preferably the same metal material. Can prevent external leakage and insulation deterioration.
  • the case where the case members 11 and 13 are constituted by a combination of a plurality of parts having a metal material force is the same as described above.
  • each component of the sheath 19, the spiral coil 18, and the case member 8 with copper, it is possible to eliminate a potential difference between the components. As a result, it is possible to prevent external leakage of fluid due to the formation of holes in the case member 8 due to potential corrosion such as heterogeneous metal contact corrosion or crevice corrosion, and insulation deterioration due to the formation of holes in the sheath 19. Therefore, the life of the fluid heating device 54 can be extended.
  • FIG. 5 is a schematic cross-sectional view of a sanitary washing device according to the second embodiment.
  • the fluid heating apparatus 54 according to the first embodiment is used.
  • the sanitary washing device 100 of FIG. 5 includes a main body 53 and a heated toilet seat 52.
  • a main body 53 and a heated toilet seat 52 are mounted on the toilet 51.
  • a fluid heating device 54, a shut-off valve 57, and a flow rate control device 58 are provided in the main body 53 as main components. Other components such as a control board built in the main body 53 are not shown.
  • the fluid heated by the fluid heating device 54 also ejects the force of the human body washing nozzle 55. Thereby, the local part of the human body 56 is washed.
  • the tap water is heated to a predetermined temperature (the user's favorite temperature) by the fluid heating device 54, and the hot water is Generated. Then, the flow rate of the hot water is controlled by the flow rate control device 58 so that the flow rate is set in advance, and the hot water of a predetermined flow rate is Spouted toward 6 localities.
  • the fluid heating device 54 functions as an instantaneous fluid heating device that can instantaneously heat tap water when the user wants to wash the local area with hot water.
  • the conventional sanitary washing apparatus is provided with a hot water tank capable of storing about 1 liter of hot water, which is not the instantaneous type as described above, and the heater stores hot water in the hot water tank. It was common to use a hot water storage type that kept the temperature at about 40 ° C at all times.
  • the hot water in the hot water tank is always kept at about 40 ° C, and there is a loss of heat dissipation from the hot water tank.
  • the hot water tank has a storage volume of 1 liter, if hot water is used for about 1 minute, the hot water in the hot water tank disappears. In addition, because the volume of the hot water tank is large, the compactness of the sanitary washing device could not be realized.
  • tap water is instantaneously heated by the sheathed heater 7, so that the lack of hot water can be prevented, and the user can continuously As a result, it can be cleaned for a desired time, and there is almost no heat dissipation loss, so that energy can be saved.
  • sanitary washing apparatus 100 of the present embodiment does not require a large hot water tank used for a hot water storage type sanitary washing apparatus. Therefore, the sanitary washing device 100 can be made compact.
  • the rated power (wattage) of the sheathed heater 7 must be larger than the rated power of the hot water storage type heater. Absent.
  • the rated power of the sheathed heater 7 since the rated power of the sheathed heater 7 is large, it may occur that the rated power is continuously supplied to the sheathed heater 7 due to a failure due to some abnormality, or the sheathed heater 7 is in an empty state. As described in the above embodiment, safety in such a case is sufficiently secured.
  • the fluid calorie is small and prevents or reduces scale adhesion.
  • the heat device 54 in the main body 53 of the sanitary washing device 100, it is possible to reduce the size of the main body 53.
  • the life of the sanitary washing device 100 can be extended, and not only the heating operation of the fluid heating device 54 but also the washing operation of the sanitary washing device 100 is performed. Can be stabilized.
  • the flow path 9 is provided in the outer peripheral portion of the sheathed heater 7, so that the heat insulation is performed by the flow path 9.
  • the fluid heating device 54 that does not require a thermal insulating layer can be reduced in size.
  • the outer peripheral portion of the sheathed heater 7 is surrounded by the flow path 9, the heat of the sheathed heater 7 is hardly released to the outside of the case member 8. Therefore, by using such a fluid heating device 54, the heat exchange efficiency can be improved with little heat dissipation loss, and the energy-saving and small sanitary washing device 100 can be realized.
  • a dead space is created below the human body washing nozzle 55 by installing the human body washing nozzle 55 that extends and contracts in the main body 53. Since the fluid heating device 54 is cylindrical and small, it can be installed in the space below the human body washing nozzle 55. Therefore, the main body 53 can be reduced in size by using the fluid heating device 54.
  • the scale is difficult to adhere to the fluid heating device 54 and the scale outflow is also suppressed to V, the scale is not clogged by the flow control device 58 or the human body washing nozzle 55. Therefore, the flow control device 58 and the human body washing nozzle 55 can be used for a long time with stable operation. Therefore, by using the fluid heating device 54 for the sanitary washing device 100, the sanitary washing device 100 can be used for a long time with stable operation.
  • the speed of the fluid flowing in the flow path 9 is accelerated by the helical coil 18, thereby reducing the adhesion of the scale.
  • the sheath 19, the case member 8, and the helical coil 18 of the sheathed heater 7 with the same kind of material (for example, copper), it is caused by potential corrosion such as dissimilar metal contact corrosion or crevice corrosion. It is possible to prevent external leakage of fluid due to the formation of holes in case member 8 and deterioration of insulation due to the formation of holes in case 19. Therefore, it is possible to improve the safety and extend the life of the sanitary washing device 100.
  • the fluid heating device 54 according to the first embodiment is applied to the sanitary washing device 100 that cleans a local part of the human body
  • the present invention is not limited thereto. It can be used as an electric water heater used for washing hands or showering.
  • FIG. 6 is a schematic cross-sectional view of a clothes washing apparatus (washing machine) according to a third embodiment.
  • the fluid heating apparatus 54 according to the first embodiment is used.
  • the clothes washing apparatus 200 of Fig. 6 mainly includes a water supply port 61 for supplying tap water, a washing tub 62, and supply of tap water to the main water channel 63 or the bypass channel 64 communicating with the washing tub 62 from the water supply port 61.
  • a switching valve 65 for switching supply and a fluid heating device 54 according to the first embodiment inserted in a bypass path 64 are provided.
  • a detergent dissolution tank 67 is inserted in the no-pass path 64 on the downstream side of the fluid heating device 54.
  • control circuit 68 for controlling the switching operation of the switching valve 65 for switching the tap water flow path and adjusting the heating temperature of the tap water by the fluid heating device 54 is provided.
  • a drain outlet 69 is provided below the washing tub 62.
  • FIG. 7 is a cross-sectional view taken along the line BB of the clothing cleaning apparatus 200 of FIG.
  • the fluid heating device 54 is formed in a cylindrical shape, and is installed in the corner part 70 of the clothes washing device 200, thereby saving space.
  • tap water is first supplied from the water supply port 61 and supplied into the bypass path 64 by the switching valve 65 capable of controlling the flow rate.
  • the tap water supplied into the bypass passage 64 is heated to a desired temperature by the fluid heating device 54 and becomes hot water.
  • the controller 33 of the fluid heating device 54 has a temperature detected by the thermistor 32 that is Control the power to the sheathed heater 7 so that the temperature in the agent dissolution tank 67 is suitable for dissolving the detergent. Even if the temperature of the hot water is low and the detergent is difficult to dissolve in winter, etc., the detergent in the detergent dissolution tank 67 dissolves well by supplying warm water of the appropriate temperature into the detergent dissolution tank 67. Then, a highly concentrated detergent solution is supplied to the clothes in the washing tub 62. A highly concentrated detergent solution will soak into clothes in the washing tub 62. As a result, dirt on clothes that are difficult to wash can be reliably washed.
  • the scale is not clogged in the fluid heating device 54, so that the life of the clothing cleaning device 200 can be extended and not only the heating operation of the fluid heating device 54 but also the clothing cleaning device. 200 cleaning operations can be stabilized.
  • the flow path 9 is provided on the outer peripheral portion of the sheathed heater 7, so that the heat insulation is performed by the flow path 9.
  • the fluid heating device 54 that does not require a thermal insulating layer can be reduced in size.
  • the outer peripheral portion of the sheathed heater 7 is surrounded by the flow path 9, the heat of the sheathed heater 7 is hardly released to the outside of the case member 8. Therefore, by using such a fluid heating device 54, heat exchange efficiency can be improved with little heat dissipation loss, and a small clothes washing device 200 can be realized with energy saving.
  • the sheath 19, the case member 8, and the helical coil 18 of the sheathed heater 7 are made of the same material.
  • the force described in the example of the vertical clothing washing apparatus 200 is not limited to this.
  • the present invention is applied to a drum-type clothing washing apparatus such as a horizontal type or an oblique type.
  • a drum-type clothing washing apparatus such as a horizontal type or an oblique type.
  • the same effect can be obtained.
  • FIG. 8 is a schematic cross-sectional view of a tableware washing apparatus according to the fourth embodiment.
  • the dish heating device uses the fluid heating device 54 according to the first embodiment.
  • the tableware washing apparatus 300 of FIG. The cleaning tank 81 has an opening 83.
  • the opening 83 is provided with a door 82 that can be opened and closed.
  • a fluid heating device 54 according to the first embodiment and a pump 85 for circulating cleaning water are provided below the cleaning tank 81.
  • an ejection device 94 for ejecting cleaning water and a water receiver 86 for storing the cleaning water are provided.
  • a cleaning basket 88 that accommodates an object to be cleaned 87 such as tableware is movably supported by a rail 89.
  • a blower fan 90 for blowing air into the cleaning tank 81 is provided.
  • a water supply pipe 80 for supplying cleaning water is connected to the water inlet of the fluid heating device 54. The water outlet of the fluid heating device 54 communicates with the water receiver 86 in the washing tank 81.
  • the washing water is heated by the fluid heating apparatus 54, pressurized by the operation of the pump 85, sent to the ejection apparatus 84, and the ejection apparatus 84 vigorously. Be injected.
  • the cleaning object 87 such as tableware stored in the cleaning basket 88 is cleaned by the cleaning water sprayed from the ejection device 84.
  • the drainage valve (not shown) is opened to discharge the cleaning water from the cleaning tank 81, and the object to be cleaned 87 such as dishes is dried by the ventilation by the operation of the blower fan 90.
  • the dish heating apparatus 300 uses the fluid heating apparatus 54 that can remove the scale and has a long life, the life of the dish cleaning apparatus 300 can be extended. Further, since the fluid heating device 54 can be downsized by increasing the watt density of the sheathed heater 7, the overall size of the dishwasher 300 can be reduced.
  • the life of the dish washing device 300 can be extended, and not only the heating operation of the fluid heating device 54 but also the dish washing.
  • the cleaning operation of the apparatus 300 can be stabilized.
  • the flow path 9 is provided in the outer peripheral portion of the sheathed heater 7, so that the heat insulation is performed by the flow path 9.
  • the fluid heating device 54 that does not require a thermal insulating layer can be reduced in size.
  • the outer peripheral portion of the sheathed heater 7 is surrounded by the flow path 9, the heat of the sheathed heater 7 is hardly released to the outside of the case member 8. Therefore, by using such a fluid heating device 54, heat dissipation The heat exchange efficiency can be improved with little loss, and the energy-saving and small dishwasher 300 can be realized.
  • the sheath 19 of the sheathed heater 7, the case member 8, and the helical coil 18 are made of the same material.
  • the force with which the sheathed heater 7 is used as a heating element is not limited to this, but a ceramic heater or other heating element is used as a heat source. Use it.
  • the sheathed heater 7 corresponds to the heating element
  • the case member 8 of the case 100 corresponds to the first structure
  • the case members 11 and 13 of the case 100 have the second structure.
  • O-rings 14 and 15 correspond to heat-resistant and heat-insulating seal materials
  • spiral coil 18 corresponds to flow velocity variation
  • controller 33 corresponds to power supply device
  • human body washing nozzle 55 Corresponds to a jetting device
  • the washing tub 62 and the washing tub 81 correspond to a cleaning tub
  • the jetting device 84 corresponds to a supply device.
  • the fluid heating device according to the present invention can be used when various cleaning devices are used to heat water or the like as a fluid.

Abstract

 流体加熱装置は、主として、例えば銅からなるシースを有するとともに流体(例えば、水)を加熱する発熱体のシーズヒータ、当該シーズヒータを覆い、例えば銅からなる第1のケース部材、シーズヒータの外面と第1のケース部材の内面との間における空間により形成され、流体が流れる流路、当該流路内に流体を取り込む流入口を有し、例えば樹脂からなる第2のケース部材、および流路内の加熱された流体(例えば、温水)を取り出す流出口を有し、例えば樹脂からなる第3のケース部材から構成される。第1のケース部材内には、上記流路においてシーズヒータの外周を螺旋状に取り巻くように、例えば銅からなる螺旋コイルが設けられる。

Description

明 細 書
流体加熱装置およびこれを備えた洗浄装置
技術分野
[0001] 本発明は、流体を加熱する流体加熱装置およびこれを備えた洗浄装置に関する。
背景技術
[0002] 従来から、洗浄水を加熱する洗浄水加熱装置を備えた人体局部洗浄装置が用い られている (例えば、特許文献 1参照)。
[0003] この人体局部洗浄装置は、洗浄水加熱装置により加熱された洗浄水を人体の局部 に供給する。以下、特許文献 1に記載の人体局部洗浄装置に含まれる洗浄水加熱 装置について図面を参照しながら簡単に説明する。
[0004] 図 9は、従来の人体局部洗浄装置に備えられる洗浄水加熱装置を示す模式図であ る。
[0005] 図 9に示すように、洗浄水加熱装置は、流入口 101および出水口 102を有するパイ プ状ケース 103を備える。
[0006] パイプ状ケース 103内には、シーズヒータ 105が設けられており、当該シーズヒータ 105の片側に備えられたフランジ 104をビス 106により固定することによって、パイプ 状ケース 103内におけるシーズヒータ 105の位置決めが行われている。なお、パイプ 状ケース 103内のシーズヒータ 105の両端部分においては、ゴム等からなるパッキン 107によりシーノレされている。
[0007] このような構成において、洗浄水は、流入口 101からパイプ状ケース 103内に流れ 込み、シーズヒータ 105の表面とパイプ状ケース 103の内面との間における流路 108 を流れつつ瞬間的に加熱されることによって温水となる。そして、温水は出水口 102 力 吐出される。
[0008] また、上記特許文献 1の洗浄水加熱装置と同様に、従来から、局部洗浄用水をカロ 熱する温水器を備えた人体洗浄装置が用いられている(例えば、特許文献 2参照)。
[0009] この人体洗浄装置は、温水器により加熱された局部洗浄用水(温水)を人体の局部 に供給する。以下、特許文献 2に記載の人体洗浄装置に含まれる温水器について図 面を参照しながら簡単に説明する。
[0010] 図 10は、従来の人体洗浄装置に備えられる温水器を示す模式図である。
[0011] 図 10に示すように、温水器は、円筒状の基材パイプ 1および外筒 2からなる二重管 構造を有する。
[0012] 基材パイプ 1の外面の一部には発熱体 3が設けられている。また、基材パイプ 1の 内孔 4には、螺旋中子 5が挿入されるように設けられている。
[0013] 上記のような構成において、温水器内に供給される水は、基材パイプ 1の内孔 4に 流れ込み、螺旋中子 5に設けられた複数のねじ山 6に沿って流れる。
[0014] それにより、発熱体 3によって上記水に対して熱交換が行われ、当該水が温水とな る。温水は人体の局部に向けて噴出される。これにより、人体の局部が洗浄される。
[0015] このように、温水器内に供給される上記水が螺旋中子 5の複数のねじ山 6に沿って 螺旋状に流れることによって当該水の流路断面積が小さくなるため、水の流速が上 昇する。これにより、水の流れが乱流化するため、当該水に含まれるカルシウム成分 等のスケールが発熱体 3に付着する量を低減することができる。
特許文献 1:特開 2001— 336203号公報
特許文献 2:特開 2001— 279786号公報
発明の開示
発明が解決しょうとする課題
[0016] し力しながら、上記特許文献 1に記載の瞬間式の洗浄水加熱装置は、一般的に、 貯湯式の人体局部洗浄装置に用いられるヒータに比べて消費電力が高ぐまた、洗 浄水の加熱時における洗浄水加熱装置の温度は上記ヒータに比べて高温になる。
[0017] そして、洗浄水が流れる流路 108を形成するパイプ状ケース 103とシーズヒータ 10
5との間隔が小さい。
[0018] このような構成において、例えば、シーズヒータ 105の通電を制御する制御装置ま たは洗浄水の有無 (流れ)を検出するセンサ等が故障し、かつ、ノイブ状ケース 103 内を流れる洗浄水が無い場合に、シーズヒータ 105に連続的に通電されるような事 態が起こる可能性がある。このような場合、パイプ状ケース 103が榭脂により形成され ていると、パイプ状ケース 103がシーズヒータ 105の熱負荷により燃焼および発煙す る危険性がある。
[0019] 一方、パイプ状ケース 103を金属により形成する場合には、上記のような危険性は 比較的少なく安全性は高いが、ノイブ状ケース 103に流入口 101および出水口 102 を形成するために、例えばロー付けまたは複雑なパイプ加工技術が必要となり、量産 に適さない。
[0020] また、上記特許文献 2に記載の人体洗浄装置の温水器においては、螺旋中子 5の 各ねじ山 6と基材パイプ 1の内面とが近接しているため、ねじ山 6と基材パイプ 1との 間に電位差がある場合には、基材パイプ 1に異種金属接触腐食または隙間腐食が 発生する。その結果、基材パイプ 1に孔が生じ、洗浄水が当該孔から漏れるという事 態が発生する。
[0021] 本発明の目的は、安全性が確保された流体加熱装置およびこれを備えた洗浄装 置を提供することである。
[0022] 本発明の他の目的は、安全性が確保されるとともに加工性が向上された流体加熱 装置およびこれを備えた洗浄装置を提供することである。
[0023] 本発明のさらに他の目的は、安全性が確保されるとともに流体の外部への漏れが 防止される流体加熱装置およびこれを備えた洗浄装置を提供することである。
課題を解決するための手段
[0024] (1)
本発明の一局面に従う流体加熱装置は、発熱部および非発熱部を有する発熱体と 、発熱体を収容し、流体の流入口および流体の流出口を有するケースとを備え、発 熱体とケースとの間の空間に流路が形成され、ケースは、発熱部を取り囲む第 1の構 造体と、非発熱部を取り囲む第 2の構造体とを有し、第 1の構造体は耐熱材料からな るものである。
[0025] その流体加熱装置においては、発熱部および非発熱部を有する発熱体はケース 内に収容される。流体は、ケースの流入ロカ 導入され、発熱体とケースとの間の空 間に形成された流路を流れることによって、発熱体の発熱部により加熱される。そして 、発熱体の発熱部により加熱された流体は、ケースの流出口から流出する。
[0026] ケースは、発熱部を取り囲む第 1の構造体と非発熱部を取り囲む第 2の構造体とを 有する。ここで、第 1の構造体が耐熱材料力もなることによって、発熱部を取り囲むこ とによる熱負荷を受けに《なる。これにより、発熱体の外面とケースの内面との間隔 力 S小さい場合でも、ケースが上記熱負荷によって燃焼および発煙することが防止され る。したがって、安全性が確保される。
[0027] また、発熱体の外周に流路を形成することにより、当該発熱体の熱は流路を流れる 流体に吸収される。それにより、ケースの外部に発熱体の熱絶縁のための熱断層を 設ける必要がない。これにより、流体加熱装置を小型化することができる。
[0028] さらに、発熱体を、流路を流れる流体により覆うことによって、発熱体の熱が外部に 逃げることが防止される。したがって、熱交換効率を向上できる。
[0029] (2)
第 1の構造体は、流路を介して発熱部を取り囲み、第 2の構造体は非発熱部を保持 してちよい。
[0030] この場合、発熱部が流路を介して第 1の構造体により取り囲まれても、第 1の構造体 が耐熱材料からなるので安全性が確保される。また、熱負荷の無いまたは少ない非 発熱部が第 2の構造体により保持されるので、第 2の構造体が熱負荷を受けることを 回避できる。
[0031] (3)
第 1の構造体は金属またはセラミックス力 なってもよい。この場合、第 1の構造体は 、金属またはセラミックス力もなることにより、発熱部からの熱負荷を受けない。それに より、第 1の構造体が燃焼および発煙することが防止され、安全性が確保される。
[0032] (4)
第 2の構造体は榭脂からなってもよ 、。第 2の構造体は非発熱部を保持するので、 当該第 2の構造体が榭脂からなっても安全性が確保される。
[0033] (5)
流体加熱装置は、第 1の構造体と第 2の構造体との間をシールする耐熱性シール 材をさらに備えてもよい。
[0034] この場合、第 1の構造体力 の熱により耐熱性シールが燃焼および発煙することが 防止される。それにより、第 1の構造体と第 2の構造体とが耐熱性シールにより十分に シールされる。したがって、ケース内から流体が外部へ漏れることが防止される。
[0035] (6)
流体加熱装置は、第 1の構造体と第 2の構造体との間をシールする断熱性シール 材をさらに備えてもよい。
[0036] この場合、第 1の構造体力 の熱により断熱性シールが燃焼および発煙することが 防止される。それにより、第 1の構造体と第 2の構造体とが断熱性シールにより確実に シールされる。したがって、ケース内から流体が外部へ漏れることが防止される。
[0037] (7)
流入口および流出口は、第 2の構造体に設けられてもよい。この場合、第 2の構造 体は榭脂からなるので、流入口および流出口の加工性が向上する。
[0038] (8)
発熱体とケースとの間に電位差がないことが好ましい。この場合、発熱体およびケ ースにおいて電位差による異種金属接触腐食または隙間腐食が発生することが防 止される。それにより、安全性が確保され、流体の外部への漏れが起こらない。
[0039] (9)
流体加熱装置は、流路の少なくとも一部に流体の流速を変化させる流速変 構 をさらに備えてもよい。
[0040] この場合、流路を流れる流体の流速が流速変 構により変化されることによって 、流体に含まれるスケールの成分が下流側に流され、発熱体の表面に付着すること が軽減される。それにより、発熱体の寿命を延ばすことができる。
[0041] また、上記のように、流体に含まれるスケールの成分は、下流側に流されるまでの 過程において流速の変化により小さく粉砕される。それにより、スケールの成分が下 流側で詰まることが防止される。
[0042] また、流体の流速を流速変 構により変化させることによって、流体内の気泡の 発生を低減することができる。それにより、スケールの成分の析出が抑制される。
[0043] さらに、流体の流速を流速変 構により変化させることによって、流速が変化され た流体が接触する発熱部の表面温度を低くすることができる。それにより、発熱部の 温度が上昇することによる沸騰音の発生を防止することができる。 [0044] (10)
流速変 構と発熱体との間に電位差がないことが好ましい。それにより、流速変 構および発熱体に異種金属接触腐食または隙間腐食が発生することが防止さ れる。これにより、発熱体の絶縁劣化を防止できる。
[0045] (11)
流速変浦構は、発熱体の電位よりも低い電位を有してもよい。この場合、電位の 低い流速変換機構に腐食が生じる。これにより、発熱体には腐食が生じず、発熱体 の絶縁劣化を防止できる。
[0046] (12)
流速変 構とケースとの間に電位差がないことが好ましい。この場合、流速変換 機構およびケースにおいて電位差による異種金属接触腐食または隙間腐食が発生 することが防止される。それにより、安全性が確保され、流体の外部への漏れが起こ らない。
[0047] (13)
流速変擁構は、ケースよりも低い電位を有してもよい。この場合、電位の低い流 速変換機構に腐食が生じる。これにより、ケースには腐食が生じない。したがって、ケ ース内から流体が外部へ漏れることが防止される。
[0048] (14)
流体加熱装置は、流体が流入ロカ 流出口まで流れる間に発熱体により所定の温 度に加熱されるよう発熱体に電力を供給する電力供給装置をさらに備えてもよい。
[0049] この場合、流体が流入ロカも流出口まで流れる間に発熱体により所定の温度にカロ 熱されるよう電力供給装置により発熱体に電力が供給される。それにより、流体が流 入口から流出口まで流れる短 、時間で発熱体により所定の温度に加熱される。
[0050] このような構成により、瞬間式の流体加熱装置を実現できる。したがって、必要なと きに必要な量の流体を、エネルギーロスを少なくしつつ瞬間的に加熱することができ る。
[0051] また、瞬間式の流体加熱装置は大きな電力を必要とするため、発熱体の絶縁抵抗 が必要となる。このような場合でも、上述したように、腐食による発熱体の絶縁抵抗が 劣化することを防止できるので、安全性を確保できる。
[0052] (15)
本発明の他の局面に従う洗浄装置は、給水源力 供給される流体を人体の被洗浄 部に噴出する洗浄装置であって、給水源から供給される流体を加熱する流体加熱装 置と、流体加熱装置により加熱された流体を人体に噴出する噴出装置とを備え、流 体加熱装置は、発熱部および非発熱部を有する発熱体と、発熱体を収容し、流体の 流入口および流体の流出口を有するケースとを備え、発熱体とケースとの間の空間 に流路が形成され、ケースは、発熱部を取り囲む第 1の構造体と、非発熱部を取り囲 む第 2の構造体とを有し、第 1の構造体は耐熱材料力 なるものである。
[0053] その洗浄装置においては、給水源力 供給される流体が流体加熱装置により加熱 され、加熱された流体が噴出装置により人体に噴出される。それにより、人体の被洗 浄部が洗浄される。
[0054] この洗浄装置に用いられる流体加熱装置においては、安全性が確保されるとともに 小型化が可能でかつ熱交換効率が向上する。したがって、洗浄装置において長期 間安定した熱交換を行うことができるとともに洗浄装置の小型化が可能となる。
[0055] (16)
本発明のさらに他の局面に従う洗浄装置は、給水源力 供給される流体を用いて 洗浄対象を洗浄する洗浄装置であって、洗浄対象を収容する洗浄槽と、給水源から 供給される流体を加熱する流体加熱装置と、流体加熱装置により加熱された流体を 洗浄槽内に供給する供給装置とを備え、流体加熱装置は、発熱部および非発熱部 を有する発熱体と、発熱体を収容し、流体の流入口および流体の流出口を有するケ 一スとを備え、発熱体とケースとの間の空間に流路が形成され、ケースは、発熱部を 取り囲む第 1の構造体と、非発熱部を取り囲む第 2の構造体とを有し、第 1の構造体 は耐熱材料力 なるものである。
[0056] その洗浄装置においては、給水源力 供給される流体が流体加熱装置により加熱 され、加熱された流体が供給装置により洗浄槽内に供給される。それにより、洗浄槽 内の洗净対象が洗净される。
[0057] この洗浄装置に用いられる流体加熱装置においては、安全性が確保されるとともに 小型化が可能でかつ熱交換効率が向上する。したがって、洗浄装置において長期 間安定した熱交換を行うことができるとともに洗浄装置の小型化が可能となる。
発明の効果
[0058] 本発明によれば、流体加熱装置および洗浄装置の安全性が確保される。また、流 体加熱装置の加工性が向上される。さらに、流体加熱装置のケース内から外部への 流体の漏れが防止される。
図面の簡単な説明
[0059] [図 1]図 1は第 1の実施の形態に係る流体加熱装置を示す断面図である。
[図 2]図 2は図 1の流体加熱装置の A— A線断面図である。
[図 3]図 3は流体の流速が低い場合の流体加熱装置内での流速分布を示す模式図 である。
[図 4]図 4は流体の流速が高い場合の流体加熱装置内での流速分布を示す模式図 である。
[図 5]図 5は第 2の実施の形態に係る衛生洗浄装置の模式的断面図である。
[図 6]図 6は第 3の実施の形態に係る衣類洗浄装置 (洗濯機)の模式的断面図である
[図 7]図 7は図 6の衣類洗浄装置の B— B線断面図である。
[図 8]図 8は第 4の実施の形態に係る食器洗浄装置の模式的断面図である。
[図 9]図 9は従来の人体局部洗浄装置に備えられる洗浄水加熱装置を示す模式図で ある。
[図 10]図 10は従来の人体洗浄装置に備えられる温水器を示す模式図である。 発明を実施するための最良の形態
[0060] 以下、本発明の一実施の形態に係る流体加熱装置およびこれを備えた洗浄装置 について図面を参照しながら説明する。
[0061] (1)第 1の実施の形態
図 1は、第 1の実施の形態に係る流体加熱装置を示す断面図である。
[0062] 図 1に示すように、流体加熱装置 54は、主として、流体 (例えば、水)を加熱する発 熱体のシーズヒータ 7、例えば金属 (本実施の形態では、銅)またはセラミックス力もな るケース部材 8、例えば榭脂からなるケース部材 11、および例えば榭脂からなるケー ス部材 13から構成される。
[0063] ケース部材 8は、シーズヒータ 7の周囲を取り囲むように設けられている。シーズヒー タ 7の外面とケース部材 8の内面との間における空間により形成され、流体が流れる 流路 9が形成されている。ケース部材 11は、流路 9内に流体を取り込む流入口 10を 有する。ケース部材 13は、流路 9内の加熱された流体 (例えば、温水)を取り出す流 出口 12を有する。ケース部材 8、ケース部材 11およびケース部材 13がケース 100を 構成する。
[0064] ケース部材 8とケース部材 11とは、シールのための Oリング 14を介して接続され、ケ 一ス部材 8とケース部材 13とは、同様にシールのための Oリング 15を介して接続され る。
[0065] また、シーズヒータ 7とケース部材 11とは、シールのための Oリング 16を介して接続 され、シーズヒータ 7とケース部材 13とは、シールのための Oリング 17を介して接続さ れる。
[0066] ケース部材 8内には、流路 9においてシーズヒータ 7の外周を螺旋状に取り巻くよう に、例えば銅力もなる螺旋コイル 18が設けられる。
[0067] ここで、ケース部材 11には螺旋コイル固定溝 40が設けられて!/、る。この螺旋コイル 固定溝 40に螺旋コイル 18の一方の端部を嵌め込んだ後、ケース部材 11にケース部 材 8を挿入により組み付けすることで、螺旋コイル 18は保持される。このような構成に より、流路 9内において螺旋コイル 18の抜け止めおよび回り止めが確実に行われる。
[0068] また、流体加熱装置 54を所定の位置に固定するため、ケース部材 11およびケース 部材 13にはそれぞれ本体取付部 41および本体取付部 42が備えられている。
[0069] シーズヒータ 7は、円形の断面を有する棒状に構成されている。本実施の形態にお いては、シース、ヒータ 7に熱伝導性に優れた銅管力もなるシース 19を用いているが、 これに限定されるものではなぐ流体の種類によっては耐食性の高いステンレス等か らなるシースを用いてもよ!、。
[0070] シーズヒータ 7は、シース 19内に設けられた発熱部 20と、シース 19内の各端部に 設けられた非発熱部 27, 28 (図 1の網掛け部分)とを備える。発熱部 20は、ニッケル —クロム等力もなるヒータ線により構成される。
[0071] 非発熱部 27, 28は、その内部にそれぞれ通電端子 21, 22を有する。これらの通 電端子 21, 22は電気抵抗が小さいため、通電してもほとんど発熱しない。発熱部 20 と通電端子 21 , 22とはそれぞれ電気的に接続されて!ヽる。
[0072] 発熱部 20の周囲には、絶縁体の酸ィ匕マグネシウム粉末が高密度に充填されており 、発熱部 20の熱はこの酸化マグネシウムを介してシース 19に伝導される。このような 構成により、シース 19の表面を流れる流体が加熱される。
[0073] Oリング 14, 15, 16, 17は、ケース部材 11, 8, 13内を流れる流体が外部へ漏れる ことを防ぐためのシール材としての役割を有する。
[0074] 流体の流入口 10側においては、 Oリング 14は、例えば鍔出しカ卩ェにより得た銅管 力 なるケース部材 8とケース部材 11との間に嵌め込まれる。この状態で、押さえ板 2 3をビス等によりケース咅材 11に固定することによって、 Oリング 14を介してケース咅 材 8とケース部材 11との密着性を向上する。このような構成により、ケース部材 8, 11 内から流体が外部へ漏れることが防止される。
[0075] また、 Oリング 16は、シース 19とケース部材 11との間に嵌め込まれる。この状態で、 押さえ板 24をビス等によりケース部材 11に固定することによって、 Oリング 16を介し てシース 19とケース部材 11との密着性を向上する。このような構成により、ケース部 材 11内から流体が外部へ漏れることが防止される。
[0076] 一方、流体の流出口 12側においては、 Oリング 15は、ケース部材 8とケース部材 1 3との間に嵌め込まれる。この状態で、押さえ板 25をビス等によりケース部材 13に固 定することによって、 Oリング 15を介してケース部材 8とケース部材 11との密着性を向 上する。このような構成により、ケース部材 8, 13内から流体が外部へ漏れることが防 止される。
[0077] また、 Oリング 17は、シース 19とケース部材 13との間に嵌め込まれる。この状態で、 押さえ板 26をビス等によりケース部材 13に固定することによって、 Oリング 17を介し てシース 19とケース部材 13との密着性を向上する。このような構成により、ケース部 材 13内から流体が外部へ漏れることが防止される。
[0078] なお、 Oリング 16, 17は、ケース部材 11, 8, 13内力 流体が外部へ漏れることを 防止する役割の他に、シーズヒータ 7を保持する役割も有する。
[0079] すなわち、 Oリング 16は、押さえ板 23とケース部材 11とにより挟み込まれることによ つて、シーズヒータ 7の一方の端部における非発熱部 27の外周に当接する。一方、 O リング 17は、押さえ板 26とケース部材 13とにより挟み込まれることによって、シース、ヒ ータ 7の他方の端部における非発熱部 28の外周に当接する。以上により、シーズヒ ータ 7がケース部材 11, 8, 13内において保持される。
[0080] 流体加熱装置 54には、シーズヒータ 7を制御する電力制御素子で発熱電子部品で あるトライアツク 30が設けられて!/、る。
[0081] ここで、ケース部材 8の外周の一部に密着して沿うように、銅板を曲げ加工して得た 熱伝達板 29がビス等により固定されている。そして、熱伝導が十分に可能となるよう 熱伝達板 29にトライアツク 30がビス等により強く固定される。
[0082] また、熱伝達板 29とケース部材 8の一部の外周とに十分に接するように、異常温度 過熱時にシーズヒータ 7への通電を遮断する温度過昇防止手段である温度ヒューズ 31が、熱伝達板 29とケース部材 8の一部の外周との間に設けられる。なお、温度ヒュ ーズ 31の一方の接続部は、導線により通電端子 21に電気的に接続され、温度ヒュ ーズ 31の他方の接続部は、導線によりトライアツク 30の一方の接続部に電気的に接 続されている。
[0083] ケース部材 13の流出口 12には、流体の温度を検出するサーミスタ 32が取り付けら れている。また、流体加熱装置 54には、当該流体加熱装置 54の各構成部を制御す る制御器 33が設けられている。トライアツク 30の他方の接続部は、導線により制御器 33に電気的に接続されている。サーミスタ 32は、導線により制御器 33に電気的に接 続されている。
[0084] また、サーミスタ 32または制御器 33に電気的な故障が生じた場合においても、流 体の温度が過剰に高温度になることを防止できるよう、温度スィッチのサーモスタット
34がケース部材 13の流出口 12付近に設けられている。
[0085] サーモスタット 34の一方の接続部は、導線により制御器 33に電気的に接続され、 サーモスタット 34の他方の接続部は、導線により通電端子 22に電気的に接続されて いる。 [0086] このような構成において、サーミスタ 32または制御器 33に電気的な故障が生じた 場合には、所定温度で通電端子 22への電力供給を停止するよう、サーモスタット 34 において電気接点が機械的に切り替えられる。
[0087] 以下、上記のように構成された流体加熱装置 54の動作および作用について説明 する。
[0088] 最初に、流入口 10から流体が流入すると、制御器 33は、トライアツク 30を介してシ ーズヒータ 7への通電を開始する。
[0089] その後、シーズヒータ 7とケース部材 8との間に形成された流路 9を流れる流体とシ ーズヒータ 7との間で熱交換が行われ、所定温度に加熱された流体が流出口 12から 流出される。
[0090] 加熱された流体が流出口 12から流出される際に、流出口 12から流出される流体の 温度がサーミスタ 32に検出される。サーミスタ 32により検出された温度は、検出信号 として制御器 33に与えられる。
[0091] 制御器 33は、サーミスタ 32からの検出信号に基づいてトライアツク 30を介してシー ズヒータ 7への電力供給を制御することにより、流出口 12から流出される流体の温度 が所定の温度になるようにする。
[0092] このように、トライアツク 30によってシーズヒータ 7の電力を制御する際、トライアツク 3
0も発熱する。したがって、発熱による破損を防止するために、トライアツク 30を冷却 する必要がある。
[0093] そこで、本実施の形態では、上述したように、熱伝達板 29にトライアツク 30がビス等 により強く固定されることにより、トライアツク 30の熱は熱伝達板 29に伝導される。熱 伝導板 29に伝導された熱は、ケース部材 8を介して当該ケース部材 8内を流れる流 体に放出される。
[0094] また、ケース部材 13の流出口 12付近にサーモスタット 34が設けられていることによ つて、何らかの異常でサーミスタ 32または制御器 33に電気的な故障が生じた場合に おいても、加熱された流体の温度が所定温度を超えると、シーズヒータ 7への通電が 遮断される。それにより、流体の温度が過剰に高温になることが防止される。
[0095] さらに、ケース部材 8と熱伝達板 29との間に温度ヒューズ 31が挟み込まれるように 設けられることによって、サーミスタ 32または制御器 33が故障し、さらにサーモスタツ ト 34も故障した場合においても、加熱された流体の温度が所定温度を超えると、温度 ヒューズ 31により通電端子 21を介したシーズヒータ 7への通電が遮断される。
[0096] ここで、ケース部材 11, 8, 13内に流体がない場合 (空焚きの場合)には、シーズヒ ータ 7の熱が流体により吸収されないため、この状態でシーズヒータ 7の発熱部 20へ の通電が «I続されると、当該発熱部 20およびシース 19の温度の上昇が著しく加速 する。上記の状態で、さらに発熱部 20への通電が継続されれば、発熱部 20の温度 は流体 (例えば、水)の沸騰温度である 100°Cを超え、発熱部 20は赤熱状態にもなり 得る。
[0097] 本実施の形態においては、上述したように、シーズヒータ 7の発熱部 20に対向する 部分を耐熱材料力もなるケース部材 8で構成したことによって、上記のような空焚き時 において最も高温になる発熱部 20およびシーズヒータ 7からの輻射熱がケース部材 8の内周面を加熱する。
[0098] ケース部材 8の内周面の熱は、当該ケース部材 8の外周面に密着されて設けられて いる温度ヒューズ 31および熱伝達板 29に伝導される。そして、安全性が考慮された 温度で温度ヒューズ 31が溶断し、シーズヒータ 7への通電が遮断される。
[0099] ここで、ケース部材 8が榭脂からなる場合に空焚きすると、シーズヒータ 7の高温の 輻射熱によりケース部材 8から発煙する可能性がある。また、榭脂は熱伝導率が低い ため、シース、ヒータ 7が高温にもかかわらず、温度ヒューズ 31は溶断されない。さらに 、シース、ヒータ 7への通電が継続された場合、ケース部材 8の溶解によって当該ケー ス部材 8に孔が生じる場合もある。
[0100] 本実施の形態においては、上述のように、構造体をケース部材 11, 8, 13の複数の 材料により構成している。そして、熱負荷を受けるケース部材 8は高い耐熱性を有す る金属 (本実施の形態では、銅)により構成し、熱負荷をあまり受けないケース部材 1 1, 13は榭脂により構成する。このように、熱負荷を考慮し、構成する材料の選択性を 設けることによって、熱的な安全性および加工性を共に向上することができる。
[0101] なお、発熱部 20に対向する領域のシース 19の温度よりも、非発熱部 27, 28に対 向する領域のシース 19の温度は低い。したがって、非発熱部 27, 28をそれぞれ保 持するためにケース部材 11, 13を用いた場合でも、当該ケース部材 11, 13の温度 が榭脂の耐熱温度を超えることはない。これにより、ケース部材 11, 13が燃焼および 発煙することが防止される。
[0102] また、本実施の形態において、 Oリング 14, 15は例えばフッ素ゴム力 なり、その耐 熱温度は約 200。Cである。フッ素ゴムは、二トリルゴムまたはエチレンプロピレンゴム の耐熱温度 (約 100°C)の約 2倍の耐熱温度を有する。
[0103] このように、 Oリング 14, 15を、約 200°Cの耐熱温度を有する耐熱シール材により構 成すること〖こよって、ケース部材 8が高温となった場合でも、シール性を確実に維持 することができ、流体の外部漏れを確実に防止することができる。
[0104] 同様に、 Oリング 16, 17も、それぞれフッ素ゴムにより構成しているので、空焚き時 において温度ヒューズ 31が溶断するまでに、シース 19の両端部における高温の熱 力 SOリング 16, 17に伝導した場合でも、シール性を確実に維持することができ、流体 の外部漏れを確実に防止することができる。
[0105] また、 Oリング 14, 15, 16, 17は、金属に比べて熱伝導率が小さぐ優れた断熱性 を備えた断熱材としての機能も有する。
[0106] すなわち、シース 19およびケース部材 8が高温となった場合でも、当該シース 19お よびケース部材 8からケース部材 11, 13への熱伝導を抑制することができる。その結 果、ケース部材 11, 13が高温となることにより軟ィ匕または焦げ等の損傷が発生するこ とが防止される。それにより、シール性を確実に維持することができ、流体の外部漏 れを確実に防止することができる。
[0107] さらに、温度変化によってシーズヒータ 7が軸方向および径方向に膨張および収縮 した場合でも、 Oリング 16, 17の弾性の橈みによって、上記膨張および収縮が吸収さ れるとともにシール性が確実に維持される。
[0108] 特に、温度変化によるシーズヒータ 7の軸方向の膨張および収縮が大きい場合に おいても、シーズヒータ 7が Oリング 16, 17によって軸方向に摺動自在に保持される ので、シーズヒータ 7およびケース部材 11, 13に引張応力および圧縮応力は発生し ない。これにより、温度変化によるシーズヒータ 7の膨張および収縮の継続的な繰り返 しに対して、優れた耐久信頼性が確保される。 [0109] なお、本実施の形態では、シーズヒータ 7が Oリング 16, 17によって軸方向に摺動 自在に保持された上記構成において、シーズヒータ 7が膨張および収縮を繰り返すこ とにより軸方向にずれることを防止するため、押さえ板 23, 26の一部をそれぞれ U字 型に曲げることによりストッパー 35, 36が形成されている。
[0110] このような構成により、シーズヒータ 7が軸方向にずれたとしても、ストッパー 35, 36 に当接することによって、当該シース、ヒータ 7は大きくずれない。それにより、シーズヒ ータ 7が外れることが防止されるとともに、シース、ヒータ 7およびケース部材 11, 13に ぉ ヽて機械的応力も発生しな ヽ。
[0111] ここで、シーズヒータ 7の両端にフランジをロー付けすることにより、当該シース、ヒー タ 7をケース部材 11, 13に固定する場合には、シーズヒータ 7の膨張および収縮によ る寸法変化が弾力的に吸収されず、ロー付けされた領域等に機械的応力が繰り返し 作用し、亀裂が発生する可能性がある。
[0112] しかし、本実施の形態のように、シーズヒータ 7が Oリング 16, 17により軸方向に摺 動自在に保持された構成であれば、亀裂の発生の防止効果とケース部材 11, 13へ の熱伝導の抑制効果とが奏される。
[0113] また、ケース部材 11, 13を榭脂により構成することによって、当該ケース部材 11, 1 3が複雑な形状を有する場合でも、射出成形等の成形加工法により当該ケース部材 11, 13を容易に形成できる。
[0114] そして、ケース部材 11, 13にそれぞれ流入口 10および流出口 12を容易に設ける ことができ、また、サーミスタ 32およびサーモスタット 34をケース部材 13に一体的に 設けることができる。これにより、流体加熱装置 54をコンパクトィ匕することが可能となる
[0115] また、ケース部材 11, 13を榭脂により構成することによって、以下に示す効果も奏 される。
[0116] 図 2は、図 1の流体加熱装置 54の A— A線断面図である。なお、以下では、ケース 部材 11の構成およびその作用効果について説明する力 ケース部材 13においても 同様の効果が得られる。
[0117] 図 2に示すように、シーズヒータ 7またはケース部材 8の軸心より偏心させて流入口 1 0が設けられる。それにより、流体がシーズヒータ 7 (シース 19)の表面を旋回しながら 流れる。これにより、スケールの成分がシーズヒータ 7およびケース部材 8に付着する ことが防止される。
[0118] このように、スケールの成分の付着を防止するために、ケース部材 11を複雑な形状 に形成する必要がある場合でも、榭脂を用いることによりケース部材 11を所望の形状 に容易に形成することができる。また、榭脂を用いることにより、流入口 10の流路断 面積が滑らかに変化するように形成することもできる。それにより、圧力損失が低減さ れる。
[0119] また、螺旋コイル固定溝 40および本体取付部 41のような細部の構成も榭脂を用い れば形成しやすい。特に、螺旋コイル固定溝 40および本体取付部 41は、取り付け 状況に合わせて形状を変更する場合もあり、取り付け状況に応じた精密な形状が榭 脂により容易に加工される。
[0120] ここで、螺旋コイル 18が存在しない場合には、ケース部材 8の内周面とシーズヒータ 7の外周面との間に円筒状流路 (ドーナツ状流路)が形成される。この場合、ケース部 材 8内に流入した流体は、円筒状流路をシーズヒータ 7の軸方向に沿って流れる。
[0121] 本実施の形態においては、螺旋状の流路 9の流路断面積 (旋回流の方向に垂直な 断面の面積)は、円筒状流路の流路断面積 (シーズヒータ 7の軸方向に垂直な断面 の面積)よりも小さくなるように、螺旋コイル 18の卷回方向およびピッチ P (図 1)が設 定されている。
[0122] それにより、螺旋コイル 18に沿って螺旋状に流れる流体が加速され、流路 9を流れ る当該流体の流速は螺旋コイル 18が存在しない場合に比べて高くなる。このように、 本実施の形態の螺旋コイル 18は、流体の流速を高める流速変換機構として機能す るとともに、流体の流れの向きを旋回方向に変換する流向変 構としても機能する 。なお、見かけ上の流路断面積は、シーズヒータ 7とケース部材 8との間の隙間と螺旋 コイル 18のピッチ Pとの積で表される。
[0123] また、流路 9を流れる流体の流速が高くなることにより乱流が発生する。このように、 本実施の形態の螺旋コイル 18は、乱流を発生する乱流発生機構としても機能する。
[0124] なお、乱流とは、方向が変化する流れまたは流速が変化する流れ等を含む流れの 乱れを意味する総称である。
[0125] 例えば、シーズヒータ 7の外径が直径 6. 5mm、ケース部材 8の内径が直径 9mm、 螺旋コイル 18のピッチが 6mmの場合、螺旋コイル 18が存在しな ヽ場合の流路断面 積が約 30mm2であるのに対して、螺旋コイル 18が存在する場合の見かけ上の流路 断面積は約 7. 5mm2となる。
[0126] そのため、同じ流量で流体を流すと、螺旋コイル 18が存在する場合には、流速を 螺旋コイル 18が存在しない場合の約 4倍にすることができる。また、流体の流れが旋 回流となるので、流路断面積が小さくても圧力損失の増加が比較的小さ 、。
[0127] 螺旋コイル 18が存在しない場合には、ケース部材 8とシーズヒータ 7とで囲まれた円 筒状流路はアスペクト比の大きな流路断面を有する。この場合、ケース部材 8の中心 軸力も偏心した位置に設けられた流入口 10から流入した流体は、当初はシーズヒー タ 7の外周面に沿って螺旋状に流れるが、徐々に整流効果が働くことにより、旋回方 向の流れ成分が失われ、軸方向の流れ成分が主体となる。その結果、流出口 12に 近 、下流側の領域にぉ 、ては実質上流体の流速が低くなる。
[0128] これに対して、本実施の形態では、螺旋コイル 18により螺旋状の流路 9が形成され る。それにより、常に偏向しかつ高い流速を有する乱流状態の旋回流が継続し、シー ズヒータ 7のシース 19と流体との間の流速の境界層の厚さが非常に薄くなる。
[0129] 図 3は、流体の流速が低い場合の流体加熱装置 54内での流速分布を示し、図 4は 、流体の流速が高 、場合の流体加熱装置 54内での流速分布を示す。
[0130] 図 3に示すように、流体の流速が低い場合には、流体とシース 19との間の流速の境 界層 37の厚さが大きくなる。それにより、シース 19の熱が流体の全体に効率的に伝 達されない。
[0131] これに対して、流体の流速が高くかつ流体の流れが乱流になると、図 4に示すよう に、流体とシース 19との間の流速の境界層 38の厚さが小さくなる。それにより、シー ス 19の熱が流体の全体に効率的に伝達される。その結果、シース 19の表面温度が 過剰に上昇することが防止される。
[0132] 一般的に、温度が高いほどスケールの析出量が増加する。そのため、本実施の形 態のように、螺旋状の流路 9内で流体の流速が高まることにより、流体とシース 19との 間の流速の境界層 38の厚さが小さくなると、シース 19の表面温度の上昇を抑制する ことが可能となり、結果としてシース 19にスケールが析出することを防止することがで き、あるいはシース 19上に析出するスケール成分の量を減少させることができる。
[0133] たとえスケールが析出した場合でも、当該スケールは、高い流速を有しかつ乱流状 態の流体により小さく粉砕されながら速い流れにより下流側に押し流される。それによ り、流体加熱装置 54内にスケールが付着しに《なりかつ流体加熱装置 54内の下流 側で詰まることがない。また、流体加熱装置 54内に付着したスケールは、高い流速を 有しかつ乱流状態の流体により剥離される。このように、本実施の形態の螺旋コイル 18は、不純物除去機構としても機能する。その結果、流体加熱装置 54の寿命を延 ばすことができる。
[0134] また、円滑な螺旋状の流れが形成されるので、高い流速を有しつつ螺旋状の流路 9内の圧力損失を小さくすることができる。その結果、熱交換効率を向上させることが でき、かつ流体加熱装置 54の小型化を実現することができる。
[0135] さらに、シーズヒータ 7の外周に形成される螺旋状の流路 9により熱絶縁が行われる ので、熱的な絶縁層を設ける必要がない。したがって、流体加熱装置 54をより小型 化することができる。また、シーズヒータ 7の外周に形成される螺旋状の流路 9によりシ ーズヒータ 7の熱が外部へ逃げることが防止される。したがって、熱交換効率をさらに 向上させることができる。
[0136] なお、本実施の形態に係る流体加熱装置 54にお 、ては、スケールの付着だけでな ぐ水垢またはごみ等の他の不純物の付着も同様に防止または軽減することができる 力 以下の記載においては、不純物としてスケールを代表的に挙げて説明する。
[0137] また、流体が高い流速を有するので、気泡の発生が低減されるとともに、シーズヒー タ 7のシース 19の表面温度が低く抑制されるので、沸騰音の発生を低減することがで きる。
[0138] 本実施の形態においては、スケールの低減効果を高めるために、流速変換機構、 流向変 構および乱流発生機構として機能する螺旋コイル 18により流体の流れ が乱流状態となるまで流体の流速を高めている力 流体の流れが層流状態であって も、螺旋コイル 18により流体の流速を高めることにより、流体とシース 19との間の流速 の境界層 38の厚さを小さくすることができる。それにより、スケールの低減効果を得る ことができる。
[0139] また、螺旋コイル 18は、シーズヒータ 7およびケース部材 8とは別部材により形成さ れ、シーズヒータ 7のシース 19またはケース部材 8に完全には固定されていない。
[0140] この場合、螺旋コイル 18の一部が振動自由の状態で保持される。それにより、螺旋 コイル 18が流体の流れから受ける力と弾性とにより振動することができ、スケール付 着の防止または軽減の効果およびスケールの剥離の効果が得られる。
[0141] さらに、別部材の螺旋コイル 18を流体加熱装置 54から容易に取り外すことができる 。そのため、流体加熱装置 54を流体 (水道水)中のスケール成分が少ない地域また は水道水圧の低い地域で使用する場合には、別部材の螺旋コイル 18を取り外して、 螺旋コイル 18の形状を圧力損失が小さくなるように変更することができ、または流体 加熱装置 54内で螺旋コイル 18を流速が低くなる箇所に取り付けることができる。これ により、流体加熱装置 54内の圧力損失がより低くなり、かつ流速がより高くなる。その 結果、スケールの付着を十分に防止または軽減することができる。また、異常時に螺 旋コイル 18を容易に交換することができるので、メンテナンス性が向上する。
[0142] また、本実施の形態では、螺旋コイル 18のピッチ P (図 1)は一定であるが、螺旋コィ ル 18のピッチ Pを部分的に狭くまたは広くし、または螺旋コイル 18のピッチ Pを徐々 に変化させてもよい。この場合にも、螺旋コイル 18は、流速変 構、流向変 構 、乱流発生機構および不純物除去機構として機能し、スケールの付着を防止または 軽減することができる。
[0143] さらに、本実施の形態では、螺旋コイル 18が流路 9の全体に設けられている力 螺 旋コイル 18が流路 9の一部に設けられてもよい。この場合にも、螺旋コイル 18は流速 変換機構、流向変換機構、乱流発生機構および不純物除去機構として機能し、スケ ールの付着を防止または軽減することができる。
[0144] また、本実施の形態では、流速変換機構、流向変換機構、乱流発生機構および不 純物除去機構として螺旋状の螺旋コイル 18が用いられるが、これに限定されず、乱 れ促進翼またはガイドのような他の形状を有する部材により流速変換機構、流向変 換機構、乱流発生機構および不純物除去機構を実現してもよい。このような場合にも 、スケール付着の防止または軽減の効果が得られる。
[0145] ここで、本実施の形態に係る流体加熱装置 54においては、上述したように、シーズ ヒータ 7のシース 19、螺旋コイル 18、およびケース部材 8は、それぞれ銅からなる。以 下、この作用効果について説明する。
[0146] シーズヒータ 7 (シース 19)と螺旋コイル 18との間、またはケース部材 8と螺旋コイル 18との間における間隔が大き!/、場合、流路 9内を流れる流体は螺旋コイル 18に沿つ て流れず、円筒状の軸方向の流れ成分が主体となってしまい、スケール付着の低減 等の効果を得ることができない。このような理由により、シース、ヒータ 7と螺旋コイル 18 、およびケース部材 8と螺旋コイル 18とをそれぞれ近接させて配置する必要がある。
[0147] し力しながら、上記部品をそれぞれ近接させて配置した場合、各部品間で異種金 属接触腐食または隙間腐食等の電位差に起因した腐食 (以下、電位腐食と呼ぶ)が 発生する。その結果、ケース部材 8に孔が生じることによって流体の外部漏れが発生 し、また、シース 19に孔が生じることによって絶縁劣化等が起こる可能性が高い。
[0148] そこで、本実施の形態では、シース 19、螺旋コイル 18、およびケース部材 8をそれ ぞれ銅で構成することによって、各部品間の電位差をなくす。それにより、異種金属 接触腐食または隙間腐食等の電位腐食の発生を防止できる。これにより、流体加熱 装置 54の長寿命化を実現できる。
[0149] なお、本実施の形態では、シース 19、螺旋コイル 18、およびケース部材 8を構成す る材料として、熱伝導性に優れ、低コストかつ加工性に優れた銅を用いることとしたが 、これに限定されるものではなぐ使用する流体、または流体加熱装置 54に求められ る性能に応じて、他の材料を用いてもよい。例えば、ステンレスを用いることにより強 度の向上を図ることができ、アルミニウムを用いることにより軽量ィ匕を図ることができる 。この場合でも、各部品間に電位差が生じることはなぐ流体加熱装置 54の長寿命 化を実現できる。
[0150] また、シース 19、螺旋コイル 18、およびケース部材 8を構成する材料を当該各部品 間で変更しなければならない場合には、銅 (例えば、海水中における銅の電位が 1 • 36V)およびステンレス(海水中における SUS304の電位が— 0. 08V)の組み合わ せのような両者間の電位差が小さい材料を用いることが好ましい。それにより、電位 腐食が発生しにくくなり、流体加熱装置 54の寿命も長くなる。
[0151] 一方、各部品の電位差が大きくなるような材料の組み合わせを用いる必要がある場 合には、螺旋コイル 18を構成する材料を、シース 19およびケース部材 8よりも電位の 低い材料 (金属材料)とすることが好ましい。これは、電位腐食は電位の低い側の部 品に生じるためである。
[0152] 例えば、シース 19およびケース部材 8を熱伝導性に優れた銅 (標準電極電位 +0.
34V)により構成し、螺旋コイル 18をカ卩ェ性に優れ、低コストである鉄 (標準電極電位 : -0. 44V)により構成した場合、電位腐食が発生するのは、電位が低い鉄カゝらなる 螺旋コイル 18となる。したがって、シース 19およびケース部材 8に電位腐食が生じる ことによる流体の外部漏れおよび絶縁劣化を防止できる。
[0153] 流体の温度が低い場合、または使用する流体中のスケール濃度が低い場合等、ス ケールの付着が大きく生じない場合には、必ずしも螺旋コイル 18を設けることを必要 としない。
[0154] この場合、流体はケース部材 8の内周面とシース 19の外周面との間に形成された 円筒状の軸方向の流路 9内を流れる。このような場合でも、シース 19およびケース部 材 8を両者間における電位差が小さ ヽ材料、好ましくは電位差のな ヽ同じ材料で構 成することによって、電位腐食による流体の外部漏れおよび絶縁劣化を防止できる。
[0155] なお、押さえ板 23, 24, 25, 26は、 Oリング 14, 15, 16, 17により、流路 9内を流 れる流体に触れな 、ように構成されて 、るので、シース 19およびケース部材 8との間 に電位腐食が生じることはない。したがって、押さえ板 23, 24, 25, 26の材料を特定 する必要はない。ただし、湿度が高い所で使用する場合等、押さえ板 23, 24, 25, 2 6と、シース 19またはケース部材 8との間に水滴が付着する可能性がある場合には、 シース 19およびケース部材 8との電位差が少な!/、材料、好ましくはシース 19および ケース部材 8と同じ材料により押さえ板 23, 24, 25, 26を構成することが好ましい。
[0156] また、ケース部材 11, 13は、シース 19およびケース部材 8と近接して構成されてい るので、流路 9内を流れる流体に接するが、本実施の形態のように、ケース部材 11, 13を榭脂により構成することによって、シース 19およびケース部材 8との間に電位腐 食は生じない。なお、ケース部材 11, 13を金属材料により構成する場合には、ケー ス部材 11, 13とシース 19およびケース部材 8とを、両者間の電位差が少ない金属材 料、好ましくは同じ金属材料で構成することによって、電位腐食による流体の外部漏 れおよび絶縁劣化を防止できる。
[0157] さらに、ケース部材 8を金属材料力もなる複数の部品の組み合わせにより構成した 場合においても、当該各部品を電位差が少ない金属材料、好ましくは同じ金属材料 で構成することによって、電位腐食による流体の外部漏れおよび絶縁劣化を防止で きる。なお、ケース部材 11, 13を金属材料力もなる複数の部品の組み合わせにより 構成する場合についても上記と同様である。
[0158] このように、シース 19、螺旋コイル 18、およびケース部材 8の各部品を銅により構成 することによって、各部品間の電位差をなくすことが可能となる。それにより、異種金 属接触腐食または隙間腐食等の電位腐食に起因してケース部材 8に孔が生じること による流体の外部漏れ、およびシース 19に孔が生じることによる絶縁劣化を防止でき る。したがって、流体加熱装置 54の長寿命化を実現できる。
[0159] (2)第 2の実施の形態
図 5は、第 2の実施の形態に係る衛生洗浄装置の模式的断面図である。この衛生 洗浄装置には、第 1の実施の形態に係る流体加熱装置 54が用いられる。
[0160] 図 5の衛生洗浄装置 100は、本体部 53および暖房便座 52を備える。便器 51上に 本体部 53および暖房便座 52が装着される。
[0161] 本体部 53内に主用部品として流体加熱装置 54、遮断弁 57および流量制御装置 5 8が設けられる。本体部 53に内蔵される制御基板等の他の部品は図示を省略する。
[0162] 流体加熱装置 54により加熱された流体 (以下、温水と呼ぶ)が人体洗浄ノズル 55 力も噴出される。それにより、人体 56の局部が洗浄される。
[0163] このような衛生洗浄装置 100において、使用者が暖房便座 52に着座すると、遮断 弁 57が開放され、流体としての水道水が流体加熱装置 54に導入される。
[0164] 使用者が、図示しない遠隔操作装置 (リモコン)の洗浄ボタンを押下すると、水道水 が予め設定された所定の温度 (使用者の好みの温度)に流体加熱装置 54により加熱 され温水が生成される。そして、予め設定された流量になるように流量制御装置 58に よって温水の流量が制御され、所定の流量の温水が人体洗浄ノズル 55により人体 5 6の局部に向けて噴出される。このように、本実施の形態に係る流体加熱装置 54は、 使用者が温水により局部を洗浄したいときに、水道水を瞬間的に加熱することができ る瞬間式の流体加熱装置として機能する。
[0165] ここで、従来の衛生洗浄装置は、上記のような瞬間式のものではなぐ 1リットル程度 の温水を貯留することが可能な温水タンクを備え、ヒータにより当該温水タンク内の温 水を常時約 40°Cに保温しておくといった貯湯式のものであることが一般的であった。
[0166] し力しながら、上記従来の貯湯式の衛生洗浄装置においては、温水タンク内の温 水を常時約 40°Cに保温しており、カロえて、温水タンクからの放熱ロスがあることにより
、瞬間式の流体加熱装置 54に比べ約 2倍の電力が必要となっていた。その結果、省 エネルギーを実現できなかった。
[0167] また、温水タンクの貯留量が 1リットルの場合、約 1分間温水を使用すると、当該温 水タンク内の温水はなくなる。さらに、温水タンクの容積が大きいため、衛生洗浄装置 のコンパクトィ匕を実現できな力つた。
[0168] 本実施の形態の流体加熱装置 54を用いた衛生洗浄装置 100においては、シーズ ヒータ 7により水道水を瞬間的に加熱するため、温水が不足することを防止でき、使 用者が連続して所望の時間洗浄することができるとともに、放熱ロスもほとんどなく省 エネルギー化を図ることができる。
[0169] また、本実施の形態の衛生洗浄装置 100では、貯湯式の衛生洗浄装置に用いら れるような大きな温水タンクが不要である。したがって、衛生洗浄装置 100のコンパク ト化を図ることができる。
[0170] し力しながら、衛生洗浄装置 100において瞬間式の流体加熱装置 54を用いる場合 、シーズヒータ 7の定格電力(ワット数)は貯湯式のヒータの定格電力よりも大きくせざ るを得ない。
[0171] このように、シーズヒータ 7の定格電力が大きいので、何らかの異常による故障によ つてシーズヒータ 7に定格電力が供給され続けること、または空焚き状態になることが 生じ得るが、第 1の実施の形態でも述べたように、このような場合における安全性は十 分に確保される。
[0172] 本実施の形態においては、小型でスケールの付着が防止または軽減された流体カロ 熱装置 54を衛生洗浄装置 100の本体部 53に内蔵することによって、本体部 53の小 型化を実現することができる。
[0173] また、流体加熱装置 54にスケールが詰まることがな 、ので、衛生洗浄装置 100の 寿命を延ばすことができるとともに、流体加熱装置 54の加熱動作だけでなく衛生洗 浄装置 100の洗浄動作を安定ィ匕することができる。
[0174] 特に、上記のように、流体加熱装置 54においては、シーズヒータ 7の外周部に流路 9が設けられるので、当該流路 9により熱絶縁が行われる。それにより、熱的な絶縁層 を設ける必要がなぐ流体加熱装置 54を小型化することができる。また、シーズヒータ 7の外周部が流路 9で囲まれるので、シーズヒータ 7の熱がケース部材 8の外部へほと んど逃がされない。したがって、このような流体加熱装置 54を用いることにより、放熱 損失が少なく熱交換効率を向上でき、省エネルギーで小型の衛生洗浄装置 100を 実現するができる。
[0175] 衛生洗浄装置 100においては、本体部 53に伸縮する人体洗浄ノズル 55を設置す ることにより人体洗浄ノズル 55の下部に死空間が生じる。流体加熱装置 54は、円筒 状でかつ小型であるため、人体洗浄ノズル 55の下部の空間に設置することができる 。したがって、流体加熱装置 54を用いることにより、本体部 53を小型化することがで きる。
[0176] また、流体加熱装置 54にはスケールが付着しにくぐスケールの流出も抑制されて V、るので、流量制御装置 58または人体洗浄ノズル 55でスケールが詰まることがな ヽ 。したがって、流量制御装置 58および人体洗浄ノズル 55を安定した動作で長期間 使用することができる。したがって、流体加熱装置 54を衛生洗浄装置 100に用いるこ とにより、衛生洗浄装置 100を安定した動作で長期間使用することが可能となる。
[0177] また、瞬間式の流体加熱装置 54を用いる場合、流体の温度を早急に制御する必 要がある。そのため、シーズヒータ 7のワット密度を高くする等の対策が必要である。 その結果、シーズヒータ 7の表面温度が貯湯式の衛生洗浄装置に用いられるヒータ の表面温度に比べ高くなるので、スケールの付着が顕著になってしまう。
[0178] 本実施の形態の流体加熱装置 54においては、螺旋コイル 18により流路 9内を流れ る流体の流速を加速させることによって、スケールが付着することを低減している。 [0179] また、シーズヒータ 7のシース 19、ケース部材 8、および螺旋コイル 18を同種の材料 (例えば、銅)により構成することによって、異種金属接触腐食または隙間腐食等の 電位腐食に起因してケース部材 8に孔が生じることによる流体の外部漏れ、およびシ ース 19に孔が生じることによる絶縁劣化を防止できる。したがって、衛生洗浄装置 10 0の安全性の向上および長寿命化を実現できる。
[0180] なお、本実施の形態では、第 1の実施の形態に係る流体加熱装置 54を、人体の局 部を洗浄する衛生洗浄装置 100に適用する例について説明したが、これに限定され るものではなぐ手洗い用、またはシャワー用等に使用される電気給湯器として用い ることがでさる。
[0181] (3)第 3の実施の形態
図 6は、第 3の実施の形態に係る衣類洗浄装置 (洗濯機)の模式的断面図である。 この衣類洗浄装置には、第 1の実施の形態に係る流体加熱装置 54が用いられる。
[0182] 図 6の衣類洗浄装置 200は、主として、水道水を供給する給水口 61、洗濯槽 62、 給水口 61から洗濯槽 62に連通する主水路 63またはバイパス路 64への水道水の供 給の切り替えを行う切替弁 65、およびバイパス路 64に介挿された第 1の実施の形態 に係る流体加熱装置 54を備える。
[0183] 流体加熱装置 54の下流側のノ ィパス路 64には洗剤溶解槽 67が介挿されている。
また、水道水の流路の切り替えを行う切替弁 65の切り替え動作を制御するとともに、 流体加熱装置 54による水道水の加熱温度の調整等を行う制御回路 68が設けられる
。さらに、洗濯槽 62の下方には排水口 69が設けられる。
[0184] 図 7は、図 6の衣類洗浄装置 200の B— B線断面図である。
[0185] 図 7に示すように、流体加熱装置 54は円筒状に構成され、衣類洗浄装置 200のコ ーナ一部 70に設置されることにより、省スペース化が図られている。
[0186] このような衣類洗浄装置 200においては、最初に、水道水が給水口 61から供給さ れ、流量の制御も可能な切替弁 65によってバイパス路 64内に供給される。バイパス 路 64内に供給された水道水は、流体加熱装置 54により所望の温度に加熱され温水 となる。
[0187] ここで、流体加熱装置 54の制御器 33は、サーミスタ 32により検出される温度が洗 剤溶解槽 67内の洗剤を溶解するのに適した温度となるようにシーズヒータ 7への通 電を制御する。冬季等において温水の温度が低く洗剤が溶解しにくい場合でも、適 温の温水を洗剤溶解槽 67内に供給することで、洗剤溶解槽 67内の洗剤が良好に溶 解する。そして、濃度の高い洗剤溶液が洗濯槽 62内の衣類に供給される。濃度の高 い洗剤溶液は洗濯槽 62内の衣類によく染み込む。これにより、洗浄しにくい衣類の 汚れを確実に洗浄できる。
[0188] 本実施の形態においては、流体加熱装置 54にスケールが詰まることがないので、 衣類洗浄装置 200の寿命を延ばすことができるとともに、流体加熱装置 54の加熱動 作だけでなく衣類洗浄装置 200の洗浄動作を安定ィ匕することができる。
[0189] 特に、上記のように、流体加熱装置 54においては、シーズヒータ 7の外周部に流路 9が設けられるので、当該流路 9により熱絶縁が行われる。それにより、熱的な絶縁層 を設ける必要がなぐ流体加熱装置 54を小型化することができる。また、シーズヒータ 7の外周部が流路 9で囲まれるので、シーズヒータ 7の熱がケース部材 8の外部へほと んど逃がされない。したがって、このような流体加熱装置 54を用いることにより、放熱 損失が少なく熱交換効率を向上でき、省エネルギーで小型の衣類洗浄装置 200を 実現するができる。
[0190] また、シーズヒータ 7のシース 19、ケース部材 8、および螺旋コイル 18を同種の材料
(例えば、銅)により構成することによって、異種金属接触腐食または隙間腐食等の 電位腐食に起因してケース部材 8に孔が生じることによる流体の外部漏れ、およびシ ース 19に孔が生じることによる絶縁劣化を防止できる。したがって、衣類洗浄装置 20 0の安全性の向上および長寿命化を実現できる。
[0191] なお、本実施の形態では、縦型の衣類洗浄装置 200の例について説明した力 こ れに限定されるものではなぐ例えば横型または斜め型等のドラム式の衣類洗浄装 置に適用しても同じ効果を得ることができる。
[0192] (4)第 4の実施の形態
図 8は、第 4の実施の形態に係る食器洗浄装置の模式的断面図である。この食器 洗浄装置には、第 1の実施の形態に係る流体加熱装置 54が用いられる。
[0193] 図 8の食器洗浄装置 300は、洗浄槽 81を備える。洗浄槽 81は開口部 83を有する。 開口部 83には、扉 82が開閉自在に設けられる。
[0194] 洗浄槽 81の下方に、第 1の実施の形態に係る流体加熱装置 54および洗浄水を循 環させるポンプ 85が設けられる。
[0195] 洗浄槽 81の底部に、洗浄水を噴出する噴出装置 94、および洗浄水を溜める水受 け 86が設けられる。また、洗浄槽 81内において、食器等の被洗浄物 87を収容する 洗浄かご 88がレール 89により移動可能に支持される。さらに、洗浄槽 81内に送風す る送風ファン 90が設けられる。流体加熱装置 54の入水口には、洗浄水を供給するた めの給水管 80が接続されている。流体加熱装置 54の出水口は洗浄槽 81内の水受 け 86に連通している。
[0196] 本実施の形態に係る食器洗浄装置 300においては、洗浄水は流体加熱装置 54に より加熱され、ポンプ 85の運転により加圧されて噴出装置 84に送られ、噴出装置 84 力 勢いよく噴射される。
[0197] 噴出装置 84から噴射される洗浄水により洗浄かご 88に収容された食器等の被洗 浄物 87が洗浄される。洗浄動作完了後には、排水弁(図示せず)が開かれることによ り洗浄水が洗浄槽 81から排出され、送風ファン 90の運転による換気で食器等の被 洗浄物 87が乾燥する。
[0198] 本実施の形態に係る食器洗浄装置 300には、スケールの除去が可能でかつ長寿 命な流体加熱装置 54が用いられるので、食器洗浄装置 300の寿命も延ばすことが できる。また、シーズヒータ 7の高ワット密度化による流体加熱装置 54の小型化が可 能であるため、食器洗浄装置 300の全体の小型化を実現することができる。
[0199] また、本実施の形態においては、流体加熱装置 54にスケールが詰まることがない ので、食器洗浄装置 300の寿命を延ばすことができるとともに、流体加熱装置 54の 加熱動作だけでなく食器洗浄装置 300の洗浄動作を安定ィ匕することができる。
[0200] 特に、上記のように、流体加熱装置 54においては、シーズヒータ 7の外周部に流路 9が設けられるので、当該流路 9により熱絶縁が行われる。それにより、熱的な絶縁層 を設ける必要がなぐ流体加熱装置 54を小型化することができる。また、シーズヒータ 7の外周部が流路 9で囲まれるので、シーズヒータ 7の熱がケース部材 8の外部へほと んど逃がされない。したがって、このような流体加熱装置 54を用いることにより、放熱 損失が少なく熱交換効率を向上でき、省エネルギーで小型の食器洗浄装置 300を 実現するができる。
[0201] また、シーズヒータ 7のシース 19、ケース部材 8、および螺旋コイル 18を同種の材料
(例えば、銅)により構成することによって、異種金属接触腐食または隙間腐食等の 電位腐食に起因してケース部材 8に孔が生じることによる流体の外部漏れ、およびシ ース 19に孔が生じることによる絶縁劣化を防止できる。したがって、食器洗浄装置 30 0の安全性の向上および長寿命化を実現できる。
[0202] (5)他の実施の形態
第 1〜第 4の実施の形態に係る流体加熱装置 54においては、発熱体としてシーズ ヒータ 7が用いられている力 これに限定されるものではなぐセラミックヒータまたはそ の他の発熱体を熱源として用いてもょ 、。
[0203] (6)実施の形態の各部と請求項の各構成要素との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明する 力 本発明は下記の例に限定されない。
[0204] 上記実施の形態においては、シーズヒータ 7が発熱体に相当し、ケース 100のケー ス部材 8が第 1の構造体に相当し、ケース 100のケース部材 11, 13が第 2の構造体 に相当し、 Oリング 14, 15が耐熱性シール材および断熱性シール材に相当し、螺旋 コイル 18が流速変 構に相当し、制御器 33が電力供給装置に相当し、人体洗浄 ノズル 55が噴出装置に相当し、洗濯槽 62および洗浄槽 81が洗浄槽に相当し、噴出 装置 84が供給装置に相当する。
産業上の利用可能性
[0205] 本発明に係る流体加熱装置は、各種洗浄装置にお!ヽて流体としての水等を加熱 する場合等に利用することができる。

Claims

請求の範囲
[I] 発熱部および非発熱部を有する発熱体と、
前記発熱体を収容し、流体の流入口および流体の流出口を有するケースとを備え 前記発熱体と前記ケースとの間の空間に流路が形成され、
前記ケースは、前記発熱部を取り囲む第 1の構造体と、前記非発熱部を取り囲む第 2の構造体とを有し、
前記第 1の構造体は耐熱材料からなる、流体加熱装置。
[2] 前記第 1の構造体は、前記流路を介して前記発熱部を取り囲み、前記第 2の構造体 は前記非発熱部を保持する、請求項 1記載の流体加熱装置。
[3] 前記第 1の構造体は金属またはセラミックス力もなる、請求項 1記載の流体加熱装置
[4] 前記第 2の構造体は榭脂からなる、請求項 1記載の流体加熱装置。
[5] 前記第 1の構造体と前記第 2の構造体との間をシールする耐熱性シール材をさらに 備えた、請求項 1記載の流体加熱装置。
[6] 前記第 1の構造体と前記第 2の構造体との間をシールする断熱性シール材をさらに 備えた、請求項 1記載の流体加熱装置。
[7] 前記流入口および前記流出口は、前記第 2の構造体に設けられた、請求項 1記載の 流体加熱装置。
[8] 前記発熱体と前記ケースとの間に電位差がない、請求項 1記載の流体加熱装置。
[9] 前記流路の少なくとも一部に流体の流速を変化させる流速変 構をさらに備えた
、請求項 1記載の流体加熱装置。
[10] 前記流速変換機構と発熱体との間に電位差がない、請求項 9記載の流体加熱装置
[II] 前記流速変換機構は、前記発熱体の電位よりも低い電位を有する、請求項 9記載の 流体加熱装置。
[12] 前記流速変換機構と前記ケースとの間に電位差がない、請求項 9記載の流体加熱 装置。
[13] 前記流速変 m«構は、前記ケースよりも低!、電位を有する、請求項 9記載の流体カロ 熱装置。
[14] 流体が前記流入口から前記流出口まで流れる間に前記発熱体により所定の温度に 加熱されるよう前記発熱体に電力を供給する電力供給装置をさらに備えた、請求項 1 記載の流体加熱装置。
[15] 給水源力 供給される流体を人体の被洗浄部に噴出する洗浄装置であって、
前記給水源から供給される流体を加熱する流体加熱装置と、
前記流体加熱装置により加熱された流体を人体に噴出する噴出装置とを備え、 前記流体加熱装置は、
発熱部および非発熱部を有する発熱体と、
前記発熱体を収容し、流体の流入口および流体の流出口を有するケースとを備え 前記発熱体と前記ケースとの間の空間に流路が形成され、
前記ケースは、前記発熱部を取り囲む第 1の構造体と、前記非発熱部を取り囲む第 2の構造体とを有し、
前記第 1の構造体は耐熱材料からなる、洗浄装置。
[16] 給水源から供給される流体を用いて洗浄対象を洗浄する洗浄装置であって、
前記洗浄対象を収容する洗浄槽と、
前記給水源から供給される流体を加熱する流体加熱装置と、
前記流体加熱装置により加熱された流体を前記洗浄槽内に供給する供給装置とを 備え、
前記流体加熱装置は、
発熱部および非発熱部を有する発熱体と、
前記発熱体を収容し、流体の流入口および流体の流出口を有するケースとを備え 前記発熱体と前記ケースとの間の空間に流路が形成され、
前記ケースは、前記発熱部を取り囲む第 1の構造体と、前記非発熱部を取り囲む第 2の構造体とを有し、 前記第 1の構造体は耐熱材料からなる、洗浄装置。
PCT/JP2006/308453 2005-07-01 2006-04-21 流体加熱装置およびこれを備えた洗浄装置 WO2007004349A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800243064A CN101213408B (zh) 2005-07-01 2006-04-21 流体加热装置及具有该流体加热装置的洗净装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005193363A JP2007010255A (ja) 2005-07-01 2005-07-01 流体加熱装置およびそれを用いた給湯装置
JP2005-193363 2005-07-01
JP2006-011972 2006-01-20
JP2006011972A JP2007192486A (ja) 2006-01-20 2006-01-20 流体加熱装置およびそれを用いた給湯装置

Publications (1)

Publication Number Publication Date
WO2007004349A1 true WO2007004349A1 (ja) 2007-01-11

Family

ID=37604225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308453 WO2007004349A1 (ja) 2005-07-01 2006-04-21 流体加熱装置およびこれを備えた洗浄装置

Country Status (2)

Country Link
KR (1) KR20080023362A (ja)
WO (1) WO2007004349A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112440943A (zh) * 2019-08-30 2021-03-05 株式会社村上开明堂 清洗液的加热装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827831B1 (ko) 2011-04-28 2018-02-12 삼성전자주식회사 스팀조리기기
KR101372256B1 (ko) 2012-02-29 2014-03-10 한라비스테온공조 주식회사 냉각수 가열식 히터
KR101435668B1 (ko) * 2012-06-20 2014-08-29 한라비스테온공조 주식회사 냉각수 가열식 히터
KR101463892B1 (ko) * 2012-07-03 2014-11-20 한라비스테온공조 주식회사 냉각수 가열식 히터
KR101894465B1 (ko) * 2012-08-31 2018-09-03 한온시스템 주식회사 냉각수 가열식 히터
KR101895480B1 (ko) * 2013-01-28 2018-09-05 한온시스템 주식회사 냉각수 가열식 히터
KR101973522B1 (ko) * 2013-08-06 2019-04-30 한온시스템 주식회사 냉각수 히터
KR20150082869A (ko) * 2014-01-08 2015-07-16 한라비스테온공조 주식회사 냉각수 가열식 히터 및 그 제조 방법
KR101590009B1 (ko) * 2015-03-10 2016-02-12 우암신소재(주) 화학 용액 가열용 금속 바디 인라인 히터
KR102647077B1 (ko) * 2017-10-11 2024-03-14 코웨이 주식회사 온수기
DE102019003811A1 (de) * 2019-05-31 2020-12-03 Valeo Thermal Commercial Vehicles Germany GmbH Elektrisches Heizgerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097849A (ja) * 2001-09-25 2003-04-03 Orion Mach Co Ltd 流体加熱装置
JP2004069256A (ja) * 2002-08-09 2004-03-04 Shinnetsu Kogyo Kk 流体加熱器およびその製造方法、並びに使用方法
JP2005090872A (ja) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd 流体加熱装置
JP2005171580A (ja) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd 熱交換器およびそれを備えた衛生洗浄装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097849A (ja) * 2001-09-25 2003-04-03 Orion Mach Co Ltd 流体加熱装置
JP2004069256A (ja) * 2002-08-09 2004-03-04 Shinnetsu Kogyo Kk 流体加熱器およびその製造方法、並びに使用方法
JP2005090872A (ja) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd 流体加熱装置
JP2005171580A (ja) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd 熱交換器およびそれを備えた衛生洗浄装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112440943A (zh) * 2019-08-30 2021-03-05 株式会社村上开明堂 清洗液的加热装置

Also Published As

Publication number Publication date
KR20080023362A (ko) 2008-03-13

Similar Documents

Publication Publication Date Title
WO2007004349A1 (ja) 流体加熱装置およびこれを備えた洗浄装置
JP2007010255A (ja) 流体加熱装置およびそれを用いた給湯装置
JP5261609B2 (ja) 便座装置
US7920779B2 (en) Heat exchanger and washing apparatus comprising the same
JP4293081B2 (ja) 流体加熱装置およびそれを用いた各種の洗浄装置
EP2987446B1 (en) Dishwasher
JP5066409B2 (ja) 衛生洗浄装置
JP2008232616A (ja) 熱交換器およびそれを備えた衛生洗浄装置
JP2007192486A (ja) 流体加熱装置およびそれを用いた給湯装置
JP2008057855A5 (ja)
JP2008057855A (ja) 流体加熱装置およびそれを用いた給湯装置
JP5461781B2 (ja) 衛生洗浄装置
JP4961230B2 (ja) 衛生洗浄装置
JP4561319B2 (ja) 流体加熱装置およびそれを備えた衛生洗浄装置
JP4293091B2 (ja) 流体加熱装置およびそれを備えた洗浄装置
JP2008223470A (ja) 衛生洗浄装置
JP2005337564A (ja) 流体加熱装置およびそれを備えた衛生洗浄装置
JP5086138B2 (ja) 衛生洗浄装置
JP2006138576A (ja) 流体加熱装置およびそれを備えた洗浄装置
JP2006064327A5 (ja)
JP4794589B2 (ja) 衛生洗浄装置
JP4910864B2 (ja) 便座装置
WO1983003273A1 (en) Sanitary cleaning device
JP4964810B2 (ja) 衛生洗浄装置
JP5034627B2 (ja) 便座装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024306.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06732211

Country of ref document: EP

Kind code of ref document: A1