WO2007000831A1 - 歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法 - Google Patents

歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法 Download PDF

Info

Publication number
WO2007000831A1
WO2007000831A1 PCT/JP2005/021417 JP2005021417W WO2007000831A1 WO 2007000831 A1 WO2007000831 A1 WO 2007000831A1 JP 2005021417 W JP2005021417 W JP 2005021417W WO 2007000831 A1 WO2007000831 A1 WO 2007000831A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
gear
rotary dresser
gears
dresser
Prior art date
Application number
PCT/JP2005/021417
Other languages
English (en)
French (fr)
Inventor
Sadao Date
Ikuo Nagahata
Teruyuki Kumazawa
Original Assignee
A.L.M.T. Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A.L.M.T. Corp. filed Critical A.L.M.T. Corp.
Priority to JP2007523332A priority Critical patent/JP4781358B2/ja
Publication of WO2007000831A1 publication Critical patent/WO2007000831A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F13/00Making worms by methods essentially requiring the use of machines of the gear-cutting type
    • B23F13/02Making worms of cylindrical shape
    • B23F13/04Making worms of cylindrical shape by grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/075Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor

Definitions

  • the present invention relates to a diamond rotary dresser for gears. More particularly, the present invention relates to a gear diamond rotary dresser used for dressing or dressing a worm-like mortar for gear machining.
  • Non-patent Document 1 Japanese Patent Laid-Open No. 5-269666
  • Patent Document 2 Japanese Patent Laid-Open No. 5-269666
  • Patent Document 3 Japanese Patent Laid-Open No. 5-269666
  • Patent Document 3 Japanese Patent Laid-Open No. 5-269666
  • Patent Document 1 JP-A-5-269666
  • Patent Document 2 Japanese Patent Laid-Open No. 10-58231
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-246636
  • Non-Patent Document 1 “New Machining Tool Dictionary” issued by Sangyo Kenkyukai, December 5, 1991
  • Non-patent document 2 REISHAUER Co., Ltd. homepage, diamond tool for gear grinding, [Search June 23, 2005], Internet URL: http: ⁇ www.reishauer.co.jp/pro—diamond.html
  • a conventional diamond rotary dresser for gears has a problem of short life.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a long-life diamond rotary dresser for gears.
  • the daiyaiyamondo rotor rotor leaded dresser for a toothed gear wheel is a toothed gear wheel. It is used for toothed stones for processing crafts, or used for squeezing or squeezing the crushed stones.
  • This is a dual-purpose rotary compressor for a toothed wheel, and a single-phase pair of a rotary-type rotary compressor for a gear wheel. The composition is made up. .
  • the Dadaiiyamonondorotoratareidoredoresasa is 11 pieces, the right and right flanking surface of the grinding stone for gear wheel machining If the left and right left and right left and right left and right left and right left and right left and right left and right left and right left and right left and right side of the surface are separated from each other separately, the shape of the taper-like shape that can be used for both the tsururu ing It has a working surface. .
  • the DADI-YAMONO MODULO DRO-ROTOR TARRIER READY DRESSER is configured with one DADIA-YAMONO MODULO DROTTERARY.
  • the Dodressersa works on the right and right side of the grinding stone and on the other side of the other side of the wheel. It is on the left and right side of the turret stone that dodressasa works. . Then, the working surface will wear and wear as the product is used, and the required scouring accuracy cannot be satisfied satisfactorily. When it is gone, you can open another working surface for each of the tally lead dressers. It can be used here and there. . Therefore, compared to the case of using only one side of the surface, a life expectancy of at least 22 times as long as that obtained can be obtained. You can be. .
  • the gear wheel for processing the toothed gear wheel is a worme-like mortar stone. .
  • the corner angle of the working surface of one of the working surfaces is a taper-like working surface. It is set below the pressure angle of the gear wheel. .
  • a die-dye diamond rotor rotary lead dresser for toothed gear wheels on the surface of the base metal according to the electrodeposition method. It has a working surface to which daediyamomondondo grains are firmly fixed. .
  • the toothed wheel rotor for the toothed gear wheel is a diamond-removable power generator according to the anti-inversion rolling method. It has a working surface with momonund grains fixedly attached. .
  • the average diameter of the average particle size of the daiyaiyamondomond grains is 1100 ⁇ m or more and 22000000 ⁇ mm or less. .
  • the dadaiiyamonmondo grains are firmly attached to the working surface by the binding material, and
  • the average average protruding protrusion of the MONMONDODO grain-bound binding material is not less than 11 %% and not more than 7700 %% of the average particle diameter. The .
  • a columnar-shaped daiyaiyamondo is embedded in the working surface, and the length of the columnar-shaped daiaiyamonmondo is long. As opposed to the longitudinal direction, an end face that is almost perpendicular to the surface is exposed on the working surface. .
  • a method of performing a trumpet inking or a doreless singing with a tsururu inking is as follows. Using the above-mentioned daiyaiyamondororotorta tally lead dresser for the toothed gear wheel, the turret stone for processing the toothed gear wheel
  • a diamond rotary dresser for gears includes a base metal, a diamond layer in which a tip end portion is formed in a tapered shape, diamond particles fixed by a binder, and the base metal and the diamond.
  • a diamond rotary dresser for gears having a bonding layer for bonding the layer, the bonding surface of the diamond layer has a recess, the bonding surface of the base metal has a protrusion, and the bonding layer is a recess. And is formed so as to surround the convex portion.
  • the bonding surface of the diamond layer has a recess
  • the bonding surface of the base metal has a protrusion
  • the bonding layer fills the recess and takes the protrusion. Since it is formed so as to surround, it is possible to obtain a bonding strength of the diamond layer that can sufficiently withstand the stress that the diamond rotary dresser receives from the rotation axis direction. As a result, a long-life diamond rotary dresser can be provided.
  • the binder is a sintered alloy.
  • the binding material is nickel plating.
  • the nickel plating is formed by a reversal plating method.
  • the average grain size of the diamond grains is 10 ⁇ m or more and 2000 ⁇ m or less.
  • the average protrusion amount of the diamond grains from the binder is 1% or more and 70% or less of the average particle diameter.
  • columnar diamond is further embedded in the diamond layer, and an end surface substantially perpendicular to the longitudinal direction of the columnar diamond is exposed to the working surface.
  • the diamond rotary dresser for gears is a gear diamond rotary dresser used for dressing a grinding wheel for gear machining with a tool ring or a tooling, and the tapered diamond layer is any one of them.
  • the angle of one of the diamond layers is set below the pressure angle of the gear.
  • the gear processing boulder is a worm-shaped boulder.
  • a method of performing vinering or vinering and dressing is carried out by using a pair of the above-mentioned diamond rotary dresser for gears and truing or dressing vines for gear machining. Is the method.
  • the base metal is integrally formed of a single material.
  • the diamond rotary dresser for gears of the present invention is used as a pair. In other words, two gear diamond rotary dressers are used as one set.
  • the toothed wheel diamond rotary dresser according to the present invention has a taper-like action that enables the right flank surface and the left flank surface of the gear processing turret to be vined or vineded and dressed separately. Has a surface.
  • the taper-shaped working surface may be formed in a straight line, in a case of being formed in a curve, or in a form of both a straight line and a curve, and the taper shape is appropriately determined according to the use of the gear. .
  • the gear processing boulder is preferably a worm-shaped boulder.
  • the angle of any one of the tapered working surfaces is set to be equal to or less than the pressure angle of the gear.
  • the angle of at least one of the tapered working surfaces is set to be equal to or smaller than the pressure angle of the gear. This is to prevent the other working surface from interfering with the turret. It is more preferable to set the angle of at least one of the working surfaces to be 0.1 to 7 ° smaller than the pressure angle of the gear, and it is most preferable to set it to be 0.1 to 5 ° smaller.
  • the diamond rotary dresser for gears of the present invention has a working surface in which diamond grains are fixed to the base metal surface by an electrodeposition method.
  • an electrodeposition method using nickel plating as the electrodeposition method.
  • the diamond rotor leadlesser for gears has a working surface to which diamond grains are fixed by a reversing lashing method.
  • the reverse plating method using nickel plating is used as the reverse plating method.
  • the average particle size of the diamond grains fixed to the working surface is preferably 10 ⁇ m or more and 2000 ⁇ m or less.
  • the manufacturing method based on the reversing mating method can provide higher shape accuracy on the working surface. Furthermore, even if coarse diamond grains are used, it is possible to obtain extremely high precision with no variation in the protruding ends of the diamond grains.
  • the average particle diameter of diamond grains is preferably 20 ⁇ m or more and 2000 ⁇ m or less, and most preferably 30 ⁇ m or more and 20000 ⁇ m or less.
  • the average protrusion amount of the diamond particle binder is 1% or more and 70% or less of the average particle diameter.
  • the average protrusion amount is measured by measuring the protrusion amount of 100 diamond grains selected at random and dividing the average value by the average grain diameter of the diamond grains by multiplying by 100 and adding%. Defined. Thousands of thousands of hundreds of thousands of diamond grains are fixed on the working surface, so it takes a lot of work to measure the protruding amount of all diamond grains. For this reason, it is practical to use an average value of about 100.
  • the average protrusion is less than 1%, the sharpness is not sufficient and the processing efficiency is reduced, and if it exceeds 70%, the holding power of the diamond grains is reduced and the drop is caused.
  • the protruding amount is 3% or more and 60% or less. Most preferred ,.
  • columnar diamond is embedded in the working surface, and a cross section substantially perpendicular to the longitudinal direction of the columnar diamond is exposed on the working surface.
  • columnar diamond columnar single crystal diamond, columnar polycrystalline diamond, or the like
  • it is easy to wear, and it is preferable to use it to reinforce the peripheral edge.
  • the pair of gear diamond rotary dressers each have different flank surfaces on the turret or tooling. It is characterized by dressing Effects of the invention
  • a long-life diamond rotary dresser can be provided.
  • FIG. 1 is a cross-sectional view of a diamond rotary dresser for gears according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a diamond rotary dresser for gears according to another aspect.
  • FIG. 3 is a side view including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 1 of the present invention and a dressing method using the same.
  • FIG. 4 is a side view including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 1 of the present invention and a dressing method using the same.
  • FIG. 5 is a cross sectional view showing a first step of a method for manufacturing a diamond rotary dresser for gears according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a second step of the method of manufacturing the diamond rotary dresser for gears according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a third step of the method of manufacturing the diamond rotary dresser for gears according to the first embodiment of the present invention.
  • FIG. 8 is a cross sectional view showing a fourth step of the method for manufacturing the diamond rotary dresser for gears according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a diamond rotary dresser for gears according to Embodiment 2 of the present invention.
  • FIG. 10 is a sectional view of a diamond rotary dresser for gears according to another aspect.
  • FIG. 11 is a side view including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 2 of the present invention and a dressing method using the same.
  • FIG. 12 is a side view including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 2 of the present invention and a dressing method using the same.
  • FIG. 13 is a plan view showing a method for manufacturing the diamond rotary dresser for gears shown in FIG. 9 according to the second embodiment.
  • FIG. 14 is a plan view showing a method for manufacturing the gear wheel diamond rotary dresser shown in FIG. 9 according to the second embodiment.
  • FIG. 15 is a side view including a partial cross-section shown for explaining a diamond rotary dresser for gears according to a comparative example and a dressing method using the same.
  • FIG. 16 A side view of a turret according to another aspect.
  • FIG. 17 A side view of a turret according to another aspect.
  • FIG. 18 is a diagram for explaining a pressure angle of a gear.
  • FIG. 19 is a cross-sectional view for explaining the protrusion amount of diamond grains.
  • FIG. 20 is a perspective view including a partial cross-section for explaining a columnar diamond.
  • FIG. 21 is a front view of a diamond rotary dresser for gears according to a third embodiment of the present invention.
  • FIG. 22 is a left side view of the diamond rotary dresser for gears, which also shows the directional force indicated by arrow XXII in FIG.
  • FIG. 23 is a cross-sectional view taken along line XXIII-XXIII in FIG.
  • FIG. 24 is a front view of a diamond rotary dresser for gears according to a fourth embodiment of the present invention.
  • FIG. 25 is a left side view of the gear wheel diamond rotary dresser as seen from the direction indicated by the arrow XXV in FIG.
  • FIG. 26 is a cross-sectional view taken along line XXVI—XXVI in FIG.
  • FIG. 27 is a plan view of a diamond rotary dresser for gears according to a fifth embodiment of the present invention.
  • FIG. 28 is a left side view of the diamond rotary dresser for gears as seen from the direction indicated by arrow XXVIII in FIG.
  • FIG. 29 is a cross-sectional view taken along line XXIX—XXIX in FIG.
  • FIG. 1 is a sectional view of a diamond rotary dresser for gears according to Embodiment 1 of the present invention.
  • a diamond mouth one-piece leadlesser 101 manufactured by a reverse tanning method has diamond grains 102, a nickel plating layer 103, a bonding layer 104, and a base metal 105.
  • the diamond grains 102 and the nickel plating layer 103 constitute the diamond layer 123.
  • the diamond layer 123 is bonded to the steel base metal 105 using a low melting point alloy constituting the bonding layer 104.
  • the diamond layer 123 In order to firmly bond the diamond layer 123 to the base metal 105, it is preferable to have a structure in which the diamond layer 123 extends to a thick portion of the base metal 105, that is, the boss portion 105b as shown in FIG.
  • Coarse grains can be used as the diamond grains 102, and in particular, a long life and high precision can be obtained.
  • a diamond layer with an average particle size of about 430 ⁇ m is used.
  • the pressure angle of the gear of the workpiece is 20 °
  • the angle ⁇ 20 is 20 °
  • the angle ⁇ 2 is 19.5 °.
  • the base metal 105 has a cylindrical shape, and the rotary shaft 141 is fitted into the hole 124 that is the inner peripheral surface thereof.
  • the base metal 105 has a symmetrical shape around the rotation axis 1.
  • a convex portion 107 is provided on the outer peripheral portion of the base metal 105, and the convex portion 107 has a structure that protrudes outward in the radial direction.
  • a bonding layer 104 is provided so as to cover the outer peripheral surface of the base metal 105.
  • the bonding layer 104 does not necessarily need to be a low melting point metal, and can be an adhesive as long as it is a material that can firmly connect the diamond layer 123 and the base metal 105!
  • the diamond layer 123 is formed on the bonding layer 104, and the diamond particles 102 overlap the portions away from the bonding layer 104, and the diamond particles 102 are held by the nickel plating layer 103.
  • the diamond layer 123 is provided with tapered working surfaces 111 and 112. The working surfaces 111 and 112 are in contact with the turret and perform dressing or truing of the turret.
  • the axial length of the diamond layer 123 is ⁇ . As shown in Fig.
  • FIG. 2 is a cross-sectional view of a diamond rotary dresser for gears according to another aspect.
  • the end of diamond layer 123 is different from the gear diamond rotary dresser according to FIG. 1 in that a slope portion 113 having a gentle slope is provided.
  • FIGS. 3 and 4 are side views including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 1 of the present invention and a dressing method using the same.
  • a pair of diamond rotary dressers 101 and 201 for gears can be used for tooling or dressing the worm-like grindstone 8.
  • the diamond rotor lead dresser 201 for gears has the same structure as the diamond rotary dresser 101 for gears, specifically, a diamond layer composed of a base metal 205, a bonding layer 204, a nickel plating layer 203 and diamond grains 202. 223, having two working surfaces 211 and 212.
  • the rotary shafts 141 and 241 are fitted in the holes 124 and 224 of the gear diamond rotary dresser 101 and 201, respectively.
  • a pair of geared diamond rotary dressers 101, 201 are in contact with different flank surfaces of the worm-like mortar 8. Specifically, the gear diamond rotary dresser 101 is in contact with the left flank surface 81, and the gear diamond rotor lead dresser 201 is in contact with the right flank surface 82.
  • the tooling and dressing are performed while feeding the worm-shaped grindstone 8 in the direction of the rotation axis 6.
  • a desired shape accuracy is obtained by finely adjusting either the rotating shaft 1 of the gear wheel diamond rotary dressers 101 and 201 or the rotating shaft 6 of the worm-shaped mortar 8.
  • the gear diamond rotary dressers 101 and 201 can slide in the direction indicated by the arrow 2.
  • the working surface 1 of the diamond rotary dresser 101 for gears 1 4 and the working surface 211 of the diamond rotary dresser 201 for gears, the working surface 112 of the diamond rotary dresser 201 for gears and the working surface 212 of the diamond rotary dresser 201 for gears are used in the process shown in FIG. Is used.
  • the work surface can be used twice, resulting in a long life. Since the period for exchanging the diamond rotary dressers 101 and 201 for gears attached to the gear grinding apparatus is extended, the bending force can also contribute to the improvement of productivity.
  • the worm-shaped crushed stone 8 and the dressing were carried out. It was. A performance comparison between the diamond rotary dresser for gears according to Example 1 and the diamond rotary dresser for gears according to the comparative example shown in Fig. 15 was performed. The service life is more than four times longer than in the examples, and the accuracy is higher. The loss time required to replace the diamond rotary dresser for gears is reduced, and the productivity is improved.
  • the diamond rotary dressers 101 and 201 for gears are made of base metals 105 and 205, and nickel plating layers 103 and 203 with diamond grains 102 and 202 having a tip formed in a taper shape and a binder.
  • Bonded diamond layer 123, 223 and base metal 105, 205 and bonding layer 104, 204 for bonding diamond layer 12 3, 223, and the bonding surface of diamond layer 123, 223 has recesses 106, 206
  • the joint surfaces of the base metals 105 and 205 have convex portions 107 and 207, and are formed so as to fill the joint layer 104 and 204 ⁇ and to surround the convex portion 207.
  • the nickel plating layers 103 and 203 may be made of a sintered alloy.
  • the nickel plating layers 103 and 203 are formed by an inversion plating method.
  • the gear processing grindstone is a worm-shaped grindstone 8, and the gear processing grindstone is tooled or dressed and dressed using a pair of gear diamond rotary dressers 101 and 201.
  • the base metals 105 and 205 are preferably formed integrally from a single material.
  • 5 to 8 show gear diamonds according to the first embodiment of the present invention. It is sectional drawing which shows the manufacturing method of a rotary dresser.
  • a mother die 301 is manufactured.
  • the mother die 301 is provided with a hole 312 for inserting a base metal, and the hole 312 is provided with a concave portion 311 which is a portion having a large diameter and which constitutes a working surface.
  • the mother die 301 has a hollow cylindrical shape in which a base metal is inserted.
  • masking 30 4 is applied to a portion of matrix 301 where diamond is not attached.
  • the material of masking 304 is preferably composed of an electrically insulating material such as diamond / nickel plated layers! Masking 304 is not performed on the recess 311, and masking is performed on the other portions.
  • the master mold 301 having been masked is immersed in the nickel plating bath 303.
  • the nickel plating tank 303 has a configuration in which the vessel 302 is filled with the plating solution, and the diamond particles are dispersed in the nickel plating tank 303.
  • the diamond grains 102 and the nickel plating layer 103 are attached to the recesses 311 of the matrix 301.
  • steel base metal 105 is inserted into hole 312.
  • a bonding layer made of a low melting point bismuth alloy alloy is poured between the base metal 105 and the nickel plating layer 103 and solidified.
  • the diamond layer composed of the nickel plating layer 103 and the diamond grains 102 is fixed to the base metal 105.
  • the base metal 105 is finished, and the nickel plating layer 103 of the diamond layer 123 is slightly removed to project the diamond grains 102, thereby completing the diamond rotary dresser for gears shown in FIG.
  • FIG. 9 is a cross-sectional view of a diamond rotary dresser for gears according to Embodiment 2 of the present invention.
  • diamond layer 123 has an opening diameter R2 from rotating shaft 1 to convex portion 10. 7 Different from the gear diamond rotary dresser according to the first embodiment in that it is smaller than the diameter R2 up to the tip.
  • the bonding layer existing between the diamond layer 123 and the base metal 105 is omitted.
  • the convex portion 107 either a method of providing the convex portion 107 as a continuous convex portion on the joining surface of the base metal 105 or a method of providing the convex portion 107 as an intermittent convex portion can be employed.
  • a deviation between a method of providing a groove on the bonding surface of the diamond layer 123 and a method of providing a recess with an appropriate interval can be employed.
  • the dimensions of the protrusion 107 and the recess 106 are appropriately determined so that the maximum bonding strength of the diamond layer 123 can be obtained.
  • a high bonding strength is obtained when the width T (width in the rotation axis direction) of the diamond layer 123 is 50 mm or less.
  • the width T of the diamond layer 123 is 40 mm or less, which is more preferable when the width T is 45 mm or less.
  • the binder is preferably a sintered alloy.
  • the sintered gold one obtained by mixing and sintering two or more kinds of metal powders such as copper, tin, iron, cobalt, nickel, silver, tungsten, molybdenum, and tungsten carbide can be used.
  • the binding material is preferably nickel plating.
  • the binding material force-kel plating that can use copper plating, chromium plating, or the like is most preferable.
  • the nickel plating is preferably formed by a reversal plating method. As shown in FIG. 9, R1 may be larger than R2.
  • FIG. 10 is a cross-sectional view of a diamond rotary dresser for gears according to another aspect.
  • a gear diamond rotary dresser 101 is a gear diamond rotary dresser manufactured by a known nickel plating electrodeposition method, and diamond particles 102 are fixed to a base metal 105 by a nickel plating layer 103. ing.
  • the average grain diameter of diamond grain 102 was about 90 m
  • angle ⁇ was 20 °
  • angle ⁇ 2 was 19.5 °.
  • the diamond rotary dresser for gears shown in FIG. 10 can be used as a pair.
  • FIG. 11 is a side view including a partial cross section showing a diamond rotary dresser for gears according to Embodiment 2 of the present invention and a dressing method using the same.
  • Figure 12 shows this
  • FIG. 6 is a side view including a partial cross section showing a diamond rotary dresser for gears according to a second embodiment of the invention and a dressing method using the same.
  • working surface 111 is brought into contact with left flank surface 81, and working surface 211 is brought into contact with right frank surface 82.
  • another working surface 112 and 212 is brought into contact with the right flank surface 82 and the left flank surface 81 as shown in FIG.
  • the diamond diamond single lead dresser shown in FIG. When the worm-shaped talc was crushed and dressed using the diamond rotary dresser for gears shown in Fig. 9, it was extremely accurate and highly efficient, and the cocoon had a long life.
  • the gear diamond rotary dresser shown in Fig. 9 and the gear diamond rotary dresser shown in Fig. 15
  • the diamond rotary dressers 101 and 201 for gears used for dressing the worm-shaped grindstone 8 with the vine or the vine are configured in a pair, and the diamond rotary dressers 101 and 201 for the gear are For each, there is a tapered working surface 111, 112, 211, 212 that allows the right flank surface 82 and the left flank surface 81 of the gear processing turret to be separately craned or snorted and drained. Have.
  • the diamond rotary dresser 101, 201 for gears may have a working surface 111, 112, 211, 212 in which diamond grains 102, 202 are fixed to the surface of the base metal 105, 205 by electrodeposition.
  • the diamond rotary dressers 101 and 201 for gears have working surfaces 111, 112, 211, and 212 to which diamond grains 102 and 202 are fixed by a reversing method.
  • the average particle diameter of the diamond grains 102 and 202 is preferably 10 ⁇ m to 2000 ⁇ m, and the diamond grains 102 and 202 are formed by the nickel plating layers 103 and 203 as a binder.
  • the average protrusion amount (HI) of the nickel grains 102, 202 from the Nikkenore plating layers 103, 203 is 1% or more and 70% or less of the average grain diameter (D1). Preferably it is below.
  • Columnar diamonds 152 are embedded in the working surfaces 111, 112, 211, 212, and end surfaces 153 that are substantially perpendicular to the longitudinal direction of the columnar diamonds are exposed on the working surfaces 111, 112, 211, 212. It may be.
  • the gear processing grindstone is touring or dressing and dressing.
  • the diamond rotary dresser for gears that also has a pair of forces mutually makes the left and right flank surfaces 81, 82 of the worm-like grindstone 8 to be or to be dressed.
  • FIGS. 13 and 14 are plan views showing a method for manufacturing the diamond rotary dresser for gears shown in FIG. 9 according to the second embodiment.
  • the base metal 105 is divided into three parts, a first part 1105, a second part 2105, and a third part 3105. Accordingly, the base metal 105 can be configured by inserting each divided piece into the mother die 301 and combining them after insertion. In the configuration shown in FIG. 13, when the base metal 105 is extracted from the base 301, it is necessary to destroy the base 301.
  • Such divided base metal 105 can also be used as a base metal according to the first embodiment.
  • the mother die 301 may be divided as shown in FIG. In FIG. 14, the mother die 301 is divided into a first portion 1301, a second portion 2301, and a third portion 3301, and one mother die 301 is configured by combining each of them. If such a divided mother die 301 is used, it is not necessary to divide the base metal 105 located at the center, and even after the bonding layer 104 having a low melting point alloy force is poured into the outer peripheral portion of the base metal 105. The base metal 105 can be taken out from the master 301 without destroying the master 301.
  • FIG. 15 is a side view including a partial cross section for explaining a diamond rotary dresser for gears according to a comparative example and a dressing method using the gear rotary dresser.
  • the gear diamond rotary dresser 101, 201 according to the comparative example is provided with only one working surface 112, 212, and therefore the gear diamond rotary according to the embodiment is provided. Different from dresser. Therefore, the usable working surface has a shorter life than the diamond rotary dresser for gears according to the embodiment.
  • the diamond rotary dressers 101 and 201 for gears shown in FIG. 15 are called diamond disks or disk dressers and are manufactured by an electrodeposition method.
  • a single lead dresser has diamond particles with an average particle diameter of 90 m fixed to a steel base metal 105, 205 by nickel plating.
  • the working surfaces 112 and 212 are formed only on one side of the diamond rotary dresser for gears.
  • FIGS. 16 and 17 are side views of a turret according to another aspect.
  • the diameter of the worm-like grindstone 8 may change as it moves in the axial direction.
  • the worm-shaped mortar 8 has a tapered shape and has a conical shape, and a right flank surface 82 and a left flank surface 81 are formed on the conical surface.
  • a worm-shaped mortar stone 8 whose inclination changes may be used.
  • the right flank surface 82 and the left flank surface 81 are formed on the phase.
  • FIG. 18 is a diagram for explaining the pressure angle of the gear. Referring to FIG. 18, an angle A formed by a tangent line at a pitch point 51 of the gear 50 and a radial radial line is a pressure angle.
  • the diamond rotary dresser 101, 201 for gears is a diamond mouth tread dresser used for dressing a worm-like grindstone 8 for gear machining with a vine or a vine, and is a tapered diamond.
  • the layers 123 and 223 are set to be equal to or less than the angle of the diamond layer ( ⁇ 1, a 2) force angle of the gear 50 (A).
  • FIG. 19 is a cross-sectional view for explaining the protrusion amount of diamond grains.
  • nickel plating layer 103 holds diamond grains 102, a part of diamond grains 102 is embedded in nickel plating layer 103, and the remaining part is exposed from nickel plating layer 103. .
  • the height of the exposed portion is hi, and the diameter of the diamond particle 102 is D1.
  • FIG. 20 is a perspective view including a partial cross-section for explaining a columnar diamond.
  • nickel plating layer 103 may hold columnar diamond 152.
  • the columnar diamond 152 may be a prismatic or columnar shift.
  • the end face 153 perpendicular to the longitudinal direction of the columnar diamond 152 is exposed from the nickel plating layer 103.
  • the nickel plating layer 103 holds both the columnar diamond 152 and the granular diamond particle 102, and the nickel plating layer 103 holds only the columnar or granular diamond! / But! /
  • the diamond grains 102 and 202 preferably have an average particle diameter of 10 ⁇ m to 2000 ⁇ m.
  • the average protrusion amount of the diamond grains 102, 202 from the binder is preferably 1% or more and 70% or less of the average particle diameter.
  • the diamond layers 123 and 223 may further have a columnar diamond 152 embedded therein, and an end surface 153 substantially perpendicular to the longitudinal direction of the columnar diamond 152 may be exposed on the working surface 111! /.
  • FIG. 21 is a front view of a diamond rotary dresser for gears according to the third embodiment of the present invention.
  • a diamond rotary dresser 101 for gears according to the third embodiment has a disc-shaped base metal 105, and the diamond extends so as to extend in the circumferential direction on the outer periphery of the base metal 105.
  • Layer 123 is provided.
  • the diamond layer 123 includes a nickel plating layer 103 and diamond grains 102 exposed from the nickel plating layer 103.
  • the working surface 112 appears, and another working surface 112 not shown in FIG.
  • the radial width of the diamond layer 123 is constant. However, it is not always necessary to make the width constant.
  • FIG. 22 is a left side view of the gear wheel diamond rotary dresser viewed from the direction indicated by arrow XXII in FIG.
  • the upper end portion and the lower end portion of diamond layer 123 have a “V” shape, and two working surfaces 111 and 112 are tapered so as to form a predetermined angle.
  • FIG. 23 is a sectional view taken along line XXIII—XXIII in FIG.
  • diamond-shaped particles 102 and nickel plating layer 103 are formed on taper-shaped working surfaces 111 and 112.
  • a diamond layer 123 is formed, and the diamond layer 123 is fixed to the base metal 105 by a bonding layer (not shown).
  • FIG. 24 is a front view of a gear wheel diamond rotary dresser according to the fourth embodiment of the present invention.
  • FIG. 25 is a left side view of the diamond rotary dresser for gears, which also shows the directional force indicated by the arrow XXV in FIG.
  • FIG. 26 is a cross-sectional view along the line XXVI-XXVI in FIG.
  • the shape of through-hole 124 is different from that of gear diamond rotary dresser according to the third embodiment. Specifically, in the diamond rotary dresser 101 for gears shown in FIGS. 24 to 26, the diameter of the hole 124 is designed to be larger. This makes it possible to accept a thicker rotating shaft.
  • FIG. 27 is a plan view of a diamond rotary dresser for gears according to the fifth embodiment of the present invention.
  • FIG. 28 is a left side view of the gear diamond rotary dresser as viewed from the direction indicated by arrow XXVIII in FIG.
  • FIG. 29 is a cross-sectional view along the line XXIX-XXIX in FIG.
  • FIGS. 27 to 29 show a diamond rotary dresser for gears in which the diamond layer 123 has a larger radial length. Since the larger diamond layer 123 is provided, the processing amount can be increased, and it is possible to cope with the case where the depth of the right flank surface and the left flank surface of the worm-shaped turret is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

 歯車用ダイヤモンドロータリードレッサは、台金(105,205)と、先端部がテーパ形状に形成された、ダイヤモンド粒(102,202)とニッケルめっき層(103,203)で固着したダイヤモンド層(123,223)と、台金(105,205)とダイヤモンド層(123,223)を接合する接合層(104,204)からなる歯車用ダイヤモンドロータリードレッサであって、ダイヤモンド層(123,223)の接合面は凹部(106,206)を有し、かつ台金(105,205)の接合面は凸部(107,207)を有し、かつ接合層(104,204)は、凹部(106,206)を満たし、凸部(107,207)を取囲むように形成されている。

Description

明 細 書
歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用 砥石のツル一イングおよびドレッシング方法
技術分野
[0001] この発明は歯車用ダイヤモンドロータリードレッサに関するものである。特に、歯車 加工用ウォーム状砲石をツル一イング、またはツル一イングとドレッシングするのに用 いる、歯車用ダイヤモンドロータリードレッサに関するものである。
背景技術
[0002] 従来、ダイヤモンドロータリードレッサは、たとえば「新マシユング 'ツール辞典」株式 会社産業調査会、 1991年 12月 5日付発行 (非特許文献 1)、特開平 5— 269666号 公報 (特許文献 1)、特開平 10— 58231号公報 (特許文献 2)、特開 2000— 24663 6号公報 (特許文献 3)、 REISHAUER株式会社のホームページ、歯車研削用ダイヤ モンド工具 (非特許文献 2)に開示されている。
特許文献 1:特開平 5 - 269666号公報
特許文献 2:特開平 10— 58231号公報
特許文献 3:特開 2000 - 246636号公報
非特許文献 1:「新マシユング ·ツール辞典」株式会社産業調査会、 1991年 12月 5日 付発行
非特許文献 2: REISHAUER株式会社のホームページ、歯車研削用ダイヤモンド工具 、 [平成 17年 6月 23日検索]、インターネットく URL :http:〃 www.reishauer.co.jp/pro— diamond.html)
発明の開示
発明が解決しょうとする課題
[0003] 従来の歯車用ダイヤモンドロータリードレッサでは寿命が短いという問題があった。
そこで、この発明は上述のような問題点を解決するためになされたものであり、長寿 命の歯車用ダイヤモンドロータリードレッサを提供することを目的とする。
課題を解決するための手段 [0004] ここのの発発明明のの 11つつのの局局面面にに従従っったた歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは、、歯歯車車加加工工 用用砲砲石石ををツツルル一一イインンググままたたはは、、ツツルル一一イインンググととドドレレッッシシンンググすするるののにに用用いいるる、、歯歯車車用用ダダ ィィャャモモンンドドロローータタリリーードドレレッッササででああっってて、、歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは一一対対 でで構構成成さされれるる。。ささららにに、、ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは、、 11個個ににつつきき、、歯歯車車加加工工用用砥砥 石石のの右右フフラランンクク面面とと左左フフラランンクク面面をを別別々々ににツツルル一一イインンググままたたはは、、ツツルル一一イインンググととドドレレッッシシ ンンググすするるここととがが可可能能ななテテーーパパ状状のの作作用用面面をを有有すするる。。
[0005] ここののよよううにに構構成成さされれたたダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは、、一一方方ののダダイイヤヤモモンンドドロローータタリリ ーードドレレッッササがが作作用用すするるののはは砥砥石石のの右右フフラランンクク面面ととすするるとと、、他他方方ののダダイイヤヤモモンンドドロローータタリリ ーードドレレッッササがが作作用用すするるののはは砲砲石石のの左左フフラランンクク面面ででああるる。。そそししてて、、使使用用すするるにに従従っってて作作 用用面面がが摩摩耗耗しし、、要要求求精精度度をを満満足足ででききななくくななっったたととききににはは、、そそれれぞぞれれののダダイイヤヤモモンンドド口口 一一タタリリーードドレレッッササのの別別のの作作用用面面をを使使用用すするるここととががででききるる。。そそののたためめ、、片片面面ののみみをを用用いいるる 場場合合にに比比べべてて、、少少ななくくとともも 22倍倍のの寿寿命命がが得得らられれるる。。
[0006] 好好ままししくくはは、、歯歯車車加加工工用用砲砲石石はは、、ウウォォーームム状状砲砲石石ででああるる。。
好好ままししくくはは、、テテーーパパ状状のの作作用用面面ののううちち、、いいずずれれかか一一方方のの作作用用面面のの角角度度はは、、歯歯車車のの圧圧 力力角角以以下下にに設設定定さされれてていいるる。。
[0007] 好好ままししくくはは、、歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは電電着着法法にによよりり台台金金表表面面ににダダイイ ャャモモンンドド粒粒をを固固着着ししたた作作用用面面をを有有すするる。。
[0008] 好好ままししくくはは、、歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは、、反反転転めめつつきき法法にによよっっててダダイイヤヤ モモンンドド粒粒をを固固着着ししたた作作用用面面をを有有すするる。。
[0009] 好好ままししくくはは、、ダダイイヤヤモモンンドド粒粒のの平平均均粒粒子子径径はは 1100 μμ mm以以上上 22000000 μμ mm以以下下ででああるる。。
好好ままししくくはは、、ダダイイヤヤモモンンドド粒粒はは結結合合材材にによよりり作作用用面面にに固固着着さされれてておおりり、、ダダイイヤヤモモンンドド 粒粒のの結結合合材材カカもものの平平均均突突出出量量はは平平均均粒粒径径のの 11%%以以上上 7700%%以以下下ででああるる。。
[0010] 好好ままししくくはは、、作作用用面面ににはは柱柱状状ダダイイヤヤモモンンドドがが埋埋設設さされれ、、柱柱状状ダダイイヤヤモモンンドドのの長長手手方方 向向にに対対ししてて、、ほほぼぼ直直角角なな端端面面がが作作用用面面にに露露出出ししてていいるる。。
[0011] ここのの発発明明にに従従っったたツツルル一一イインンググままたたはは、、ツツルル一一イインンググととドドレレッッシシンンググをを行行ななうう方方法法はは、、 上上記記のの歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササをを用用いいてて歯歯車車加加工工用用砲砲石石ををツツルル一一イインン
Figure imgf000004_0001
[0012] 好好ままししくくはは、、一一対対力力ももななるる歯歯車車用用ダダイイヤヤモモンンドドロローータタリリーードドレレッッササはは、、互互いいにに砲砲石石のの異異 なるフランク面をツル一イング、または、ツル一イングとドレッシングする。
[0013] この発明の別の局面に従った歯車用ダイヤモンドロータリードレッサは、台金と、先 端部がテーパ状に形成された、ダイヤモンド粒を結合材で固着したダイヤモンド層と 、台金とダイヤモンド層とを接合する接合層とを備えた歯車用ダイヤモンドロータリー ドレッサであって、ダイヤモンド層の接合面は、凹部を有し、かつ台金の接合面は凸 部を有し、かつ接合層は凹部を満たし、凸部を取囲むように形成されている。
[0014] このように構成された歯車用ダイヤモンドロータリードレッサでは、ダイヤモンド層の 接合面は凹部を有し、台金の接合面は凸部を有し、接合層は凹部を満たして凸部を 取囲むように形成されているため、ダイヤモンドロータリードレッサが回転軸方向から 受ける応力に対して十分に耐え得るダイヤモンド層の接合強度を得ることができる。 その結果、長寿命のダイヤモンドロータリードレッサを提供することができる。
[0015] 好ましくは、結合材は焼結合金である。
好ましくは、結合材はニッケルめっきである。
[0016] 好ましくは、ニッケルめっきは反転めつき法によって形成されている。
好ましくは、ダイヤモンド粒の平均粒径は 10 μ m以上 2000 μ m以下である。
[0017] 好ましくは、ダイヤモンド粒の結合材からの平均突出量は、平均粒径の 1%以上 70 %以下である。
[0018] 好ましくは、ダイヤモンド層には、さらに柱状のダイヤモンドが埋設され、柱状ダイヤ モンドの長手方向に対してほぼ直角な端面が作用面に露出している。
[0019] 好ましくは、歯車用ダイヤモンドロータリードレッサは歯車加工用砥石をツル一イン グ、または、ツル一イングとドレッシングするのに用いる歯車用ダイヤモンドロータリー ドレッサであって、テーパ状のダイヤモンド層は、いずれか一方のダイヤモンド層の角 度が歯車の圧力角以下に設定されている。
[0020] 好ましくは、歯車加工用砲石はウォーム状砲石である。
この発明に従ったツル一イング、または、ツル一イングとドレッシングを行なう方法は 、上記の歯車用ダイヤモンドロータリードレッサを一対用いて歯車加工用砲石をツル 一イング、またはツル一イングとドレッシングを行なう方法である。
[0021] 好ましくは、台金は単一材料で一体的に構成される。 本発明の歯車用ダイヤモンドロータリードレッサは、一対で使われる。すなわち、 2 個の歯車用ダイヤモンドロータリードレッサを 1組にして使うものである。本発明の歯 車用ダイヤモンドロータリードレッサは、 1個につき歯車加工用砲石の右フランク面と 左フランク面を別々にツル一イング、または、ツル一イングおよびドレッシングすること が可能なテーパ状の作用面を有する。ここで、テーパ状の作用面は、直線で形成さ れる場合、曲線で形成される場合、および直線と曲線の両方で形成されるものがあり 、歯車の使用に合わせて適宜テーパ形状を決定する。
[0022] そして、歯車加工用砲石は、ウォーム状砲石であることが好ましい。し力しながら、 砲石形状がウォーム状に限定されるものではなぐその他の形状の砲石にも適用可 能であることは言うまでもな!/、。
[0023] さらに詳しくは、テーパ状の作用面のうち、いずれか一方の作用面の角度は歯車の 圧力角以下に設定されて 、ることが好まし 、。
[0024] ここで、テーパ状の作用面のうち、少なくとも、いずれか一方の作用面の角度は歯 車の圧力角以下に設定する。こうすることで他方の作用面が砲石に干渉しないように するためである。少なくともいずれか一方の作用面の角度は歯車の圧力角よりも 0. 1 〜7° 小さく設定することがより好ましぐ 0. 1〜5° 小さく設定することがもっとも好ま しい。
[0025] さらに詳しくは、本発明の歯車用ダイヤモンドロータリードレッサは、電着法により台 金表面にダイヤモンド粒を固着した作用面を有する。ここで電着法としてニッケルめ つきによる電着法を用いることが好ましい。さらに詳しくは、歯車用ダイヤモンドロータ リードレッサは、反転めつき法によってダイヤモンド粒を固着した作用面を有する。反 転めつき法としてニッケルめっきによる反転めつき法を用いるのがより好ましい。作用 面に固着されるダイヤモンド粒の平均粒子径は 10 μ m以上 2000 μ m以下であるこ とが好まし 、。ここでダイヤモンド粒は歯車用ダイヤモンドロータリードレッサの作用面 の形状精度を満足できるより粗粒のものを用いることで長寿命化と優れた切れ味を達 成できるので好ましい。一般的には、反転めつき法による製造方法の方が作用面の より高い形状精度が得られる。さらに、粗粒のダイヤモンド粒を用いても、ダイヤモン ド粒の突出端のばらつきがなぐ極めて高精度なものが得られるという特徴がある。ダ ィャモンド粒の平均粒子径は 20 μ m以上 2000 μ m以下であることが好ましぐ 30 μ m以上 20000 μ m以下であることが最も好ましい。
[0026] さらに詳しくは、ダイヤモンド粒の結合材カ の平均突出量は平均粒径の 1%以上 70%以下であることが好まし 、。
[0027] ここで突出量を測定するには、ダイヤルゲージを用いる方法などが提案されている が最も正確にダイヤモンド粒の突出端力 結合材までの段差を測定するには YZGO (三次元表面構造解析顕微鏡)を用いるのが適当である。平均突出量は、たとえば任 意に選ばれた 100個のダイヤモンド粒の突出量を測定し、その平均値をダイヤモンド 粒の平均粒径で割った値に 100を掛けた数字に%を付して定義した。作用面には数 千力も数十万個のダイヤモンド粒が固着されているため全部のダイヤモンド粒の突 出量を測定するには大変な手間がかかる。この理由により、 100個程度の平均値を 採用するのが実用的である。平均突出量が 1%未満では切れ味が十分でなく加工能 率の低下の原因となり、 70%を超える場合はダイヤモンド粒の保持力が低下して脱 落の原因となる。ダイヤモンド粒の保持力を高めて脱落を防止し、十分な加工能率を 得るためには、突出量が 3%以上 60%以下であることがより好ましぐ 5%以上 50% 以下であることが最も好ま 、。
[0028] さらに詳しくは、作用面には柱状ダイヤモンドが埋設され、柱状ダイヤモンドの長手 方向に対して、ほぼ直角な断面が作用面に露出して 、ることが好ま 、。
[0029] ここで、柱状ダイヤモンドは、柱状単結晶ダイヤモンド、柱状多結晶ダイヤモンドな どを用いることができる。特に摩耗しやす 、外周のエッジ部を補強するのに用いるの 力 り好ましい。
[0030] そして、本発明の歯車加工用砥石のツル一イング、ドレッシング方法は、一対から なる歯車用ダイヤモンドロータリードレッサは、お互いに、砲石の異なるフランク面を ツル一イングまたは、ツル一イングおよびドレッシングすることを特徴とするものである 発明の効果
[0031] この発明に従えば長寿命のダイヤモンドロータリードレッサを提供することができる。
図面の簡単な説明 [図 1]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの断面 図である。
[図 2]別の局面に従った歯車用ダイヤモンドロータリードレッサの断面図である。
[図 3]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサと、それ を用いたドレッシング方法を示す一部断面を含む側面図である。
[図 4]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサと、それ を用いたドレッシング方法を示す一部断面を含む側面図である。
[図 5]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの製造 方法の第一工程を示す断面図である。
[図 6]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの製造 方法の第二工程を示す断面図である。
[図 7]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの製造 方法の第三工程を示す断面図である。
[図 8]この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの製造 方法の第四工程を示す断面図である。
[図 9]この発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサの断面 図である。
[図 10]別の局面に従った歯車用ダイヤモンドロータリードレッサの断面図である。
[図 11]この発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサと、そ れを用いたドレッシング方法を示す一部断面を含む側面図である。
[図 12]この発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサと、そ れを用いたドレッシング方法を示す一部断面を含む側面図である。
[図 13]実施の形態 2に従った図 9で示す歯車用ダイヤモンドロータリードレッサを製造 する方法を示す平面図である。
[図 14]実施の形態 2に従った図 9で示す歯車用ダイヤモンドロータリードレッサを製造 する方法を示す平面図である。
[図 15]比較例に従った歯車用ダイヤモンドロータリードレッサと、それを用いたドレツ シング方法を説明するために示す一部断面を含む側面図である。 [図 16]別の局面に従った砲石の側面図である。
[図 17]別の局面に従った砲石の側面図である。
[図 18]歯車の圧力角を説明するための図である。
[図 19]ダイヤモンド粒の突出量を説明するための断面図である。
[図 20]柱状ダイヤモンドを説明するための一部断面を含む斜視図である。
[図 21]この発明の実施の形態 3に従った歯車用ダイヤモンドロータリードレッサの正 面図である。
[図 22]図 21中の矢印 XXIIで示す方向力も見た歯車用ダイヤモンドロータリードレッサ の左側面図である。
[図 23]図 21中の XXIII— XXIII線に沿った断面図である。
[図 24]この発明の実施の形態 4に従った歯車用ダイヤモンドロータリードレッサの正 面図である。
[図 25]図 24中の矢印 XXVで示す方向から見た歯車用ダイヤモンドロータリードレッサ の左側面図である。
[図 26]図 24中の XXVI— XXVI線に沿った断面図である。
[図 27]この発明の実施の形態 5に従った歯車用ダイヤモンドロータリードレッサの平 面図である。
[図 28]図 27中の矢印 XXVIIIで示す方向から見た歯車用ダイヤモンドロータリードレツ サの左側面図である。
[図 29]図 27中の XXIX— XXIX線に沿った断面図である。
符号の説明
[0033] 1, 6 回転軸、 8 ウォーム状砲石、 50 歯車、 51 ピッチ、 81 左フランク面、 82 右フランク面、 101 歯車用ダイヤモンドロータリードレッサ、 102 ダイヤモンド粒、 1 03 ニッケルめっき層、 104 接合層、 105 台金、 106 凸部、 123 ダイヤモンド層 、 124 穴、 141 回転シャフト、 152 ダイヤモンド粒。
発明を実施するための最良の形態
[0034] 以下、この発明の実施の形態について、図面を参照して説明する。なお、以下の実 施の形態では同一または相当する部分については同一の参照符号を付し、その説 明については繰返さない。
[0035] (実施の形態 1)
図 1は、この発明の実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの 断面図である。図 1を参照して、反転めつき法により製造された歯車用ダイヤモンド口 一タリードレッサ 101は、ダイヤモンド粒 102と、ニッケルめっき層 103と、接合層 104 と、台金 105とを有する。ダイヤモンド粒 102とニッケルめっき層 103とがダイヤモンド 層 123を構成して 、る。ダイヤモンド層 123は接合層 104を構成する低融点合金を 用いて鋼製の台金 105に接合されている。ダイヤモンド層 123を強固に台金 105に 接合するために、図 1で示すように、台金 105の厚みの厚い部分、すなわちボス部 10 5bまでダイヤモンド層 123を延長する構造とすることが好ましい。ダイヤモンド粒 102 は粗粒を用いることが可能であり、特に長寿命で高精度のものが得られる。ここでは、 平均粒径が約 430 μ mのダイヤモンド層を用いている。ここで工作物の歯車の圧力 角は 20° で、角度 α ΐは 20° 、角度 α 2は 19. 5° である。
[0036] 台金 105は円筒形状であり、その内周面である穴 124に回転シャフト 141が嵌め合 わせられる。台金 105は回転軸 1を中心とした対称形状である。台金 105の外周部に は凸部 107が設けられ、凸部 107は半径方向外側に向力つて突出する構造とされる
[0037] 台金 105の外周面を覆うように接合層 104が設けられる。接合層 104は必ずしも低 融点金属である必要はなぐダイヤモンド層 123と台金 105とを強固に接続できる材 料であれば接着剤でもよ!/ヽ。ダイヤモンド層 123は接合層 104の上に構成されており 、接合層 104から離れた部分にダイヤモンド粒 102がー致し、このダイヤモンド粒 10 2がニッケルめっき層 103により保持されている。ダイヤモンド層 123にはテーパ形状 の作用面 111, 112が設けられており、作用面 111, 112は砲石と接触して砲石のド レッシングまたはツル一イングを行なう面である。ダイヤモンド層 123の軸方向長さは Τとされる。ダイヤモンド粒は図 1のように砲石に作用する部分のみに固着する力、も しくは全面に固着する。さらに、回転軸 1から凸部 107までの距離(半径)は R1であり 、回転軸 1からダイヤモンド層 123までの距離は R2であり、 R2は R1よりも大きい。
[0038] 図 2は、別の局面に従った歯車用ダイヤモンドロータリードレッサの断面図である。 図 2を参照して、ダイヤモンド層 123の端部には、傾斜の緩やかな傾斜部 113が設け られている点で、図 1に従った歯車用ダイヤモンドロータリードレッサと異なる。
[0039] 次に、図 2で示す歯車用ダイヤモンドロータリードレッサの製造方法について説明 する。なお、図 3では、図 2で示す傾斜部 113を有するダイヤモンドロータリードレッサ の使用方法について説明するが、傾斜部 113を有していない図 1で示すような歯車 用ダイヤモンドロータリードレッサも同様に使用することが可能である。
[0040] 図 3および 4は、この発明の実施の形態 1に従った歯車用ダイヤモンドロータリード レッサと、それを用いたドレッシング方法を示す一部断面を含む側面図である。図 3を 参照して、一対の歯車用ダイヤモンドロータリードレッサ 101, 201を用いてウォーム 状砥石 8をツル一イングまたはドレッシングすることができる。歯車用ダイヤモンドロー タリードレッサ 201は歯車用ダイヤモンドロータリードレッサ 101と同一の構造を有し、 具体的には台金 205、接合層 204、ニッケルめっき層 203とダイヤモンド粒 202とに より構成されるダイヤモンド層 223、 2つの作用面 211, 212を有する。歯車用ダイヤ モンドロータリードレッサ 101, 201の穴 124, 224に回転シャフト 141, 241が嵌め 合わせられている。一対の歯車用ダイヤモンドロータリードレッサ 101, 201が、それ ぞれがウォーム状砲石 8の異なるフランク面に接触している。具体的には歯車用ダイ ャモンドロータリードレッサ 101が左フランク面 81に接触し、歯車用ダイヤモンドロー タリードレッサ 201が右フランク面 82に接触している。ウォーム状砲石 8の回転に同期 してウォーム状砥石 8の回転軸 6方向に送りをかけながらツル一イングおよびドレッシ ングが行なわれる。ここで、歯車用ダイヤモンドロータリードレッサ 101, 201の回転 軸 1またはウォーム状砲石 8の回転軸 6のいずれか一方を微調整して所望の形状精 度が得られるようにする。歯車用ダイヤモンドロータリードレッサ 101, 201は矢印 2で 示す方向にスライドすることが可能である。
[0041] 図 4を参照して、長時間歯車用ダイヤモンドロータリードレッサ 101, 201を使用す ることによってダイヤモンド粒 102, 202が摩耗し、要求精度を満足できなくなる場合 がある。この場合には、図 4で示すようにそれぞれの歯車用ダイヤモンドロータリード レッサ 101, 201の別の作用面を使うことが可能である。
[0042] つまり、図 3で示す工程では、歯車用ダイヤモンドロータリードレッサ 101の作用面 1 11と歯車用ダイヤモンドロータリードレッサ 201の作用面 211を用いていたのに対し 、図 4で示す工程では、歯車用ダイヤモンドロータリードレッサ 101の作用面 112と歯 車用ダイヤモンドロータリードレッサ 201の作用面 212とを用いている。このように作 用面を 2回使うことができるので長寿命となる。し力も、歯車研削装置に取付けた歯車 用ダイヤモンドロータリードレッサ 101, 201を交換する期間が延長されるので、生産 性の向上にも貢献することができる。
[0043] 実施の形態 1に従った歯車用ダイヤモンドロータリードレッサを用いて、ウォーム状 砲石 8のツル一イングおよびドレッシングを実施したところ、極めて高精度で高能率で あり、し力も長寿命が得られた。実施例 1に従った歯車用ダイヤモンドロータリードレツ サと、図 15で示す比較例の歯車用ダイヤモンドロータリードレッサの性能比較を行な つたところ、実施の形態 1に従った歯車用ダイヤモンドロータリードレッサでは比較例 に比べて 4倍以上の寿命で、より高精度であり、歯車用ダイヤモンドロータリードレツ サの交換に要するロスタイムが減少し、生産性も向上した。
[0044] 歯車用ダイヤモンドロータリードレッサ 101, 201は、台金 105、 205と、先端部がテ ーパ状に形成された、ダイヤモンド粒 102, 202を結合材としてのニッケルめっき層 1 03, 203で固着したダイヤモンド層 123, 223と、台金 105, 205とダイヤモンド層 12 3, 223を接合する接合層 104, 204とを備え、ダイヤモンド層 123, 223の接合面は 、凹部 106, 206を有し、かつ、台金 105, 205の接合面は、凸部 107, 207を有し、 力つ、接合層 104, 204ίま、 咅 206を満たし、凸咅 207を取囲むように 形成されている。
[0045] ニッケルめっき層 103, 203が焼結合金により構成されていてもよい。ニッケルめつ き層 103, 203は、反転メツキ法によって形成されている。
[0046] 歯車加工用砥石は、ウォーム状砥石 8であり、歯車用ダイヤモンドロータリードレツ サ 101, 201を一対で用いて、歯車加工用砥石をツル一イングまたは、ツル一イング とドレッシングを行なう。台金 105, 205は、単一材料で一体的に構成されることが好 ましい。
[0047] 次に、実施の形態 1に従った歯車用ダイヤモンドロータリードレッサの製造方法に ついて説明する。図 5から 8は、この発明の実施の形態 1に従った歯車用ダイヤモンド ロータリードレッサの製造方法を示す断面図である。図 5を参照して、まず母型 301を 作製する。母型 301には台金を挿入するための穴 312が設けられ、さらに穴 312で は、径が大きくなつた部分であり作用面を構成する凹部 311が設けられている。母型 301は中空円筒形状であり、その内部に台金が挿入される構成とされる。
[0048] 図 6を参照して、母型 301のうち、ダイヤモンドを付着させない部分にマスキング 30 4を施す。マスキング 304の材質としては、ダイヤモンドおよびニッケルめっき層を付 着させな!/ヽような電気絶縁材料で構成することが好ま ヽ。凹部 311にはマスキング 304を行なわず、それ以外の部分にマスキングを行なう。マスキングがなされた母型 3 01をニッケルめっき槽 303に浸す。ニッケルめっき槽 303は容器 302にめつき液が 満たされた構成であり、ニッケルめっき槽 303内にダイヤモンド粒が分散して存在し て 、る。母型 301の凹部 311にダイヤモンド粒 102およびニッケルめっき層 103を付 着させる。
[0049] 図 7を参照して、ニッケルめっき槽 303から母型 301を取出した後に穴 312に鋼製 の台金 105を挿入する。台金 105とニッケルめっき層 103との間に低融点のビスマス 系合金カゝらなる接合層を流し込み固化させる。これにより台金 105に対してニッケル めっき層 103およびダイヤモンド粒 102からなるダイヤモンド層を固着させる。
[0050] 図 8を参照して、ダイヤモンド層 123と台金 105とを固着した後に母型 301を除去す る。このとき台金 105の凸部 107の径が母型 301の穴 312の径より小さくなつている ため母型 301をたとえば分解することにより母型 301からダイヤモンド層 123を剥離 する。このとき、ダイヤモンド粒 102の露出部はニッケルめっき層 103の表面と同一面 上にめ 。
[0051] 最後に台金 105を仕上げ、さらにダイヤモンド層 123のニッケルめっき層 103を少 し除去してダイヤモンド粒 102を突出させることにより図 1で示す歯車用ダイヤモンド ロータリードレッサが完成する。
[0052] (実施の形態 2)
図 9は、この発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサの 断面図である。図 9を参照して、この発明の実施の形態 2に従った歯車用ダイヤモン ドロータリードレッサ 101ではダイヤモンド層 123の開口径 R2が回転軸 1から凸部 10 7先端までの径 R2に比べて小さくなつて 、る点で、実施の形態 1に従った歯車用ダイ ャモンドロータリードレッサと異なる。なお、図 9では、ダイヤモンド層 123と台金 105と の間に存在する接合層を省略している。
[0053] 凸部 107として、台金 105の接合面に連続した凸部として設ける方法と断続した凸 部として設ける方法のいずれも採用することができる。
[0054] 凹部 106として、ダイヤモンド層 123の接合面に溝として設ける方法と、適当な間隔 をお 、た窪みとして設ける方法の 、ずれも採用することができる。
[0055] 凸部 107と凹部 106は、ダイヤモンド層 123の最大接合強度が得られるように適宜 その寸法を決定する。なお、この構造を採用する場合には、ダイヤモンド層 123の幅 T (回転軸方向の幅)が 50mm以下の場合に高い接合強度が得られるので好ましい 。さらに、ダイヤモンド層 123の幅 Tが 45mm以下の場合により好ましぐ 40mm以下 の場合に最も好ましい。そして、結合材は焼結合金であることが好ましい。ここで、焼 結合金としては、銅、錫、鉄、コバルト、ニッケル、銀、タングステン、モリブデン、タン ダステンカーバイドなどの金属粉末を 2種類以上混合し、焼結したものを用いることが できる。
[0056] そして、結合材はニッケルめっきであることが好ましい。
ここで、結合材としては、銅めつき、クロムめつきなどを用いることができる力 -ッケ ルめっきが最も好ましい。そして、ニッケルめっきは反転めつき法によって形成された ものが好ましい。図 9で示すように、 R1が R2よりも大きくてもよい。
[0057] 図 10は、別の局面に従った歯車用ダイヤモンドロータリードレッサの断面図である。
図 10を参照して、歯車用ダイヤモンドロータリードレッサ 101は公知のニッケルめっき による電着法で製造された歯車用ダイヤモンドロータリードレッサであり、ニッケルめ つき層 103によりダイヤモンド粒 102は台金 105に固着されている。ここで、ダイヤモ ンド粒 102の平均粒径は約 90 mであり、角度 α ΐは 20° 、角度 α 2は 19. 5° とし た。図 10の歯車用ダイヤモンドロータリードレッサも同様に一対として用いることがで きる。
[0058] 図 11は、この発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサと 、それを用いたドレッシング方法を示す一部断面を含む側面図である。図 12は、この 発明の実施の形態 2に従った歯車用ダイヤモンドロータリードレッサと、それを用いた ドレッシング方法を示す一部断面を含む側面図である。
[0059] 図 11を参照して、作用面 111で左フランク面 81に当接させ、作用面 211に右フラ ンク面 82を当接させる。その後作用面 111, 211が摩耗すると図 12で示すように別 の作用面 112, 212を右フランク面 82および左フランク面 81に接触させてツルーィ ングまたはドレッシングを行なう。この点に関しては図 10で示す歯車用ダイヤモンド口 一タリードレッサでも同様である。図 9で示す歯車用ダイヤモンドロータリードレッサを 用いてウォーム状砲石のツル一イングおよびドレッシングを実施したところ、きわめて 高精度で高能率であり、しカゝも長寿命が得られた。図 9で示す歯車用ダイヤモンド口 一タリードレッサと図 15の歯車用ダイヤモンドロータリードレッサとを比較したところ、 図 9で示す歯車用ダイヤモンドロータリードレッサでは比較例に比べて 4倍以上の寿 命で、より高精度であり、歯車用ダイヤモンドロータリードレッサの交換に要するロスタ ィムが減少し、生産性が向上した。また、図 10で示す構造の歯車用ダイヤモンドロー タリードレッサを用いてウォーム状砥石のツル一イングおよびドレッシングを行な 、、 図 15の製品と比較したところ、図 10の歯車用ダイヤモンドロータリードレッサでは比 較例と比較して 2倍以上の寿命で、ドレッサの交換に要するロスタイムが減少し生産 性が向上した。
[0060] ウォーム状砥石 8をツル一イングまたは、ツル一イングとドレッシングするのに用いる 、歯車用ダイヤモンドロータリードレッサ 101, 201は、一対で構成され、さらに、歯車 用ダイヤモンドロータリードレッサ 101, 201は、 1個につき、歯車加工用砲石の右フ ランク面 82と左フランク面 81を別々にツル一イングまたは、ッノレーイングとドレツシン グすることが可能なテーパ状の作用面 111, 112, 211, 212を有する。
[0061] 歯車用ダイヤモンドロータリードレッサ 101, 201は、電着法により、台金 105, 205 表面にダイヤモンド粒 102, 202を固着した作用面 111, 112, 211, 212を有しても よぐまた、歯車用ダイヤモンドロータリードレッサ 101, 201は、反転めつき法によつ て、ダイヤモンド粒 102, 202を固着した作用面 111, 112, 211, 212を有する。
[0062] ダイヤモンド粒 102, 202の平均粒子径は、 10 μ m〜2000 μ mであることが好まし く、ダイヤモンド粒 102, 202は結合材としてのニッケルめっき層 103, 203により作 用面 111, 112, 211, 212に固着されており、ダイヤモンド粒 102, 202のニッケノレ めっき層 103, 203からの平均突出量 (HI)は、平均粒径 (D1)の 1%以上 70%以 下であることが好ましい。
[0063] 作用面 111, 112, 211, 212には、柱状ダイヤモンド 152が埋設され、柱状ダイヤ モンドの長手方向に対して、ほぼ直角な端面 153が作用面 111, 112, 211, 212に 露出していてもよい。
[0064] 歯車用ダイヤモンドロータリードレッサ 101, 201を用いて、歯車加工用砥石をツル 一イングまたは、ッノレーイングとドレッシングを行う。
[0065] 一対力もなる歯車用ダイヤモンドロータリードレッサは、互いに、ウォーム状砥石 8の 異なる左および右フランク面 81, 82をツル一イングまたは、ツル一イングとドレツシン グする。
[0066] 図 13および図 14は、実施の形態 2に従った図 9で示す歯車用ダイヤモンドロータリ ードレッサを製造する方法を示す平面図である。図 13を参照して、実施の形態 2に 従った歯車用ダイヤモンドロータリードレッサでは凸部 107が大きいため製造工程に おいて台金 105を母型 301に挿入することが困難となる。そのため、台金 105を第一 部分 1105、第二部分 2105および第三部分 3105の 3つに分割する。これによつて、 分割した各々のピースを母型 301内に挿入し挿入後組合せることで台金 105を構成 することができる。図 13で示す構成では台金 105を母型 301から抜き取るときには母 型 301を破壊する必要が生じる。なお、このような分割された台金 105は実施の形態 1に従った台金としても採用することができる。
[0067] 図 14で示すように母型 301を分割してもよい。図 14では、母型 301は第一部分 13 01、第二部分 2301および第三部分 3301に分割されており、それぞれを組合せるこ とで 1つの母型 301が構成される。このような分割された母型 301を用いれば、中心 に位置する台金 105を分割する必要がなぐさらに台金 105の外周部に低融点合金 力もなる接合層 104を流し込んだ後であっても母型 301を破壊することなく台金 105 を母型 301から取出すことが可能となる。
[0068] また、このような図 14で示す分割された母型 301は、実施の形態 1に従った歯車用 ダイヤモンドロータリードレッサ 101を製造するのに用いることも可能である。 [0069] 図 15は、比較例に従った歯車用ダイヤモンドロータリードレッサと、それを用いたド レッシング方法を説明するために示す一部断面を含む側面図である。図 15を参照し て、比較例に従った歯車用ダイヤモンドロータリードレッサ 101, 201では、一つの作 用面 112, 212のみが設けられている点で、実施の形態に従った歯車用ダイヤモン ドロータリードレッサと異なる。そのため、使用可能な作用面が実施の形態に従った 歯車用ダイヤモンドロータリードレッサと比べて少なぐ寿命が短い。
[0070] 図 15で示す歯車用ダイヤモンドロータリードレッサ 101 , 201は、ダイヤモンドディ スクまたはディスクドレッサと呼ばれ、電着法により製造される。歯車用ダイヤモンド口 一タリードレッサでは、鋼製の台金 105, 205に平均粒径が 90 mのダイヤモンド粒 がニッケルめっきにより一層だけ固着されている。歯車用ダイヤモンドロータリードレツ サの片面にのみ作用面 112, 212が形成されている。
[0071] 図 16および 17は、別の局面に従った砲石の側面図である。図 16を参照して、ゥォ ーム状砥石 8の径が軸方向に移動するにつれて変化してもよい。この場合、ウォーム 状砲石 8はテーパ形状であり、円錐形状とされその円錐表面に右フランク面 82およ び左フランク面 81が構成される。
[0072] また図 17で示すように傾斜が変化するようなウォーム状砲石 8を用いてもよい。この 場合、局面上に右フランク面 82および左フランク面 81が構成される。
[0073] 図 18は、歯車の圧力角を説明するための図である。図 18を参照して、歯車 50のピ ツチ点 51における接線と半径方向の半径線とのなす角 Aが圧力角である。
[0074] 歯車用ダイヤモンドロータリードレッサ 101, 201は、歯車加工用のウォーム状砥石 8をツル一イングまたは、ツル一イングとドレッシングするのに用いる、ダイヤモンド口 一タリードレッサであって、テーパ状のダイヤモンド層 123, 223は、いずれか一方の ダイヤモンド層の角度( α 1, a 2)力 歯車 50の圧力角(A)以下に設定されている。
[0075] 図 19は、ダイヤモンド粒の突出量を説明するための断面図である。図 19を参照し て、ニッケルめっき層 103がダイヤモンド粒 102を保持しており、ダイヤモンド粒 102 の一部分はニッケルめっき層 103に埋込まれ、残りの部分はニッケルめっき層 103か ら露出している。この露出部分の高さが hiであり、ダイヤモンド粒 102の直径が D1で ある。 [0076] 図 20は、柱状ダイヤモンドを説明するための一部断面を含む斜視図である。図 20 を参照して、ニッケルめっき層 103が柱状ダイヤモンド 152を保持していてもよい。柱 状ダイヤモンド 152は角柱状または円柱状の 、ずれであつてもよい。柱状ダイヤモン ド 152の長手方向に直交する端面 153がニッケルめっき層 103から露出して!/、る。な お、図 20では、ニッケルめっき層 103が柱状ダイヤモンド 152と粒状のダイヤモンド 粒 102との両方を保持している力 柱状のみ、または粒状のみのダイヤモンドを-ッ ケルめっき層 103が保持して!/、てもよ!/、。
[0077] ダイヤモンド粒 102, 202の平均粒子径は、 10 μ m〜2000 μ mであることが好まし い。ダイヤモンド粒 102, 202の結合材からの平均突出量は、平均粒径の 1%以上 7 0%以下であることが好ましい。ダイヤモンド層 123, 223には、さらに柱状ダイヤモン ド 152が埋設され、柱状ダイヤモンド 152の長手方向に対して、ほぼ直角な端面 153 が作用面 111に露出して 、てもよ!/、。
[0078] (実施の形態 3)
図 21は、この発明の実施の形態 3に従った歯車用ダイヤモンドロータリードレッサの 正面図である。図 21を参照して、実施の形態 3に従った歯車用ダイヤモンドロータリ ードレッサ 101は円板形状の台金 105を有し、その台金 105の外周に、円周方向に 延在するようにダイヤモンド層 123が設けられる。ダイヤモンド層 123はニッケルめつ き層 103と、ニッケルめっき層 103から露出するダイヤモンド粒 102とにより構成され ている。図 21で示す平面図では作用面 112が表れており、作用面 112と反対側にも 図 21では示されていない別の作用面 112が設けられる。図 21では、ダイヤモンド層 123の半径方向の幅は一定であるが、必ずしも幅を一定にする必要はなぐ必要に 応じて幅の広 、ところと狭 、ところを設けてもよ!、。
[0079] 図 22は、図 21中の矢印 XXIIで示す方向から見た歯車用ダイヤモンドロータリード レッサの左側面図である。図 22を参照して、ダイヤモンド層 123の上端部および下端 部は「V」字状であり、 2つの作用面 111, 112が互いにテーパ形状で所定の角度を なすように構成されている。
[0080] 図 23は、図 21中の XXIII— XXIII線に沿った断面図である。図 23を参照して、テー パ形状の作用面 111, 112には、ダイヤモンド粒 102とニッケルめっき層 103とにより 構成されるダイヤモンド層 123が構成しており、ダイヤモンド層 123は図示しな 、接 合層により台金 105に固着されている。
[0081] (実施の形態 4)
図 24は、この発明の実施の形態 4に従った歯車用ダイヤモンドロータリードレッサの 正面図である。図 25は、図 24中の矢印 XXVで示す方向力も見た歯車用ダイヤモン ドロータリードレッサの左側面図である。図 26は、図 24中の XXVI— XXVI線に沿った 断面図である。
[0082] 図 24から図 26を参照して、実施の形態 4に従った歯車用ダイヤモンドロータリード レッサ 101では、貫通した穴 124の形状が実施の形態 3に従った歯車用ダイヤモンド ロータリードレッサと異なる。具体的には、図 24から図 26で示す歯車用ダイヤモンド ロータリードレッサ 101では穴 124の径がより大きく設計されている。これによりより太 い回転シャフトを受入れることが可能となる。
[0083] (実施の形態 5)
図 27は、この発明の実施の形態 5に従った歯車用ダイヤモンドロータリードレッサの 平面図である。図 28は、図 27中の矢印 XXVIIIで示す方向から見た歯車用ダイヤモ ンドロータリードレッサの左側面図である。図 29は、図 27中の XXIX— XXIX線に沿つ た断面図である。
[0084] 図 27から図 29では、ダイヤモンド層 123の半径方向の長さがより大きい歯車用ダイ ャモンドロータリードレッサを示している。より大きなダイヤモンド層 123を有するため 、加工量を大きくでき、ウォーム状砲石の右フランク面および左フランク面の深さが深 くなつた場合にも対応することが可能である。
[0085] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 歯車加工用砲石 (8)をツル一イングまたは、ツル一イングとドレッシングするのに用 いる、歯車用ダイヤモンドロータリードレッサ(101、 201)であって、
前記歯車用ダイヤモンドロータリードレッサ(101, 201)は、一対で構成され、 さらに、前記歯車用ダイヤモンドロータリードレッサ(101, 201)は、 1個につき、歯 車加工用砲石の右フランク面(82)と左フランク面(81)を別々にツル一イングまたは
、ツル一イングとドレッシングすることが可能なテーパ状の作用面(111, 112, 211,
212)を有する、歯車用ダイヤモンドロータリードレッサ。
[2] 前記歯車加工用砲石 (8)は、ウォーム状砲石である、請求項 1に記載の歯車用ダイ ャモンドロータリードレッサ。
[3] 前記テーパ状の作用面(111, 112, 211, 212)のうち、いずれか一方の作用面の 角度は、歯車 (50)の圧力角以下に設定されている、請求項 1に記載の歯車用ダイヤ モンドロータリードレッサ。
[4] 前記歯車用ダイヤモンドロータリードレッサ(101, 201)は、電着法により、台金(1 05, 205)表面にダイヤモンド粒(102, 202)を固着した作用面(111, 112, 211, 212)を有する、請求項 1に記載の歯車用ダイヤモンドロータリードレッサ。
[5] 前記歯車用ダイヤモンドロータリードレッサ(101, 201)は、反転めつき法によって 、ダイヤモンド粒(102, 202)を固着した作用面(111, 112, 211, 212)を有する、 請求項 1に記載の歯車用ダイヤモンドロータリードレッサ。
[6] 前記ダイヤモンド粒(102, 202)の平均粒子径は、 10 μ m〜2000 μ mである、請 求項 1に記載の歯車用ダイヤモンドロータリードレッサ。
[7] 前記ダイヤモンド粒(102, 202)は結合材(103, 203)により前記作用面(111, 1 12, 211, 212)に固着されており、前記ダイヤモンド粒(102, 202)の前記結合材( 103, 203)力もの平均突出量 (HI)は、平均粒径 (D1)の 1%以上 70%以下である 、請求項 1に記載の歯車用ダイヤモンドロータリードレッサ。
[8] 前記作用面(111, 112, 211, 212)には、柱状ダイヤモンド(152)が埋設され、 前記柱状ダイヤモンドの長手方向に対して、ほぼ直角な端面(153)が前記作用面( 111, 112, 211, 212)に露出している、請求項 1に記載の歯車用ダイヤモンドロー タリードレッサ。
[9] 請求項 1に記載の歯車用ダイヤモンドロータリードレッサ(101, 201)を用いて、歯 車加工用砲石をツル一イングまたは、ツル一イングとドレッシングを行う方法。
[10] 前記一対力 なる歯車用ダイヤモンドロータリードレッサは、互いに、砲石(8)の異 なるフランク面(81, 82)をツル一イングまたは、ツル一イングとドレッシングする、請 求項 9に記載のツル一イングまたは、ツル一イングとドレッシングを行う方法。
[11] 台金(105、 205)と、
先端部がテーパ状に形成された、ダイヤモンド粒(102, 202)を結合材(103, 20 3)で固着したダイヤモンド層(123, 223)と、
前記台金(105, 205)と前記ダイヤモンド層(123, 223)を接合する接合層(104, 204)とを備えた、歯車用ダイヤモンドロータリードレッサであって、
前記ダイヤモンド層(123, 223)の接合面は、凹部(106, 206)を有し、 かつ、前記台金(105, 205)の接合面は、凸部(107, 207)を有し、
かつ、前記接合層(104, 204)は、前記凹部(106, 206)を満たし、前記凸部(10 7, 207)を取囲むように形成されている、歯車用ダイヤモンドロータリードレッサ。
[12] 前記結合材(103, 203)は、焼結合金である、請求項 11に記載の歯車用ダイヤモ ンドロータリードレッサ。
[13] 前記結合材(103, 203)は、ニッケルめっきである、請求項 11に記載の歯車用ダイ ャモンドロータリードレッサ。
[14] 前記ニッケルめっきは、反転メツキ法によって形成されている、請求項 13に記載の 歯車用ダイヤモンドロータリードレッサ。
[15] 前記ダイヤモンド粒(102, 202)の平均粒子径は、 10 μ m〜2000 μ mである、請 求項 11に記載の歯車用ダイヤモンドロータリードレッサ。
[16] 前記ダイヤモンド粒(102, 202)の結合材カもの平均突出量は、平均粒径の 1% 以上 70%以下であることを特徴とする、請求項 11に記載の歯車用ダイヤモンドロー タリードレッサ。
[17] 前記ダイヤモンド層 (123, 223)には、さらに柱状ダイヤモンド(152)が埋設され、 前記柱状ダイヤモンド( 152)の長手方向に対して、ほぼ直角な端面(153)が作用面 (111)に露出している、請求項 11に記載の歯車用ダイヤモンドロータリードレッサ。
[18] 前記歯車用ダイヤモンドロータリードレッサ(101, 201)は、歯車加工用砲石(8)を ツル一イングまたは、ツル一イングとドレッシングするのに用いる、歯車用ダイヤモンド ロータリードレッサであって、 前記テーパ状のダイヤモンド層(123, 223)は、いずれか一方のダイヤモンド層の 角度( α 1, α 2)力 歯車 (50)の圧力角(Α)以下に設定されて 、る、請求項 11に記 載の歯車用ダイヤモンドロータリードレッサ。
[19] 前記歯車加工用砲石 (8)は、ウォーム状砲石である、請求項 18項に記載の歯車用 ダイヤモンドロータリードレッサ。
[20] 請求項 11に記載の歯車用ダイヤモンドロータリードレッサ(101, 201)を一対で用 いて、歯車加工用砲石をツル一イングまたは、ツル一イングとドレッシングを行う方法
[21] 前記台金(105, 205)は、単一材料で一体的に構成される、請求項 11に記載の歯 車用ダイヤモンドロータリードレッサ。
PCT/JP2005/021417 2005-06-27 2005-11-22 歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法 WO2007000831A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523332A JP4781358B2 (ja) 2005-06-27 2005-11-22 歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-186362 2005-06-27
JP2005186362 2005-06-27
JP2005193307 2005-07-01
JP2005-193307 2005-07-01

Publications (1)

Publication Number Publication Date
WO2007000831A1 true WO2007000831A1 (ja) 2007-01-04

Family

ID=37595090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021417 WO2007000831A1 (ja) 2005-06-27 2005-11-22 歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法

Country Status (2)

Country Link
JP (1) JP4781358B2 (ja)
WO (1) WO2007000831A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214290A (ja) * 2008-02-21 2009-09-24 Liebherr-Verzahntechnik Gmbh 歯車の試作及び少数生産のための装置、及びその製造方法
CN101695774A (zh) * 2009-10-21 2010-04-21 西安贝吉姆机床股份有限公司 成形砂轮磨齿机砂轮修整机构
CN101758303A (zh) * 2009-10-19 2010-06-30 西安贝吉姆机床股份有限公司 蜗杆砂轮磨齿机砂轮修整机构
JP2011126006A (ja) * 2009-12-17 2011-06-30 Reishauer Ag 複数条の円筒研削ウォームをドレッシングするための全プロファイルドレッシングロール
US20150011142A1 (en) * 2013-07-02 2015-01-08 Liebherr-Verzahntechnik Gmbh Double-side dresser
JP6165388B1 (ja) * 2016-02-22 2017-07-19 株式会社アライドマテリアル 砥粒工具
WO2017145491A1 (ja) * 2016-02-22 2017-08-31 株式会社アライドマテリアル 砥粒工具
EP3254806A1 (de) * 2016-06-08 2017-12-13 Kapp Werkzeugmaschinen GmbH Verfahren zum herstellen eines abrichtwerkzeugs für ein schleifwerkzeug
JP2018086720A (ja) * 2016-11-28 2018-06-07 カップ ヴェルクゾイグマシーネン ゲー エム ベー ハーKAPP Werkzeugmaschinen GmbH ドレッシングロールを用いて研削ウォームをドレッシングする方法及びドレッシングロール
KR20190055236A (ko) 2016-11-16 2019-05-22 토요다 반 모페스 리미티드 기어 연마용 나사형 숫돌의 성형용 전착 다이아몬드 드레서 및 그의 제조 방법
JP2019089199A (ja) * 2013-08-07 2019-06-13 ライスハウアー アーゲーReishauer AG 目直しツール及びこれを生産するための方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256464A (ja) * 1989-03-27 1990-10-17 Asahi Daiyamondo Kogyo Kk 歯車型ドレッサの製造方法
JPH031766U (ja) * 1989-05-30 1991-01-09
JPH05269666A (ja) * 1992-03-25 1993-10-19 Toyoda Mach Works Ltd 砥石の修正方法
JPH08294818A (ja) * 1995-04-25 1996-11-12 Iwasa Tec:Kk 歯車研削装置、歯車研削方法および歯車研削用といし
JPH09239665A (ja) * 1996-03-01 1997-09-16 Asahi Daiyamondo Kogyo Kk ツルーア及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031766A (ja) * 1989-05-30 1991-01-08 Science & Tech Agency 水中用監視装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256464A (ja) * 1989-03-27 1990-10-17 Asahi Daiyamondo Kogyo Kk 歯車型ドレッサの製造方法
JPH031766U (ja) * 1989-05-30 1991-01-09
JPH05269666A (ja) * 1992-03-25 1993-10-19 Toyoda Mach Works Ltd 砥石の修正方法
JPH08294818A (ja) * 1995-04-25 1996-11-12 Iwasa Tec:Kk 歯車研削装置、歯車研削方法および歯車研削用といし
JPH09239665A (ja) * 1996-03-01 1997-09-16 Asahi Daiyamondo Kogyo Kk ツルーア及びその製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214290A (ja) * 2008-02-21 2009-09-24 Liebherr-Verzahntechnik Gmbh 歯車の試作及び少数生産のための装置、及びその製造方法
CN101758303A (zh) * 2009-10-19 2010-06-30 西安贝吉姆机床股份有限公司 蜗杆砂轮磨齿机砂轮修整机构
CN101695774A (zh) * 2009-10-21 2010-04-21 西安贝吉姆机床股份有限公司 成形砂轮磨齿机砂轮修整机构
JP2011126006A (ja) * 2009-12-17 2011-06-30 Reishauer Ag 複数条の円筒研削ウォームをドレッシングするための全プロファイルドレッシングロール
US20150011142A1 (en) * 2013-07-02 2015-01-08 Liebherr-Verzahntechnik Gmbh Double-side dresser
US9399279B2 (en) * 2013-07-02 2016-07-26 Liebherr-Verzahntechnik Gmbh Double-side dresser
JP7043438B2 (ja) 2013-08-07 2022-03-29 ライスハウアー アーゲー 目直しツール及びこれを生産するための方法
JP2019089199A (ja) * 2013-08-07 2019-06-13 ライスハウアー アーゲーReishauer AG 目直しツール及びこれを生産するための方法
WO2017145491A1 (ja) * 2016-02-22 2017-08-31 株式会社アライドマテリアル 砥粒工具
US11819979B2 (en) 2016-02-22 2023-11-21 A.L.M.T. Corp. Abrasive tool
KR102221333B1 (ko) 2016-02-22 2021-03-02 가부시끼가이샤 아라이도 마테리아루 지립 공구
KR20180112032A (ko) 2016-02-22 2018-10-11 가부시끼가이샤 아라이도 마테리아루 지립 공구
CN108698202A (zh) * 2016-02-22 2018-10-23 联合材料公司 磨料工具
JP6165388B1 (ja) * 2016-02-22 2017-07-19 株式会社アライドマテリアル 砥粒工具
US10507564B2 (en) 2016-06-08 2019-12-17 KAPP Werkzeugmaschinen GmbH Method for the production of a dressing tool for a grinding tool
CN107471126B (zh) * 2016-06-08 2020-09-22 Kapp 机床有限责任公司 用于磨削工具的修整工具的制造方法
CN107471126A (zh) * 2016-06-08 2017-12-15 Kapp 机床有限责任公司 用于磨削工具的修整工具的制造方法
EP3254806A1 (de) * 2016-06-08 2017-12-13 Kapp Werkzeugmaschinen GmbH Verfahren zum herstellen eines abrichtwerkzeugs für ein schleifwerkzeug
KR20190055236A (ko) 2016-11-16 2019-05-22 토요다 반 모페스 리미티드 기어 연마용 나사형 숫돌의 성형용 전착 다이아몬드 드레서 및 그의 제조 방법
KR102189236B1 (ko) 2016-11-16 2020-12-09 토요다 반 모페스 리미티드 기어 연마용 나사형 숫돌의 성형용 전착 다이아몬드 드레서 및 그의 제조 방법
JP2018086720A (ja) * 2016-11-28 2018-06-07 カップ ヴェルクゾイグマシーネン ゲー エム ベー ハーKAPP Werkzeugmaschinen GmbH ドレッシングロールを用いて研削ウォームをドレッシングする方法及びドレッシングロール
JP7290910B2 (ja) 2016-11-28 2023-06-14 カップ ヴェルクゾイグマシーネン ゲー エム ベー ハー ドレッシングロールを用いて研削ウォームをドレッシングする方法

Also Published As

Publication number Publication date
JPWO2007000831A1 (ja) 2009-01-22
JP4781358B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2007000831A1 (ja) 歯車用ダイヤモンドロータリードレッサならびにそれを用いた歯車加工用砥石のツルーイングおよびドレッシング方法
US3288580A (en) Method of preparing a diamond tool
KR20010109295A (ko) 칩 절단 형상을 갖는 다결정 연삭공구의 제조방법
JP2000054007A (ja) ダイヤモンド焼結体及びその製造方法
BRPI0612230A2 (pt) suplementos de corte de compósito e métodos de fabricação do mesmo
KR20020060735A (ko) 경면 가공용 초지립 휠
US4685440A (en) Rotary dressing tool
JP5061186B2 (ja) 内歯車状ダイヤモンドドレッサ、歯車加工用砥石のツルーイング、ドレッシング方法、および内歯車の研削加工法
JP5278325B2 (ja) 切削刃具、切削刃具の成形方法および製造方法
JPH03277412A (ja) ねじれ刃を有する切削工具及びその製造方法
US5443417A (en) On edge honing devices
JP7193677B2 (ja) 焼結歯車の製造方法
EP1775048A1 (en) Method of machining worm wheel, worm wheel, worm reduction gear, and electric power steering device
JP2007136570A (ja) 歯車状ダイヤモンドドレッサの製造方法
CN201361825Y (zh) 新型钎焊-烧结金刚石工具节块
JP2996441B2 (ja) 歯車型ドレッサの製造方法
KR102710203B1 (ko) 표면 조도를 향상시키기 위한 다이아몬드 로타리 드레샤 제조방법
JP2001038630A (ja) 超砥粒工具及びその製造方法
JPH11156714A (ja) ダイヤモンドロータリードレッサ及びその製造方法
JP2010017789A (ja) 逃げ部を有する内歯車状ダイヤモンドドレッサ、歯車加工用砥石のツルーイング、ドレッシング方法、および内歯車の研削加工法
JPH04210322A (ja) 歯車研削用砥石並びに歯車加工法
JPS6215081A (ja) 超砥粒を含む軸状研削工具ブランクの製造法
JPH03169B2 (ja)
JPH03277472A (ja) ダイヤモンド砥石
JP2742784B2 (ja) ドリル製造用のブランク材とドリル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523332

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 16.04.2008

122 Ep: pct application non-entry in european phase

Ref document number: 05809392

Country of ref document: EP

Kind code of ref document: A1