WO2006137438A1 - 家屋の異動判定方法及び家屋の異動判定装置 - Google Patents

家屋の異動判定方法及び家屋の異動判定装置 Download PDF

Info

Publication number
WO2006137438A1
WO2006137438A1 PCT/JP2006/312409 JP2006312409W WO2006137438A1 WO 2006137438 A1 WO2006137438 A1 WO 2006137438A1 JP 2006312409 W JP2006312409 W JP 2006312409W WO 2006137438 A1 WO2006137438 A1 WO 2006137438A1
Authority
WO
WIPO (PCT)
Prior art keywords
determination
house
value
change
old
Prior art date
Application number
PCT/JP2006/312409
Other languages
English (en)
French (fr)
Inventor
Atsumasa Ozawa
Original Assignee
Pasco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corporation filed Critical Pasco Corporation
Priority to EP06767068A priority Critical patent/EP1906354A4/en
Priority to CN2006800224186A priority patent/CN101203880B/zh
Priority to US11/922,134 priority patent/US8285050B2/en
Publication of WO2006137438A1 publication Critical patent/WO2006137438A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images

Definitions

  • the present invention relates to a house change determination method and a house change determination apparatus.
  • Patent Document 1 As a conventional example in which the determination of the transfer of fixed assets or the like is performed using an aerial survey technique, for example, the one described in Patent Document 1 is known.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-61164
  • the conventional example has the following drawbacks.
  • the image change due to these elements and the image change due to the change of the building cannot be distinguished only by the information on the image, so that there is a problem that manpower is required and it is difficult to fully automate.
  • the present invention has been made to solve the above-described drawbacks, and an object of the present invention is to provide a house change determination method that is highly accurate in change determination and can be fully automated.
  • the change of the house 10 can be determined not only by the color difference but also by the luminance and the ratio of the color component, etc., and these color determinations are combined and determined by a plurality of factors. Therefore, it is considered that the accuracy of the transfer determination is further increased.
  • the present invention has been made based on the above knowledge, and a house change determination method for determining a change of house 10 in a data acquisition area based on new and old data acquired from the sky. Then, after the predetermined area in the new data is trimmed with the house polygon data 3 corresponding to the predetermined area prepared in advance and extracted as the determination target area 1, the color image data over the entire determination target area 1 11 2 kinds of difference values between the old and new periods for the gradation value of the altitude data and the altitude value of the altitude data 12 are calculated as evaluation values, and then, based on the evaluation values, two types of evaluation criteria set in advance are calculated.
  • a house change determination method that refers to a determination table based on a combination of values and determines whether or not there is a change in the house in the determination target area 1.
  • the shape change of the house 10 is performed with elements of two different properties, ie, color and height, so that a more accurate determination can be made. be able to. Furthermore, the determination can be made with higher accuracy by combining the determination element results.
  • the change determination unit of the house 10 is regarded as a change in the house 10, and the shape of the existing house 10 ( House polygon data 3) was used as the comparison unit.
  • House polygon data 3 it is not necessary to make a change other than house 10 as a judgment target, and it is not necessary to make a force / force judgment of house 10 after the change is judged. become.
  • the evaluation reference value of a color image can be obtained by simply obtaining a difference between gradation values of a determination region or an appropriate difference.
  • the color difference in the judgment area is judged by the average value of the old and new differences of Pc (number of gradations of each color component) Z ⁇ Pc (sum of the number of gradations of all color elements)
  • each color component of the judgment area By comparing with the difference in ratio, it becomes a finer judgment criterion, so surplus judgment can be reduced.
  • the brightness of each color component is compared by comparing it with the old and new differences of the tone values of the color components in the entire judgment target area 1. It becomes a powerful judgment standard and can reduce surplus judgment.
  • a vegetation area 8 can be considered as a change in height occurring in two periods. By discriminating and removing the plant body by an appropriate method, it is possible to prevent the height change in the plant body from being judged as a change in the house 10. Also, the vegetation area 8 can be accurately determined by judging the vegetation area 8 from the red component (R), which is a plant-specific wavelength that can acquire aircraft power at the same time as the altitude data 12 and the like, and the near infrared.
  • R red component
  • a height change is a moving body 9 that is a temporary height change such as an automobile. Focusing on the fact that most of the moving bodies 9 such as cars move on the road, and by removing the road area using existing road polygon data, etc. As in the case of raw removal, it is not determined that the house 10 is changed, and surplus determination can be prevented, resulting in improved determination accuracy. In addition, even if the road area is removed from the judgment object, there is no problem because it is rare that the house 10 is changed on the public road.
  • FIG. 1 is a diagram showing the present invention, in which (a) is old color image data, (b) is new color image data, and (c) is a portion deleted on the color image data by preprocessing. It is the figure which hatched.
  • FIG.2 Diagram showing change in mesh, (a) shows a mesh set in a wide area, (b) shows an old feature point with a minimum distance from a new feature point, (c) shows a minimum It is a figure showing the distance of the feature point selected from the distance.
  • FIG. 3 Diagram showing the change in house polygon
  • (a) is a diagram showing the house polygon
  • (b) is a clipped RGB data in the house polygon
  • (c) is the elevation in the house polygon
  • Fig. 4 (d) is a diagram showing the results of clipping in the data and the results of the determination of movement in the mesh and the movement in the house polygon.
  • FIG. 4 is a block diagram showing the present invention.
  • FIG. 5 is a flowchart showing the overall processing flow.
  • FIG. 6 is a flowchart showing in-mesh transfer determination.
  • FIG. 7 is a flowchart showing house polygon clipping and house polygon change determination.
  • FIG. 5 shows a flowchart of the present invention
  • FIG. 4 shows a determination apparatus for realizing this.
  • color image data 11, elevation data 12, near-infrared data, road polygon data 20 and house polygon data 3 are prepared in the storage unit 21 for the change determination. This method will be described as an example to determine house changes based on the difference between the survey year and the previous year.
  • Color image data 11, altitude data 12 and near-infrared data are prepared for the above two periods
  • road polygon data 20 and house polygon data 3 are prepared for the previous year and stored in storage unit 21. .
  • the data acquisition area is an appropriate area including the surveyed house 10 (in this specification, the overlapping area with the house polygon data 3 described later is “determination target area 1”, and a comparison including this determination target area 1 is performed.
  • the area of the target area is the “Wide Area Judgment Area,” and the imaging range almost coincides with the Wide Area Judgment Area, and the data for the survey year and the previous year can be overlaid on the plane by a predetermined coordinate determination method.
  • the color image data 11 is defined as m X n dot matrix data on an RGB 3-color plane, and each pixel has a gradation value on the RGB color plane (hereinafter referred to as m rows and n columns of color component c).
  • the pixel value is defined as Pc (m, n), for example, R (red) plane Pr (m, n).
  • the elevation data 12 is given as a DSM (Digital Surface Model) and can be superimposed on the color image data 11 on a plane. (Hereafter, altitude data 12 will be referred to as DSM data 12.)
  • DSM data 12 For polygon data, it is possible to use data provided by public organizations, etc., and in the color image space by a predetermined coordinate conversion method. The position can be specified.
  • the noise removal unit 22 performs preprocessing in order to remove the vegetation area 8, the moving body 9 such as an automobile, and the connected noise part.
  • the noise removing unit 22 includes a vegetation area calculating unit 23, a vegetation area removing unit 24, and a road area removing unit 25.
  • a vegetation area removing step is executed in the vegetation area calculating unit 23 and the vegetation area removing unit 24.
  • Step Sl the vegetation area removal step, the vegetation area 8 is determined by comparing the color value in the pixel with the set threshold value using the characteristics of the plant color, and the vegetation area 8 is determined from the area used for the determination. Remove the corresponding part.
  • the vegetation area removing unit 24 calculates an NDVI (Normalized Difference Vegetation Index) value using the R value and the near-infrared value at the pixel of the determination location extracted from the storage unit 21. The specific calculation formula is shown below.
  • NDVI Normalized Difference Vegetation Index
  • NDVI (NIR ⁇ ) / (NIR + R) [0029] where NIR is the near infrared value in the pixel.
  • the calculated NDVI value is equal to or greater than a threshold value set in advance by the vegetation area removing unit 24, it is determined as a vegetation area and excluded from the determination target. For example, by changing the DSM data value to a negative value, the vegetation area is excluded from the calculation target force. As a result, if the excluded part is different between the old and new data, for example, if the house is built in a place that was a vegetation area, the change of house can be judged. In addition, when the new and old exclusion points overlap (new data: negative, old data: negative), it is not necessary to make useless judgments by including processing such as not performing arithmetic processing as usual.
  • step S2 a road area removal step is executed in the road area removal unit 25 (step S2).
  • the moving body is removed by excluding the determination target power from the road area where the moving body exists in order to remove the moving body such as an automobile.
  • the road polygon removal unit 25 stores the road polygon data 20 stored in the storage unit 21 and superimposes it on the DSM data excluding the vegetation zone 8, thereby excluding the DSM data at the overlapping position from the judgment target.
  • the exclusion method is changed to a negative value as in the vegetation area.
  • roads may be excluded from calculation because the roads have not changed significantly.
  • in-mesh change determination unit 26 determines determination target region 1 with a mesh described later, and performs change determination based on DSM data 12 in the region. Is executed (step S5).
  • the in-mesh change determining unit 26 includes a mesh setting unit 27, an in-mesh data extracting unit 28, an in-mesh data calculating unit 29, and a house change determining unit 32.
  • a mesh setting step is executed in the mesh setting unit 27. (Step S3).
  • the mesh setting unit 27 sets a plurality of meshes 4 of a certain size suitable for the determination of house change on the DSM data 12 as shown in FIG. 2 (a).
  • the size of the mesh in this embodiment is set to 5 m ⁇ 5 m.
  • the in-mesh data extraction unit 28 executes an in-mesh data extraction step (step S4).
  • This in-mesh data extraction step S4 is executed by clipping the DSM data 12 in the mesh 4 to the determination target mesh 4! /.
  • the in-mesh data calculation unit 29 performs calculation for generating an evaluation value used for the determination of the DSM data force obtained by the clipping as well, and generates an average elevation difference data generation unit 30 and a feature point distance difference data generation unit.
  • the intra-mesh change determination step S5 is executed. The in-mesh change determination step will be described with reference to FIG.
  • the average elevation difference data generation unit 30 executes an average elevation difference data generation step (step S5-l).
  • an average value of the DSM data 12 clipped in the in-mesh data extraction step S4 is taken, and difference data between the old and new is generated. Specific calculation is shown below.
  • Pn is each pixel value of the new DSM data 12 in the mesh
  • Po is each pixel value of the old DSM data 12 in the mesh
  • N is the total number of pixels in the mesh.
  • a feature point distance difference data generation unit 31 executes a feature point distance difference data generation step (step S5-2).
  • the feature point distance difference data generation step S5-2 calculates the altitude from each of the new and old DSM data (elevation data) 12 clipped in the mesh 4 data extraction step.
  • the distance within the mesh 4 that is, the distance on the plane is obtained, and another feature point 7 having the smallest distance with respect to a certain feature point 7 is selected between the old and new.
  • Selection of feature point 7 with the shortest distance is based on, for example, the coordinates of the pixel in the mesh (X coordinate, Y coordinate; in the figure, the top left is the origin, the X coordinate is on the right, and the Y coordinate is on the bottom)
  • feature point 7B1 (1, 4) feature point 7B2 (2, 2)
  • feature point 7B3 The distance between the coordinates of 4 and 1) is compared sequentially, and the feature point 7B2 (2, 2) with the shortest distance is selected.
  • Select other features 7A2 and 7A3 of the new data in the same way.
  • the feature point distance difference value is generated by summing the distances for the shortest feature point 7B selected as described above for three points (7A1, 7A2, 7A3).
  • the in-mesh change determination unit 32 executes an in-mesh change determination step.
  • the house change determination step S5-3 in the mesh uses the data generated in steps 5-1 and 5-2 as an evaluation value to determine the change of house 10 based on the evaluation criteria.
  • a determination is made based on feature point distance difference data described later. Also, as shown in FIG. 6, when the average elevation difference value is less than or equal to lm, it is determined that there is no change and the process ends (step S5-3a).
  • the average elevation difference value obtained by multiplying the coefficient (in this embodiment, the coefficient is 0.5) is further added to the coefficient (1 in this embodiment).
  • the coefficient is a value obtained by adding the feature point distance difference value multiplied by 0.5).
  • coefficient and threshold value multiplied by the average elevation difference value and the feature point distance difference value are determined as appropriate so that the house 10 can be accurately determined based on the actual calculated value and the result of the change. . Specifically, it is expressed as a linear combination formula in which an appropriate coefficient is applied to each of coefficient X average elevation difference value + coefficient X feature point distance difference value.
  • house polygon clipping step S6 and house polygon change determination step S7 are executed.
  • the house polygon clipping step S6 and the house polygon change determination step S7 will be described with reference to FIG. 5 and FIG.
  • the house polygon clipping unit 33 executes a house polygon clipping step (step S6).
  • the house polygon clipping step S6 first superimposes the house polygon data 3 shown in FIG. 3 (a) stored in the house polygon data storage unit 21 with the old and new DSM data 12 and RGB data.
  • Figs. 3 (b) and 3 (c) the data at the overlapped part is clipped.
  • each data force obtained by the clipping is also calculated in the house polygon data calculation unit 34.
  • the house polygon data calculation unit 34 includes an altitude difference average data generation unit 35, a color absolute difference data generation unit 36, and a color ratio difference data generation unit 37.
  • the altitude difference average data generation unit step is executed (step S6-l).
  • Altitude difference The average data generation step S6-1 calculates the difference between the old and new DSM data 12 of each pixel in the house polygon data 3! /, And calculates the difference, and the altitude that is the absolute value of the average in the house polygon data 3 A difference average value is generated. Specific calculation is shown below.
  • Pn is each pixel value of the new DSM data 12 in the house polygon
  • N is the total number of pixels in the house polygon.
  • Color absolute difference data generation step S6-2 takes the average of each color component (hereinafter referred to as each color element) of the old and new pixels, and generates a color absolute difference that sums the absolute values of the differences between the old and new data for each color component. To do. Specific calculation is shown below.
  • Pn (red, green, blue) (i, j) is the pixel value (red wavelength, green wavelength, blue wavelength) in the house polygon of the new RGB data
  • Po (red, green, blue) (i, j) is the pixel value (red wavelength, green wavelength, blue wavelength) in the house polygon of the old RGB data
  • N is the total number of pixels in the house polygon.
  • the color ratio difference data generation unit 37 executes a color ratio difference data generation step (step S6-3).
  • the color ratio difference data generation step S6-3 an average value of each color component (RGB) in the house polygon data 3 shown in FIG. 3 (b) is obtained to obtain a ratio of all color components.
  • the absolute value of the difference for each color component of the obtained old and new color component ratios is taken, and color ratio data is generated by summing the absolute differences for each color component.
  • the accuracy is improved by removing the generation target force.
  • the threshold value is 50.
  • the specific calculation is shown below.
  • Pn (red, green, blue) (i, j) is the pixel value (red wavelength, green wavelength, blue wavelength) in the house polygon of the new RGB data
  • Po (red, green, blue) (i, j) is the pixel value (red wavelength, green wavelength, blue wavelength) in the house polygon of the old RGB data
  • N is the total number of pixels in the house polygon.
  • a house polygon change determination step is executed (step S6-5).
  • the change of the house 10 is determined based on the evaluation criteria with reference to the determination table 2 using the data generated in steps S6-1 to S6-3 as evaluation values.
  • the color component total data generation unit is executed (step S7-l).
  • the color component total data generation step S7-1 generates color component total data that is a total sum of color components for each old and new.
  • the new and old color component total data generated in step S7-1 are classified.
  • both the new and old color component total data are greater than or less than the set threshold value (the threshold is 300 in this embodiment) and the new and old color component total data are separated from the threshold value.
  • the threshold is 300 in this embodiment
  • There are two types of cases new data is 300 or more and old data is less than 300, or new data is less than 300 and old data is 300 or more). Based on this case, the following evaluation criteria are used. Judgment is made (step S7-2).
  • the altitude difference average value and the color ratio difference value are used as evaluation criteria.
  • the house change judgment unit 39 makes the judgment according to the following judgment table 2.
  • the threshold value for which the altitude difference average value is set (threshold value is 1 in this example) is exceeded (step S7-3), and the threshold value for which the color ratio difference value is set (threshold value is 9 in this example). Changed only if it has exceeded (Step S7-4). On the other hand, if any criterion is below the set threshold, no change is made.
  • Step S7-5, Step S7-6 the color absolute difference value is set beyond the threshold value (in this example, the threshold value is 100) (Step S7-7) Changed only in some cases. Similarly, if any of the evaluation criteria is below the threshold value, there is no change.
  • the houses that are determined to be changed in the house polygon change determination are newly built new houses, houses under construction, and remodeled houses.
  • the in-house polygon change determination for determining the change in the house is performed before the in-mesh change determination, and the portion subjected to the change is excluded from the determination target force of the in-mesh change determination, or the house polygon data 3 is It is also possible to remove the house polygon data 3 from the object to be judged in advance in the mesh, as well as noise processing, and make judgments for meshes other than the house part. If only this is performed, the number of objects to be determined is reduced, and the processing becomes faster.
  • the display step is executed by the display unit 40 (step S8).
  • the display set according to the judgment result is performed as shown in FIG. 3 (d). For example, it is performed by displaying only the part determined to have a change, or by changing the color of the change part to be highlighted.
  • the display may be performed when the change determination in the mesh 4 is performed.
  • the in-house polygon change determination may be preferentially displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 異動判定の精度が高く、完全自動化が可能な家屋異動判定方法及び装置を提供することを目的とする。  上空から取得した新旧2時期のデータに基づいてデータ取得領域内の家屋(10)の異動を判定する家屋の異動判定方法であって、新データ内の所定領域を予め用意した所定領域に対応する家屋ポリゴンデータ(3)によりトリミングして判定対象領域(1)として抽出した後、前記判定対象領域(1)全域に渡るカラー画像データ(11)の階調値と標高データ(12)の標高値に対する新旧2時期における2種類の差分値を評価値として演算し、次いで、前記評価値に基づいて、予め設定された2種類の評価基準値の組み合わせによる判定テーブルを参照して判定対象領域(1)内の家屋異動の有無を判定して構成する。

Description

明 細 書
家屋の異動判定方法及び家屋の異動判定装置
技術分野
[0001] 本発明は、家屋の異動判定方法及び家屋の異動判定装置に関するものである。
背景技術
[0002] 固定資産の異動の判定等を空中測量技術を利用して行う従来例としては、例えば 特許文献 1に記載されたものが知られて 、る。
[0003] この従来例においては、異動判定に際し、先ず、対象地域の航空機写真画像を取 得し、前年に取得した航空機写真画像と比較することにより新築あるいは改築等の異 動が判定される。
特許文献 1:特開平 9 - 61164号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、従来例には以下のような欠点がある。先ず、航空写真画像には、撮影時の 日照条件の差による影位置の違い、撮影主点の差による建物の傾きの違い、人、車 等の移動体の存在がすべて画面上の差として現れ、これらの要素による画像変化と 建物の異動による画像変化とは画像上の情報だけでは分別不能であるために、結局 人手を要することとなり、完全自動化が困難であるという問題がある。
[0005] また、単なる色違いにより家屋の異動をすベて判定しているので色違いの判別基 準以下の色変化や色変化以外での異動があった場合は全く判定されず、異動判定 の精度が低い。逆に、色違いの判別基準を下げた場合には、撮影時状態による変化 など微細な変化も異動があるものとされるために異動の判定漏れである誤判定や、 異動でないものを異動として判定する余剰判定が増えて、結果的に精度の低下に繋 がる。
[0006] 本発明は、以上の欠点を解決すべくなされたものであって、異動判定の精度が高く 、完全自動化が可能な家屋異動判定方法を提供することを目的とする。
課題を解決するための手段 [0007] 家屋 10の異動は、単なる色違いの他にも、輝度や色成分の割合などによっても判 断することができ、これら色判別を複合的に織り交ぜて複数の要素で判断することに より、異動判定の精度がより高まると考えられる。
[0008] しかし、いくら色判別要素を増やしても同種の判定要素では限界がある。そこで、本 発明では家屋 10の異動の高さ変化に着目した。これら異なる種類の判断要素を織り 交ぜて異動判定を行うことにより従来に比べて飛躍的に精度が高まると考えられる。
[0009] また、家屋 10の異動判定の自動化は、異動があったものの中で、家屋 10の異動で あるか家屋 10以外の異動であるかを判定する必要があり、困難を極める。
[0010] そこで、家屋 10の異動判定力 比較される時期から判定対象時期までに、家屋 10 に異動があつたかを判定していることに着目した。比較される時期の家屋 10の異動 は家屋 10内で行われる異動と家屋 10外で行われる異動に分かれることを見出し、家 屋 10を異動判定単位として両時期の比較をすれば、家屋 10以外の異動を判定して しまうこともなぐ家屋 10のみの異動を判定することができ、結果的に家屋 10の自動 判定が可能になると考えた。
[0011] 本発明は、以上の見知に基づいてなされたものであり、上空から取得した新旧 2時 期のデータに基づいてデータ取得領域内の家屋 10の異動を判定する家屋の異動 判定方法であって、新データ内の所定領域を予め用意した所定領域に対応する家 屋ポリゴンデータ 3によりトリミングして判定対象領域 1として抽出した後、前記判定対 象領域 1全域に渡るカラー画像データ 11の階調値と標高データ 12の標高値に対す る新旧 2時期における 2種類の差分値を評価値として演算し、次いで、前記評価値に 基づ 、て、予め設定された 2種類の評価基準値の組み合わせによる判定テーブルを 参照して判定対象領域 1内の家屋 10異動の有無を判定する家屋の異動判定方法 により達成される。
[0012] したがって、本発明によれば、家屋 10の異動判定要素として、家屋 10の形状変化 を色と高さという 2種類の性質の全く異なる要素で行うことでより精度の高い判定をす ることができる。さらに、判定要素結果の組み合わせによりさらに高い精度で判定を することができる。
[0013] また、家屋 10の異動判定単位を家屋 10内の異動と捉えて、既存家屋 10の形状( 家屋ポリゴンデータ 3)を比較単位とした。家屋ポリゴンデータ 3を使うことにより家屋 1 0以外の異動を判定対象とすることがなく異動判定後に家屋 10である力否力判断を 行う必要がなくなるために家屋 10の異動判定の完全自動化が可能になる。
[0014] また、カラー画像の評価基準値は、単なる判定領域の持つ階調値の差分や適宜差 分により求めることによつても可能である。しかし、 Pc (各色成分の階調数) Z∑Pc ( 全色要素の階調数の総和)の新旧差分の平均値で判定領域内の色違いを判定す れば、判定領域が持つ各色成分の割合違いで比較することにより、より細かな判定 基準となるので余剰判定を減らすことができる。また、上記カラー画像の評価基準値 の他にも、判定対象領域 1全域内での色成分の階調値の新旧差分で比較することに より色成分ごとの輝度を比較することより、より細力な判定基準となり余剰判定を減ら すことができる。
[0015] また、別の発明によれば、更地に家屋 10が建つような家屋ポリゴンデータ 3の無い 場合が存在する。この場合、家屋 10の異動は全く判定されずに家屋 10内の異動判 定のみが行われ、限られた異動の種類し力判定が行えない。そこで、あら力じめ設定 した一定領域を区切りその領域内の異動を判定する。また、家屋 10内の異動を判定 するのとは違い、更地に家屋 10が建つような比較的高さ変化の大きい種類の家屋 1 0の異動を判定する。
[0016] さらに、家屋ポリゴンデータ 3を利用できないような領域で、所定の領域を区切って 異動判定を行う前に、あらかじめ 2時期で高さの変化が生じているものを判断し、判 定領域力も除外しておくことで余剰判定を防ぐことができるので判定精度が高まる。
[0017] 2時期で高さの変化が生じるものとして、例えば植生域 8が考えられる。植物体を適 宜方法で判別し除去することで植物体における高さ変化を家屋 10の異動として判定 してしまうを防ぐことができる。また、標高データ 12等と同時期に航空機力も取得可能 な植物特有の波長である赤成分 (R)と近赤外により植生域 8を判断することにより植 生域 8の判断も正確に行える。
[0018] また、他に高さ変化を生じるものとして自動車などの一時的な高さ変化である移動 体 9が考えられる。自動車などの移動体 9については、そのほとんどが道路上を移動 することに着目し、既存の道路ポリゴンデータ等により道路領域を除去することで、植 生除去同様に家屋 10の異動として判定してしまうことはなくなり余剰判定を防ぐこと ができ、結果として判定精度が向上する。また、道路領域を判定対象から除去しても 公共物である道路上に家屋 10の異動があることはまれであることから問題も無い。
[0019] さらに、上記の除去を判定の行程で行うのではなぐ前処理としておこなうことで、判 定の行程に力かる負担を減らすことができる。
発明の効果
[0020] 本願発明によれば、家屋 10異動の判定を完全に自動化でき、かつ、精度の高!、正 確な判定をすることができる。
図面の簡単な説明
[0021] [図 1]本発明を示す図で、(a)は旧カラー画像データ、(b)は新カラー画像データ、 (c )はカラー画像データ上に前処理にぉ 、て削除した部位をハッチングした図である。
[図 2]メッシュ内異動判定を示す図で、(a)は広域領域にメッシュを設定した図、 (b) は新特徴点から最小距離の旧特徴点を選択する図、(c)は最小距離から選択した特 徴点の距離を表した図である。
[図 3]家屋ポリゴン内異動判定を示す図で、(a)は家屋ポリゴンを表した図で、(b)は 家屋ポリゴン内の RGBデータをクリッピングした図、(c)は家屋ポリゴン内の標高デー タをクリッピングした図、(d)はメッシュ内異動判定と家屋ポリゴン内異動判定の結果 を合わせて表した図である。
[図 4]本発明を示すブロック図である。
[図 5]全体の処理の流れを示すフローチャートである。
[図 6]メッシュ内異動判定を示すフローチャートである。
[図 7]家屋ポリゴンクリッピング及び家屋ポリゴン内異動判定を示すフローチャートで ある。
発明を実施するための最良の形態
[0022] 図 5に本願発明のフローチャート、図 4にこれを実現するための判定装置を示す。
[0023] まず、異動判定に際し、カラー画像データ 11、標高データ 12、近赤外データ、道 路ポリゴンデータ 20および家屋ポリゴンデータ 3を格納部 21に用意する。調査年度と 前年度の新旧時期の違いにより家屋異動を判定する本方法を例に説明する。上記 カラー画像データ 11、標高データ 12および近赤外データは上記 2時期のものが用 意され、道路ポリゴンデータ 20および家屋ポリゴンデータ 3は前年度のものが用意さ れ、格納部 21に格納される。
[0024] データ取得領域は、調査対象家屋 10を含む適宜領域 (本明細書では、後述する 上記家屋ポリゴンデータ 3との重合域を「判定対象領域 1」、この判定対象領域 1を含 む比較的広域の領域を「広域判定領域」とし、撮像範囲はほぼ広域判定領域に合致 する。また、調査年度および前年度におけるデータは、所定の座標決定方法により 平面上で重ねることができる。 )
[0025] 上記カラー画像データ 11は、 RGB3色のカラープレーン上の m X nのドットマトリク スデータとして定義され、各ピクセルは RGBカラープレーン上の階調値 (以下色成分 cの m行 n列のピクセル値を Pc (m, n)、例えば R (赤)プレーン Pr(m, n)を表す。)と 定義する。
[0026] また、標高データ 12は、 DSM (Digital Surface Model:地表面モデル)として与え られ、カラー画像データ 11と平面上で重ねることができる。(以降、標高データ 12を DSMデータ 12とする。)各種ポリゴンデータは、公共団体等力も提供されたものを利 用することが可能であり、所定の座標変換方法により上記カラー画像空間上での位 置を特定することができる。
[0027] 異動判定に際し、図 1 (c)に示すように植生域 8や自動車などの移動体 9と 、つたノ ィズ部分を除去するために、ノイズ除去部 22において前処理を実行する。ノイズ除去 部 22は、植生域演算部 23、植生域除去部 24および道路域除去部 25とを有し、まず 、植生域演算部 23と植生域除去部 24において植生域除去ステップが実行される (ス テツプ Sl)。この植生域除去ステップは、植物の色の持つ特性を利用してピクセル内 の色の値と設定された閾値と比較して植生域 8を判定し、判定に使用する領域内か ら植生域 8にあたる部分を除去する。植生域除去部 24では、格納部 21から取り出さ れた判定箇所のピクセルにおける R値と近赤外値を使って NDVI (Normalized Differ ence Vegetation Index:正規化植生指標)値を算出する。具体的な算出式を下記に 示す。
[0028] [数 1] N D V I = ( N I R - ) / ( N I R + R ) [0029] ただし、 NIRはピクセル内の近赤外値である。
[0030] そして、算出した NDVI値が植生域除去部 24においてあら力じめ設定した閾値以 上である場合には植生域として判断し判定対象から除外する。例えば DSMデータ 値を負の値に変更することにより、植生域を除外箇所を演算対象力 除外する。この 結果、新旧データ間で除外箇所が異なる場合、例えば植生域だった場所に家が建 つたなどの場合にも家屋の異動判定が行える。また、新旧の除外箇所が重なりあう( 新データ:負、旧データ:負)ときには、通常通りに演算処理をしないなどの処理を含 めるだけで無駄な判定も行わなくて済む。
[0031] 次に、道路域除去部 25において道路域除去ステップが実行される (ステップ S2)。
この道路域除去ステップ S2は、自動車などの移動体を除去するために移動体の存 在する道路域自体を判定対象力 除外することで移動体の除去を行う。道路域除去 部 25にて格納部 21に格納されて 、る道路ポリゴンデータ 20を取り出し、これを前記 植生域 8を除外した DSMデータに重ね合わせて、重合位置の DSMデータを判定 対象から除外する。除外の方法は、例えば植生域と同様に負の値に変更することに より行う。また、植生とは違い道路は、大きな変化はないことから除外された部分を演 算対象から除外する処理をしても良い。
[0032] 上記前処理を実行した後に、メッシュ内異動判定部 26において、後述するメッシュ で判定対象領域 1を決定し、該領域内の DSMデータ 12を元に異動判定を行うメッシ ュ内異動判定を実行する (ステップ S5)。メッシュ内異動判定部 26は、メッシュ設定部 27、メッシュ内データ抽出部 28、メッシュ内データ演算部 29および家屋異動判定部 32を有し、まず、メッシュ設定部 27においてメッシュ設定ステップが実行される (ステ ップ S3)。このメッシュ設定ステップ S3は、メッシュ設定部 27にて図 2 (a)に示すように 家屋異動の判定に適した一定の大きさの複数のメッシュ 4を DSMデータ 12上に設 定する。本実施の形態のメッシュの大きさは、 5m X 5mに設定される。次に、メッシュ 内データ抽出部 28にて、メッシュ内データ抽出ステップが実行される (ステップ S4)。 このメッシュ内データ抽出ステップ S4は、判定対象メッシュ 4にお!/、てメッシュ 4内の D SMデータ 12をクリッピングして実行される。 [0033] メッシュ内データ演算部 29では、上記クリッピングにより得られた DSMデータ力も判 定に用いる評価値を生成するための演算が行われ、平均標高差分データ生成部 30 と特徴点距離差分データ生成部 31とを有し、メッシュ内異動判定ステップ S5が実行 される。メッシュ内異動判定ステップについて、図 6を元に説明する。まず、平均標高 差分データ生成部 30において、平均標高差分データ生成ステップが実行される (ス テツプ S5-l)。平均標高差分データ生成ステップ S5-1は、メッシュ内データ抽出ス テツプ S4においてクリッピングされた DSMデータ 12の平均値を取って、新旧間の差 分データを生成する。具体的な演算を以下に示す。
[0034] [数 2] 平均標高差分 = I∑ i∑ j P n ( i , j ) /Ν - Σ i∑ j P o ( i , j ) / N I
[0035] ただし、 Pnはメッシュ内の新 DSMデータ 12の各ピクセル値、 Poはメッシュ内の旧 DSMデータ 12の各ピクセル値、 Nはメッシュ内のピクセル総数である。
[0036] 次に、特徴点距離差分データ生成部 31にて、特徴点距離差分データ生成ステツ プが実行される (ステップ S5-2)。特徴点距離差分データ生成ステップ S5-2は、図 2 ( b)、(c)に示すように、メッシュ 4内データ抽出ステップにおいてクリッピングされた新 旧 DSMデータ (標高データ) 12のそれぞれから、標高の高い上位数点(ここでは 3点 とする)の標高上位点 7 (以下、「特徴点」とする。)を選ぶ(旧データ 7A1, 7A2, 7A 3、新データ 7B1, 7B2, 7B3)。そして、これらのメッシュ 4内における距離、すなわち 平面上における距離を求め、ある特徴点 7に対して距離が最小となる他の特徴点 7を 新旧間で選び出す。距離が最小の特徴点 7の選び出しは、例えばメッシュ内のピクセ ルの座標 (X座標, Y座標;図では左上を原点とし、 X座標を右に、 Y座標を下にとる) を基に計算することが可能であり、図 2 (b)に示すように、特徴点 7A1 (1, 1)に対す る特徴点 7B1 (1, 4)、特徴点 7B2 (2, 2)、特徴点 7B3 (4, 1)のそれぞれの座標間 の距離を順次比較し、最も距離の短い特徴点 7B2 (2, 2)を選び出す。新データのそ の他の特徴点 7A2、 7A3についても同様に選ぶ。以上のようにして選ばれた最も距 離の短い特徴点 7Bについての距離を 3点(7A1, 7A2, 7A3)について合計するこ とにより特徴点距離差分値を生成する。
[0037] 次に、メッシュ内異動判定部 32において、メッシュ内異動判定ステップが実行され る(ステップ 5-3)。メッシュ内家屋異動判定ステップ S5-3は、ステップ 5-1とステップ 5-2で生成されたデータを評価値として使用し評価基準に基づいて家屋 10の異動 判定をする。まず、ステップ 5-1で生成された平均標高差分値が lmを超える場合に は、後述する特徴点距離差分データによる判定が行わる。また、図 6に示すように平 均標高差分値が lm以下である場合には、異動なしとして判定され処理が終了する( ステップ S5-3a)。次に、平均標高差分値が lmを超えるものに関して、係数 (本実施 の形態において係数は 0. 5)を掛け合わせた平均標高差分値に、さらに係数 (本実 施の形態にお 1、て係数は 0. 5)を掛け合わせた特徴点距離差分値を加えて出た値 力 閾値 (本実施例において閾値は 1)を超える場合に異動ありとして判定される (ス テツプ S5-3b)。この際、異動ありとされる家屋は、新築 5や増築 6又は減築や全壊に 属するものである。また、前記値が閾値を超えない場合は、異動なしとして判定する。 なお、平均標高差分値と特徴点距離差分値とにそれぞれ掛け合わされる係数と閾値 は、実際の算出値と異動の結果を基にして家屋 10の異動判定が正確に行えるように 適宜決定される。具体的には、係数 X平均標高差分値 +係数 X特徴点距離差分値 の各々に適宜の係数をかけた線形結合式として表される。
[0038] 次に、家屋ポリゴンクリッピングステップ S6及び家屋ポリゴン内異動判定ステップ S7 を実行する。以下、図 5及び図 7を用いて家屋ポリゴンクリッピングステップ S6及び家 屋ポリゴン内異動判定ステップ S7について説明する。まず、家屋ポリゴンクリッピング 部 33において、家屋ポリゴンクリッピングステップが実行される(ステップ S6)。家屋ポ リゴンクリッピングステップ S6は、まず、家屋ポリゴンデータ格納部 21に格納されてい る図 3 (a)に示す家屋ポリゴンデータ 3を新旧の DSMデータ 12と RGBデータに重ね 合わせる。次に、図 3 (b)、(c)に示すように、重ね合わされた箇所のデータをクリッピ ングする。
[0039] 次に、上記クリッピングにより得られた各データ力も判定に用いるデータを生成する ため家屋ポリゴン内データ演算部 34において演算を実行する。家屋ポリゴン内デー タ演算部 34は、高度差分平均データ生成部 35とカラー絶対差分データ生成部 36と カラー割合差分データ生成部 37とを有し、まず、高度差分平均データ生成部 35に おいて、高度差分平均データ生成部ステップを実行する (ステップ S6-l)。高度差分 平均データ生成部ステップ S6-1は、家屋ポリゴンデータ 3内の各ピクセルの新旧 DS Mデータ 12につ!/、て差分を取り、その差分の家屋ポリゴンデータ 3内の平均の絶対 値である高度差分平均値を生成する。具体的な演算を以下に示す。
[0040] [数 3] 高度差分平均値 =∑ i ∑ j I P n ( i , j ) -P 0 ( i , j ) I /N
[0041] ただし、 Pnは家屋ポリゴン内の新 DSMデータ 12の各ピクセル値、
Poは家屋ポリゴン内の旧 DSMデータ 12の各ピクセル値、
Nは家屋ポリゴン内のピクセル総数である。
[0042] 次に、カラー絶対差分データ生成部 36において、カラー絶対差分データ生成ステ ップを実行する (ステップ S6-2)。カラー絶対差分データ生成ステップ S6-3は、新旧 のピクセルの各色成分 (以下、各色要素という。)の平均を取り、その各色成分ごとの 新旧データの差分の絶対値を合計したカラー絶対差分を生成する。具体的な演算を 以下に示す。
[0043] [数 4]
DA r e d (赤波長絶対差分) =
I ∑ i ∑ j P n r e d ( i, j ) /Ν-Σ i ∑ j P o r e d ( i, j ) / I
[0044] [数 5]
DAg r e e n (緑波長絶対差分) =
l ∑ i ∑ j P n g r e e n ( i , j ) /N-∑ i ∑ j Po g r e e n ( i, j /N |
[0045] [数 6]
DAb I u e (青波長絶対差分) =
I∑ i ∑ j P n b I u e ( i , j ) /N-∑ i ∑ j P o b l u e ( i , j ) /N |
[0046] DAred + DAgreen + DAblue =カラー絶対差分
ただし、 Pn(red, green, blue) (i, j)は、新 RGBデータの家屋ポリゴン内のおける (赤波長、緑波長、青波長)の各ピクセル値、
Po(red, green, blue) (i, j)は、旧 RGBデータの家屋ポリゴン内のおける(赤波長 、緑波長、青波長)の各ピクセル値、
Nは家屋ポリゴン内のピクセル総数である。 [0047] 次に、カラー割合差分データ生成部 37において、カラー割合差分データ生成ステ ップを実行する (ステップ S6-3)。カラー割合差分データ生成ステップ S6-3は、図 3( b)に示す家屋ポリゴンデータ 3内の各色成分 (RGB)の平均値を取り、全色成分の割 合を求める。そして、求められた新旧の各色成分割合の各色成分ごとの差分の絶対 値を取り、その色成分ごとの絶対差分を合計したカラー割合データを生成する。この 際、影で暗くなつた部分は、本来の色を表していないので生成対象力 除く事により 精度が高まる。(生成対象から外す影部分は、各色成分の各値がすべて閾値以下の ものとする。なお、本実施の形態において、閾値は 50とする。)具体的な演算を以下 に示す。
[0048] [数 7]
DR r e d (赤波長割合差分) =
I∑ i∑ j P n r e d ( i , j ) /∑ i∑ j P n (r e d, g r ee n, b l u e) い, j ) -∑ i∑ j Po r ed ( i , j ) /∑ i∑ j P o (r ed, g r e e n, b l u e) ( i , j ) I
[0049] [数 8]
DRg r e e n (緑波長割合差分) =
|∑ i∑ j P n g r e e n ( i , j ) /∑ i∑ j P n (r ed, g r ee n, b l u e) ( i , j -∑ i∑ j Pog r e e n ( i j ) /∑ i∑ j P o (r e d, g r e e n, b l u e) ( i , j ) I
[0050] [数 9]
DRb I u e (青波長割合差分) =
I∑ i∑ j P n b I u e ( i , j ) /∑ i∑ j P n (r ed, g r e e n, b l u e) ( i, j ) -∑ i∑ j P o b l u e ( i , j ) /∑ i∑ j P o (r ed, g r e e n, b l u e) ( i , j ) I
[0051] DRred + DRgreen + DRblue =カラー割合差分
ただし、 Pn(red, green, blue) (i, j)は、新 RGBデータの家屋ポリゴン内のおける (赤波長、緑波長、青波長)の各ピクセル値、
Po(red, green, blue) (i, j)は、旧 RGBデータの家屋ポリゴン内のおける(赤波長 、緑波長、青波長)の各ピクセル値、
Nは家屋ポリゴン内のピクセル総数である。
[0052] 次に、家屋ポリゴン内異動判定部 39において、家屋ポリゴン内異動判定ステップが 実行される (ステップ S6- 5)。家屋ポリゴン内異動判定ステップ S7は、 S6- 1から S6- 3までのステップで生成されたデータを評価値として判定テーブル 2を参照し評価基 準に基づいて家屋 10の異動判定をする。さらに、色成分合計データ生成部におい て、色成分合計データ生成ステップを実行する (ステップ S7-l)。色成分合計データ 生成ステップ S7-1は、新旧ごとの色成分の総合計である色成分合計データを生成 する。
[0053] 判定に先立ち、ステップ S7-1で生成された新旧の色成分合計データについて場 合分けをする。場合分けとしては、新旧の色成分合計データが共に、設定された閾 値 (本実施例にぉ 、て閾値は 300)以上または未満である場合と新旧の色成分合計 データが閾値を境にして異なるところにある場合 (新データが 300以上で旧データが 300未満、または新データが 300未満で旧データが 300以上)の 2種類であり、この 場合分けに基づいて以下の評価基準を用いて判定を行う (ステップ S 7-2)。
[0054] まず、新旧の色成分合計データが共に、設定された閾値 (本実施例において閾値 は 300)以上または未満である場合は、高度差分平均値とカラー割合差分値を評価 基準として用い、家屋異動判定部 39において下記の判定テーブル 2により判定を行 う。高度差分平均値が設定される閾値 (本実施例において閾値は 1)を超えており (ス テツプ S7-3)、かつカラー割合差分値が設定される閾値 (本実施例において閾値は 9)を超えている (ステップ S7-4)場合に限り異動ありとする。一方、いづれかの判定 基準が設定された閾値以下である場合は異動なしとされる。
[0055] これに対して、新旧の色成分合計値が閾値を境にして異なるところにある場合は、 下記の判定テーブル 2により判定を行い、上記評価基準にカラー絶対差分をさらに 評価基準として加える。他評価基準が閾値を超えており(ステップ S7-5、ステップ S7 -6)、さらにカラー絶対差分値が設定される閾値 (本実施例において閾値は 100)を 超えている (ステップ S7-7)場合に限り異動ありとされる。また、同様にいづれかの評 価基準でも閾値以下である場合は、異動なしとされる。
[0056] 上記判定の結果、家屋ポリゴン内異動判定において異動ありとされた家屋は、家屋 内の立替新築や工事中家屋、増改築家屋である。
[0057] また、家屋内の異動判定を行う家屋ポリゴン内異動判定をメッシュ内異動判定の前 に行い、異動判定された部分をメッシュ内異動判定の判定対象力 除くことや、家屋 ポリゴンデータ 3を使ってノイズ処理同様家屋ポリゴンデータ 3を事前にメッシュ内異 動判定対象から除去することも可能であり、家屋部分以外のメッシュについての判定 だけを行えば足り判定対象が減るので処理が早くなる。
[0058] 次に、上記判定結果に基づ!/、て、表示部 40ぉ 、て表示ステップが実行される (ステ ップ S8)。表示ステップ S8は、図 3 (d)に示すように判定結果によりあら力じめ設定さ れた表示を行う。例えば、異動ありと判定された箇所だけ表示したり、異動箇所の色 を変えて強調表示したり等で行われる。
[0059] なお、メッシュ 4内の異動判定が行われた時に表示を行っても良 、。また、例えば異 動判定が行われた箇所に対してメッシュ内異動判定及び家屋ポリゴン内異動判定の 双方が行われたときに、家屋ポリゴン内異動判定を優先表示するようにしても良 、。 また、上述するこれらの判定方法は、上記 S1ステップ以下の手順を順次実行するプ ログラムが走行するコンピュータにより実現できる。

Claims

請求の範囲
[1] 上空力 取得した新旧 2時期のデータに基づいてデータ取得領域内の家屋の異動 を判定する家屋の異動判定方法であって、
2時期のデータ内の所定領域を予め用意した所定領域に対応する家屋ポリゴンデ ータによりトリミングして判定対象領域として抽出した後、
前記判定対象領域全域に渡るカラー画像データの階調値と標高データの標高値 に対する新旧 2時期における 2種類の差分値を評価値として演算し、
次いで、前記評価値に基づいて、予め設定された 2種類の評価基準値の組み合わ せによる判定テーブルを参照して判定対象領域内の家屋異動の有無を判定する家 屋の異動判定方法。
[2] 前記カラー画像データに対する評価値が、
PcZ∑ Pc
但し、 Pcは色要素(c)の階調数、
∑ Pcは全色要素の階調数の総和、
の新旧差分の平均値で与えられる請求の範囲第 1項記載の家屋の異動判定方法
[3] 前記カラー画像データに対する評価値が、
判定対象領域全域内での色成分の階調値の新旧差分で与えられる請求の範囲第 1項記載の家屋の異動判定方法。
[4] 前記判定テーブルによる判定に先立って、
新旧画像データに対して、各色成分の階調値合計に基づいて定義され、所定の境 界値により区分される輝度域を決定する評価用輝度値を演算し、
新旧画像データが同一輝度域に属する場合には、カラー画像データに対して PcZ∑ Pc
但し、 Pcは色要素(c)の階調数、
∑ Pcは全色要素の階調数の総和、
の新旧差分の平均値で与えられる第 1の評価値を使用するとともに、
異なった輝度域に属する場合には、カラー画像データに対して前記第 1の評価値 と、判定対象領域全域内での色成分の階調値の新旧差分で与えられる第 2の評価 値の双方を使用する請求の範囲第 1項記載の家屋の異動判定方法。
[5] 前記判定対象領域を含む広域判定領域内に所定のメッシュを設定した後、
各メッシュに対して標高値差分を基準とするメッシュ標高判定値を設定し、 該メッシュ標高判定値により広域判定領域内での家屋異動の有無を判定し、 前記判定対象領域内での判定結果と前記広域判定領域内での判定結果との論理 和により異動判定を行う請求の範囲第 1項乃至第 4項のいずれかに記載の家屋の異 動判定方法。
[6] 上空力 取得した新旧 2時期のデータに基づいてデータ取得領域内の家屋の異動 を判定する家屋の異動判定方法であって、
2時期のデータ内の判定対象領域内に所定のメッシュを設定した後、
各メッシュに対して標高値差分を基準とするメッシュ標高判定値を設定し、
該メッシュ標高判定値により判定領域内での家屋異動の有無を判定する家屋の異 動判定方法。
[7] 前記メッシュ標高判定値は、
メッシュ内の標高平均の新旧間差分と、
新旧同一メッシュ内に抽出される適数の標高上位点の新旧間距離差分に基づく評 価値との線形結合値として与えられる請求の範囲第 5項または請求の範囲第 6項に 記載の異動判定方法。
[8] 前記判定対象領域内での判定または前記広域判定領域内での判定に先立って、 予め植生域を演算対象から除去する請求の範囲第 1項乃至第 7項記載の家屋判定 方法。
[9] 前記判定対象領域内での判定または前記広域判定領域内での判定に先立って、 予め移動体を演算対象から除去する請求の範囲第 1項乃至第 8項記載の家屋判定 方法。
[10] 上空力 取得した新旧 2時期のデータに基づいてデータ取得領域内の家屋の異動 を判定する家屋の異動判定装置であって、
2時期のデータ内の所定領域を予め用意した所定領域に対応する家屋ポリゴンデ ータによりトリミングして判定対象領域として抽出する判定対象領域抽出手段と、 前記判定対象領域全域に渡るカラー画像データの階調値と標高データの標高値 に対する新旧 2時期における 2種類の差分値を評価値として演算する評価値演算手 段と、
前記評価値に基づ!/、て、予め設定された 2種類の評価基準値の組み合わせによる 判定テーブルを参照して判定対象領域内の家屋異動の有無を判定する判定手段と を備える家屋の異動判定装置。
[11] 前記カラー画像データに対する評価値が、
PcZ∑ Pc
但し、 Pcは色要素(c)の階調数、
∑ Pcは全色要素の階調数の総和、
の新旧差分の平均値で与えられる請求の範囲第 10項記載の家屋の異動判定装 置。
[12] 前記カラー画像データに対する評価値が、
判定対象領域全域内での色成分の階調値の新旧差分で与えられる請求の範囲第 10項記載の家屋の異動判定装置。
[13] 新旧画像データに対して、各色成分の階調値合計に基づいて定義され、所定の境 界値により区分される輝度域を決定する評価用輝度値を演算する評価用輝度値演 算手段を備え、
前記判定手段は、
新旧画像データが同一輝度域に属する場合には、カラー画像データに対して PcZ∑ Pc
但し、 Pcは色要素(c)の階調数、
∑ Pcは全色要素の階調数の総和、
の新旧差分の平均値で与えられる第 1の評価値を使用するとともに、
異なった輝度域に属する場合には、カラー画像データに対して前記第 1の評価値 と、判定対象領域全域内での色成分の階調値の新旧差分で与えられる第 2の評価 値の双方を使用する請求の範囲第 10項記載の家屋の異動判定装置。
[14] 前記判定対象領域を含む広域判定領域内に所定のメッシュを設定するメッシュ設 定手段と、
各メッシュに対して標高値差分を基準とするメッシュ標高判定値を設定するメッシュ 標高判定値設定手段と、
該メッシュ標高判定値により広域判定領域内での家屋異動の有無を判定する広域 判定手段と、
を備え、前記判定手段は、前記判定対象領域内での判定結果と前記広域判定領域 内での判定結果との論理和により異動判定を行う請求の範囲第 10項乃至第 13項の V、ずれかに記載の家屋の異動判定装置。
[15] 上空力 取得した新旧 2時期のデータに基づいてデータ取得領域内の家屋の異動 を判定する家屋の異動判定装置であって、
2時期のデータ内の判定対象領域内に所定のメッシュを設定するメッシュ設定手段 と、
各メッシュに対して標高値差分を基準とするメッシュ標高判定値を設定するメッシュ 標高判定値設定手段と、
該メッシュ標高判定値により判定領域内での家屋異動の有無を判定する判定手段 と、を備える家屋の異動判定装置。
[16] 前記メッシュ標高判定値は、
メッシュ内の標高平均の新旧間差分と、
新旧同一メッシュ内に抽出される適数の標高上位点の新旧間距離差分に基づく評 価値との線形結合値として与えられる請求の範囲第 13項または第 14項記載の家屋 の異動判定装置。
[17] 前記判定に先立って、予め植生域を演算対象から除去する手順をコンピュータに 実行させるための請求の範囲第 10項乃至第 16項記載の家屋の異動判定装置。
[18] 前記判定に先立って、予め移動体を演算対象から除去する手順をコンピュータに 実行させるための請求の範囲第 10項乃至第 17項記載の家屋の異動判定装置。
PCT/JP2006/312409 2005-06-21 2006-06-21 家屋の異動判定方法及び家屋の異動判定装置 WO2006137438A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06767068A EP1906354A4 (en) 2005-06-21 2006-06-21 METHOD AND DEVICE FOR ESTIMATING HOME MOVEMENT
CN2006800224186A CN101203880B (zh) 2005-06-21 2006-06-21 房屋的变动判断方法及房屋的变动判断装置
US11/922,134 US8285050B2 (en) 2005-06-21 2006-06-21 House change judging method and device using color gradation and altitude values of image polygon data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-181217 2005-06-21
JP2005181217A JP4566074B2 (ja) 2005-06-21 2005-06-21 家屋異動判定方法及び家屋異動判定プログラム

Publications (1)

Publication Number Publication Date
WO2006137438A1 true WO2006137438A1 (ja) 2006-12-28

Family

ID=37570466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312409 WO2006137438A1 (ja) 2005-06-21 2006-06-21 家屋の異動判定方法及び家屋の異動判定装置

Country Status (5)

Country Link
US (1) US8285050B2 (ja)
EP (1) EP1906354A4 (ja)
JP (1) JP4566074B2 (ja)
CN (1) CN101203880B (ja)
WO (1) WO2006137438A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747122B2 (ja) * 2007-03-23 2011-08-17 Necシステムテクノロジー株式会社 特定領域自動抽出システム、特定領域自動抽出方法、および、プログラム
JP4378571B2 (ja) 2007-05-31 2009-12-09 Necシステムテクノロジー株式会社 地図変化検出装置、地図変化検出方法およびプログラム
EP2207010B1 (en) * 2007-10-19 2015-05-20 PASCO Corporation House change judgment method and house change judgment program
WO2009057619A1 (ja) 2007-10-30 2009-05-07 Pasco Corporation 家屋異動判定方法、家屋異動判定プログラム、家屋異動判定用画像生成方法、及び家屋異動判定用画像
CN101978395B (zh) * 2008-04-23 2012-10-03 株式会社博思科 建筑物屋顶轮廓识别装置及建筑物屋顶轮廓识别方法
US8682064B2 (en) 2008-11-25 2014-03-25 Nec System Technologies, Ltd. Building change detection apparatus, building change detection method and program
JP5366190B2 (ja) * 2008-11-25 2013-12-11 Necシステムテクノロジー株式会社 建築物変化検出装置、建築物変化検出方法、及びプログラム
FR2941542B1 (fr) * 2009-01-27 2011-03-18 Laurent Philippe Nanot Procede de reconstruction automatise de modeles tridimentionnels de superstructures des toits et des modeles tridimentionnels et/ou empreintes des batiments en derivant
JP2010237210A (ja) * 2009-03-30 2010-10-21 Koh Young Technology Inc 検査方法
JP5566307B2 (ja) * 2011-01-05 2014-08-06 株式会社パスコ 地図データ更新装置、地図データ更新方法及び地図データ更新プログラム
JP5887088B2 (ja) * 2011-09-09 2016-03-16 東芝アルパイン・オートモティブテクノロジー株式会社 画像処理装置
CN104820818B (zh) * 2014-12-26 2018-05-08 广东中科遥感技术有限公司 一种移动物体的快速识别方法
US10699119B2 (en) * 2016-12-02 2020-06-30 GEOSAT Aerospace & Technology Methods and systems for automatic object detection from aerial imagery
JP7126316B2 (ja) * 2018-07-23 2022-08-26 株式会社パスコ 家屋異動推定装置及びプログラム
US11195324B1 (en) 2018-08-14 2021-12-07 Certainteed Llc Systems and methods for visualization of building structures
CA3139486A1 (en) 2019-06-07 2020-12-10 Stephen Ng Systems and methods for automated detection of changes in extent of structures using imagery
US11776104B2 (en) 2019-09-20 2023-10-03 Pictometry International Corp. Roof condition assessment using machine learning
KR102484401B1 (ko) * 2020-04-23 2023-01-04 주식회사 키센스 인공지능을 이용한 사용자 참여형 인식 플랫폼에서 건물 변화 구분 방법 및 그 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251618A (ja) * 2001-02-23 2002-09-06 Pasuko:Kk 画像地図、その作成装置及び作成方法
JP2004117245A (ja) * 2002-09-27 2004-04-15 Pasuko:Kk 家屋異動判定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483066A (en) * 1994-06-08 1996-01-09 Loral Corporation Polarization diverse infrared object recognition system and method
US5689705A (en) * 1995-02-13 1997-11-18 Pulte Home Corporation System for facilitating home construction and sales
JP2811055B2 (ja) 1995-08-21 1998-10-15 アジアエアーフォト株式会社 土地利用状況及び家屋形状の変化判別支援システム
US6151031A (en) * 1996-09-09 2000-11-21 Hewlett-Packard Company Map builder system and method for enabling generic interfacing of an application with a display map generation process in a management system
US6480270B1 (en) * 1998-03-10 2002-11-12 Riegl Laser Measurement Systems Gmbh Method for monitoring objects or an object area
US6092076A (en) * 1998-03-24 2000-07-18 Navigation Technologies Corporation Method and system for map display in a navigation application
JP3703297B2 (ja) * 1998-04-27 2005-10-05 株式会社日立製作所 地理情報データ管理方法
CN1142410C (zh) * 2000-11-03 2004-03-17 华南理工大学 用数字图像技术测量评价路面表面构造深度的方法
US7321386B2 (en) * 2002-08-01 2008-01-22 Siemens Corporate Research, Inc. Robust stereo-driven video-based surveillance
IL155034A0 (en) 2003-03-23 2004-06-20 M A M D Digital Data Proc Syst Automatic aerial digital photography and digital data processing systems
US7003400B2 (en) * 2003-10-22 2006-02-21 Bryant Consultants, Inc. Apparatus and method for displaying subsurface anomalies and surface features
CN1237327C (zh) * 2004-04-20 2006-01-18 长安大学 一种识别路面裂缝的系统和方法
CN100394449C (zh) * 2004-06-30 2008-06-11 南京大学 基于gis与虚拟现实的实时三维地质建模的方法
JP4624287B2 (ja) * 2006-03-17 2011-02-02 株式会社パスコ 建物形状変化検出方法及び建物形状変化検出システム
WO2009057619A1 (ja) * 2007-10-30 2009-05-07 Pasco Corporation 家屋異動判定方法、家屋異動判定プログラム、家屋異動判定用画像生成方法、及び家屋異動判定用画像

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251618A (ja) * 2001-02-23 2002-09-06 Pasuko:Kk 画像地図、その作成装置及び作成方法
JP2004117245A (ja) * 2002-09-27 2004-04-15 Pasuko:Kk 家屋異動判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1906354A4 *

Also Published As

Publication number Publication date
JP4566074B2 (ja) 2010-10-20
US8285050B2 (en) 2012-10-09
JP2007003244A (ja) 2007-01-11
EP1906354A4 (en) 2010-04-14
EP1906354A1 (en) 2008-04-02
CN101203880A (zh) 2008-06-18
CN101203880B (zh) 2010-04-21
US20090136090A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
WO2006137438A1 (ja) 家屋の異動判定方法及び家屋の異動判定装置
JP2007003244A5 (ja)
US8045761B2 (en) Detection of environmental conditions in a sequence of images
JP4858793B2 (ja) 樹木本数算定方法及び樹木本数算定装置
US8503761B2 (en) Geospatial modeling system for classifying building and vegetation in a DSM and related methods
JP2010086276A (ja) 樹種分類方法及び樹種分類システム、森林現況情報の作成方法及び森林現況情報の作成システム、間伐対象区域の選定方法及び間伐対象区域の選定システム
CN110503637B (zh) 一种基于卷积神经网络的道路裂缝自动检测方法
Cai et al. Study on shadow detection method on high resolution remote sensing image based on HIS space transformation and NDVI index
JP2009268085A (ja) 画像トリミング装置およびプログラム
CN114005042A (zh) 基于阴影补偿和U-net的遥感影像城市建筑提取方法
CN113033401B (zh) 一种面向生态保护红线的人类活动变化识别监管方法
JP2005234603A (ja) 地図情報更新方法及び地図更新装置
JP4279894B2 (ja) 樹木頂点認識方法及び樹木頂点認識装置並びに樹木頂点認識のプログラム
Li et al. Automated production of cloud-free and cloud shadow-free image mosaics from cloudy satellite imagery
CN114881869A (zh) 一种巡检视频图像预处理方法
CN112927252B (zh) 一种新增建设用地监测方法及装置
WO2023116359A1 (zh) 绿色、蓝色和灰色基础设施分类方法、装置、系统与介质
JPH10269347A (ja) 地理画像上の影成分の除去方法及び地理画像処理装置、記録媒体
JP5305485B2 (ja) 地盤高データ生成装置、地盤高データ生成方法、及びプログラム
JP4030318B2 (ja) 地図データ更新装置および地図データ更新方法
Grigillo et al. Classification based building detection from GeoEye-1 images
KR102204040B1 (ko) 고도별 수집이미지의 통일화를 위한 보정용 영상처리장치
Angiati et al. Identification of roofs perimeter from aerial and satellite images
JP3897306B2 (ja) 地理画像間変化領域の抽出の支援方法及び地理画像間変化領域の抽出を支援可能なプログラム
JP7194534B2 (ja) 対象検知装置、画像処理装置、対象検知方法、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022418.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11922134

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006767068

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE