WO2006136621A1 - Método de detección de ácidos nucleicos mediante generación directa de una señal medible - Google Patents

Método de detección de ácidos nucleicos mediante generación directa de una señal medible Download PDF

Info

Publication number
WO2006136621A1
WO2006136621A1 PCT/ES2005/070093 ES2005070093W WO2006136621A1 WO 2006136621 A1 WO2006136621 A1 WO 2006136621A1 ES 2005070093 W ES2005070093 W ES 2005070093W WO 2006136621 A1 WO2006136621 A1 WO 2006136621A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
oligonucleotide
amplification
activity
nuclease
Prior art date
Application number
PCT/ES2005/070093
Other languages
English (en)
French (fr)
Inventor
Antonio Madejon Seiz
Gemma Rocio Limones Lopez
Francisco Javier Calvo Macarro
Sonia Rodriguez Gil
Pedro Manuel Franco De Sarabia Rosado
Original Assignee
Biotools Biotechnological & Medical Laboratories, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotools Biotechnological & Medical Laboratories, S.A. filed Critical Biotools Biotechnological & Medical Laboratories, S.A.
Priority to PCT/ES2005/070093 priority Critical patent/WO2006136621A1/es
Priority to CA002579918A priority patent/CA2579918A1/en
Priority to EP05857311A priority patent/EP1892302A1/en
Priority to JP2008516346A priority patent/JP2008543300A/ja
Priority to US11/666,468 priority patent/US7919244B2/en
Priority to AU2005333512A priority patent/AU2005333512A1/en
Publication of WO2006136621A1 publication Critical patent/WO2006136621A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6823Release of bound markers

Definitions

  • the present invention relates to a method of nucleic acid detection by addr ⁇ ta generation of a signal by the action of an enzyme with activi ty ⁇ 3' - 5 'nuclease, and the uses given to it.
  • the generated signal can be detectable and quantifiable and reali ⁇ zarse in real time.
  • the nucleic acid is contacted with one or more oligonucleotides that do not hybridize perfectly with it, so that the enzyme will cut in the base disap ⁇ readas generated signal.
  • the oligonucleotide may be labeled.
  • the basic classical techniques for nucleic acid analysis are electrophoresis and hybridization with probes, which can be carried out both in the liquid phase and in the solid phase.
  • PCR technique (Saiki et to the., Science, 230, 1350-1354 (1985), Mullis et to the., US patent 4,683,195 norteame ⁇ rican, 4,683,202 and US 4,800,159) allows amplification exponential nucleic acid.
  • Such amplification is achieved by repeated cycles of heat denaturation of the nucleic acid to study binding of primers complementary to two regions of the opposite nucleic acid amplifi ⁇ car, and extension of the nucleic acid by a polymerase enzyme. The repetition of successive cycles of this process achieves an exponential amplification of the nucleic acid under study.
  • polymerases are used to obtain the amplification of the nucleic acid under study.
  • DNA polymerases catalyze the synthesis of nucleic acids, and although they all have in common the possibility of polymerizing nucleic acids in the 5'-3 'sense, there are differences between them depending on other characteristics such as presenting or not, for example: double stranded exonuclease activity, 3'-5 'single stranded exonuclease activity, double stranded 3'-5' exonuclease activity, or reverse transcriptase activity.
  • Polymerases that have a 3'- activity 5 'exonuclease perform DNA replication with much greater fidelity since they correct the errors that may have been introduced in the different replicated bases (Brutlag, D. And Kornberg, AJ Biol. Chem. (1972) 247: 241-248) .
  • DNA polymerases with error-correcting 3'-5 'exonuclease activity are used in the replication systems, the DNA obtained includes a smaller proportion of erroneous bases compared to replications where such enzymes have not been used (Chang, LMS, J. Biol .: Chem. (1977) 252: 1873-1880.
  • DNA polymerases with 3'-5 'error-correcting exonuclease activity are widely known.
  • documents such as the patent with publication number US5500363, and the patent with publication number US5352778 the preparation and production of a recombinant thermostable DNA polymerase with 3 '-5' error corrective activity is described.
  • the amount of DNA synthesized at each time can be measured by amplification by amplification, since the emission of fluorescence produced in the reaction is proportional to the amount of DNA formed. This allows to know and record at all times the kinetics of the amplification reaction (Higuchi R, Fokler C, Dollinger G, Watson R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio / Technology 1993; 11: 1026- 30).
  • thermal cyclers that incorporate a fluorescence reader and are designed to be able to measure, at any time, the fluorescence emitted in each of the vials where it is performed amplification
  • Fluorescent intercalating agents such as known as SYBR Green
  • hairpin probes such as known co ⁇ mo Molecular Beacons and Scorpion
  • Hybridization probes such as met ⁇ das as FRET probes, TaqMan MGB probes and MGB Eclipse are ⁇ das
  • the compound known under the trade name SYBR Green and protected US Patent US5436134 publication number is a interca ⁇ fluorescent agent lante widely used today.
  • This compound is a cyanine derivative that binds to the double stranded nucleic acid, giving a fluorescent signal that increases proportionally to the increase in the PCR product.
  • this type of intercalating agents can bind to the dimers of primers and other nonspecific products, so that there can be nonspecific amplification signals that lead to the overestimation of the concentration of The target to mark.
  • Another type of fluorescent labeling systems are the hydrolysis probes, such as the one known under the trade name TaqMan, described in the invention patent with publication number US5723591, these probes have an emitting fluorophore (known in English as a reporter) attached in the 5 'end and a blocking fluorophore (known in English as quencher) at the 3' end.
  • a reporter an emitting fluorophore
  • quencher a blocking fluorophore
  • TaqMan probe is utili- Zada with polymerases with 5 '-3' exonuclea- sa. When both fluorophores are attached to the probe, the reporter is shielded by the quencher and there is no signal emission.
  • the probe binds to the nucleic acid strand to be amplified, when this nucleic acid is replicated, the 5'-3 'exonuclease activity of the DNA polymerase 5'-3' exonuclease, releases the 5 'end of the probe where the reporter fluorophore is attached causing the emission of the fluorescent signal.
  • the hairpin probes have repeated sequences inverted at their 5 'and 3' ends, allowing a hairpin structure to be formed by complementarity of the two inverted repeated regions, in the absence of the target sequence.
  • the internal sequence of the probe is complementary to the target, so that in the presence of it, the hairpin structure opens, distancing the reporter fluorophore and the quencher fluorophore, so that the fluorescent signal is emitted.
  • probes where Hibri ⁇ dation design thereof involves using two specific oligonucleotide sequences as probes, each labeled with a different fluorophore.
  • the ends of the probes are complementary, normally the 3 'end of one of them being a donor, this is the molecule that, when excited by a light source, transfers its energy to the 5' end of the second probe, acceptor molecule.
  • the two probes are designed to hybridize on their specific targets so that both fluorophores are in close proximity, so resonance energy transfer only occurs when both probes hybridize to the target, very close to each other.
  • probes use more limi ⁇ Tado and emerging as probes: ".Reso.nse.nse”, “Light- up”, “HyBeacon”, “LUX”, “Yin-Yang”, “Amplifluor” etc.
  • a new method for the detection and / or quantification of nucleic acids by the action of an enzyme with 3'-5 'nuclease activity.
  • the present invention relates to a method pa ra ⁇ detecting specific nucleic acid sequences, DNA or RNA, through the generation of a detectable signal and / or measurable nuclease activity mediated by a 3' - 5 '.
  • Said method consists in contacting the substrate nucleic acid that is intended to be identified, with at least one oligonucleotide designed so that said oligonucleotide is capable of hybridizing with the substrate nucleic acid, leaving one or more mismatched bases at the 3 'end of the oligonucleotide. , or adjacent bases.
  • the structure of the nucleic acid double band with unpaired bases at the 3 'end of the oligonucleotide chain is the substrate of the 3' - 5' nuclease, also present that cleaves disap base ⁇ readas of the oligonucleotide, as well as the bases which they are in position 3 'of the unpaired zone, generating a measurable signal.
  • Said oligonucleotide may include a marker, either in any of the bases that are mismatched when the oligonucleotide / substrate hybrid is generated, or in some base located at position 3 'of the mismatch base. hit the duplex Additionally, the oligonucleotide can carry additional dips at any number and position along the oligonucleotide chain.
  • marker as used in the pre ⁇ sente invention refers to any atom or molecule which can be used to provide a detectable signal ble and / or quantifiable, and which is connected to the oligonu ⁇ - nucleotide.
  • the markers can give a signal detectable by fluorescence, electrical, electrochemical, magnetic, radioactivity, colorimetry, gravimetry, X-ray diffraction or absorption, enzymatic activity, chemiluminescent, luminous, or vibrational signal
  • the oligonucleotide chain has a double tide with a blocking fluorophore (known in English as quencher) and an emitting fluorophore (known in English as a reporter).
  • quencher a blocking fluorophore
  • emitting fluorophore known in English as a reporter
  • fluo ⁇ róforo quencher is on the 5 'end of the chain of the oligonucleotides while the 3' end is labeled with a fluorophore reporter.
  • Oligonucleotides ⁇ tidos not incorporate marking of any kind in its sequence, for performing assays gravime ⁇ tr ⁇ a.
  • the 3'-5'-nuclease activity, or the polymerase with 3'-5'-error-correcting activity may be resistant to incubations at high temperatures (thermostable enzymes) or not (thermolabile enzymes).
  • the nucleic acid can be derived from any complex sample that includes such molecules in its composition, such as cuts or extensions of animal or plant tissues, cell cultures or biological materials in general, food, water samples, soil or air. It can also come from previously processed samples ⁇ das such as in vitro transcription products (cDNA) or gene amplification products (PCR), or isothermal amplification systems have been generated in rolling circle amplification.
  • cDNA in vitro transcription products
  • PCR gene amplification products
  • isothermal amplification systems have been generated in rolling circle amplification.
  • both the probe and the substrate can be presented in liquid solution, or in systems in which the probe or the substrate is fixed to solid supports, whatever their nature (membranes, glass, plastic or the like).
  • this can be used for detection and discrimi ⁇ mination between nucleic acid sequences that difie ⁇ ren each change in one base (SNPs).
  • SNPs nucleic acid sequences that difie ⁇ ren each change in one base
  • the oligonucleotide is designed so that when hybridizing with the substrate sequence, the position in which the mutation of interest is located is located at the 3 'end of the oligonucleotide.
  • the sequence of said oligonucleotide must be hybridize perfectly with the substrate nucleic acid that does not present the mutation, and will consequently ⁇ cia a mismatch at the 3 'end when hybridizing with the substrate sequence that presents the mutation.
  • the oligonucleotide / substrate nucleic acid duplex is perfect, without any disappearance, no substrate being generated for the action of the 3 'activity - 5 'nuclease, so the oligonucleotide remains intact, no signal is generated.
  • the duplex acid nuclei- co / oligonucleotide is not perfect, leaving a desaparea ⁇ lie at the 3 'end of the oligonucleotide that is recognized by the 3'- 5 'nuclease present in the mixture.
  • the method is used for the detection of mutations in codons encoding nucleic acid.
  • the oligonucleotide is designed so that the codon to be analyzed is located at the 3 'end of the oligonucleotide.
  • the sequence of said oligonucleotide must be perfectly complementary to the non-mutant substrate nucleic acid, which is not intended to be detected.
  • the oligonucleotide / substrate nucleic acid duplex has a mismatch of - Il ⁇
  • the labeled oligonucleotide may have additional modifications in Seq ⁇ cia, as joining bases or non - phosphodiester linkages including spacers in order to protect certain positions of the oligonucleotide chain of the 3' - 5 'nuclease in the event that you are posi ⁇ tions represent conservative mutations.
  • the oligonucleotide or oligonucleotides simultaneously acts as a generation source signal activity mediated 3' - 5 'nu ⁇ cleasa as well as primer extension reactions nucleic acid, both extension systems a primer (first extension) as an amplification mediated by a polymerase activity, so that at the same time as the signal generation the nucleic acid extension occurs.
  • the substrate DNA, the oligonucleotide, a mixture of dNTPs necessary for the nucleic acid extension reaction, an enzyme with 3'-5 'nuclease activity and an enzyme with a polymerase activity, as well as the buffers, are contacted suitable for the functioning of enzymatic activities.
  • an additional primer of opposite polarity is required which can be a standard oligonucleotide or also have mismatches in the 3 'region when hybridizing with the substrate DNA.
  • the use of a PCR system with two primers capable of being corrected by an activity ⁇ two 3' - 5 'nuclease can increase the specificity of the system.
  • this second primer can also be marked, generating a signal identical or different from that generated by the first primer.
  • the enzyme used may be a polymerase with 3' - 5 'error correction nuclease.
  • the enzyme may be a polymerase with 3' - 5 'nuclease corrector thermostable errors.
  • the labeled oligonucleotide is designed so that it hybridizes with the substrate DNA that is desired to be detected except at the 3 'terminal end of the oligonucleotide, or at bases adjacent to this end.
  • the oligonucleotide is hybridized with the substrate DNA, a duplex is generated with mismatches at the 3 'terminal end of the oligonucleotide.
  • the mismatched bases of the oligonucleotide are cleaved by the 3'-5 'nuclease activity, releasing the tide that was bound to said bases.
  • the shortened oligonucleotide now hybridizes perfectly with the substrate DNA, and has a 3 'end with a free OH group, whereby said oligonucleotide can now serve as a primer for the elongation of nucleic acid chains mediated by polymerase activity.
  • the oligonucleotide uses ⁇ do as a signal generating system / nucleic acid synthesis primer may or may not present additional modifications that block the hydroxyl group of the last base in position 3 ', to protect the hydrolysis of certain ⁇ mined positions, or in order to prevent the reac ⁇ elongation from the oligonucleotide ⁇ modi fied not by the 3' - 5 'nuclease.
  • the use of the oligonucleotide with 3 'unblocked end allows the elongation or amplification of both the DNA that is intended to be detected, as well as of the DNAs that it is not intended to identify.
  • oligo ⁇ nucleotide in nucleic acid extension or amplification systems acts only as a signal generating system mediated by the 3'-5 'nuclease activity, and does not function as a reaction primer.
  • the oligonucleotide functions as a probe, binding to the nucleic acid of interest and generating a signal mediated by 3'-5 'nuclease activity.
  • the system requires the presence of two or more primer elongation reaction primer nucleic acid
  • the labeled oligonucleotide probe will act as a polymerase with 3' - 5 'nuclease proofreading, a polymerase with acti vity ⁇ 5 '-3' chain displacement and / or nuclease activity, a mixture of dNTPs and suitable buffers.
  • the oligonucleotide primers that prioritize the synthesis of DNA may or may not present point mismatches at the 3 'end when hybridizing with the substrate.
  • oligonucleotide used as a probe, it must also present additional modifications at the 3 'end, by any technique that blocks the free OH end, such as phosphorylation or addition of any molecule bound to said group.
  • additional modifications at the 3 'end by any technique that blocks the free OH end, such as phosphorylation or addition of any molecule bound to said group.
  • the method is used in gene amplification reactions in which the oligonucleotide presents is labeled with a quencher fluorophore is at the 5 'end of the oligonucleotide chain while the 3' end is labeled with a reporter fluorophore .
  • the amplification reaction is carried out coupled to a device that allows the fluorescence emission to be monitored in each amplification cycle, thus allowing the realization of a real-time amplification test.
  • Such implementation can be performed using Oligonucleotides ⁇ tidos operating simultaneously as signal generators and chain elongation primers, or oligonu ⁇ cleótidos function as pure probes, without participating as primers elongation reaction.
  • the method of direct gene ⁇ ration signal used in the detection of a specific sequence in a hybridization system with no polymerization reaction.
  • This method requires a high concentration of the nucleic acid subs ⁇ treatment identify and involves contacting the nucleic acid substrate with the labeled probe and acti ⁇ vity 3' - 5 'nuclease, may this be a polymerase with 3' - 5 'error correction nuclease.
  • the mixture contains dNTPs, since an elon gation is performed ⁇ chain.
  • This method can be performed in one step hybridization / catalysis, or successive cycles ⁇ vos in which a temperature increase step of the oligonucleotide and nucleic acid substrate are separated and a subsequent incubation step at lower temperature hybridization of the nucleic acid subs ⁇ treatment with a new probe is allowed.
  • an oligonucleotide that is labeled with a quencher fluorophore is used at the 5 'end of the chain, while the 3' end is labeled with a reporter fluorophore.
  • the cyclic hybridization / catalysis process is carried out in a device that allows the fluorescence emission to be monitored in each amplification cycle, thus allowing the realization of a real-time detection test.
  • kits include oligonucleotides with complementary ⁇ quence is that we want to detect one or more non - complementary bases at the 3 'end of the chain.
  • the oligonucleotides may be labeled, in case they are not labeled, specific labeling reagents may also be included in the kit.
  • kits include an enzyme with activity
  • kits may contain additional enzymes with polymerase activity.
  • the kit may include at least one nucleic acid primer oligonucleotide, which may or may not be labeled.
  • the kit may also contain other reagents necessary to carry out the detection and the materials necessary for amplification, for example, buffer, dNTPs, magnesium ions, as well as instructions to follow the test.
  • other reagents necessary to carry out the detection and the materials necessary for amplification for example, buffer, dNTPs, magnesium ions, as well as instructions to follow the test.
  • FIGS. IA, IB, IC, and ID the hybridization scheme of the IS and IS-INV oligonucleotides with the substrate DNAs is shown.
  • Fig IA pMTB-Control
  • Fig.lB Mutant IF
  • Fig. IC Mutant IP
  • FiglD Mutant 2PF.
  • the central sequence of each scheme shows the sequence of the substrate DNA.
  • the upper sequence corresponds to the first IS and the lower sequence to the first IS-INV.
  • the mismatches between the probes and the substrate DNAs are indicated.
  • FIG. 2A, 2B, 2C the results of real-time amplification of different substrate DNAs in fluorescence graphs (FAM channel) versus number of cycles in different cases are shown on the left.
  • analysis shows agarose gel of amplified products obtained ⁇ two the end of the process.
  • Fig 2A Mixing amplification with IS probe and pfu DNA polymerase
  • Fig2B Mix of amplification with IS-INV probe and pfu DNA polymerase
  • Fig2C Mix of amplification with IS-INV probe and DNA polymerase 5'-3 'exonuclease polymerase.
  • Figures 3A and 3B show the results of the comparative real-time amplification test using the IS-INV probe as a fluorescence source in the presence of pfu DNA polymerase, or fluorophore SYBR Green I intercalator in the presence of pfu.
  • the fluorescence plot versus the number of cycles is shown in Figure 3A.
  • the amplification profiles obtained by using the IS-INV probe as a source of fluorescence are presented at the top of the graph, at the bottom when using the SYBR Green intercalating fluorophore.
  • Figure 2B shows the agarose gel analysis of the amplified products obtained.
  • Lane 1 corresponds to a dilution of ICT 3
  • lane 2 to a dilution of ICT 6
  • lane 3 to an ICT dilution 8
  • lane 4 to a negative Non-DNA control
  • lane M corresponds to 100 bp Ladder.
  • the lanes on the right correspond to the test with SYBR Green I, and those on the left to the IS-INV Probe.
  • Figure 4 shows the results of am plification ⁇ real time, a graph of fluorescence versus cycle number corresponding to the plo ⁇ er 3 of the present invention.
  • FIG 5A the results shown in am ⁇ plification in real time, a graph of fluorescence versus cycle number corresponding to the ejem ⁇ ple 4 of the present invention
  • FIG 5B the sis analy- gel agarose of the amplified products obtained at the end of the process.
  • the five lanes on the right correspond to the results of PCR without a probe and the five lanes on the left to the PCR with a probe, representing M: ladder 100 bp
  • 2 DNA pol 5 '-3' exo +
  • 3 Taq polymerase exo-
  • 4 "non-DNA" control.
  • MTB Mycobacterium tuberculosis
  • a Control plasmid obtained by cloning a 335 bp fragment of the region IS6110 of Mycobacterium tuberculosis (MTB) in the plasmid pBlueScript SK (+).
  • IP mutant mutation in the penultimate base of the hybridization zone with the Lion probé IS and
  • Mutant IF mutation in the last base of the zo ⁇ na hybridization with the primers Lion tried IS and IS-INV Lion tried. It generates a disappearance of the penultimate base of the 3 'end of both primers when hybridizing with them, as seen in Figure IB.
  • Mutant 2PF mutation in the last two bases of the hybridization zone with the primers Lion tested IS and Lion tested IS-INV. It generates a mismatch of the last two bases of the 3 'end of both primers when hybridizing with them, as seen in Figure ID.
  • Lion tested IS-INV (SEQ ID No. 02, 5'- CGCAAAGTGTGGCTAACCCTGAACCGTGA-3 ') • First Forward with sequence identical to that of the first Lion tested IS but with inverted end markings. Thus, the 5 'end is marked with TAMRA and the 3' end with FAM. A the same as the first IS, perfect hybrid ⁇ with the sequence of control plasmid, and presents mismatches at the 3 'end with mutant DNAs IP, IF and 2PF.
  • First MT2 (SEQ ID No. 03, 5'- CATCGTGGAAGCGACCCGCCAGCCCAGGAT-3 ').
  • First reverse which hybridizes perfectly with the sequences of the four substrates described above. This first was used as a reverse primer in all the experiments analyzed in this example.
  • Amplification mixture with Lion tested IS-INV and pfu-DNA polymerase Made with the Biotools Pfu DNA polymerase kit (Biotools), including in the mixture 0.1 u / ⁇ l of Pfu DNA polymerase, reaction buffers, a mixture of dNTPs, Lion tested IS-INV (0.3 ⁇ M final) and oligonucleotide MT2 (0.5 mM final), the final reaction volume being 20 ⁇ l.
  • Biotools DNA polymerase including in the mixture 0.1 u / ⁇ l of DNA polymerase 5 '-3' exonuclease, reaction buffers, a mixture of dNTPs, Lion tested
  • the amplification reaction was performed in a SmartCycler II (Cepheid) real-time amplification equipment using the following amplification cycles:
  • the temperature is maintained for 360 sec. at 95, 0 C.
  • Example 1 Since in Example 1 it was observed that the utilization of amplification systems with pfu DNA polymerase using as primer the reaction a probe with double fluorescent labeling in the presence of SUBSTRA ⁇ cough introduced mismatches at the 3 'end of the probe , generates fluorescence results similar to those obtained with intercalating fluorophores, such as SYBR Green, a comparative test of both systems has been performed.
  • intercalating fluorophores such as SYBR Green
  • 2PF mutant mutation in the last two bases of the hybridization zone with the Lion probes IS and IS-INV. It generates a mismatch of the last two bases of the 3 'end of both primers when hybridizing with them.
  • First ISFOW (SEQ ID No. 04, 5'- CGCCAACTACGGTGTTTACGG-3 ') • First forward (primer in direct sense) that hybridizes perfectly (100% homology) with the sequence of the DNA substrate Mutant 2PF.
  • Amplification mixture with Lion tested IS-INV and pfu-DNA polymerase Made with the Biotools Pfu DNA polymerase kit (Biotools), including in the mixture 0.1 u / ⁇ l of Pfu DNA polymerase, reaction buffers, a mixture of dNTPs, Lion tested IS-INV (0.3 ⁇ M final) and oligonucleotide ISREV (0.5 mM final), the final reaction volume being 20 ⁇ l.
  • Mixing amplification with SYBR-Green and pfu-DNA polymerase Made with the Biotools Pfu DNA poly- kit Merase (Biotools), including in the mixture 0.1 u / ⁇ l of Pfu DNA polymerase, reaction buffers, a mixture of dNTPs, ISFOW oligonucleotide (0.5 ⁇ M final), ISREV oligonucleotide (0.5 mM final) and SYBR Green I (Sigma-Aldrich Corp, St. Louis, Missouri, USA), the final reaction volume being 20 ⁇ l.
  • Biotools Biotools
  • the amplification reaction was performed in a SmartCycler II (Cepheid) real-time amplification equipment using the following amplification cycles:
  • the temperature is maintained for 360 sec. at 95, 0 C.
  • the evolution of the amplification reaction was monitored in real time by reading in each amplification cycle the level of fluorescence in the FAM channel, measured in the incubation step at 60 ° C. Also, the amplified products were analyzed in gel 1.5% agarose stained with ethidium bromide. The results are shown in Figure 3A, and 3B.
  • Table 1 of results shows the Ct values obtained in the samples amplified with IS-INV probe and those obtained with SYBR Green.
  • the average delay value of the Ct values of the samples amplified with SYBR Green regarding the samples amplified with probe IS-INV was calculated as the arithmetic mean of the differences Ct obte ⁇ ned in each dilution tested.
  • the specific reading safety margin was calculated as the difference between the CT value of the non-DNA control and the Ct value of the lowest dilution analyzed (ICT ICT 8 ).
  • results obtained indicate that although the use as a primer of probes with double marking in pfu DNA polymerase presence generates results ⁇ simi lar to those obtained using interleaved fluorophores ⁇ tes as SYBR Green, the new method improves both the sensitivity, specificity and potentially detection. Thus, the values earliest onset of fluorescence as well as the highest values of fluo ⁇ rescencia obtained indicate improved Sensibili ⁇ ity of the system. Furthermore the combination of dismi ⁇ nuissus of CT values of the amplified samples and the delay in the appearance of fluorescent signal in the "no-DNA" control increases the range of detection safety specific signal relative to SYBR Green. Thus, the difference in cycles between the last detectable sample and the first dimer signal in the IS-INV probe experiment was 11.8 cycles per 3.3 cycles in the SYBR Green amplification experiment.
  • the incubation mixture accordingly had the following composition: Made with the Biotools Pfu DNA polymerase kit (Biotools), including 0.1 u / ⁇ l in the mixture Pfu DNA polymerase, reaction buffers, a mixture of dNTPs and Lion tested IS-INV (0.3 ⁇ M final), the final reaction volume being 20 ⁇ l in all cases.
  • Biotools Biotools
  • Biotools Biotools
  • the temperature is maintained for 240 sec. at 95, 0 C.
  • Fluorescence levels in the FAM channel were monitored in each of the incubations at 68 ° C during You the process.
  • EXAMPLE 4 Verification of absence of 5 '-3' contaminating exonuclease activity.
  • the experimental model used in this example is a TaqMan probe amplification and detection system of a conserved region of the human cytomegalovirus polymerase (CMV) coding region.
  • the substrate DNAs and primers and probes used are Mues ⁇ tran below: DNA substrate.
  • pCMV plasmid obtained by cloning a conserved fragment of 350 base pairs (bp) of the coding region of the Citomegalovi ⁇ rus polymerase (CMV) in the plasmid pBlueScript SK (+). Amplification primers and fluorescent probes.
  • First CMVF (SEQ ID N 0 06, 5'- GATAGACACACACTGCAAA-3 ') • First Forward that perfectly hybridizes (100% homology) with the region of the CMV genome cloned in the plasmid pCMV described above.
  • TTCACACCTACGATCAGACGGA-3 ' • TaqMan probe with double fluorescent tide (5' FAM TAMRA 3 ') that perfectly hybridizes (100% homology) with an internal region of the product amplified by the combination of CMVF / CMVR primers described above.
  • Assays amplifi cation ⁇ were performed in parallel with an enzymatic activity DNA polymerase 5' - 3 'exonuclease and pfu DNA polymerase, both produced by Biotools B & M Labs, SA, also exo activity Taq - (Clontech).
  • the composition of the reaction mixtures is as follows: A mixture containing dNTPs, first CMVF
  • DNA polymerase 5 '-3' exonuclease + Biotools DNA polymerase
  • Taq DNA polymerase exo - Tianium Taq DNA polymerase. Clontech
  • Pfu DNA polymerase Biotools
  • the amplification reaction is performed on a real - time amplification SmartCycler II (Cepheid) using the following cycles amplifies ⁇ :
  • EXAMPLE 5 Detection Assay ⁇ cific sequences is nucleic acid hybridization in liquid system, and no polymerization reaction, using probes with double fluorescent labeling and pfu DNA polymerase activity.
  • the MTB detection system described above was used as an experimental model.
  • the substrate and probe DNAs used were the following: Substrate DNAs.
  • Control plasmid obtained mediate ⁇ I cloning a 335 bp fragment of IS6110 region of Mycobacterium tuberculosis (MTB) in the pBlueScript SK do plásmi ⁇ (+).
  • Mutant IP mutation in the last base of the zo ⁇ na hybridization with IS and IS-INV primers. It generates a mismatch of the last base of the 3 'end of both primers when hybridizing with them (See hybridization scheme in Figure 1B).
  • IF mutant mutation in the penultimate base of the hybridization zone with the IS and IS-INV primers.
  • 2PF mutant mutation in the last two bases of the hybridization zone with the IS and IS-INV primers. It generates a mismatch of the last two bases of the 3 'end of both primers when hybridizing with them (See hybridization scheme in figure ID).
  • oligonucleotide was used as the detection probe: Lion tried IS-INV (SEQ ID 02). Probe with double fluorescent marking (5 'TAMRA FAM 3') that perfectly hybridizes (100% homology) with the control plasmid sequence (pMTB-Control), and has mismatches at the 3 'end with the IP mutant DNAs, IF and 2PF.
  • Probe with double fluorescent marking (5 'TAMRA FAM 3') that perfectly hybridizes (100% homology) with the control plasmid sequence (pMTB-Control), and has mismatches at the 3 'end with the IP mutant DNAs, IF and 2PF.
  • the expected mechanism of action in this non-nucleic acid polymerization detection system consists in the union of the probe by complementation of bases with the substrate nucleic acid. If the hybridization is perfect, the 3'-5 'exonuclease activity does not exert its action, so fluorescence would not be emitted. This would be the test case with the control plasmid pMTB-control. On the contrary, if when the duplex is formed, base mismatches occur at the 3 'end of the probe, the 3'-5' exonuclease activity would recognize the mismatch and cleave the mismatched bases emitting fluorescence. This is the case of the test with each Inclui ⁇ two mutants in this example.
  • the reaction will be carried out using the reaction buffers tested in the previous examples and in which the operation of the 3'-5 'exonuclease activity of the pfu has been verified.
  • temperature cycles similar to those used in the PCR assays will be applied to allow denaturation and hybridization of the probes with their substrate DNA.
  • the composition of the reaction mixture was as follows: 0.1 U / ⁇ l of pfu DNA polymerase (Biotools), Lion tested IS-INV (0.3 ⁇ M) and the specific reaction buffer of the pfu.
  • the final reaction volume was 20 ⁇ l in all cases.
  • the temperature cycles used were the following:
  • Second segment 10 sec at 58 0 C, with a curve of 20 ° C / sec
  • Second segment 20 sec at 58 0 C, with a curve of 20 ° C / sec
  • test results were monitored in a LightCycler real-time amplification device.
  • the results show the ⁇ ity of the detection system specific nucleic acid sequences in systems liquid hybridization using probes Lion type tested with double fluorescent labeling (5 'blocking 3' fluorophore) that pre ⁇ Senten mismatches at the 3 runs 'by hybridizing with the substrate nucleic acid, and in the presence of a 3'-5' error-correcting exonuclease activity, in an independent nucleic acid polymerization mechanism.
  • EXAMPLE 6 Test of use of the IS-INV probe as a probe.
  • results obtained in examples 1 and 2 demonstrate the possibility of detecting specific nucleic acid sequences using double fluorescent probes (preferably with the Quencher in 5 'position and fluorophore in 3' position) in gene amplification systems with a DNA polymerase with 3'-5 'activity exonuclease corrective tests, and in which the 3' end of the probe exhibits point mismatches with the substrate DNA to be identified.
  • the DNA polymerase recognizes the disappearance of the bases at the 3 'end of the first, and by the 3'-5' nuclease activity cleaves the mismatched bases that carry the fluorophore. At this point, when fluorophore and quencher are separated, a fluorescence emission occurs.
  • the double-labeled oligonucleotide acts simultaneously as an identification probe and as the first amplification, since when the bases unpaired by the 3'-5 'exonuclease action are eliminated, the first one is prepared to give priority to elongation. of a new DNA chain.
  • uses a system of these characteristics it provides information similar to that obtained with inter- calantes fluorophores such as SYBR Green.
  • the use of the signal generation system by nuclease activity 3 '-5' using probes that do not act as primers for the amplification reaction allow it to increase the specificity of the detection.
  • a method of am ⁇ plification real time used as system signal generating probe double fluor labeling described ⁇ cente and having the following structure: A) a sequence of 20 nucleotides that hybridizes perfectly (100 % homology) with the sequence to be identified; B) a spacer (dS) in position 3 'of the oligonucleotide sequence; C) a sequence of 3 nucleotides that include the two fluorescent markers (quencher and reporter) and that does not hybridize with the sequence to be detected.
  • dS spacer
  • pCMV Cytomegalovirus polymerase
  • Amplification primers and fluorescent probes are Amplification primers and fluorescent probes.
  • First CMVF (SEQ ID N 0 06). First Forward that perfectly hybridizes (100% homology) with the region of the CMV genome cloned in plasmids pCMV and pMUT-CMV. It acts as a oligonucleotide primer for DNA synthesis.
  • First CMR (SEQ ID No. 07). First Reverse that perfectly hybridizes (100% homology) with the region of the CMV genome cloned in plasmids pCMV and pMUT-CMV.
  • CMV-INV-Blok I tried (SEQ ID N 0 08, 5'- TCCGTCTGATCGTAGGTGTGAATAA -ds spacer- (TAMRA) tt (FAM-
  • Double fluorescent tide probe (5 'TAMRA
  • FAM 3 ' that has the following structure: A) a sequence of 20 nucleotides that perfectly hybridizes (100% homology) with the sequence to be identified; B) a spacer (dS) in position 3 'of the oligonucleotide sequence; C) a sequence of 3 nucleotides that include the two fluorescent markers (quencher and reporter) and that does not hybridize with the sequence to be detected.
  • This probe hybridizes to an internal region of the amplified product by the primers combines CMVF ⁇ / CMVR described above.
  • the composition of the reaction mixture was: 0.1 U / ⁇ l of DNA polymerase 5'-3 'exonuclease, 0.1 U / ml of pfu DNA polymerase, a mixture of dNTPs, first CMR (final concentration: 0.5 ⁇ M), first CMF (final concentration: 0.5 ⁇ M), CMV-INV-Block probe (final concentration: 0.5 ⁇ M) and the reaction buffer (Kit Certamp. Biotools), the final reaction volume being 20 ⁇ l in all cases.
  • the reaction mixture with pfu DNA polymerase was the next: Made with the Biotools Pfu DNA polymerase kit (Biotools), including 0.1 u / ⁇ l of Pfu in the mixture
  • DNA polymerase DNA polymerase, reaction buffers, a mixture of dNTPs, first CMR (final concentration: 0.5 ⁇ M), first CMF (final concentration: 0.5 ⁇ M), CMV-INV-Block probe
  • the reaction with DNA polymerase 5' - 3 'exonu- cleasafue follows: 0.1 U / ml DNA polymerase 5' - 3' exonuclease (Biotools DNA polymerase), buffer reac ⁇ , a mixture of dNTPs, first CMR (final concentration: 0.5 ⁇ M), first CMF (final concentration: 0.5 ⁇ M), CMV-INV-Block probe (final concentration: 0.5 ⁇ M) and the reaction buffer (Kit Certamp. Biotools) , the final reaction volume being 20 ⁇ l in all cases.
  • Amplification reactions were performed on a real - time amplification SmartCycler II (Cepheid) using the following cycles ampli fication ⁇ :
  • the temperature is maintained for 360 sec. at 95, 0 C.
  • the evolution of the amplification reaction was monitored in real time by reading in each amplification cycle the fluorescence level in the FAM channel Likewise, the amplified products were analyzed in 1.5% agarose gel stained with ethidium bromide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Método de detección de ácidos nucleicos mediante generación directa de una señal medible, y usos dados al mismo. La señal se genera por acción de una enzima con actividad 3'-5' nucleasa, y es detectable y cuantificable al realizarse en tiempo real. En dicho método, se emplean oligonucleótidos marcados fluorescentemente, que se ponen en contacto con el ácido nucleico. Si uno de estos oligonucleótidos no hibrida perfectamente con el ácido nucleico sustrato, la enzima cortará en las bases desapareadas, liberando de este modo el marcador presente en el oligonucleótido y generando la señal medible. El método puede ser usado para la detección de regiones variables y mutaciones en codones codificantes o no, utilizar oligonucleótidos que actúen como cebadores iniciadores de síntesis de DNA o únicamente como sondas de hibridación, y puede estar acoplado a sistemas de amplificación de ácidos nucleicos que usen enzimas termoestables o no, y a sistemas de detección simultánea, como la PCR en tiempo real.

Description

MÉTODO DE DETECCIÓN DE ÁCIDOS NUCLEICOS MEDIANTE GENERACIÓN DIRECTA DE UNA SEÑAL MEDIBLE
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un método de detección de ácidos nucleicos mediante generación direc¬ ta de una señal, por la acción de una enzima con activi¬ dad 3' -5' nucleasa, y los usos dados al mismo. La señal generada puede ser detectable y cuantificable y reali¬ zarse en tiempo real.
El ácido nucleico se pone en contacto con uno o más oligonucleótidos que no hibridan perfectamente con él, de manera que la enzima cortará en las bases desapa¬ readas generándose la señal.
El oligonucleótido puede estar marcado.
ANTECEDENTES DE LA INVENCIÓN
La detección y cuantificación de los ácidos nucleicos se encuentran entre las técnicas más importantes de la biología molecular y evoluciona rápidamente .
Las técnicas clásicas básicas para el análisis de ácidos nucleicos son la electroforesis y la hibridación con sondas, que se puede llevar a cabo tanto en fase liquida como en fase sólida.
Un paso muy relevante en el desarrollo de técnicas de manipulación de ácidos nucleicos fue el desarrollo de la técnica de la PCR (siglas en inglés de Polymerase Chain Reaction, Reacción en Cadena de la Polimerasa) .
La técnica de la PCR (Saiki et al., Science, 230, 1350-1354 (1985), Mullís et al., patentes norteame¬ ricanas US 4.683.195, US 4.683.202 y US 4.800.159) , permite la amplificación exponencial de ácidos nuclei- eos.
Dicha amplificación se consigue mediante ciclos repetitivos de desnaturalización por calor del ácido nucleico a estudio, unión de cebadores complementarios a dos regiones enfrentadas del ácido nucleico a amplifi¬ car, y extensión del ácido nucleico por la acción de una enzima polimerasa. La repetición de ciclos sucesivos de este proceso consigue una amplificación exponencial del ácido nucleico a estudio.
En la técnica de la PCR las polimerasas son utilizadas para obtener la amplificación del ácido nucleico objeto de estudio.
Las DNA polimerasas catalizan la síntesis de ácidos nucleicos, y a pesar de que todas ellas tienen en común la posibilidad de polimerizar los ácidos nucleicos en el sentido 5' -3', existen diferencias entre ellas en función de otras características como que presenten o no, por ejemplo: actividad exonucleasa de la doble hebra, actividad exonucleasa de hebra sencilla 3' -5', actividad exonucleasa 3' -5' de doble hebra, o actividad transcriptasa reversa.
Las polimerasas que presentan una actividad 3'- 5' exonucleasa, realizan la replicación del DNA con mucha mayor fidelidad ya que corrigen los errores que se hayan podido introducir en las diferentes bases replicadas (Brutlag, D. And Kornberg, A. J. Biol. Chem. (1972) 247:241-248). Cuando en los sistemas de replicación se utilizan DNA polimerasas con actividad exonucleasa 3' -5' correctoras de errores, el DNA obtenido incluye una proporción menor de bases erróneas en comparación con replicaciones donde no se ha utilizado este tipo de enzimas (Chang, L. M. S. , J. Biol.: Chem. (1977) 252:1873-1880.
Las DNA polimerasas con actividad exonucleasa 3' -5' correctoras de errores son ampliamente conocidas. En documentos como la patente con número de publicación US5500363, y la patente con número de publicación US5352778 se describe la obtención y producción de una DNA polimerasa termoestable recombinante con actividad 3' -5' correctora de errores.
En la patente con número de publicación US6489150 se describe el uso de este tipo de enzimas DNA polimerasas con actividad correctora de errores 3' -5' para la síntesis de ácidos nucleicos.
En la patente con número de publicación WO0181631 se describe un método para analizar en un ácido nucleico sitios variables en presencia de una polimerasa con actividad exonucleasa 3' -5'. Esta enzima en el caso de que uno de los cebadores no sea complemen¬ tario a la diana de ácido nucleico donde se encuentra el sitio variable, corta el extremo 3' del cebador, libe¬ rando el marcador de este cebador, y posteriormente se analiza la presencia o ausencia del mareaje. Mediante este método se amplifica y/o marca de forma selectiva una de las secuencias presentes en la mezcla. Sin embar¬ go, el proceso no genera en si mismo una señal detecta- ble, por lo que el análisis de la presencia de mareaje requiere un análisis adicional de los productos genera- dos .
Se ha desarrollado una variante de la PCR, la PCR en tiempo real, donde los procesos de amplificación y detección se producen de manera simultánea, sin nece- sidad de ninguna acción posterior. Además, mediante detección por fluorescencia se puede medir durante la amplificación la cantidad de ADN sintetizado en cada momento, ya que la emisión de fluorescencia producida en la reacción es proporcional a la cantidad de ADN forma- do. Esto permite conocer y registrar en todo momento la cinética de la reacción de amplificación (Higuchi R, Fokler C, Dollinger G, Watson R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio/Technology 1993; 11: 1026-30).
Actualmente la mayoría de los equipos que se asocian a la tecnología de PCR a tiempo real son los llamados termocicladores que incorporan un lector de fluorescencia y están diseñados para poder medir, en cualquier momento, la fluorescencia emitida en cada uno de los viales donde se realice la amplificación.
Los sistemas de detección por fluorescencia más empleados en la actualidad en la PCR a tiempo real se detallan a continuación:
• Agentes intercalantes fluorescentes (como el conocido como SYBR Green)
• Sondas de hidrólisis que utilizan la actividad 5' -3' nucleasa de las DNA polimerasas (tales como las conocidas como sondas TaqMan y sondas LNA)
• Sondas horquilla (tales como las conocidas co¬ mo Molecular Beacons y Scorpion) • Sondas de hibridación (tales como las conoci¬ das como sondas FRET, sondas TaqMan MGB y son¬ das MGB Eclipse)
El compuesto conocido con el nombre comercial de SYBR Green y protegido con la patente estadounidense con número de publicación US5436134, es un agente interca¬ lante fluorescente muy utilizado en la actualidad. Este compuesto es un derivado de la cianina que se une al ácido nucleico de doble hebra, dando una señal fluores- cente que aumenta de forma proporcional al aumento del producto de la PCR.
De la misma manera que se unen al ácido nucleico producto de la PCR, este tipo de agentes intercalantes pueden unirse a los dimeros de cebadores y a otros productos inespecificos, de manera que se pueden tener señales inespecificas de amplificación que conllevan la sobreestimación de la concentración de la diana a marcar .
Otro tipo de sistemas de marcación fluorescentes son las sondas de hidrólisis, como la conocida con el nombre comercial TaqMan, descrita en la patente de invención con número de publicación US5723591, estas sondas tienen unido un fluoróforo emisor (conocido en inglés como repórter) en el extremo 5' y un fluoróforo bloqueante (conocido en inglés como quencher)en el extremo 3' . Para realizar el seguimiento de la amplifi¬ cación de los ácidos nucleicos la sonda TaqMan es utili- zada junto a polimerasas con actividad 5' -3' exonuclea- sa. Cuando ambos fluoróforos están unidos a la sonda, el repórter queda apantallado por el quencher y no se produce emisión de señal. La sonda se une a la hebra de ácido nucleico que va a ser amplificada, cuando este ácido nucleico es replicado, la actividad 5' -3' exonu- cleasa de la DNA polimerasa 5' -3' exonucleasa, libera el extremo 5' de la sonda donde se encuentra unido el fluoróforo repórter produciéndose la emisión de la señal fluorescente .
Las sondas horquilla poseen secuencias repetidas invertidas en sus extremos 5' y 3' , permitiendo que se forme una estructura de horquilla por complementariedad de las dos regiones repetidas invertidas, en ausencia de la secuencia diana. La secuencia interna de la sonda es complementaria a la diana, de manera que en presencia de ella la estructura de horquilla se abre, distanciándose el fluoróforo repórter y el fluoróforo quencher, de forma que se emite la señal fluorescente.
Otras sondas conocidas son las sondas de hibri¬ dación donde el diseño de las mismas implica el uso de dos secuencias de oligonucleótidos específicos como sondas, cada una marcada con un fluoróforo diferente. Los extremos de las sondas son complementarios, siendo normalmente el extremo 3' de una de ellas donor, esto es la molécula que cuando es excitada por una fuente de luz, transfiere su energía al extremo 5' de la segunda sonda, molécula aceptora. Las dos sondas están diseñadas para hibridar en sus dianas especificas de forma que ambos fluoróforos están en estrecha proximidad, asi la transferencia de energía de resonancia sólo ocurre cuando ambas sondas se hibridan a la diana, muy próximas entre si. Existen otro tipo de sondas con un uso más limi¬ tado e incipiente como las sondas: ".Reso.nse.nse", "Light- up", "HyBeacon", "LUX", "Yin-yang ", "Ampliflúor" etc.
En la presente invención se proporciona un nuevo método para la detección y/o cuantificación de ácidos nucleicos mediante la acción de una enzima con actividad nucleasa 3' -5' .
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un método pa¬ ra la detección de secuencias especificas de ácidos nucleicos, DNA o RNA, a través de la generación de una señal detectable y/o cuantificable mediada por una actividad 3' -5' nucleasa. Dicho método consiste en poner en contacto el ácido nucleico substrato que se pretende identificar, con al menos un oligonucleótido diseñado de manera que dicho oligonucleótido es capaz de hibridar con el ácido nucleico substrato, dejando una o más bases desapareadas en el extremo 3' del oligonucleótido, o bases adyacentes.
La estructura del ácido nucleico de doble banda con bases desapareadas en el extremo 3' de la cadena oligonucleotidica es substrato de la actividad 3' -5' nucleasa, también presente que escinde las bases desapa¬ readas del oligonucleótido, asi como las bases que se encuentren en posición 3' de la zona desapareada, gene- rando una señal medible .
Dicho oligonucleótido puede incluir un marcador, bien en alguna de las bases que quedan desapareadas al generarse el híbrido oligonucleótido/substrato, bien en alguna base situada en posición 3' de la base desaparea- da en el dúplex. Adicionalmente, el oligonucleótido puede portar mareajes adicionales en cualquier número y posición a lo largo de la cadena oligonucleotidica .
El término marcador, como se utiliza en la pre¬ sente invención se refiere a cualquier átomo o molécula la cual puede ser utilizada para dar una señal detecta- ble y/o cuantificable, y la cual está unida al oligonu¬ cleótido .
Los marcadores pueden dar una señal detectable por fluorescencia, señal eléctrica, electroquímica, magnética, radioactividad, colorimetria, gravimetría, difracción de rayos X o absorción, actividad enzimática, señal quimioluminiscente, luminosa, o vibracional
En un aspecto mas concreto de la invención la cadena de oligonucleótidos presenta un doble mareaje con un fluoróforo bloqueante (conocido en inglés como quen- cher) y un fluoróforo emisor (conocido en inglés como repórter) .
En un aspecto más concreto de la invención el fluo¬ róforo quencher está en el extremo 5' de la cadena del oligonucleótidos mientras que el extremo 3' está marcado con un fluoróforo repórter.
En un aspecto del método se utilizan oligonucleó¬ tidos que no incorporan mareaje de ningún tipo en su secuencia, para la realización de ensayos por gravime¬ tría. En dichos ensayos, la señal generada no se determi¬ na por la escisión de un grupo marcado, sino por la diferencia de masa producida al escindirse una base o grupo de bases del extremo 3' del oligonucleótido medido por la actividad 3' -5' nucleasa. En un aspecto de la invención la fuente de activi¬ dad nucleasa 3' -5' procede de una polimerasa con activi¬ dad correctora de errores (proofreading) . Asimismo la actividad 3' -5' nucleasa, o la polimerasa con actividad 3' -5' correctora de errores puede ser resistente a incubaciones a altas temperaturas (enzimas termoesta- bles)o no (enzimas termolábiles) .
En el método de la invención, el ácido nucleico (DNA o RNA) puede proceder de cualquier muestra compleja que incluya este tipo de moléculas en su composición, tales como cortes o extensiones de tejidos animales o vegetales, cultivos celulares o materiales biológicos en general, alimentos, muestras de aguas, suelos o aires. Asimismo, puede proceder de muestras previamente procesa¬ das, tales como productos de transcripción in vitro (cDNA) o productos de amplificación génica (PCR) , amplificación isotérmica o haberse generado en sistemas de amplificación de circulo rodante. Finalmente, tanto la sonda como el sustrato, pueden presentarse en solución liquida, o en sistemas en que la sonda o el substrato se encuentren fijados a soportes sólidos, cualquiera que sea la naturaleza de los mismos (membranas, vidrio, plástico o similares) .
En una aplicación especifica del presente méto¬ do, este puede ser utilizado para la detección y discri¬ minación entre secuencias de ácidos nucleicos que difie¬ ren entre si en un único cambio de una base (SNPs) . Para ello, el oligonucleótido se diseña de forma que al hibridar con la secuencia substrato, la posición en que se encuentra la mutación de interés se sitúe en el extremo 3' del oligonucleótido.
La secuencia de dicho oligonucleótido debe hi- hibridar perfectamente con el ácido nucleico substrato que no presenta la mutación, y presentará en consecuen¬ cia un desapareamiento en el extremo 3' al hibridar con la secuencia substrato que presenta la mutación. Cuando se produce la hibridación entre el oligonucleótido y la secuencia de ácido nucleico substrato que no presenta la mutación, el dúplex oligonucleótido/ácido nucleico substrato es perfecto, sin ningún desapareamiento, no generándose ningún substrato para la acción de la acti- vidad 3' -5' nucleasa, por lo que el oligonucleótido permanece intacto no generándose ninguna señal.
Por el contrario, al hibridar con el DNA subs¬ trato que presenta la mutación, el dúplex ácido nuclei- co/oligonucleótido no es perfecto, dejando un desaparea¬ miento en el extremo 3' del oligonucleótido que es reconocido por la actividad 3' -5' nucleasa presente en la mezcla.
Mediante dicha actividad se escinden de la cade¬ na del oligonucleótido la base desapareada, liberándose asi una señal detectable.
En una aplicación del método, este es utilizado para la detección de la existencia de mutaciones en codones codificantes del ácido nucleico.
Para ello, el oligonucleótido es diseñado de forma que el codón que se pretende analizar se sitúe en el extremo 3' del oligonucleótido. La secuencia de dicho oligonucleótido debe ser perfectamente complementaria al ácido nucleico susbstrato no mutante, que no se pretende detectar. En presencia de ácidos nucleicos substrato con mutaciones en dicho codón, el dúplex oligonucleóti- do/ácido nucleico substrato presenta desapareamiento de - Il ¬
las bases mutadas en el extremo 3' del oligonucleótido, que se convierten en substrato de la actividad 3' -5' nucleasa .
La aplicación de este método permite identificar cambios en cualquiera de las tres bases constituyentes del codón codificante, tanto si se trata de mutaciones puntales en cualquiera de las posiciones, como si se trata de mutaciones dobles o triples en dicho codón.
En esta aplicación, el oligonucleótido marcado puede presentar modificaciones adicionales en su secuen¬ cia, como la unión de bases por enlaces no fosfodiester o inclusión de espaciadores con el objeto de proteger ciertas posiciones de la cadena oligonucleotidica de la actividad 3' -5' nucleasa, en el caso de que estas posi¬ ciones representen mutaciones conservativas.
En un aspecto de la invención el oligonucleótido o los oligonucleótidos actúa simultáneamente como fuente de generación de señal mediada por la actividad 3' -5' nu¬ cleasa, asi como de cebador de reacciones de extensión del ácido nucleico, tanto en sistemas de extensión de un cebador (primer extensión) como amplificación mediada por una actividad polimerasa, de manera que simultáneamente a la generación de señal se produce la extensión del ácido nucleico .
Para ello, se ponen en contacto el DNA substrato, el oligonucleótido, una mezcla de dNTPs necesario para la reacción de extensión del ácido nucleico, una enzima con actividad 3' -5' nucleasa y una enzima con una actividad polimerasa, asi como los bufferes adecuados para el funcionamiento de las actividades enzimáticas. En el caso de reacciones de amplificación génica ti¬ po PCR se requiere un cebador adicional de polaridad opuesta que puede ser un oligonucleótido standard o presentar asimismo desapareamientos en la región 3' al hibridar con el DNA sustrato. La utilización de un sistema de PCR con dos cebadores susceptibles de ser corregi¬ dos por una actividad 3' -5' nucleasa permite incrementar la especificidad del sistema. Finalmente este segundo cebador puede estar asimismo marcado, generando una señal idéntica o diferente a la generada por el primer cebador.
En esta aplicación de la invención y dado que se acopla una reacción de catálisis mediada por una activi¬ dad 3' -5' nucleasa y una reacción de polimerización mediada por una actividad polimerasa, la enzima utilizada puede ser una polimerasa con actividad 3' -5' nucleasa correctora de errores.
Asimismo, y debido a que en la reacción de primer extensión, y especialmente en la reacción de PCR se requiere la aplicación de ciclos sucesivos de calenta¬ miento/enfriamiento, la enzima puede ser una polimerasa con actividad 3' -5' nucleasa correctora de errores ter- moestable .
En esta aplicación, el oligonucleótido marcado se diseña de modo que hibride con el DNA susbtrato que se desea detectar excepto en el extremo 3' terminal del oligonucleótido, o en bases adyacentes a este extremo. Al hibridar el oligonucleótido con el DNA substrato se genera un dúplex con desapareamientos en el extremo 3' terminal del oligonucleótido. Las bases desapareadas del oligonucleótido son escindidas por la actividad 3' -5' nucleasa, liberándose el mareaje que se encontraba unido a dichas bases. Al producirse la escisión de dichas bases el oligonucleótido acortado híbrida ahora perfectamente con el DNA substrato, y presenta un extremo 3' con un grupo OH libre, por lo que dicho oligonucleótido puede ahora servir como cebador de la elongación de cadenas de ácido nucleico mediada por la actividad polimerasa.
En este tipo de ensayos, el oligonucleótido utiliza¬ do como sistema generador de señal/cebador de síntesis de ácidos nucleicos puede presentar o no modificaciones adicionales que bloqueen el grupo hidroxilo de la última base en posición 3', para proteger la hidrólisis de deter¬ minadas posiciones, o con el objeto de impedir la reac¬ ción de elongación a partir del oligonucleótido no modi¬ ficado por la actividad 3' -5' nucleasa.
Así, en reacciones de primer extensión o PCR de SNPs, la utilización del oligonucleótido con extremo 3' no bloqueado permite la elongación o amplificación tanto del DNA que se pretende detectar, como de los DNAs que no se pretende identificar.
Sin embargo, únicamente la elongación o amplifica¬ ción del DNA de interés genera la señal detectable media¬ da por la actividad 3' -5' nucleasa.
Por el contrario, el uso de oligonucleótidos con ex¬ tremo 3' modificado bloquea tanto la amplificación como la emisión de señal de la secuencia que no se pretende detectar .
En un aspecto más concreto de la invención el oligo¬ nucleótido en sistemas de extensión de ácidos nucleicos o amplificación actúa únicamente como sistema generador de señal mediada por la actividad 3' -5' nucleasa, y no funciona como cebador de reacción. En este sistema, el oligonucleótido funciona como una sonda, uniéndose al ácido nucleico de interés y generando una señal mediada por la actividad 3' -5' nu- cleasa. En consecuencia, el sistema requiere la presencia de dos o más primers cebadores de reacción de elongación de ácidos nucleicos, el oligonucleótido marcado que actuará como sonda, una polimerasa con actividad 3' -5' nucleasa correctora de errores, una polimerasa con acti¬ vidad de desplazamiento de cadena y/o actividad nucleasa 5' -3', una mezcla de dNTPs y los búferes adecuados. Alternativamente, los oligonucleótidos cebadores que priman la síntesis de DNA pueden presentar o no desapareamientos puntuales en el extremo 3' al hibridar con el sustrato .
Si la enzima que presentan actividad de desplaza¬ miento de cadena presentan asimismo actividad 5' -3' nucleasa, y para garantizar que la señal generada procede de la actividad 3' -5' nucleasa, y no de la actividad 5'- 3' nucleasa de la polimerasa con que se suplementa la reacción, es necesario introducir modificaciones adicio¬ nales en el oligonucleótido. Para inhibir la actividad 5' -3' de este tipo de polimerasas, se pueden utilizar diversas estrategias, como la inclusión de una región palindrómica en el extremo 5' del oligonucleótido, o la modificación química del extremo 5' del mismo, tales como fosforilación, adición de bases con polaridad invertida mediante enlaces 5' -5'.
Finalmente, y para evitar la elongación a partir del oligonucleótido utilizado como sonda, este debe también presentar modificaciones adicionales en el extremo 3' , mediante cualquier técnica que bloquee el extremo OH libre, como fosforilación o adición de cualquier molécula unida a dicho grupo. La utilización simultánea de oligonucleótidos con diferentes mareajes permite la multiplexación de reaccio¬ nes de amplificación o el análisis de diferentes cambios en la secuencia amplificada.
En una aplicación especial, el método es utilizado en reacciones de amplificación génica en las que el oligonucleótido presenta se encuentra marcado con un fluoróforo quencher está en el extremo 5' de la cadena del oligonucleótidos mientras que el extremo 3' está marcado con un fluoróforo repórter. En esta aplicación, la reacción de amplificación se realiza acoplado a un equipo que permite monitorizar la emisión de fluorescencia en cada ciclo de amplificación permitiendo asi la realización de un ensayo de amplificación en tiempo real. Dicha aplicación puede realizarse utilizando oligonucleó¬ tidos que funcionen simultáneamente como generadores de señal y cebadores de elongación de cadena, o con oligonu¬ cleótidos que funcionen como sondas puras, sin participar como cebadores de reacción de elongación.
En un aspecto de la invención el método de gene¬ ración directa de la señal se utiliza en la detección de una secuencia especifica en un sistema de hibridación con ausencia de reacción de polimerización. Dicho método requiere una concentración alta del ácido nucleico subs¬ trato a identificar y consiste en poner en contacto el ácido nucleico substrato con la sonda marcada y la acti¬ vidad 3' -5' nucleasa, pudiendo esta ser una polimerasa con actividad 3' -5' nucleasa correctora de errores. La mezcla no contiene dNTPs, ya que no se realiza una elon¬ gación de cadena. Dicho método puede realizarse en un único paso de hibridación/catálisis, o en ciclos sucesi¬ vos en los que en un paso de incremento de temperatura se separan el oligonucleótido y el ácido nucleico substrato y en un paso posterior de incubación a temperatura mas baja se permite la hibridación del acido nucleico subs¬ trato con una nueva sonda.
De esta manera se produce un incremento lineal de la señal en cada ciclo del proceso. En una aplicación especial, se utiliza un oligonucleótido que se encuentra marcado con un fluoróforo quencher en el extremo 5' de la cadena, mientras que el extremo 3' está marcado con un fluoróforo repórter. En esta aplicación, el proceso cíclico de hibridación/catálisis se realiza en un equipo que permite monitorizar la emisión de fluorescencia en cada ciclo de amplificación permitiendo asi la realiza¬ ción de un ensayo de detección en tiempo real.
Los reactivos empleados en la presente invención pueden presentarse en kits de detección de ácidos nuclei¬ cos. Los kits incluyen los oligonucleótidos con la se¬ cuencia complementaria a la que queremos detectar con una o más bases no complementarias en el extremo 3' de la cadena. Los oligonucleótidos pueden estar marcados, en el caso de que no estén marcados, los reactivos marcadores específicos pueden estar también incluidos en el kit .
Además los kits incluyen una enzima con actividad
3' -5' nucleasa, como la polimerasa con actividad 3' -5' correctora de pruebas (pfu) , u otra. Los kits pueden contener enzimas adicionales con actividad polimerasa.
El kit puede incluir al menos un oligonucleótido cebador del ácido nucleico, que puede estar o no marcado
El kit también pueden contener otros reactivos necesarios para llevar a cabo la detección y los materia- les necesarios para la amplificación, por ejemplo, bufer, dNTPs, iones magnesio, asi como las instrucciones para seguir el ensayo.
DESCRIPCIÓN DE LOS DIBUJOS
Se complementa la presente memoria descriptiva, con un juego de figuras, ilustrativos del ejemplo prefe¬ rente y nunca limitativos de la invención.
En las Figuras IA, IB, IC, y ID, se muestra el esquema de hibridación de los oligonucleótidos IS e IS- INV con los DNA substrato. Fig IA) pMTB-Control, Fig.lB)Mutante IF, Fig. IC) Mutante IP y FiglD) Mutante 2PF. La secuencia central de cada esquema muestra la secuencia del DNA substrato. La secuencia superior corresponde al primer IS y la secuencia inferior al primer IS-INV. En cajas se señalan los desapareamientos entre las sondas y los DNAs substrato.
En la Figura 2A, 2B, 2C, se muestra en la parte izquierda los resultados de amplificación en tiempo real de diferentes DNAs substrato en gráficas de fluorescencia (canal FAM) frente a número de ciclos en diferentes casos. En la parte derecha, de estas figuras, se muestra el análisis en gel de agarosa de los productos amplifica¬ dos obtenidos al final del proceso. Fig 2A) Mezcla de amplificación con sonda IS y pfu DNA polimerasa; Fig2B) Mezcla de amplificación con sonda IS-INV y pfu DNA polimerasa; y Fig2C) Mezcla de amplificación con sonda IS-INV y DNA polimerasa 5' -3' exonucleasa polimerasa.
En las figuras 3A y 3B se muestran los resultados del ensayo comparativo de amplificación en tiempo real utilizando como fuente de fluorescencia la sonda IS-INV en presencia de pfu DNA polimerasa, o el fluoróforo intercalante SYBR Green I en presencia de pfu. En la figura 3A se muestra el gráfico de fluorescencia frente al número de ciclos. En la parte superior de la gráfica se presentan los perfiles de amplificación obtenidos al utilizar la sonda IS-INV como fuente de fluorescencia, en la parte inferior al utilizar el fluoróforo intercalante SYBR Green. La figura 2B muestra el análisis en gel de agarosa de los productos amplificados obtenidos. El carril 1 corresponde a una dilución de ICT3, el carril 2 a una dilución de ICT6, el carril 3 una dilución ICT8, y el carril 4 a un control negativo No-DNA, el carril M corresponde a 100 pb Ladder. Los carriles de la derecha corresponde al ensayo con SYBR Green I, y los de la izquierda a la Sonda IS-INV.
En la Figura 4 se muestran los resultados de am¬ plificación en tiempo real, en una gráfica de fluorescencia frente a números de ciclos, correspondiente al ejem¬ plo 3 de la presente invención.
En la Figura 5A se muestra los resultados de am¬ plificación en tiempo real, en una gráfica de fluorescencia frente a números de ciclos, correspondiente al ejem¬ plo 4 de la presente invención, y en la Fig 5B, el análi- sis en gel de agarosa de los productos amplificados obtenidos al final del proceso. En el gel de agarosa, los cinco carriles de la derecha corresponde a los resultados de PCR sin sonda y los cinco carriles de la izquierda al PCR con sonda, representando M: ladder 100 pb, 2: DNA pol 5' -3' exo +, 3:Taq polimerasa exo-, 4: control "no DNA".
En la Figura 6 se muestran los resultados de de¬ tección mediante un sistema independiente de síntesis de DNA mostrado en el ejemplo 5, en una gráfica de fluores- cencia frente a número de ciclos. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
EJEMPLO 1.
Ensayo de amplificación en tiempo real utilizando oligonucleótidos con doble mareaje fluorescente como cebadores de la reacción de amplificación en presencia de actividad pfu DNA polimerasa.
Se ensayó la amplificación y detección de fluorescencia en un sistema de amplificación en tiempo real utilizando cebadores con doble mareaje en presencia de la actividad pfu DNA polimerasa, sobre DNAs substrato con diferentes niveles de desapareamiento en la zona de hibridación de los cebadores. En este y en el resto de ejemplos de la presente invención, los oligonucleótidos que portan el mareaje y han sido diseñados de modo que presenten desapareamientos de bases en el extremo 3' o bases adyacentes al hibridar con el ácido nucleico substrato, y que les hace en consecuencia susceptibles de ser parcialmente degradados y generar una señal mediada por la actividad 3' -5' nucleasa incluida en las mezclas de reacción se les asigna el nombre genérico de sondas Lion (Lion probes)
Para la realización del ensayo se utilizó un sistema de amplificación de una zona conservada de la región IS6110 de Mycobacterium tuberculosis (MTB) . Los DNAs substrato y cebadores y sondas utilizados se mues- tran a continuación.
DNAs substrato.
Un plásmido Control (pMTB-Control) obtenido me- diante clonación de un fragmento de 335 pb de la región IS6110 de Mycobacterium tuberculosis (MTB) en el plásmi- do pBlueScript SK(+).
Tres secuencias mutantes (productos de amplifi- cación génica) de 310 pb de la región IS6110 clonada en el plásmido control (pMTB-Control) anteriormente descri¬ to.
Mutante IP: mutación en la penúltima base de la zona de hibridación con los cebadores Lion probé IS y
Lion probé IS-INV. Genera un desapareamiento de la última base del extremo 3' de ambos cebadores al hibri- dar con ellos, como se ve en la figura IC.
Mutante IF: mutación en la última base de la zo¬ na de hibridación con los cebadores Lion probé IS y Lion probé IS-INV. Genera un desapareamiento de la penúltima base del extremo 3' de ambos cebadores al hibridar con ellos, como se ve en la figura IB.
Mutante 2PF: mutación en las dos últimas bases de la zona de hibridación con los cebadores Lion probé IS y Lion probé IS-INV. Genera un desapareamiento de las dos últimas bases del extremo 3' de ambos cebadores al hibridar con ellos, como se ve en la figura ID.
Cebadores de amplificación.
Como cebadores de las reacciones de amplificación, se utilizaron los siguientes oligonucleótidos :
Lion probé IS (SEQ ID N0Ol, 5'-
CGCAAAGTGTGGCTAACCCTGAACCGTGA-3' ) . Primer Forward que presenta doble mareaje en los extremos del mismo. El extremo 5' se marcó con FAM ( 6-carboxi-fluoresceina) y el extremo 3' con TAMRA ( 6-carboxitetrametil-rodamina) , un bloqueante de Fam. Híbrida perfectamente con la secuencia del plásmido control, y presenta desaparea¬ mientos en el extremo 3' con los DNAs mutantes IP, IF y 2PF.
Lion probé IS-INV (SEQ ID N°02, 5'- CGCAAAGTGTGGCTAACCCTGAACCGTGA-3' ) • Primer Forward con secuencia idéntica a la del primer Lion probé IS pero con los mareajes de los extremos invertidos. Así, el extremo 5' se encuentra marcado con TAMRA y el extremo 3' con FAM. Al igual que el primer IS, híbrida perfecta¬ mente con la secuencia del plásmido control, y presenta desapareamientos en el extremo 3' con los DNAs mutantes IP, IF y 2PF.
Primer MT2 (SEQ ID N°03, 5'- CATCGTGGAAGCGACCCGCCAGCCCAGGAT-3' ) . Primer reverse, que híbrida perfectamente con las secuencias de los cuatro substratos anteriormente descritos. Este primer se utilizo como cebador reverse en todos los experimentos analizados en este ejemplo.
Para comprobar el efecto de la orientación de los mareajes fluorescentes en la sonda utilizada como primer se ensayaron dos mezclas alternativas; una utili¬ zando la sonda IS, y otra utilizando la sonda IS-INV. Las mezclas de amplificación quedaron como sigue:
Mezcla de amplificación con Lion probé IS y pfu DNA polimerasa: Realizada con el kit Biotools Pfu DNA polimerasa (Biotools B & M Labs, Madrid, Spain) , inclu¬ yendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs, Lion probé IS (0,3 μM final) y oligonucleótido MT2 (0,5 mM final), siendo el volumen final de reacción de 20 μl . Mezcla de amplificación con Lion probé IS-INV y pfu-DNA polimerasa: Realizada con el kit Biotools Pfu DNA polimerasa (Biotools), incluyendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs, Lion probé IS-INV (0,3 μM final) y oligonucleótido MT2 (0,5 mM final), siendo el volumen final de reacción de 20 μl .
Mezcla de amplificación con Lion probé IS-INV y DNA polimerasa 5' -3' exonucleasa: Realizada con el kit
Biotools DNA polimerasa (Biotools) , incluyendo en la mezcla 0,1 u/μl de DNA polimerasa 5' -3' exonucleasa, los bufferes de reacción, una mezcla de dNTPs, Lion probé
IS-INV (0,3 μM final) y oligonucleótido MT2 (0,5 mM final), siendo el volumen final de reacción de 20 μl .
Con cada mezcla se ensayó la amplificación de plásmido pMTB-Control (5000 copias) y de los mutantes IP, IF y 2PF (producto de PCR directo) , asi como de un control no-DNA.
La reacción de amplificación se realizó en un equipo de amplificación en tiempo real SmartCycler II (Cepheid) utilizando los siguientes ciclos de amplifica- ción:
En una primera etapa se mantiene la temperatura durante 360 seg. a 95,O0C.
En un a segunda etapa se repite el siguiente ci¬ clo 45 veces:
Temperatura a 95,O0C durante 5 seg. Temperatura a 57,O0C durante 5 seg. Temperatura a 60,00C durante 40 seg. La evolución de la reacción de amplificación se monitorizó en tiempo real mediante la lectura en cada ciclo de amplificación del nivel de fluorescencia en el canal FAM, medido en el paso de incubación a 60° C. Asimismo, los productos amplificados fueron analizados en gel de agarosa 1,5% teñida con Bromuro de etidio. Los resultados se muestran en la figura 2.
Todas las muestras amplificadas con la Lion probé IS (mareaje 5' FAM 3' TAMRA) resultaron negati¬ vas en las curvas de fluorescencia generadas durante el proceso de amplificación, como se muestra en la figura 2A. Por el contrario, todas las muestras amplificadas con la Lion probé IS-INV y pfu-DNA polimerasa resulta- ron positivas, con niveles de fluorescencia altos. La aparición de fluorescencia fue muy rápida en el caso de la amplificación de los DNAs substrato mutantes, IF (1) , IP (2) (valores umbrales muy bajos) y mucho mas tardia en la amplificación del plásmido pMTB control (3) y control no-DNA (4), como se muestra en la figura 2B. Finalmente, las muestras amplificadas con DNA polimerasa 5' -3' exonucleasa (que carece de actividad exonucleasa 3' -5') y la Lion probé IS-INV resultaron negativas en todos los casos, demostrando que la señal obtenida en los ensayos con pfu se debia a la presencia de dicha actividad exonucleasa.
El análisis de los productos amplificados en gel de agarosa demostró por el contrario, que tanto las muestras de DNA mutante amplificadas con la Lion probé IS, como las amplificadas con la Lion probé IS-INV, utilizando en ambos casos la pfu DNA polimerasa hablan resultado positivas, con aparición de una banda de amplificación del tamaño esperado (220 pb) en todos los casos. Por el contrario, las muestras amplificadas de pMTB y controles no-DNA resultaron negativas, con aparición de bandas de bajo peso molecular correspondientes a primer-dimer (dimero cebador) .
Los resultados obtenidos confirman que la actividad 3' -5' exonucleasa de la pfu DNA polimerasa es efectiva en la amplificación y generación de señales fluorescentes utilizando sondas con doble mareaje (fluoróforo + bloqueante) que presenten bases desapareadas en el extremo 3' del primer con el DNA substrato. Sin embargo, la orientación de los mareajes es esencial a la hora de generar dicha señal fluorescente. Asi, la utilización de sondas con el fluoróforo en posición 5' y el bloqueante en posición 3' son efectivas en la reacción de amplifi- cación, pero no en la generación de señal fluorescente. Esto puede explicarse a que si bien el bloqueante en posición 3' es eliminado al ejercer la pfu su actividad correctora de errores, el mareaje fluorescente queda integrado en el extremo 5' de los productos amplifica- dos, resultando quencheado (bloqueado) , por la secuencia de DNA. Por el contrario, la utilización de sondas con el fluoróforo unido al extremo 3' y el bloqueante en el extremo 5' , produce la liberación directa del fluoróforo al ejercer la pfu su actividad correctora de errores, y permitiendo asi la emisión efectiva de fluorescencia.
La aparición de señales fluorescentes en las mues¬ tras no-DNA asociada a la observación de bandas de dimerización de cebadores en los geles de agarosa, sugiere que en este sistema la sonda utilizada como primer en combinación con pfu, aun presentando un mecanismo de acción totalmente diferente, genera resultados similares a los obtenidos con el uso de fluoróforos intercalantes como el SYBR Green. Esto es debido a que la liberación de fluorescencia mediada por la actividad 3' -5' exonucleasa de la pfu es efectiva siempre que se produzca una hibridación con desapareamiento del extremo 3' de la sonda, independientemente del origen del DNA substrato .
EJEMPLO 2.
Comparación de eficiencia de emisión de fluorescencia en sistemas de amplificación en tiempo real con pfu DNA polimerasa, utilizando oligonucleótidos con doble marca- je fluorescente (Lion probes) como cebadores de la reacción ó fluoróforos intercalantes (SYBR Green) .
Dado que en el ejemplo 1 se observó que la uti- lización de sistemas de amplificación con pfu DNA polimerasa utilizando como cebador de la reacción una sonda con doble mareaje fluorescente en presencia de substra¬ tos que introducen desapareamientos en el extremo 3' de la sonda, genera resultados de fluorescencia similares a los obtenidos con fluoróforos intercalantes, como el SYBR Green, se ha realizado un ensayo comparativo de ambos sistemas.
Para ello, se utilizó un sistema de amplificación de MTB similar al utilizado en el ejemplo 1. Los DNAs substrato y cebadores y sondas utilizados se muestran a continuación .
DNA substrato.
Mutante 2PF: mutación en las dos últimas bases de la zona de hibridación con las Lion probes IS e IS-INV. Genera un desapareamiento de las dos últimas bases del extremo 3' de ambos cebadores al hibridar con ellos.
Cebadores de amplificación. Como cebadores de las reacciones de amplifica¬ ción, se utilizaron los siguientes oligonucleótidos :
Lion probé IS-INV (SEQ ID N°02) . Sonda con doble mareaje fluorescente (5' TAMRA FAM 3'). Hibrida par¬ cialmente con las secuencia del DNA substrato Mutante 2PF, presentando un desapareamiento de las 2 últimas bases del extremo 3' del primer al hibridar con el substrato .
Primer ISFOW (SEQ ID N°04, 5'- CGCCAACTACGGTGTTTACGG-3' ) • Primer forward (cebador en sentido directo) que hibrida perfectamente (100% de homología) con la secuencia del DNA substrato Mutante 2PF.
Primer ISREV (SEQ ID N°05, 5'-
CGACACATAGGTGAGGTCTGCTA-3' ) • Primer reverse (cebador en sentido inverso) que hibrida perfectamente (100% de homología) con la secuencia del DNA substrato Mutante
2PF.
Se prepararon dos mezclas de reacción alternati¬ vas :
Mezcla de amplificación con Lion probé IS-INV y pfu-DNA polimerasa: Realizada con el kit Biotools Pfu DNA polimerasa (Biotools), incluyendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs, Lion probé IS-INV (0,3 μM final) y oligonucleótido ISREV (0,5 mM final), siendo el volumen final de reacción de 20 μl .
Mezcla de amplificación con SYBR-Green y pfu-DNA polimerasa: Realizada con el kit Biotools Pfu DNA poli- merasa (Biotools) , incluyendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs, oligonucleótido ISFOW (0,5 μM final), oligonucleótido ISREV (0,5 mM final) y SYBR Green I (Sigma-Aldrich Corp, St. Louis, Missouri, USA), siendo el volumen final de reacción de 20 μl .
Con cada mezcla se ensayó la amplificación de diluciones seriadas (DNA no diluido y diluciones 1/103, 1/106 y 1/108) y un control "no-DNA" .
La reacción de amplificación se realizó en un equipo de amplificación en tiempo real SmartCycler II (Cepheid) utilizando los siguientes ciclos de amplifica- ción:
En una primera etapa se mantiene la temperatura durante 360 seg. a 95,O0C.
En una segunda etapa se repite el siguiente ci¬ clo 45 veces:
Temperatura a 95,O0C durante 5 seg. Temperatura a 57,O0C durante 5 seg. Temperatura a 60,00C durante 40 seg.
La evolución de la reacción de amplificación se monitorizo en tiempo real mediante la lectura en cada ciclo de amplificación del nivel de fluorescencia en el canal FAM, medido en el paso de incubación a 60° C. Asimismo, los productos amplificados fueron analizados en gel de agarosa 1,5% teñida con Bromuro de etidio. Los resultados se muestran en la figura 3A, y 3B.
Como se muestra en la figura 3A, todas las mués- tras analizadas, tanto las amplificadas en presencia de la Lion probé IS-INV, como las amplificadas en presencia de SYBR Green resultaron positivas. Sin embargo, la aparición de señal fluorescente fue más rápida en las muestras amplificadas con la sonda IS-INV (mitad supe¬ rior de la gráfica) que en las muestras amplificadas con SYBR Green (mitad inferior de la gráfica) . Asi, las muestras amplificadas con Lion probé IS-INV presentaban una disminución media en los valores de Ct (ciclo um¬ bral) con respecto a las mismas muestras amplificadas en presencia de SYBR Green de aproximadamente 6,155 ciclos. Por otro lado, si bien el control "no-DNA" resultó positivo en ambos ensayos, en la muestra amplificada con Lion probé IS-INV, la curva de fluorescencia aparecía 2,35 ciclos mas tarde que en el control amplificado con SYBR Green.
La tabla 1 de resultados muestra los valores de Ct obtenidos en las muestras amplificadas con sonda IS- INV y los obtenidos con SYBR Green.
Tabla 1
Figure imgf000030_0001
Figure imgf000031_0001
El valor medio de retardo de los valores de Ct de las muestras amplificadas con SYBR Green con respecto a las muestras amplificadas con sonda IS-INV se calculó como la media aritmética de las diferencias de Ct obte¬ nidas en cada dilución analizada.
Retardo medio = [ (A5-A1) + (A6-A2) + (A7-A3) ] / 3 = 5,46 ciclos
El margen de seguridad de lectura especifica se calculo como la diferencia entre el valor de CT del control no-DNA y el valor de Ct de la dilución mas baja analizada (dil ICT8) .
Margen en muestras amplificadas con sonda IS- INV: A4-A3 = 11,12 ciclos
Margen en muestras amplificadas con SYBR Green: A8-A7 = 3,04 ciclos
Como se muestra en la figura 3B, el análisis de los productos amplificados en gel de agarosa al 1,5% teñida con bromuro de etidio, confirmó la presencia de bandas de amplificación del tamaño esperado en todas las muestras de DNA amplificadas, y la ausencia de banda en los controles "no-DNA", independientemente del sistema de generación de fluorescencia ( Lion Probé IS-INV o SYBR Green I) utilizado.
Los resultados obtenidos indican que si bien la utilización como cebador de sondas con doble mareaje en presencia de pfu DNA polimerasa genera resultados simi¬ lares a los obtenidos utilizando fluoróforos intercalan¬ tes como SYBR Green, el nuevo método mejora tanto la sensibilidad, como potencialmente la especificidad de la detección. Asi, los valores mas tempranos de aparición de fluorescencia, asi como los mayores valores de fluo¬ rescencia obtenidos indican una mejora de la sensibili¬ dad del sistema. Por otro lado la combinación de dismi¬ nución de valores de CT de las muestras amplificadas y el retardo en la aparición de señal fluorescente en los controles "no-DNA" incrementa el rango de seguridad de detección de señal especifica con respecto al SYBR Green. Asi, la diferencia en ciclos entre la última muestra detectable y la señal de primer dimer en el experimento con sonda IS-INV fue de 11,8 ciclos por 3,3 ciclos en el experimento de amplificación con SYBR Green .
EJEMPLO 3. Confirmación de ausencia de actividad 3' -5' exonucleasa de la pfu sobre sondas ssDNA marcadas fluo¬ rescentemente .
Con el objeto de garantizar que la señal fluo¬ rescente obtenida en los sistemas ensayados en los ejemplos 1 y 2 no se deba a una degradación no depen- diente de substrato de las sondas marcadas mediada por la actividad 3' -5' exonucleasa de la pfu, se realizaron ensayos de incubación de la Lion probé IS-INV con pfu en ausencia de DNA substrato. Para ello, se prepararon dos mezclas de reacción alternativas:
A.- Mezcla de reacción con todos los reactivos de amplificación, excepto primer adicionales. La mezcla de incubación presentaba en consecuencia la siguiente composición: Realizada con el kit Biotools Pfu DNA polimerasa (Biotools), incluyendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs y Lion probé IS-INV (0,3 μM final), siendo el volumen final de reacción de 20 μl en todos los casos.
B.- Mezcla de reacción con todos los reactivos de amplificación, excepto primer adicionales y dNTPs. La mezcla de incubación presentaba en consecuencia la siguiente composición: Realizada con el kit Biotools Pfu DNA polimerasa (Biotools), incluyendo en la mezcla 0,1 u/μl de Pfu DNA polimerasa, los bufferes de reacción y Lion probé IS-INV (0,3 μM final), siendo el volumen final de reacción de 20 μl en todos los casos.
La generación de señal fluorescente en ambas mezclas de reacción se ensayó por duplicado en ausencia de DNA substrato. Las condiciones de incubación utiliza¬ das fueron idénticas a las empleadas durante un ensayo de amplificación. Para ello el ensayo se realizó en un equipo de amplificación en tiempo real SmartCycler II (Cepheid) utilizando los siguientes ciclos de temperatu¬ ra :
En una primera etapa se mantiene la temperatura durante 240 seg. a 95,O0C.
En una segunda etapa se repite el siguiente ci¬ clo 40 veces:
Temperatura a 95,O0C durante 10 seg.
Temperatura a 58,O0C durante 20 seg. Temperatura a 68,O0C durante 60 seg.
Se monitorizaron los niveles de fluorescencia en el canal FAM en cada una de las incubaciones a 68° C duran- te el proceso.
Como se muestra en la figura 4 en ningún caso se obtuvo señal de fluorescencia durante el proceso de incubación, garantizándose en consecuencia, que las señales fluorescentes obtenidas durante los ensayos no se deben a degradación de las sondas ssDNA con doble mareaje, debidos a la actividad 3' -5' exonucleasa de la pfu DNA polimerasa en un mecanismo de degradación inde- pendiente de substrato.
EJEMPLO 4. Comprobación de ausencia de actividad 5' -3' exonucleasa contaminante.
Con el objeto de garantizar la ausencia total de posibles actividades 5' -3' exonucleasa contaminantes en la preparación de pfu DNA polimerasa que pudieran interferir en la interpretación de los resultados obtenidos, se realizó un ensayo de amplificación/detección con sondas TaqMan que requieren de la presencia de una actividad 5' -3' exonucleasa para generar señal fluores¬ cente .
El modelo experimental utilizado en este ejemplo es un sistema de amplificación y detección con sonda TaqMan de una región conservada de la región codificante de la polimerasa de citomegalovirus humano (CMV) . Los DNAs substrato y cebadores y sondas utilizados se mues¬ tran a continuación: DNA substrato.
Un plásmido (pCMV) obtenido mediante clonación de un fragmento conservado de 350 pares de bases (pb) de la región codificante de la polimerasa de Citomegalovi¬ rus (CMV) en el plásmido pBlueScript SK(+). Cebadores de amplificación y sondas fluorescentes .
Primer CMVF (SEQ ID N006, 5'- GATAGACACACACTGCAAA-3' )• Primer Forward que híbrida perfectamente (100% de homología) con la región del genoma de CMV clonada en el plásmido pCMV anteriormente descrito .
Primer CMR (SEQ ID N°07, 5'- GGTGGGACCTATTCGT
-3') . Primer Reverse que híbrida perfectamente (100% de homología) con la región del genoma de CMV clonada en el plásmido pCMV anteriormente descrito.
CMV probé (SEQ ID N0 08 5'-
TTCACACCTACGATCAGACGGA-3' ) • Sonda TaqMan con doble mareaje fluorescente (5' FAM TAMRA 3') que hibrida perfectamente (100% de homología) con una región interna del producto amplificado por la combinación de cebadores CMVF/CMVR anteriormente descritos.
Se analizaron diluciones seriadas 1/10 del plás¬ mido pCMV (rango 5000-50 copias/reacción) , asi como un control negativo "no-DNA", utilizando como cebadores los primer CMVF y CMVR, e incluyendo como sistema de detec- ción la sonda TaqMan con doble mareaje fluorescente CMV- Probe. Dicha sonda, en presencia de una DNA polimerasa con actividad 5' -3' exonucleasa (como la Taq polimerasa) funciona como sonda de hidrólisis de tipo TaqMan. Tanto los cebadores de amplificación, como la sonda de hidró- lisis presentan una hibridación perfecta con la secuencia de DNA substrato analizada. Los ensayos de amplifi¬ cación se realizaron en paralelo con una actividad enzimática DNA polimerasa 5' -3' exonucleasa y pfu DNA polimerasa, ambas producidas por Biotools B&M Labs, S.A, asi como una actividad Taq polimerasa exo - (Clontech) . La composición de las mezclas de reacción es la siguiente: Una mezcla que contiene dNTPs, primer CMVF
(0,5 μM) , primer CMVR (0,5 μM) y sonda CMV probé (0,3 μM) . Como actividad polimerasa se añadieron diferentes enzimas en cada experimento: DNA polimerasa 5' -3' exonu- cleasa + (Biotools DNA polimerasa) , Taq DNA polimerasa exo - (Titanium Taq DNA polimerasa. Clontech) ó Pfu DNA polimerasa (Biotools), añadiendo en todos los casos 0,1 u/μl de enzima, y suplementando la reacción con los búferes específicos de cada enzima. El volumen final de reacción fue de 20 μl en todos los casos.
La reacción de amplificación se realizó en un equipo de amplificación en tiempo real SmartCycler II (Cepheid) utilizando los siguientes ciclos de amplifica¬ ción :
En una primera etapa se mantiene la temperatura durante 360 seg. a 95,O0C. En una segunda etapa se repite el siguiente ci¬ clo 45 veces:
Temperatura a 95,O0C durante 5 seg. Temperatura a 57,O0C durante 5 seg. Temperatura a 60,00C durante 40 seg.
Como se muestra en la figura 5A la evolución de la reacción de amplificación se monitorizo en tiempo real mediante la lectura en cada ciclo de amplificación del nivel de fluorescencia en el canal FAM, medido en el paso de incubación a 60° C. Asimismo, los productos amplificados fueron analizados en gel de agarosa 1,5% teñida con Bromuro de etidio, mostrándose los resultados en la figura 5B. Únicamente se obtuvo señal de fluorescencia en las muestras amplificadas con DNA polimerasa 5' -3' exonucleasa, siendo por el contrario negativas todas las muestras amplificadas con pfu o Taq DNA polimerasa Exo - (5) (figura 5A) . Estos resultados se confirmaron al analizar los productos amplificados en gel de agarosa observándose bandas de amplificación del tamaño esperado en las muestras tratadas con DNA polimerasa 5' -3' exonu¬ cleasa +y la total ausencia de dichas bandas en las muestras tratadas con pfu DNA polimerasa o Taq Exo - (figura 5B) .
Estos resultados confirman el comportamiento es¬ perado en los sistemas de amplificación ensayados con ambas enzimas:
A.- La ausencia de señal de fluorescencia en las muestras amplificadas con pfu DNA polimerasa demuestra que la sonda no se degrada durante el proceso de ampli- ficación, garantizando asi la ausencia de actividades 5' -3' exonucleasa en la preparación de pfu ensayada. Por el contrario, la generación de señal fluorescente fue claramente detectable en las muestras amplificadas con una DNA polimerasa que posee actividad 5' -3' exonuclea- sa.
B.- La ausencia de bandas de amplificación en las muestras tratadas con pfu, demuestra que la sonda utilizada y que híbrida perfectamente con el DNA subs- trato, no sufre degradación de las bases situadas en posición 3' por lo que el extremo bloqueado de la sonda no es eliminado, impidiendo la utilización de la misma como primer de amplificación. Por otro lado, y debido a que la pfu no dispone de actividad 5' -3' exonucleasa, ni de actividad desplazamiento de cadena, la sonda inter- puesta entre los cebadores de amplificación no puede ser eliminada actuando en consecuencia como un bloqueante del proceso de amplificación. Por el contrario, la amplificación con una enzima DNA polimerasa 5' -3' exonu- cleasaes factible en este sistema, ya que la actividad 5' -3' exonucleasa elimina la sonda durante el proceso de elongación permitiendo el proceso de amplificación.
En consecuencia, se garantiza en base a estos resultados, que la generación de señal fluorescente en los sistemas de amplificación con pfu DNA polimerasa no se debe en ningún caso a la presencia de actividades 5'-
3' exonucleasa remanentes.
EJEMPLO 5. Ensayo de detección de secuencias es¬ pecificas de ácidos nucleicos en sistema de hibridación liquida, y ausencia de reacción de polimerización, utilizando sondas con doble mareaje fluorescente y actividad pfu DNA polimerasa.
Debido a que la actividad 3' -5' exonucleasa de la pfu ejerce su acción sobre bases desapareadas en el extremo 3' de dúplex de ácidos nucleicos en ausencia de reacciones de polimerización asociadas, se ensayo la posibilidad de utilizar esta propiedad para desarrollar un sistema de detección especifica de ácidos nucleicos utilizando sondas con doble mareaje (5' TAMRA FAM 3' ) y la actividad pfu DNA polimerasa, en ausencia de dNTPs, que pudieran servir de substrato en reacciones de elon- gación de cadenas nacientes de ácido nucleico.
Como modelo experimental se utilizó el sistema de detección de MTB anteriormente descrito. Los DNAs substrato y sonda utilizados fueron los siguientes: DNAs substrato.
Plásmido Control (pMTB-Control) obtenido median¬ te clonación de un fragmento de 335 pb de la región IS6110 de Mycobacterium tuberculosis (MTB) en el plásmi¬ do pBlueScript SK(+).
Tres secuencias mutantes (productos de amplifi¬ cación génica) de 310 pb de la región IS6110 clonada en el plásmido control (pMTB-Control) anteriormente descri¬ to.
Mutante IP: mutación en la última base de la zo¬ na de hibridación con los cebadores IS e IS-INV. Genera un desapareamiento de la última base del extremo 3' de ambos cebadores al hibridar con ellos (Ver esquema de hibridación en figura 1 B) .
Mutante IF: mutación en la penúltima base de la zona de hibridación con los cebadores IS e IS-INV.
Genera un desapareamiento de la penúltima base del extremo 3' de ambos cebadores al hibridar con ellos (Ver esquema de hibridación en figura IC) .
Mutante 2PF: mutación en las dos últimas bases de la zona de hibridación con los cebadores IS e IS-INV. Genera un desapareamiento de las dos últimas bases del extremo 3' de ambos cebadores al hibridar con ellos (Ver esquema de hibridación en figura ID) .
Sonda de detección.
Como sonda de detección se utilizó el siguiente oligonucleótido : Lion probé IS-INV (SEQ ID 02) . Sonda con doble mareaje fluorescente (5' TAMRA FAM 3' ) que híbrida perfectamente (100% de homología) con la secuencia del plásmido control (pMTB-Control) , y presenta desaparea- mientos en el extremo 3' con los DNAs mutantes IP, IF y 2PF.
El mecanismo de acción esperado en este sistema de detección no dependiente de polimerización de ácidos nucleicos consiste en la unión de la sonda por comple- mentariedad de bases con el ácido nucleico substrato. Si la hibridación es perfecta, la actividad 3' -5' exonu- cleasa no ejerce su acción, por lo que no se emitiría fluorescencia. Este sería el caso de ensayo con el plásmido control pMTB-control . Por el contrario, si al formarse el dúplex se producen desapareamientos de base en el extremo 3' de la sonda, la actividad 3' -5' exonu- cleasa reconocería el desapareamiento y escindiría las bases desapareadas emitiendo fluorescencia. Este sería el caso del ensayo con cada uno de los mutantes inclui¬ dos en este ejemplo.
Para asegurar el funcionamiento del sistema se realizará la reacción utilizando los búferes de reacción ensayados en los ejemplos anteriores y en los que se ha comprobado el funcionamiento de la actividad 3' -5' exonucleasa de la pfu. Asimismo, y para favorecer el efecto recambio de las sondas catalizadas por nuevas sondas no modificadas durante el proceso, se aplicaran ciclos de temperatura similares a los utilizados en los ensayos de PCR para permitir la desnaturalización e hibridación de las sondas con su DNA substrato.
La composición de la mezcla de reacción fue la siguiente: 0.1 U/μl de pfu DNA polimerasa (Biotools) , Lion probé IS-INV (0,3 μM) y el buffer de reacción específico de la pfu. El volumen final de reacción fue de 20 μl en todos los casos.
Los ciclos de temperatura utilizados fueron los siguientes :
Lectura inicial cinco ciclos:
Primer segmento: 10 seg a 580C, con una curva de
20°C/seg
Segundo segmento: 10 seg a 580C, con una curva de 20°C/seg
Hibridación 30 ciclos:
Primer segmento: 10 seg a 950C, con una curva de 20°C/seg
Segundo segmento: 20 seg a 580C, con una curva de 20°C/seg
Tercer segmento: 60 seg a 720C, con una curva de 20°C/seg
Enfriamiento, 1 ciclo
Primer segmento: 600 seg a 4O0C, con una curva de 20°C/seg
Los resultados del ensayo se monitorizaron en un equipo de amplificación en tiempo real LightCycler.
Los resultados obtenidos confirman lo teórica¬ mente esperado. En la figura 6 se muestra como, no se observó incremento de señal de fluorescencia en las muestras pMTB-control (6) (apareamiento perfecto entre sonda y substrato) o en la muestra de control "no-DNA" (7) . Por el contrario, se observó un incremento de fluorescencia apreciable en las muestras de los mutantes analizadas, mutante IF (8), IP (9), y 2PF (10). Asimis¬ mo, se observaron rendimientos diferentes de señal fluorescente dependiendo del tipo de mutante ensayado. Asi, los mayores niveles de fluorescencia se obtuvieron al ensayar la muestra mutante IP (9) (desapareamiento en la penúltima base del extremo 3' de la sonda) y en el mutante 2PF (10) (desapareamiento de las dos últimas bases en el extremo 3' de la sonda) . Por el contrario, el mutante IF (8) (desapareamiento de la última base del extremo 3' de la sonda) presentaba un incremento apre- ciable aunque menor que el observado en los dos casos anteriores .
Los resultados obtenidos demuestran la funciona¬ lidad del sistema de detección de secuencias especificas de ácidos nucleicos en sistemas de hibridación liquida utilizando sondas de tipo Lion probé con doble mareaje fluorescente (5' bloqueante 3' fluoróforo) que pre¬ senten desapareamientos en el extremo 3' al hibridar con el ácido nucleico substrato, y en presencia de una actividad 3' -5' exonucleasa correctora de errores, en un mecanismo independiente de polimerización de ácidos nucleicos .
EJEMPLO 6. Ensayo de utilización de la sonda IS-INV como sonda.
En los resultados obtenidos en los ejemplos 1 y 2 se demuestra la posibilidad de detectar secuencias especificas de ácidos nucleicos utilizando sondas con doble mareaje fluorescente (preferentemente con el quencher en posición 5' y el fluoróforo en posición 3' ) en sistemas de amplificación génica con una DNA polime- rasa con actividad 3' -5' exonucleasa correctora de pruebas, y en los que el extremo 3' de la sonda presenta desapareamientos puntuales con el DNA substrato que se pretende identificar.
En estas condiciones al producirse la hibridación primer-substrato, la DNA polimerasa reconoce el desapa- reamiento de las bases en el extremo 3' del primer, y mediante la actividad 3' -5' nucleasa escinde las bases desapareadas que portan el fluoróforo. En este punto al separarse fluoróforo y quencher se produce una emisión de fluorescencia.
Sin embargo, en este sistema el oligonucleótido con doble mareaje actúa de forma simultanea como sonda de identificación y como primer de amplificación, ya que al eliminarse las bases desapareadas por la acción 3' -5' exonucleasa, el primer queda preparado para primar la elongación de una nueva cadena de DNA. Como se demuestra en los resultados obtenidos en el ejemplo 2, la utiliza¬ ción de un sistema de estas características aporta una información similar a la obtenida con fluoróforos inter- calantes como el SYBR Green. Asi, la amplificación inespecifica de secuencias relacionadas con el substra¬ to, o la formación de dimeros de primer, pueden generar señal inespecifica. Si bien, como se demuestra en el ejemplo 2, la generación de señal inespecifica por generación de primer-dimer es mas tardia que la obtenida con SYBR Green, la utilización del sistema de generación de señal mediante actividad nucleasa 3' -5' utilizando sondas que no actúen como cebadores de la reacción de amplificación permitirla incrementar la especificidad de la detección. En el presente ejemplo se describe un método de am¬ plificación en tiempo real que utiliza como sistema de generación de señal una sonda con doble mareaje fluores¬ cente y que presenta la siguiente estructura: A) una secuencia de 20 nucleótidos que híbrida perfectamente (100% de homología) con la secuencia que se pretende identificar; B) un espaciador (dS) en posición 3' de la secuencia del oligonucleótido; C) una secuencia de 3 nucleótidos en los que se incluyen los dos marcadores fluorescentes (quencher y repórter) y que no híbrida con la secuencia a detectar.
Los DNAs substrato y los oligonucleótidos utiliza¬ dos se señalan a continuación:
DNA substrato.
Un plásmido (pCMV) obtenido mediante clonación de un fragmento conservado de 350 pares de bases (pb) de la región codificante de la polimerasa de Citomegalovirus (CMV) en el plásmido pBlueScript SK(+).
Primers de amplificación y sondas fluorescentes.
Primer CMVF (SEQ ID N006) . Primer Forward que híbrida perfectamente (100% de homología) con la región del genoma de CMV clonada en los plásmidos pCMV y pMUT-CMV. Actúa como oligonucleótido cebador de la síntesis de DNA.
Primer CMR (SEQ ID N°07) . Primer Reverse que híbrida perfectamente (100% de homología) con la región del genoma de CMV clonada en los plásmidos pCMV y pMUT-CMV.
Actúa como oligonucleótido cebador de la síntesis de DNA. CMV-INV-Blok probé (SEQ ID N0 08, 5'- TCCGTCTGATCGTAGGTGTGAATAA -ds spacer- (TAMRA) tt (FAM-
3' ) . Sonda con doble mareaje fluorescente (5' TAMRA
FAM 3') que presenta la siguiente estructura: A) una secuencia de 20 nucleótidos que híbrida perfectamente (100% de homología) con la secuencia que se pretende identificar; B) un espaciador (dS) en posición 3' de la secuencia del oligonucleótido; C) una secuencia de 3 nucleótidos en los que se incluyen los dos marcadores fluorescentes (quencher y repórter) y que no híbrida con la secuencia a detectar. Esta sonda hibrida con una región interna del producto amplificado por la combina¬ ción de primers CMVF/CMVR anteriormente descritos.
Se ensayó una reacciones de amplificación sobre dilucio¬ nes seriadas 1/10 del plásmido pCMV utilizando como fuente de actividad polimerasa una mezcla de pfu DNApo- limerasa y DNA polimerasa 5' -3' exonucleasa. El rango de concentraciones ensayadas fue de 50.000-50 copias de plásmido/reacción . La composición de la mezcla de reacción fue : 0,1 U/μl de DNA polimerasa 5' -3' exonucleasa, 0,1 U/ml de pfu DNA polimerasa, una mezcla de dNTPs, primer CMR (concentración final: 0,5 μM) , primer CMF (concentración final: 0,5 μM) , sonda CMV-INV-Block (concentración final: 0,5 μM) y el buffer de reacción (Kit Certamp. Biotools) , siendo el volumen final de reacción de 20 μl en todos los casos.
Como controles se incluyeron dos reacciones de ampli- ficación simultaneas sobre diluciones seriadas 1/10 del plásmido pCMV (rango: 50.000-50 copias/reacción), utili¬ zando bien la actividad pfu DNA polimerasa, bien la actividad DNA polimerasa 5' -3' exonucleasa.
La mezcla de reacción con pfu DNA polimerasa fue la siguiente: Realizada con el kit Biotools Pfu DNA polime- rasa (Biotools), incluyendo en la mezcla 0,1 u/μl de Pfu
DNA polimerasa, los bufferes de reacción , una mezcla de dNTPs, primer CMR (concentración final: 0,5 μM) , primer CMF (concentración final: 0,5 μM) , sonda CMV-INV-Block
(concentración final: 0,5 μM) siendo el volumen final de reacción de 20 μl en todos los casos.
La mezcla de reacción con DNA polimerasa 5' -3' exonu- cleasafue la siguiente: 0,1 U/ml de DNA polimerasa 5' -3' exonucleasa (Biotools DNA polimerasa) , buffer de reac¬ ción, una mezcla de dNTPs, primer CMR (concentración final: 0,5 μM) , primer CMF (concentración final: 0,5 μM) , sonda CMV-INV-Block (concentración final: 0,5 μM) y el buffer de reacción (Kit Certamp. Biotools), siendo el volumen final de reacción de 20 μl en todos los casos.
Las reacciones de amplificación se realizaron en un equipo de amplificación en tiempo real SmartCycler II (Cepheid) utilizando los siguientes ciclos de ampli¬ ficación :
En una primera etapa se mantiene la temperatura durante 360 seg. a 95,O0C.
En una segunda etapa se repite el siguiente ci¬ clo 45 veces:
Temperatura a 95,O0C durante 5 seg. Temperatura a 57,O0C durante 5 seg.
Temperatura a 60,00C durante 40 seg.
La evolución de la reacción de amplificación se monitorizó en tiempo real mediante la lectura en cada ciclo de amplificación del nivel de fluorescencia en el canal FAM. Asimismo, los productos amplificados fueron analizados en gel de agarosa 1,5% teñido con Bromuro de etidio .
Los resultados obtenidos en los ensayos se mues¬ tran esquemáticamente en la Tabla2. Tabla 2
Plasmido pCMV
Fluorescencia GeI
DNA pol 5'- Negativo Positivo 3' exo
Pfu DNA PoI Negativo Negativo
DNA pol 5'- Positivo Positivo 3' exo + pfu
En todos los casos en que se obtuvieron resultados positivos en gel de agarosa, la banda obtenida presenta¬ ba un tamaño de 335 pb, correspondiente al fragmento amplificado por el par de primers CMVF/CMVR. En ningún caso se observaron bandas de amplificación del tamaño correspondiente a los productos de amplificación de los pares de primers CMV-INV-Blok probe/CMVR. Estos resulta¬ dos confirman que la estructura del oligonucleótido CMV- INV-Block con una cola desapareada de 3 nucleótidos y el bloqueo del extremo 3' por unión del grupo FAM bloqueaba correctamente la reacción de amplificación.
Los resultados obtenidos con la DNA polimerasa 5'- 3' exonucleasa (positividad en gel y negatividad de fluorescencia, independientemente del substrato analiza¬ do) indicarían que dicha actividad es capaz de remover Is sonda unida, mediante actividad 5' -3' exonucleasa. Sin embargo, dicha actividad no afecta la integridad de la cola de nucleótidos desapareados situados en posición 3' de la sonda, por lo que su actividad no genera señal fluorescente.) .
Los resultados obtenidos con la pfu DNA polimerasa, indicarla el bloqueo de la reacción de elongación de
DNA primada por la sonda CMV-INV-Blok sometida a la actividad correctora de pruebas, debido a la presencia del espaciador ds . Asimismo, la ausencia de banda de amplificación mediada por los primers CMVF/CMVR, indicarla un cloqueo de la reacción de amplificación mediada por pfu, por interposición de la sonda CMV-INV-Blok, al carecer dicha enzima de actividad de desplazamiento de cadena. Estos resultado son similares a los obtenidos en el ejemplo 4, en el que también se observa una inhibi¬ ción de la reacción de amplificación mediada por pfu, al interponer una sonda TaqMan.
Los resultados obtenidos al utilizar la combinación de actividades DNA polimerasa 5' -3' exonucleasay pfu DNA polimerasa, confirma el correcto funcionamiento del sistema. Asi, la positividad observada en el gel de agarosa, confirma la capacidad de la actividad DNA polimerasa 5' -3' exonucleasade degradar la región de la sonda que híbrida con el substrato, permitiendo la amplificación del fragmento. Finalmente, y asociado a la reacción de amplificación, se obtuvo señal fluorescente debido a la actividad 3' -5' nucleasa correctora de errores de la pfu DNA polimerasa.
Los resultados obtenidos, confirman que el uso de oligonucleótidos con dos regiones diferenciadas y separadas por un espaciador, una de las cuales se utili- za para unirse al DNA substrato, y que es susceptible de degaradación por actividad 5' -3' nucleasa, y otra situa¬ da en la región 3' del oligonucleótido, en la que se sitúan los dos mareajes fluorescentes susceptible de degradación por actividad 3' -5' nucleasa, funcionan como sondas puras de detección en reacciones de amplifica¬ ción génica realizadas en presencia de una combinación de actividades DNA polimerasa 5' -3' exonucleasa y pfu DNA polimerasa.
No alteran la esencialidad de esta invención va¬ riaciones en materiales, forma, tamaño y disposición de los elementos componentes, descritos de manera no limi¬ tativa, bastando ésta para proceder a su reproducción por un experto.

Claims

REIVINDICACIONES
Ia. -Método de detección de ácidos nucleicos, DNA o RNA, mediante generación directa de una señal medible caracterizado porque la señal se produce por la activi¬ dad de una enzima con actividad 3' -5' nucleasa al poner en contacto un ácido nucleico substrato, con al menos un oligonucleótido capaz de hibridar con él dejando una o más bases desapareadas en el extremo 3' de la cadena, o bases adyacentes, que son escindidas por la actividad de la enzima 3' -5' nucleasa, generándose la señal medible.
2a. -Método de detección según reivindicación Ia caracterizado porque el oligonucleótido puede estar marcado en al menos una base en cualquier posición a lo largo de la cadena.
3a. -Método según la reivindicación 2a caracterizada porque el oligonucleótido está marcado en el extre- mo 3' o bases adyacentes.
4a.- Método según la reivindicación 2a caracterizado porque ambos extremos, 3' y 5' , del oligonucleó¬ tido están marcados.
5a.- Método según la reivindicación 2a a 4a caracterizado porque el/los mareajes se realizan con fluoróforos .
6a.- Método según la reivindicación 4a caracte¬ rizado porque el extremo 5' está marcado con un fluoró- foro quencher y el 3' con un fluoróforo repórter.
7a. -Método según la reivindicación Ia caracteri- zado porque las enzimas, los oligonucleótidos y el ácido nucleico substrato se encuentran en solución acuosa.
8a. -Método según la reivindicación Ia caracterizado porque el oligonucleótido se encuentra fijado a un soporte sólido.
9a. -Método según la reivindicación Ia caracterizado porque el ácido nucleico substrato se encuentra unido a un soporte sólido.
10a. -Método según la reivindicación Ia caracte¬ rizado porque el ácido nucleico substrato es una cadena de DNA que se genera mediante procesos previos de amplificación génica, transcripción in vitro (cDNA) , o amplificación isotérmica.
11a. -Método según la reivindicación Ia caracte¬ rizado porque el ácido nucleico substrato tiene origen en muestras biológicas animales o vegetales, cultivos celulares, alimentos, muestras de aguas, suelos o aire.
12a.- Método según reivindicación Ia caracterizado porque se realiza acoplado a un sistema de amplifi- cación de ácidos nucleicos, tales como primer extensión, PCR 0 sistemas de amplificación isotérmica
13a.- Método según reivindicación 12a caracterizado porque el sistema de PCR es un sistema de PCR en tiempo real.
14a.- Método según reivindicaciones Ia a 13a ca¬ racterizada porque se utiliza en la detección y discri¬ minación entre secuencias de ácidos nucleicos que difie- ren entre si en un cambio de una base, presentando el oligonucleótido la mutación de interés en el extremo 3' del mismo, generándose la señal detectable en el caso de que el ácido nucleico substrato presente la mutación.
15a.- Método según reivindicación Ia a 13a caracterizada porque se utiliza en la detección de la existencia de mutaciones en codones codificantes del ácido nucleico, presentando el oligonucleótido el codón que se pretende analizar en el extremo 3' , generándose la señal detectable en el caso de que el ácido nucleico presente mutaciones en dicho codón.
16a. -Método según reivindicación Ia a 13a carac¬ terizado porque en presencia de una mezcla de nucleóti- dos, y una enzima con actividad polimerasa, el oligonu¬ cleótido o los oligonucleótidos utilizados para generar la señal hibridan con el ácido nucleico substrato, de manera que simultáneamente a la generación de la señal se produce la extensión del ácido nucleico.
17a. -Método según reivindicación Ia a 13a carac¬ terizado porque en presencia de una mezcla de nucleóti- dos, una enzima con actividad polimerasa, una enzima con actividad de desplazamiento de cadena y/o actividad nucleasa 5' -3', y al menos dos cebadores, el oligonu¬ cleótido se une al ácido nucleico de interés y actúa como una sonda generando la señal mediante la actividad nucleasa 3' -5', sin actuar como cebador de reacción de extensión .
18a. -Método según reivindicación 16a o 17a caracterizado porque la enzima con actividad polimerasa es una polimerasa con actividad 3' -5' nucleasa correctora de errores. 19a. -Método según reivindicación 18a caracterizado porque la enzima polimerasa con actividad 3' -5' nucleasa correctora de errores es termoestable .
20a. -Método según reivindicación 15a caracterizado porque el oligonucleótido presenta modificaciones en la unión de sus bases por enlaces no fosfodiester o inclusión de espaciadores, de forma que se protege estas posiciones de la actividad 3' -5' nucleasa.
21a.- Método según reivindicación 16a caracterizado porque el oligonucleótido se encuentra modificado en su extremo 3' para proteger la hidrólisis de determi¬ nadas posiciones.
22a.- Método según reivindicación 17a caracterizada porque el oligonucleótido se encuentra modificado para inhibir la actividad 5' -3- nucleasa de la polimera¬ sa con actividad de desplazamiento de cadena.
23a.- Método según reivindicación 17a caracterizado porque el oligonucleótido se encuentra modificado en su extremo 3' para bloquear la reacción de extensión.
24a.- Método según reivindicación Ia a 13a caracterizado porque se realiza en un sistema de hibrida¬ ción con ausencia de reacción de polimerización en al menos un ciclo de hibridación/catálisis.
25a.- Método según reivindicación 24a caracterizado porque el ciclo de hibridación/catálisis se monito- riza en sistemas en tiempo real.
26a. -Un kit para la determinación de una secuen- cia de ácido nucleico en una muestra caracterizado porque comprende al menos, un oligonucleótido que con¬ tiene la secuencia complementaria a la secuencia del ácido nucleico que se quiere determinar con una o más bases no complementarias en el extremo 3' de la cadena, una enzima polimerasa con actividad nucleasa 3' -5' correctora de errores.
27a. -Un kit según reivindicación 26a caracterizado porque comprende al menos un oligonucleótido ceba- dor del ácido nucleico.
28a.- Un kit según reivindicación 26a caracterizado porque el oligonucleótido está bloqueado en el extremo 3' .
29a. -Un kit según reivindicación 26a caracterizado porque el oligonuclétido está marcado en el extremo 3' con un fluoroforo repórter y en el extremo 5' con un fluoroforo quencher.
30a. -Un kit según reivindicación 26a caracterizado porque comprende deoxinucleótidos
PCT/ES2005/070093 2005-06-16 2005-06-16 Método de detección de ácidos nucleicos mediante generación directa de una señal medible WO2006136621A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/ES2005/070093 WO2006136621A1 (es) 2005-06-16 2005-06-16 Método de detección de ácidos nucleicos mediante generación directa de una señal medible
CA002579918A CA2579918A1 (en) 2005-06-16 2005-06-16 Nucleic acid detection method involving the direct generation of a measurable signal
EP05857311A EP1892302A1 (en) 2005-06-16 2005-06-16 Nucleic acid detection method involving the direct generation of a measurable signal
JP2008516346A JP2008543300A (ja) 2005-06-16 2005-06-16 測定可能なシグナルの直接生成を用いた核酸検出法
US11/666,468 US7919244B2 (en) 2005-06-16 2005-06-16 Nucleic acid detection method involving the direct generation of a measurable signal
AU2005333512A AU2005333512A1 (en) 2005-06-16 2005-06-16 Nucleic acid detection method involving the direct generation of a measurable signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070093 WO2006136621A1 (es) 2005-06-16 2005-06-16 Método de detección de ácidos nucleicos mediante generación directa de una señal medible

Publications (1)

Publication Number Publication Date
WO2006136621A1 true WO2006136621A1 (es) 2006-12-28

Family

ID=37570129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070093 WO2006136621A1 (es) 2005-06-16 2005-06-16 Método de detección de ácidos nucleicos mediante generación directa de una señal medible

Country Status (6)

Country Link
US (1) US7919244B2 (es)
EP (1) EP1892302A1 (es)
JP (1) JP2008543300A (es)
AU (1) AU2005333512A1 (es)
CA (1) CA2579918A1 (es)
WO (1) WO2006136621A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977465A4 (en) * 2013-03-21 2016-11-16 Hyunil Bio Co SELECTIVE PROCEDURE FOR TUBERCULOUS SLIME-BACTERIA AND NON-UGLY MOLECULAR BACTERIA AND KIT THEREWITH

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018245A1 (es) * 2008-08-12 2010-02-18 Biotools Biotechnological & Medical Laboratories, S.A. Método para la detección y/o cuantificación de un ácido nucleico substrato
JP5299964B2 (ja) * 2009-03-11 2013-09-25 独立行政法人産業技術総合研究所 Dna3’末端の修飾基除去用酵素試薬
WO2011069160A1 (en) * 2009-12-05 2011-06-09 Evogen, Inc. Methods of quantifying nucleic acids
JP5822843B2 (ja) * 2009-12-21 2015-11-24 シージーン アイエヌシー Tsgプライマーターゲット検出
KR20120042100A (ko) * 2010-10-22 2012-05-03 주식회사 씨젠 이중표지 고정화 프로브를 이용한 고상에서의 타겟 핵산서열 검출
EP4361608A3 (en) 2012-02-03 2024-07-24 California Institute of Technology Signal encoding and decoding in multiplexed biochemical assays
US9791372B2 (en) 2012-08-03 2017-10-17 California Institute Of Technology Multiplexing and quantification in PCR with reduced hardware and requirements
EP3472354A4 (en) 2016-06-17 2020-01-01 California Institute of Technology NUCLEIC ACID REACTIONS AND RELATED METHODS AND COMPOSITIONS
CN107254553A (zh) * 2017-06-30 2017-10-17 中国科学院上海巴斯德研究所 用于检测多种病原体的荧光实时检测方法及应用
CN107164565A (zh) * 2017-07-18 2017-09-15 张梦玲 一种用于以实时荧光rt‑pcr检测样品中hiv‑1病毒的引物对和包含其的试剂盒
US12203129B2 (en) 2018-07-03 2025-01-21 ChromaCode, Inc. Formulations and signal encoding and decoding methods for massively multiplexed biochemical assays
AU2020329166A1 (en) 2019-08-09 2022-03-03 Nutcracker Therapeutics, Inc. Microfluidic apparatus and methods of use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5352778A (en) 1990-04-26 1994-10-04 New England Biolabs, Inc. Recombinant thermostable DNA polymerase from archaebacteria
US5436134A (en) 1993-04-13 1995-07-25 Molecular Probes, Inc. Cyclic-substituted unsymmetrical cyanine dyes
US5500363A (en) 1990-04-26 1996-03-19 New England Biolabs, Inc. Recombinant thermostable DNA polymerase from archaebacteria
US5723591A (en) 1994-11-16 1998-03-03 Perkin-Elmer Corporation Self-quenching fluorescence probe
EP0878554A2 (en) * 1997-05-13 1998-11-18 Becton, Dickinson and Company Detection of nucleic acids by fluorescence quenching
WO2001081631A1 (en) 2000-04-25 2001-11-01 Dna Sciences, Inc. Detection of nucleotide sequence variations via the proofreading activity of polymerases
US6489150B1 (en) 1990-12-03 2002-12-03 Stratagene Purified thermostable Pyrococcus furiosus DNA polymerase I
US20030143591A1 (en) * 2001-10-19 2003-07-31 Proligo, Llc Nucleic acid probes and methods to detect and/or quantify nucleic acid analytes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639611A (en) * 1988-12-12 1997-06-17 City Of Hope Allele specific polymerase chain reaction
US5925517A (en) * 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
US5874283A (en) * 1995-05-30 1999-02-23 John Joseph Harrington Mammalian flap-specific endonuclease
US20020061532A1 (en) * 1997-02-14 2002-05-23 Mosaic Technologies, Inc. Method and apparatus for performing amplification of nucleic acids on supports
ATE369439T1 (de) * 1997-12-15 2007-08-15 Csl Behring Gmbh Markierter primer, geeignet für die detektion von nukleinsäuren
US6528254B1 (en) * 1999-10-29 2003-03-04 Stratagene Methods for detection of a target nucleic acid sequence
US20070134686A1 (en) * 1999-10-29 2007-06-14 Stratagene California Methods and compositions for detection of a target nucleic acid sequence utilizing a probe with a 3' flap
US7625705B2 (en) * 1999-10-29 2009-12-01 Hologic, Inc. Methods and compositions for detection of a target nucleic acid sequence utilizing a probe with a 3′ flap
AU2001255448A1 (en) * 2000-04-17 2001-10-30 Stephen B. Liggett Alpha-2 adrenergic receptor polymorphisms
AUPR050700A0 (en) * 2000-10-03 2000-10-26 Id+Plus Ltd Detection method
US6350580B1 (en) * 2000-10-11 2002-02-26 Stratagene Methods for detection of a target nucleic acid using a probe comprising secondary structure
AU2002248213A1 (en) * 2000-12-19 2002-08-19 Hospital For Special Surgery Markers for disease susceptibility and targets for therapy
EP1497303A2 (en) * 2002-04-22 2005-01-19 Joseph F. Lawler Jr. Reagents for monitoring nuclei acid amplification and methods of using same
CN1506471A (zh) * 2002-12-09 2004-06-23 核酸检测方法
DE602006017534D1 (de) * 2005-04-18 2010-11-25 Mitomics Inc Mitochondriale mutationen und umlagerungen als diagnostisches werkzeug zum nachweis von sonneneinstrahlung, prostatakrebs und anderen krebserkrankungen

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683202B1 (es) 1985-03-28 1990-11-27 Cetus Corp
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (es) 1986-01-30 1990-11-27 Cetus Corp
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5352778A (en) 1990-04-26 1994-10-04 New England Biolabs, Inc. Recombinant thermostable DNA polymerase from archaebacteria
US5500363A (en) 1990-04-26 1996-03-19 New England Biolabs, Inc. Recombinant thermostable DNA polymerase from archaebacteria
US6489150B1 (en) 1990-12-03 2002-12-03 Stratagene Purified thermostable Pyrococcus furiosus DNA polymerase I
US5436134A (en) 1993-04-13 1995-07-25 Molecular Probes, Inc. Cyclic-substituted unsymmetrical cyanine dyes
US5723591A (en) 1994-11-16 1998-03-03 Perkin-Elmer Corporation Self-quenching fluorescence probe
EP0878554A2 (en) * 1997-05-13 1998-11-18 Becton, Dickinson and Company Detection of nucleic acids by fluorescence quenching
WO2001081631A1 (en) 2000-04-25 2001-11-01 Dna Sciences, Inc. Detection of nucleotide sequence variations via the proofreading activity of polymerases
US20030143591A1 (en) * 2001-10-19 2003-07-31 Proligo, Llc Nucleic acid probes and methods to detect and/or quantify nucleic acid analytes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRUTLAG, D.; KORNBERG, A.J, BIOL. CHEM., vol. 247, 1972, pages 241 - 248
CHANG, L. M. S., J. BIOL.: CHEM., vol. 252, 1977, pages 1873 - 1880
HIGUCHI R; FOKLER C; DOLLINGER G; WATSON R.: "Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions", BIO/TECHNOLOGY, vol. 11, 1993, pages 1026 - 30
SAIKI ET AL., SCIENCE, vol. 230, 1985, pages 1350 - 1354

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977465A4 (en) * 2013-03-21 2016-11-16 Hyunil Bio Co SELECTIVE PROCEDURE FOR TUBERCULOUS SLIME-BACTERIA AND NON-UGLY MOLECULAR BACTERIA AND KIT THEREWITH
US10301686B2 (en) 2013-03-21 2019-05-28 Hyunil-Bio Co. Selective detection method for Mycobacterium tuberculosis and nontuberculous mycobacteria and kit using same

Also Published As

Publication number Publication date
EP1892302A1 (en) 2008-02-27
US7919244B2 (en) 2011-04-05
CA2579918A1 (en) 2006-12-28
US20070292868A1 (en) 2007-12-20
JP2008543300A (ja) 2008-12-04
AU2005333512A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
ES2933176T3 (es) Procedimientos para realizar PCR ultrarrápida multiplexada
ES2269365T3 (es) Baliza de hibridacion y metodo de deteccion y discriminacion rapidas de secuencias.
ES2961374T3 (es) Amplificación con cebadores de composición de nucleótidos limitada
KR101481004B1 (ko) Td프로브 및 그의 용도
ES2653642T3 (es) Detección de una secuencia de ácido nucleico diana mediante ensayo sin hibridación dependiente de escisión y extensión de PTO
ES2414286T3 (es) Detección de ácidos nucleicos
ES2322559T3 (es) Amplificacion de sonda circular (cpa) de moleculas de acido nucleico circularizadas.
ES2700606T3 (es) Uso de trifosfatos de desoxinucleósidos modificados en sus bases para mejorar la detección de ácidos nucleicos
ES2384681T3 (es) Extensión de cebadores correctora
ES2669244T3 (es) Detección de variación de nucleótidos en una secuencia de ácido nucleico diana mediante escisión CTO y ensayo de extensión
CN106103740A (zh) 利用不同检测温度的靶核酸序列检测
ES2813899T3 (es) Ensayo de detección de diana multiplex
AU2001242634A1 (en) Hybridisation beacon and method of rapid sequence detection and discrimination
CA2840542A1 (en) Methods and compositions for enrichment of nucleic acids in mixtures of highly homologous sequences
WO2006136621A1 (es) Método de detección de ácidos nucleicos mediante generación directa de una señal medible
KR20120084320A (ko) Thd 프라이머 타겟 검출
EP2256215A1 (en) Assay system using a nuclease activity of a nucleic acid polymerase
US20140377762A1 (en) Method for enriching and detection of variant target nucleic acids
US6841346B1 (en) Methods for detecting bacteriophage MS2
US20130209987A1 (en) Oligonucleotide sets for detection of human papillomavirus
ES3023217T3 (en) Probe and method for str-genotyping
ES2360299T3 (es) Baliza y método de hbridación para detección y discriminación rápida de secuencias.
NZ627919B2 (en) Detection of target nucleic acid sequence by pto cleavage and extension-dependent signaling oligonucleotide hybridization assay
AU2494201A (en) Method for concurrent amplification and real time detection of polymorphic nucleic acid sequences

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005857311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2579918

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008516346

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666468

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005333512

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005333512

Country of ref document: AU

Date of ref document: 20050616

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005333512

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11666468

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005857311

Country of ref document: EP