WO2006135063A1 - チャネル割り当て装置およびチャネル割り当て方法 - Google Patents

チャネル割り当て装置およびチャネル割り当て方法 Download PDF

Info

Publication number
WO2006135063A1
WO2006135063A1 PCT/JP2006/312175 JP2006312175W WO2006135063A1 WO 2006135063 A1 WO2006135063 A1 WO 2006135063A1 JP 2006312175 W JP2006312175 W JP 2006312175W WO 2006135063 A1 WO2006135063 A1 WO 2006135063A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
logical
logical channel
radio
radio physical
Prior art date
Application number
PCT/JP2006/312175
Other languages
English (en)
French (fr)
Inventor
Masayuki Motegi
Yasuhiro Kato
Minami Ishii
Takehiro Nakamura
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to BRPI0612753-3A priority Critical patent/BRPI0612753A2/pt
Priority to CN2006800256083A priority patent/CN101223810B/zh
Priority to EP20060766854 priority patent/EP1892989A4/en
Priority to KR1020087000939A priority patent/KR101238329B1/ko
Priority to US11/917,871 priority patent/US8189519B2/en
Publication of WO2006135063A1 publication Critical patent/WO2006135063A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a channel allocation device and a channel allocation method, and more particularly to a technique for dynamically allocating required resources on a radio physical channel when a logical channel and a radio channel have a corresponding relationship.
  • a logical channel that is a functional channel defined between RLC and MAC and a transport channel that is a functional channel defined between MAC and Physical
  • Three types of function channels are prepared: (Transport Channel) and the physical channel (Physical Channel) of the function channel defined in the Physical layer.
  • a logical channel is composed of BCCH, PCCH, CCCH, MCCH, DCCH, MSCH, MTCH, and DTCH etc.
  • CCH is used for control and TCH is used for communication.
  • MCCH, MSCH, and MTCH are used for MBMS.
  • the transport channel is composed of BCH, PCH, FACH, RACH, DCH, HS-DSCH, etc.
  • BCH, PCH, FACH, and HS-DSCH are downlink transport channels
  • DCH is a transport channel in both the upper and lower directions.
  • the physical channel includes PCCPCH, SCCPCH, DPCH, PRACH, HS-PDSCH, SCH, CPIC H, AICH, PICH, HS-SCCH, HS-DPCCH, etc.
  • PCCPCH is prepared to transmit BCH (broadcast information) on the downlink physical channel
  • SCCPCH is prepared to transmit FACH and PCH (call information) on the downlink physical channel.
  • SCCP CH FACH and PCH are allocated
  • FACH and PCH are allocated
  • the UE performs L3 (RRC ) Identified by layer identifier (TMSI). Therefore, since there is no individual correspondence in L2 (UE cannot be identified at L2 level), the logical channel is transmitted on CCCH (common control channel).
  • CCCH common control channel
  • the identifier (C-or H-RNTI) in L2 is assigned by RAN, it is identified by L2 and the logical channel becomes DCCH (individual control channel). .
  • RRC Connection Request which is a control signal when establishing RRC Connection
  • CCCH a logical channel
  • PRACH a radio physical channel
  • RR C Connection Setup is also transmitted on the CCCH logical channel and on the S CCPCH radio physical channel. Since the RRTI assigned from the RAN is included in the “RRC Connection Setup” message and transmitted, the RRC Connection is established in the subsequent signaling, and the logical channel is transmitted on the DCCH. The radio physical channel is transmitted on DPCH.
  • the prepared transmission path is SDCCH (for signaling), and no radio channel for U-plane transmission is prepared. Therefore, the radio channel is changed by RRC signaling during RRC Connection Setup. Radio physical setup for U-plane transmission is set in Radio Bearer Setup. In other words, channels are added by RRC signaling.
  • the PDC has a plurality of functional channels shown below. That is, the PDC has an information channel (TCH) and a control channel (CCH) for transferring user information.
  • the control channel includes BC CH, CCCH (PCH, SCCH), UPCH, ACCH (SACCH, FACCH) power S included.
  • the functional channels are arranged on one radio channel.
  • the locations (slots) where communication (TCH) channels and control (CCH) channels can be placed are limited in time.
  • only one type of functional channel can be placed in a slot in which a control channel can be placed.
  • Non-Patent Document 1 3GPP "TS25.301"
  • Non-Patent Document 2 3GPP "TS25.321"
  • Non-Patent Document 3 RCR STD-27 Digital Car Telephone System Disclosure of the invention
  • W-CDMA has a three-level channel hierarchy of a logical channel, a transport channel, and a physical channel.
  • the logical channel is mapped to the transport channel, and the transport channel is mapped to the physical channel.
  • CELL_FACH and CELL_DCH are defined as protocol states, and these states are transited by L3 signaling according to the traffic volume. For this reason, it is necessary to define protocol states (CELL_FACH and CELL_DCH).
  • an increase in test parameters an increase in signaling (procedures and messages) for transitioning between protocol states, and channel transition It may cause delay and data loss.
  • the SCCPCH basically, the UE that receives the signal on the SCC PCH, which can transmit most logical channels, basically receives the radio channel continuously and receives data. After demodulating, if it is not addressed to itself, the corresponding TB is discarded. In particular, in the case of U-plane data, notation consumption becomes a problem.
  • SCCPCH has become a data communication society centered on PS (Packet Switched) due to the advancement of multimedia communication in the future.
  • PS Packet Switched
  • HS-DSCH transport channel
  • HS-PDSCH physical channel
  • other transport channels for example, PCH, BCH, etc.
  • DCCH and DTCH can be placed in HS-DSCH.
  • Other logical channels cannot be allocated because it is difficult to identify the UE at the L2 level. For this reason, even if there is space in the resource, the required resource cannot be assigned to another logical channel! /.
  • signaling in the RRC Connection establishment process is CCCH (common control logical channel) is transmitted in PRACH for upstream communication, and looped downstream communication is performed.
  • SCCPCH common control logical channel
  • DCCH is transmitted over DPCH for signaling after RRC Connection is established.
  • W-CDMA the radio physical channel is defined according to the characteristics of the logical channel, and the radio physical channel is changed by RRC signaling.
  • W-CAMA a logical channel (bearer) for U-plane transmission is added after signaling, so L3 signaling is also used there.
  • the UE Before the RRC Connection is established, the UE is identified by the L3 identifier (specifically, TMSI). After the RRC Connection is established, the UE is identified by the L2 identifier (specifically, RNTI). Done. For this reason, transition to the dedicated channel is possible only after the RRC Connection is established. Therefore, because the UE identification method is different between the RRC Connection establishment process and the subsequent signaling, the W-CDMA reconfigures the radio physical layer channel. Along with that, there was a need to define the protocol state.
  • TMSI the L3 identifier
  • the UE is identified by the L2 identifier (specifically, RNTI). Done. For this reason, transition to the dedicated channel is possible only after the RRC Connection is established. Therefore, because the UE identification method is different between the RRC Connection establishment process and the subsequent signaling, the W-CDMA reconfigures the radio physical layer channel. Along with that, there was a need to define the protocol state.
  • an object of the present invention is to provide a channel allocation device and a channel allocation method capable of sequentially allocating required radio resources on a radio physical channel according to logical channel generation traffic. is there. Means for solving the problem
  • the channel allocation device of the present invention is a channel allocation device that allocates a plurality of logical channels to a radio physical channel between a radio access network and a terminal, and the logical channel includes: It consists of a logical channel for control and a logical channel for data transmission.
  • the radio physical channel can be used in common for a plurality of logical channels, and one logical channel corresponds to one radio physical channel.
  • a traffic monitoring and detecting means for detecting occurrence of traffic on the logical channel, and logic for sequentially allocating required resources on the radio physical channel according to the occurrence of traffic on the logical channel.
  • One of the features is that it is provided with channel assignment means.
  • a plurality of logical channels can be made to correspond to one radio physical channel, and required radio resources can be sequentially allocated on the radio physical channel in accordance with the generated traffic of the logical channel.
  • the channel allocation method of the present invention is a channel allocation method for allocating a plurality of logical channels to a radio physical channel between a radio access network and a terminal, wherein the logical channel is a control logical channel.
  • the radio physical channel can be used in common for a plurality of logical channels, and one logical channel has a corresponding relationship with one radio physical channel.
  • a plurality of logical channels can be made to correspond to one radio physical channel, and necessary radio resources can be sequentially allocated on the radio physical channel in accordance with traffic generated by the logical channel.
  • FIG. 1 is an explanatory diagram showing channel assignment in W-CDMA.
  • FIG. 2 is an explanatory diagram showing a communication system according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing the correspondence between functional channels and physical channels in a communication system according to an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a configuration of a radio physical channel according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart showing the operation of the transmitting apparatus according to one embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of the transmission apparatus according to one embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the transmission apparatus according to one embodiment of the present invention. Explanation of symbols
  • a communication system (radio access network) assumed in this embodiment includes a plurality of transmission devices.
  • the communication device 100 includes a channel assignment device.
  • the communication system forms a service area (a cell in the case of wireless communication) so that information can be exchanged between the transmission device 100 and the reception device 300.
  • one radio channel that can be shared by a plurality of reception devices is defined as a channel transmitted from the transmission device 100 to the reception device 300. . Any logical channel can be transmitted on this radio channel.
  • the transmission device 100 and the reception device 300 are defined as a transmission device and a reception device that transmit information via a wireless link.
  • the transmission path between the transmission device and the reception device is It is not limited to wireless.
  • transmission in the downlink direction from the transmission device 100 to the reception device 300 will be described in particular. Is also applicable and is not limited to downlink transmission.
  • a logical channel is composed of BCCH, PCCH, MCCH, DCCH, CCCH, DTCH, MSCH, and MTCH.
  • CCH is a logical channel for control
  • TCH is a logical channel for data transmission.
  • MCCH, MSCH, and MTCH are used for MBMS communication, that is, multicast 'broadcast communication. There may be more or fewer logical channels than these, but you are not limited to these.
  • an E-DSCH (Evolution-Downlink Shared Channel) of a downlink radio physical channel that can be shared between UEs is prepared.
  • E-DSCH it is possible to transmit all logical channels in the downlink direction of BCCH, PCCH, MCCH, DCCH, CCCH, MTCH, MSCH, and DTCH. That is, the radio physical channel can be used in common for a plurality of logical channels.
  • the radio physical channel is a power that describes only E-DSCH.
  • BCCH, PCCH, MCCH, DCCH, CCCH, MSCH, MTCH, and DTCH have only one correspondence with E-PDSCH. That is, one logical channel has a corresponding relationship with one radio channel.
  • the force described with focusing on the channel in the downlink direction is not limited to the downlink direction.
  • the description of the transport channel defined in W-CDMA is omitted. That is, there may be a configuration with or without a transport channel between a logical channel and a physical channel. In the case of a configuration having transport channels, a configuration in which a plurality of logical channel forces are arranged on one transport channel or a configuration in which the transport channels are distributed over a plurality of transport channels may be employed.
  • Radio physical channel Locations where a required radio resource can be allocated to the corresponding logical channel on the radio physical channel (E-DSCH) are defined as transmission timing 1 to transmission timing 14.
  • the number of transmission timings is not limited to 14, but may be large or small.
  • the radio physical channel is divided by a code and can have a plurality of radio physical channels.
  • the broadcast channel (BCCH) can be assigned to a specific position on the radio physical channel, for example, transmission timing 1.
  • BCCH broadcast channel
  • the required radio resource can be allocated to that logical channel.
  • the required radio resources can be allocated to the PCCH. That is, the paging channel (PCCH) can be assigned to a specific position on the radio physical channel, for example, transmission timing 2. However, if there is no PCCH traffic, if there is traffic on a logical channel other than the broadcast channel / paging channel, the required radio resources can be allocated to that logical channel.
  • PCCH paging channel
  • a transmission apparatus 100 includes a channel allocation apparatus, which includes a control unit 102, a traffic monitoring unit 104 connected to the control unit 102, a resource monitoring unit 106, The transmission timing monitoring unit 108, the logical channel type determination unit 110, the logical channel allocation unit 112, and the logical channel transmission unit 114 are configured.
  • the radio allocation apparatus allocates a plurality of logical channels necessary for establishing a radio link, maintaining a radio link and transmitting data between a radio access network (RAN) and a terminal (UE) to a radio physical channel.
  • RAN radio access network
  • UE terminal
  • the control unit 102 controls each functional entity and controls the entire transmission apparatus 100.
  • the traffic monitoring unit 104 monitors whether or not there is a logical channel in which traffic has occurred among logical channels that can be arranged on the radio physical channel.
  • the resource monitoring unit 106 monitors whether resources can be allocated to the logical channel in which traffic has occurred.
  • the transmission timing monitoring unit 108 sets the timing at which each logical channel can be allocated!
  • Whether the broadcast channel and the call channel can be allocated is monitored.
  • the logical channel type determination unit 110 determines the logical channel type of the logical channel monitored by the traffic monitoring unit 104.
  • the logical channel allocation unit 112 can allocate a required resource to the logical channel. In this case, resources for the corresponding logical channel are allocated on the radio physical channel.
  • Logical channel transmission unit 114 transmits the assigned logical channel to receiving apparatus 300.
  • the transmission timing monitoring unit 108 of the transmission device 100 confirms whether or not the power is the transmittable timing (step S602).
  • step S602 When it is the transmission possible timing (step S602: YES), the traffic monitoring unit 104 determines whether there is a logical channel in which traffic has occurred among the logical channels (step S604). If it is not the transmission ready timing (step S602: NO), the process ends.
  • step S604 When there is a logical channel in which traffic has occurred (step S604: YES), the logical channel type determination unit 110 determines whether the logical channel power is at least one of the broadcast channel and the paging channel (step S604). S606). If there is no logical channel in which traffic occurs (step S604: NO), the process ends.
  • the transmission timing monitoring unit 108 transmits the broadcast channel or the call channel at the transmission timing. It is determined whether or not it is possible (step S608).
  • step S608 When transmission is possible at the transmission timing (step S608: YES), the logical channel allocation unit 112 allocates a required radio resource on the radio physical channel (step S610).
  • step S606 determines whether the result of the determination in step S606 is that it is neither a broadcast channel nor a call channel! /.
  • step S606: NO the logical channel allocation unit 112 immediately performs the required radio on the radio physical channel. Assign resources (step S610).
  • step S608 If the result of the determination in step S608 indicates that transmission is not possible at the relevant timing (step S608: NO), the transmission timing monitoring unit 108 accumulates information until the next transmission is possible. Returning to step S608, radio resources are allocated on the radio physical channel immediately when the corresponding timing is reached.
  • the configuration of the transmitter according to this embodiment is the same as that of the first embodiment described with reference to FIG. This is the same configuration as the transmitting device.
  • the transmission timing monitoring unit 108 monitors the logical channel used for the user common data information, for example, the MBMS channel in preparation for monitoring the broadcast channel and the calling channel.
  • the functional channel and the physical channel that is useful in the present embodiment is the same as the correspondence between the functional channel and the physical channel that is effective in the first embodiment described with reference to FIG.
  • the locations where the required radio resources can be allocated on the radio physical channel for MCCH, MSCH, and MTCH (logical channel used for multicast 'broadcast') are limited. This is different from the physical channel configuration in the first embodiment. That is, user common data information, eg, a logical channel used for MBMS, is assigned to a specific position on the radio physical channel.
  • User common data information for example, multicast broadcast information, can be transmitted simultaneously from a plurality of adjacent transmission devices, and therefore can be transmitted only at a transmission timing defined between the plurality of adjacent transmission devices.
  • the transmission timing monitoring unit 108 of the transmission device 100 confirms whether or not the power is the transmittable timing (step S702).
  • step S702 If it is the transmittable timing (step S702: YES), the traffic monitoring unit 104 determines whether there is a logical channel in which traffic has occurred among the logical channels (step S704). If it is not possible to transmit (step S702: NO), the process ends.
  • step S704 When there is a logical channel in which traffic has occurred (step S704: YES), the logical channel type determination unit 110 determines whether or not the logical channel power is user common data information, for example, whether it is a logical channel for MBMS. Judgment is made (step S706). If there is no logical channel with traffic (step S704: NO), the process ends.
  • step S706 When the logical channel power for which traffic is generated is an MBMS logical channel (step S706: YES), the transmission timing monitoring unit 108 uses the MBMS It is determined whether the logical channel can be transmitted (step S708).
  • the logical channel allocation unit 112 allocates required radio resources on the radio physical channel (step S710).
  • Step S706 if the result of the determination in step S706 is that the logical channel is not for MBMS! /, (Step S706: NO), the logical channel allocation unit 112 immediately allocates the required radio resource on the radio physical channel. (Step S710).
  • step S708 If the result of determination in step S708 indicates that transmission is not possible at the relevant timing (step S708: NO), the transmission timing monitoring unit 108 transmits the multicast broadcast information until the next transmission is possible. Accumulate, that is, return to step S708, and when the corresponding timing is reached, immediately allocate radio resources for the MBMS on the radio physical channel.
  • the configuration of the transmission apparatus according to this embodiment is the same as that of the transmission apparatus according to the first embodiment described with reference to FIG.
  • the transmission timing monitoring unit 108 is used for monitoring the broadcast channel and call channel, and is a logical channel used for user common data information.
  • the logical channel for MBMS is monitored.
  • the correspondence between the functional channel and the physical channel that works in the present embodiment is the same as the correspondence between the functional channel and the physical channel that works in the first embodiment described with reference to FIG.
  • the required radio resource is allocated to the logical channel where the traffic occurred and there is still sufficient radio resource
  • the required radio resource of the other logical channel is satisfied, the corresponding logical channel is assigned.
  • a required radio resource is allocated.
  • the logical channels to which the required radio resources can be allocated at the transmission timing are limited to a single channel. This is different from the physical channel configuration in the first embodiment in that a plurality of logical channels can be transmitted as long as there are sufficient radio resources.
  • Radio resources are not allocated to the logical channel.
  • the required radio resources can be allocated to the corresponding logical channel on the radio physical channel defined by different code 'frequency of the same timing.
  • the transmission timing monitoring unit 108 of the transmission device 100 confirms whether or not the power is the transmittable timing (step S802).
  • step S802 If it is the transmittable timing (step S802: YES), the traffic monitoring unit 104 determines whether there is a logical channel in which traffic has occurred in one of the logical channels. (Step S804). If the transmission is not possible (step S802: NO), the process ends.
  • the logical channel type determination unit 110 uses the logical channel power notification channel, call channel, and user common data information, for example, for MBMS. It is determined whether or not there is at least one logical channel (step S806). If there is no logical channel in which traffic occurs (step S804: NO), the process ends.
  • step S806 Logical channel power in which traffic is generated If any one of the broadcast channel, the paging channel, and the MBMS is one logical channel (step S806: YES), the transmission timing monitoring unit 108 performs logical processing at the transmission timing. It is determined whether or not any one of the channel, broadcast channel, paging channel, and MBMS logical channel can be transmitted (step S808).
  • logical channel allocation Unit 112 allocates the required radio resources on the radio physical channel (step S810).
  • the traffic monitoring unit 104 checks whether there is another logical channel in which traffic has occurred (step S812).
  • step S812 If there is another logical channel in which traffic occurs (step S812: YES), the resource allocation unit 106 checks whether the wireless physical channel is code-divided or frequency-divided in the wireless system! (Step S814).
  • step S814 When code division or frequency division is performed (step S814: YES), the logical channel allocation unit 112 allocates a required radio resource to the logical channel. (Step S810). However, in the case of the generated logical channel power notification channel, paging channel, and MBMS logical channel, the same processing as the above step, ie, step S808 is performed.
  • step S806 As a result of the determination in step S806, any of the broadcast channel, paging channel, and MBMS logical channel! / Is a logical channel (step S806: NO). Allocate the required radio resources on the channel (Step S
  • the traffic monitoring unit 104 checks whether there is a channel in which traffic has occurred in another logical channel (step S818).
  • step S818 When there is a logical channel in which traffic has occurred (step S818: YES), the resource monitoring unit 106 determines whether or not the logical resource satisfies the required resource requested (step S820).
  • step S820 When the resource requested by the logical channel can be secured (step S820: YES), the logical channel assignment unit 112 immediately assigns the required resource (step S816). However, in the case of the generated logical channel power broadcast channel, paging channel, and MBMS channel, the same processing as the above step, ie, step S808 is performed.
  • step S808 If the result of the determination in step S808 indicates that transmission is not possible at the relevant timing (step S808: NO), the logical channel allocation unit 112 does not stop until the next transmission is possible. And store channel information for use, ie, step S808 As soon as transmission becomes possible, the broadcast information, call information, and MBMS radio resources are allocated on the radio physical channel.
  • step S812 determines whether there is no other logical channel in which traffic has occurred (step S812: NO, step S818: NO), the processing ends.
  • step S814 if there is no other resource that can be secured (step S804: NO), the resource is not secured for the logical channel, and the process is terminated. The generated traffic is assigned at the next transmission timing.
  • step S820 NO
  • the process is terminated without assigning the required resource to the logical channel. Powerful logical channels that are not allocated allocate the required resources at the next transmission timing.
  • signaling is performed by transmitting a plurality of functional channels (logical channels) on one physical channel.
  • the channel assignment apparatus and the channel assignment method according to the present invention can be applied to a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 論理チャネルを、制御用の論理チャネルとデータ伝送用の論理チャネルとから構成されるようにし、無線物理チャネルを、複数の論理チャネルに対して共通に使用可能であるようにし、1つの論理チャネルは1つの無線物理チャネルと対応関係を有するようにし、チャネル割り当て装置に、論理チャネルのトラヒックの発生を検出するトラヒック監視検出手段と、論理チャネルのトラヒックの発生に応じて、所要のリソースを、前記無線物理チャネル上に逐次的に割り当てる論理チャネル割り当て手段とを備えることにより達成される。

Description

明 細 書
チャネル割り当て装置およびチャネル割り当て方法
技術分野
[0001] 本発明は、チャネル割り当て装置およびチャネル割り当て方法に関し、特に、論理 チャネルと無線チャネルとが対応関係を持つ場合の当該無線物理チャネル上で、動 的に所要のリソースを割り当てる技術に関する。
背景技術
[0002] W-CDMAでのチャネル割り当て方法について説明する(例えば、非特許文献 1、 2 参照)。
[0003] W-CDMAでは、図 1に示すように、 RLC - MAC間で定義される機能チャネルである 論理チャネル(Logical Channel)と、 MAC - Physical間で定義される機能チャネルで あるトランスポートチャネル(Transport Channel)、 Physical layerで定義される機能チ ャネルの物理チャネル(Physical Channel)の 3種類の機能チャネルが用意される。
[0004] 論理チャネルは、 BCCH、 PCCH、 CCCH、 MCCH、 DCCH、 MSCH、 MTCH、 DTCH etcから構成され、 CCHは制御用に、 TCHは通信用に使用される。 MCCH、 MSCH、 MTCHは、 MBMS用に用いられる。
[0005] トランスポートチャネルは、 BCH、 PCH、 FACH、 RACH、 DCH、 HS- DSCH etcから 構成され、 BCH、 PCH、 FACH、および HS- DSCHは、下り方向のトランスポートチヤネ ルであり、 RACHは、上り方向のトランスポートチャネルであり、 DCHは、上下両方向 のトランスポートチャネルである。
[0006] 物理チャネルは、 PCCPCH、 SCCPCH、 DPCH、 PRACH、 HS- PDSCH、 SCH、 CPIC H、 AICH、 PICH、 HS- SCCH、 HS- DPCCH etcから構成される。 PCCPCHは、下り方 向の物理チャネルで BCH (報知情報)を伝送する為に用意され、 SCCPCHは、下り方 向の物理チャネルで、 FACH、および PCH (呼出情報)を伝送する為に用意される。
W-CDMAでは、殆どの論理チャネル力 配置可能な無線物理チャネルとして、 SCCP CH (FACH、 PCHが配置される)がある。
[0007] ところで、接続シーケンスは、 RRC Connectionが確立されるまでは、 UEは、 L3 (RRC )レイヤでの識別子 (TMSI)で識別される。故に、 L2では個別の対応関係が無い (L2 レベルでは UEの識別はできない)為、論理チャネルは、 CCCH (共通の制御チャネル )で伝送される。また、 RRC Connection確立後は、 L2での識別子(C- or H-RNTI)が RANカゝら割り当てられる為、以後は、 L2で識別され、論理チャネルは、 DCCH (個別 の制御チャネル)となる。
[0008] RRC Connection確立について説明する。
[0009] RRC Connection確立時の制御信号である" RRC Connection Request"は、論理チ ャネルは CCCHで伝送され、無線物理チャネルは PRACHで伝送される。さらに、 "RR C Connection Setup"も、論理チャネルは CCCHで伝送され、無線物理チャネルは、 S CCPCHで伝送される。 "RRC Connection Setup"メッセージに RANから割り当てる RN TIが含まれ送信される為、これ以降のシグナリングでは、 RRC Connectionが確立され る為、論理チャネルは DCCHで伝送される。無線物理チャネルは、 DPCH上で伝送さ れる。 RRC Connection Setup Confirm時には、用意される伝送路は、 SDCCH (シグナ リング用)であり、 U-plane伝送用の無線チャネルは用意されていない。故に、 RRC C onnection Setup時に、 RRCのシグナリングで無線チャネルが変更される。 Radio Beare r Setupで、 U-plane伝送用の無線物理チャネルが設定される。即ち、 RRCのシグナリ ングによりチャネルが追加される。
[0010] PDCでのチャネル割り当て方法にっ 、て説明する(例えば、非特許文献 3参照)。
[0011] PDCは、以下に示す複数の機能チャネルがある。すなわち、 PDCには、ユーザ情報 転送用の情報チャネル (TCH)と制御チャネル(CCH)があり、制御チャネルには、 BC CH、 CCCH (PCH、 SCCH)、 UPCH、 ACCH (SACCH、 FACCH)力 S含まれる。
[0012] PDCでは、上記機能チャネルは、 1つの無線チャネル上に配置される。無線チヤネ ル上では、時間的に、通信用(TCH)チャネルと制御用(CCH)チャネルが配置可能 な場所 (スロット)が限定される。また、制御用チャネルを配置可能なスロットでは、 1種 類の機能チャネルのみ配置可能である。
非特許文献 1 : 3GPP "TS25.301"
非特許文献 2 : 3GPP "TS25.321"
非特許文献 3: RCR STD-27 デジタル方式自動車電話システム 発明の開示
発明が解決しょうとする課題
[0013] し力しながら、上述した背景技術には以下の問題がある。
[0014] W-CDMAでは、論理チャネル、トランスポートチャネル、物理チャネルの 3段階のチ ャネル階層を持ち、論理チャネルは、トランスポートチャネルへマッピングされ、トラン スポートチャネルは、物理チャネルへマッピングされる。
[0015] SCCPCH (基本的に、低速の無線物理チャネル)上では、殆どの論理チャネルを割 り当てる事が可能である。しかしながら、 DCCH、および DTCHであれば、 FACH (SCC PCH)以外に、 DPCH (DCH)、或いは、 HS- DSCH (HS- PDSCH)にも配置可能である 。この為、プロトコル状態として CELL_FACH、および CELL_DCHと呼ばれる状態が定 義され、トラヒック量に応じて、これらの状態間を L3のシグナリングで遷移する。この為 、プロトコル状態(CELL_FACH、および CELL_DCH)を定義する必要があり、これに 伴い、試験ェ定数の増加や、プロトコル状態間を遷移させるためのシグナリング (プロ シージャ、メッセージ)の増加や、チャネル遷移遅延、データロスを引き起こす原因と なる。
[0016] 一方、 SCCPCH上では、基本的に、殆どの論理チャネルを伝送可能である力 SCC PCH上の信号を受信する UEは、基本的に、当該無線チャネルを連続的に受信し、 データを復調後、 自分宛てで無ければ該当 T Bを破棄する動作を行う為、特に、 U-pl aneデータの場合には、ノ ッテリー消費が問題となる。
[0017] また、 SCCPCH上は、今後のマルチメディア通信の進歩により、 PS (Packet Switched )中心のデータ通信社会になり、高速のデータ転送のやり取りが必要な場合、基本的 に低速の共通チャネル(セル内の全 UEが受信できるようなチャネル)の為、今後の移 動通信環境にはマッチしない。
[0018] W-CDMAでは、無線物理チャネルは、 Codeにより明確に規定され、リソースをチヤ ネル間で共有することができな 、。
[0019] HS-PDSCH (物理チャネル)には、 HS-DSCH (トランスポートチャネル)のみがマツピ ング可能であり、他のトランスポートチャネル(例えば、 PCH、 BCH等)は、マッピング することができない。 HS-DSCHには、 DCCH、および DTCHのみが配置可能であり、 他の論理チャネルは、 L2レベルでの UEの識別が困難である事から、配置する事がで きない。この為、例えリソースに空きがあつたとしても所要のリソースを他の論理チヤネ ルへ割り当てることができな!/、。
[0020] 接続シーケンスを考えてみると、 RRC Connection確立過程でのシグナリングは、 CC CH (共通の制御用論理チャネル)は、上り方向の通信では、 PRACHで伝送し、折り 返しの下り方向の通信では、 SCCPCHで伝送される。また、 RRC Connection確立後 のシグナリングは、 DCCHは、 DPCH上で伝送される。この様に、 W-CDMAでは、論 理チャネルの特性に応じて、無線物理チャネルが規定され、 RRCのシグナリングで無 線物理チャネルの変更が行なわれる。更に、 W-CAMAでは、シグナリング後に、 U-pl ane伝送用の論理チャネル (ベアラ)が追加される為、そこでも L3のシグナリングが用 いられる。
[0021] RRC Connection確立前は、 UEの識別は、 L3の識別子(具体的には、 TMSI)で行な われており、 RRC Connection確立後は、 L2の識別子(具体的には、 RNTI)で行なわ れる。この為、 Dedicatedなチャネルに遷移できるのは、 RRC Connectionが確立され た後の状態のみとなる。故に、 RRC Connection確立過程とそれ以降のシグナリング において UEの識別方法が異なる為、 W-CDMAでは、無線物理レイヤのチャネルを 設定しなおしていた。それに伴い、プロトコル状態を定義する必要性があった。
[0022] 一方、 PDCでは、機能チャネルは、 1つの無線チャネル上に配置される力 通信チ ャネル用スロットに制御チャネルを配置することはできず、一方、制御チャネル用スロ ットに通信チャネルを配置することもできない。故に、制御チャネル用スロットで、該当 スロットで送信すべき情報が無い場合、リソースの無駄が生じる。また、制御用チヤネ ルを配置可能なスロットでは、 1種類の機能チャネルのみしか配置することができな ヽ 為、複数の種類の機能チャネルを配置することができない。この為、 3G以降の移動 通信システムでは、伝送速度が高速になり、 1種類の機能チャネルのみでは、リソー スに余剰が生じ、リソースの無駄が生じる。
[0023] そこで、本発明の目的は、論理チャネルの発生トラヒックに応じて、無線物理チヤネ ル上で逐次所要の無線リソースの割り当てを行うことができるチャネル割り当て装置 およびチャネル割り当て方法を提供することにある。 課題を解決するための手段
[0024] 上記課題を解決するため、本発明のチャネル割り当て装置は、無線アクセスネット ワークと端末との間で複数の論理チャネルを無線物理チャネルに割り当てるチャネル 割り当て装置であって、前記論理チャネルは、制御用の論理チャネルとデータ伝送 用の論理チャネルとから構成され、前記無線物理チャネルは、複数の論理チャネル に対して共通に使用可能であり、 1つの論理チャネルは 1つの無線物理チャネルと対 応関係を有し、前記論理チャネルのトラヒックの発生を検出するトラヒック監視検出手 段と、前記論理チャネルのトラヒックの発生に応じて、所要のリソースを、前記無線物 理チャネル上に逐次的に割り当てる論理チャネル割り当て手段とを備えることを特徴 の 1つとする。
[0025] このように構成することにより、複数の論理チャネルを 1つの無線物理チャネル上へ 対応させ、論理チャネルの発生トラヒックに応じて無線物理チャネル上で逐次所要の 無線リソースの割り当てることができる。
[0026] また、本発明のチャネル割り当て方法は、無線アクセスネットワークと端末との間で 複数の論理チャネルを無線物理チャネルに割り当てるチャネル割り当て方法であつ て、前記論理チャネルは、制御用の論理チャネルとデータ伝送用の論理チャネルと から構成され、前記無線物理チャネルは、複数の論理チャネルに対して共通に使用 可能であり、 1つの論理チャネルは 1つの無線物理チャネルと対応関係を有し、前記 論理チャネルのトラヒックの発生を検出する検出ステップと、前記論理チャネルのトラ ヒックの発生に応じて、所要のリソースを、前記無線物理チャネル上に逐次的に割り 当てる割り当てステップとを有することを特徴の 1つとする。
[0027] このようにすることにより、複数の論理チャネルを 1つの無線物理チャネル上へ対応 させ、論理チャネルの発生トラヒックに応じて無線物理チャネル上で逐次所要の無線 リソースの割り当てることができる。
発明の効果
[0028] 本発明の実施例によれば、論理チャネルの発生トラヒックに応じて、無線物理チヤ ネル上で逐次所要の無線リソースの割り当てを行うことができるチャネル割り当て装 置およびチャネル割り当て方法を実現できる。 図面の簡単な説明
[0029] [図 1]W— CDMAにおけるチャネル割り当てを示す説明図である。
[図 2]本発明の一実施例にカゝかる通信システムを示す説明図である。
[図 3]本発明の一実施例に力かる通信システムにおける機能チャネルと物理チャネル との対応を示す説明図である。
[図 4]本発明の一実施例にカゝかる無線物理チャネルの構成を示す説明図である。
[図 5]本発明の一実施例に力かる送信装置を示すブロック図である。
[図 6]本発明の一実施例に力かる送信装置の動作を示すフローチャートである。
[図 7]本発明の一実施例に力かる送信装置の動作を示すフローチャートである。
[図 8]本発明の一実施例に力かる送信装置の動作を示すフローチャートである。 符号の説明
[0030] 100、 100、 100、 100 送信装置
1 2 3
200 無線ネットワークコントローラ
300、 300、 300、 300、 300、 300、 300 受信装置
1 2 3 4 5 6
発明を実施するための最良の形態
[0031] 次に、本発明を実施するための最良の形態を、以下の実施例に基づき図面を参照 しつつ説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号 を用い、繰り返しの説明は省略する。
[0032] 本発明の実施例に力かる通信システムについて、図 2を参照して説明する。
[0033] 本実施例の想定する通信システム (無線アクセスネットワーク)は、複数の送信装置
100 (100、 100、 100 )と、送信装置 100と接続される無線ネットワークコントローラ
1 2 3
200と、受信装置 300 (300、 300、 300、 300、 300、 300 )力ら構成される。送
1 2 3 4 5 6
信装置 100は、チャネル割り当て装置を備える。
[0034] 通信システムは、送信装置 100と受信装置 300との間で情報のやり取りを可能とす るために、サービスエリア (無線通信の場合には、セル)を形成する。
[0035] 送信装置 100と受信装置 300との間では、送信装置 100から受信装置 300へ伝送 するチャネルとして、複数の受信装置で共用できる 1つの無線チャネルが定義される 。この無線チャネル上では、あらゆる論理チャネルを伝送することができる。
[0036] 本実施例では、送信装置 100、および受信装置 300を、無線リンクを介して情報を 伝送する送信装置、および受信装置として定義したが、送信装置と受信装置との間 の伝送路は無線に限定されるものではない。
[0037] また、本実施例では、特に、送信装置 100から受信装置 300への下り方向の伝送 に関して説明するが、下り方向に限らず、受信装置 300から送信装置 100への上り 方向へ伝送にも適用可能であり、下り方向の伝送に限定されるものではない。
[0038] 次に、本実施例の想定する機能チャネルと物理チャネルとの対応、および無線物 理チャネル構成について、図 3を参照して説明する。
[0039] 本実施例の想定する論理チャネル (或!/、は、機能チャネル)と物理チャネルとの対 応のイメージを、 W-CDMAで提供されている論理チャネル、無線物理チャネルを用 いて説明する。
[0040] 論理チャネル(或いは、機能チャネル)は、 BCCH、 PCCH、 MCCH、 DCCH、 CCCH 、 DTCH、 MSCHおよび MTCHから構成される。ここで、 CCHは制御用の論理チヤネ ル、 TCHはデータ伝送用の論理チャネルである。また、 MCCH、 MSCH, MTCHは、 MBMS通信、即ち、マルチキャスト 'ブロードキャスト通信に用いられる。論理チャネル は、これらに限定されるものではなぐこれらより多くなつても良いし、少なくなつても良 い。
[0041] 一方、無線物理チャネルは、 UE間で共有に使用可能な下り方向の無線物理チヤネ ルの E-DSCH (Evolution- Downlink Shared Channel)が用意される。 E- DSCH上では 、 BCCH、 PCCH、 MCCH、 DCCH、 CCCH, MTCH, MSCH, DTCHの下り方向の全 論理チャネルを伝送することが可能である。すなわち、無線物理チャネルは、複数の 論理チャネルに対して共通に使用可能である。
[0042] 無線物理チャネルは、 E-DSCHのみを記述している力 これに限定されるものでは なぐ E-DSCHに付随する制御チャネルや、上り方向のチャネルも存在する。 BCCH、 PCCH、 MCCH、 DCCH、 CCCH, MSCH, MTCH, DTCHは、 E— PDSCHのみと唯一 の対応関係を持つ。すなわち、 1つの論理チャネルは 1つの無線チャネルと対応関 係を有する。 [0043] 本実施例では、下り方向のチャネルに着目して記述している力 下り方向に限定さ れるものではない。
[0044] また、 W-CDMAで定義されているトランスポートチャネルに関しては説明を省略す る。すなわち、論理チャネルと物理チャネルとの間で、トランスポートチャネルがある 構成でも良いし、無い構成でも良い。トランスポートチャネルがある構成の場合には、 複数の論理チャネル力 1つのトランスポートチャネル上に配置される構成でも良いし 、複数のトランスポートチャネルに分散される構成であっても良い。
[0045] 次に、本実施例の想定する無線物理チャネル構成について、図 4を参照して説明 する。
[0046] 無線物理チャネル (E-DSCH)上の該当論理チャネルに対して所要の無線リソース を割り当て可能な箇所を、送信タイミング 1〜送信タイミング 14とする。この送信タイミ ングの数は、 14に限らず多くてもよいし、少なくてもよい。また、無線物理チャネルは 、符号により分割され、複数の無線物理チャネルを持つことが可能である。
[0047] 例えば、送信タイミング 1では、報知チャネル (BCCH)のトラヒックがある場合に、 BC CHに対して所要の無線リソースを割り当てることが可能である。すなわち、報知チヤ ネル (BCCH)は、無線物理チャネル上の特定の位置、例えば送信タイミング 1に割り 当てることができる。但し、 BCCHのトラヒックが発生していない場合には、報知チヤネ ル'呼出チャネル以外の論理チャネルでトラヒックが発生したものがあれば、その論理 チャネルに対して所要の無線リソースを割り当てることができる。
[0048] また、例えば送信タイミング 2では、呼出チヤネノレ (PCCH)のトラヒックがある場合に
、 PCCHに対して所要の無線リソースを割り当てることが可能である。すなわち、呼出 チャネル (PCCH)は、無線物理チャネル上の特定の位置、例えば送信タイミング 2に 割り当てることができる。但し、 PCCHのトラヒックが発生していない場合には、報知チ ャネル ·呼出チャネル以外の論理チャネルでトラヒックが発生したものがあれば、その 論理チャネルに対して所要の無線リソースを割り当てることができる。
[0049] 送信タイミング 1および 2以外の送信タイミングでは、 BCCH、 PCCH以外の全論理 チャネルに対して、当該論理チャネルにトラヒックが発生した場合に、所要の無線リソ ースを割り当てることが可能である。すなわち、報知情報および呼出情報に使用され る論理チャネル以外の論理チャネルは、無線物理チャネルの任意の位置に割り当て ることがでさる。
[0050] 次に、本実施例に力かる送信装置について、図 5を参照して説明する。
[0051] 本実施例にカゝかる送信装置 100は、チャネル割り当て装置を備え、無線割り当て装 置は、制御部 102と、制御部 102と接続されたトラヒック監視部 104、リソース監視部 1 06、送信タイミング監視部 108、論理チャネル種別判定部 110、論理チャネル割当 部 112および論理チャネル伝送部 114とから構成される。無線割り当て装置は、無線 アクセスネットワーク (RAN)と端末 (UE)との間で、無線リンクの確立、無線リンクの 維持およびデータ伝送に必要な複数の論理チャネルを無線物理チャネルに割り当 てる。
[0052] 制御部 102は、各機能エンティティに対して制御を行 ヽ、送信装置 100全体の制 御を行う。
[0053] トラヒック監視部 104は、無線物理チャネル上へ配置可能な論理チャネルの中で、 トラヒックが発生した論理チャネルがある力否かを監視する。
[0054] リソース監視部 106は、トラヒックが発生した当該論理チャネルへリソースを割り当て 可能か否かを監視する。
[0055] 送信タイミング監視部 108は、各論理チャネルを割り当て可能なタイミングにお!/、て
、報知チャネル、呼出チャネルを割り当て可能か否か監視する。
[0056] 論理チャネル種別判定部 110は、トラヒック監視部 104で監視した論理チャネルの 論理チャネル種別を判定する。
[0057] 論理チャネル割当部 112は、トラヒック監視部 104、論理チャネル種別判定部 110 、送信タイミング監視部 118、リソース監視部 106の結果、当該論理チャネルに対し、 所要のリソースを割り当て可能となった場合に、無線物理チャネル上で、該当論理チ ャネル用のリソースを割り当てる。
[0058] 論理チャネル伝送部 114は、割り当てた論理チャネルを受信装置 300へ伝送する
[0059] 次に、本実施例に力かる送信装置 100におけるチャネル割り当て処理について、 図 6を参照して説明する。 [0060] 送信装置 100の送信タイミング監視部 108は、送信可能タイミングである力否かを 確認する(ステップ S602)。
[0061] 送信可能タイミングである場合 (ステップ S602 : YES)、トラヒック監視部 104は、論 理チャネルの中で、トラヒックが発生した論理チャネルがあるか否かを判断する (ステ ップ S604)。送信可能タイミングでない場合 (ステップ S602 : NO)、終了する。
[0062] トラヒックが発生した論理チャネルがある場合 (ステップ S604: YES)、論理チヤネ ル種別判定部 110は、その論理チャネル力 報知チャネルおよび呼出チャネルの少 なくとも一方であるかを判断する (ステップ S606)。トラヒックが発生した論理チャネル がない場合 (ステップ S604 : NO)、終了する。
[0063] トラヒックが発生した論理チャネル力 報知チャネルおよび呼出チャネルの少なくと も一方である場合 (ステップ S606 : YES)、送信タイミング監視部 108は、当該送信タ イミングで、報知チャネル或いは呼出チャネルが送信可能であるか否かを判断する( ステップ S608)。
[0064] 当該送信タイミングで送信可能な場合 (ステップ S608: YES)、論理チャネル割当 部 112は、無線物理チャネル上で所要の無線リソースを割り当てる (ステップ S610)
[0065] 一方、ステップ S606の判断の結果、報知チャネルでも呼出チャネルでもな!/、論理 チャネルの場合 (ステップ S606 : NO)、論理チャネル割当部 112は、直ちに無線物 理チャネル上で所要の無線リソースを割り当てる (ステップ S610)。
[0066] また、ステップ S608の判断の結果、該当タイミングで送信できな 、場合 (ステップ S 608 :NO)、送信タイミング監視部 108は、次に送信できるタイミングまで、情報を一 且蓄積し、すなわち、ステップ S608に戻り、該当タイミングになった時点で直ちに無 線物理チャネル上で無線リソースを割り当てる。
[0067] 次に、本発明の第 2の実施例に力かる通信システムについて説明する。
[0068] 本実施例に係る通信システムの構成は、図 2を参照して説明した第 1の実施例にか 力る通信システムと同様であるため、その説明を省略する。
[0069] 次に、本実施例に力かる送信装置 100について説明する。
[0070] 本実施例に力かる送信装置の構成は、図 5を参照して説明した第 1の実施例にか 力る送信装置と同様の構成である。但し、送信タイミング監視部 108は、報知チヤネ ル、呼出チャネルの監視にカ卩え、ユーザ共通データ情報に使用される論理チャネル 、例えば MBMSチャネルの監視を行なう。
[0071] 次に、本実施例の想定する機能チャネルと物理チャネルとの対応、および物理チヤ ネルの構成について説明する。
[0072] 本実施例に力かる機能チャネルと物理チャネルとの対応は、図 3を参照して説明し た第 1の実施例に力かる機能チャネルと物理チャネルとの対応と同様である。但し、 MBMS通信を行う場合に、 MCCH、 MSCH、 MTCH (マルチキャスト 'ブロードキャスト に使用される論理チャネル)に対し、無線物理チャネル上で所要の無線リソースを割 り当てることが可能な箇所が限定される点で、第 1の実施例における物理チャネル構 成と異なる。すなわち、ユーザ共通データ情報、例えば MBMSに使用される論理チヤ ネルは、無線物理チャネル上の特定の位置に割り当てられる。ユーザ共通データ情 報、例えばマルチキャスト 'ブロードキャスト情報は、隣接する複数の送信装置から同 時に伝送することが可能な為、隣接する複数の送信装置間で規定した送信タイミン グでのみ伝送可能である。
[0073] 次に、本実施例に力かる送信装置 100におけるチャネル割り当て処理について、 図 7を参照して説明する。
[0074] 送信装置 100の送信タイミング監視部 108は、送信可能タイミングである力否かを 確認する (ステップ S 702)。
[0075] 送信可能タイミングである場合 (ステップ S702: YES)、トラヒック監視部 104は、論 理チャネルの中で、トラヒックが発生した論理チャネルがあるか否かを判断する (ステ ップ S704)。送信可能タイミングでない場合 (ステップ S702 : NO)、終了する。
[0076] トラヒックが発生した論理チャネルがある場合 (ステップ S704: YES)、論理チヤネ ル種別判定部 110は、その論理チャネル力 ユーザ共通データ情報、例えば MBM S用の論理チャネルである力否かを判断する (ステップ S706)。トラヒックが発生した 論理チャネルがな 、場合 (ステップ S704: NO)、終了する。
[0077] トラヒックが発生した論理チャネル力 MBMS用の論理チャネルである場合 (ステツ プ S706 : YES)、送信タイミング監視部 108は、当該送信タイミングで、 MBMS用の 論理チャネルが送信可能であるかを判断する (ステップ S 708)。
[0078] 当該送信タイミングで送信可能な場合 (ステップ S708: YES)、論理チャネル割当 部 112は、無線物理チャネル上で所要の無線リソースを割り当てる (ステップ S710)
[0079] 一方、ステップ S706の判断の結果、 MBMS用の論理チャネルでな!/、場合 (ステツ プ S706 : NO)、論理チャネル割当部 112は、直ちに無線物理チャネル上で所要の 無線リソースを割り当てる (ステップ S710)。
[0080] また、ステップ S708の判断の結果、該当タイミングで送信できな 、場合 (ステップ S 708 :NO)、送信タイミング監視部 108は、次に送信できるタイミングまで、マルチキ ヤスト.ブロードキャスト情報をー且蓄積し、すなわち、ステップ S708に戻り、該当タイ ミングになった時点で直ちに無線物理チャネル上で当該 MBMS用の無線リソースを 割り当てる。
[0081] 次に、本発明の第 3の実施例に力かる通信システムについて説明する。
[0082] 本実施例に係る通信システムの構成は、図 2を参照して説明した第 1の実施例にか 力る通信システムと同様であるため、その説明を省略する。
[0083] 次に、本実施例に力かる送信装置 100について説明する。
[0084] 本実施例に力かる送信装置の構成は、図 5を参照して説明した第 1の実施例にか 力る送信装置と同様の構成である。但し、送信タイミング監視部 108は、報知チヤネ ル、呼出チャネルの監視にカ卩え、ユーザ共通データ情報に使用される論理チャネル
、例えば MBMS用の論理チャネルの監視を行なう。
[0085] 次に、本実施例の想定する機能チャネルと物理チャネルとの対応、および物理チヤ ネルの構成について説明する。
[0086] 本実施例に力かる機能チャネルと物理チャネルとの対応は、図 3を参照して説明し た第 1の実施例に力かる機能チャネルと物理チャネルとの対応と同様である。但し、 各送信タイミングで、トラヒックが発生した論理チャネルに所要の無線リソースを割り当 て、未だ無線リソースに余裕がある場合には、他の論理チャネルの所要無線リソース を満たせば、該当論理チャネルに対し、所要の無線リソースを割り当てる。即ち、送 信タイミングで所要無線リソースを割り当て可能な論理チャネルは、唯一に限定され るものではなぐ無線リソースに余裕がある限り、複数の論理チャネルを伝送すること が可能である点で、第 1の実施例における物理チャネル構成と異なる。
[0087] 報知チャネル ·呼出チャネルの所要無線リソース割り当て可能箇所では、報知チヤ ネル ·呼出チャネルに対して既に所要の無線リソースが割り当てられている場合、例 え無線リソースに余裕があっても、他の論理チャネルに対して無線リソースの割り当て を行なわない。 MBMS用の論理チャネルに関しても同様である。但し、符号分割'周 波数分割されている場合には、同一タイミングの異なるコード'周波数で定義される 無線物理チャネル上では、該当論理チャネルへの所要無線リソースの割り当ては可 能である。
[0088] 次に、本実施例に力かる送信装置 100におけるチャネル割り当て処理について、 図 8を参照して説明する。
[0089] 送信装置 100の送信タイミング監視部 108は、送信可能タイミングである力否かを 確認する(ステップ S802)。
[0090] 送信可能タイミングである場合 (ステップ S802: YES)、トラヒック監視部 104は、複 数ある論理チャネルの中で、どれか 1つの論理チャネルにトラヒックが発生した論理チ ャネルがあるかどうか判断する (ステップ S804)。送信可能タイミングでな 、場合 (ス テツプ S802 :NO)、終了する。
[0091] トラヒックが発生した論理チャネルがある場合 (ステップ S804: YES)、論理チヤネ ル種別判定部 110は、その論理チャネル力 報知チャネル、呼出チャネルおよびュ 一ザ共通データ情報、例えば MBMS用のうち少なくとも 1つの論理チャネルか否かを 判断する (ステップ S806)。トラヒックが発生した論理チャネルがな 、場合 (ステップ S 804 : NO)、終了する。
[0092] トラヒックが発生した論理チャネル力 報知チャネル、呼出チャネルおよび MBMS用 のうちいずれ力 1つの論理チャネルである場合 (ステップ S806 : YES)、送信タイミン グ監視部 108は、当該送信タイミングで、論理チャネル、報知チャネル、呼出チヤネ ルおよび MBMS用の論理チャネルのいずれか 1つが送信可能であるか否かを判断す る(ステップ S 808)。
[0093] 当該送信タイミングで送信可能な場合 (ステップ S808: YES)、論理チャネル割当 部 112は、無線物理チャネル上で所要の無線リソースを割り当てる (ステップ S810)
[0094] 次に、トラヒック監視部 104は、他にトラヒックが発生した論理チャネルがあるか否か を確認する (ステップ S812)。
[0095] 他にトラヒックが発生した論理チャネルがある場合 (ステップ S812 : YES)、リソース 割当部 106は、無線システムで、無線物理チャネルが符号分割、或いは周波数分割 等されて!、るかどうか確認する(ステップ S814)。
[0096] 符号分割、或 、は周波数分割が行なわれて 、る場合 (ステップ S814: YES)、論 理チャネル割当部 112は、リソース割当部 106は、当該論理チャネルに対し所要の 無線リソースを割り当てる (ステップ S810)。但し、発生した論理チャネル力 報知チ ャネル、呼出チャネル、 MBMS用の論理チャネルの場合には、前記ステップ、すなわ ちステップ S808と同様の処理が行われる。
[0097] ステップ S806の判断の結果、報知チャネル、呼出チャネル、 MBMS用の論理チヤ ネルのどれでもな!/、論理チャネルの場合 (ステップ S806: NO)、論理チャネル割当 部 112は、直ちに無線物理チャネル上で所要の無線リソースを割り当てる (ステップ S
816) o
[0098] 次に、トラヒック監視部 104は、他の論理チャネルでトラヒックが発生したチャネルが あるかどうか確認する(ステップ S818)。
[0099] トラヒックが発生した論理チャネルがある場合 (ステップ S818: YES)、リソース監視 部 106は、該当論理チャネルが要求する所要のリソースを満たす力どうか判断する( ステップ S820)。
[0100] 当該論理チャネルが要求するリソースを確保可能な場合 (ステップ S820: YES)、 論理チャネル割当部 112は、所要のリソースを直ちに割り当てる (ステップ S816)。伹 し、発生した論理チャネル力 報知チャネル、呼出チャネル、 MBMS用のチャネルの 場合には、前記ステップ、すなわちステップ S808と同様の処理が行われる。
[0101] また、ステップ S808の判断の結果、該当タイミングで送信できな 、場合 (ステップ S 808 : NO)、論理チャネル割当部 112は、次に送信できるタイミングまで、報知チヤネ ル、呼出チャネル、 MBMS用のチャネル情報をー且蓄積し、すなわちステップ S808 に戻り、送信可能となった時点で直ちに無線物理チャネル上で当該報知情報、呼出 情報、 MBMS用の無線リソースを割り当てる。
[0102] また、ステップ S812およびステップ S818の判断の結果、他にトラヒックが発生した 論理チャネルが無い場合 (ステップ S812 :NO、ステップ S818 :NO)、当該処理を 終了する。
[0103] また、ステップ S814の判断の結果、他にリソースを確保できるものが無ければ (ステ ップ S804 :NO)、当該論理チャネルのリソースを確保せず、処理を終了する。発生し たトラヒックは、次の送信タイミングで割り当てる。
[0104] また、ステップ S820の判断の結果、当該論理チャネルが要求する所要のリソースを 確保できない場合 (ステップ S820 : NO)、当該論理チャネルに所要のリソースを割り 当てず、当該処理を終了する。割り当てられな力つた論理チャネルは、次の送信タイ ミングで所要のリソースを割り当てる。
[0105] 以上、説明したように本実施例によれば、複数の機能チャネル (論理チャネル)を 1 つの物理チャネル上で伝送することにより、シグナリング(チャネル遷移プロシージャ
、メッセージ)を低減する効果が見込める。
[0106] また、プロトコル状態を低減できる効果、試験工程を削減できる効果、チャネル遷移 により生じる遷移遅延、データロスを回避できる。
[0107] また、チャネルの対応をシンプルにできる効果が見込める。
[0108] また、発生トラヒックに応じて逐次無線チャネル上でリソース割り当てを行う為、リソ ース (コード、時間、周波数等)の無駄が発生せず、当該リソースを有効活用できる効 果が見込める。無線チャネル上で機能チャネルの配置を予め規定しなくても良くなる 効果が見込める。
産業上の利用可能性
[0109] 本発明に力かるチャネル割り当て装置およびチャネル割り当て方法は、移動通信 システムに適用できる。
[0110] 本国際出願は 2005年 6月 17日に出願された日本国特許出願 2005— 178530号 に基づく優先権を主張するものであり、 2005— 178530号の全内容をここに本国際 出願に援用する。

Claims

請求の範囲
[1] 無線アクセスネットワークと端末との間で複数の論理チャネルを無線物理チャネル に割り当てるチャネル割り当て装置であって:
前記論理チャネルは、制御用の論理チャネルとデータ伝送用の論理チャネルとか ら構成され、前記無線物理チャネルは、複数の論理チャネルに対して共通に使用可 能であり、 1つの論理チャネルは 1つの無線物理チャネルと対応関係を有し、 前記論理チャネルのトラヒックの発生を検出するトラヒック監視検出手段; 前記論理チャネルのトラヒックの発生に応じて、所要のリソースを、前記無線物理チ ャネル上に逐次的に割り当てる論理チャネル割り当て手段;
を備えること特徴とするチャネル割り当て装置。
[2] 請求項 1に記載のチャネル割り当て装置であって:
論理チャネルの種別を判定する論理チャネル種別判定手段;
を備え、
前記論理チャネル割り当て手段は、論理チャネルの種別に応じて、所要のリソース を、前記無線物理チャネル上に逐次的に割り当てることを特徴とするチャネル割り当 て装置。
[3] 請求項 2に記載のチャネル割り当て装置であって:
前記論理チャネル割り当て手段は、報知情報、呼出情報およびユーザ共通データ 情報のうち少なくとも 1つに使用される論理チャネルを、前記無線物理チャネル上の 特定の位置に割り当てることを特徴とするチャネル割り当て装置。
[4] 請求項 2または 3に記載のチャネル割り当て装置であって:
前記論理チャネル割り当て手段は、報知情報および呼出情報に使用される論理チ ャネル以外の論理チャネルを、前記無線物理チャネルの任意の位置に割り当てるこ とを特徴とするチャネル割り当て装置。
[5] 無線アクセスネットワークと端末との間で複数の論理チャネルを無線物理チャネル に割り当てるチャネル割り当て方法であって:
前記論理チャネルは、制御用の論理チャネルとデータ伝送用の論理チャネルとか ら構成され、前記無線物理チャネルは、複数の論理チャネルに対して共通に使用可 能であり、 1つの論理チャネルは 1つの無線物理チャネルと対応関係を有し、 前記論理チャネルのトラヒックの発生を検出する検出ステップ;
前記論理チャネルのトラヒックの発生に応じて、所要のリソースを、前記無線物理チ ャネル上に逐次的に割り当てる割り当てステップ;
を有することを特徴とするチャネル割り当て方法。
[6] 請求項 5に記載のチャネル割り当て方法であって:
論理チャネルの種別を判定する論理チャネル種別判定ステップ;
を有し、
前記割り当てステップは、論理チャネルの種別に応じて、所要のリソースを、前記無 線物理チャネル上に逐次的に割り当てるステップ;
を有することを特徴とするチャネル割り当て方法。
[7] 請求項 6に記載のチャネル割り当て方法であって:
前記割り当てステップは、報知情報、呼出情報およびユーザ共通データ情報のうち の少なくとも 1つに使用される論理チャネルを、前記無線物理チャネル上の特定の位 置に割り当てるステップ;
を有することを特徴とするチャネル割り当て方法。
[8] 請求項 6または 7に記載のチャネル割り当て方法であって:
前記割り当てステップは、報知情報および呼出情報に使用される論理チャネル以 外の論理チャネルを、前記無線物理チャネルの任意の位置に割り当てるステップ; を有することを特徴とするチャネル割り当て方法。
PCT/JP2006/312175 2005-06-17 2006-06-16 チャネル割り当て装置およびチャネル割り当て方法 WO2006135063A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0612753-3A BRPI0612753A2 (pt) 2005-06-17 2006-06-16 aparelho de atribuição de canal e método de atribuição de canal
CN2006800256083A CN101223810B (zh) 2005-06-17 2006-06-16 信道分配装置以及信道分配方法
EP20060766854 EP1892989A4 (en) 2005-06-17 2006-06-16 CHANNEL DISTRIBUTION DEVICE AND CHANNEL DISTRIBUTION METHOD
KR1020087000939A KR101238329B1 (ko) 2005-06-17 2006-06-16 채널 할당 장치 및 채널 할당 방법
US11/917,871 US8189519B2 (en) 2005-06-17 2006-06-16 Channel assignment apparatus and channel assignment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-178530 2005-06-17
JP2005178530A JP4718254B2 (ja) 2005-06-17 2005-06-17 チャネル割り当て装置およびチャネル割り当て方法

Publications (1)

Publication Number Publication Date
WO2006135063A1 true WO2006135063A1 (ja) 2006-12-21

Family

ID=37532415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312175 WO2006135063A1 (ja) 2005-06-17 2006-06-16 チャネル割り当て装置およびチャネル割り当て方法

Country Status (9)

Country Link
US (1) US8189519B2 (ja)
EP (1) EP1892989A4 (ja)
JP (1) JP4718254B2 (ja)
KR (1) KR101238329B1 (ja)
CN (1) CN101223810B (ja)
BR (1) BRPI0612753A2 (ja)
RU (1) RU2419256C2 (ja)
TW (1) TW200708004A (ja)
WO (1) WO2006135063A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098538A1 (en) * 2005-03-12 2006-09-21 Lg Electronics Inc. A method for transmitting information in a multiple antenna system
KR101208520B1 (ko) * 2005-03-12 2012-12-05 엘지전자 주식회사 피드백 정보 통신 방법
JP4651462B2 (ja) * 2005-06-17 2011-03-16 株式会社エヌ・ティ・ティ・ドコモ チャネル伝送装置及びチャネル伝送方法
CN101188794B (zh) * 2007-01-12 2010-09-01 中兴通讯股份有限公司 高速下行共享信道的无线网络暂时标识号获取方法及装置
US8422466B2 (en) * 2007-11-26 2013-04-16 Nokia Corporation Multiple network connections
TWI392261B (zh) 2007-12-13 2013-04-01 Innovative Sonic Ltd 無線資源分配的方法及其相關通訊裝置
CN101355810B (zh) * 2008-08-15 2012-02-08 中兴通讯股份有限公司 上行物理控制信道的资源映射方法和装置
US8964549B2 (en) * 2010-06-22 2015-02-24 Sierra Wireless, Inc. Method and apparatus for managing wireless communication based on network traffic level
GB201208389D0 (en) * 2012-05-10 2012-06-27 Samsung Electronics Co Ltd Integrated circuit, communication unit, wireless communication system and methods therefor
WO2017201690A1 (zh) * 2016-05-25 2017-11-30 华为技术有限公司 小区切换方法和装置
CN111601383A (zh) * 2019-06-17 2020-08-28 维沃移动通信有限公司 一种资源分配方法、终端和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152159A (ja) * 2000-09-15 2002-05-24 Lucent Technol Inc 通信方法および通信システム
JP2002531029A (ja) * 1998-11-24 2002-09-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動通信システムのアクセス方法
JP2003229901A (ja) * 2001-12-05 2003-08-15 Huawei Technologies Co Ltd 高速ダウンリンクパケットシステムによる異なるサービスの質を有するトラフィックのサポート方法
JP2005086818A (ja) * 2003-09-04 2005-03-31 Lucent Technol Inc 通信ネットワークにおけるブロードキャストおよびマルチキャスト情報の信号方式

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214147A (en) * 1982-07-27 1986-11-18 Ludwig Eigenmann Impact resistant retroreflective road markings
IL74860A0 (en) * 1985-01-22 1985-07-31 Izhak Givati Motor vehicle accessory particularly useful for protecting the vehicle against theft
JPH0822100B2 (ja) * 1989-09-19 1996-03-04 日本電信電話株式会社 移動通信無線制御チャネル構成方式
US5896376A (en) * 1996-12-13 1999-04-20 Ericsson Inc. Optimal use of logical channels within a mobile telecommunications network
FI970266A (fi) * 1997-01-22 1998-07-23 Nokia Telecommunications Oy Menetelmä solukkoradiojärjestelmän ohjauskanavien kantaman pidentämiseksi ja solukkoradiojärjestelmä
DE69841717D1 (de) * 1997-04-17 2010-07-22 Ntt Docomo Inc Mobiles Kommunikationssystem, Basisstation und Mobilstation
FI110467B (fi) 1997-08-19 2003-01-31 Nokia Corp Informaation siirto tietoliikennejärjestelmässä
KR100689366B1 (ko) * 1998-09-14 2007-05-17 삼성전자주식회사 이동통신시스템의 통신장치 및 방법
US6807192B2 (en) * 2000-01-14 2004-10-19 Interdigital Technology Corporation Wireless communication system with selectively sized data transport blocks
US7499428B2 (en) * 2002-11-07 2009-03-03 Qualcomm, Incorporated Method, apparatus, and system for receiving data on a first frequency band and observing a second frequency band
US7385953B2 (en) * 2004-10-26 2008-06-10 At&T Mobility Ii Llc Method and apparatus for allocating a beacon signal in a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531029A (ja) * 1998-11-24 2002-09-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動通信システムのアクセス方法
JP2002152159A (ja) * 2000-09-15 2002-05-24 Lucent Technol Inc 通信方法および通信システム
JP2003229901A (ja) * 2001-12-05 2003-08-15 Huawei Technologies Co Ltd 高速ダウンリンクパケットシステムによる異なるサービスの質を有するトラフィックのサポート方法
JP2005086818A (ja) * 2003-09-04 2005-03-31 Lucent Technol Inc 通信ネットワークにおけるブロードキャストおよびマルチキャスト情報の信号方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892989A4 *

Also Published As

Publication number Publication date
CN101223810A (zh) 2008-07-16
TWI317590B (ja) 2009-11-21
KR101238329B1 (ko) 2013-03-04
JP2006352704A (ja) 2006-12-28
RU2008100769A (ru) 2009-07-27
BRPI0612753A2 (pt) 2010-11-30
EP1892989A4 (en) 2012-01-04
TW200708004A (en) 2007-02-16
EP1892989A1 (en) 2008-02-27
JP4718254B2 (ja) 2011-07-06
US8189519B2 (en) 2012-05-29
US20090088173A1 (en) 2009-04-02
KR20080035569A (ko) 2008-04-23
CN101223810B (zh) 2012-07-18
RU2419256C2 (ru) 2011-05-20

Similar Documents

Publication Publication Date Title
JP4718254B2 (ja) チャネル割り当て装置およびチャネル割り当て方法
EP1943854B1 (en) Method of transmitting and receiving wireless resource information
EP1248476B1 (en) Packet data transmitting/receiving method in mobile communication system
US9210715B2 (en) Method, apparatus, and system for triggering resource configuration
KR101230366B1 (ko) 채널 전송 장치 및 채널 전송 방법
KR101397048B1 (ko) 무선 통신 시스템에서의 데이터 전송 방법
KR101340367B1 (ko) 패킷 기반 이동통신 시스템에서 무선자원제어 연결 상태의 단말에 대한 페이징 방법 및 이를 위한 기지국 장치
JP2010519845A (ja) 無線通信システムにおけるリソース割り当て方法
JP2009510831A (ja) チャネル確立遅延を低減するための半活性状態
KR100913416B1 (ko) 이동통신 시스템에서의 정보 전송방법
CN102448025B (zh) 寻呼Cell_PCH状态的用户终端的方法及装置
CN101500291B (zh) 多频点系统中高速分组接入传输的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025608.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4858/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/016026

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2006766854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006766854

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000939

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008100769

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006766854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11917871

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0612753

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071217