WO2006134636A1 - 環境試料スクリーニング測定方法及び装置 - Google Patents

環境試料スクリーニング測定方法及び装置 Download PDF

Info

Publication number
WO2006134636A1
WO2006134636A1 PCT/JP2005/010832 JP2005010832W WO2006134636A1 WO 2006134636 A1 WO2006134636 A1 WO 2006134636A1 JP 2005010832 W JP2005010832 W JP 2005010832W WO 2006134636 A1 WO2006134636 A1 WO 2006134636A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
predetermined range
antibody
sample
screening
Prior art date
Application number
PCT/JP2005/010832
Other languages
English (en)
French (fr)
Inventor
Takashi Matsuki
Kazuyuki Sawadaishi
Chiwa Kataoka
Yoko Takagi
Original Assignee
Kyoto Electronics Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co., Ltd. filed Critical Kyoto Electronics Manufacturing Co., Ltd.
Priority to JP2007521029A priority Critical patent/JP4777983B2/ja
Priority to PCT/JP2005/010832 priority patent/WO2006134636A1/ja
Priority to US11/922,123 priority patent/US20090292477A1/en
Publication of WO2006134636A1 publication Critical patent/WO2006134636A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7763Sample through flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/40Dioxins

Definitions

  • the present invention relates to a method and apparatus for performing screening measurement of environmental samples containing environmental pollutants such as dioxins.
  • POPs Persistent organic chemicals
  • dioxins have adverse effects on living organisms over a long period of time. In addition to being harmful, it is difficult to be decomposed even in an environment that easily dissolves in fat. In particular, dioxins are harmful to living organisms even in extremely small amounts that are highly toxic.
  • Toxicity equivalents are determined based on the toxicity of 2, 3, 7, 8-tetrachlorodibenzo-pararadioxin (2, 3, 7, 8-TCDD), the most toxic of dioxins. 2, 3, 7, 8— The sum of the toxicities of each isomer, multiplied by the abundance of that isomer, assuming that the toxicity of TCDD is 1.
  • a high resolution gas chromatograph mass spectrometer is an official method for measuring dioxins.
  • HRGC / MS is used.
  • dioxins are extracted by the soxle extraction method as a pretreatment, or a cleanup operation is performed to remove measurement interfering substances.
  • the pretreated sample is injected into the HRGCZMS's first-force ram. Isomers are separated by a single effort ram. Each foreign substance that has also eluted a single ram force enters the double-focusing mass spectrometer. The abundance of each isomer can be obtained by discriminating dioxin data with a mass spectrometer chromatograph. Knowing the composition of dioxins makes it easier to identify the source of contamination. In addition, it is possible to calculate the toxic equivalent amount without depending on the composition ratio of isomers.
  • a simple measurement method is also used for measuring dioxins.
  • pretreatment and measurement methods are simplified. This simplification reduces the time it takes to obtain results and reduces costs.
  • Methods that simplify the measurement method include a method using a low-resolution gas chromatograph mass spectrometer and a bioassay method.
  • Bioassay methods include a bioassay method using an Ah receptor and an immunoassay method using an antigen-antibody reaction.
  • ELISA Enzyme-Linked Immunosorbent Assay is an immunoassay method that uses enzyme labeling.
  • a sample solution containing a target substance such as dioxins and a solution containing an enzyme label are mixed, and the mixed solution is placed in an antibody immobilization plate.
  • the target substance or enzyme label which is an antigen, binds to the antibody
  • the unreacted substance is removed by washing, and a chromogenic substrate that reacts with the enzyme label is added.
  • the concentration of the target substance is obtained by measuring the absorbance of the sample.
  • the present invention has been made in view of such problems in the conventional technology, and an object of the present invention is to provide an environmental sample screening measurement method and apparatus capable of speeding up the determination of selection. To do.
  • the screening measurement method provided by the present invention includes a step of measuring an environmental sample, and a measurement result within a predetermined range including a reference value based on a time-series signal of the measurement result. A step of determining whether or not there is a step of outputting a determination result.
  • the present invention provides a screening measurement method for environmental samples, wherein a known amount is provided in a measurement cell in which an antigen derivative that captures an antibody of a target substance that is an antigen is arranged in a flow path of a sample solution.
  • the measurement results are within the specified range including the reference value of the target substance based on the flow of the sample solution mixed with the antibody, the step of measuring the antibody captured by the antigen derivative, and the time-series signal of the measurement results.
  • a screening measurement method comprising a step of determining whether or not a predetermined range and outputting a determination result is provided.
  • the step force for determination is based on the time series signal at the beginning of the measurement for the sample, the force that the measurement result for the sample is within the predetermined range or outside the predetermined range. Have a step to make predictions, and make a decision based on the prediction results.
  • the method further includes a step of shifting to the measurement of another sample when it is predicted that the measurement result for the sample is outside the predetermined range.
  • the output step may display that it is necessary to check whether or not the reference value is satisfied when the determination result determines that the measurement result is within a predetermined range. Good.
  • the present invention provides a screening measurement method for an environmental sample, wherein a known amount is placed in a measurement cell in which an antigen derivative that captures an antibody of a target substance that is an antigen is arranged in a flow path of the sample solution. Flowing a sample solution mixed with antibodies, measuring the antibody captured by the antigen derivative, and displaying the predetermined range including the reference value of the target substance and the time-series signal of the measurement results in a controllable manner A screening measurement method is provided.
  • a screening measurement apparatus used in the above-described screening measurement method.
  • This screening measurement apparatus is a measurement cell having a flow path of a sample solution in which an antigen derivative that captures an antibody of a target substance that is an antigen is arranged, and a sample solution mixed with a known amount of antibody is allowed to flow through the measurement cell.
  • a means for measuring the captured antibody a means for storing data representing a predetermined range including the reference value of the target substance, and based on the measurement result signal, the measurement result is within the predetermined range or outside the predetermined range.
  • the determination means predicts a force that the measurement result for the sample is within the predetermined range or outside the predetermined range based on a time-series signal at the beginning of the measurement for the sample. Depending on the prediction result, it may be judged.
  • the present invention measures a measurement cell having a flow path of a sample solution in which an antigen inducer that captures an antibody of a target substance that is an antigen is disposed, and measures a sample solution in which a known amount of antibody is mixed.
  • Means for measuring the antibody captured by the antigen derivative by flowing through the cell means for storing data representing a predetermined range including the reference value of the target substance, and the stored predetermined range Providing a screening measuring device with a means to display the time range signal of the measurement result and the specified range including the reference value of the target substance in a contrastable manner using the time series signal of the measurement range and the measurement result can do.
  • FIG. 1 is a diagram for explaining a schematic configuration of a screening measurement system in an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the measurement principle of the present invention.
  • FIG. 3 is a diagram showing an example of measurement data.
  • FIG. 4 is a diagram showing the correlation between this measurement method and the official method for exhaust gas samples.
  • FIG. 5 is a diagram showing the correlation between this measurement method and the official method for a burning husk sample.
  • FIG. 6 is a diagram showing the correlation between this measurement method and the official method for fly ash samples.
  • FIG. 7 is a diagram showing the correlation between this measurement method and the official method for soil samples.
  • FIG. 8 is a diagram showing an example of a monitor screen.
  • Fig. 9 shows an example of a screen that displays the measurement results when the measurement of the sample is stopped halfway.
  • the present invention is embodied as a system for performing screening measurement on an environmental sample containing dioxins as a target substance.
  • the screening measurement system in this embodiment forms an antigen-antibody complex by a reaction between a pretreated dioxin-containing environmental sample and a fluorescently labeled antibody solution, and is filled with an antigen derivative-immobilized carrier. Capture the unreacted antibody in the reaction solution in the measurement cell and measure the fluorescence intensity.
  • FIG. 1 is a diagram for explaining a schematic configuration of a screening measurement system in an embodiment of the present invention.
  • This screening measurement system includes a measurement unit 1 and a data processing unit 2.
  • the measurement unit 1 includes a measurement cell 101, a pump 102, an excitation light source 103, an optical sensor 104, and a controller 105.
  • the measurement cell 101 has a flow path 106 through which the sample solution flows.
  • the flow path 106 is filled with a carrier 107 in which an antigen derivative is immobilized to capture an antibody of dioxins as an antigen.
  • a metering pump such as a tube pump can be used as the pump 102.
  • the pump 102 causes a sample solution mixed with a solution containing an antibody to flow through the flow path 106 of the measurement cell 101.
  • the measurement unit 1 can measure the antibody captured by the carrier 107.
  • FIG. 2 is a diagram for explaining the measurement principle.
  • the environmental sample solution contains an unknown amount of dioxins 108 as antigens.
  • an environmental sample solution and a solution containing a known amount of labeled antibody 109 are mixed.
  • the dioxins 108 in the environmental sample solution and a part of the labeled antibody 109 are bound by an antigen-antibody reaction to form an antigen-antibody complex 110.
  • the reaction solution contains this antigen-antibody complex 110 and unreacted labeled antibody 109.
  • the reaction solution is caused to flow through the channel 106 by the pump 102. When the reaction solution is passed through the channel 106, the unreacted labeled antibody 109 is captured by the carrier 107.
  • the antigen-antibody complex 110 passes through the carrier 107 and is discharged from the measurement cell 101. Reaction solution When the total amount of labeled antibody 109 contained in the solution is known, if the amount of labeled antibody 109 captured on carrier 107 is measured, the total amount of labeled antibody 109 is also subtracted from the measured amount, thereby reducing the amount of dioxins 108. Can be sought. In order to measure the amount of the antibody 109 trapped on the carrier 107, here, the antibody 109 is labeled with a fluorescent reagent.
  • Antibody 109 has a high correlation with the total amount of dioxin TEQ derived from combustion such as 2, 3, 4, 7, 8— PeCDF and the like. 0 03234) can be used.
  • the excitation light source 103 in FIG. 1 irradiates the carrier 107 with excitation light. With this excitation light, the labeled antibody 109 captured by the carrier 107 is fluorescent.
  • the optical sensor 104 is disposed at a position facing the excitation light source 103 with the measurement cell 101 interposed therebetween. Fluorescence from the labeled antibody 109 enters the photosensor 104.
  • the optical sensor 104 includes a photoelectric element and can output an electric signal corresponding to the fluorescence intensity in time series. The optical sensor 104 samples the electrical signal at an appropriate time interval, and outputs sensor data including a numerical data string representing the fluorescence intensity to the controller 105 at each sampling time.
  • the controller 105 controls the entire measurement unit 1 including the pump 102, the excitation light source 103, and the optical sensor 104.
  • the controller 105 controls the pump 102 and the excitation light source 103 and causes the optical sensor 104 to output sensor data.
  • the measurement unit 1 Under the control of the controller 105, the measurement unit 1 performs calibration and actual measurement, and also automatically performs cleaning and other operations. Before performing this measurement, Measurement Unit 1 performs B0 measurement and internal standard sample measurement. In the B0 measurement, the fluorescence intensity of a sample that does not contain the target substance dioxin is measured. In the internal standard sample measurement, the internal standard sample is used for measurement. This measurement is for calibration. In this measurement, multiple environmental samples containing dioxins can be measured sequentially.
  • FIG. 3 is an example of measurement data.
  • the horizontal axis represents time
  • the vertical axis represents fluorescence intensity.
  • the Data in time zone 301 corresponds to BO measurement
  • data in time zone 302 corresponds to internal standard sample measurement
  • data in time zone 303 corresponds to this measurement.
  • three environmental samples are measured.
  • the difference in fluorescence intensity between the B0 measurement and this measurement is derived from the dioxin concentration.
  • the number of unreacted antibodies 109 is reduced. For this reason, the value of emission intensity is smaller in this measurement than in B0 measurement.
  • the controller 105 When the controller 105 obtains sensor data from the optical sensor 104 by executing such a measurement sequence, the controller 105 outputs the sensor data to the data processing unit 2.
  • the data processing unit 2 in FIG. 1 performs other processing on the environmental sample based on data representing a predetermined range including a reference value for the target substance dioxin and a time-series sensor signal from the optical sensor 104. It is determined whether the measurement is necessary. Here, it is determined whether measurement by the GCZMS method is necessary. It can be quantified not only by the GMZMS method but also by other measurement methods.
  • the target substance is dioxins
  • the emission standard value for exhaust gas from a new small furnace incineration capacity 2 tZh
  • 5 ng—TEQZm 3 N can be used.
  • various values such as environmental standard values and survey index values can be used as standard values.
  • the predetermined range including the reference value is, for example, a range corresponding to 0.5 times the value of the reference value up to twice the value. If the reference value is 5 ng—TEQZm 3 N, the toxic equivalent can range from 2.5 ng—TEQZm 3 N to 10 ng—TEQZm 3 N.
  • the data processing unit 2 dedicated hardware may be used, or a general-purpose computer may be used.
  • a general-purpose computer is used.
  • the computer's node 201 [the interface 202, HDD 203, RAM 204, CPU 205, and video interface 206 are connected!
  • the interface 202 connects the controller 105 to the data processing unit 2.
  • a data string of sensor data obtained by the optical sensor 104 is sequentially input to the data processing unit 2 by the interface 202.
  • an input device 207 such as a keyboard or a cursor device is also connected to the interface 202.
  • the user can give an instruction to the data processing unit 2 using the input device 207.
  • the HDD 203 can store a judgment program for evaluating whether or not it is necessary to confirm whether the reference value is satisfied by the GCZMS method. Data representing a predetermined range including the environmental value is also stored in advance in the HDD 203.
  • the RAM 204 can be used for temporarily storing programs and data read from the HDD 203.
  • the CPU 205 when receiving a control signal from the controller 105 or receiving an instruction from the user, the CPU 205 reads the determination program from the HDD 203 and operates the computer according to the instruction of the determination program. Thereby, the data processing unit 2 realizes a function of performing the determination and a function of outputting the determination result.
  • the CPU 205 reads data representing a predetermined range from the HDD 203 and temporarily stores it on the RAM 204. A data string of sensor data is also temporarily stored in the RAM 204.
  • the CPU 205 predicts the maximum value of the sampling value in the main measurement for each sample, and determines whether or not the predicted value is within a predetermined range. To do. In order to obtain the predicted value, the CPU 205 specifies data of the start time of the main measurement for each sample from the sensor data on the RAM 204. If the calculation of the amount of change in the sampling value is moved in the time series direction, the data of the start time of this measurement can be specified. As shown in the example in Fig. 3, there is a time period during which the fluorescence intensity hardly changes between measurements. For this reason, the amount of change is close to zero during that time period.
  • the start time data can be specified based on whether the sampling value exceeds the threshold value. For example, each time a new sampling value is input, the amount of change may be calculated using the sampling value and the sampling value one force before that.
  • the controller 105 may include header data representing the start time in the sensor data.
  • the header data includes measurement sequence start time, main measurement start time, and sampling time data, it is possible to specify when the input sampling value is the main measurement start time data.
  • the CPU 205 calculates the amount of change using the data of the start time and a plurality of sampling values immediately after or after that. Calculate.
  • the amount of change is calculated, for example, the maximum value of the sampling value in the main measurement is predicted by multiplying the amount of change by a preset time interval and adding the multiplied value to the sampling value at the start time. .
  • the CPU 205 determines whether the predicted value is within a predetermined range or outside the predetermined range. Here, the predicted value is compared to see if it is below the upper limit of the predetermined range and above the lower limit. When the predicted value is obtained by fluorescence intensity, the conversion value by fluorescence intensity is also used for a predetermined range. If the predicted value is obtained for the toxic equivalent, use the value in the specified range for the toxic equivalent.
  • the CPU 205 determines that it is necessary to check whether the sample satisfies the reference value by the GCZMS method, and if the predicted value is out of the predetermined range, Determine that it is not necessary.
  • the determination may be made based on whether the actual sampling value is within the predetermined range.
  • FIG. 4 to FIG. 7 are diagrams showing the correlation between this measurement method and the GCZMS method when it is determined that confirmation by the GCZMS method is necessary.
  • Fig. 4 shows the results of the evaluation of the exhaust gas sample
  • Fig. 5 shows the results of the evaluation of the burning husk sample
  • Fig. 6 shows the results of the evaluation of the fly ash sample
  • Fig. 7 shows the results of the evaluation.
  • the results of the evaluation of contaminated soil samples derived from combustion are shown. Black circles in each figure indicate samples. For any type of sample !, it is close to 1, and a correlation value is obtained. However, depending on the composition ratio of the isomers, there may be a discrepancy in the analytical value between this measurement method and the GCZMS method.
  • this measurement method does not exceed the reference value slightly, it may exceed the reference value in the GCZMS method if it is within the specified range including the reference value. If a judgment is made using one threshold or value set corresponding to the reference value without using a predetermined range, it may be possible to make a wrong judgment.
  • the risk can be reduced by identifying a sample that may exceed the reference value using a predetermined range.
  • the predetermined range is not limited to the range of 0.5 to 2 times as long as it can identify a sample that may exceed the reference value.
  • the video interface 206 in FIG. 1 displays the determination result on the display 208 in accordance with an instruction from the CPU 205.
  • the measurement result of measurement unit 1 is also displayed.
  • CPU20 5 creates the image signal of the judgment result and measurement result force monitor screen and supplies it to the video interface 206.
  • the video interface 206 displays a monitor screen on the display 208 according to the image signal.
  • FIG. 8 shows an example of the monitor screen.
  • the monitor screen 401 includes a determination display unit 402, a measurement result display unit 403, and a sensorgram display unit 404.
  • the judgment display unit 402 displays the judgment result.
  • the judgment display unit 402 displays the judgment result.
  • the judgment display unit 402 displays the judgment result.
  • the measurement result display unit 403 displays the measurement result data as numerical values.
  • a sensorgram display unit 404 displays a sensorgram obtained by measurement.
  • a rectangular figure 405 on the sensorgram display unit 404 corresponds to a predetermined range.
  • the CPU 205 creates an image of the rectangular figure 405 using the data on the RAM 204. In this way, even if the predetermined range including the reference value of the target substance and the time-series signal of the measurement results are displayed in a controllable manner, the user can immediately recognize the necessity of measurement by the GCZMS method through visual inspection. Can do. The user can quickly identify the sample for which the total dioxin content should be quantified and the source of contamination should be identified. As a result, the time required for the entire analysis can be reduced and the cost can be reduced.
  • the measured value is out of the predetermined range, it can be determined whether or not the sample conforms to the standard without confirmation by the GCZMS method. If the concentration of dioxins is not more than the lower limit of the predetermined range (if the fluorescence intensity is not less than the upper limit of the predetermined range), the standard is met. On the other hand, if the concentration of dioxins is not less than the upper limit value of the predetermined range (if the fluorescence intensity is not more than the lower limit value of the predetermined range), the standard is not met. Such a determination and the display power of the display 208 can be made easy and early by the user.
  • the CPU 205 creates a message “Sample is below the specified range (50% or less of the reference value)” and the concentration is within the specified range. If the sample is above the upper limit, “Specimen is above the specified range (200% or more of the reference value) . We recommend scrutiny. May be generated and displayed on the display 208.
  • the measurement for the sample can be stopped.
  • the measurement is discontinued when, for example, the concentration of dioxins is above the upper limit of the predetermined range.
  • the CPU 205 determines that the measured value is outside the predetermined range by prediction based on the time series signal at the initial stage of measurement, the CPU 205 transmits a control signal to the controller 105 in accordance with a program command.
  • the controller 105 stops the subsequent measurement operation for the sample and shifts to measurement for another sample. More specifically, repeat measurement for the sample is canceled, cleaning is performed, and measurement for the next sample is started.
  • FIG. 9 is an example of a screen that displays the measurement result when the measurement of the sample is stopped halfway.
  • the measurement is stopped in the second time zone 501 from the left.
  • the length of the time zone 501 is shorter than the time zones 502, 503, and 504 for the other samples.
  • the time required for measurement can be shortened by stopping the measurement. This is particularly effective when measuring a large number of samples.
  • the fluorescence intensity is measured, but the absorbance may be measured by a label, or other physical quantity may be measured.
  • both the determination of the necessity of measurement by the GCZMS method and other methods and both the measurement result and the reference display of the predetermined range are performed, but only one of them is performed. May be. In either case, the user can make judgments visually.
  • Another antibody for detecting dioxins may be used.
  • the present invention can be applied not only to environmental samples containing dioxins but also to screening measurement of other environmental samples that need to be analyzed in trace amounts.
  • the screening measurement method and apparatus for environmental samples according to the present invention has an excellent effect that it is possible to speed up judgment of environmental sample selection, and dioxins and other environmental pollutants or This is useful for screening of environmental samples containing persistent organic chemicals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 ダイオキシン類含有試料のような環境試料について、他の測定法による確認が必要かどうかの判断を迅速にすることが可能なスクリーニング測定技術を提供する。抗原である対象物質の抗体を捕捉する抗原誘導体(107)を試料液の流路(106)に配置した測定セル(101)に、既知量の抗体を混合した試料液を流し、抗原誘導体(107)に捕捉された抗体を測定し、測定結果の時系列信号に基づいて、対象物質の基準値を含む所定範囲内に測定結果があるか所定範囲外にあるかの判定をし、その判定結果を出力する。                                                                        

Description

明 細 書
環境試料スクリーニング測定方法及び装置
技術分野
[0001] 本発明は、ダイォキシン類などの環境汚染物質を含む環境試料のスクリーニング測 定を行うための方法および装置に関する。
背景技術
[0002] ダイォキシン類に代表される残留性有機化学物質 (POPs)は、長期に渡って生物 に悪影響を及ぼす。有害である上に、脂肪に溶け易ぐ環境中でも分解され難い。特 にダイォキシン類は毒性が強ぐ極微量でも生物に有害である。
[0003] ダイォキシン類には、多くの異性体が存在し異性体によって毒性が異なるので、試 料の毒性は毒性等量 (TEQ)で評価される。毒性等量は、ダイォキシン類のうちで最 も毒性の強い 2, 3, 7, 8—テトラクロロジベンゾーパラーダィォキシン(2, 3, 7, 8— TCDD)の毒性を基準に求められる。 2, 3, 7, 8— TCDDの毒性を 1としたときの各 異性体の毒性に、その異性体の存在量を乗算した値の合計である。
[0004] ダイォキシン類の測定には、公定法として、高分解能ガスクロマトグラフ質量分析計
(HRGC/MS)による方法が採用されている。公定法では、前処理として、ソックスレ 一抽出法によりダイォキシン類を抽出したり、測定妨害物質を取り除くためクリーンァ ップ操作をしたりする。前処理した試料は、 HRGCZMSのキヤビラリ一力ラムに注入 する。キヤビラリ一力ラムで異性体が分離される。キヤビラリ一力ラム力も溶出した各異 性体は順次、二重収束形質量分析計に入る。質量分析計のクロマトグラフでダイォ キシン類のデータを判別すれば、異性体ごとの存在量を得ることができる。ダイォキ シン類の組成が分かれば、汚染源の特定が容易になる。また異性体の組成比に左 右されず毒性等量を算定することが可能である。
[0005] このような公定法のほか、ダイォキシン類の測定には簡易測定方法も用いられてい る。簡易測定方法では、前処理や測定法が簡易化される。その簡易化により、結果を 得るのに要する時間が短縮され、コストも低減される。測定法を簡易化するものには、 低分解能ガスクロマトグラフ質量分析計を用いた方法や生物検定法がある。 [0006] 生物検定法には、 Ahレセプターを利用するバイオアツセィ法や、抗原抗体反応を 利用するィムノアッセィ法がある。 ELISA (Enzyme- Linked Immunosorbent Assay)法 は、ィムノアッセィ法の一つで酵素標識を利用する。例えば、ダイォキシン類のような 対象物質を含む試料溶液と酵素標識を含む溶液とを混合し、その混合液を抗体固 相化プレートに入れる。抗原である対象物質や酵素標識が抗体に結合してから、洗 浄により未反応物質を取り除き、酵素標識と反応する発色基質を添加する。その状 態で試料の吸光度を測定することにより、対象物質の濃度を得る。
発明の開示
発明が解決しょうとする課題
[0007] 上述したように簡易測定方法を用いることにより、結果を得るのに要する時間が短 縮される。 GCZMS法では結果が出るまでに 1ヶ月程度の期間が必要となるため、 簡易測定方法によりスクリーニング測定をする。
[0008] し力しながら簡易測定方法でも、結果が出るまでは、 GCZMS法やその他の方法 による測定が必要かどうかの判断が困難で、その分判断に時間が力かる。
[0009] 本発明は、このような従来の技術における課題を鑑みてなされたものであり、選別 の判断を迅速にすることが可能な環境試料のスクリーニング測定方法および装置を 提供することを目的とするものである。
課題を解決するための手段
[0010] 上述の目的を達成するために、本発明の提供するスクリーニング測定方法は、環境 試料を測定するステップ、測定結果の時系列信号に基づいて、基準値を含む所定 範囲内に測定結果があるかどうかの判定をするステップ、そして判定結果を出力する ステップを備える。
[0011] 他の観点では、本発明は、環境試料のスクリーニング測定方法であって、抗原であ る対象物質の抗体を捕捉する抗原誘導体を試料液の流路に配置した測定セルに、 既知量の抗体を混合した試料液を流すステップ、抗原誘導体に捕捉された抗体を測 定するステップ、測定結果の時系列信号に基づいて、対象物質の基準値を含む所 定範囲内に測定結果があるか所定範囲外にあるかの判定をするステップ、そして判 定結果を出力するステップを備えるスクリーニング測定方法を提供する。 [0012] そのスクリーニング測定方法にぉ 、て、判定をするステップ力 その試料に対する 測定結果が所定範囲内にあるか所定範囲外にある力をその試料に対する測定初期 の時系列信号に基づ 、て予測するステップを備え、その予測結果に基づ 、て判定を するようにしてちょい。
[0013] 好ましくは、その試料に対する測定結果が所定範囲外にあると予測した場合、他の 試料の測定に移行するステップをさらに備える。
[0014] また出力をするステップが、判定をするステップで測定結果が所定範囲内にあると 判定された場合に、基準値を満たすかどうかの確認が必要であることを表示するよう にしてもよい。
[0015] また他の観点では、本発明は、環境試料のスクリーニング測定方法であって、抗原 である対象物質の抗体を捕捉する抗原誘導体を試料液の流路に配置した測定セル に、既知量の抗体を混合した試料液を流すステップ、抗原誘導体に捕捉された抗体 を測定するステップ、そして対象物質の基準値を含む所定範囲と測定結果の時系列 信号とを対照可能に表示するステップを備えたスクリーニング測定方法を提供する。
[0016] さらに他の観点では、上述のスクリーニング測定方法に使用するスクリーニング測 定装置を提供することができる。このスクリーニング測定装置は、抗原である対象物 質の抗体を捕捉する抗原誘導体を配置した試料液の流路を有する測定セル、既知 量の抗体を混合した試料液を測定セルに流すことにより抗原誘導体に捕捉された抗 体を測定する手段、対象物質の基準値を含む所定範囲を表すデータを記憶する手 段、測定結果の信号に基づいて、測定結果が所定範囲内にあるか所定範囲外にあ るかの判定をする手段、そして判定結果を出力する手段を備える。
[0017] このスクリーニング測定装置において、判定をする手段が、その試料に対する測定 結果が所定範囲内にあるか所定範囲外にある力をその試料に対する測定初期の時 系列信号に基づ 、て予測し、その予測結果に基づ 、て判定するようにしてもょ 、。
[0018] さらに他の観点では、本発明は、抗原である対象物質の抗体を捕捉する抗原誘導 体を配置した試料液の流路を有する測定セル、既知量の抗体を混合した試料液を 測定セルに流すことにより抗原誘導体に捕捉された抗体を測定する手段、対象物質 の基準値を含む所定範囲を表すデータを記憶する手段、そして記憶された所定範 囲のデータ、および測定結果の時系列信号を用いて、対象物質の基準値を含む所 定範囲と測定結果の時系列信号とを対照可能に表示する手段を備えたスクリーニン グ測定装置を提供することができる。
発明の効果
[0019] このような構成を採用することにより、本発明では、環境試料の選別の判断を迅速 にすることが可能となる。
図面の簡単な説明
[0020] [図 1]図 1は本発明の実施の形態におけるスクリーニング測定システムの概略構成を 説明するための図である。
[図 2]図 2は本発明の測定原理を説明するための図である。
[図 3]図 3は測定データの一例を示す図である。
[図 4]図 4は排ガス試料について本測定方法と公定法との相関関係を示す図である。
[図 5]図 5は燃え殻試料について本測定方法と公定法との相関関係を示す図である。
[図 6]図 6は飛灰試料について本測定方法と公定法との相関関係を示す図である。
[図 7]図 7は土壌試料について本測定方法と公定法との相関関係を示す図である。
[図 8]図 8はモニタ画面の一例を示す図である。
[図 9]図 9は試料の測定を途中で中止した場合の測定結果を表示する画面の一例で ある。
符号の説明
[0021] 1 測定部
2 データ処理部
101 測定セル
102 ポンプ
103 励起光源
104 光センサ
105 コントローラ
106 流路
107 固相化抗原誘導体 203 HDD
205 CPU
発明を実施するための最良の形態
[0022] 以下、添付図面を参照して、本発明の実施の形態について説明する。この実施の 形態では、本発明は、対象物質としてダイォキシン類を含む環境試料に対しスクリー ユング測定をするシステムとして具体ィ匕される。
[0023] この実施の形態におけるスクリーニング測定システムは、前処理済みのダイォキシ ン類含有環境試料と蛍光標識した抗体溶液との反応により抗原抗体複合体を形成さ せ、抗原誘導体固相化担体を充填した測定セルにて反応溶液中の未反応抗体を捕 捉し、蛍光強度を測定する。
[0024] 図 1は本発明の実施の形態におけるスクリーニング測定システムの概略構成を説明 するための図である。このスクリーニング測定システムは、測定部 1およびデータ処理 部 2を備えている。
[0025] 測定部 1は、測定セル 101、ポンプ 102、励起光源 103、光センサ 104、コントロー ラ 105を備える。測定セル 101は、試料溶液を流す流路 106を有する。この流路 106 には、抗原であるダイォキシン類の抗体を捕捉するため抗原誘導体を固相化した担 体 107を充填している。
[0026] ポンプ 102には、チューブポンプのような定量ポンプを用いることができる。ポンプ 1 02は、測定セル 101の流路 106に、抗体を含む溶液を混合した試料溶液を流す。こ れにより、測定部 1は、担体 107に捕捉された抗体を測定することができる。
[0027] 図 2は測定原理を説明するための図である。環境試料溶液中には、抗原であるダイ ォキシン類 108が未知量含まれる。このダイォキシン類 108を定量するため、環境試 料溶液と、既知量の標識抗体 109を含む溶液とを混合する。混合により、環境試料 溶液中のダイォキシン類 108と一部の標識抗体 109とが、抗原抗体反応により結合 し、抗原抗体複合体 110を形成する。反応溶液は、この抗原抗体複合体 110と、未 反応の標識抗体 109とを含む。その反応溶液をポンプ 102により流路 106に流す。 反応溶液を流路 106に流すと、未反応の標識抗体 109は担体 107により捕捉される 。抗原抗体複合体 110は担体 107を通過し、測定セル 101から排出される。反応溶 液に含まれる標識抗体 109の総量が既知の場合、担体 107に捕捉された標識抗体 109の量を測定すれば、標識抗体 109の総量力も測定量を差し引くことにより、ダイ ォキシン類 108の量を求めることができる。担体 107に捕捉された抗体 109の量を測 定するため、ここでは、蛍光試薬により抗体 109を標識ィ匕している。
[0028] 抗体 109には、 2, 3, 4, 7, 8— PeCDFなどの燃焼由来のダイォキシン総 TEQ量 に高い相関がある 5, 6塩素ジベンゾフランに高い反応性を示す抗体 (特願 2004— 0 03234号参照)を使用することができる。
[0029] このような測定原理や抗体を用いることで、従来の簡易測定方法と較べても非常に 迅速な測定を行うことが可能となる。これまでのィムノアッセィ測定では数時間かかつ ているところを数分間ですることができる。
[0030] 図 1の励起光源 103は、担体 107へ励起光を照射する。この励起光により、担体 10 7に捕捉された標識抗体 109が蛍光する。
[0031] 光センサ 104は、ここでは、測定セル 101を挟んで励起光源 103と対向する位置に 配置されている。標識抗体 109からの蛍光は、この光センサ 104に入射する。光セン サ 104は、光電素子を含み、蛍光強度に応じた電気信号を時系列に出力することが できる。光センサ 104はその電気信号を適当な時間間隔でサンプリングし、そのサン プリング時間ごとに蛍光強度を表す数値データ列を含むセンサデータをコントローラ 105に出力する。
[0032] コントローラ 105は、ポンプ 102、励起光源 103、光センサ 104を含む測定部 1全体 を制御する。コントローラ 105は、ポンプ 102や励起光源 103を制御し、光センサ 104 にセンサデータを出力させる。
[0033] このコントローラ 105の制御により、測定部 1は校正や本測定し、さらには洗浄やそ の他の操作も自動で行う。本測定を行う前、測定部 1は、 B0測定、内部標準試料測 定を行う。 B0測定では、対象物質であるダイォキシン類を含まない試料の蛍光強度 を測定する。内部標準試料測定では、内部標準試料を用いて測定を行う。この測定 は、校正をするための測定である。本測定では、ダイォキシン類を含む複数の環境 試料を順次測定することができる。
[0034] 図 3は測定データの例である。この図で横軸は時間を表し、縦軸は蛍光強度を表 す。時間帯 301のデータが BO測定に対応し、時間帯 302のデータが内部標準試料 測定に対応し、時間帯 303のデータが本測定に対応する。この例では、 3つの環境 試料について測定を行っている。 B0測定と本測定の蛍光強度の差は、ダイォキシン 類濃度に由来する。本測定では、一部の抗体 109が抗原抗体複合体 110を形成す るので、未反応の抗体 109が少なくなつている。このため、 B0測定よりも本測定の方 で、発光強度の値が小さくなる。
[0035] コントローラ 105は、このような測定シーケンスを実行することにより、光センサ 104 力もセンサデータを得ると、そのセンサデータをデータ処理部 2に出力する。
[0036] 図 1のデータ処理部 2は、対象物質であるダイォキシン類に対する基準値を含む所 定範囲を表すデータ、および光センサ 104からの時系列のセンサ信号に基づいて、 環境試料に対し他の測定が必要力どうか判定する。ここでは、 GCZMS法による測 定が必要かどうかを判定する。 GMZMS法だけでなくその他の測定法により定量す ることもできる。対象物質がダイォキシン類である場合、基準値として、例えば新設小 型炉 (焼却能力 2tZh)の排ガスに対する排出基準値、 5ng— TEQZm3Nを用いる ことができる。基準値には、排出基準値のほか、環境基準値、調査指標値など各種 の値を用いることができる。基準値を含む所定範囲は、例えば基準値の 0. 5倍の値 力も 2倍の値までに対応する範囲である。基準値が 5ng— TEQZm3Nであれば、毒 性等量について、 2. 5ng— TEQZm3Nから 10ng— TEQZm3Nまでの範囲を与え ることがでさる。
[0037] データ処理部 2には、専用のハードウェアを用いることもできるし、汎用のコンビユー タを用いてもよい。ここでは、汎用のコンピュータを用いる。図 1の例では、そのコンビ ユータのノ ス 201【こインターフェイス 202、 HDD203, RAM204, CPU205,およ びビデオインターフェイス 206が接続されて!、る。
[0038] インターフェイス 202は、コントローラ 105をデータ処理部 2と接続する。光センサ 10 4により得られたセンサデータのデータ列は、このインターフェイス 202により順次、デ ータ処理部 2に入力される。またこの例では、インターフェイス 202に、キーボードや カーソルデバイスのような入力デバイス 207も接続されている。ユーザは、この入力デ バイス 207を用いてデータ処理部 2に指示を与えることができる。 [0039] HDD203は、基準値を満たすかどうかを GCZMS法により確認する必要の有無を 評価するための判定プログラムを格納することができる。また環境値を含む所定範囲 を表すデータも、この HDD203に予め記憶させておく。
[0040] RAM204は、 HDD203から読み出したプログラムやデータを一時的に記憶する のに利用することができる。
[0041] CPU205は、例えばコントローラ 105から制御信号を受信したときや、ユーザから 指示を受けたときに、 HDD203から判定プログラムを読み出し、その判定プログラム の指令に従ってコンピュータを動作させる。これにより、データ処理部 2は、その判定 を行う機能、およびその判定結果を出力する機能を実現する。 CPU205は、判定機 能を実現するため、 HDD203から所定範囲を表すデータを読み出し、一時的に RA M204上に記憶する。センサデータのデータ列も一時的に RAM204に記憶する。
[0042] ここでは判定を行うため、 CPU205は、各試料に対する本測定の開始時刻のデー タカ その本測定におけるサンプリング値の最高値を予測し、その予測値が所定範 囲内にあるかどうかを決定する。予測値を求めるため、 CPU205は、 RAM204上の センサデータから、各試料に対する本測定の開始時刻のデータを特定する。サンプ リング値の変化量の計算を時系列方向に移動して行えば、本測定の開始時刻のデ ータを特定することができる。図 3の例のように各測定の間には、ほとんど蛍光強度が 変化しない時間帯がある。このため、その時間帯には変化量が零近傍になる。零より 大きな閾値を設定していれば、その閾値をサンプリング値が上回るかどうかで開始時 刻のデータを特定することができる。変化量の計算は、例えばサンプリング値が新しく 入力される度に、そのサンプリング値とそれよりも一つ力複数前のサンプリング値を使 つて行えばよい。
[0043] 変化量を計算する代わりに、開始時間を表すヘッダデータをコントローラ 105がセ ンサデータに含めるようにしてもよい。例えばヘッダデータに、測定シーケンス開始時 刻、本測定開始時刻、サンプリング時間のデータが含まれていれば、いつ入力され たサンプリング値が本測定開始時刻のデータであるかを特定することができる。
[0044] このようにして本測定の開始時刻のデータを特定すると、 CPU205は、その開始時 刻のデータと、その直後、またはその後の複数のサンプリング値を使って変化量を計 算する。変化量を計算すると、例えば予め設定された時間間隔とその変化量を乗算 し、開始時刻のサンプリング値にその乗算値を加算することにより、その本測定にお けるサンプリング値の最高値を予測する。
[0045] 最高値の予測値を計算すると、 CPU205は、その予測値が所定範囲内にあるか所 定範囲外にあるかを判定する。ここでは、その予測値が、所定範囲の上限値以下で 下限値以上であるかどうか値を比較する。その予測値を蛍光強度で得ているときは、 所定範囲についても蛍光強度での換算値を使う。毒性等量で予測値を得ていれば、 毒性等量に対する所定範囲の値を使う。
[0046] CPU205は、予測値が所定範囲内にあると判定すると、その試料が基準値を満た すかどうか GCZMS法により確認する必要があると決定し、予測値が所定範囲外に あれば、その必要がないと判定する。
[0047] このように予測値が所定範囲内にあるかどうかにより判定する代わりに、実際のサン プリング値が所定範囲内にあるかどうかにより判定をしてもよい。
[0048] 図 4乃至図 7は、 GCZMS法による確認が必要であると判定した場合の本測定方 法と GCZMS法との相関関係を示す図である。図 4は排ガス試料にっ 、て評価を行 つた結果を示し、図 5は燃え殻試料について評価を行った結果を示し、図 6は飛灰試 料について評価を行った結果を示し、図 7は燃焼由来の汚染土壌試料について評 価を行った結果を示す。各図中の黒丸はサンプルを示す。いずれの種類の試料に つ!、ても 1に近!、相関値が得られて 、るけれども、異性体の組成比によっては本測 定方法と GCZMS法とで分析値に乖離が生じる恐れがある。このため、本測定方法 では基準値をわずかに超えていないような場合でも、基準値を含む所定範囲内にあ ると、 GCZMS法では基準値を超えている可能性がある。所定範囲を用いず、基準 値に対応して設定したひとつのしき 、値で判定をすると、誤った判定をする力もしれ ない。所定範囲を用いて基準値を超える可能性のある試料を特定することにより、そ の危険性を抑えることができる。所定範囲は基準値を超える恐れのある試料を特定 できればよぐ 0. 5倍から 2倍までの範囲に限られるものではない。
[0049] 図 1のビデオインターフェイス 206は、 CPU205の指示にしたがって、判定結果を ディスプレイ 208上に表示する。ここでは、測定部 1の測定結果も表示する。 CPU20 5は、判定結果や測定結果力 モニタ画面の画像信号を作成し、ビデオインターフエ イス 206に供給する。ビデオインターフェイス 206は、その画像信号に従ってモニタ 画面をディスプレイ 208に表示する。
[0050] 図 8はモニタ画面の一例を示す図である。モニタ画面 401は、判定表示部 402、測 定結果表示部 403、およびセンサグラム表示部 404を有する。判定表示部 402は判 定結果を表示する。この例では、基準値を満たす力どうかの確認が必要であるという 決定に対応して、「基準値を満たすかどうか GCZMS法等により確認する必要のある 試料があります。」と!、うメッセージを表示して!/、る。
[0051] 上述のように測定が迅速に行われるので、この表示を参照することにより、測定を開 始すれば即座にユーザは、 GCZMS法による測定の必要性を認識することができる
[0052] 測定結果表示部 403は、測定結果のデータを数値で表示する。センサグラム表示 部 404は測定により得られたセンサグラムを表示する。センサグラム表示部 404上の 矩形図形 405は、所定範囲に対応する。 CPU205は、 RAM204上のデータを用い て、この矩形図形 405の画像を作成する。このように対象物質の基準値を含む所定 範囲と測定結果の時系列信号とを対照可能に表示することでも、ユーザは視覚的を 通じて、 GCZMS法による測定の必要性を即座に認識することができる。ユーザは 総ダイォキシン量の定量や汚染源の特定を行うべき試料を早期に特定することがで きる。その結果、分析全体にカゝかる時間の短縮とコストの軽減を図ることができる。
[0053] また測定値が所定範囲外にあれば、 GCZMS法での確認によらずとも、試料が基 準に適合しているかどうかを定めることができる。ダイォキシン類の濃度が所定範囲 の下限値以下であれば (蛍光強度が所定範囲の上限値以上であれば)、基準に適 合している。一方、ダイォキシン類の濃度が所定範囲の上限値以上であれば (蛍光 強度が所定範囲の下限値以下であれば)、基準に適合していない。このような判断も 、ディスプレイ 208の表示力もユーザは容易かつ早期にすることができる。その場合 に、 CPU205は、ダイォキシン類の濃度が所定範囲の下限値以下であれば、「試料 は所定範囲以下です (基準値の 50%以下)。」というメッセージを作成し、濃度が所 定範囲の上限値以上であれば、「試料が所定範囲以上です (基準値の 200%以上) 。精査を推奨いたします。」というメッセージを作成し、ディスプレイ 208に表示するよ うにしてもよい。
[0054] さらに、上述したように、その試料に対する測定結果が所定範囲内にあるか所定範 囲外にある力をその試料に対する測定初期の時系列信号に基づいて予測している 場合には、測定値が所定範囲外にあれば、その試料に対する測定を中止することも できる。測定の中止は、例えばダイォキシン類の濃度が所定範囲の上限値以上であ る場合に行う。 CPU205は、測定初期の時系列信号に基づいた予測により測定値が 所定範囲外にあると判定すると、プログラムの指令にしたがって、コントローラ 105に 制御信号を送信する。制御信号を受信すると、コントローラ 105は、その試料に対す る以降の測定動作を中止し、他の試料に対する測定に移行する。より具体的には、 その試料に対する繰返し測定をキャンセルし、洗浄を行ってから、次の試料に対する 測定を開始する。
[0055] 図 9は試料の測定を途中で中止した場合の測定結果を表示する画面の一例である 。この例では、左から 2番目の時間帯 501で測定の中止が行われている。このように 測定を中止し、次の試料の測定に移行することで、その時間帯 501の長さは、他の 試料に対する時間帯 502、 503、 504よりも短くなつている。すなわち、測定中止によ り、測定に要する時間を短縮することが可能となる。多数の試料について測定を行う 場合に特に有効である。
[0056] 上述した実施の形態は本発明の技術的範囲を制限するものではなぐ既に記載し たもの以外でも、本発明の範囲内で種々の変形や応用が可能である。例えばデータ 処理部 2のハードウェアを専用のハードウェアで構成し、測定部 1に組み込むことによ り、一体のハードウェアにより上述の機能を実現するようにしてもょ 、。
[0057] また上述の実施の形態では、蛍光強度を測定したが、標識によって吸光度を測定 してもよいし、その他の物理量を測定してもよい。
[0058] また、上述の実施の形態では GCZMS法やその他の方法による測定の必要性の 判定と、測定結果と所定範囲の対照表示との両方を行ったが、いずれか一方のみを 行うようにしてもよい。いずれか一方でも、ユーザは視覚を通じて判断をすることがで きる。 [0059] またダイォキシン類を検出するための抗体に別のものを用いてもよい。さらにダイォ キシン類を含む環境試料に限らず、極微量分析を行う必要のあるその他の環境試料 のスクリーニング測定について本発明を適用することもできる。
産業上の利用可能性
[0060] 本発明にかかる環境試料のスクリーニング測定方法および装置は、環境試料の選 別の判断を迅速にすることが可能となるという優れた効果を有し、ダイォキシン類や その他の環境汚染物質または残留性有機化学物質を含む環境試料のスクリーニン グ測定などで有用である。

Claims

請求の範囲
[1] 環境試料のスクリーニング測定方法であって、
環境試料を測定するステップ、
測定結果の時系列信号に基づいて、基準値を含む所定範囲内に測定結果がある 力どうかの判定をするステップ、そして
判定結果を出力するステップ
を備えたスクリーニング測定方法。
[2] 環境試料のスクリーニング測定方法であって、
抗原である対象物質の抗体を捕捉する抗原誘導体を試料液の流路に配置した測 定セルに、既知量の抗体を混合した試料液を流すステップ、
抗原誘導体に捕捉された抗体を測定するステップ、
測定結果の時系列信号に基づいて、対象物質の基準値を含む所定範囲内に測定 結果があるか所定範囲外にあるかの判定をするステップ、そして
判定結果の出力をするステップ
を備えたスクリーニング測定方法。
[3] 前記判定をするステップが、その試料に対する測定結果が所定範囲内にあるか所 定範囲外にある力をその試料に対する測定初期の時系列信号に基づいて予測する ステップを備え、その予測結果に基づ 、て判定をする請求項 2記載のスクリーニング 測定方法。
[4] その試料に対する測定結果が所定範囲外にあると予測した場合、他の試料の測定 に移行するステップをさらに備えた請求項 3記載のスクリーニング測定方法。
[5] 前記出力をするステップ力 前記判定をするステップで測定結果が所定範囲内に あると判定された場合に、基準値を満たすかどうかの確認が必要であることを表示す る請求項 1記載のスクリーニング測定方法。
[6] 環境試料のスクリーニング測定方法であって、
抗原である対象物質の抗体を捕捉する抗原誘導体を試料液の流路に配置した測 定セルに、既知量の抗体を混合した試料液を流すステップ、
抗原誘導体に捕捉された抗体を測定するステップ、そして 対象物質の基準値を含む所定範囲と測定結果の時系列信号とを対照可能に表示 するステップ
を備えたスクリーニング測定方法。
[7] 抗原である対象物質の抗体を捕捉する抗原誘導体を配置した試料液の流路を有 する測定セル、
既知量の抗体を混合した試料液を測定セルに流すことにより抗原誘導体に捕捉さ れた抗体を測定する手段、
対象物質の基準値を含む所定範囲を表すデータを記憶する手段、
測定結果の時系列信号に基づいて、測定結果が所定範囲内にあるか所定範囲外 にあるかの判定をする手段、そして
判定結果の出力をする手段
を備えたスクリーニング測定装置。
[8] 前記判定をする手段が、その試料に対する測定結果が所定範囲内にあるか所定 範囲外にある力をその試料に対する測定初期の時系列信号に基づいて予測し、そ の予測結果に基づいて判定をする請求項 7記載のスクリーニング測定装置。
[9] 抗原である対象物質の抗体を捕捉する抗原誘導体を配置した試料液の流路を有 する測定セル、
既知量の抗体を混合した試料液を測定セルに流すことにより抗原誘導体に捕捉さ れた抗体を測定する手段、
対象物質の基準値を含む所定範囲を表すデータを記憶する手段、そして 記憶された所定範囲のデータ、および測定結果の時系列信号を用いて、対象物質 の基準値を含む所定範囲と測定結果の時系列信号とを対照可能に表示する手段 を備えたスクリーニング測定装置。
PCT/JP2005/010832 2005-06-14 2005-06-14 環境試料スクリーニング測定方法及び装置 WO2006134636A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007521029A JP4777983B2 (ja) 2005-06-14 2005-06-14 環境試料スクリーニング測定方法及び装置
PCT/JP2005/010832 WO2006134636A1 (ja) 2005-06-14 2005-06-14 環境試料スクリーニング測定方法及び装置
US11/922,123 US20090292477A1 (en) 2005-06-14 2005-06-14 Method and Apparatus for Screening and Assaying Environmental Sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/010832 WO2006134636A1 (ja) 2005-06-14 2005-06-14 環境試料スクリーニング測定方法及び装置

Publications (1)

Publication Number Publication Date
WO2006134636A1 true WO2006134636A1 (ja) 2006-12-21

Family

ID=37532008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010832 WO2006134636A1 (ja) 2005-06-14 2005-06-14 環境試料スクリーニング測定方法及び装置

Country Status (3)

Country Link
US (1) US20090292477A1 (ja)
JP (1) JP4777983B2 (ja)
WO (1) WO2006134636A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710403B1 (ja) * 2019-05-22 2020-06-17 株式会社シーズテック 光学測定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142313A (ja) * 1997-11-05 1999-05-28 Ntt Data Corp 物質濃度の定量化方法、物質濃度検出装置および記録媒体
JP2001116753A (ja) * 1999-10-14 2001-04-27 Central Res Inst Of Electric Power Ind 外因性内分泌撹乱物質の検出方法および検出装置
JP2003099122A (ja) * 2001-09-25 2003-04-04 Sanyo Electric Co Ltd 環境汚染管理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871914A (en) * 1987-05-05 1989-10-03 Sun Nuclear Corporation Low-cost radon detector
US20050059017A1 (en) * 2003-09-11 2005-03-17 Oldham Mark F. System and method for extending dynamic range of a detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142313A (ja) * 1997-11-05 1999-05-28 Ntt Data Corp 物質濃度の定量化方法、物質濃度検出装置および記録媒体
JP2001116753A (ja) * 1999-10-14 2001-04-27 Central Res Inst Of Electric Power Ind 外因性内分泌撹乱物質の検出方法および検出装置
JP2003099122A (ja) * 2001-09-25 2003-04-04 Sanyo Electric Co Ltd 環境汚染管理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLASS T.R. ET AL.: "Evaluation of a compact bench top immunoassay analyzer for automatic and near continuous monitoring of a sample for environmental contaminants", BIOSENS BIOELECTRON, vol. 20, no. 2, 15 September 2004 (2004-09-15), pages 397 - 403, XP003006047 *
KATAOKA ET AL.: "Dioxine Kan'i Bunseki System no Kaihatsu", ENVIRONMENTAL SOLUTION TECHNOLOGY, vol. 4, no. 2, 2005, pages 33 - 37, XP003006048 *

Also Published As

Publication number Publication date
JPWO2006134636A1 (ja) 2009-01-08
JP4777983B2 (ja) 2011-09-21
US20090292477A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Ray et al. Development, validation, and implementation of a multiplex immunoassay for the simultaneous determination of five cytokines in human serum
Poulsen et al. A luminescent oxygen channeling immunoassay for the determination of insulin in human plasma
Lachenmeier et al. Determination of opiates and cocaine in hair using automated enzyme immunoassay screening methodologies followed by gas chromatographic–mass spectrometric (GC–MS) confirmation
Tang et al. One-step immunoassay of C-reactive protein using droplet microfluidics
Rabbany et al. Trace detection of explosives using a membrane-based displacement immunoassay
Dudal et al. Assay formats: Recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team
ATE520027T1 (de) Analytische plattform und nachweisverfahren mit gegebenenfalls nach fraktionierung in einer probe nachzuweisenden analyten als immobilisierten spezifischen bindungspartnern
EP2695105A1 (en) Method of and system for enhanced dynamic range assay analysis
Long et al. Portable and automated fluorescence microarray biosensing platform for on-site parallel detection and early-warning of multiple pollutants
Liu et al. Validation of a gyrolab™ assay for quantification of rituximab in human serum
JP2010190779A (ja) 自動分析装置
Chua et al. Clinical evaluation of four commercial immunoassays for the detection of antibodies against established SARS-CoV-2 infection
WO2004042403A3 (en) Methods, device and instrument for detection of analytes
JP4777983B2 (ja) 環境試料スクリーニング測定方法及び装置
Golla et al. A sensitive, robust high-throughput electrochemiluminescence assay for rat insulin
Aoyagi et al. Reagentless and regenerable immunosensor for monitoring of immunoglobulin G based on non-separation immunoassay
JP2009294211A (ja) 液体試料中の分析対象の測定方法及び分析装置
Glass et al. Evaluation of a compact bench top immunoassay analyzer for automatic and near continuous monitoring of a sample for environmental contaminants
JP2002541478A (ja) レセプター‐リガンド及びアフィニティテストにおいて使用するための装置及び方法
Lindner et al. Rapid chemiluminescence biosensing of microcystin-LR
Fellner et al. Analytical evaluation of a BNP assay on the new point-of-care platform respons® IQ
Chou et al. Rapid and multiplexed detection of Lyme disease using a grating coupled-fluorescent plasmonics (GC-FP) biosensor platform
Smith et al. Measurement of methamphetamine on surfaces using surface plasmon resonance
US20170176472A1 (en) Systems and methods for point-of-care hdl and ldl particle assay
Huo et al. Development of chemiluminescence method based on serum type I collagen hydroxyl terminal peptide β special sequence (β-CTX)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521029

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11922123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05751487

Country of ref document: EP

Kind code of ref document: A1