WO2006134103A1 - Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums - Google Patents

Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums Download PDF

Info

Publication number
WO2006134103A1
WO2006134103A1 PCT/EP2006/063141 EP2006063141W WO2006134103A1 WO 2006134103 A1 WO2006134103 A1 WO 2006134103A1 EP 2006063141 W EP2006063141 W EP 2006063141W WO 2006134103 A1 WO2006134103 A1 WO 2006134103A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
medium
excitation
examined
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2006/063141
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2006134103A8 (de
Inventor
Andreas Klehr
Bernd Sumpf
Martin Maiwald
Heinar Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungsverbund Berlin FVB eV
Original Assignee
Forschungsverbund Berlin FVB eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin FVB eV filed Critical Forschungsverbund Berlin FVB eV
Priority to US11/916,997 priority Critical patent/US7864311B2/en
Priority to EP06763667.0A priority patent/EP1891408B1/de
Priority to JP2008516301A priority patent/JP2008544238A/ja
Publication of WO2006134103A1 publication Critical patent/WO2006134103A1/de
Publication of WO2006134103A8 publication Critical patent/WO2006134103A8/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J2003/4424Fluorescence correction for Raman spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/656Raman microprobe

Definitions

  • the invention relates to a method and a device having the features mentioned in the preambles of claims 1 (method) and 19 (device).
  • Raman spectroscopy has recently become an established method in materials science, chemical engineering, pharmacy, environmental technology, analytics, and process monitoring, not least due to the development of lower cost semiconductor lasers.
  • probes are used that are usually coupled with a spectrometer.
  • the Fixed Pattern is a fixed interfering structure that overlays the images of CCD cameras or CCD scanners.
  • the fixed pattern masks the weak Raman signals (when using CCD-based receivers) and limits the achievable sensitivity.
  • Conventional methods correct this with dark or empty spectra. However, such a correction often does not sufficiently eliminate the fixed pattern since it is measured in a different intensity range and thus does not sufficiently take into account the physical nature of the fixed pattern.
  • Spectroscopy 1992, 46, 707 known that by the use of two laser wavelengths which are shifted from each other, a background correction to eliminate the fluorescence can be realized possible.
  • the light source is described by Shreve et al. a Ti: sapphire laser is used, which is shifted by means of a diffractive element to two wavelengths in frequency. A disadvantage of this arrangement can be seen above all in the complex structure.
  • the main disadvantage of the prior art is that the aforementioned methods and apparatus for generating and detecting Raman spectra require sufficient equipment to achieve sufficient sensitivity.
  • the object of the present invention is to provide a method and a device for generating and detecting a Raman spectrum of a medium to be examined, with which the Raman spectrum of a medium to be examined can be determined with a high sensitivity with relatively little expenditure on equipment.
  • the use of multiple excitation light sources should be avoided.
  • the method should enable temporally high-resolution in-situ measurements.
  • the method according to the invention for generating and detecting a Raman spectrum of a medium to be investigated has the following method steps:
  • the one laser diode for generating excitation radiation of at least two different wavelengths is driven with at least two different excitation conditions and from the scattered radiation for the different excitation wavelengths at least two frequency-shifted Raman spectra are detected and from the at least two detected Raman spectra the Raman spectrum of and the two different excitation conditions for the laser diode are adjusted by the electric current applied to the laser diode.
  • a particular advantage of the method according to the invention is that only one laser diode is used, it being possible by the (preferably alternating) control of the laser diode with different excitation conditions (ie driving the laser diode with different current strengths) that the laser diode at two different wavelengths ( preferably alternately) emitted, so that in each case a Raman spectrum can be detected for these two different (excitation) wavelengths and from the at least two Raman spectra obtained a Raman spectrum for the medium to be examined can be calculated, wherein the fluorescence component by the detection of at least two frequency-shifted Raman spectra can be excluded. Furthermore, it is possible to eliminate the fixed pattern and a device-specific spectral background (filter characteristic) when using CCD elements in the spectral optical system.
  • a high detection sensitivity is obtained with comparatively low outlay on equipment, in particular only one laser diode is required as the excitation light source.
  • a laser diode with internal frequency-selective element preferably grating, etalon or Mach-Zehnder interferometer
  • Another advantage of the invention is that the control of the laser diode via the current intensity of the laser diode takes place. Therefore, it is possible to rapidly switch back and forth between the different conditions of excitation, so that processes which change rapidly by means of Raman spectroscopy, despite a low outlay on equipment, have a high sensitivity can be monitored.
  • the control of the laser diode on the current is advantageously much faster than the control of the laser diode over the temperature. Furthermore, the apparatus of the apparatus is reduced, since the device preferably has no means for variation and / or control of the temperature of the laser diode.
  • the line width (FWHM) of the laser diode is preferably less than 30 GHz, particularly preferably less than 3 GHz, particularly preferably less than 100 MHz, particularly preferably less than 10 MHz.
  • the laser diode used is preferably monolithic and tunable narrowband for a given wavelength range.
  • the laser diode with a frequency greater than 0.1 Hz (more preferably greater than 1 Hz) between the two current levels (or other excitation conditions) switched back and forth.
  • a non-periodic excitation is possible.
  • the only prerequisite is that the laser diode within a (preferably small) time interval with at least two different excitation conditions is controlled such that it emits at least two wavelengths with a sufficient wavelength spacing (preferably 0.5 nm).
  • the time interval is preferably 60 s, more preferably 10 s, particularly preferably 1 i, particularly preferably 0.1 s, and is thus selected.
  • a CCD line is preferably used.
  • a spectral-optical system a spectrograph with CCD line is preferably used.
  • the laser diode by means of a To drive excitation source (preferably current source), wherein the output power of the excitation source is modulated.
  • a function generator more preferably a rectangular generator, is preferably used.
  • the spectral optical system with a data processing device for evaluating the measurement data obtained from the spectral optical system.
  • the excitation source for driving the laser diode but also the spectral optical system or connected to the spectral optical system data processing device to gates.
  • the excitation source and the spectral optical system and the data processing device with the means for driving the laser diode (modulator) are connected.
  • the device for generating and detecting a Raman spectrum comprises an excitation light source, a spectral optical system and a data processing device, wherein the spectral optical system is connected to the data processing device, wherein the device further comprises means for coupling the excitation radiation in the having investigating medium and means for coupling the scattered radiation from the medium to be examined in the spectral optical system, wherein the excitation light source is a laser diode having an internal frequency-selective element, the Laser diode for generating different excitation wavelengths is connected via a modulator to a power source, wherein the spectral optical system and / or the data processing device is connected to the modulator.
  • the laser diode can emit very narrowband at two wavelengths (preferably alternating, in accordance with the drive), without requiring a prior calibration of the individual wavelengths or of the laser diode.
  • Raman spectra can be determined with high sensitivity (with elimination of fixed pattern and fluorescence component), wherein the device according to the invention has a comparatively simple structure (only one excitation light source, no external cavity).
  • the device according to the invention additionally comprises optical filters, for example for the elimination of the Rayleigh line.
  • the spectral optical system and / or the data processing device is connected to the means for driving the laser diode (eg modulator), as this excitation with different wavelengths and the detection of the scattered light can be done synchronously.
  • the laser diode with respect to their excitation conditions with significantly higher frequencies, for example, greater than 10 Hz (more preferably greater than 30 Hz) can be controlled.
  • the modulator is preferably a function generator, particularly preferably a square-wave generator.
  • the means for coupling the excitation radiation into the medium to be examined and the means for coupling the backscattered radiation from the medium to be examined into the spectral-optical system preferably has an optical fiber.
  • FIG. 1 shows a device for generating and detecting a Raman spectrum according to the present invention in a schematic representation
  • FIG. 3 shows the difference spectrum of the two Raman spectra from FIG. 2, FIG.
  • FIG. 4 shows a reconstruction of the difference spectrum from FIG. 3 and FIG. 4
  • Fig. 5 is a reference spectrum of phenanthrene.
  • the laser diode 1 shows a device according to the invention for the generation and detection of a Raman spectrum with a high sensitivity with a comparatively low outlay on equipment.
  • the laser diode 1 is connected to the same Current source 3 is connected, wherein the DC power source 3 is connected to a square-wave generator 4, which generates rectangular pulses at a frequency of 0.1 Hz. With these rectangular pulses of the rectangular generator 4, the output power of the DC power source 3 is modulated.
  • the laser diode 1 is driven alternately with two different electrical currents (currents).
  • the laser diode 1 emits narrowband at two different wavelengths, whereby according to the invention the use of multiple excitation light sources can be avoided.
  • the laser diode 1 is driven with currents of 150 rtiA and 250 rtiA alternating with a frequency of 0.1 Hz.
  • the medium 8 to be examined is preferably arranged such that no interfering light impairing the measurement enters the Raman measuring head 7.
  • the excitation radiation is now partly scattered by the medium 8 to be examined, and the scattered radiation of the medium 8 to be examined is transmitted via the Raman measuring head 7 and the optical fiber 9 into the spectral-optical system 10 consisting of the spectrograph 14 and the CCD. Line 13, coupled.
  • the CCD line 13 of the spectral optical system 10 and the data processing device 11 are (in addition to the laser diode 1) also connected (via the line 5) with the square-wave generator 4.
  • the control of the laser diode 1 and the detection of the Raman spectra 16, 17 can thus take place synchronously.
  • the data processing device 11 for the two different excitation wavelengths ⁇ i and X 2 can receive Raman spectra 16, 17 and thereby easily calculate a Raman spectrum in which the background (fixed pattern, fluorescence background) is computationally eliminated.
  • first of all the difference spectrum 18 is determined from the Raman spectra 16, 17 (see FIG. 2), from which fixed patterns and background signals have already been removed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)
PCT/EP2006/063141 2005-06-14 2006-06-13 Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums Ceased WO2006134103A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/916,997 US7864311B2 (en) 2005-06-14 2006-06-13 Method and device for producing and detecting a Raman spectrum
EP06763667.0A EP1891408B1 (de) 2005-06-14 2006-06-13 Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums
JP2008516301A JP2008544238A (ja) 2005-06-14 2006-06-13 ラマン・スペクトルを発生および検出する方法とその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005028268.7 2005-06-14
DE102005028268A DE102005028268B4 (de) 2005-06-14 2005-06-14 Verfahren und Vorrichtung zur Erzeugung und Detektion eines Raman-Spektrums

Publications (2)

Publication Number Publication Date
WO2006134103A1 true WO2006134103A1 (de) 2006-12-21
WO2006134103A8 WO2006134103A8 (de) 2007-03-15

Family

ID=36956164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063141 Ceased WO2006134103A1 (de) 2005-06-14 2006-06-13 Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums

Country Status (5)

Country Link
US (1) US7864311B2 (enExample)
EP (1) EP1891408B1 (enExample)
JP (1) JP2008544238A (enExample)
DE (1) DE102005028268B4 (enExample)
WO (1) WO2006134103A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033017A1 (de) 2009-09-21 2011-03-24 Forschungsverbund Berlin E.V. Verfahren zur erzeugung und zur detektion eines raman-spektrums

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558619B2 (en) * 2005-10-04 2009-07-07 Nu Skin International, Inc. Raman instrument for measuring weak signals in the presence of strong background fluorescence
US8553221B2 (en) * 2006-10-24 2013-10-08 Pd-Ld, Inc. Compact, low cost Raman monitor for single substances
GB0810761D0 (en) * 2008-06-12 2008-07-23 Avacta Ltd Apparatus and method for raman signal detection
JP5208825B2 (ja) * 2008-09-12 2013-06-12 オリンパス株式会社 光学顕微鏡
US20150285728A1 (en) * 2009-12-11 2015-10-08 Washington University Detection of nano-scale particles with a self-referenced and self-heterodyned raman micro-laser
US11754488B2 (en) 2009-12-11 2023-09-12 Washington University Opto-mechanical system and method having chaos induced stochastic resonance and opto-mechanically mediated chaos transfer
BR112013004873A2 (pt) * 2010-08-31 2016-05-03 Cabot Security Materials Inc leitor espectroscópico em linha e métodos
JP5539421B2 (ja) * 2012-02-24 2014-07-02 三菱電機株式会社 プラスチックの識別装置とその方法
US8570507B1 (en) 2012-09-06 2013-10-29 Bruker Optics, Inc. Method and apparatus for acquiring Raman spectra without background interferences
JP2015059800A (ja) * 2013-09-18 2015-03-30 コニカミノルタ株式会社 ラマン分光測定方法及びラマン分光測定装置
JP6248666B2 (ja) * 2014-02-07 2017-12-20 コニカミノルタ株式会社 ラマン散乱光測定方法及びラマン散乱光測定装置
US9905990B1 (en) 2014-04-17 2018-02-27 Alakai Defense Systems, Inc. Background removal from Raman spectra by an intracavity active-tuning element for a laser
DE102016003334A1 (de) 2016-03-14 2017-09-14 Universität Stuttgart (Körperschaft Des Öffentlichen Rechts) Anordnung und Verfahren zur Raman-Spektroskopie, insbesondere auch zur Tumorgewebe- und Aorta-Diagnostik
KR101640202B1 (ko) * 2016-04-04 2016-07-21 스페클립스 주식회사 레이저 조사 장치를 이용한 질병 진단 장치 및 질병 진단용 탈부착 핸드피스
WO2019231512A1 (en) * 2018-05-30 2019-12-05 Pendar Technologies, Llc Methods and devices for standoff differential raman spectroscopy with increased eye safety and decreased risk of explosion
EP3803293A4 (en) 2018-05-30 2022-06-15 Pendar Technologies, LLC METHODS AND DEVICES FOR GAP DIFFERENTIAL RAMAN SPECTROSCOPY WITH INCREASED OCULAR SAFETY AND REDUCED RISK OF EXPLOSION
GB2572662B (en) * 2018-10-05 2020-06-03 Res & Innovation Uk Raman spectrometer
DE102018130582A1 (de) * 2018-11-30 2020-06-04 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Raman-Spektroskopie
KR102127597B1 (ko) 2019-03-22 2020-06-29 스페클립스 주식회사 레이저 유도 붕괴 스펙트럼 분석을 이용하는 진단 방법 및 이를 수행하는 진단 장치
US11193827B2 (en) 2019-05-06 2021-12-07 Cytoveris, Inc. Method and apparatus for identifying background fluorescence using spread spectrum excitation-source broadening in Raman spectroscopy
US12320682B2 (en) 2023-06-23 2025-06-03 Washington University High-Q whispering gallery mode (WGM) resonators encapsulated in polydimethylsilozane (PDMS) for highly sensitive displacement detection
WO2025174366A1 (en) * 2024-02-14 2025-08-21 Thermo Electron Scientific Instruments Llc Method and system for raman spectroscopy
CN119845419B (zh) * 2025-03-24 2025-11-25 武汉长进光子技术股份有限公司 一种监测受激布里渊散射效应的光学系统及监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856869A (en) * 1995-05-01 1999-01-05 Ashland Inc Distributed bragg reflector diode laser for Raman excitation and method for use
WO1999035519A2 (en) * 1998-01-12 1999-07-15 The Board Of Regents, The University Of Texas System Modulated filtered rayleigh scattering
US5946090A (en) * 1996-11-19 1999-08-31 The Institute Of Physical And Chemical Research Spectrometric method and apparatus for spectrometry
WO2005038437A2 (en) * 2003-10-17 2005-04-28 Axsun Technologies, Inc. Multi channel raman spectroscopy system and method
WO2005064314A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N. V. Optical analysis system, blood analysis system and method of determining an amplitude of a principal component

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179388A (ja) * 1975-01-06 1976-07-10 Hitachi Ltd Ramanbunkohohooyobisochi
JPS57118143A (en) * 1981-01-14 1982-07-22 Hitachi Ltd Laser raman spectrochemical apparatus for removing fluorescence
JPS5858444A (ja) * 1981-10-05 1983-04-07 Hitachi Ltd ケイ光を除去するレ−ザラマン分光方法とその装置
JPS63311780A (ja) * 1987-06-12 1988-12-20 Nec Corp 半導体レ−ザ発振周波数切り替え装置
DE69231614T2 (de) * 1991-02-26 2001-05-03 Massachusetts Institute Of Technology, Cambridge Molekularspektroskopieverfahren und -einrichtungen zur gewebediagnose
JPH0785057B2 (ja) * 1992-03-05 1995-09-13 紀本電子工業株式会社 微量成分の分析用ラマン分光計
JPH063271A (ja) * 1992-06-22 1994-01-11 Fujitsu Ltd 分光分析装置
JPH0783154B2 (ja) * 1992-11-04 1995-09-06 日本電気株式会社 波長切り換え光源
JPH06268320A (ja) * 1993-03-12 1994-09-22 Toshiba Corp 半導体レーザ装置
US6281971B1 (en) * 1999-05-18 2001-08-28 New Chromex, Inc. Method for adjusting spectral measurements to produce a standard Raman spectrum
JP2001185806A (ja) * 1999-12-27 2001-07-06 Yokogawa Electric Corp 波長切換半導体レーザ
US6897950B2 (en) * 2002-07-16 2005-05-24 East Carolina University Laser tweezers and Raman spectroscopy systems and methods for the study of microscopic particles
US7196786B2 (en) * 2003-05-06 2007-03-27 Baker Hughes Incorporated Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856869A (en) * 1995-05-01 1999-01-05 Ashland Inc Distributed bragg reflector diode laser for Raman excitation and method for use
US5946090A (en) * 1996-11-19 1999-08-31 The Institute Of Physical And Chemical Research Spectrometric method and apparatus for spectrometry
WO1999035519A2 (en) * 1998-01-12 1999-07-15 The Board Of Regents, The University Of Texas System Modulated filtered rayleigh scattering
WO2005038437A2 (en) * 2003-10-17 2005-04-28 Axsun Technologies, Inc. Multi channel raman spectroscopy system and method
WO2005064314A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N. V. Optical analysis system, blood analysis system and method of determining an amplitude of a principal component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033017A1 (de) 2009-09-21 2011-03-24 Forschungsverbund Berlin E.V. Verfahren zur erzeugung und zur detektion eines raman-spektrums

Also Published As

Publication number Publication date
EP1891408B1 (de) 2017-03-15
EP1891408A1 (de) 2008-02-27
DE102005028268B4 (de) 2013-12-12
DE102005028268A1 (de) 2006-12-28
US20080204715A1 (en) 2008-08-28
US7864311B2 (en) 2011-01-04
JP2008544238A (ja) 2008-12-04
WO2006134103A8 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
EP1891408B1 (de) Verfahren und vorrichtung zur erzeugung und detektion eines raman-spektrums
DE4129438C2 (enExample)
EP2324389A1 (de) Terahertzstrahlungsquelle und verfahren zur erzeugung von terahertzstrahlung
EP3465165B1 (de) Verfahren und vorrichtung zur raman-spektroskopie
EP2480868B1 (de) Verfahren zur erzeugung und zur detektion eines raman-spektrums
EP2895844B1 (de) Vorrichtung mit einer anordnung optischer elemente
DE102013202289B4 (de) Verfahren und Anordnung zur Ansteuerung einer wellenlängendurchstimmbaren Laserdiode in einem Spektrometer
DE102013010611A1 (de) Messvorrichtung und Messverfahren zum Messen von Rohdaten zur Bestimmung eines Blutparameters, insbesondere zur nichtinvasiven Bestimmung der D-Glucose-Konzentration
DE102015001032A1 (de) Raman-Spektroskopie-Beleuchtungs- und Auslesesystem
DE102020111293A1 (de) Verfahren und Vorrichtung zur in-situ Bestimmung der Temperatur eines Wafers
EP3839455A1 (de) Vorrichtung zur hochaufgelösten bestimmung der konzentration von substanzen in fluiden medien
DE102013112750B4 (de) Einrichtung und Verfahren zum Beleuchten einer Probe
DE102022124375B3 (de) Vorrichtung und Verfahren zur Raman-Spektroskopie
DE10238356A1 (de) Quantitative spektroskopische Bestimmung eines Absorbers
AT500543A1 (de) Verfahren zur raschen spektroskopischen konzentrations-, temperatur- und druckmessung von gasförmigem wasser
DE102014111309B3 (de) Zeitaufgelöstes Spektrometer und Verfahren zum zeitaufgelösten Erfassen eines Spektrums einer Probe
EP3130912B1 (de) Verfahren zur bestimmung der konzentration einer gaskomponente und spektrometer dafür
DE102010063533A1 (de) Verfahren und Vorrichtung zur Messung eines Spektrums eines optischen Sensors, vorteilhafterweise im Infrarotbereich
WO2021048321A1 (de) Verfahren und vorrichtung zur nichtlinearen spektroskopie an einer probe
EP3325928B1 (de) Verfahren und vorrichtung zur kalibration eines optischen resonators, verwendung der vorrichtung, verwendung eines optischen modulators und computerprogrammprodukt
WO2013139481A1 (de) Verfahren zur reduktion der dimensionalität eines von den optischen eigenschaften einer probe abgeleiteten räumlich registrierten signals und vorrichtung hierzu
DE112023005061T5 (de) Optische Detektionsvorrichtung und Verfahren zum Betrieb
DE19616028C1 (de) Schmalbandiger Excimerlaser mit Umschaltung zwischen zwei vorgebbaren Laserwellenlängen und seine Verwendung
WO2022214404A1 (de) Optische vorrichtung mit einer triggereinheit, triggereinheit und verfahren zur aufnahme von infrarotabsorptionsspektren
DE102006047909A1 (de) Anordnung und Verfahren zum Betrieb einer Laserdiode oder LED

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006763667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006763667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008516301

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006763667

Country of ref document: EP