WO2006129647A1 - Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean - Google Patents

Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean Download PDF

Info

Publication number
WO2006129647A1
WO2006129647A1 PCT/JP2006/310751 JP2006310751W WO2006129647A1 WO 2006129647 A1 WO2006129647 A1 WO 2006129647A1 JP 2006310751 W JP2006310751 W JP 2006310751W WO 2006129647 A1 WO2006129647 A1 WO 2006129647A1
Authority
WO
WIPO (PCT)
Prior art keywords
soybean
protein
globulin
processed
water
Prior art date
Application number
PCT/JP2006/310751
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Samoto
Motohiro Maebuchi
Chiaki Miyazaki
Hirofumi Kugitani
Mitsutaka Kohno
Kensuke Fukui
Motohiko Hirotsuka
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to JP2007518999A priority Critical patent/JP4596006B2/en
Priority to EP06746979A priority patent/EP1905312B1/en
Priority to US11/921,237 priority patent/US9107428B2/en
Priority to CN2006800190086A priority patent/CN101184403B/en
Publication of WO2006129647A1 publication Critical patent/WO2006129647A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/14Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a fractionated soybean protein material, a processed soybean suitable for the same, and a method for producing them. More specifically, the present invention relates to a fractionation technique for proteins having various characteristics (7S globulins, 11S globulins, lipophilic proteins, etc.) contained in soybean protein.
  • Soy protein is widely used for improving the physical properties of foods because of its unique gel-forming ability, and it is also highly nutritious and has been increasingly used as a health food material.
  • Soybean storage protein precipitates around pH 4.5, and it is relatively easily divided into an acid-soluble protein fraction mainly composed of soluble components other than the storage protein and an acid-precipitated protein fraction mainly composed of storage protein. Can be divided.
  • a product obtained by collecting the acid-precipitating protein fraction is a separated soybean protein, which is currently widely used in the food industry.
  • Proteins constituting soy protein are classified into 2S, 7S, US, and 15S globulins based on the sedimentation coefficient by ultracentrifugation analysis.
  • 7S globulin and 11S globulin are the main constituent protein components of the globulin fraction.
  • ⁇ -conglycinin substantially corresponds to 7S globulin
  • glycinin substantially corresponds to 11S globulin.
  • Proteins constituting soy protein have different properties in terms of physical properties such as viscosity, coagulability, and surface activity, and nutritional management functions.
  • Non-patent Document 1 7S globulin has been reported to reduce blood neutral fat (Non-patent Document 1). 11S globulin is said to dominate the hardness of the tofu gel, which has a high gelling power.
  • fractionating soy protein into a fraction rich in these components makes it possible to greatly express the functions specific to each protein in terms of physiological functions and physical properties, and is a characteristic material. May lead to the creation of And this allows protein in the food industry Expansion of application fields can be expected.
  • Patent Document 2 Patent Documents 1-7, etc.
  • acid-precipitable soy protein contains a mixture of proteins with high affinity with polar lipids that make up cell membranes, protein bodies, and oil bodies. It has been reported in recent years (Non-patent Document 3).
  • Non-patent Document 4 As a result of research by the present inventor after receiving strong reports, when sodium sulfate was added to low-denatured defatted soymilk to a concentration of 1M and the pH was adjusted to 4.5 with hydrochloric acid, 7S and It was found that 11S globulin migrated, and that other miscellaneous proteins migrated to the acid-precipitating fraction (Non-patent Document 4).
  • the amount of nitrogen in this acid-precipitable fraction accounted for about 30% of the total amount of nitrogen in defatted soymilk, which was surprisingly high.
  • Non-Patent Document 5 Non-Patent Document 5
  • Proteins contained in the acid-precipitated fraction with a small amount of 7S globulin and 11S globulin are mainly proteins showing 34 kDa, 24 kDa and 18 kDa in molecular weight estimated by SDS-polyacrylamide electrophoresis, lipoxygenase, ⁇ -conglycinin, And many other miscellaneous proteins It is a mixture of qualities. This group of proteins exhibits affinity for polar lipids.
  • Non-patent Documents 2, Patent Documents 1 to 7 show that lipid-friendly proteins account for a considerable proportion of acid-precipitated soybean protein. Since no consideration was given, it was found that it was practically impossible to fractionate 7S globulin and 11 S globulin with high purity.
  • Non-Patent Document 4 shows a high ionic strength, and many reducing agents are required. Therefore, since desalting and washing are essential steps, it is effective at the experimental level, but unsuitable for industrial processes.
  • the present applicant has developed a technique for fractionating into high-purity soybean 7S globulin protein and soybean 11S globulin protein with a low contamination rate of lipophilic protein (Patent Documents 8 and 9).
  • This method is industrially superior in that 7S globulin is fractionated with high purity.
  • 11S globulin also has room for improvement because it requires complicated operations to reduce the contamination with lipophilic protein and fractionate with high purity.
  • Non-patent literature l Okita T et al, J. Nutr. Sci. Vitaminol., 27 (4), 379-388, 1981
  • Non-Patent Document 2 Thahn, V.H, and Shibasaki.K., J. Agric. Food Chem., 24, 117, 1976
  • Non-Patent Document 3 Herman, Planta, 172, 336-345, 1987
  • Non-Patent Document 4 Samoto M et al., Biosci. Biotechnol. Biochem., 58 (11), 2123-2125, 1 994
  • Non-patent literature 5 Samoto M et al., Biosci Biotechnol Biochem, 62 (5), 935-940, 1998
  • Non-patent literature b T. Nagano, et.al., Relationship between rheological properties and conformational states of 7S globulin from soybeans at acidic pH, Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, 1994
  • Patent Document 1 Japanese Patent Application Laid-Open No. 55-124457
  • Patent Document 2 JP-A-48-56843
  • Patent Document 3 JP-A-49-31843
  • Patent Document 4 JP-A-58-36345
  • Patent Document 5 Japanese Patent Laid-Open No. 61-187755
  • Patent Document 6 International Publication WO00Z58492
  • Patent Document 7 US Pat. No. 6,171,640
  • Patent Document 8 International Publication WO02Z28198
  • Patent Document 9 International Publication WO2004Z43160
  • an object of the present invention is to provide means capable of efficiently and highly fractionating not only 7S globulin but also three protein fractions of 11S globulin and lipophilic protein. . It is another object of the present invention to provide a soy milk and a separated soy protein having a reduced lipophilic protein content. It is also an issue that these methods are processes that can be implemented at the food industry level.
  • the present inventors prepared a processed soybean obtained by subjecting a low-denatured soybean containing protein and okara to a specific protein modification treatment, and using this as a raw material. Soy milk can be extracted as a high-purity fraction of soybean protein and 7S globulin, 11S globulin, or lipophilic protein can be efficiently separated simply by a simple fractionation method. It reached.
  • the present inventors prepared processed soybeans that had been subjected to denaturation treatment under conditions such that 7S globulin and 11S globulin remained low denatured and only the lipophilic protein was selectively denatured. As a result, it was found that 7S globulin and 11S globulin were mainly extracted, while extraction of lipophilic protein was suppressed and a considerable amount remained on the okara side as an insoluble fraction.
  • the pH of the obtained soy milk with low lipophilic protein was adjusted to 7S globulin and 11S globulin. It was found that a high-purity fraction of both globulins could be easily achieved simply by adjusting to a pH range where the solubility difference of Brin was large.
  • soy milk and isolated soy protein obtained from processed soybeans in which lipophilic proteins are selectively denatured are superior in flavor compared to those produced by conventional methods.
  • processed soybean power obtained by selectively modifying a lipophilic protein is rich in lipophilic protein.
  • the method for fractionating soybean protein according to the present invention can be applied to the fractionation of two fractions of 11S globulin and lipophilic protein when 7S globulin-deficient soybean is used. I found it.
  • Processed soybeans that contain protein and okara components have a PDI of 40 or more and less than 80, and the lipophilic protein is selectively water-insolubilized among the contained proteins
  • soybean power as described in 1 above.
  • at least one acid-precipitating soybean protein selected from the group consisting of 7S globulin, 11S globulin and lipophilic protein is concentrated.
  • a method for producing fractionated soy protein characterized by collecting fractions;
  • a method for producing a soy 11S globulin protein comprising adjusting the soy milk having the processed soybean power described in 1. above to pH 5.2 to 6.4 and collecting an insoluble fraction,
  • Soybean 7S globulin protein obtained by fractionating soy milk prepared with processed soybean power as described in 1. above
  • soybean power as described in 1. above.
  • the prepared soymilk was adjusted to pH 4 to 5.5, heated at 40 to 65 ° C, then heated to pH 5.3 to 5.7, and the resulting insoluble fraction was separated and obtained.
  • a method for producing soybean 7S globulin protein characterized in that the water-soluble fraction is adjusted to pH 4-5 and the insoluble fraction is recovered;
  • soybean power as described in 1. above is fractionated and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1.
  • non 7S-11S-acid-precipitated soy protein is characterized in that the processed soybean power as described in 1. above is fractionated and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1.
  • non 7S-11S-acid-precipitated soy protein is characterized in that the processed soybean power as described in 1. above is fractionated and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1.
  • non 7S-11S-acid-precipitated soy protein is characterized in that the processed soybean power as described in 1. above is fractionated and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1.
  • non 7S-11S-acid-precipitated soy protein is characterized in that
  • a method for producing a non-7S ⁇ 11S-acid-precipitated soy protein characterized by recovering an insoluble fraction produced by adjusting the pH to 5.3 to 5.7 as described in 14.
  • a method for fractionating soy protein comprising the following steps: (1) a step of adding the soy milk to okara by adding water to the processed soybean as described in 1. above, and (2) adjusting the soy milk to pH 5.2. To obtain a soybean 11S globulin protein that is an insoluble fraction by separating the water-soluble fraction, and (3) adjusting the water-soluble fraction to pH 4 to 5.5 at 40 to 65 ° C. After heating, the pH is adjusted to 5.3 to 5.7, and the water-soluble fraction is separated to obtain a non-7S-11S-acid-precipitated soybean protein that is an insoluble fraction. (4) The pH is adjusted to 5.3 to 5.7. Adjusting the separated water-soluble fraction to pH 4-5 to obtain soybean 7S globulin protein, which is an insoluble fraction;
  • Processed soybean power according to 30 Adjust the prepared soy milk to pH 5.2-6.4, A method for producing a non-7S-11S-acid-precipitating soybean protein, characterized in that the water-soluble fraction obtained by separating the fraction is adjusted to pH 4 to 5 and the insoluble fraction is recovered;
  • a method for fractionating soy protein comprising the following steps: (1) a step of adding water to the processed soybean according to 30 above and separating it into soy milk and okara; (2) the soy milk having a pH of 5.2 to Adjusting to 6.4, and separating the water-soluble fraction to obtain soybean 11S globulin protein, which is an insoluble fraction. (3) Adjusting the water-soluble fraction to pH 4-5 to separate the water-soluble fraction.
  • composition for lowering blood cholesterol comprising the non-7S, 11S acid-precipitating soybean protein according to 16.
  • composition for lowering blood cholesterol comprising the non-7S′11S acid-precipitating soybean protein according to 20.
  • soybean protein can be fractionated with high purity into three fractions of 7S globulin, 11S globulin and lipophilic protein.
  • This fractionation method is different from the conventional fractionation method by adding salt, etc., and is a method that mainly adjusts the pH without adding salts, so it is necessary to recover proteins as precipitates. Dilution and desalting operations to achieve a low ion concentration environment are insoluble, and it is an excellent method that simplifies the operation.
  • soy milk and a separated soy protein which are excellent in flavor and contain almost no processed soybean power lipophilic protein.
  • Soy milk obtained from this processed soybean as a raw material, isolated soy protein, soy 11S protein, soy 7S protein, okara, non-7S'11S acid-precipitating soy protein is disliked compared to conventional soy protein materials It has a refreshing and extremely good flavor, so it is useful as a food material. Power S is even higher.
  • the lipophilic protein was confirmed to have a serum cholesterol-reducing effect higher than that of conventional isolated soy protein, a novel material, non-7S, 11S acid-precipitated soybean protein, was used as a health functional ingredient.
  • the utility value is high.
  • 7S globulin is also called ⁇ -conglycinin, and is generally a glycoprotein composed of three subunits ( ⁇ , ⁇ , j8). good. These subunits are randomly combined to form a trimer.
  • the isoelectric point is around pH 4.8 and the molecular weight is about 170,000.
  • it may be simply abbreviated as “7S”.
  • Soybean 7S protein is a soy protein material with an increased purity of 7S.
  • 11S globulin is also called glycinin, and an acidic subunit and a basic subunit are linked by a disulfide bond to form a 12-mer consisting of 6 molecules.
  • the molecular weight is about 360,000. Hereinafter, it may be simply abbreviated as “11S”.
  • Soybean 11S protein is a soy protein material having a higher purity of 11S.
  • Both 7S and 11S are acid-precipitated soy proteins and are the main storage proteins stored in soy protein bodies.
  • “acid-precipitating soybean protein” is a protein having a property of being precipitated by adjusting the pH of a solution such as defatted soymilk to the acidic side (pH 4 to 6).
  • the protein strength contained in isolated soy protein S corresponds to this, and it does not acidify during the production of isolated soy protein, but does not include protein in whey.
  • 7S and 1 IS may be abbreviated as “MSP”.
  • Lipophilic Proteins is a group of minor acid-precipitating soy proteins other than 7S and 11S among soy acid-precipitating soy proteins, and polar lipids such as lecithin and glycolipids. Many are accompanied. Hereinafter, it may be simply abbreviated as “LP”.
  • This LP mainly contains proteins with estimated molecular weights of 34 kDa, 24 kDa, and 18 kDa as determined by SDS-polyacrylamide electrophoresis, lipoxygenase, ⁇ -conglycinin, and many other miscellaneous proteins (see Figure 2, Lane 3). ).
  • LP has the property that it is harder to be stained by SDS electrophoresis than 7S and 11S, so the actual situation has not been clearly recognized. Therefore, it is published as a single band of 7S and 11S in the conventional literature! In fact, a lot of LP is often mixed in the band of SDS electrophoresis.
  • LP is a mixture of miscellaneous proteins, it is difficult to identify all the proteins, but it can be fractionated by the dissolution behavior shown in (Method 1) and (Method 2) below. .
  • Non-7S'11S-acid-precipitating soy protein refers to a soy protein material with an increased LP purity. Hereinafter, it may be simply abbreviated as “LP-SPI”.
  • rpDIJ is an abbreviation for Protein Dispersibility Index, and measures the Dispersfcle protein in soybean products described under the AOCS official method (BalO-65) under certain conditions. Is an index obtained by In contrast to the gentle agitation method that seeks “NSI” (AOCS official method Ball-65), the high agitation operation used in this method generally gives higher numerical results.
  • NMI AOCS official method Ball-65
  • water was added to soybean, and after stirring with a mixer, the amount of nitrogen in the centrifugal supernatant was measured to determine the ratio to the amount of nitrogen in soybean. The higher the number, the higher the protein solubility of soybean. If it becomes difficult to dissolve soy protein due to heat treatment, the PDI value decreases.
  • the "selective water insolubilization index” is an index that numerically indicates how selectively the LP in the processed soybean of the present invention is water-insoluble, and in the water-soluble fraction of soybean.
  • the ratio of LP nitrogen (%) and MSP nitrogen (%) to total nitrogen is expressed as “LPZMSP”.
  • the first aspect of the present invention is a processed soybean containing a protein and an okara component, having a PDI of 40 or more and less than 80, and wherein a lipophilic protein among the contained proteins is selectively water-insolubilized.
  • a processed soybean containing a protein and an okara component, having a PDI of 40 or more and less than 80, and wherein a lipophilic protein among the contained proteins is selectively water-insolubilized.
  • the raw soybean used in the present invention contains at least a protein and an okara component, and as long as the oil body that stores lipid exists, the varieties are deficient in LP or the amount thereof is extremely reduced. Since there are no soybean varieties, any variety of soybeans can be applied to the present invention without any particular limitation.
  • soybeans rich in 7S there are also soybeans rich in 7S, soybeans rich in 11S, or soybeans in which specific components such as lipoxygenase-deficient varieties have been changed by breeding and genetic recombination techniques, and these can also be used as raw materials.
  • 11S-rich soybean that is, 7S globulin-deficient soybean is used as a raw material
  • the acid-precipitated soybean protein is mainly composed of 11S and LP.
  • the LP of the present invention is selected. Water-insoluble technology can be used.
  • LP contains a lot of proteins derived from oil bodies
  • soybeans may be used regardless of whether or not the hypocotyl is removed or whether or not the outer skin is removed.
  • soybean protein materials such as isolated soybean protein, soybean 7S protein, and soybean 11S protein are prepared using the processed soybean of the present invention as a raw material
  • the purity of the protein is affected if lipid is contained. Therefore, it is preferable to use defatted soybeans as raw soybeans.
  • a product defatted with an organic solvent such as hexane or a product whose oil content has been reduced by pressing or the like can be used.
  • the form of the raw material soybean is not particularly limited, but it is more preferable that the powder be pulverized and have a maximum particle size of 500 m or less, more preferably 300 m or less, and even more preferably 100 m or less. The end is appropriate.
  • protein modification in the raw soybean has not progressed extremely before the processing of the present invention. It is preferable that PDI showing a desired protein extraction rate is 60 or more.
  • the moisture content of this soybean is preferably 2 to 15%, more preferably 5 to 10%.
  • the processed soybean in which the PDI of the present invention is 40 or more and less than 80, and LP is selectively water-insoluble among the contained proteins, in other words, 7S and 11S of acid-precipitable soybean proteins are selectively used. It is characterized by low denaturation.
  • LPZMSP selective water insolubility index
  • LPZMSP which can be said to have been selectively insoluble in LP, is 45% or less, it is sufficient to obtain a soy protein fraction, more preferably 35% or less, and even more preferably 3%. 0% or less is appropriate.
  • the processed soybean itself cannot be identified by direct analysis, but it can be identified by analyzing the water-soluble fraction obtained by extracting water from the processed soybean, that is, LPZMSP contained in soy milk. .
  • LPZMSP is obtained after obtaining a water-soluble fraction from potato soybean by the following method 1. It can be calculated by fractionating into LP fraction and MSP fraction by Method 2 and calculating the nitrogen content of each fraction by Kjeldahl method.
  • Insoluble fraction C is recovered by centrifugation at 1000G for 10 minutes. Furthermore, to this insoluble fraction C, add 1M Na2S04 (containing 20 mM mercaptoethanol) solution 5 times the sample processed soybean of Method 1 and stir well. Separate into D and insoluble fraction D. Repeat the same procedure for this insoluble fraction D, separating it into water-soluble fraction E and insoluble fraction E. The insoluble fractions D and E are combined as the LP fraction, and the water-soluble fractions D and E are combined as the 7S and 11S fractions (MSP fraction). The operating temperature is 10 ° C to 25 ° C. Measure the nitrogen content of the LP fraction and MSP fraction obtained as described above by the Kelder method, and measure the ratio of both.
  • the method for obtaining processed soybeans with the property that LP is selectively water-insolubilized is not particularly limited as long as the selective water-insolubility index (LPZMSP) satisfies the condition of 45% or less.
  • LZMSP selective water-insolubility index
  • soybean heating may be performed by a dry heating method using a roasting device, a hot air heating device, a microwave heating device, a humidifying heating device, a steaming device, or steam heating.
  • a wet heating method using an apparatus or the like can be employed without any particular limitation. However, it is better to avoid heating when water is soaked in soybeans, as protein will be extracted.
  • soybean is enclosed in a sealed tank and the inside of the jacket covering the outside of the sealed tank is heated so that the product temperature is about 70 to 95 ° C in an atmosphere with a relative humidity of 90% or more can be adopted.
  • the heating temperature and time conditions are not particularly limited as long as LP insolubles are selective, but the temperature is usually set to 60 to 95 ° C, and the time is 1 minute to 10 hours. It is appropriate to perform between.
  • alcohol modification When alcohol modification is used as another embodiment of the modification method, it is equal to or less than 1 part by weight, preferably 2 to 100 parts by weight, more preferably 8 to 20 parts by weight with respect to the raw soybean containing the protein and the sugar component. More preferably, a method of adding and impregnating 10 to 15 parts by weight of a polar alcohol solution is preferred. According to this method, LPZMSP can be easily reduced to 30% or less, and only LP can be selectively insoluble in water more efficiently.
  • a polar solvent suitable for promoting selective water insolubilization of LP a polar alcohol solution (methanol, ethanol, propanol, isopropanol, etc.) can be used.
  • a polar alcohol solution methanol, ethanol, propanol, isopropanol, etc.
  • Water may be pure water, or an acid aqueous solution (hydrochloric acid aqueous solution, carbonic acid aqueous solution, citrate aqueous solution, etc.), alkaline aqueous solution (hydroxy sodium hydroxide solution, sodium bicarbonate, etc.), etc. may be used.
  • the concentration of the polar solvent solution is 5 to: LOO% is preferred, and 50 to 80% is more preferred. If the concentration of the polar solvent solution is too low or too high, water insolubility caused by LP modification will be insufficient.
  • the method for adding the polar solvent solution can be carried out by, for example, a method of spraying the powder by spraying or a method of dropping, but is not particularly limited.
  • a stirrer such as a single or a high-speed stirrer can be used.
  • the heating temperature is preferably 30 to 95 ° C, more preferably 40 to 90 ° C, as the product temperature of soybean.
  • the calorie temperature time is preferably 5 to 100 minutes, more preferably 10 to 60 minutes.
  • the order of these steps is not particularly limited. However, after adding and mixing the polar solvent, the heating treatment is performed or the polar solvent is added. It is preferable to perform heat treatment while mixing.
  • the amount of the polar solvent added can be reduced, the removal process of the polar solvent after the treatment is extremely easy compared with the conventional alcohol cleaning method, etc., which is advantageous for establishing an efficient manufacturing process. It is.
  • Most of the polar solvent remaining in the processed soybean can be volatilized by heating treatment, and this can be directly subjected to the extraction process. If it is treated at a temperature of 40-60 ° C and reduced pressure (about 1 lOmmHg) for 10-60 minutes, it can be completely volatilized and returned to the weight of soybean before addition.
  • volatilized polar solvent can be reused if recovered by distillation, This is advantageous in the manufacturing process.
  • the following invention is used as a raw material for fractionation of one or more acid-precipitating soy proteins selected from 7S, 11S and LP, which are selectively water-insoluble in LP. This is a common technical feature.
  • a fraction enriched with at least one acid-precipitating soy protein selected from the group consisting of 7S globulin, 11S globulin, or lipophilic protein strength using the soymilk or okara prepared with the above-described processed soybean strength as a raw material. It is an invention for collecting and obtaining fractionated soybean protein.
  • the soy milk of the present invention is a soy milk made from the processed soybean.
  • it is soy milk made from baked soybeans obtained by the above alcohol modification treatment.
  • the soy milk of the present invention is not particularly limited as long as it uses the above-described processed soybean as a raw material, but it is extracted with an aqueous solvent such as water or an aqueous alkaline solution, and separated into soy milk and okara by centrifugation. It is obtained by collecting the soluble fraction.
  • an aqueous solvent such as water or an aqueous alkaline solution
  • the addition amount of the aqueous solvent is preferably 6 to 12 times by weight, more preferably 7 to 9 times by weight with respect to the processed soybean. If the amount of the aqueous solvent added is too small, the viscosity will increase, and if it is too large, the solution will become a dilute solution and the recovery efficiency will deteriorate.
  • the temperature during extraction is preferably about 4 to 50 ° C, more preferably about 10 to 30 ° C. If the temperature is too high, the LP will be easily dissolved. Conversely, if the temperature is too low, the extraction efficiency will deteriorate. By removing the okara, which is insoluble at a pH near pH 9 to 9, by centrifugation, etc. To do. The operation of adding 4 to 6 times the amount of water to the resulting okara and further extracting it to increase the amount of recovered soy milk may be repeated.
  • soy milk made from the processed soybean of the present invention may be commercialized as it is, or may be further processed into concentrated soy milk or powdered soy milk, or prepared by adding an appropriate raw material. It can also be processed into soy milk.
  • the protein composition of the obtained soymilk has a very characteristic composition unlike ordinary soymilk, and LPZMSP with a low LP content is 45% or less, preferably 35% or less, more preferably It is preferably 30% or less, more preferably 28% or less, and most preferably 23% or less.
  • the soy milk can be used for the production of the following fractionated soy protein.
  • the soy milk extracted from soy milk by a normal manufacturing method or soy that has been subjected to non-selective protein insolubilization treatment has an LPZMSP ratio of more than 45% (see Table 1).
  • the fractionation ability to soybean 7S globulin protein and soybean 11S globulin protein can be achieved by simple means only by adjusting H.
  • the isolated soy protein of the present invention is characterized by using the soy milk obtained from the above-described processed soybean strength as a raw material, and other than that, it can also be produced by a known production method that is usually performed.
  • an acid hydrochloric acid, sulfuric acid, etc.
  • an acid is added to the soymilk of the present invention to acidify the pH of the soymilk.
  • the pH should be adjusted to around the isoelectric point of soy protein. It is preferable to adjust the pH to 4.2 to 5.2.
  • acid-precipitating soy protein becomes insoluble in this pH range and becomes a precipitate. This is recovered by centrifugation and neutralized by adding alkaline water such as caustic soda to prepare a neutralized solution of soybean protein to obtain separated soybean protein.
  • alkaline water such as caustic soda
  • This can be sterilized and dried if desired and used as it is in the form of a powder, or it can be used as a separated soy protein for various conventional food applications by adding a suitable raw material for preparation. .
  • the defatted soybean of the present invention can be acid-washed and then extracted with water to obtain isolated soybean protein.
  • the obtained isolated soy protein is characterized by having a crude protein content of 90% by weight or more and a flavor superior to that of conventional isolated soy protein due to its low LP content.
  • the isolated soy protein provided as a soy protein material is generally heat sterilized in the final production process, so 7S and 11S are heat-denatured together with LP. Therefore, it is difficult to measure the LP content by separating LP into 7S and 11S by the methods 1 and 2 described above.
  • SDS-polyacrylamide gel electrophoresis which is a general method for measuring protein composition, has the property that LP is difficult to be stained with CBB, which is also an accurate measurement. It is difficult to determine.
  • This method can be applied not only to isolated soybean protein but also to various fractionated soybean proteins such as soybean 7S protein, soybean 11S protein, and LP-SP I.
  • LCI Lipophilic Proteins Content Index
  • P34 LP major component, 34kDa protein
  • Lx LP main component, lipoxygenase
  • the isolated soybean protein obtained by the present invention has an LCI of 38% or less, preferably 35% or less, more preferably 30% or less, and further preferably 25% or less. If the LCI exceeds 38%, it will approach the LCI value of the soy protein isolated by the conventional method, and the quality will not change. On the other hand, the smaller the LCI strength, S, the better the flavor.
  • soybean protein of the present invention As described in the prior art, various methods have been used to fractionate acid-precipitable soybean protein into 11S and 7S. Soybean 11S protein of the present invention and this soybean 7S protein are both of the present invention.
  • the processed soybean power is obtained by fractionating the prepared soy milk.
  • the soybean 11S protein of the present invention is prepared by adjusting the soy milk of the present invention to a specific pH and recovering the insoluble fraction produced, and if necessary, neutralizing, sterilizing, drying, and using as it is in the form of a powder.
  • a fractionated soy protein material can be obtained with high purity and efficiency by adding a suitable preparation material to prepare a preparation.
  • the electrophoresis pattern of the obtained fraction has a low LP content (Fig. 4) and an excellent flavor, similar to the electrophoresis pattern of the soymilk of the present invention.
  • a reducing agent such as sodium sulfite may be added to soy milk and then adjusted to the above pH range. This has the advantage that the separability is further improved. In the case of this soymilk, good separation is possible at about ImM.
  • Non-Patent Documents 2 and 6 the property of 11 S that cools and settles, which is a conventional 11S separation method, may be used. That is, by adding a reducing agent to the soymilk of the present invention, adjusting the pH of the soymilk to 6.1-6.5, cooling to 4-6 ° C and leaving it for half a day, and collecting the produced precipitate, Is recovered.
  • the reducing agent is typically 10mM. In the case of this soymilk, good separation is possible at about ImM.
  • the obtained soybean 11S protein has a high purity of 11S of 75% by weight or more, further 85% by weight or more, and further 90% by weight or more, it can be utilized by utilizing the characteristics unique to 11S.
  • 11S has low viscosity and high gel strength due to heating, so it can be used, for example, as a gelling agent, and as a substitute for egg white, and tofu can be hardened. It can be used.
  • the LCI value is 30% or less, more preferably 25% or less, and further preferably 20% or less, and the flavor is excellent with a very low LP content.
  • the soybean 7S protein of the present invention is an insoluble fraction produced by adjusting the pH of the water-soluble fraction solution after fractionation of the above 11S to pH 4 to 5.5, preferably 4.3 to 4.8 with an acid. It can be obtained by recovering the fraction, sterilizing and drying without force to neutralize it as desired, and using it in the form of powder as it is or by adding an appropriate drug substance . In this case, the purity of 7S in soybean 7S protein is at least 38% or more, further 40% or more, further 50% or more, and further 60% or more. [0085] To further increase the degree of purification of 7S, LP can be removed in advance as an insoluble fraction prior to the above step.
  • the pH of the water-soluble fraction obtained at the time of preparation of the soybean 11S protein of the present invention is adjusted to pH 4 to 5.5, preferably pH 4.8 to 5.2 [after adjustment and heating at 40 to 65 ° C.]
  • proteins other than 7S LP-based
  • proteins other than 7S become insoluble and can be removed as an insoluble fraction. If it is not necessary to simultaneously collect 7S and 11S from soymilk, only 7S is fractionated directly using the soymilk of the present invention instead of the above water-soluble fraction, and 11S and LP as insoluble fractions. It can also be excluded.
  • the pH of the water-soluble fraction after removal of the insoluble fraction is adjusted to pH 4-5, preferably 4.3-4.8 with acid, and the insoluble fraction produced is recovered, so that the soybean with higher purity can be obtained. It is reasonable to obtain 7S protein.
  • the method for preparing soybean 7S protein is not limited to this method, and a conventional 7S fractionation method may be used if desired.
  • a conventional 7S fractionation method may be used if desired.
  • remove 11S globulins! Add soymilk with NaCl to a concentration of 0.25M, adjust the pH to 5.0 to remove insoluble fractions, There is a method to recover the precipitate that is formed by adding 3 volumes of water to bring the pH to 4.5.
  • Non-Patent Document 5 sulfuric acid is added to soy milk excluding 11S globulin, the pH is adjusted to 2.8 to 3.5, and the resulting precipitate is removed, and then twice the volume of water is added thereto. In addition, there is a method of recovering the precipitate formed at pH 4.5.
  • the 7S purity of the high-purity soybean 7S protein obtained as described above is at least 80% or higher, so that it is possible to utilize the characteristics unique to 7S.
  • it can be used for nutritional functional agents such as blood neutral fat reducing agents and body fat reducing agents, and highly viscous materials.
  • the LCI is 30% or less, more preferably 25% or less, still more preferably 20% or less, and the flavor is excellent with a very low LP content.
  • the okara of the present invention is an okara obtained by using the processed soybean of the present invention as a raw material, extracting this with water, and collecting the insoluble fraction. Since this potato soy is an LP that is selectively water-insoluble, extraction with water as described above will extract 7S and 11S to the soy milk side, and LP will be mainly distributed to the okara side. Drawn.
  • this Okara is characterized by its richness in LP.
  • LP content is about 10 to 20% by weight in the dry solid content of ordinary Okara, but this Okara is 35 to 60% by weight.
  • LP is particularly excellent in blood cholesterol lowering effect among soy acid-precipitating soybean proteins. Therefore, it is possible to give high added value to the okara that is generally disposed of as a by-product of soymilk.
  • This okara is obtained by collecting the insoluble fraction separated during the production of the above-mentioned soymilk by centrifugation or the like. If desired, it can be made into various forms of products by processing such as sterilization, freezing, crushing, and drying.
  • LP is a force that was thought to be a component that contributes to the flavor deterioration of conventional soy protein materials. By separating this into high purity, non-7S'11S-acid-precipitated soy protein It can be used for applications that make use of the unique characteristics of LP.
  • the LP-SPI of the present invention can be obtained by fractionation by two methods: using okara prepared from the above-mentioned processed soybean as a raw material and using soymilk as a raw material.
  • the first LP is obtained by fractionating the above-prepared okara that has been prepared from the above-mentioned potato soybean power, and the oil content extracted with a solvent having a 2: 1 volume ratio of black mouth form and methanol is 7% or more, The content is preferably 8% or more. Preparation examples are shown below.
  • LP is selectively contained in the processed soybean of the present invention in an insoluble state, it can be fractionated from the above-mentioned okara, which is a residue obtained by extracting the soy milk.
  • the fraction can be obtained by adding water to okara and extracting by heating and collecting the extract.
  • the amount of water is preferably 50 to 500 parts by weight of water per 100 parts by weight of Okara.
  • the heating temperature is preferably 100 to 150 ° C.
  • the heating time is preferably between a few seconds and a few minutes.
  • the extract obtained by the above method can be provided as LP-SPI having an LCI of 50% by weight or more, preferably 60% by weight or more. If desired, add acid to the extract and adjust the pH to 4-5. Preferably, it is adjusted to 4.3 to 4.8, and the precipitate formed can be recovered to obtain LP-SPI with higher purity. This is neutralized with a soda solution to prepare a neutralized solution, sterilized and heated.
  • the LP-SPI obtained by the above method can be provided as a high-purity product having at least LCI of 60% by weight or more, preferably 65% by weight or more.
  • the second LP is obtained by fractionating the soymilk prepared from the above-mentioned soybean soy strength, and the oil content extracted with a solvent having a volume ratio of black mouth form and methanol of 2: 1 is 7% or more.
  • the fractionation method is characterized by containing 8% or more. Preparation examples are shown below.
  • processed soybean power Adjusted soy milk to pH 5.2 to 6.4 and separated the insoluble fraction to obtain a water-soluble fraction.
  • the pH is adjusted to 4 to 5.5, heated at 40 to 65 ° C, and then the insoluble fraction produced when the pH is adjusted to 5.3 to 5.7 is recovered, whereby LP can be fractionated with high purity.
  • the fraction obtained by the above method is neutralized with a soda as needed to prepare a neutralized solution, sterilized and heated and dried.
  • the LP-SPI obtained by the above method can be provided as a high purity product having at least LCI of 60% by weight or more.
  • the oil content (hereinafter referred to as “chroma oil content”) extracted with a 2: 1 solvent of chloroform-form: methanol in the protein is 7% by weight or more, preferably 8-15% by weight, more preferably 9%. This can be done with a force of ⁇ 15% by weight.
  • the LP-SPI ether extract oil content is 2% or more, the above-mentioned numerical force must also be deducted from the ether extract oil content.
  • the polar lipids to be released are mainly composed of lecithin and glycolipid.
  • the chromed oil content of conventional unisolated soybean protein is about 4-5% by weight, and high-purity soybean 7S protein and soybean 11S protein are only 3% or less.
  • LP-SPI has blood cholesterol lowering activity even if it is fractionated by any of the above methods.
  • LP-SPI is isolated soy protein, soy 7S protein, soy 11S protein. It has been confirmed that it has a remarkably strong blood cholesterol-reducing action compared to the above. It has also been confirmed that 7S having a high purity, that is, low LP, as used in the present study hardly shows a blood cholesterol lowering effect.
  • LP-SPI exhibits a stronger cholesterol-lowering action by coexistence of LP and clometa extract and their presence as a complex.
  • the content of LP-SPI added to the composition for lowering blood cholesterol of the present invention varies depending on the amount of the composition, and can be appropriately set. In general, a person skilled in the art may set the content in the composition in consideration of the intake amount of the composition per day so that the intake amount of the active ingredient per day can be taken. For example, if the daily intake of LP-SPI is set to 4.5 g, and the daily intake of the composition is 10 g, the active ingredient content in the composition is 45% by weight. What should I do?
  • the daily intake of LP-SPI of the present invention is not particularly limited, but can be 4 to 10 g.
  • the composition for lowering blood cholesterol of the present invention can be used in combination with a material that is said to have a blood cholesterol lowering action.
  • a material that is said to have a blood cholesterol lowering action for example, isoflavones, soy milk, separated soy protein, concentrated soy protein, lecithin, lactic acid bacteria, polyphenols, polysaccharides and the like can be used in combination.
  • the form of the composition for lowering blood cholesterol of the present invention can be an agent or a food.
  • an agent in the case of an agent, it can be prepared in various dosage forms. That is, in the case of oral administration, it can be administered in the form of solid preparations such as tablets, hard capsules, soft capsules, granules or pills, or liquid preparations such as solutions, emulsions or suspensions. In the case of parenteral administration, it is administered in the form of an injection solution or a suppository.
  • additives that are acceptable for formulation, such as excipients, stabilizers, preservatives, wetting agents, emulsifiers, lubricants, sweeteners, coloring agents, flavoring agents, tonicity adjusting agents.
  • a buffer, an antioxidant, a pH adjuster, etc. can be used in combination.
  • soft drinks, dairy products, soy milk, fermented soy milk, soy protein drinks, tofu, natto, fried chicken, deep fried, gandou, hamburger, meatballs, fried chicken, nuggets It can be blended into various foods such as various prepared foods, baked goods, nutrition bars, cereals, rice cakes, gums, jelly and other sweets, tablets, breads, cooked rice.
  • LP-SPI is included as an active ingredient in advertising media such as food packaging and pamphlets, and that this has the effect of reducing blood cholesterol. It can also be used as health foods such as Japanese specific health foods.
  • the advantages of the present invention are as follows. First, by selectively subjecting LP to water insolubilization, the fractionation of 7S, 11S, and LP, which conventionally required complicated operations, is increased. Purity, efficiency and simplicity. By using the processed soybean of the present invention as a raw material, it becomes possible to fractionate the mixture of 7 S and 11 S with high purity by simply precipitating at a specific isoelectric point. Moreover, it becomes possible to fractionate LP which has not been recognized so far with high purity. LP-SPI containing LP in a high degree has a blood cholesterol lowering action stronger than isolated soy protein, and can be provided as a novel soy protein material.
  • the second advantage of the present invention is that the flavor of existing soy protein materials such as soy milk and isolated soy protein can be improved. That is, the processing of soybean of the present invention can selectively insolubilize LP and lead to a state in which lipids associated with LP are difficult to be extracted. As a result, the flavor of the extracted soy milk and the various soy protein ingredients prepared from the soy milk is rated. Improved to the stage.
  • the processed soybean of the present invention is one in which the number of bacteria in the soybean is reduced by the processing treatment. This suppresses the growth of bacteria in the water-based cache process, and has an advantage not only in flavor but also in satellite.
  • the obtained soymilk has a good flavor, it can be provided as a high-quality soymilk material. Furthermore, the separated soy protein, soy 7S protein, and soy 11S protein produced by fractionation are all very good in color and flavor even when subjected to heat treatment such as retort sterilization. Will not darken or taste bad.
  • the deactivation and sterilization of the enzymes involved in the oxidative degradation of the present invention using polar alcohol can be applied to whole-fat soybeans as well as defatted soybeans. It is also very effective in improving the flavor of the soy milk prepared.
  • Hydrated ethanol (10%, 50%, 60%, 70%, and 80%) was mixed with 1 kg of low-denatured defatted soybean (PDI: 83, moisture 7.0%) filled in a sealed container while spraying 100 g each.
  • the outside of the sealed container was heated so that the temperature of the defatted soybean reached 70 ° C and maintained for 30 minutes.
  • the defatted soybean was taken out from the container and allowed to cool to prepare a processed defatted soybean.
  • the PDIs were 71, 67, 64, 65, and 64, respectively.
  • Calorie defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was increased to 150 g. This PDI was 72.
  • Calorie defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was increased to 200 g. This PDI was 45.
  • the outside of the sealed container was heated to maintain the temperature of the defatted soybean (PDI: 83, moisture 7.0%) 1 kg in an atmosphere with a relative humidity of 90% or more so that the product temperature of the defatted soybean was 75 ° C and maintained for 30 minutes.
  • Degreased soybeans were taken out from the container, and processed defatted soybeans were prepared. This PDI was 73.
  • a processed defatted soybean was prepared in the same manner as in Comparative Example 1 except that the temperature of the defatted soybean was heated to 85 ° C and maintained for 60 minutes. This PDI was 66.
  • Caloe defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was reduced to 30 g. This PDI was 79.
  • Processed defatted soybeans were prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (80%) was increased to 1.5 kg and the heating maintenance time was extended to 60 minutes. This PDI was 32.
  • the nitrogen content of the obtained whey fraction, okara fraction, LP fraction and MSP fraction was analyzed by the Kjeldahl method, respectively, and the total nitrogen content in defatted soybean was 100%.
  • the nitrogen transfer rate (%) to each fraction was calculated.
  • the nitrogen ratio of LP fraction and MSP fraction (LPZ The selective water insolubility index which is MSP) was calculated.
  • soy milk was also extracted and analyzed for low-denatured defatted soybeans that were not processed. The results are shown in Table 2.
  • Example 3 the rate of nitrogen transfer to MSP decreased as in Example 3, and some of the forces decreased in yield.
  • the nitrogen transfer rate was close to 48%. In other words, it was confirmed that 7S and 11S were extracted to the soy milk side with a high yield.
  • Example 6 and Comparative Examples 1 and 2 From the results of Examples 1 to 3, Example 6, and Comparative Examples 1 and 2, the higher the ethanol concentration and the greater the added amount, the lower the PDI, and the higher the degree of modification of defatted soybeans.
  • the amount of ethanol added increased to some extent, the tendency of the nitrogen transfer rate to the LP fraction decreased, and conversely the nitrogen transfer rate of MSP tended to decrease.
  • LPZMSP increased and Comparative Example 2 showed the same value as the control.
  • PDI had a value similar to that of ethanol addition, and LP was selectively insoluble in water.
  • Example 6 which was heated strongly, the rate of nitrogen transfer to the MSP fraction was decreasing, and the LPZMSP ratio was slightly higher than in the case of ethanol treatment. In comparison between wet heat and ethanol addition, the ethanol addition force LPZMSP becomes smaller and LP tends to be more selectively water-insoluble.
  • the processing conditions for defatted soybeans that selectively insolubilize LP with water were such that PDI was 40 or more and less than 80 and LPZMSP was 45% or less.
  • control by wet heating and a method of adding 5 to 100% LOO wt% of water-containing ethanol having a concentration of 5 to 100% to soybeans were suitable.
  • LPZMSP could be reduced to 35% or less.
  • Each soymilk was adjusted to pH 4.5 with hydrochloric acid, and the precipitate was collected by centrifugation to remove the whey fraction. Further, the collected precipitate was neutralized with sodium hydroxide and watered to a concentration of 3%. The neutralized solution was boiled for 10 minutes and then cooled to room temperature to prepare a separated soy protein solution for flavor test.
  • the separated soy protein solution is analyzed by SDS polyacrylamide gel electrophoresis under the conditions shown in Table 1 according to the LP content estimation method described above, and the LCI value (see Equation 1), which is the estimated LP content, is obtained. It was.
  • the flavor of each soymilk and separated soy protein solution obtained was tested by 10 panelists. The score was 10 out of 10 points, and the higher the score, the less bad flavor. As a standard, 5 untreated preparations were scored. The average score is calculated by dividing the total score by the number of panelists.
  • Example 2 70% ethanol 8.9 9.4 23 Clean Example 3 70% ethanol 8.5 9.3 26
  • Example 5 Moist heat 6.0 6.8 36 Roast odor Example 6 70% ethanol 5.9 6.0 34
  • soybean 11S protein The soymilk prepared from each processed defatted soybean in Comparative Experimental Example 1 was adjusted to pH 5.8 with hydrochloric acid, and the resulting precipitate was collected by centrifugation at 1000 G for 10 minutes. This insoluble fraction was designated as soybean 11S protein.
  • the purity of soybean 11S protein was 75% or higher, and in Examples 1 to 3, the purity was 90% or higher, and the recovery rate was equivalent or higher.
  • the purity of soybean 7S protein was 38% or more in all Examples, 50% or more in Examples 1 to 3, and some Examples exceeded 60%.
  • the flavor of these proteins was very good, and the taste was very good!
  • Comparative Example 1 the purity of soybean 11S protein was similar to that of the Example, but the recovery rate was 6%, which was considerably low. This is thought to be because the selective water insolubility of LP with a large amount of 7S and 11S transferred to Okara was insufficient.
  • the flavor of this protein was excellent, and it was evaluated as ⁇ with less disgusting taste.
  • the oil contained in the solid content of this protein is 1% of the oil extracted with ether, 11% of the oil extracted with a mixed solvent with a 2: 1 ratio of formaldehyde to methanol, and polar It was shown that many LPs showing affinity for lipid were contained.
  • the resulting LP-SPI contained a high amount of LP, which was previously thought to be a causative component of the off-flavor of soy protein isolate, and was expected to have a bad taste. It had a good flavor with no bad flavor.
  • the LCI value at this time was 72%.
  • Insoluble fraction A obtained by the same method as in Example 7 was collected, and this fraction was designated LP-SPI.
  • the oil contained in the solid content of this protein is 1% of the oil extracted with ether, and 9% of the oil is extracted with a mixed solvent with a 2: 1 ratio of formaldehyde to methanol. It was shown that many LPs having affinity for polar lipids were contained.
  • the obtained LP-SPI like the LP-SPI of Example 7, had a surprisingly good taste with no bad taste.
  • the LCI value at this time was 71%.
  • vitamin-free casein made by Oriental Yeast Co., Ltd., hereinafter referred to as “casein”.
  • the rats were fasted for 6 hours from 8:00 am and then opened under Nembutal anesthesia, and blood was collected from the abdominal aorta. The blood was centrifuged at 3000 RPM for 15 minutes after heparin treatment, and the resulting plasma was used as a blood sample to measure blood total cholesterol (TC) and fecal steroid excretion.
  • TC total cholesterol
  • TC was measured using Fuji Dry Chem 5500 (Fuji Film Co., Ltd.).
  • fecal steroid excretion fecal samples were collected, freeze-dried and crushed for 3 days immediately before slaughter.
  • Excreted neutral and acidic steroids by Mathtinen et al. (Miettinen, TA; Ahrens, EH Jr .; Grundy, SM Quantitative isolation and gas—liquid chromatogra phic analysis of total dietary and fecal neutral steroids. J. Lipid Res., 6, 411-424, 19 65.), Grundy et al.
  • Table 6 shows the results of changes in cholesterol levels and fecal total steroid excretion in rats fed the 2-week test diet.
  • LP-SPI intake was found to have a significantly lower blood cholesterol lowering effect than isolated soy protein and soy 7S protein, and also tended to decrease with respect to soy 11S protein. That is, it was confirmed that LP-SPI fractionated by the method of the present invention has a stronger blood cholesterol lowering effect than the conventional soybean protein material.
  • LP-SPI was washed with ethanol, and the effect of removing the clometa extract on blood cholesterol reduction was examined.
  • LP-SPI produced in the same manner as in Example 8 was washed once with 10 volumes of 70% ethanol, then once with 3 volumes of 70% ethanol, and then with 2 volumes of 99.5% ethanol. Washed with washing. After drying overnight at room temperature, drying at 60 ° C for 1 hour, ethanol washing LP-S Obtained PI (LP-EW). The content of Crometa extract in LP-EW was 1.4%.
  • lipid was dissolved in soybean oil shown in Table 5, and a sample (LP-EW + Lipid) mixed with LP-EW in the test meal again was obtained.
  • a test diet (Table 5) was prepared by substituting 10 wt% of the protein source with LP-SPI, LP-EW, LP-EW + Lipid, respectively, using a diet containing 20 wt% casein as a control. Animals were ingested 2g daily as protein in the following manner. Each protein intake group was a casein group (control group), LP-SPI group, LP-EW group, LP-EW + Lipid group, and model animals were 6-week-old WISTAR male rats (sold by Japan SLC Co., Ltd.). 24) were used. After one week of preliminary breeding, each group was divided into 6 animals so that the average body weight between groups was almost the same, and the test food was raised for 2 weeks. Table 7 shows the results of changes in blood cholesterol levels in rats fed with test samples for 2 weeks after the end of the test period.
  • LP-SPI showed a tendency to lose its powerful blood cholesterol-reducing effect even if it was mixed again when LP-SPI was removed with ethanol. It was. Therefore, the LP-SPI of the present invention has a stronger blood flow due to coexistence and complexation of a chromate extract such as lecithin, which has a higher affinity for LP, than the presence of LP alone. It is thought to show an effect of reducing medium cholesterol.
  • soybean protein By using the processed soybean of the present invention as a raw material, it is possible to fractionate soybean protein into 7S globulin, 11S globulin, and lipophilic protein, respectively, with high purity and easily, and the conventional fractionation method This can greatly improve the complicated manufacturing process.
  • soybean 7S protein, soybean 11S protein, and non-7S'11S-acid-precipitating soybean protein it becomes possible to produce foods with more vigorous physical properties and nutritional physiological functions.
  • 7S-11S-acid-precipitated soy protein has been commercialized so far, and it is a novel soy protein material that has a higher cholesterol lowering effect than conventional soy protein isolates. Use for nutrition improvement is expected.
  • soy milk, isolated soybean protein, soybean 7S protein, soybean 11S protein, okara, non-7S ⁇ 11S-acid-precipitated soy protein obtained in the present invention has a very flavor compared to conventional soybean protein materials. Since it is good, it is highly useful in improving the quality of conventional foods that use these.
  • Fig. 1 is a graph showing the dissolution behavior of 7S globulin and 11S globulin at each pH.
  • FIG. 2 is a drawing-substituting photograph showing migration patterns of SDS-polyacrylamide gel electrophoresis of 7S globulin fraction, 11S globulin fraction, and lipophilic protein fraction.
  • FIG. 3 is a drawing-substituting photograph showing the migration pattern of the prepared soybean 11S globulin protein and okara in SDS-polyacrylamide gel electrophoresis in Example 2 and Comparative Example 1;
  • FIG. 4 SDS-polyacrylamide gel electrophoresis of each fraction (okara, defatted soymilk, 11S globulin, 7S impurities, 7S globulin, whey, lipophilic protein) prepared with processed defatted soybean power of Example 2 It is the drawing substitute photograph which showed the electrophoresis pattern.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Agronomy & Crop Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Dairy Products (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Disclosed is a process for fractionating soybean protein into 7S globulin, 11S globulin or a lipophilic protein at a high purity with good efficiency, which relates to a fractionation technique for soybean protein into proteins having characteristic properties (7S globulin, 11S globulin and a lipophilic protein) and which is a process practicable at a food industrial level. It is found that soybean protein can be fractionated into 7S globulin, 11S globulin or a lipophilic protein at a high purity with good efficiency by extracting soybean milk from processed soybean which has been subjected to a water-insolubilization treatment specific to a desired protein and fractionating the resulting soybean milk or soybean curd refuse into the desired protein.

Description

明 細 書  Specification
分画された大豆蛋白素材およびそれに適した加工大豆、並びにそれらの 製造法  Fractionated soybean protein material, processed soybean suitable for the same, and production method thereof
技術分野  Technical field
[0001] 本発明は分画された大豆蛋白素材およびそれに適した加工大豆、並びにそれらの 製造法に関する。詳しくは、大豆蛋白質に含まれる各々特性のある蛋白質 (7Sグロ ブリン、 11Sグロブリン、脂質親和性蛋白質など)への分画技術に関する。  [0001] The present invention relates to a fractionated soybean protein material, a processed soybean suitable for the same, and a method for producing them. More specifically, the present invention relates to a fractionation technique for proteins having various characteristics (7S globulins, 11S globulins, lipophilic proteins, etc.) contained in soybean protein.
背景技術  Background art
[0002] 大豆蛋白質は、特有のゲル化力を発揮する性質から、食品の物性改善に幅広く利 用されて 、ると共に、栄養価の高 、健康食品素材としての利用も増大して 、る。  [0002] Soy protein is widely used for improving the physical properties of foods because of its unique gel-forming ability, and it is also highly nutritious and has been increasingly used as a health food material.
[0003] 大豆の貯蔵蛋白質は、 pH4.5付近で沈澱し、比較的簡単に貯蔵蛋白質以外の可 溶性成分が主体の酸可溶性蛋白画分と貯蔵蛋白質が主体の酸沈殿性蛋白画分と に分けることができる。この酸沈殿性蛋白画分を回収したものが分離大豆蛋白であり 、現在広く食品工業に利用されている。  [0003] Soybean storage protein precipitates around pH 4.5, and it is relatively easily divided into an acid-soluble protein fraction mainly composed of soluble components other than the storage protein and an acid-precipitated protein fraction mainly composed of storage protein. Can be divided. A product obtained by collecting the acid-precipitating protein fraction is a separated soybean protein, which is currently widely used in the food industry.
[0004] 大豆蛋白質を構成する蛋白質は、また超遠心分析による沈降係数から、 2S, 7S, US, 15Sの各グロブリンに分類される。このうち、 7Sグロブリンと 11Sグロブリンはグ ロブリン画分の主要な構成蛋白成分である。なお、免疫学的命名法にいう β コング リシニンは 7Sグロブリンに、グリシニンは 11Sグロブリンに実質的に相当するものであ る。  [0004] Proteins constituting soy protein are classified into 2S, 7S, US, and 15S globulins based on the sedimentation coefficient by ultracentrifugation analysis. Of these, 7S globulin and 11S globulin are the main constituent protein components of the globulin fraction. In the immunological nomenclature, β-conglycinin substantially corresponds to 7S globulin, and glycinin substantially corresponds to 11S globulin.
[0005] 大豆蛋白質を構成する蛋白質は、粘性、凝固性、界面活性などの物性や栄養生 理機能にぉ ヽて異なる性質を有する。  [0005] Proteins constituting soy protein have different properties in terms of physical properties such as viscosity, coagulability, and surface activity, and nutritional management functions.
例えば 7Sグロブリンは血中の中性脂肪を低下させることが報告され (非特許文献 1 )ている。また、 11Sグロブリンは、ゲル化力が高ぐ豆腐ゲルの硬さ'食感を支配して いると言われている。  For example, 7S globulin has been reported to reduce blood neutral fat (Non-patent Document 1). 11S globulin is said to dominate the hardness of the tofu gel, which has a high gelling power.
[0006] このように、大豆蛋白質をこれらの成分に富む画分へ分画することは、生理機能面 や物性機能面における各蛋白質特有の機能を大きく発現させることが可能となり、特 長ある素材の創出につながる可能性がある。そしてこれにより食品産業における蛋白 利用分野の拡大が期待できる。 [0006] As described above, fractionating soy protein into a fraction rich in these components makes it possible to greatly express the functions specific to each protein in terms of physiological functions and physical properties, and is a characteristic material. May lead to the creation of And this allows protein in the food industry Expansion of application fields can be expected.
[0007] 図 1に 7Sグロブリンと 11Sグロブリンの pHに対する溶解挙動を示すとおり、 7Sグロ ブリンの pH4. 8付近にお!/、て、 11Sグロブリンは pH4. 5〜6で溶解度力 Hgl /、こと力 ら、 pH6付近でまず 11Sグロブリンを沈澱させ、その後に pHをさらに下げて 7Sグロブ リンを沈澱させればそれぞれの成分を高純度に分画出来るであろうということは予想 できる。  [0007] As shown in Fig. 1, the dissolution behavior of 7S globulin and 11S globulin with respect to pH, 7S globulin has a solubility power of Hgl /, around pH 4.5! /, And 11S globulin at pH 4.5-6. It can be expected that, if 11S globulin is first precipitated at around pH 6, and then the pH is further lowered to precipitate 7S globulin, each component can be fractionated with high purity.
し力しながら、実際に豆乳を pH6に調整し、不溶性画分と水溶性画分とに分けて S DS—ポリアクリルアミドゲル電気泳動によるパターンを見ると、どちらの画分にも 7Sグ ロブリンと 11Sグロブリンが相当量混入してしまう。  However, when the soymilk was actually adjusted to pH 6 and divided into an insoluble fraction and a water-soluble fraction, the pattern by SDS-polyacrylamide gel electrophoresis showed that both fractions contained 7S globulin. A considerable amount of 11S globulin is mixed.
そのため、単純に pHに対する両グロプリンの溶解挙動のみでは高純度に分画する ことが出来ない問題があった。  Therefore, there was a problem that it was not possible to fractionate with high purity only by the dissolution behavior of both groplins with respect to pH.
[0008] そこで、この問題を克服するため、 7Sグロブリンと 11Sグロブリンを分画する技術が[0008] Therefore, in order to overcome this problem, a technique for fractionating 7S globulin and 11S globulin is proposed.
V、くつか開示されて 、る (非特許文献 2、特許文献 1〜7等)。 V, some have been disclosed (Non-Patent Document 2, Patent Documents 1-7, etc.).
[0009] 一方、酸沈殿性大豆蛋白質には、 7Sグロブリンや 11Sグロブリンの他にも、細胞膜 をはじめプロテインボディーやオイルボディー等の膜を構成する極性脂質との親和力 の高 ヽ雑多な蛋白質が混在することが近年報告されて ヽる (非特許文献 3)。 [0009] On the other hand, in addition to 7S globulin and 11S globulin, acid-precipitable soy protein contains a mixture of proteins with high affinity with polar lipids that make up cell membranes, protein bodies, and oil bodies. It has been reported in recent years (Non-patent Document 3).
力かる報告を受け、本発明者による研究の結果、低変性の脱脂豆乳に対し 1M濃 度になるように硫酸ナトリウムを添加し、 pHを塩酸で 4.5に調製すると、酸可溶性画分 に 7S及び 11Sグロブリンが移行すること、そして一方で酸沈殿性画分には、他の雑 多な蛋白質が移行することがわ力つた (非特許文献 4)。  As a result of research by the present inventor after receiving strong reports, when sodium sulfate was added to low-denatured defatted soymilk to a concentration of 1M and the pH was adjusted to 4.5 with hydrochloric acid, 7S and It was found that 11S globulin migrated, and that other miscellaneous proteins migrated to the acid-precipitating fraction (Non-patent Document 4).
そしてこの酸沈殿性画分の窒素量は脱脂豆乳中の全窒素量のうち約 30%も占め、 意外にも多量であることが判明した。  The amount of nitrogen in this acid-precipitable fraction accounted for about 30% of the total amount of nitrogen in defatted soymilk, which was surprisingly high.
さらにこれらは工業的に生産される分離大豆蛋白の約 35%をも占めていることを報 告しており、この一群の蛋白質が従来の豆乳や分離大豆蛋白などの大豆蛋白素材 の風味に影響を与えて 、ることがわ力つてきた (非特許文献 5)。  They also reported that they account for about 35% of the industrially produced isolated soy protein, and this group of proteins affects the flavor of soy protein ingredients such as traditional soy milk and isolated soy protein. It has become a force to give (Non-Patent Document 5).
[0010] この 7Sグロブリンと 11Sグロブリンの少ない酸沈殿性画分に含まれる蛋白質は、 SD S-ポリアクリルアミド電気泳動による推定分子量において主に 34kDa、 24kDa、 18kDa を示す蛋白質、リポキシゲナーゼ、 γ —コングリシニンや、その他多くの雑多な蛋白 質が混在したものである。この一群の蛋白質は極性脂質との親和性を示す。 [0010] Proteins contained in the acid-precipitated fraction with a small amount of 7S globulin and 11S globulin are mainly proteins showing 34 kDa, 24 kDa and 18 kDa in molecular weight estimated by SDS-polyacrylamide electrophoresis, lipoxygenase, γ-conglycinin, And many other miscellaneous proteins It is a mixture of qualities. This group of proteins exhibits affinity for polar lipids.
[0011] 以上の知見によれば、従来の分画技術 (非特許文献 2,特許文献 1〜7)は脂質親 和性蛋白質が酸沈殿性大豆蛋白質の相当な割合を占めて 、ることを何ら考慮して いないため、 7Sグロブリンや 11 Sグロブリンを高純度に分画することを実質的には成 し得て 、なかったことがわ力る。  [0011] According to the above findings, conventional fractionation techniques (Non-patent Documents 2, Patent Documents 1 to 7) show that lipid-friendly proteins account for a considerable proportion of acid-precipitated soybean protein. Since no consideration was given, it was found that it was practically impossible to fractionate 7S globulin and 11 S globulin with high purity.
[0012] 7Sグロブリン、 11Sグロブリンと脂質親和性蛋白質を高純度に分画する方法として は、非特許文献 4の方法が示されている力 高いイオン強度にして、多くの還元剤が 必要であるため、脱塩や洗浄が必須工程となるため、実験レベルでは有効であるも、 工業的プロセスには不向きであった。  [0012] As a method for fractionating 7S globulin, 11S globulin, and lipophilic protein with high purity, the method of Non-Patent Document 4 shows a high ionic strength, and many reducing agents are required. Therefore, since desalting and washing are essential steps, it is effective at the experimental level, but unsuitable for industrial processes.
[0013] そこで、本出願人は脂質親和性蛋白質の混入率の低い、高純度の大豆 7Sグロプリ ン蛋白と大豆 11Sグロブリン蛋白に分画する技術を開発した (特許文献 8, 9)。この 方法は、 7Sグロブリンを高純度に分画する点において工業的に優れた方法である。 しかしその一方で 11Sグロブリンについても脂質親和性蛋白質の混入を少なくし、高 純度に分画するためには煩雑な操作が必要であり、改善の余地がある。  [0013] Therefore, the present applicant has developed a technique for fractionating into high-purity soybean 7S globulin protein and soybean 11S globulin protein with a low contamination rate of lipophilic protein (Patent Documents 8 and 9). This method is industrially superior in that 7S globulin is fractionated with high purity. On the other hand, 11S globulin also has room for improvement because it requires complicated operations to reduce the contamination with lipophilic protein and fractionate with high purity.
[0014] すなわち、 7Sグロブリンだけを高純度に分画するのではなぐ分離大豆蛋白一般 或いは 11Sグロブリンにぉ 、ても脂質親和性蛋白質の混入率の低!、製法の開発が 望まれる。そして、 7Sグロブリン、 11Sグロブリン、脂質親和性蛋白質をそれぞれ簡 便な方法で高純度に分画できる方法が望まれる。  [0014] That is, it is desired to develop a production method that is low in the mixing ratio of lipophilic protein compared to isolated soy protein in general or 11S globulin rather than fractionating only 7S globulin with high purity. A method that can fractionate 7S globulin, 11S globulin, and lipophilic protein with high purity by simple methods is desired.
[0015] (参考文献)  [0015] (References)
非特許文献 l : Okita T et al, J.Nutr.Sci.Vitaminol.,27(4), 379-388, 1981  Non-patent literature l: Okita T et al, J. Nutr. Sci. Vitaminol., 27 (4), 379-388, 1981
非特許文献 2 : Thahn,V.H, and Shibasaki.K., J.Agric.FoodChem., 24, 117, 1976 非特許文献 3 : Herman, Planta, 172, 336-345, 1987  Non-Patent Document 2: Thahn, V.H, and Shibasaki.K., J. Agric. Food Chem., 24, 117, 1976 Non-Patent Document 3: Herman, Planta, 172, 336-345, 1987
非特許文献 4 : Samoto M et al., Biosci. Biotechnol. Biochem., 58(11), 2123-2125, 1 994  Non-Patent Document 4: Samoto M et al., Biosci. Biotechnol. Biochem., 58 (11), 2123-2125, 1 994
非特許文献 5 : Samoto M et al., Biosci Biotechnol Biochem, 62(5), 935-940, 1998 非特許文献 b : T. Nagano, et. al., Relationship between rheological properties and co nformational states of 7S globulin from soybeans at acidic pH, Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, 1994 特許文献 1:特開昭 55— 124457号公報 Non-patent literature 5: Samoto M et al., Biosci Biotechnol Biochem, 62 (5), 935-940, 1998 Non-patent literature b: T. Nagano, et.al., Relationship between rheological properties and conformational states of 7S globulin from soybeans at acidic pH, Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, 1994 Patent Document 1: Japanese Patent Application Laid-Open No. 55-124457
特許文献 2:特開昭 48 - 56843号公報  Patent Document 2: JP-A-48-56843
特許文献 3:特開昭 49— 31843号公報  Patent Document 3: JP-A-49-31843
特許文献 4:特開昭 58— 36345号公報  Patent Document 4: JP-A-58-36345
特許文献 5:特開昭 61— 187755号公報  Patent Document 5: Japanese Patent Laid-Open No. 61-187755
特許文献 6:国際公開 WO00Z58492号公報  Patent Document 6: International Publication WO00Z58492
特許文献 7:米国特許第 6171640号公報  Patent Document 7: US Pat. No. 6,171,640
特許文献 8:国際公開 WO02Z28198号公報  Patent Document 8: International Publication WO02Z28198
特許文献 9:国際公開 WO2004Z43160号公報  Patent Document 9: International Publication WO2004Z43160
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 上記課題に鑑み、本発明は、 7Sグロブリンのみならず、 11Sグロブリン、脂質親和 性蛋白質の 3つの蛋白質画分を効率的かつ高純度に分画できる手段を提供すること を目的とする。さらには脂質親和性蛋白質の含量が低下した豆乳及び分離大豆蛋 白を提供することも目的とする。そしてそれらの方法が食品工業レベルで実施可能な プロセスであることち課題とする。 In view of the above problems, an object of the present invention is to provide means capable of efficiently and highly fractionating not only 7S globulin but also three protein fractions of 11S globulin and lipophilic protein. . It is another object of the present invention to provide a soy milk and a separated soy protein having a reduced lipophilic protein content. It is also an issue that these methods are processes that can be implemented at the food industry level.
課題を解決するための手段  Means for solving the problem
[0017] 上記課題を解決するため鋭意研究を行った結果、本発明者らは蛋白質及びオカラ を含有する低変性の大豆に特定の蛋白質の変性処理を施した加工大豆を調製し、 これを原料として豆乳を抽出し、この豆乳を簡便な分画方法によるだけで大豆蛋白 質を効率的に 7Sグロブリン、 11Sグロブリン、或いは脂質親和性蛋白質を高純度に 分画できることを見出し、上記課題を解決するに到った。  [0017] As a result of diligent research to solve the above problems, the present inventors prepared a processed soybean obtained by subjecting a low-denatured soybean containing protein and okara to a specific protein modification treatment, and using this as a raw material. Soy milk can be extracted as a high-purity fraction of soybean protein and 7S globulin, 11S globulin, or lipophilic protein can be efficiently separated simply by a simple fractionation method. It reached.
[0018] すなわち本発明者らは、 7Sグロブリンと 11Sグロブリンは低変性のままで脂質親和 性蛋白質のみが選択的に変性するような条件で変性処理を施した加工大豆を調製 し、これを原料として豆乳を抽出したところ、 7Sグロブリン及び 11Sグロブリンが主に 抽出される一方、脂質親和性蛋白質は抽出が抑制されて相当量が不溶性画分とし てオカラ側に留まることを見出した。  [0018] That is, the present inventors prepared processed soybeans that had been subjected to denaturation treatment under conditions such that 7S globulin and 11S globulin remained low denatured and only the lipophilic protein was selectively denatured. As a result, it was found that 7S globulin and 11S globulin were mainly extracted, while extraction of lipophilic protein was suppressed and a considerable amount remained on the okara side as an insoluble fraction.
そして、得られた脂質親和性蛋白質の少ない豆乳の pHを 7Sグロブリンと 11Sグロ ブリンの溶解度の差が大きな pH域に調整するだけで、両グロブリンの高純度の分画 を容易に達成できることを見出した。 The pH of the obtained soy milk with low lipophilic protein was adjusted to 7S globulin and 11S globulin. It was found that a high-purity fraction of both globulins could be easily achieved simply by adjusting to a pH range where the solubility difference of Brin was large.
[0019] さらに、得られたオカラに加水し、加熱抽出することにより、これまで 7Sグロブリンや[0019] Further, by adding water to the obtained okara and extracting by heating,
11Sグロブリンとの分画が困難であった脂質親和性蛋白質を高純度に分画出来るこ とを見出した。そして分画した脂質親和性蛋白質の生理作用を調べたところ、通常の 分離大豆蛋白や分画した 7Sグロブリンと 11Sグロブリンに比べて顕著に血中コレステ ロール低下作用を有する知見を得た。 It was found that a lipophilic protein that was difficult to fractionate with 11S globulin could be fractionated with high purity. The physiological action of the fractionated lipophilic protein was examined. As a result, it was found that it has a markedly lowering action on blood cholesterol in comparison with normal isolated soybean protein and fractionated 7S globulin and 11S globulin.
[0020] さらに、脂質親和性蛋白質が選択的に変性した加工大豆から得られた豆乳や分離 大豆蛋白は、従来の製法によるものに比べて風味が優れていることを見出した。 [0020] Further, it has been found that soy milk and isolated soy protein obtained from processed soybeans in which lipophilic proteins are selectively denatured are superior in flavor compared to those produced by conventional methods.
[0021] さらに、脂質親和性蛋白質が選択的に変性した加工大豆力 得られたオカラは、脂 質親和性蛋白質が豊富に含まれることを見出した。 [0021] Further, it was found that processed soybean power obtained by selectively modifying a lipophilic protein is rich in lipophilic protein.
[0022] さらに、本発明による大豆蛋白質の分画法は、 7Sグロブリン欠損大豆を用いた場 合に、 11Sグロブリンと脂質親和性蛋白質の 2画分を分画する場合にも応用できるこ とを見出した。 [0022] Furthermore, the method for fractionating soybean protein according to the present invention can be applied to the fractionation of two fractions of 11S globulin and lipophilic protein when 7S globulin-deficient soybean is used. I found it.
[0023] すなわち本発明は、 [0023] That is, the present invention provides
1.蛋白質及びオカラ成分を含有し、 PDIが 40以上 80未満であり、含まれる蛋白質 のうち脂質親和性蛋白質が選択的に水不溶化されていることを特徴とする加工大豆  1. Processed soybeans that contain protein and okara components, have a PDI of 40 or more and less than 80, and the lipophilic protein is selectively water-insolubilized among the contained proteins
2.選択的水不溶化指数 (LPZMSP)が 45%以下である前記 1.記載の加工大豆、2. The processed soybean according to 1 above, wherein the selective water insolubility index (LPZMSP) is 45% or less,
3.選択的水不溶ィ匕指数 (LPZMSP)が 35%以下である前記 1.記載の加工大豆、3. The processed soybean as described in 1 above, wherein the selective water insoluble index (LPZMSP) is 35% or less,
4. 7Sグロブリン、 11Sグロブリン及び脂質親和性蛋白質力も選択される 1種以上の 酸沈殿性大豆蛋白質の分画用である前記 1.記載の加工大豆、 4. 7S globulin, 11S globulin, and one or more acid-precipitated soy protein fractions that are also selected for lipophilic protein strength.
5.蛋白質及びオカラ成分を含む原料大豆に対し、等重量以下の極性アルコール溶 液を含浸させることを特徴とする前記 1.記載の加工大豆の製造法、  5. The method for producing processed soybean as described in 1 above, wherein the raw soybean containing the protein and the okara component is impregnated with a polar alcohol solution of equal weight or less,
6.極性アルコール溶液を含浸させる工程と、品温 30〜95°Cで加温処理を行う工程と を含むことを特徴とする前記 5.記載の加工大豆の製造法、  6. The method for producing processed soybean as described in 5 above, which comprises a step of impregnating with a polar alcohol solution and a step of heating at a product temperature of 30 to 95 ° C.
7.蛋白質及びオカラ成分を含む原料大豆に対し、加熱処理を施すことを特徴とする 前記 2.記載の加工大豆の製造法、 8. 7Sグロブリン、 11Sグロブリン及び脂質親和性蛋白質からなる群より選択される少 なくとも 1種の酸沈殿性大豆蛋白質が濃縮された分画大豆蛋白を製造するための、 前記 1.記載の加工大豆の使用、 7. The method for producing processed soybean as described in 2. above, wherein the raw soybean containing the protein and the okara component is subjected to heat treatment. 8. The process according to 1. above, for producing a fractionated soy protein enriched with at least one acid-precipitating soy protein selected from the group consisting of 7S globulin, 11S globulin and lipophilic protein The use of soy,
9.前記 1.記載の加工大豆力 調製した豆乳又はオカラを原料とし、 7Sグロブリン、 11Sグロブリン及び脂質親和性蛋白質力 なる群より選択される少なくとも 1種の酸沈 殿性大豆蛋白質が濃縮された画分を回収することを特徴とする分画大豆蛋白の製 造法、  9. Processed soybean power as described in 1 above. Using the prepared soymilk or okara as a raw material, at least one acid-precipitating soybean protein selected from the group consisting of 7S globulin, 11S globulin and lipophilic protein is concentrated. A method for producing fractionated soy protein, characterized by collecting fractions;
10.前記 1.記載の加工大豆力 調製した豆乳を分画してなる大豆 11Sグロブリン蛋 白、  10. Processed soybean power as described in 1. above Soybean 11S globulin protein obtained by fractionating the prepared soymilk,
11.前記 1.記載の加工大豆力も調製した豆乳を pH5.2〜6.4に調整し、不溶性画分 を回収することを特徴とする大豆 11Sグロブリン蛋白の製造法、  11. A method for producing a soy 11S globulin protein comprising adjusting the soy milk having the processed soybean power described in 1. above to pH 5.2 to 6.4 and collecting an insoluble fraction,
12.前記 1.記載の加工大豆力も調製した豆乳を分画してなる大豆 7Sグロブリン蛋白  12. Soybean 7S globulin protein obtained by fractionating soy milk prepared with processed soybean power as described in 1. above
13.前記 1.記載の加工大豆力も調製した豆乳を pH5.2〜6.4に調整し、不溶性画分 を分離して得た水溶性画分を pH4〜5.5に調整し、不溶性画分を回収することを特徴 とする大豆 7Sグロブリン蛋白の製造法、 13. Adjust the soy milk, which also has the processed soybean power described in 1. above, to pH 5.2-6.4, adjust the water-soluble fraction obtained by separating the insoluble fraction to pH 4-5.5, and collect the insoluble fraction. A process for producing soybean 7S globulin protein, characterized in that
14.前記 13.記載の水溶性画分を pH4〜5.5に調整し 40〜65°Cで加熱後、 pH5.3〜 5.7に調整して生ずる不溶性画分を分離し、得られた水溶性画分を pH4〜5に調整し 、不溶性画分を回収することを特徴とする大豆 7Sグロブリン蛋白の製造法、  14. Adjust the water-soluble fraction described in 13. above to pH 4 to 5.5, heat at 40 to 65 ° C, and then adjust to pH 5.3 to 5.7 to separate the resulting insoluble fraction, and the resulting water-soluble fraction Adjusting the pH to pH 4-5 and recovering the insoluble fraction, a method for producing soybean 7S globulin protein,
15.前記 1.記載の加工大豆力 調製した豆乳を pH4〜5.5に調整し 40〜65°Cでカロ 熱後、 pH5.3〜5.7に調整して生ずる不溶性画分を分離し、得られた水溶性画分を pH 4〜5に調整し、不溶性画分を回収することを特徴とする大豆 7Sグロブリン蛋白の製 造法、  15. Processed soybean power as described in 1. above. The prepared soymilk was adjusted to pH 4 to 5.5, heated at 40 to 65 ° C, then heated to pH 5.3 to 5.7, and the resulting insoluble fraction was separated and obtained. A method for producing soybean 7S globulin protein, characterized in that the water-soluble fraction is adjusted to pH 4-5 and the insoluble fraction is recovered;
16.前記 1.記載の加工大豆力も調製したオカラを分画してなり、クロ口ホルムとメタノ ールの体積比が 2: 1の溶媒で抽出される油分を 7%以上含有することを特徴とする 非 7S - 11S-酸沈殿性大豆蛋白、  16. It is characterized in that the processed soybean power as described in 1. above is fractionated and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1. And non 7S-11S-acid-precipitated soy protein,
17. LCI値が 60%以上である前記 16.記載の非 7S ' 11S—酸沈殿性大豆蛋白、 17. The non-7S′11S—acid-precipitated soy protein according to 16. above, wherein the LCI value is 60% or more,
18.前記 1.記載の加工大豆力 調製したオカラに加水し、加熱抽出した抽出液を回 収することを特徴とする非 7S - 11S-酸沈殿性大豆蛋白の製造法、 18. Processed soybean power as described in 1 above. A method for producing non-7S-11S-acid-precipitating soy protein, characterized by
19.該抽出液を酸沈澱させ、不溶性画分を回収することを特徴とする前記 18.記載 の非 7S - 11S -酸沈殿性大豆蛋白の製造法、  19. The method for producing a non-7S-11S-acid-precipitating soybean protein according to 18. above, wherein the extract is acid-precipitated and an insoluble fraction is recovered.
20.前記 1.記載の加工大豆力 調製した豆乳を分画してなり、クロ口ホルムとメタノー ルの体積比が 2: 1の溶媒で抽出される油分を 7%以上含有することを特徴とする非 7 S - 11S-酸沈殿性大豆蛋白、  20. Processed soybean power as described in 1 above, characterized in that it contains 7% or more of oil extracted from a solvent having a volume ratio of black mouth form to methanol of 2: 1, which is obtained by fractionating the prepared soy milk. Non 7 S-11S-acid precipitating soy protein,
21. LCI値が 60%以上である前記 20.記載の非 7S, 11S—酸沈殿性大豆蛋白、 21. The non-7S, 11S—acid-precipitated soy protein according to the above 20, having an LCI value of 60% or more,
22.前記 14.記載の pH5.3〜5.7に調整して生ずる不溶性画分を回収することを特徴 とする非 7S · 11 S—酸沈殿性大豆蛋白の製造法、 22. A method for producing a non-7S · 11S-acid-precipitated soy protein, characterized by recovering an insoluble fraction produced by adjusting the pH to 5.3 to 5.7 as described in 14.
23.前記 5.記載の加工大豆を原料とする豆乳、  23. Soy milk made from the processed soybean as described in 5 above,
24.前記 5.記載の加工大豆を水抽出し、水溶性画分を回収することを特徴とする豆 乳の製造法、  24. A method for producing soymilk, wherein the processed soybean as described in 5 above is extracted with water and a water-soluble fraction is collected,
25.前記 5.記載の加工大豆を原料とするオカラ、  25. Okara using the processed soybean as described in 5. above,
26.前記 5.記載の加工大豆を水抽出し、不溶性画分を回収することを特徴とするォ カラの製造法、  26. A method for producing okara, wherein the processed soybean as described in 5 above is extracted with water and an insoluble fraction is collected,
27.前記 5.記載の加工大豆から調製した豆乳を原料とする分離大豆蛋白、  27. Isolated soy protein using soy milk prepared from the processed soybean as described in 5 above,
28. LCI値が 38%以下である前記 27.記載の分離大豆蛋白、  28. The isolated soybean protein according to the above 27, wherein the LCI value is 38% or less,
29.下記工程を経ることを特徴とする大豆蛋白質の分画方法:(1)前記 1.記載の加 工大豆に加水し、豆乳及びオカラに分離する工程、(2)前記豆乳を pH5.2〜6.4に調 整し、水溶性画分を分離して不溶性画分である大豆 11Sグロブリン蛋白を得る工程、 (3)前記水溶性画分を pH4〜5.5に調整して 40〜65°Cで加熱後、 pH5.3〜5.7に調 整し、水溶性画分を分離して不溶性画分である非 7S - 11S-酸沈殿性大豆蛋白を 得る工程、(4)前記 pH5.3〜5.7に調整して分離した水溶性画分を pH4〜5に調整し、 不溶性画分である大豆 7Sグロブリン蛋白を得る工程、  29. A method for fractionating soy protein, comprising the following steps: (1) a step of adding the soy milk to okara by adding water to the processed soybean as described in 1. above, and (2) adjusting the soy milk to pH 5.2. To obtain a soybean 11S globulin protein that is an insoluble fraction by separating the water-soluble fraction, and (3) adjusting the water-soluble fraction to pH 4 to 5.5 at 40 to 65 ° C. After heating, the pH is adjusted to 5.3 to 5.7, and the water-soluble fraction is separated to obtain a non-7S-11S-acid-precipitated soybean protein that is an insoluble fraction. (4) The pH is adjusted to 5.3 to 5.7. Adjusting the separated water-soluble fraction to pH 4-5 to obtain soybean 7S globulin protein, which is an insoluble fraction;
30.大豆が 7Sグロブリン欠損大豆であることを特徴とする前記 1.記載の加工大豆、 30. The processed soybean as described in 1 above, wherein the soybean is 7S globulin-deficient soybean,
31.大豆が 7Sグロブリン欠損大豆であることを特徴とする前記 9.記載の分画大豆蛋 白の製造法、 31. The method for producing a fractionated soybean protein according to 9. above, wherein the soybean is 7S globulin-deficient soybean,
32.前記 30.記載の加工大豆力 調製した豆乳を pH5.2〜6.4に調整し、不溶性画 分を分離して得た水溶性画分を pH4〜5に調整し、不溶性画分を回収することを特 徴とする非 7S - 11S-酸沈殿性大豆蛋白の製造法、 32. Processed soybean power according to 30. Adjust the prepared soy milk to pH 5.2-6.4, A method for producing a non-7S-11S-acid-precipitating soybean protein, characterized in that the water-soluble fraction obtained by separating the fraction is adjusted to pH 4 to 5 and the insoluble fraction is recovered;
33.下記工程を経ることを特徴とする大豆蛋白質の分画方法:(1)前記 30.記載の 加工大豆に加水し、豆乳及びオカラに分離する工程、(2)前記豆乳を pH5.2〜6.4に 調整し、水溶性画分を分離して不溶性画分である大豆 11Sグロブリン蛋白を得るェ 程、 (3)前記水溶性画分を pH4〜5に調整して水溶性画分を分離して不溶性画分で ある非 7S · 11 S 酸沈殿性大豆蛋白を得る工程、  33. A method for fractionating soy protein comprising the following steps: (1) a step of adding water to the processed soybean according to 30 above and separating it into soy milk and okara; (2) the soy milk having a pH of 5.2 to Adjusting to 6.4, and separating the water-soluble fraction to obtain soybean 11S globulin protein, which is an insoluble fraction. (3) Adjusting the water-soluble fraction to pH 4-5 to separate the water-soluble fraction. A process for obtaining a non-7S / 11S acid-precipitating soybean protein, which is an insoluble fraction,
34.前記 16.記載の非 7S, 11S 酸沈殿性大豆蛋白を含有することを特徴とする血 中コレステロール低下用組成物、  34. A composition for lowering blood cholesterol, comprising the non-7S, 11S acid-precipitating soybean protein according to 16.
35.前記 20.記載の非 7S ' 11S 酸沈殿性大豆蛋白を含有することを特徴とする血 中コレステロール低下用組成物、  35. A composition for lowering blood cholesterol, comprising the non-7S′11S acid-precipitating soybean protein according to 20.
36.血中コレステロール低下用組成物の製造のための、前記 16.記載の非 7S . 11S 酸沈殿性大豆蛋白の使用、  36. Use of the non-7S.11S acid-precipitated soy protein according to 16. above for the production of a composition for lowering blood cholesterol.
37.血中コレステロール低下用組成物の製造のための、前記 20.記載の非 7S ' 11S 酸沈殿性大豆蛋白の使用、  37. Use of the non-7S′11S acid-precipitated soy protein according to the above-mentioned 20. for the production of a composition for lowering blood cholesterol,
に係る発明を提供するものである。  The invention which concerns on is provided.
発明の効果  The invention's effect
[0024] 本発明の効率的な製造プロセスに適した簡便な方法により、大豆蛋白質を 7Sグロ ブリン、 11Sグロブリン、及び脂質親和性蛋白質の 3画分に高純度で分画することが 可能となる。この分画法は、従来法である塩の添加などによる分画方法とは異なり、 塩類を加えずに pH調整を主体として行う方法であるため、蛋白質を沈澱物として回 収するのに必要な低イオン濃度環境にするための希釈や脱塩の操作が不溶であり、 操作の簡便化が図れる優れた方法である。  [0024] By a simple method suitable for the efficient production process of the present invention, soybean protein can be fractionated with high purity into three fractions of 7S globulin, 11S globulin and lipophilic protein. . This fractionation method is different from the conventional fractionation method by adding salt, etc., and is a method that mainly adjusts the pH without adding salts, so it is necessary to recover proteins as precipitates. Dilution and desalting operations to achieve a low ion concentration environment are insoluble, and it is an excellent method that simplifies the operation.
[0025] さらには、この加工大豆力 脂質親和性蛋白質をほとんど含まない、風味に優れた 豆乳や分離大豆蛋白の提供も可能となる。  [0025] Furthermore, it is possible to provide soy milk and a separated soy protein which are excellent in flavor and contain almost no processed soybean power lipophilic protein.
[0026] 本加工大豆を原料として得られる豆乳、分離大豆蛋白、大豆 11S蛋白、大豆 7S蛋 白、オカラ、非 7S ' 11S 酸沈殿性大豆蛋白は、従来の大豆蛋白素材に比べて嫌 みがなくスッキリとした、極めて良好な風味を呈するため、食品素材としての利用価値 力 Sさらに高くなつたものである。 [0026] Soy milk obtained from this processed soybean as a raw material, isolated soy protein, soy 11S protein, soy 7S protein, okara, non-7S'11S acid-precipitating soy protein is disliked compared to conventional soy protein materials It has a refreshing and extremely good flavor, so it is useful as a food material. Power S is even higher.
[0027] さらに、脂質親和性蛋白質について従来の分離大豆蛋白以上の血清コレステロ一 ル低減効果が確認されたことから、新規な素材である非 7S, 11S 酸沈殿性大豆蛋 白は健康機能素材としての利用価値も高 、ものである。  [0027] Furthermore, since the lipophilic protein was confirmed to have a serum cholesterol-reducing effect higher than that of conventional isolated soy protein, a novel material, non-7S, 11S acid-precipitated soybean protein, was used as a health functional ingredient. The utility value is high.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] まず、本発明に記載の用語にっ 、て説明する。 [0028] First, terms used in the present invention will be described.
[0029] 「7Sグロブリン」は β コングリシニンとも呼ばれ、一般には 3種のサブユニット( α, 、 α、 j8 )から構成される糖蛋白質であるが、何れかのサブユニットが欠損していても 良い。これらのサブユニットはランダムに組み合わされ、 3量体を形成している。等電 点は pH4. 8付近で分子量は 17万程度である。以下、単に「7S」と略記することがあ る。  [0029] “7S globulin” is also called β-conglycinin, and is generally a glycoprotein composed of three subunits (α, α, j8). good. These subunits are randomly combined to form a trimer. The isoelectric point is around pH 4.8 and the molecular weight is about 170,000. Hereinafter, it may be simply abbreviated as “7S”.
[0030] 「大豆 7S蛋白」は 7Sの純度を高めた大豆蛋白素材を 、う。  [0030] "Soybean 7S protein" is a soy protein material with an increased purity of 7S.
[0031] 「11Sグロブリン」はグリシニンとも呼ばれ、酸性サブユニットと塩基性サブユニットが ジスルフイド結合によって結合し、それらが 6分子集まった 12量体を形成している。分 子量は 36万程度である。以下、単に「11S」と略記することがある。  [0031] "11S globulin" is also called glycinin, and an acidic subunit and a basic subunit are linked by a disulfide bond to form a 12-mer consisting of 6 molecules. The molecular weight is about 360,000. Hereinafter, it may be simply abbreviated as “11S”.
[0032] 「大豆 11S蛋白」は 11Sの純度を高めた大豆蛋白素材を 、う。 [0032] "Soybean 11S protein" is a soy protein material having a higher purity of 11S.
[0033] 7Sと 11Sはいずれも酸沈殿性大豆蛋白質であり、大豆プロテインボディーに貯蔵さ れる主要な貯蔵蛋白質である。 [0033] Both 7S and 11S are acid-precipitated soy proteins and are the main storage proteins stored in soy protein bodies.
なお、ここにいう「酸沈殿性大豆蛋白質」は、大豆の蛋白質の内、脱脂豆乳などの 溶液の pHを酸性側 (pH4〜6)に調整することにより沈澱する性質を有する蛋白質で ある。したがって、例えば分離大豆蛋白に含まれる蛋白質力 Sこれに相当し、分離大豆 蛋白製造時に酸沈しな 、ホエー中の蛋白質はこれに含まれな 、。  As used herein, “acid-precipitating soybean protein” is a protein having a property of being precipitated by adjusting the pH of a solution such as defatted soymilk to the acidic side (pH 4 to 6). Thus, for example, the protein strength contained in isolated soy protein S corresponds to this, and it does not acidify during the production of isolated soy protein, but does not include protein in whey.
7Sと 11Sは、品種によっても異なると考えられる力 SDS電気泳動においてクマシ 一ブリリアントブルー(CBB)染色後、デンシトメトリーによってピーク面積を測定した 場合、従来の分離大豆蛋白(SPI)などでは大豆蛋白質全体の約 70%を占める蛋白 質である。  7S and 11S are considered to be different depending on the cultivar. After staining with Coomassie brilliant blue (CBB) in SDS electrophoresis and measuring the peak area by densitometry, soy protein in conventional separated soy protein (SPI) etc. It is a protein that accounts for about 70% of the total.
大豆蛋白質中の 7Sと 11Sの総含量の分析は、下記に示す (方法 1)及び (方法 2) によって行うことが出来る。 以下、 7Sと 1 ISを併せて「MSP」と略記することがある。 The total content of 7S and 11S in soybean protein can be analyzed by (Method 1) and (Method 2) shown below. Hereinafter, 7S and 1 IS may be abbreviated as “MSP”.
[0034] 「脂質親和性蛋白質」 (Lipophilic Proteins)は大豆の酸沈殿性大豆蛋白質の内、 7 Sと 11S以外のマイナーな酸沈殿性大豆蛋白質群を 、、レシチンや糖脂質などの 極性脂質を多く随伴するものである。以下、単に「LP」と略記することがある。 [0034] "Lipophilic Proteins" is a group of minor acid-precipitating soy proteins other than 7S and 11S among soy acid-precipitating soy proteins, and polar lipids such as lecithin and glycolipids. Many are accompanied. Hereinafter, it may be simply abbreviated as “LP”.
この LP中には SDS-ポリアクリルアミド電気泳動による推定分子量において主に 34k Da、 24kDa、 18kDaを示す蛋白質、リポキシゲナーゼ、 γ —コングリシニンや、その他 多くの雑多な蛋白質が含まれる(図 2、レーン 3参照)。  This LP mainly contains proteins with estimated molecular weights of 34 kDa, 24 kDa, and 18 kDa as determined by SDS-polyacrylamide electrophoresis, lipoxygenase, γ-conglycinin, and many other miscellaneous proteins (see Figure 2, Lane 3). ).
図 2の通り、 LPは SDS電気泳動法では 7Sや 11Sに比べて染色されにくい性質を 有しており、そのため従来その実態が明確に認識されていなかったものである。その ため、従来の文献に 7Sや 11Sの単一のバンドとして掲載されて!、る SDS電気泳動 のバンドには、実際には LPが相当量混在していることが多い。  As shown in Fig. 2, LP has the property that it is harder to be stained by SDS electrophoresis than 7S and 11S, so the actual situation has not been clearly recognized. Therefore, it is published as a single band of 7S and 11S in the conventional literature! In fact, a lot of LP is often mixed in the band of SDS electrophoresis.
LPは雑多な蛋白質が混在したものであるが故、各々の蛋白質を全て特定すること は困難であるが、下記 (方法 1)と (方法 2)に示す溶解挙動により分画することができ る。  Since LP is a mixture of miscellaneous proteins, it is difficult to identify all the proteins, but it can be fractionated by the dissolution behavior shown in (Method 1) and (Method 2) below. .
[0035] 「非 7S ' 11S—酸沈殿性大豆蛋白」は LPの純度を高めた大豆蛋白素材をいう。以 下、単に「LP— SPI」と略することがある。  [0035] "Non-7S'11S-acid-precipitating soy protein" refers to a soy protein material with an increased LP purity. Hereinafter, it may be simply abbreviated as “LP-SPI”.
[0036] rpDIJは蛋白質分散性指数(Protein Dispersibility Index)の略であり、 AOCS公式 法 (BalO-65)として記載されている大豆製品中の溶解分散する (Dispersfcle)蛋白質 を一定条件下で測定することにより得られる指数である。「NSI」を求めるようなゆるや かな攪拌による方法 (AOCS公式方法 Ball-65)とは対照的に、この方法でとられる 強攪拌操作では、一般的により高い数値結果が得られる。ここでは、大豆に水を加え 、ミキサーで攪拌後、遠心上清の窒素量を測定し、大豆の窒素量に対する割合を求 めた。数値が高いほうが大豆の蛋白質溶解度が高い。熱処理などで大豆の蛋白質 が溶解しづらくなると PDI値が低下する。  [0036] rpDIJ is an abbreviation for Protein Dispersibility Index, and measures the Dispersfcle protein in soybean products described under the AOCS official method (BalO-65) under certain conditions. Is an index obtained by In contrast to the gentle agitation method that seeks “NSI” (AOCS official method Ball-65), the high agitation operation used in this method generally gives higher numerical results. Here, water was added to soybean, and after stirring with a mixer, the amount of nitrogen in the centrifugal supernatant was measured to determine the ratio to the amount of nitrogen in soybean. The higher the number, the higher the protein solubility of soybean. If it becomes difficult to dissolve soy protein due to heat treatment, the PDI value decreases.
[0037] 「選択的水不溶化指数」は本発明の加工大豆中の LPがどの程度選択的に水不溶 ィ匕されているかを数値的に示した指数であり、大豆の水溶性画分中の全窒素量に対 する LP窒素量(%)と MSP窒素量(%)の比「LPZMSP」で表される。  [0037] The "selective water insolubilization index" is an index that numerically indicates how selectively the LP in the processed soybean of the present invention is water-insoluble, and in the water-soluble fraction of soybean. The ratio of LP nitrogen (%) and MSP nitrogen (%) to total nitrogen is expressed as “LPZMSP”.
[0038] 次に本発明の実施形態について詳細に説明する。 本発明は第一に、蛋白質及びオカラ成分を含有し、 PDIが 40以上 80未満であり、 含まれる蛋白質のうち脂質親和性蛋白質が選択的に水不溶化された加工大豆であ る。力かる加工大豆を大豆原料として 7Sグロブリン、 11Sグロブリン及び脂質親和性 蛋白質から選択される 1種以上の酸沈殿性大豆蛋白質の分画用として使用すること により、煩雑な操作を行うことなぐ効率良くこれらの蛋白質を分画することができ、そ れぞれ特性のある各種大豆蛋白素材を得ることが可能である。 Next, an embodiment of the present invention will be described in detail. The first aspect of the present invention is a processed soybean containing a protein and an okara component, having a PDI of 40 or more and less than 80, and wherein a lipophilic protein among the contained proteins is selectively water-insolubilized. By using powerful processed soybean as a raw material for soybean, it can be used for fractionation of one or more acid-precipitated soy protein selected from 7S globulin, 11S globulin and lipophilic protein. These proteins can be fractionated, and various soy protein materials can be obtained.
[0039] 〔原料大豆〕 [0039] Raw material soybean
本発明に使用する原料大豆は蛋白質及びオカラ成分を少なくとも含有するもので あり、その品種は、脂質を貯蔵するオイルボディーが存在する限り、 LPを欠損してい たり、極端にその量が低下している大豆品種はないため、大豆の品種は特に限定さ れることはなぐ何れの品種でも本発明に適用することができる。  The raw soybean used in the present invention contains at least a protein and an okara component, and as long as the oil body that stores lipid exists, the varieties are deficient in LP or the amount thereof is extremely reduced. Since there are no soybean varieties, any variety of soybeans can be applied to the present invention without any particular limitation.
[0040] また、育種や遺伝子組換え技術により 7Sに富む大豆や 11Sに富む大豆、あるいは リポキシゲナーゼ欠損品種などの特定の成分を変化させた大豆もあるが、これらも原 料として同様に用いることができる。特に、 11Sに富む大豆すなわち 7Sグロブリン欠 損大豆を原料とする場合、この中の酸沈殿性大豆蛋白質は 11Sと LPが主体となって おり、これらを分画する際に本発明の LPの選択的水不溶ィ匕技術を利用できる。  [0040] There are also soybeans rich in 7S, soybeans rich in 11S, or soybeans in which specific components such as lipoxygenase-deficient varieties have been changed by breeding and genetic recombination techniques, and these can also be used as raw materials. it can. In particular, when 11S-rich soybean, that is, 7S globulin-deficient soybean is used as a raw material, the acid-precipitated soybean protein is mainly composed of 11S and LP. When fractionating these, the LP of the present invention is selected. Water-insoluble technology can be used.
[0041] 但し、 LPにはオイルボディー由来の蛋白質が多く含まれるため、脂質含量の低い 品種を使用することは 7Sや 11Sを効率的に得る上で好ましい。また、大豆は胚軸の 除去の有無、外皮の除去の有無に関わらず、いずれのものを使用しても良い。  [0041] However, since LP contains a lot of proteins derived from oil bodies, it is preferable to use a variety having a low lipid content in order to obtain 7S and 11S efficiently. In addition, soybeans may be used regardless of whether or not the hypocotyl is removed or whether or not the outer skin is removed.
[0042] なお、本発明の加工大豆を原料として分離大豆蛋白、大豆 7S蛋白、大豆 11S蛋 白などの各種大豆蛋白素材を調製する場合には、脂質が含まれていると蛋白質の 純度に影響するため、脱脂大豆を原料大豆として用いることが好ましい。脱脂大豆は 、へキサン等の有機溶剤で脱脂したものや圧搾などで油分を低下させたものを使用 することができる。  [0042] When various soybean protein materials such as isolated soybean protein, soybean 7S protein, and soybean 11S protein are prepared using the processed soybean of the present invention as a raw material, the purity of the protein is affected if lipid is contained. Therefore, it is preferable to use defatted soybeans as raw soybeans. As the defatted soybean, a product defatted with an organic solvent such as hexane or a product whose oil content has been reduced by pressing or the like can be used.
[0043] 原料大豆の形態は特に問わな 、が、より好ましくは粉砕して 、る方が良ぐ最大粒 子径が 500 m以下、より好ましくは 300 m以下、さらに好ましくは 100 m以下の粉 末が適当である。  [0043] The form of the raw material soybean is not particularly limited, but it is more preferable that the powder be pulverized and have a maximum particle size of 500 m or less, more preferably 300 m or less, and even more preferably 100 m or less. The end is appropriate.
[0044] また原料大豆中の蛋白質の変性が本発明の加工処理前に極度に進んでいないも のが望ましぐ蛋白質抽出率を示す PDIは 60以上であることが好ましい。この大豆の 水分は 2〜15%が好ましぐ 5〜10%がより好ましい。 [0044] In addition, protein modification in the raw soybean has not progressed extremely before the processing of the present invention. It is preferable that PDI showing a desired protein extraction rate is 60 or more. The moisture content of this soybean is preferably 2 to 15%, more preferably 5 to 10%.
[0045] 〔加工大豆〕 [0045] [Processed soybeans]
本発明の PDIが 40以上 80未満であって、含まれる蛋白質のうち LPが選択的に水 不溶ィ匕された加工大豆は、換言すれば酸沈殿性大豆蛋白質の内 7Sと 11Sが選択 的に低変性の状態となっていることを特徴とするものである。  In the processed soybean in which the PDI of the present invention is 40 or more and less than 80, and LP is selectively water-insoluble among the contained proteins, in other words, 7S and 11S of acid-precipitable soybean proteins are selectively used. It is characterized by low denaturation.
すなわち、水抽出した場合に、水不溶ィ匕された LPの抽出は抑制される一方、低変 性の 7S及び 11Sは選択的に抽出される、所謂蛋白質の選択的抽出が起こる特性を 有する加工大豆である。従来のリポキシゲナーゼの失活を目的として行われる加熱 や大量のエタノールによる洗净によって同様なカ卩工大豆を調製しょうとしても、 7Sや That is, when water extraction is performed, extraction of water-insoluble LP is suppressed, while low-variant 7S and 11S are selectively extracted, so-called selective extraction of proteins occurs. It is soy. Even when trying to prepare similar soybeans by heating or washing with a large amount of ethanol for the purpose of inactivation of conventional lipoxygenase,
11Sを含め殆ど全ての蛋白質が水不溶ィ匕してしまうため、その不溶ィ匕状態は、非選 択的なものである。 Since almost all proteins including 11S are water-insoluble, the insoluble state is non-selective.
[0046] 熱履歴が大きく PDIが 40未満の加工大豆を使用すると、熱によって発生する大豆 由来の臭いやロースト臭、こげ臭などが発生して品質的に好ましくない。かかる加工 大豆では LPだけでなく 7Sと 11 Sまでもが不溶ィ匕されて 、るという、蛋白質の非選択 的不溶ィ匕が生じているため、蛋白質の抽出率が低下すると共に、 7Sと 11Sを選択的 に抽出することが困難となる。  [0046] When processed soybeans having a large heat history and a PDI of less than 40 are used, the soybean-derived odor, roast odor, and burnt odor generated by heat are generated, which is not preferable in terms of quality. In such processed soybeans, not only LP but also 7S and 11S are insoluble, resulting in a non-selective insoluble protein, resulting in a decrease in protein extraction rate and 7S and 11S. It is difficult to selectively extract.
[0047] LPのみが選択的に水不溶ィヒされた特性を具備する加工大豆であるか否かは、蛋 白質の溶解指標である PDIのみで特定することができな 、。力かる特性を具備するか 否かは、選択的水不溶化指数 (LPZMSP)で判断することができる。  [0047] Whether or not only LP is a processed soybean having a characteristic of being selectively insoluble in water cannot be specified only by PDI, which is a protein dissolution index. Whether or not it has strong characteristics can be determined by the selective water insolubility index (LPZMSP).
[0048] LPが選択的に水不溶ィ匕されたと言える LPZMSPは 45%以下であれば大豆蛋白 質の分画物を得るためには十分であり、より好ましくは 35%以下、さらに好ましくは 3 0%以下が適当である。  [0048] If LPZMSP, which can be said to have been selectively insoluble in LP, is 45% or less, it is sufficient to obtain a soy protein fraction, more preferably 35% or less, and even more preferably 3%. 0% or less is appropriate.
またさらに 28%以下であってもよぐさらに 23%以下であってもよい。  Further, it may be 28% or less, or 23% or less.
このように、加工大豆そのものを直接分析して特定することはできないが、当該加工 大豆から水抽出して得られた水溶性画分、すなわち豆乳に含まれる LPZMSPを分析 することにより特定可能である。  In this way, the processed soybean itself cannot be identified by direct analysis, but it can be identified by analyzing the water-soluble fraction obtained by extracting water from the processed soybean, that is, LPZMSP contained in soy milk. .
[0049] LPZMSPは、具体的にはカ卩工大豆から以下の方法 1によって水溶性画分を得た後 、方法 2により LP画分と MSP画分に分画し、それぞれの画分の窒素量をケルダール 法で求めることにより、算出することができる。 [0049] Specifically, LPZMSP is obtained after obtaining a water-soluble fraction from potato soybean by the following method 1. It can be calculated by fractionating into LP fraction and MSP fraction by Method 2 and calculating the nitrogen content of each fraction by Kjeldahl method.
[0050] <選択的水不溶化指数 (LPZMSP)の算出方法 > [0050] <Method for calculating selective water insolubilization index (LPZMSP)>
(方法 1)  (Method 1)
試料カ卩工大豆 (全脂大豆の場合は予めへキサンにより油分 1. 5%未満となるまで 脱脂しておく)を粉砕し、 60メッシュパスの粒度にする。その大豆 1重量部に水 7重量 部をカ卩え、可性ソーダで pHを 7. 5に調整し、室温で 30分攪拌する。これを 1000G、 10分の遠心分離により、水溶性画分 Aと不溶性画分 Aに分離する。さらに不溶性画 分 Aに水 5重量部をカ卩え、室温で 30分攪拌する。これを 1000G、 10分の遠心分離 により、水溶性画分 Bと不溶性画分 Bに分離する。水溶性画分 Aと Bを混合し、水溶 性画分とする。また不溶性画分 Aと Bを混合し、不溶性画分とする。加水から分離ま での操作温度は、 10°C〜25°Cで行なう。また撹拌はプロペラ(350rpm)で行う。  Grind the sample baked soybeans (for whole-fat soybeans, defatted with hexane in advance until the oil content is less than 1.5%) and grind to 60 mesh pass particle size. Add 7 parts by weight of water to 1 part by weight of the soybean, adjust the pH to 7.5 with a soda, and stir at room temperature for 30 minutes. This is separated into water-soluble fraction A and insoluble fraction A by centrifugation at 1000G for 10 minutes. Add 5 parts by weight of water to insoluble fraction A and stir at room temperature for 30 minutes. This is separated into water-soluble fraction B and insoluble fraction B by centrifugation at 1000G for 10 minutes. Mix water-soluble fractions A and B to make a water-soluble fraction. Insoluble fractions A and B are mixed to form an insoluble fraction. The operating temperature from hydration to separation is from 10 ° C to 25 ° C. Stirring is performed with a propeller (350 rpm).
[0051] (方法 2) [0051] (Method 2)
方法 1で得られた水溶性画分に塩酸をカ卩えて PH4.5に調整する。これを 1000G、 10 分の遠心分離により、不溶性画分 Cを回収する。さらにこの不溶性画分 Cに対し、 1M Na2S04 (20mMメルカプトエタノール含有)溶液を方法 1の試料加工大豆の 5重量倍 を添加してよく攪拌し、 10000G、 20分の遠心分離により、水溶性画分 Dと不溶性画分 Dに分離する。この不溶性画分 Dに再度同じ操作を繰り返し、水溶性画分 Eと不溶性 画分 Eに分離する。この不溶性画分 Dと Eを合わせたものを LP画分とし、水溶性画分 Dと Eを合わせたものを 7S及び 11S画分(MSP画分)とする。操作温度は、 10°C〜25 °Cで行なう。以上により得られた LP画分と MSP画分の窒素量をそれぞれケルダ一 ル法で測定し、両者の比率を測定する。  Adjust the pH to 4.5 by adding hydrochloric acid to the water-soluble fraction obtained in Method 1. Insoluble fraction C is recovered by centrifugation at 1000G for 10 minutes. Furthermore, to this insoluble fraction C, add 1M Na2S04 (containing 20 mM mercaptoethanol) solution 5 times the sample processed soybean of Method 1 and stir well. Separate into D and insoluble fraction D. Repeat the same procedure for this insoluble fraction D, separating it into water-soluble fraction E and insoluble fraction E. The insoluble fractions D and E are combined as the LP fraction, and the water-soluble fractions D and E are combined as the 7S and 11S fractions (MSP fraction). The operating temperature is 10 ° C to 25 ° C. Measure the nitrogen content of the LP fraction and MSP fraction obtained as described above by the Kelder method, and measure the ratio of both.
[0052] <加工大豆の調製 >  [0052] <Preparation of processed soybeans>
LPが選択的に水不溶化された特性を具備する加工大豆を得る方法は、選択的水 不溶化指数 (LPZMSP)が 45%以下の条件を満たす限り、特に限定されず、加熱 変性、アルコール等の蛋白質変性剤による変性などの公知の蛋白質変性方法を利 用すればよぐ当業者が適宜加工方法とその条件を選択することができる。  The method for obtaining processed soybeans with the property that LP is selectively water-insolubilized is not particularly limited as long as the selective water-insolubility index (LPZMSP) satisfies the condition of 45% or less. Those skilled in the art who use a known protein denaturation method such as denaturation with a denaturant can appropriately select the processing method and its conditions.
[0053] (加熱変性処理) 変性方法の一態様として加熱変性を利用する場合、大豆の加熱は、焙煎装置、熱 風加熱装置、マイクロ波加熱装置等を使用する乾式加熱方式や、加湿加熱装置、蒸 煮装置、蒸気加熱装置等を使用する湿式加熱方式を特に限定されることなく採用す ることができる。ただし水が大豆に浸るような状態で加熱すると蛋白質が抽出されてし まうため、避けた方が良い。 [0053] (heat denaturation treatment) When heat denaturation is used as one aspect of the denaturing method, soybean heating may be performed by a dry heating method using a roasting device, a hot air heating device, a microwave heating device, a humidifying heating device, a steaming device, or steam heating. A wet heating method using an apparatus or the like can be employed without any particular limitation. However, it is better to avoid heating when water is soaked in soybeans, as protein will be extracted.
一例として、大豆を密閉タンクに封入し、相対湿度 90%以上の雰囲気下で品温が 7 0〜95°C程度になるように密閉タンクの外側を覆うジャケット内を加熱する方法などが 採用できる。  For example, a method in which soybean is enclosed in a sealed tank and the inside of the jacket covering the outside of the sealed tank is heated so that the product temperature is about 70 to 95 ° C in an atmosphere with a relative humidity of 90% or more can be adopted. .
加熱の温度や時間の条件は LPの不溶ィ匕が選択的なものとなる限り特に限定され ないが、通常は品温で 60〜95°Cとなるよう温度設定し、時間は 1分から 10時間の間 で行うことが適当である。  The heating temperature and time conditions are not particularly limited as long as LP insolubles are selective, but the temperature is usually set to 60 to 95 ° C, and the time is 1 minute to 10 hours. It is appropriate to perform between.
[0054] (アルコール変性処理)  [0054] (Alcohol modification treatment)
変性方法のもう一つの態様としてアルコール変性を利用する場合、蛋白質及びォ カラ成分を含む原料大豆に対し、等重量以下、好ましくは 2〜100重量部、より好まし くは 8〜20重量部、さらに好ましくは 10〜15重量部の極性アルコール溶液を添カロし、 含浸させる方法が好まし 、。この方法によれば LPZMSPを 30%以下とすることが容 易となり、より効率的に LPのみを選択的に水不溶ィ匕することができる。  When alcohol modification is used as another embodiment of the modification method, it is equal to or less than 1 part by weight, preferably 2 to 100 parts by weight, more preferably 8 to 20 parts by weight with respect to the raw soybean containing the protein and the sugar component. More preferably, a method of adding and impregnating 10 to 15 parts by weight of a polar alcohol solution is preferred. According to this method, LPZMSP can be easily reduced to 30% or less, and only LP can be selectively insoluble in water more efficiently.
[0055] なお、この方法は従来のアルコール洗浄による濃縮大豆蛋白などの製法のように、 大豆を何倍量ものアルコールを浸漬し、懸濁状態にして大豆の糖質などの非蛋白質 成分を洗浄する方法とは全く考え方が異なり、大豆に対して等重量以下の極性溶媒 溶液を添加し、含浸させるものである。この場合、混合された大豆の状態は典型的に は湿潤した粉末状態となる。  [0055] In this method, as in the conventional method for producing concentrated soy protein by alcohol washing, soy beans are soaked in many times the amount of alcohol and suspended to wash non-protein components such as soybean sugar. This method is completely different from the method in which a polar solvent solution of equal weight or less is added to soybean and impregnated. In this case, the state of the mixed soybean is typically a wet powder state.
[0056] ただし、極性溶媒の添加量が大豆に対して 2重量%よりも低くなると、 LPの選択的 な水不溶ィヒが不十分となるので、水抽出時の LPの抽出抑制効果が不充分となる傾 向となる。逆に等重量よりも多くなると、 LPと共に 7Sと 11Sも水不溶ィ匕する非選択的 な水不溶ィ匕が起こりやすくなり、 7Sと 11Sの抽出までが不十分となる。  [0056] However, when the addition amount of the polar solvent is lower than 2% by weight with respect to soybean, the selective water insolubility of LP becomes insufficient, so that the effect of suppressing the extraction of LP during water extraction is ineffective. The tendency will be sufficient. On the other hand, if the weight is more than equal, non-selective water insolubility that 7S and 11S together with LP is likely to occur, and extraction of 7S and 11S becomes insufficient.
[0057] LPの選択的水不溶化を促進するために適する極性溶媒としては、極性アルコール 溶液 (メタノール、エタノール、プロパノール、イソプロパノール等)を用いることができ る。特に、食品工業上多用されているエタノール水溶液を使用することが好ましい。 水は純水のままでも良いし、酸水溶液 (塩酸水溶液、炭酸水溶液、クェン酸水溶液 等)、アルカリ水溶液 (水酸ィ匕ナトリウム溶液、重炭酸ナトリウム等)等を使用することも できる。 [0057] As a polar solvent suitable for promoting selective water insolubilization of LP, a polar alcohol solution (methanol, ethanol, propanol, isopropanol, etc.) can be used. The In particular, it is preferable to use an aqueous ethanol solution frequently used in the food industry. Water may be pure water, or an acid aqueous solution (hydrochloric acid aqueous solution, carbonic acid aqueous solution, citrate aqueous solution, etc.), alkaline aqueous solution (hydroxy sodium hydroxide solution, sodium bicarbonate, etc.), etc. may be used.
[0058] 極性溶媒溶液の濃度は 5〜: LOO%が好ましぐ 50〜80%がより好ましい。極性溶 媒溶液の濃度が低すぎても高すぎても、 LPの変性による水不溶ィ匕が不十分となる。 極性溶媒溶液の添加方法は、例えば噴霧により粉に吹付ける方法や、滴下する方 法などで実施できるが、特に限定されない。極性溶媒溶液添加後の混合方法は、例 えば-一ダ一のような攪拌機や、高速攪拌機などを用いることができる。  [0058] The concentration of the polar solvent solution is 5 to: LOO% is preferred, and 50 to 80% is more preferred. If the concentration of the polar solvent solution is too low or too high, water insolubility caused by LP modification will be insufficient. The method for adding the polar solvent solution can be carried out by, for example, a method of spraying the powder by spraying or a method of dropping, but is not particularly limited. As the mixing method after adding the polar solvent solution, for example, a stirrer such as a single or a high-speed stirrer can be used.
[0059] さらに、上記のアルコール含浸処理にカ卩え、加温処理を併用することがより好ましい[0059] Further, it is more preferable to use a heating treatment in combination with the alcohol impregnation treatment.
。加温温度は、大豆の品温で 30〜95°Cが好ましぐ 40〜90°Cがより好ましい。またカロ 温時間は 5〜100分が好ましぐ 10分〜 60分がより好ましい。 . The heating temperature is preferably 30 to 95 ° C, more preferably 40 to 90 ° C, as the product temperature of soybean. The calorie temperature time is preferably 5 to 100 minutes, more preferably 10 to 60 minutes.
[0060] 極性溶媒の含浸処理と加温処理を併用する場合、これらの工程の順序には特に限 定されないが、極性溶媒を添加し、混合した後に加温処理を施すか、極性溶媒を添 加 ·混合しながら加熱処理を行うのが好ま 、。 [0060] When the polar solvent impregnation treatment and the heating treatment are used in combination, the order of these steps is not particularly limited. However, after adding and mixing the polar solvent, the heating treatment is performed or the polar solvent is added. It is preferable to perform heat treatment while mixing.
この極性溶媒の含浸処理と加温処理を併用することにより、比較的低!、温度処理 でも効率よく大豆中の LPのみを選択的に水不溶ィ匕することが可能となる。また加熱 による色ゃ臭 、の発生も抑え、加工大豆やそれを原料に調製される調製品の風味を 向上することが可能となる。  By using this polar solvent impregnation treatment and heating treatment in combination, it becomes relatively low and only the LP in soybean can be selectively insoluble in water even with temperature treatment. In addition, the generation of colorful odors due to heating can be suppressed, and the flavor of processed soybeans and preparations prepared from them can be improved.
さらに、極性溶媒の添加量を少なくすることができるので、処理後の極性溶媒の除 去工程が従来のアルコール洗浄法などと比較すると極めて容易となり、効率的な製 造プロセスを確立する上で有利である。  Furthermore, since the amount of the polar solvent added can be reduced, the removal process of the polar solvent after the treatment is extremely easy compared with the conventional alcohol cleaning method, etc., which is advantageous for establishing an efficient manufacturing process. It is.
[0061] 加工大豆に残存する極性溶媒はほとんど加温処理によって揮発させることができ、 これを直接抽出工程に供することができるが、所望によりさらに残存量を低下させた い場合には、さらに品温 40〜60°C、減圧(一 lOmmHg程度)下で 10分〜 60分の処理 を行えば完全に揮発させることが出来、ほぼ添加前の大豆の重量に戻すことができ る。 [0061] Most of the polar solvent remaining in the processed soybean can be volatilized by heating treatment, and this can be directly subjected to the extraction process. If it is treated at a temperature of 40-60 ° C and reduced pressure (about 1 lOmmHg) for 10-60 minutes, it can be completely volatilized and returned to the weight of soybean before addition.
なお、揮発させた極性溶媒は蒸留により回収すれば、再利用が可能であるので、 製造プロセス上有利である。 In addition, since the volatilized polar solvent can be reused if recovered by distillation, This is advantageous in the manufacturing process.
[0062] 以下の発明は、 LPが選択的に水不溶ィ匕されたカ卩工大豆力 7S、 11S及び LPから 選択される 1種以上の酸沈殿性大豆蛋白質の分画用原料として使用されることを共 通の技術的特徴とするものである。  [0062] The following invention is used as a raw material for fractionation of one or more acid-precipitating soy proteins selected from 7S, 11S and LP, which are selectively water-insoluble in LP. This is a common technical feature.
すなわち、上記加工大豆力も調製した豆乳又はオカラを原料とし、 7Sグロブリン、 1 1Sグロブリン又は脂質親和性蛋白質力 なる群より選択される少なくとも 1種の酸沈 殿性大豆蛋白質が濃縮された画分を回収し、分画大豆蛋白を得る発明である。  That is, a fraction enriched with at least one acid-precipitating soy protein selected from the group consisting of 7S globulin, 11S globulin, or lipophilic protein strength, using the soymilk or okara prepared with the above-described processed soybean strength as a raw material. It is an invention for collecting and obtaining fractionated soybean protein.
[0063] (1)豆乳  [0063] (1) Soy milk
本発明の豆乳は、上記加工大豆を原料とする豆乳である。好ましくは、上記アルコ ール変性処理により得られたカ卩工大豆を原料とする豆乳である。  The soy milk of the present invention is a soy milk made from the processed soybean. Preferably, it is soy milk made from baked soybeans obtained by the above alcohol modification treatment.
本発明の豆乳は、上記加工大豆を原料に使用するものであればその製法は特に 限定されないが、水やアルカリ水溶液などの水系溶媒で抽出し、遠心分離により豆 乳とオカラに分離して、可溶性画分を回収することにより得られる。  The soy milk of the present invention is not particularly limited as long as it uses the above-described processed soybean as a raw material, but it is extracted with an aqueous solvent such as water or an aqueous alkaline solution, and separated into soy milk and okara by centrifugation. It is obtained by collecting the soluble fraction.
[0064] 水系溶媒の添加量は加工大豆に対し、 6〜 12重量倍が好ましぐ 7〜9重量倍がよ り好ましい。水系溶媒の添加量が少なすぎると粘度が高くなり、多すぎると希薄溶液と なって回収効率が悪くなる。 [0064] The addition amount of the aqueous solvent is preferably 6 to 12 times by weight, more preferably 7 to 9 times by weight with respect to the processed soybean. If the amount of the aqueous solvent added is too small, the viscosity will increase, and if it is too large, the solution will become a dilute solution and the recovery efficiency will deteriorate.
抽出時の温度は、 4〜50°C程度が好ましぐ 10〜30°C程度がより好ましい。温度が 高すぎると LPが溶解しやすくなり、逆に温度が低すぎると抽出効率が悪くなつてしま 得られた抽出液から中性付近 pH6〜9において不溶物であるオカラを遠心分離等 により除去する。得られたオカラに対しさらに水を 4〜6重量倍カ卩え、さらに抽出し豆 乳の回収量を上げる操作を繰り返しても良い。  The temperature during extraction is preferably about 4 to 50 ° C, more preferably about 10 to 30 ° C. If the temperature is too high, the LP will be easily dissolved. Conversely, if the temperature is too low, the extraction efficiency will deteriorate. By removing the okara, which is insoluble at a pH near pH 9 to 9, by centrifugation, etc. To do. The operation of adding 4 to 6 times the amount of water to the resulting okara and further extracting it to increase the amount of recovered soy milk may be repeated.
[0065] 以上のように本発明の加工大豆を原料とする豆乳は、そのままの形態で製品化し ても良いし、さらに加工して濃縮豆乳や粉末豆乳としたり、適当な原料を添加して調 製豆乳に加工することも可能である。  [0065] As described above, the soy milk made from the processed soybean of the present invention may be commercialized as it is, or may be further processed into concentrated soy milk or powdered soy milk, or prepared by adding an appropriate raw material. It can also be processed into soy milk.
[0066] 得られた豆乳の蛋白質組成は、通常の豆乳とは異なり極めて特徴的な組成を有し ており、 LPの混入量が低ぐ LPZMSPが 45%以下、好ましくは 35%以下、さらに好 ましくは 30%以下、さらに好ましくは 28%以下、最も好ましくは 23%以下である。 [0067] また本豆乳は以下の分画大豆蛋白の製造に使用することが可能である。 [0066] The protein composition of the obtained soymilk has a very characteristic composition unlike ordinary soymilk, and LPZMSP with a low LP content is 45% or less, preferably 35% or less, more preferably It is preferably 30% or less, more preferably 28% or less, and most preferably 23% or less. [0067] The soy milk can be used for the production of the following fractionated soy protein.
[0068] 一方、通常の製法による豆乳や非選択的な蛋白質の不溶化処理がなされた大豆 で抽出した豆乳では、 LPZMSP比が 45%を超える(表 1参照)。この場合、大豆 7Sグ ロブリン蛋白と大豆 11Sグロブリン蛋白への分画力 ¾H調整のみによる簡便な手段で 行いに《なる。そして得られる各種大豆蛋白素材が良好な風味と色調を併せ持つこ とが困難となる。  [0068] On the other hand, the soy milk extracted from soy milk by a normal manufacturing method or soy that has been subjected to non-selective protein insolubilization treatment has an LPZMSP ratio of more than 45% (see Table 1). In this case, the fractionation ability to soybean 7S globulin protein and soybean 11S globulin protein can be achieved by simple means only by adjusting H. In addition, it is difficult for the various soy protein materials obtained to have good flavor and color.
[0069] (2)分離大豆蛋白  [0069] (2) Isolated soy protein
本発明の分離大豆蛋白は、上記加工大豆力 得た豆乳を原料とすることが特徴で あり、その以外は通常行われている公知の製法によっても製造することができる。  The isolated soy protein of the present invention is characterized by using the soy milk obtained from the above-described processed soybean strength as a raw material, and other than that, it can also be produced by a known production method that is usually performed.
[0070] 典型的には、本発明の豆乳に酸 (塩酸、硫酸等)を加え、豆乳の pHを酸性にする。  [0070] Typically, an acid (hydrochloric acid, sulfuric acid, etc.) is added to the soymilk of the present invention to acidify the pH of the soymilk.
pHは大豆蛋白質の等電点付近に調整すればよぐ pH4.2〜5.2に調整することが好 ましい。大豆蛋白質の内、酸沈殿性大豆蛋白質がこの pH範囲で不溶ィ匕し、沈澱物と なる。これを遠心分離で回収し、苛性ソーダなどのアルカリ水を添加して中和し、大 豆蛋白質の中和液を調製し、分離大豆蛋白を得る。これを所望により殺菌 ·乾燥して 粉末の形態でそのまま使用するか、又は適当な製剤原料を添加して製剤に調製する ことにより、分離大豆蛋白として従来の各種食品への用途に用いることができる。 また上記の酸沈工程を経る方法の他、国際公開 WO2004Z 13170号公報に記載 の通り、本発明の脱脂大豆を酸洗浄した後、水抽出する方法により分離大豆蛋白を 得ることができる。  The pH should be adjusted to around the isoelectric point of soy protein. It is preferable to adjust the pH to 4.2 to 5.2. Of the soy protein, acid-precipitating soy protein becomes insoluble in this pH range and becomes a precipitate. This is recovered by centrifugation and neutralized by adding alkaline water such as caustic soda to prepare a neutralized solution of soybean protein to obtain separated soybean protein. This can be sterilized and dried if desired and used as it is in the form of a powder, or it can be used as a separated soy protein for various conventional food applications by adding a suitable raw material for preparation. . In addition to the above-described method of acid precipitation, as described in International Publication WO2004Z 13170, the defatted soybean of the present invention can be acid-washed and then extracted with water to obtain isolated soybean protein.
[0071] 得られた分離大豆蛋白は粗蛋白質含量が 90重量%以上であることに加え、 LPの 含量が低いためか、従来の分離大豆蛋白よりも風味に優れることに特徴を有する。  [0071] The obtained isolated soy protein is characterized by having a crude protein content of 90% by weight or more and a flavor superior to that of conventional isolated soy protein due to its low LP content.
[0072] 次に分離大豆蛋白中の LP含量の測定方法について説明する。 [0072] Next, a method for measuring the LP content in isolated soybean protein will be described.
大豆蛋白素材として提供される分離大豆蛋白は最終の製品化工程にぉ 、て一般 的には加熱殺菌されるため、 7S, 11Sは LPと共に加熱変性が起こっている。そのた め、製品化された分離大豆蛋白力 上記方法 1、 2の方法によって LPを 7S, 11Sと 分画し、 LP含量を測定することが困難である。  The isolated soy protein provided as a soy protein material is generally heat sterilized in the final production process, so 7S and 11S are heat-denatured together with LP. Therefore, it is difficult to measure the LP content by separating LP into 7S and 11S by the methods 1 and 2 described above.
また、一般的な蛋白質組成の測定方法である SDS—ポリアクリルアミドゲル電気泳 動法 (SDS-PAGE)では LPが CBB染色されにく ヽと 、う性質を有し、これも正確な測 定が困難である。 In addition, SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which is a general method for measuring protein composition, has the property that LP is difficult to be stained with CBB, which is also an accurate measurement. It is difficult to determine.
したがって簡易的に、 7S, US, LPの各蛋白質中の主要な蛋白質を選択し、それ らの染色比率を求め、これらの比率力 LP含量を推定する以下の方法を採用するこ とがでさる。  Therefore, it is possible to simply select the main proteins in the 7S, US, and LP proteins, obtain their staining ratios, and adopt the following method to estimate their ratio power LP content. .
なお、本方法は分離大豆蛋白のみならず、大豆 7S蛋白、大豆 11S蛋白、 LP— SP Iなどの各種分画大豆蛋白にも適用が可能である。  This method can be applied not only to isolated soybean protein but also to various fractionated soybean proteins such as soybean 7S protein, soybean 11S protein, and LP-SP I.
[0073] 〔LP含量の推定方法〕 [0073] [LP content estimation method]
(a)各蛋白質中の主要な蛋白質として、 7Sは αサブユニット及び α 'サブユニット(ひ + α ')、 1 ISは酸性サブユニット(AS)、 LPは 34kDa蛋白質及びリポキシゲナーゼ(P3 4+Lx)を選択し、 SDS— PAGEにより選択された各蛋白質の染色比率を求める。電 気泳動は表 1の条件で行うことが出来る。  (a) As the main proteins in each protein, 7S is α subunit and α 'subunit (H + α'), 1 IS is acidic subunit (AS), LP is 34kDa protein and lipoxygenase (P3 4 + Lx ), And obtain the staining ratio of each protein selected by SDS-PAGE. Electrophoresis can be performed under the conditions shown in Table 1.
(b) X(%) = (P34 + Lx) /{ (P34 + Lx) + ( α + α ' ) +AS} X 100 (%)を求める。 (b) X (%) = (P34 + Lx) / {(P34 + Lx) + (α + α ′) + AS} X 100 (%) is obtained.
(c)低変性脱脂大豆力 調製された分離大豆蛋白の LP含量を加熱殺菌前に上記方 法 1, 2の分画法により測定すると凡そ 38%となることから、 X= 38 (%)となるよう(P34 + Lx)に補正係数 k*= 6を掛ける。 (c) Low-denatured defatted soybean power Since the LP content of the prepared soy protein was measured by the fractionation method of the above methods 1 and 2 before heat sterilization, it was about 38%, so X = 38 (%) Multiply (P34 + Lx) by the correction coefficient k * = 6.
(d)すなわち、以下の式により LP推定含量(Lipophilic Proteins Content Index,以下 「LCI」と略する。)を算出する。  (d) That is, the estimated LP content (Lipophilic Proteins Content Index, hereinafter abbreviated as “LCI”) is calculated by the following formula.
[0074] (表 1) アプライ量:蛋白質 0. 1 %サンプル溶液を各ゥエルに ΙΟμΙ  [0074] (Table 1) Apply amount: Protein 0.1% sample solution to each well
ゥエル幅 : 5mm  Well width: 5mm
ゥエル容積: 30μ1  Well volume: 30μ1
染色液 :クマシ一ブリリアントブルー (CBB) lg、 メタノール 500ml, 氷酢酸 70ml (CBBをメタノールに完全に溶解させた後、 酢酸と水を加 えて 1Lにする。)  Staining solution: Kumashi brilliant blue (CBB) lg, 500 ml of methanol, 70 ml of glacial acetic acid (After completely dissolving CBB in methanol, add acetic acid and water to make 1 L.)
染色時間 : 15時間  Staining time: 15 hours
脱色時間 : 6時間  Decolorization time: 6 hours
デンシトメ一 -夕一: GS-710 Calibrated Imaging Densitometer ι  Densitome -Evening: GS-710 Calibrated Imaging Densitometer ι
Quantity One Software Ver. 4.2.3 (Bio Raa Japan Co. Ltd) スキャン幅: 5.3mm、 感度: 30  Quantity One Software Ver. 4.2.3 (Bio Raa Japan Co. Ltd) Scan width: 5.3mm, Sensitivity: 30
[0075] (数 1) LCI ( % ) * x(P34 + Lx) —— χ 100 [0075] (Equation 1) LCI (%) * x (P34 + Lx) —— χ 100
k * x(P34 + Lx) + ( c¾ + a') + AS k* :補正係数 (6 )  k * x (P34 + Lx) + (c¾ + a ') + AS k *: Correction factor (6)
P34: LP主要成分、 34kDa蛋白質  P34: LP major component, 34kDa protein
Lx : LP主要成分、 リポキシゲナーゼ  Lx: LP main component, lipoxygenase
: 7S主要成分、 αサブユニット : 7S main component, α subunit
' : 7S主要成分、 α 'サブユニット  ': 7S main component, α' subunit
AS : 11S主要成分、 酸性サブュニット  AS: 11S main component, acidic subunit
[0076] 本発明により得られる分離大豆蛋白は LCIが 38%以下、好ましくは 35%以下、より 好ましくは 30%以下、さらに好ましくは 25%以下である。 LCIが 38%を超えると従来の 製法による分離大豆蛋白の LCI値に近づき、品質的に変わらなくなる。他方、 LCI値 力 S小さ 、ほど風味に優れる傾向にある。 [0076] The isolated soybean protein obtained by the present invention has an LCI of 38% or less, preferably 35% or less, more preferably 30% or less, and further preferably 25% or less. If the LCI exceeds 38%, it will approach the LCI value of the soy protein isolated by the conventional method, and the quality will not change. On the other hand, the smaller the LCI strength, S, the better the flavor.
[0077] (3)大豆 11S蛋白および大豆 7S蛋白  [0077] (3) Soybean 11S protein and Soybean 7S protein
酸沈殿性大豆蛋白質を 11Sと 7Sとに分画する方法は、従来技術に記載したとおり 種々の方法が試されている力 本発明の大豆 11S蛋白と本大豆 7S蛋白は、いずれ も本発明の上記加工大豆力も調製した豆乳を分画してなることを特徴とする。  As described in the prior art, various methods have been used to fractionate acid-precipitable soybean protein into 11S and 7S. Soybean 11S protein of the present invention and this soybean 7S protein are both of the present invention. The processed soybean power is obtained by fractionating the prepared soy milk.
これにより 7Sと 11Sを従来のような複雑な手段に寄らなくとも簡便な手段によってそ れぞれの蛋白質を高純度に分画した分画大豆蛋白(大豆 7S蛋白、大豆 11 S蛋白) を製造することができる。  This makes it possible to produce fractionated soy proteins (soybean 7S protein and soy 11S protein) by fractionating each protein with high purity by simple means without using 7S and 11S as complex means as before. can do.
[0078] 7Sと 11Sの分画方法は、本発明の加工大豆を分画の原料とする限り、背景技術の 項で挙げたような公知の方法の 、ずれを採用しても、 LP含量の少な 、高純度の大 豆 11S蛋白を得ることが可能である。したがっていずれの分画方法を採用するかは 当業者が製造プロセス構築の際に適宜選択することができるが、特に以下に示す方 法がより簡便であり好ましい。  [0078] In the 7S and 11S fractionation methods, as long as the processed soybean of the present invention is used as a raw material for fractionation, the LP content can be reduced even if a deviation from the known methods listed in the background section is adopted. A small amount of highly pure soybean 11S protein can be obtained. Accordingly, which fractionation method is used can be appropriately selected by those skilled in the art when constructing a production process, but the following method is particularly simple and preferable.
[0079] 〔大豆 11S蛋白の調製例〕  [0079] [Preparation example of soybean 11S protein]
本発明の大豆 11S蛋白は、本発明の豆乳を特定の pHに調整し、生成する不溶性 画分を回収し、これを所望により、中和、殺菌、乾燥し、粉末の形態でそのまま使用 するか、又は適当な製剤原料を添加して製剤に調製することにより分画大豆蛋白質 素材を高純度かつ効率的に得ることができる。 [0080] pHは酸(酸の種類は問わない)により pH5. 2〜6. 4に調整するのが好ましぐ pH5 . 7〜6. 2に調整するのがより好ましい。 The soybean 11S protein of the present invention is prepared by adjusting the soy milk of the present invention to a specific pH and recovering the insoluble fraction produced, and if necessary, neutralizing, sterilizing, drying, and using as it is in the form of a powder. Alternatively, a fractionated soy protein material can be obtained with high purity and efficiency by adding a suitable preparation material to prepare a preparation. [0080] It is preferable to adjust the pH to pH 5.2 to 6.4 with an acid (regardless of the type of acid). It is more preferable to adjust the pH to pH 5.7 to 6.2.
得られた画分の電気泳動パターンは本発明の豆乳の泳動パターンと同様に LPの 含量が少なく (図 4)、風味に優れる。  The electrophoresis pattern of the obtained fraction has a low LP content (Fig. 4) and an excellent flavor, similar to the electrophoresis pattern of the soymilk of the present invention.
[0081] 上記方法による場合、豆乳に亜硫酸ナトリウムなどの還元剤を添加してから上記 p H範囲に調整することもできる。これによりさらに分離性が向上する利点がある。還元 剤は、従来法で 11Sを分離する場合には 10mM程度カ卩えることが通例である力 この 豆乳の場合は、 ImM程度で良好な分離が可能である。  [0081] In the case of the above method, a reducing agent such as sodium sulfite may be added to soy milk and then adjusted to the above pH range. This has the advantage that the separability is further improved. In the case of this soymilk, good separation is possible at about ImM.
[0082] また別の分画方法の例示として、従来の 11S分離方法である冷却して沈降する 11 Sの性質を利用しても良い (非特許文献 2, 6)。即ち本発明の豆乳に還元剤を加え、 豆乳の pHを 6.1〜6.5に調整し、 4〜6°Cに冷却して半日放置し、生成した沈降物を回 収すること〖こよって、 11Sグロブリンが回収される。還元剤は、 11Sを分離する場合は 、 10mM加えることが通例である力 この豆乳の場合は、 ImM程度で良好な分離が可 能である。  As an example of another fractionation method, the property of 11 S that cools and settles, which is a conventional 11S separation method, may be used (Non-Patent Documents 2 and 6). That is, by adding a reducing agent to the soymilk of the present invention, adjusting the pH of the soymilk to 6.1-6.5, cooling to 4-6 ° C and leaving it for half a day, and collecting the produced precipitate, Is recovered. In the case of 11S, the reducing agent is typically 10mM. In the case of this soymilk, good separation is possible at about ImM.
[0083] 得られた大豆 11S蛋白は 11Sが 75重量%以上、さらには 85重量%以上、さらには 90重量%以上の高純度であるため、 11S特有の特性を活力した利用が可能である。 11Sは粘性が低ぐ加熱によるゲル強度が強 、ので、例えばゲル化剤などとしての用 途に利用でき、卵白の代替品として、また硬い豆腐ができるので、豆腐の硬さ付与な どにも利用が可能である。  [0083] Since the obtained soybean 11S protein has a high purity of 11S of 75% by weight or more, further 85% by weight or more, and further 90% by weight or more, it can be utilized by utilizing the characteristics unique to 11S. 11S has low viscosity and high gel strength due to heating, so it can be used, for example, as a gelling agent, and as a substitute for egg white, and tofu can be hardened. It can be used.
また LCI値が 30%以下であり、より好ましくは 25%以下、さらに好ましくは 20%以下 であり、 LP含量が極めて少なぐ風味に優れるものである。  Further, the LCI value is 30% or less, more preferably 25% or less, and further preferably 20% or less, and the flavor is excellent with a very low LP content.
[0084] 〔大豆 7S蛋白の調製例〕  [0084] [Preparation example of soybean 7S protein]
本発明の大豆 7S蛋白は、上記の 11Sを分画後の水溶性画分溶液の pHを酸で pH 4〜5. 5、好ましくは 4. 3〜4. 8に調整し、生成する不溶性画分を回収し、これを所 望により中和する力せずして殺菌 ·乾燥し、粉末の形態でそのまま使用する力 又は 適当な製剤原料を添加して製剤に調製することにより得ることができる。この場合、大 豆 7S蛋白中の 7Sの純度は少なくとも 38%以上、さらには 40%以上、さらには 50% 以上、さらには 60%以上となる。 [0085] 7Sの精製度をさらに高めるために、 LPを上記工程の前に予め不溶性画分として除 去することができる。 The soybean 7S protein of the present invention is an insoluble fraction produced by adjusting the pH of the water-soluble fraction solution after fractionation of the above 11S to pH 4 to 5.5, preferably 4.3 to 4.8 with an acid. It can be obtained by recovering the fraction, sterilizing and drying without force to neutralize it as desired, and using it in the form of powder as it is or by adding an appropriate drug substance . In this case, the purity of 7S in soybean 7S protein is at least 38% or more, further 40% or more, further 50% or more, and further 60% or more. [0085] To further increase the degree of purification of 7S, LP can be removed in advance as an insoluble fraction prior to the above step.
すなわち、本発明の大豆 11S蛋白の調製時に得られる水溶性画分の pHを pH4〜 5. 5、好ましく ίま pH4. 8〜5. 2【こ調整し 40〜65oCでカ卩熱後、次【こ pHを 5. 3〜5. 7 に調整することで、 7S以外の蛋白質 (LP主体)は不溶物となり、これを不溶性画分と して除くことができる。また豆乳から 7Sと 11Sを同時に回収することを要しない場合に は、上記水溶性画分の代わりに本発明の豆乳を用いて、直接 7Sのみを分画し、 11S と LPは不溶性画分として除くこともできる。 That is, the pH of the water-soluble fraction obtained at the time of preparation of the soybean 11S protein of the present invention is adjusted to pH 4 to 5.5, preferably pH 4.8 to 5.2 [after adjustment and heating at 40 to 65 ° C.] Next, by adjusting the pH to 5.3 to 5.7, proteins other than 7S (LP-based) become insoluble and can be removed as an insoluble fraction. If it is not necessary to simultaneously collect 7S and 11S from soymilk, only 7S is fractionated directly using the soymilk of the present invention instead of the above water-soluble fraction, and 11S and LP as insoluble fractions. It can also be excluded.
そして不溶性画分除去後の水溶性画分の pHを酸で pH4〜5、好ましくは 4. 3〜4. 8に調整し、生成する不溶性画分を回収することにより、より精製度の高い大豆 7S蛋 白を得ることが可會である。  The pH of the water-soluble fraction after removal of the insoluble fraction is adjusted to pH 4-5, preferably 4.3-4.8 with acid, and the insoluble fraction produced is recovered, so that the soybean with higher purity can be obtained. It is reasonable to obtain 7S protein.
[0086] 大豆 7S蛋白の調製方法としては、この方法に限らず、所望により、従来の 7Sの分 画方法を利用しても良い。例えば長野らの方法 (非特許文献 6)のように、 11Sグロブ リンを除!、た豆乳に 0.25Mの濃度になるように NaClをカ卩え、 pHを 5.0にして不溶性画 分を除き、これに水を 3倍容量加えて pHを 4.5にして生成する沈澱物を回収する方法 がある。あるいは、佐本らの方法 (非特許文献 5)のように 11Sグロブリンを除いた豆乳 に硫酸をカ卩えて pHを 2.8〜3.5に調整し、生じる沈澱を除去後、これに水を 2倍容量 加えて pHを 4.5にして生成する沈澱物を回収する方法などがある。 [0086] The method for preparing soybean 7S protein is not limited to this method, and a conventional 7S fractionation method may be used if desired. For example, as in the method of Nagano et al. (Non-Patent Document 6), remove 11S globulins! Add soymilk with NaCl to a concentration of 0.25M, adjust the pH to 5.0 to remove insoluble fractions, There is a method to recover the precipitate that is formed by adding 3 volumes of water to bring the pH to 4.5. Alternatively, as in the method of Samoto et al. (Non-Patent Document 5), sulfuric acid is added to soy milk excluding 11S globulin, the pH is adjusted to 2.8 to 3.5, and the resulting precipitate is removed, and then twice the volume of water is added thereto. In addition, there is a method of recovering the precipitate formed at pH 4.5.
いずれの方法でも、 LPの混入が防がれ、高純度で良質な大豆 7S蛋白を調製でき る。  In either method, LP contamination is prevented and high-quality, high-quality soybean 7S protein can be prepared.
[0087] 以上のようにして得られた高純度の大豆 7S蛋白の 7Sの純度は少なくとも 80%以上 の高純度となるため、 7S特有の特性を活力した利用が可能である。例えば血中中性 脂肪低減剤や体脂肪低減剤などの栄養機能剤や高粘性素材などに利用できる。 また LCIが 30%以下であり、より好ましくは 25%以下、さらに好ましくは 20%以下であ り、 LP含量が極めて少なぐ風味に優れるものである。  [0087] The 7S purity of the high-purity soybean 7S protein obtained as described above is at least 80% or higher, so that it is possible to utilize the characteristics unique to 7S. For example, it can be used for nutritional functional agents such as blood neutral fat reducing agents and body fat reducing agents, and highly viscous materials. Further, the LCI is 30% or less, more preferably 25% or less, still more preferably 20% or less, and the flavor is excellent with a very low LP content.
[0088] (4)オカラ  [0088] (4) Okara
本発明のオカラは本発明の加工大豆を原料とし、これを水抽出し、不溶性画分を 回収してなるオカラである。 本カ卩工大豆は LPが選択的に水不溶ィ匕されたものであるので、上述の通りこれを水 抽出すると 7S及び 11Sを主体として豆乳側に抽出され、 LPはオカラ側に主に分画さ れる。 The okara of the present invention is an okara obtained by using the processed soybean of the present invention as a raw material, extracting this with water, and collecting the insoluble fraction. Since this potato soy is an LP that is selectively water-insoluble, extraction with water as described above will extract 7S and 11S to the soy milk side, and LP will be mainly distributed to the okara side. Drawn.
したがって本オカラは LPに富むことに特徴を有しており、 LP含量は通常のオカラの 場合、乾燥固形分中 10〜20重量%程度であるが、本オカラは 35〜60重量%であ る。 LPは大豆の酸沈殿性大豆蛋白質の中でも特に血中コレステロール低下作用が 優れている。したがって、豆乳の副産物として一般に廃棄処分されることの多いォカ ラに高付加価値を付与することができる。  Therefore, this Okara is characterized by its richness in LP. LP content is about 10 to 20% by weight in the dry solid content of ordinary Okara, but this Okara is 35 to 60% by weight. . LP is particularly excellent in blood cholesterol lowering effect among soy acid-precipitating soybean proteins. Therefore, it is possible to give high added value to the okara that is generally disposed of as a by-product of soymilk.
本オカラは、上述の豆乳の製造中に分離される不溶性画分を遠心分離等により回 収することにより得られる。所望により、殺菌、冷凍、粉砕、乾燥等の処理により多様 な形態の製品とすることができる。  This okara is obtained by collecting the insoluble fraction separated during the production of the above-mentioned soymilk by centrifugation or the like. If desired, it can be made into various forms of products by processing such as sterilization, freezing, crushing, and drying.
[0089] (5)非 7S · 11 S—酸沈殿性大豆蛋白(LP— SPI) [0089] (5) Non 7S · 11 S—acid-precipitated soy protein (LP—SPI)
LPは従来の大豆蛋白素材の風味劣化の一因となる成分と考えられていたものであ る力 これを高純度に分画し、非 7S ' 11S—酸沈殿性大豆蛋白とすることにより、 LP 固有の特性を活力した用途への使用が可能となる。  LP is a force that was thought to be a component that contributes to the flavor deterioration of conventional soy protein materials. By separating this into high purity, non-7S'11S-acid-precipitated soy protein It can be used for applications that make use of the unique characteristics of LP.
本発明の LP— SPIは、上記加工大豆から調製したオカラを原料とする場合と、豆 乳を原料とする場合の 2通りの方法により分画して得ることができる。  The LP-SPI of the present invention can be obtained by fractionation by two methods: using okara prepared from the above-mentioned processed soybean as a raw material and using soymilk as a raw material.
[0090] 第一の LPは、上記カ卩工大豆力 調製したオカラを分画してなり、クロ口ホルムとメタ ノールの体積比が 2 : 1の溶媒で抽出される油分を 7%以上、好ましくは 8%以上含有 することを特徴とする。以下に調製例を示す。 [0090] The first LP is obtained by fractionating the above-prepared okara that has been prepared from the above-mentioned potato soybean power, and the oil content extracted with a solvent having a 2: 1 volume ratio of black mouth form and methanol is 7% or more, The content is preferably 8% or more. Preparation examples are shown below.
[0091] 〔LP- SPIの調製例〕 [0091] [Preparation example of LP-SPI]
LPは本発明の加工大豆中に選択的に不溶ィ匕された状態で含まれるので、その豆 乳を抽出した残渣である上記オカラより分画することが可能である。  Since LP is selectively contained in the processed soybean of the present invention in an insoluble state, it can be fractionated from the above-mentioned okara, which is a residue obtained by extracting the soy milk.
分画はオカラに加水して加熱抽出し、抽出液を回収することにより可能となる。加水 量はオカラ 100重量部に対して水 50〜500重量部が好ましい。加熱温度は 100〜150 °Cが好ましい。加熱時間は、数秒〜数分の間が好ましい。  The fraction can be obtained by adding water to okara and extracting by heating and collecting the extract. The amount of water is preferably 50 to 500 parts by weight of water per 100 parts by weight of Okara. The heating temperature is preferably 100 to 150 ° C. The heating time is preferably between a few seconds and a few minutes.
以上の方法で得られた抽出物は少なくとも LCIが 50重量%以上、好ましくは 60重量 %以上の LP-SPIとして提供できる。また所望により、抽出液に酸をカ卩え、 pHを 4〜5、 好ましくは 4. 3〜4. 8に調整し、生成する沈澱物を回収してさらに高純度の LP-SPI を得ることができる。これを可性ソーダで中和して中和液を調製し、殺菌加熱、乾燥 する。以上の方法で得られた LP-SPIは少なくとも LCIが 60重量%以上、好ましくは 65 重量%以上の高純度品として提供できる。 The extract obtained by the above method can be provided as LP-SPI having an LCI of 50% by weight or more, preferably 60% by weight or more. If desired, add acid to the extract and adjust the pH to 4-5. Preferably, it is adjusted to 4.3 to 4.8, and the precipitate formed can be recovered to obtain LP-SPI with higher purity. This is neutralized with a soda solution to prepare a neutralized solution, sterilized and heated. The LP-SPI obtained by the above method can be provided as a high-purity product having at least LCI of 60% by weight or more, preferably 65% by weight or more.
[0092] 第二の LPは、上記カ卩工大豆力 調製した豆乳を分画してなり、クロ口ホルムとメタノ ールの体積比が 2 : 1の溶媒で抽出される油分を 7%以上、好ましくは 8%以上含有 することを特徴とする分画法である。以下に調製例を示す。 [0092] The second LP is obtained by fractionating the soymilk prepared from the above-mentioned soybean soy strength, and the oil content extracted with a solvent having a volume ratio of black mouth form and methanol of 2: 1 is 7% or more. Preferably, the fractionation method is characterized by containing 8% or more. Preparation examples are shown below.
[0093] 〔LP- SPIの調製例〕 [0093] [Preparation Example of LP-SPI]
LPは本発明の加工大豆中に総含量の 50〜80%程度が選択的に不溶ィ匕された状 態で含まれる力 20〜50%程度は豆乳中にも抽出される。従って、本発明の加工大 豆力 調製した豆乳力 分画することも可能である。  About 20 to 50% of the LP contained in the processed soybean of the present invention in a state in which about 50 to 80% of the total content is selectively insoluble, it is also extracted into soy milk. Therefore, it is possible to fractionate the soymilk power prepared by the processed soybean power of the present invention.
具体的には、本発明の加工大豆から大豆 7S蛋白を調製する上記工程において、 加工大豆力 調製した豆乳を pH5.2〜6.4に調整し、不溶性画分を分離して得た水溶 性画分を ρΗ4〜5.5に調整し 40〜65°Cで加熱後、 pH5.3〜5.7に調整した際に生ず る不溶性画分を回収することにより LPを高純度に分画することができる。  Specifically, in the above-described step of preparing soybean 7S protein from the processed soybean of the present invention, processed soybean power Adjusted soy milk to pH 5.2 to 6.4 and separated the insoluble fraction to obtain a water-soluble fraction. The pH is adjusted to 4 to 5.5, heated at 40 to 65 ° C, and then the insoluble fraction produced when the pH is adjusted to 5.3 to 5.7 is recovered, whereby LP can be fractionated with high purity.
また、 7Sグロブリン欠損大豆を使用する場合には、 7Sと LPを分離する工程が不溶 であり、操作がより簡便となる。すなわち、加工大豆力も調製したした豆乳を pH5.2〜6 .4に調整し、不溶性画分(11S画分)を分離して得た水溶性画分を pH4〜5に調整し 、不溶性画分を回収するだけで LPを高純度に分画することができる。  In addition, when 7S globulin deficient soybean is used, the process of separating 7S and LP is insoluble, and the operation becomes simpler. In other words, soy milk prepared with processed soybean power was adjusted to pH 5.2 to 6.4, the water-soluble fraction obtained by separating the insoluble fraction (11S fraction) was adjusted to pH 4 to 5, and the insoluble fraction was adjusted. It is possible to fractionate LP with high purity simply by recovering.
以上の方法で得られた分画物を必要により可性ソーダで中和して中和液を調製し 、殺菌加熱、乾燥する。以上の方法で得られた LP-SPIは少なくとも LCIが 60重量% 以上の高純度品として提供することができる。  The fraction obtained by the above method is neutralized with a soda as needed to prepare a neutralized solution, sterilized and heated and dried. The LP-SPI obtained by the above method can be provided as a high purity product having at least LCI of 60% by weight or more.
[0094] 以上のように 2通りの方法により分画される LPは脂質に対して強 、親和性を有する ため、大豆蛋白素材が本発明の LP- SPIに相当する力否かの判定は、当該蛋白中の クロ口ホルム:メタノールが 2 : 1の溶媒で抽出される油分 (以下、「クロメタ油分」と記載 する。)が 7重量%以上、好ましくは 8〜15重量%、より好ましくは 9〜15重量%であ る力否かで行うことが可能である。ただし、 LP-SPIのエーテル抽出油分が 2%以上含 まれる場合には、上記数値力もエーテル抽出油分を差し引かなければならない。抽 出される極性脂質はレシチンや糖脂質が主成分である。 [0094] Since the LP fractionated by the two methods as described above is strong and has an affinity for lipids, the determination as to whether or not the soy protein material is equivalent to the LP-SPI of the present invention is as follows. The oil content (hereinafter referred to as “chroma oil content”) extracted with a 2: 1 solvent of chloroform-form: methanol in the protein is 7% by weight or more, preferably 8-15% by weight, more preferably 9%. This can be done with a force of ~ 15% by weight. However, if the LP-SPI ether extract oil content is 2% or more, the above-mentioned numerical force must also be deducted from the ether extract oil content. Extraction The polar lipids to be released are mainly composed of lecithin and glycolipid.
ちなみに分画されていない従来の分離大豆蛋白のクロメタ油分は 4〜5重量%程 度で、高純度の大豆 7S蛋白や大豆 11S蛋白も 3%以下に過ぎない。  By the way, the chromed oil content of conventional unisolated soybean protein is about 4-5% by weight, and high-purity soybean 7S protein and soybean 11S protein are only 3% or less.
[0095] [LP-SPIを含有する血中コレステロール低下組成物] [0095] [Blood cholesterol lowering composition containing LP-SPI]
本発明により得られる LP-SPIを含有させることにより、血中コレステロール低下用組 成物を得ることが可能である。 LP-SPIは上記の何れの方法により分画されたものでも 血中コレステロール低下活性を有する。  By containing LP-SPI obtained by the present invention, a composition for lowering blood cholesterol can be obtained. LP-SPI has blood cholesterol lowering activity even if it is fractionated by any of the above methods.
本発明者らは、 LP-SPIをラットに摂取させ、 LP-SPIがラットの血中コレステロール濃 度に及ぼす効果を確認したところ、 LP-SPIは分離大豆蛋白、大豆 7S蛋白、大豆 11 S蛋白に比較して顕著に強い血中コレステロール低減作用を示すことを確認している 。また、本試験で用いたような純度の高い、すなわち LPの少ない 7Sは、ほとんど血中 コレステロール低下作用を示さな 、ことも確認して 、る。  The present inventors have ingested LP-SPI in rats and confirmed the effect of LP-SPI on blood cholesterol concentration in rats. LP-SPI is isolated soy protein, soy 7S protein, soy 11S protein. It has been confirmed that it has a remarkably strong blood cholesterol-reducing action compared to the above. It has also been confirmed that 7S having a high purity, that is, low LP, as used in the present study hardly shows a blood cholesterol lowering effect.
さらに、 LP-SPIをー且エタノールで洗浄し、クロメタ抽出物を除去した後、再度この クロメタ抽出物を添カ卩したものについては、エタノール洗浄前の LP-SPIほどの血中コ レステロール低下作用を示さな 、ことを確認して 、る。  In addition, LP-SPI was washed with ethanol, and after removal of the chromate extract, the addition of this chromate extract again reduced the blood cholesterol level as much as LP-SPI before washing with ethanol. Please make sure that you do not show.
すなわち、 LP-SPIは、 LPとクロメタ抽出物が共存し、かつこれらが複合体として存在 することにより、より強力なコレステロール低下作用を示すものである。  That is, LP-SPI exhibits a stronger cholesterol-lowering action by coexistence of LP and clometa extract and their presence as a complex.
[0096] 本発明の血中コレステロール低下用組成物中に添加する LP-SPIの含有量は、組 成物の形態'量によっても異なり、適宜設定することができる。通常は 1日あたりの有 効成分の摂取量を摂取できるように、 1日あたりの組成物の摂取量を考慮し、組成物 中の含有量を当業者が設定すればよい。例えば、 1日あたりの LP-SPIの摂取量を 4. 5gと設定した場合、 1日あたりの組成物の摂取量が 10gである場合は、組成物中の 有効成分の含有量を 45重量%とすれば良い。本発明の LP-SPI1日あたりの摂取量 は特に限定されないが、 4〜10gとすることができる。  [0096] The content of LP-SPI added to the composition for lowering blood cholesterol of the present invention varies depending on the amount of the composition, and can be appropriately set. In general, a person skilled in the art may set the content in the composition in consideration of the intake amount of the composition per day so that the intake amount of the active ingredient per day can be taken. For example, if the daily intake of LP-SPI is set to 4.5 g, and the daily intake of the composition is 10 g, the active ingredient content in the composition is 45% by weight. What should I do? The daily intake of LP-SPI of the present invention is not particularly limited, but can be 4 to 10 g.
[0097] 本発明の血中コレステロール低下用組成物には、 LP-SPIを使用する以外に、血中 コレステロール低下作用のあると 、われる材料を併用することも可能である。例えば、 イソフラボン、豆乳、分離大豆蛋白、濃縮大豆蛋白、レシチン、乳酸菌、ポリフエノー ル類、多糖類等を併用できる。 [0098] 本発明の血中コレステロール低下用組成物の形態は剤又は食品であることができ る。 [0097] In addition to using LP-SPI, the composition for lowering blood cholesterol of the present invention can be used in combination with a material that is said to have a blood cholesterol lowering action. For example, isoflavones, soy milk, separated soy protein, concentrated soy protein, lecithin, lactic acid bacteria, polyphenols, polysaccharides and the like can be used in combination. [0098] The form of the composition for lowering blood cholesterol of the present invention can be an agent or a food.
剤の場合は、種々の投与形態の製剤とすることができる。すなわち、経口的投与の 場合に、錠剤、硬カプセル剤、軟カプセル剤、粒剤もしくは丸剤等の固形製剤や、溶 液、ェマルジヨンもしくはサスペンジョンなどの液剤の形態等で投与することができる 。また、非経口的投与の場合に、注射溶液や坐剤などの形態で投与される。これらの 製剤の調製にあたっては製剤化のために許容される添加剤、例えば賦形剤、安定剤 、防腐剤、湿潤剤、乳化剤、滑沢剤、甘味料、着色料、香料、張度調製剤、緩衝剤、 酸化防止剤、 pH調整剤等を併用して製剤化することができる。  In the case of an agent, it can be prepared in various dosage forms. That is, in the case of oral administration, it can be administered in the form of solid preparations such as tablets, hard capsules, soft capsules, granules or pills, or liquid preparations such as solutions, emulsions or suspensions. In the case of parenteral administration, it is administered in the form of an injection solution or a suppository. In preparing these formulations, additives that are acceptable for formulation, such as excipients, stabilizers, preservatives, wetting agents, emulsifiers, lubricants, sweeteners, coloring agents, flavoring agents, tonicity adjusting agents. In addition, a buffer, an antioxidant, a pH adjuster, etc. can be used in combination.
食品の場合は、一般的な食品の形態である清涼飲料、乳製品、豆乳、発酵豆乳、 大豆蛋白飲料、豆腐、納豆、油揚げ、厚揚げ、がんもどき、ハンバーグ、ミートボール 、唐揚げ、ナゲット、各種総菜、焼き菓子、栄養バー、シリアル、飴、ガム、ゼリー等の 菓子類、タブレット、パン類、米飯類など、様々な食品に配合することができる。さらに 、食品の場合には食品の包装やパンフレット等の宣伝媒体等に LP-SPIが有効成分と して含まれる旨、そしてこれにより食品が血中コレステロールの低下作用を有する旨 を直接的又は間接的に記載した、日本の特定保健用食品などの健康食品にもする ことができる。  In the case of foods, soft drinks, dairy products, soy milk, fermented soy milk, soy protein drinks, tofu, natto, fried chicken, deep fried, gandou, hamburger, meatballs, fried chicken, nuggets It can be blended into various foods such as various prepared foods, baked goods, nutrition bars, cereals, rice cakes, gums, jelly and other sweets, tablets, breads, cooked rice. Furthermore, in the case of foods, it is directly or indirectly that LP-SPI is included as an active ingredient in advertising media such as food packaging and pamphlets, and that this has the effect of reducing blood cholesterol. It can also be used as health foods such as Japanese specific health foods.
[0099] 以上説明したとおり、本発明の利点は第一に、 LPを選択的に水不溶化処理を行う ことによって、従来複雑な操作が必要であった 7S、 11S,及び LPの分画を高純度、 効率的かつ簡易的に行えることにある。本発明の加工大豆を原料とすることにより、 7 Sと 11Sの混合物をそれぞれ固有の等電点において沈殿させるだけで高純度に分 画することが可能となる。また従来あまり認識されて 、なかった LPを高純度に分画す ることが可能となる。この LPを高度に含む LP-SPIは分離大豆蛋白よりも強い血中コレ ステロール低下作用を有しており、新規な大豆蛋白素材としての提供が可能となる。  [0099] As described above, the advantages of the present invention are as follows. First, by selectively subjecting LP to water insolubilization, the fractionation of 7S, 11S, and LP, which conventionally required complicated operations, is increased. Purity, efficiency and simplicity. By using the processed soybean of the present invention as a raw material, it becomes possible to fractionate the mixture of 7 S and 11 S with high purity by simply precipitating at a specific isoelectric point. Moreover, it becomes possible to fractionate LP which has not been recognized so far with high purity. LP-SPI containing LP in a high degree has a blood cholesterol lowering action stronger than isolated soy protein, and can be provided as a novel soy protein material.
[0100] そして本発明の第二の利点は、豆乳や分離大豆蛋白等の既存の大豆蛋白素材の 風味を改良できることである。すなわち本発明の大豆の加工処理により、 LPを選択 的に不溶化させ、 LPと会合する脂質が抽出されにくい状態に導くことができる。これ により、抽出された豆乳や、その豆乳から調製される各種大豆蛋白素材の風味が格 段に改良される。 [0100] The second advantage of the present invention is that the flavor of existing soy protein materials such as soy milk and isolated soy protein can be improved. That is, the processing of soybean of the present invention can selectively insolubilize LP and lead to a state in which lipids associated with LP are difficult to be extracted. As a result, the flavor of the extracted soy milk and the various soy protein ingredients prepared from the soy milk is rated. Improved to the stage.
また同時に LPの選択的水不溶ィ匕処理は、脂質劣化に関与するリポキシゲナーゼ などの大豆内在酵素の失活も伴う。特に含水極性有機溶媒の接触は酵素系の失活 を導き、抽出する際のオフフレーバーの発生を抑制することができる。オフフレーバ 一は、加工中に生成する臭い成分であり、主に脂質の不飽和脂肪酸の酵素的、化 学的酸化反応によって、アルデヒドゃケトン類の所謂カルボ二ルイ匕合物が発生してく る。これらは好ましくない風味の要因となる。本発明の加工大豆はカルボ二ルイ匕合物 の生成量が非常に少ないことも特徴の一つである。  At the same time, selective water-insoluble soot treatment of LP is accompanied by inactivation of soybean endogenous enzymes such as lipoxygenase involved in lipid degradation. In particular, contact with a hydrous polar organic solvent leads to inactivation of the enzyme system and can suppress the occurrence of off-flavor during extraction. Off-flavor is an odorous component generated during processing, and so-called carbocyclic compounds of aldehydes and ketones are generated mainly by enzymatic and chemical oxidation reactions of unsaturated fatty acids in lipids. These cause undesirable flavors. One of the characteristics of the processed soybean of the present invention is that the amount of carbo-like compound produced is very small.
さらに本発明の加工大豆は、加工処理により大豆中の菌数が低下したものである。 このことは、水を使用したカ卩ェプロセスにおける菌の増殖を抑えることになり、風味面 のみならず、衛星面でも利点がある。  Further, the processed soybean of the present invention is one in which the number of bacteria in the soybean is reduced by the processing treatment. This suppresses the growth of bacteria in the water-based cache process, and has an advantage not only in flavor but also in satellite.
得られた豆乳は、風味が良好であるので、高品質の豆乳素材として提供が可能で ある。さらにはこれから分画して製造される分離大豆蛋白、大豆 7S蛋白、及び大豆 1 1S蛋白も、いずれも格段に色や風味が良ぐ例えばレトルト殺菌のような強度の加熱 処理を施しても色が黒ずんだり、風味が悪ィ匕することはない。  Since the obtained soymilk has a good flavor, it can be provided as a high-quality soymilk material. Furthermore, the separated soy protein, soy 7S protein, and soy 11S protein produced by fractionation are all very good in color and flavor even when subjected to heat treatment such as retort sterilization. Will not darken or taste bad.
また、極性アルコールを使用した本発明の加ェ処理による酸化劣化に関与する酵 素の失活及び低菌化については、脱脂大豆だけでなぐ全脂大豆にももちろん適用 できるため、全脂大豆力も調製される豆乳の風味改善にも非常に有効である。  In addition, the deactivation and sterilization of the enzymes involved in the oxidative degradation of the present invention using polar alcohol can be applied to whole-fat soybeans as well as defatted soybeans. It is also very effective in improving the flavor of the soy milk prepared.
実施例  Example
[0101] 以下に本発明の実施例を記載するが、本発明は、この実施例にのみ限定されるも のではなぐ本発明の要旨を逸脱しない範囲内において種々変更をカ卩ぇ得ることは 勿論である。  [0101] Examples of the present invention will be described below, but the present invention is not limited to these examples, and various modifications can be made without departing from the scope of the present invention. Of course.
[0102] <加工脱脂大豆の製造 >  [0102] <Production of processed defatted soybeans>
〔実施例 1〕 一エタノール処理 1  [Example 1] Monoethanol treatment 1
密閉容器に充填した低変性脱脂大豆 (PDI: 83、水分 7.0%)lkgに含水エタノール (1 0%、 50%、 60%、 70%、及び 80%)をそれぞれ 100g噴霧しながら混合した。これを脱 脂大豆の品温が 70°Cになるように密閉容器の外側を加熱し、 30分維持した。容器か ら脱脂大豆を取り出し、放置冷却して加工脱脂大豆を調製した。各加工脱脂大豆の PDIはそれぞれ 71、 67、 64、 65、及び 64であった。 Hydrated ethanol (10%, 50%, 60%, 70%, and 80%) was mixed with 1 kg of low-denatured defatted soybean (PDI: 83, moisture 7.0%) filled in a sealed container while spraying 100 g each. The outside of the sealed container was heated so that the temperature of the defatted soybean reached 70 ° C and maintained for 30 minutes. The defatted soybean was taken out from the container and allowed to cool to prepare a processed defatted soybean. Each processed defatted soybean The PDIs were 71, 67, 64, 65, and 64, respectively.
[0103] 〔実施例 2〕一エタノール処理 2— [Example 2] Monoethanol treatment 2—
含水エタノール (70%)の噴霧量を 150gに増量する以外は、実施例 1と同様にしてカロ ェ脱脂大豆を調製した。この PDIは 72であった。  Calorie defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was increased to 150 g. This PDI was 72.
[0104] 〔実施例 3〕一エタノール処理 3— [Example 3] Monoethanol treatment 3—
含水エタノール (70%)の噴霧量を 200gに増量する以外は、実施例 1と同様にしてカロ ェ脱脂大豆を調製した。この PDIは 45であった。  Calorie defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was increased to 200 g. This PDI was 45.
[0105] 〔実施例 4〕一湿熱加熱処理 1 [Example 4] Humid heat heat treatment 1
脱脂大豆 (PDI: 83、水分 7.0%)lkgを相対湿度 90%以上の雰囲気下で脱脂大豆の 品温が 75°Cになるように密閉容器の外側を加熱し、 30分維持した。容器カゝら脱脂大 豆を取り出し、加工脱脂大豆を調製した。この PDIは 73であった。  The outside of the sealed container was heated to maintain the temperature of the defatted soybean (PDI: 83, moisture 7.0%) 1 kg in an atmosphere with a relative humidity of 90% or more so that the product temperature of the defatted soybean was 75 ° C and maintained for 30 minutes. Degreased soybeans were taken out from the container, and processed defatted soybeans were prepared. This PDI was 73.
[0106] 〔実施例 5〕一湿熱加熱処理 2— [Example 5] Moist heat treatment 2—
脱脂大豆の品温が 85°Cになるように加熱し、 60分維持する以外は、比較例 1と同様 にして加工脱脂大豆を調製した。この PDIは 66であった。  A processed defatted soybean was prepared in the same manner as in Comparative Example 1 except that the temperature of the defatted soybean was heated to 85 ° C and maintained for 60 minutes. This PDI was 66.
[0107] 〔実施例 6〕一エタノール処理 4一 [Example 6] One ethanol treatment 4
含水エタノール (70%)の噴霧量を 30gに減量する以外は実施例 1と同様にしてカロェ 脱脂大豆を調製した。この PDIは 79であった。  Caloe defatted soybean was prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (70%) was reduced to 30 g. This PDI was 79.
[0108] 〔比較例 1〕一エタノール処理 5— [Comparative Example 1] Monoethanol treatment 5—
含水エタノール (80%)の噴霧量を 1.5kgに増量し、加熱維持時間を 60分に延長する 以外は、実施例 1と同様にして加工脱脂大豆を調製した。この PDIは 32であった。  Processed defatted soybeans were prepared in the same manner as in Example 1 except that the spray amount of hydrous ethanol (80%) was increased to 1.5 kg and the heating maintenance time was extended to 60 minutes. This PDI was 32.
[0109] 〔比較実験例 1〕 一脱脂豆乳の調製と成分分析 [0109] [Comparative Experimental Example 1] Preparation and component analysis of one skim soymilk
実施例 1〜6及び比較例 1で得られた加工脱脂大豆が、 LPのみが選択的に不溶ィ匕 されている特性を具備しているカゝ否かを調べるため、上述の (方法 1)に従って脱脂 大豆力 オカラを分離して豆乳を調製し、(方法 2)に従って豆乳中のホェ一画分を 分離し、さらに 7S及び 11S画分 (MSP画分)と LP画分とに分画した。  In order to examine whether the processed defatted soybeans obtained in Examples 1 to 6 and Comparative Example 1 have the property that only LP is selectively insoluble, the above-mentioned (Method 1) Sophisticated soybean power Okara was separated according to, soy milk was prepared, and the whey fraction in the soy milk was separated according to (Method 2), and further fractionated into 7S and 11S fractions (MSP fraction) and LP fraction .
次に、得られたホェ一画分、オカラ画分、 LP画分及び MSP画分の窒素量をそれ ぞれケルダール法にて分析し、脱脂大豆中の全窒素量を 100%とした場合の各画 分への窒素移行率(%)を算出した。そして LP画分と MSP画分の窒素比率 (LPZ MSP)である選択的水不溶ィ匕指数を算出した。 Next, the nitrogen content of the obtained whey fraction, okara fraction, LP fraction and MSP fraction was analyzed by the Kjeldahl method, respectively, and the total nitrogen content in defatted soybean was 100%. The nitrogen transfer rate (%) to each fraction was calculated. And the nitrogen ratio of LP fraction and MSP fraction (LPZ The selective water insolubility index which is MSP) was calculated.
なお、対照として加工処理を施さない低変性脱脂大豆についても同様に豆乳を抽 出して分析を行った。結果を表 2に示す。  As a control, soy milk was also extracted and analyzed for low-denatured defatted soybeans that were not processed. The results are shown in Table 2.
(表 2)各種加工脱脂大豆から抽出した豆乳の分析結果 (Table 2) Analysis results of soy milk extracted from various processed defatted soybeans
Figure imgf000029_0001
Figure imgf000029_0001
実験結果より、実施例 1〜6で示した処理条件の加工脱脂大豆から抽出された豆乳 では選択的水不溶ィヒ指数 (LPZMSP)が比較例 1や対照に比べ顕著に低値を示した 。すなわち、加工脱脂大豆中の LPが選択的に不溶ィ匕され、これを水抽出しようとして も 50〜80%程度はオカラ画分へ留まることが確認された。  From the experimental results, the soy milk extracted from the processed defatted soybean under the treatment conditions shown in Examples 1 to 6 showed a significantly lower selective water insoluble index (LPZMSP) than Comparative Example 1 and the control. That is, it was confirmed that LP in the processed defatted soybean was selectively insoluble, and even if it was extracted with water, about 50 to 80% remained in the okara fraction.
さらに、実施例では実施例 3のように MSPへの窒素移行率が低下しており、歩留ま りが低下しているものもある力 ほとんどが 45%以上であり、未処理である対照の 48% に近い窒素移行率を示した。すなわち、 7Sと 11Sが高歩留まりで豆乳側へ抽出され ることが確認された。  In addition, in Example, the rate of nitrogen transfer to MSP decreased as in Example 3, and some of the forces decreased in yield. The nitrogen transfer rate was close to 48%. In other words, it was confirmed that 7S and 11S were extracted to the soy milk side with a high yield.
実施例 1〜3、実施例 6、比較例 1, 2の結果より、エタノール濃度が高ぐ添加量が 多いほど PDIは低値を示し、脱脂大豆の変性度合が大きくなつた。一方、エタノール 添加量がある程度多くなると LP画分への窒素移行率の低下傾向が小さくなり、逆に MSPの窒素移行率が低下する傾向になった。その結果 LPZMSPが増加傾向とな り、比較例 2では対照と変わらぬ数値を示した。 また、実施例 5, 6の湿熱加熱による脱脂大豆の加工法でも、 PDIはエタノール添 加と同程度の値が得られ、 LPの選択的に水不溶ィ匕されていた。強めに加熱した実施 例 6では MSP画分への窒素移行率が低下しつつあり、 LPZMSP比はエタノール処 理の場合よりも若干高めであった。湿熱加熱とエタノール添加との比較では、ェタノ ール添加の方力 LPZMSPが小さくなり、 LPがより選択的に水不溶ィ匕される傾向に めつに。 From the results of Examples 1 to 3, Example 6, and Comparative Examples 1 and 2, the higher the ethanol concentration and the greater the added amount, the lower the PDI, and the higher the degree of modification of defatted soybeans. On the other hand, when the amount of ethanol added increased to some extent, the tendency of the nitrogen transfer rate to the LP fraction decreased, and conversely the nitrogen transfer rate of MSP tended to decrease. As a result, LPZMSP increased and Comparative Example 2 showed the same value as the control. Further, in the processing methods of defatted soybeans by wet heat heating in Examples 5 and 6, PDI had a value similar to that of ethanol addition, and LP was selectively insoluble in water. In Example 6, which was heated strongly, the rate of nitrogen transfer to the MSP fraction was decreasing, and the LPZMSP ratio was slightly higher than in the case of ethanol treatment. In comparison between wet heat and ethanol addition, the ethanol addition force LPZMSP becomes smaller and LP tends to be more selectively water-insoluble.
以上の結果より、 LPを選択的に水不溶化させる脱脂大豆の加工処理条件としては 、 PDIが 40以上 80未満であって、 LPZMSPが 45%以下となる条件が好適であつ た。かかる条件を満たす具体的な加工処理方法としては、湿式加熱による制御、及 び大豆に対し 5〜 100%濃度の含水エタノールを 5〜: LOO重量%添加する方法が適 していた。特に含水エタノールを添加する方法によれば、 LPZMSPをより小さく、 35 %以下にすることができた。  From the above results, the processing conditions for defatted soybeans that selectively insolubilize LP with water were such that PDI was 40 or more and less than 80 and LPZMSP was 45% or less. As specific processing methods satisfying these conditions, control by wet heating and a method of adding 5 to 100% LOO wt% of water-containing ethanol having a concentration of 5 to 100% to soybeans were suitable. In particular, according to the method of adding hydrous ethanol, LPZMSP could be reduced to 35% or less.
[0112] 〔比較実験例 2〕 一豆乳および分離大豆蛋白溶液の風味確認 [0112] [Comparative Experiment 2] Confirmation of flavor of monosodium milk and isolated soy protein solution
比較実験例 1で各々の加工脱脂大豆力 調製された豆乳を 10分間煮沸後、室温ま で冷却して風味検定用の豆乳を得た。  Each processed defatted soybean power prepared in Comparative Experimental Example 1 was boiled for 10 minutes and then cooled to room temperature to obtain a soy milk for flavor test.
また、各豆乳を塩酸で PH4.5に調整後、沈澱物を遠心分離にて採取し、ホェ一画 分を除いた。さらに採取した沈澱物を水酸ィ匕ナトリウムで中和して 3%濃度になるよう に加水した。この中和液を 10分間煮沸後室温まで冷却して、風味検定用の分離大豆 蛋白溶液を調製した。この分離大豆タンパク質溶液については、上記 LP含量の推 定方法に従い、表 1の条件で SDSポリアクリルアミドゲル電気泳動による分析を実施 し、 LP含量の推定値である LCI値 (数 1参照)を求めた。  Each soymilk was adjusted to pH 4.5 with hydrochloric acid, and the precipitate was collected by centrifugation to remove the whey fraction. Further, the collected precipitate was neutralized with sodium hydroxide and watered to a concentration of 3%. The neutralized solution was boiled for 10 minutes and then cooled to room temperature to prepare a separated soy protein solution for flavor test. The separated soy protein solution is analyzed by SDS polyacrylamide gel electrophoresis under the conditions shown in Table 1 according to the LP content estimation method described above, and the LCI value (see Equation 1), which is the estimated LP content, is obtained. It was.
得られた各豆乳及び分離大豆蛋白溶液の風味を 10人のパネラーにて検定した。点 数は 10点満点で点数が多いほど、悪い風味が少ないとした。基準として、未処理の 調製例を 5点として、点数を付けた。合計点数をパネラーの人数で割った平均点を記 載している。  The flavor of each soymilk and separated soy protein solution obtained was tested by 10 panelists. The score was 10 out of 10 points, and the higher the score, the less bad flavor. As a standard, 5 untreated preparations were scored. The average score is calculated by dividing the total score by the number of panelists.
[0113] (表 3)各加工脱脂大豆から調製された脱脂豆乳および分離大豆蛋白溶液の風味検 定 加工方法 脱脂豆乳 分離大豆蛋白 LC it 備考 対照 未処理 5 5 40 青臭み、 雑味 [0113] (Table 3) Flavor test of defatted soymilk and isolated soy protein solution prepared from each processed defatted soybean Processing method Non-fat soy milk Isolated soy protein LC it Remarks Control Untreated 5 5 40 Blue odor, miscellaneous taste
10%エタノール 7.1 7.3 30  10% ethanol 7.1 7.3 30
50%エタノール 7.6 7.5 29  50% ethanol 7.6 7.5 29
実施例 1 60%エタノール 7.8 7.1 27  Example 1 60% ethanol 7.8 7.1 27
70%エタノール 7.3 8.2 25  70% ethanol 7.3 8.2 25
80%エタノール 7.7 7.6 25  80% ethanol 7.7 7.6 25
実施例 2 70%エタノール 8.9 9.4 23 スッキリ 実施例 3 70%エタノール 8.5 9.3 26  Example 2 70% ethanol 8.9 9.4 23 Clean Example 3 70% ethanol 8.5 9.3 26
実施例 4 湿熱 75 6.2 6.4 37  Example 4 Wet heat 75 6.2 6.4 37
実施例 5 湿熱 6.0 6.8 36 ロースト臭 実施例 6 70%エタノール 5.9 6.0 34  Example 5 Moist heat 6.0 6.8 36 Roast odor Example 6 70% ethanol 5.9 6.0 34
比較例 1 80%エタノール 8.2 9.3 39 回収率低い  Comparative Example 1 80% ethanol 8.2 9.3 39 Low yield
[0114] 実施例 1〜3、 6 (エタノール添加処理)の加工脱脂大豆を使用して抽出した脱脂豆 乳や分離大豆蛋白溶液は、いずれもすっきりしていて、嫌味が少ないという評価であ つた。実施例 4, 5についても風味は向上していた力 エタノール処理の方が改善効 果が大き力つた。実施例 5 (湿熱加熱処理)は、雑味が少ないことで点数は上がった 1S ロースト臭が感じられた。比較例 1は風味については良い評価であった力 MSP 画分の抽出量が少なすぎるため、製造プロセス上問題であった。 [0114] Processed defatted soybean milk and separated soy protein solution extracted from processed defatted soybeans of Examples 1 to 3 and 6 (ethanol addition treatment) were both evaluated to be clean and have less taste. . In Examples 4 and 5 as well, the flavor was improved. The ethanol treatment showed a greater improvement effect. In Example 5 (wet heat treatment), a 1S roast odor with an increased score due to less miscellaneous taste was felt. Comparative Example 1 was a problem in the manufacturing process because the extraction amount of the force MSP fraction, which was a good evaluation of the flavor, was too small.
[0115] 〔比較実験例 3〕 一抽出豆乳からの大豆 7S蛋白及び大豆 11S蛋白の調製 [0115] [Comparative Experimental Example 3] Preparation of soybean 7S protein and soybean 11S protein from one extracted soymilk
比較実験例 1で各々の加工脱脂大豆から調製された豆乳に塩酸で豆乳の pHを 5.8 に調整し、生じた沈澱を 1000G、 10分の遠心分離により回収した。この不溶性画分を 大豆 11S蛋白とした。  The soymilk prepared from each processed defatted soybean in Comparative Experimental Example 1 was adjusted to pH 5.8 with hydrochloric acid, and the resulting precipitate was collected by centrifugation at 1000 G for 10 minutes. This insoluble fraction was designated as soybean 11S protein.
また、遠心分離後の水溶性画分を塩酸でさらに pHを 4.5に調整し、生じた不溶性画 分を 1000G、 10分の遠心分離で回収した。この不溶性画分を大豆 7S蛋白とした。 各蛋白の固形分の 3.7 μ gを試料として SDS-ポリアクリルアミドゲル電気泳動に供し 、 SDS-PAGEにより展開し、純度検定を行った。純度検定は、クマシ一ブリリアントブ ルーで染色後、デンシトメ一ターに供し、全蛋白質のバンドの濃さに対する 7Sと 11S に相当するバンドの濃さが占める割合を算出する方法により行った。また、これらのサ ンプルの LCI値も求めた。その結果を表 4に示す。 [0116] (表 4)加工脱脂大豆力も調製した大豆 1 IS蛋白及び大豆 7S蛋白の純度及び回収 The water-soluble fraction after centrifugation was further adjusted to pH 4.5 with hydrochloric acid, and the resulting insoluble fraction was recovered by centrifugation at 1000 G for 10 minutes. This insoluble fraction was designated as soybean 7S protein. Using 3.7 μg of the solid content of each protein as a sample, it was subjected to SDS-polyacrylamide gel electrophoresis, developed by SDS-PAGE, and tested for purity. The purity test was performed by a method of calculating the ratio of the density of bands corresponding to 7S and 11S to the density of the total protein band after staining with Kumashi Brilliant Blue and using the densitometer. The LCI values for these samples were also determined. The results are shown in Table 4. [0116] (Table 4) Purity and Recovery of Soybean 1 IS Protein and Soybean 7S Protein Prepared with Processed Defatting Soybean Power
Figure imgf000032_0001
Figure imgf000032_0001
※脱脂大豆を 100%とした場合の固形分回収率  * Solid content recovery rate when defatted soybean is 100%
( )内数値; LCI値  Numbers in parentheses; LCI values
[0117] 全ての実施例では、大豆 11S蛋白の純度が 75%以上、実施例 1〜3では 90%以上 と高くなり、回収率も同等以上であった。大豆 7S蛋白の純度は全ての実施例で 38% 以上、実施例 1〜3では 50%以上であり、 60%を超えるようになる実施例もあった。こ れらの蛋白の風味は 、ずれもすつきりして 、て、嫌味が少な 、と!/、う評価であった。 比較例 1では大豆 11S蛋白の純度は実施例並みであつたが回収率が 6%とかなり 低くなつてしまった。これはオカラへの 7S、 11Sの移行量が多ぐ LPの選択的な水不 溶ィ匕が不十分であったためと考えられる。 [0117] In all Examples, the purity of soybean 11S protein was 75% or higher, and in Examples 1 to 3, the purity was 90% or higher, and the recovery rate was equivalent or higher. The purity of soybean 7S protein was 38% or more in all Examples, 50% or more in Examples 1 to 3, and some Examples exceeded 60%. The flavor of these proteins was very good, and the taste was very good! In Comparative Example 1, the purity of soybean 11S protein was similar to that of the Example, but the recovery rate was 6%, which was considerably low. This is thought to be because the selective water insolubility of LP with a large amount of 7S and 11S transferred to Okara was insufficient.
[0118] 〔実施例 7〕 一高純度大豆 7S蛋白の調製  [Example 18] Preparation of high purity soybean 7S protein
大豆 7S蛋白については、純度を上げるために、さらに以下のような方法が適用でき る。  In order to increase the purity of soybean 7S protein, the following methods can be applied.
実施例 2で調製された加工脱脂大豆を用いて比較実験例 3に従い、大豆 11S蛋白 を回収した後の水溶性画分を塩酸にて pHを 5.0に調整し、 60°Cで 15分間加熱後、苛 性ソーダで pHを 5.5にして 30分間プロペラ攪拌(300〜350rpm)後、不溶性画分 Aを 1 000G、 10分の遠心分離にて除去した(図 4 : 7S不純物)。その上清を塩酸にて pHを 4. 5に調整し、生じた不溶性画分 Bを 1000G、 10分の遠心分離にて回収した。この不溶 性画分 Bを大豆 7S蛋白として SDS-PAGEで比較実験例 3と同様に純度検定した結果 、 91%であった(図 4 : 7Sグロブリン)。また、このときの LCI値は、 12であった。 According to Comparative Experimental Example 3 using the processed defatted soybean prepared in Example 2, the water-soluble fraction after recovering the soybean 11S protein was adjusted to pH 5.0 with hydrochloric acid and heated at 60 ° C for 15 minutes. Then, adjust the pH to 5.5 with caustic soda and stir the propeller for 30 minutes (300 to 350 rpm). It was removed by centrifugation at 000G for 10 minutes (Figure 4: 7S impurities). The supernatant was adjusted to pH 4.5 with hydrochloric acid, and the resulting insoluble fraction B was recovered by centrifugation at 1000 G for 10 minutes. The purity of this insoluble fraction B was determined by SDS-PAGE in the same manner as in Comparative Experimental Example 3 as soybean 7S protein, and the result was 91% (FIG. 4: 7S globulin). The LCI value at this time was 12.
この蛋白の風味はすつきりして 、て、嫌味が少な ヽと 、う評価であった。  The flavor of this protein was excellent, and it was evaluated as ヽ with less disgusting taste.
[0119] 〔実施例 8〕 一 LP— SPIの調製 1一 [Example 8] One Preparation of LP-SPI 1
実施例 2で調製された加工脱脂大豆を用いて比較実験例 2に従い、豆乳を抽出し た後のオカラに同重量の水をカ卩え、 110°C、 30秒の加熱処理をした後、遠心分離(10 00g、 10分)で水溶性画分を回収した。この水溶性画分に塩酸をカ卩え、 pHを 4.5に調 整し、生じた不溶性画分を遠心分離(1000g、 10分)で回収した。この画分を LP— SP Iとした(図 4 :レーン LP)。この蛋白の固形分中に含まれる油分は、エーテルで抽出さ れる油分は 1%であり、クロ口ホルム:メタノールの比が 2 : 1の混合溶媒で抽出される 油分が 11%であり、極性脂質に親和性を示す LPが多く含まれることを示していた。 得られた LP— SPIは、従来分離大豆蛋白のオフフレーバーの原因成分であると考 えられていた LPを高含有するため、悪風味が予想されたが、実際に風味を検定する と、意外にも悪風味のない良好な風味を呈していた。このときの LCI値は 72%であつ た。  According to Comparative Experimental Example 2 using the processed defatted soybean prepared in Example 2, the same weight of water was added to the okara after extracting the soy milk, and the heat treatment was performed at 110 ° C. for 30 seconds. The water-soluble fraction was recovered by centrifugation (100 g, 10 minutes). Hydrochloric acid was added to this water-soluble fraction, the pH was adjusted to 4.5, and the resulting insoluble fraction was collected by centrifugation (1000 g, 10 minutes). This fraction was designated LP-SP I (Fig. 4: Lane LP). The oil contained in the solid content of this protein is 1% of the oil extracted with ether, 11% of the oil extracted with a mixed solvent with a 2: 1 ratio of formaldehyde to methanol, and polar It was shown that many LPs showing affinity for lipid were contained. The resulting LP-SPI contained a high amount of LP, which was previously thought to be a causative component of the off-flavor of soy protein isolate, and was expected to have a bad taste. It had a good flavor with no bad flavor. The LCI value at this time was 72%.
[0120] 〔実施例 9〕一 LP— SPIの調製 2—  [Example 9] One LP—SPI Preparation 2—
実施例 7と同様の方法でで得られた不溶性画分 Aを回収し、この画分を LP— SPIと した。この蛋白の固形分中に含まれる油分は、エーテルで抽出される油分は 1%であ り、クロ口ホルム:メタノールの比が 2 : 1の混合溶媒で抽出される油分が 9%であり、極 性脂質に親和性を示す LPが多く含まれることを示していた。  Insoluble fraction A obtained by the same method as in Example 7 was collected, and this fraction was designated LP-SPI. The oil contained in the solid content of this protein is 1% of the oil extracted with ether, and 9% of the oil is extracted with a mixed solvent with a 2: 1 ratio of formaldehyde to methanol. It was shown that many LPs having affinity for polar lipids were contained.
得られた LP— SPIは、実施例 7の LP— SPIと同様に、意外にも悪風味のない良好 な風味を呈していた。このときの LCI値は 71%であった。  The obtained LP-SPI, like the LP-SPI of Example 7, had a surprisingly good taste with no bad taste. The LCI value at this time was 71%.
[0121] 〔栄養試験 1〕 LP-SPIの血中コレステロール低下作用の確認 [0121] [Nutrition test 1] Confirmation of blood cholesterol lowering effect of LP-SPI
比較実験例 3、実施例 6及び実施例 7で得られた各種大豆蛋白素材の血中コレス テロール低下活性にっ 、て確認した。  The various cholesterol protein lowering activities of the various soybean protein materials obtained in Comparative Experimental Example 3, Example 6 and Example 7 were confirmed.
AIN-93G組成(REEVES P.G.ら: J. NUTR., 123, 1939-1951, 1993.)に基づき、カゼ イン「ビタミンフリーカゼイン」(オリエンタル酵母 (株)製、以下「カゼイン」と記載する。 )Based on AIN-93G composition (REEVES PG et al .: J. NUTR., 123, 1939-1951, 1993.) In “vitamin-free casein” (made by Oriental Yeast Co., Ltd., hereinafter referred to as “casein”)
20重量%配合食を対照として、蛋白質源のうち 10重量 %をそれぞれ(1)分離大豆蛋 白「フジプロ F」(不二製油 (株)製)、(2)比較実験例 3と同様に製造した大豆 11S蛋白 、(3)実施例 7と同様に製造した大豆 7S蛋白、(4)実施例 8と同様に製造した LP-SPI 、又は(5)実施例 9と同様に製造した LP-SPIで置換した試験食 (表 5)を以下の方法 で動物に蛋白質として 1日 2g摂取させた。 10% by weight of the protein source (1) Isolated soy protein “Fujipro F” (Fuji Oil Co., Ltd.) and (2) Comparative Experiment 3 Soy 11S protein, (3) soy 7S protein produced in the same manner as in Example 7, (4) LP-SPI produced in the same manner as in Example 8, or (5) LP-SPI produced in the same manner as in Example 9. The test meal (Table 5) replaced with 1 was ingested 2 g / day as protein by the following method.
モデル動物は 6週齢の WISTAR系雄ラット(日本 SLC (株)販)を 36匹使用した。 1週 間の予備飼育後、群間の平均体重がほぼ同等になるように各群 6匹づつに群分けし 、 2週間の試験食飼育を行った。  As model animals, 36 6-week-old WISTAR male rats (marketed by Japan SLC Co., Ltd.) were used. After 1 week of preliminary breeding, each group was divided into 6 animals so that the average body weight between groups was almost equal, and the test food was raised for 2 weeks.
[0122] (表 5) 配合 試験群 カゼイン群 (対照群) 大豆蛋白素材 10.0 ― [0122] (Table 5) Combination test group Casein group (control group) Soy protein material 10.0 ―
カゼイン 10.0 20.0  Casein 10.0 20.0
シュクロ一ス 10.0 10.0  Sucrose 10.0 10.0
Bコーンスターチ 39.4 39.4  B corn starch 39.4 39.4
Aコーンスターチ 13.2 13.2  A corn starch 13.2 13.2
大豆油 7.0 7.0  Soybean oil 7.0 7.0
ビタミン混合物※ 1.0 1.0  Vitamin mixture * 1.0 1.0
ミネラル混合物※※ 3.5 3.5  Mineral mixture ** 3.5 3.5
セルロース 5.0 5.0  Cellulose 5.0 5.0
重酒石酸コリン 0.25 0.25  Choline bitartrate 0.25 0.25
コレステロール 0.5 0.5  Cholesterol 0.5 0.5
コール酸ナトリウム 0.125 0.125  Sodium cholate 0.125 0.125
□口 1 100 100 □ mouth 1 100 100
※ AIN-93組成、 口口※※ AIN-93G組成 ※ AIN-93 composition, mouth mouth ※※ AIN-93G composition
[0123] 試験期間終了後、朝 8:00より 6時間絶食の後にネンブタール麻酔下で開腹し、腹部 大動脈より採血した。血液はへパリン処理後、 3000RPMで 15分間遠心分離し、得られ た血漿を血液サンプルとし、血中総コレステロール (TC)と、糞中ステロイド排泄量を 測定した。 [0123] After the test period, the rats were fasted for 6 hours from 8:00 am and then opened under Nembutal anesthesia, and blood was collected from the abdominal aorta. The blood was centrifuged at 3000 RPM for 15 minutes after heparin treatment, and the resulting plasma was used as a blood sample to measure blood total cholesterol (TC) and fecal steroid excretion.
TCは富士ドライケム 5500 (富士フィルム (株))を用いて測定した。また糞中ステロイド 排泄量については、屠殺直前の 3日間に糞の採集を行い、凍結乾燥、粉砕したのち 、排泄された中性,酸性のステロイドをそれぞれ Miettinenらの方法(Miettinen, T. A.; Ahrens, E. H. Jr.; Grundy, S. M. Quantitative isolation and gas— liquid chromatogra phic analysis of total dietary and fecal neutral steroids. J. Lipid Res., 6, 411-424, 19 65.)、 Grundyらの方法に(Grundy, S. M.; Ahrens, E. H. Jr.; Miettinen, T. A. Quanti tative isolation and gas— liquid chromatographic analysis of total fecal bile acids. J. Li pid Res., 6, 397-410, 1965.)に従ってガスクロマトグラフィーを用いて分析し、それら を合計して算出した。 TC was measured using Fuji Dry Chem 5500 (Fuji Film Co., Ltd.). For fecal steroid excretion, fecal samples were collected, freeze-dried and crushed for 3 days immediately before slaughter. , Excreted neutral and acidic steroids by Miettinen et al. (Miettinen, TA; Ahrens, EH Jr .; Grundy, SM Quantitative isolation and gas—liquid chromatogra phic analysis of total dietary and fecal neutral steroids. J. Lipid Res., 6, 411-424, 19 65.), Grundy et al. (Grundy, SM; Ahrens, EH Jr .; Miettinen, TA Quanti tative isolation and gas—liquid chromatographic analysis of total fecal bile acids. Li pid Res., 6, 397-410, 1965.) was analyzed using gas chromatography and the total was calculated.
2週間試験飼料で飼育されたラットのコレステロール値及び糞中総ステロイド排泄 量の変化についての結果を表 6に示した。  Table 6 shows the results of changes in cholesterol levels and fecal total steroid excretion in rats fed the 2-week test diet.
[0124] (表 6)結果: 2週間試験飼料で飼育されたラットのコレステロール値変化 [0124] (Table 6) Results: Changes in cholesterol levels in rats fed a 2-week test diet
Figure imgf000035_0001
Figure imgf000035_0001
有意差検定:各群の異なる記号間で有意差あり (P<0.05)  Significant difference test: Significant difference between different symbols in each group (P <0.05)
[0125] 以上の結果、 LP-SPIの摂取は、分離大豆蛋白や大豆 7S蛋白よりも有意に血中コレ ステロール低下作用が認められ、大豆 11S蛋白に対しても低下する傾向が見られた 。すなわち、本発明の方法で分画した LP-SPIは従来の大豆蛋白素材よりも強い血中 コレステロール低下作用を有する素材であることが認められた。 [0125] As a result of the above, LP-SPI intake was found to have a significantly lower blood cholesterol lowering effect than isolated soy protein and soy 7S protein, and also tended to decrease with respect to soy 11S protein. That is, it was confirmed that LP-SPI fractionated by the method of the present invention has a stronger blood cholesterol lowering effect than the conventional soybean protein material.
[0126] 〔栄養試験 2〕  [Nutrition test 2]
次に、 LP-SPIをエタノールで洗浄し、クロメタ抽出物を除去したときの血中コレステ ロール低下作用に及ぼす影響を調べた。  Next, LP-SPI was washed with ethanol, and the effect of removing the clometa extract on blood cholesterol reduction was examined.
実施例 8と同様にして製造した LP-SPIを 10容量倍の 70%エタノールで一回洗浄し 、次に 3容量倍の 70%エタノールで一回洗浄し、次いで 2容量倍の 99.5%エタノール で洗浄で洗浄した。室温で一夜乾燥後、 60°Cで一時間乾燥し、エタノール洗浄 LP-S PI (LP-EW)を得た。 LP-EW中のクロメタ抽出物の含量は 1. 4%となっていた。 LP-SPI produced in the same manner as in Example 8 was washed once with 10 volumes of 70% ethanol, then once with 3 volumes of 70% ethanol, and then with 2 volumes of 99.5% ethanol. Washed with washing. After drying overnight at room temperature, drying at 60 ° C for 1 hour, ethanol washing LP-S Obtained PI (LP-EW). The content of Crometa extract in LP-EW was 1.4%.
次に、上記のエタノール洗浄液からエタノールをエバポレーター(50〜55°C)で蒸 発させ、凍結乾燥しすることにより、脂質を回収した。この脂質を表 5の大豆油に溶解 し、再度 LP-EWと試験食中で混合した試料 (LP-EW+Lipid)を得た。  Next, ethanol was evaporated from the ethanol washing solution with an evaporator (50 to 55 ° C) and freeze-dried to recover lipids. This lipid was dissolved in soybean oil shown in Table 5, and a sample (LP-EW + Lipid) mixed with LP-EW in the test meal again was obtained.
栄養試験 1と同様に、カゼイン 20重量%配合食を対照として、蛋白質源のうち 10重 量%をそれぞれ LP-SPI、 LP-EW, LP-EW+Lipidで置換した試験食(表 5)を以下の方 法で動物に蛋白質として 1日 2g摂取させた。各蛋白の摂取群は、カゼイン群 (対照群 )、 LP- SPI群、 LP- EW群、 LP- EW+Lipid群とし、モデル動物は 6週齢の WISTAR系雄 ラット(日本 SLC (株)販)を 24匹使用した。 1週間の予備飼育後、群間の平均体重が ほぼ同等になるように各群 6匹づつに群分けし、 2週間の試験食飼育を行った。試験 期間終了後、栄養試験 1と同様に 2週間試験試料で飼育されたラットの血中コレステ ロール値の変化についての結果を表 7に示した。  As in Nutrition Test 1, a test diet (Table 5) was prepared by substituting 10 wt% of the protein source with LP-SPI, LP-EW, LP-EW + Lipid, respectively, using a diet containing 20 wt% casein as a control. Animals were ingested 2g daily as protein in the following manner. Each protein intake group was a casein group (control group), LP-SPI group, LP-EW group, LP-EW + Lipid group, and model animals were 6-week-old WISTAR male rats (sold by Japan SLC Co., Ltd.). 24) were used. After one week of preliminary breeding, each group was divided into 6 animals so that the average body weight between groups was almost the same, and the test food was raised for 2 weeks. Table 7 shows the results of changes in blood cholesterol levels in rats fed with test samples for 2 weeks after the end of the test period.
[0127] (表 7) 2週間試験飼料で飼育されたラットのコレステロール値変化 [0127] (Table 7) Change in cholesterol level of rats fed 2-week test diet
Figure imgf000036_0001
Figure imgf000036_0001
(備考) 有意差検定: 各群の異なる記号間で有意差あり (P<0.05)  (Remarks) Significant difference test: Significant difference between different symbols in each group (P <0.05)
[0128] 表 7の結果より、 LP-SPIはエタノールでクロメタ抽出物が除去されてしまうと、再度ク 口メタ抽出物を混合しても、強力な血中コレステロール低減作用を失う傾向が見られ た。このことから、本発明の LP-SPIは、 LP単独で存在するよりも、 LPと親和性の高い レシチンなどのクロメタ抽出物が共存し、かつ複合体ィ匕していることにより、より強い血 中コレステロール低減作用を示すと考えられる。 産業上の利用可能性  [0128] From the results in Table 7, LP-SPI showed a tendency to lose its powerful blood cholesterol-reducing effect even if it was mixed again when LP-SPI was removed with ethanol. It was. Therefore, the LP-SPI of the present invention has a stronger blood flow due to coexistence and complexation of a chromate extract such as lecithin, which has a higher affinity for LP, than the presence of LP alone. It is thought to show an effect of reducing medium cholesterol. Industrial applicability
[0129] 本発明の加工大豆を原料とすることにより、大豆蛋白質を 7Sグロブリン、 11Sグロブ リン、脂質親和性蛋白質にそれぞれ高純度かつ簡便に分画することが可能であり、 従来の分画方法による複雑な製造プロセスを大幅に改善することができる。 [0130] また、高純度の大豆 7S蛋白、大豆 11S蛋白、非 7S ' 11S—酸沈殿性大豆蛋白を 提供することにより、それぞれの物性や栄養生理機能をより活力した食品製造が可能 となる。特に非 7S - 11S-酸沈殿性大豆蛋白はこれまで製品化されて 、な 、新規の 大豆蛋白素材であり、従来の分離大豆蛋白よりもコレステロール低下作用が高いの で、特定保健用食品などの栄養改善への用途が期待される。 [0129] By using the processed soybean of the present invention as a raw material, it is possible to fractionate soybean protein into 7S globulin, 11S globulin, and lipophilic protein, respectively, with high purity and easily, and the conventional fractionation method This can greatly improve the complicated manufacturing process. [0130] In addition, by providing high-purity soybean 7S protein, soybean 11S protein, and non-7S'11S-acid-precipitating soybean protein, it becomes possible to produce foods with more vigorous physical properties and nutritional physiological functions. In particular, 7S-11S-acid-precipitated soy protein has been commercialized so far, and it is a novel soy protein material that has a higher cholesterol lowering effect than conventional soy protein isolates. Use for nutrition improvement is expected.
[0131] さらに、本発明で得られる豆乳、分離大豆蛋白、大豆 7S蛋白、大豆 11S蛋白、ォ カラ、非 7S · 11S—酸沈殿性大豆蛋白は従来の大豆蛋白素材に比べて非常に風味 が良好であるため、これらを使用する従来食品の品質改善においても利用価値が高 い。  [0131] Further, the soy milk, isolated soybean protein, soybean 7S protein, soybean 11S protein, okara, non-7S · 11S-acid-precipitated soy protein obtained in the present invention has a very flavor compared to conventional soybean protein materials. Since it is good, it is highly useful in improving the quality of conventional foods that use these.
図面の簡単な説明  Brief Description of Drawings
[0132] [図 1]7Sグロブリンと 11Sグロブリンの各 pHにおける溶解挙動を示すグラフである。  [0132] Fig. 1 is a graph showing the dissolution behavior of 7S globulin and 11S globulin at each pH.
[図 2]7Sグロブリン画分、 11Sグロブリン画分、脂質親和性蛋白質画分の SDS—ポリ アクリルアミドゲル電気泳動による泳動パターンを示した図面代用写真である。  FIG. 2 is a drawing-substituting photograph showing migration patterns of SDS-polyacrylamide gel electrophoresis of 7S globulin fraction, 11S globulin fraction, and lipophilic protein fraction.
[図 3]実施例 2及び比較例 1の加工脱脂大豆力 調製した大豆 11Sグロブリン蛋白及 びオカラの SDS—ポリアクリルアミドゲル電気泳動による泳動パターンを示した図面 代用写真である。  FIG. 3 is a drawing-substituting photograph showing the migration pattern of the prepared soybean 11S globulin protein and okara in SDS-polyacrylamide gel electrophoresis in Example 2 and Comparative Example 1;
[図 4]実施例 2の加工脱脂大豆力も調製した各画分 (オカラ、脱脂豆乳、 11Sグロプリ ン、 7S不純物、 7Sグロブリン、ホエー、脂質親和性蛋白質)の SDS—ポリアクリルアミ ドゲル電気泳動による泳動パターンを示した図面代用写真である。  [Fig. 4] SDS-polyacrylamide gel electrophoresis of each fraction (okara, defatted soymilk, 11S globulin, 7S impurities, 7S globulin, whey, lipophilic protein) prepared with processed defatted soybean power of Example 2 It is the drawing substitute photograph which showed the electrophoresis pattern.

Claims

請求の範囲 The scope of the claims
[I] 蛋白質及びオカラ成分を含有し、 PDIが 40以上 80未満であり、含まれる蛋白質のう ち脂質親和性蛋白質が選択的に水不溶化されていることを特徴とする加工大豆。  [I] A processed soybean comprising a protein and an okara component, having a PDI of 40 or more and less than 80, wherein a lipophilic protein is selectively water-insolubilized out of the contained proteins.
[2] 選択的水不溶化指数 (LPZMSP)が 45%以下である請求項 1記載の加工大豆。  [2] The processed soybean according to claim 1, wherein the selective water insolubility index (LPZMSP) is 45% or less.
[3] 選択的水不溶化指数 (LPZMSP)が 35%以下である請求項 1記載の加工大豆。 [3] The processed soybean according to claim 1, wherein the selective water insolubility index (LPZMSP) is 35% or less.
[4] 7Sグロブリン、 11Sグロブリン及び脂質親和性蛋白質力も選択される 1種以上の酸沈 殿性大豆蛋白質の分画用である請求項 1記載の加工大豆。 [4] The processed soybean according to claim 1, which is used for fractionation of 7S globulin, 11S globulin, and one or more acid-precipitating soybean proteins that are also selected for lipophilic protein strength.
[5] 蛋白質及びオカラ成分を含む原料大豆に対し、等重量以下の極性アルコール溶液 を含浸させることを特徴とする請求項 1記載の加工大豆の製造法。 [5] The method for producing processed soybeans according to [1], wherein the raw soybean containing the protein and the okara component is impregnated with an equal weight or less polar alcohol solution.
[6] 極性アルコール溶液を含浸させる工程と、品温 30〜95°Cで加温処理を行う工程とを 含むことを特徴とする請求項 5記載の加工大豆の製造法。 6. The method for producing processed soybean according to claim 5, comprising a step of impregnating with a polar alcohol solution and a step of heating at a product temperature of 30 to 95 ° C.
[7] 蛋白質及びオカラ成分を含む原料大豆に対し、加熱処理を施すことを特徴とする請 求項 2記載の加工大豆の製造法。 [7] The method for producing processed soybean according to claim 2, wherein the raw soybean containing the protein and the okara component is subjected to heat treatment.
[8] 7Sグロブリン、 11Sグロブリン及び脂質親和性蛋白質からなる群より選択される少な くとも 1種の酸沈殿性大豆蛋白質が濃縮された分画大豆蛋白を製造するための、請 求項 1記載の加工大豆の使用。 [8] Claim 1 for producing a fractionated soy protein enriched with at least one acid-precipitating soy protein selected from the group consisting of 7S globulin, 11S globulin and lipophilic protein Use of processed soybeans.
[9] 請求項 1記載の加工大豆力 調製した豆乳又はオカラを原料とし、 7Sグロブリン、 11[9] Processed soybean power according to claim 1 Using as a raw material the prepared soymilk or okara, 7S globulin, 11
Sグロブリン及び脂質親和性蛋白質力 なる群より選択される少なくとも 1種の酸沈殿 性大豆蛋白質が濃縮された画分を回収することを特徴とする分画大豆蛋白の製造 法。 A method for producing fractionated soy protein, comprising collecting a fraction enriched with at least one acid-precipitating soy protein selected from the group consisting of S globulin and lipophilic protein.
[10] 請求項 1記載の加工大豆力も調製した豆乳を分画してなる大豆 11Sグロブリン蛋白。  [10] A soy 11S globulin protein obtained by fractionating the soy milk having the processed soybean power according to claim 1.
[II] 請求項 1記載の加工大豆力 調製した豆乳を pH5.2〜6.4に調整し、不溶性画分を回 収することを特徴とする大豆 11Sグロブリン蛋白の製造法。  [II] Processed soybean power of claim 1 A method for producing soybean 11S globulin protein, comprising adjusting the prepared soy milk to pH 5.2 to 6.4 and collecting the insoluble fraction.
[12] 請求項 1記載の加工大豆力 調製した豆乳を分画してなる大豆 7Sグロブリン蛋白。  [12] The soybean 7S globulin protein obtained by fractionating the prepared soy milk according to claim 1.
[13] 請求項 1記載の加工大豆力 調製した豆乳を pH5.2〜6.4に調整し、不溶性画分を分 離して得た水溶性画分を pH4〜5.5に調整し、不溶性画分を回収することを特徴とす る大豆 7Sグロブリン蛋白の製造法。 [13] Processed soybean power according to claim 1 The prepared soymilk is adjusted to pH 5.2 to 6.4, the water-soluble fraction obtained by separating the insoluble fraction is adjusted to pH 4 to 5.5, and the insoluble fraction is recovered. A method for producing a soybean 7S globulin protein characterized by comprising:
[14] 請求項 13記載の水溶性画分を pH4〜5.5に調整し 40〜65°Cで加熱後、 pH5.3〜5.7 に調整して生ずる不溶性画分を分離し、得られた水溶性画分を pH4〜5に調整し、不 溶性画分を回収することを特徴とする大豆 7Sグロブリン蛋白の製造法。 [14] The water-soluble fraction according to claim 13 is adjusted to pH 4 to 5.5, heated at 40 to 65 ° C, and then pH 5.3 to 5.7. A method for producing a soybean 7S globulin protein, comprising separating an insoluble fraction produced by the adjustment to pH 4, adjusting the obtained water-soluble fraction to pH 4 to 5, and collecting the insoluble fraction.
[15] 請求項 1記載の加工大豆力 調製した豆乳を pH4〜5.5に調整し 40〜65°Cで加熱 後、 pH5.3〜5.7に調整して生ずる不溶性画分を分離し、得られた水溶性画分を pH4 〜5に調整し、不溶性画分を回収することを特徴とする大豆 7Sグロブリン蛋白の製造 法。 [15] Processed soybean power according to claim 1 The prepared soymilk was adjusted to pH 4 to 5.5, heated at 40 to 65 ° C, and then adjusted to pH 5.3 to 5.7, and the resulting insoluble fraction was separated and obtained. A method for producing a soybean 7S globulin protein, comprising adjusting a water-soluble fraction to pH 4 to 5 and collecting an insoluble fraction.
[16] 請求項 1記載の加工大豆力 調製したオカラを分画してなり、クロ口ホルムとメタノー ルの体積比が 2: 1の溶媒で抽出される油分を 7%以上含有することを特徴とする非 7 [16] Processed soybean power according to claim 1 characterized in that it comprises a fraction of the prepared okara and contains at least 7% oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1. Non 7
S - 11S-酸沈殿性大豆蛋白。 S-11S-acid precipitating soy protein.
[17] LCI値が 60%以上である請求項 16記載の非 7S ' 11S—酸沈殿性大豆蛋白。 [17] The non-7S′11S-acid-precipitated soybean protein according to claim 16, having an LCI value of 60% or more.
[18] 請求項 1記載の加工大豆力も調製したオカラに加水し、加熱抽出した抽出液を回収 することを特徴とする非 7S - 11S-酸沈殿性大豆蛋白の製造法。 [18] A process for producing a non-7S-11S-acid-precipitating soybean protein, characterized in that the processed soybean power according to claim 1 is added to the prepared okara and the extract extracted by heating is recovered.
[19] 該抽出液を酸沈澱させ、不溶性画分を回収することを特徴とする請求項 18記載の非[19] The non-reactor according to [18], wherein the extract is acid precipitated to recover an insoluble fraction.
7S - 11S-酸沈殿性大豆蛋白の製造法。 7S-11S-Production method of acid-precipitating soy protein.
[20] 請求項 1記載の加工大豆から調製した豆乳を分画してなり、クロ口ホルムとメタノール の体積比が 2 : 1の溶媒で抽出される油分を 7%以上含有することを特徴とする非 7S '[20] A soybean milk prepared from the processed soybean according to claim 1 is fractionated, and contains at least 7% of oil extracted with a solvent having a volume ratio of black mouth form to methanol of 2: 1. Non 7S '
11S—酸沈殿性大豆蛋白。 11S—acid-precipitating soy protein.
[21] LCI値が 60%以上である請求項 20記載の非 7S ' 11S—酸沈殿性大豆蛋白。 [21] The non-7S′11S-acid-precipitated soybean protein according to item 20, having an LCI value of 60% or more.
[22] 請求項 14記載の pH5.3〜5.7に調整して生ずる不溶性画分を回収することを特徴と する非 7S · 11 S—酸沈殿性大豆蛋白の製造法。 [22] A method for producing a non-7S · 11S-acid-precipitated soy protein, wherein the insoluble fraction produced by adjusting the pH to 5.3 to 5.7 according to claim 14 is recovered.
[23] 請求項 5記載の加工大豆を原料とする豆乳。 [23] Soy milk made from the processed soybean according to claim 5.
[24] 請求項 5記載の加工大豆を水抽出し、水溶性画分を回収することを特徴とする豆乳 の製造法。  [24] A process for producing soymilk, wherein the processed soybean according to claim 5 is extracted with water and a water-soluble fraction is collected.
[25] 請求項 5記載の加工大豆を原料とするオカラ。  [25] An okara made from the processed soybean according to claim 5.
[26] 請求項 5記載の加工大豆を水抽出し、不溶性画分を回収することを特徴とするオカラ の製造法。  [26] A method for producing okara, wherein the processed soybean according to claim 5 is extracted with water and an insoluble fraction is collected.
[27] 請求項 5記載の加工大豆から調製した豆乳を原料とする分離大豆蛋白。  [27] An isolated soybean protein obtained from soybean milk prepared from the processed soybean according to claim 5.
[28] LCI値が 38%以下である請求項 27記載の分離大豆蛋白。 [28] The isolated soy protein according to claim 27, having an LCI value of 38% or less.
[29] 下記工程を経ることを特徴とする大豆蛋白質の分画方法: [29] A method for fractionating soy protein comprising the following steps:
1.請求項 1記載の加工大豆に加水し、豆乳及びオカラに分離する工程、  1. watering the processed soybean according to claim 1 and separating it into soy milk and okara,
2.前記豆乳を pH5.2〜6.4に調整し、水溶性画分を分離して不溶性画分である大豆 11Sグロブリン蛋白を得る工程、  2. Adjusting the soy milk to pH 5.2 to 6.4, separating the water-soluble fraction to obtain soybean 11S globulin protein which is an insoluble fraction,
3.前記水溶性画分を pH4〜5.5に調整して 40〜65°Cで加熱後、 pH5.3〜5.7に調整 し、  3. Adjust the water-soluble fraction to pH 4 to 5.5, heat at 40 to 65 ° C, adjust to pH 5.3 to 5.7,
水溶性画分を分離して不溶性画分である非 7S - 11S-酸沈殿性大豆蛋白を得るェ 程、  Separating the water-soluble fraction to obtain an insoluble fraction, a non-7S-11S-acid-precipitated soybean protein;
4.前記 pH5.3〜5.7に調整して分離した水溶性画分を pH4〜5に調整し、不溶性画分 である大豆 7Sグロブリン蛋白を得る工程。  4. A step of adjusting the water-soluble fraction adjusted to pH 5.3 to 5.7 and adjusting to pH 4 to 5 to obtain soybean 7S globulin protein which is an insoluble fraction.
[30] 大豆が 7Sグロブリン欠損大豆であることを特徴とする請求項 1記載の加工大豆。  [30] The processed soybean of claim 1, wherein the soybean is 7S globulin-deficient soybean.
[31] 大豆が 7Sグロブリン欠損大豆であることを特徴とする請求項 9記載の分画大豆蛋白 の製造法。 31. The method for producing a fractionated soybean protein according to claim 9, wherein the soybean is 7S globulin-deficient soybean.
[32] 請求項 30記載の加工大豆力も調製した豆乳を pH5.2〜6.4に調整し、不溶性画分を 分離して得た水溶性画分を pH4〜5に調整し、不溶性画分を回収することを特徴とす る非 7S - 11S-酸沈殿性大豆蛋白の製造法。  [32] The soy milk prepared with the processed soybean power according to claim 30 is adjusted to pH 5.2 to 6.4, the water-soluble fraction obtained by separating the insoluble fraction is adjusted to pH 4 to 5, and the insoluble fraction is recovered. A method for producing a non-7S-11S-acid-precipitating soybean protein characterized by comprising:
[33] 下記工程を経ることを特徴とする大豆蛋白質の分画方法:  [33] A method for fractionating soy protein comprising the following steps:
1.請求項 30記載の加工大豆に加水し、豆乳及びオカラに分離する工程、  1. A step of adding water to the processed soybean of claim 30 and separating it into soy milk and okara,
2.前記豆乳を pH5.2〜6.4に調整し、水溶性画分を分離して不溶性画分である大豆 11Sグロブリン蛋白を得る工程、  2. Adjusting the soy milk to pH 5.2 to 6.4, separating the water-soluble fraction to obtain soybean 11S globulin protein which is an insoluble fraction,
3.前記水溶性画分を pH4〜5に調整して水溶性画分を分離して不溶性画分である 非 7S · 11 S—酸沈殿性大豆蛋白を得る工程。  3. A step of adjusting the water-soluble fraction to pH 4 to 5 and separating the water-soluble fraction to obtain a non-7S · 11S-acid-precipitated soybean protein which is an insoluble fraction.
[34] 請求項 16記載の非 7S - 11S-酸沈殿性大豆蛋白を含有することを特徴とする血中 コレステロール低下用組成物。  [34] A composition for lowering blood cholesterol, comprising the non-7S-11S-acid-precipitating soybean protein according to [16].
[35] 請求項 20記載の非 7S - 11S-酸沈殿性大豆蛋白を含有することを特徴とする血中 コレステロール低下用組成物。  [35] A composition for lowering blood cholesterol, comprising the non-7S-11S-acid-precipitating soybean protein according to [20].
[36] 血中コレステロール低下用組成物の製造のための、請求項 16記載の非 7S ' 11S— 酸沈殿性大豆蛋白の使用。 血中コレステロール低下用組成物の製造のための、請求項 20記載の非 7S ' 11S 酸沈殿性大豆蛋白の使用。 [36] Use of the non-7S′11S-acid-precipitated soy protein according to claim 16, for the production of a composition for lowering blood cholesterol. 21. Use of the non-7S′11S acid-precipitated soybean protein according to claim 20 for the production of a composition for lowering blood cholesterol.
PCT/JP2006/310751 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean WO2006129647A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007518999A JP4596006B2 (en) 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the same, and production method thereof
EP06746979A EP1905312B1 (en) 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean
US11/921,237 US9107428B2 (en) 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean
CN2006800190086A CN101184403B (en) 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005157871 2005-05-30
JP2005-157871 2005-05-30
JP2006057941 2006-03-03
JP2006-057941 2006-03-03

Publications (1)

Publication Number Publication Date
WO2006129647A1 true WO2006129647A1 (en) 2006-12-07

Family

ID=37481576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310751 WO2006129647A1 (en) 2005-05-30 2006-05-30 Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean

Country Status (5)

Country Link
US (1) US9107428B2 (en)
EP (1) EP1905312B1 (en)
JP (2) JP4596006B2 (en)
CN (1) CN101184403B (en)
WO (1) WO2006129647A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072656A1 (en) * 2006-12-14 2008-06-19 Fuji Oil Company, Limited Noodles and noodle skins comprising soybean protein composition
WO2008105352A1 (en) * 2007-02-27 2008-09-04 Fuji Oil Company, Limited Liquid composition containing soybean protein and method for production thereof
WO2008123098A1 (en) * 2007-03-30 2008-10-16 Fuji Oil Company, Limited Dried food improver, and method for production of dried food and method for improvement of physical properties of dried food both using the dried food improver
WO2009110504A1 (en) 2008-03-04 2009-09-11 不二製油株式会社 Soybean protein material for patients with renal disease and foods made from the same
JP2010507597A (en) * 2006-10-26 2010-03-11 エムスランド−シュテルケ ゲーエムベーハー Method for obtaining a medium molecular weight legume protein fraction, legume protein fraction and use thereof
WO2010061575A1 (en) * 2008-11-25 2010-06-03 不二製油株式会社 Promoter for low temperature fermentation of yeast, and culture medium for growing yeast and method for producing fermented food or beverage each of which utilizes the promoter
WO2011111771A1 (en) * 2010-03-10 2011-09-15 不二製油株式会社 Medium for culturing animal cells
JP2012016347A (en) * 2010-06-07 2012-01-26 Fuji Oil Co Ltd Soybean emulsion composition, fat-reduced soya milk and process for production thereof
WO2012029909A1 (en) * 2010-09-02 2012-03-08 不二製油株式会社 Processed soybean material and method for producing processed soybean material
JP2012100647A (en) * 2011-04-07 2012-05-31 Fuji Oil Co Ltd Powdery soybean material, and edible composition using the same
WO2012101733A1 (en) * 2011-01-24 2012-08-02 不二製油株式会社 Powdery soybean material and edible composition using same
US8304522B2 (en) 2007-11-08 2012-11-06 Fuji Oil Company, Limited Soy protein gel and method of producing the same
WO2012169347A1 (en) * 2011-06-07 2012-12-13 不二製油株式会社 Novel application of soybean emulsion composition to soybean-derived raw material-containing food or beverage
JP2013031422A (en) * 2011-06-30 2013-02-14 Fuji Oil Co Ltd Texture or flavor improver for production of soybean processed food, and soybean processed food
JP2013143931A (en) * 2011-06-07 2013-07-25 Fuji Oil Co Ltd Soybean food and drink with improved flavor and method for producing the same
JP5267465B2 (en) * 2007-10-30 2013-08-21 不二製油株式会社 Concentrated liquid food using soy protein ingredients
JP2014110768A (en) * 2012-12-05 2014-06-19 Fuji Oil Co Ltd Bread and production method thereof
JP2014518087A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Liquid food composition comprising soy whey protein isolated from a processed stream
JP2014518088A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Dessert composition comprising soy whey protein isolated from a processed stream
US9101158B2 (en) 2011-06-07 2015-08-11 Fuji Oil Company Limited Application of soybean emulsion composition to soybean-derived raw material-containing food or beverage
WO2020218402A1 (en) 2019-04-26 2020-10-29 株式会社Mizkan Holdings Emulsion composition using seed storage protein and method for producing same
WO2021234026A1 (en) * 2020-05-20 2021-11-25 Gea Mechanical Equipment Gmbh Method for obtaining proteins from a natural mixture of substances from soy or from soy milk

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353244B2 (en) * 2006-12-06 2013-11-27 不二製油株式会社 Production method of fractionated soy protein material
CA2734270C (en) * 2008-09-08 2018-02-27 Bryan K. Spraul Protein/cationic polymer compositions having reduced viscosity
US20130269537A1 (en) 2012-04-16 2013-10-17 Eugenio Minvielle Conditioning system for nutritional substances
US20130269538A1 (en) 2012-04-16 2013-10-17 Eugenio Minvielle Transformation system for nutritional substances
US9541536B2 (en) 2012-04-16 2017-01-10 Eugenio Minvielle Preservation system for nutritional substances
US10219531B2 (en) 2012-04-16 2019-03-05 Iceberg Luxembourg S.A.R.L. Preservation system for nutritional substances
US9072317B2 (en) * 2012-04-16 2015-07-07 Eugenio Minvielle Transformation system for nutritional substances
US9429920B2 (en) 2012-04-16 2016-08-30 Eugenio Minvielle Instructions for conditioning nutritional substances
US9460633B2 (en) 2012-04-16 2016-10-04 Eugenio Minvielle Conditioner with sensors for nutritional substances
US9414623B2 (en) 2012-04-16 2016-08-16 Eugenio Minvielle Transformation and dynamic identification system for nutritional substances
US9080997B2 (en) 2012-04-16 2015-07-14 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9069340B2 (en) 2012-04-16 2015-06-30 Eugenio Minvielle Multi-conditioner control for conditioning nutritional substances
US9702858B1 (en) 2012-04-16 2017-07-11 Iceberg Luxembourg S.A.R.L. Dynamic recipe control
US9528972B2 (en) 2012-04-16 2016-12-27 Eugenio Minvielle Dynamic recipe control
US9016193B2 (en) 2012-04-16 2015-04-28 Eugenio Minvielle Logistic transport system for nutritional substances
US20140069838A1 (en) 2012-04-16 2014-03-13 Eugenio Minvielle Nutritional Substance Label System For Adaptive Conditioning
US8733631B2 (en) 2012-04-16 2014-05-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9171061B2 (en) 2012-04-16 2015-10-27 Eugenio Minvielle Local storage and conditioning systems for nutritional substances
US9564064B2 (en) 2012-04-16 2017-02-07 Eugenio Minvielle Conditioner with weight sensors for nutritional substances
US9436170B2 (en) 2012-04-16 2016-09-06 Eugenio Minvielle Appliances with weight sensors for nutritional substances
JP6201308B2 (en) * 2012-12-10 2017-09-27 不二製油株式会社 Bread making agent, emulsified oil composition for bread making, and bread
US10790062B2 (en) 2013-10-08 2020-09-29 Eugenio Minvielle System for tracking and optimizing health indices
CN103755792B (en) * 2014-01-21 2014-12-31 北京龙科方舟生物工程技术有限公司 Preparation method of high-purity 11S glycinin and application thereof
CN103739689B (en) * 2014-01-21 2014-12-31 北京龙科方舟生物工程技术有限公司 Preparation method for high-purity 7S glycinin and application of preparation method
CN103960372A (en) * 2014-05-12 2014-08-06 江南大学 Preparation method of functional bean curd skin
CN103960375A (en) * 2014-05-12 2014-08-06 江南大学 Preparation method for bean curd thin sheets taking soybean protein as raw material
USD762081S1 (en) 2014-07-29 2016-07-26 Eugenio Minvielle Device for food preservation and preparation
CN105580906A (en) * 2014-10-24 2016-05-18 内蒙古伊利实业集团股份有限公司 Soybean milk, soybean milk beverage and manufacturing methods thereof
JPWO2016080370A1 (en) * 2014-11-17 2017-08-31 不二製油株式会社 Quality improver for cooked food
CN107176968A (en) * 2017-05-22 2017-09-19 华中农业大学 The method of the white component of high-selenium eggs is enriched with a kind of soybean from selenium-rich
CN114468114A (en) * 2022-01-12 2022-05-13 德州谷神蛋白科技有限公司 Method for preparing soybean protein isolate by combining microwave-assisted enzyme method with airflow superfine grinding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543597A (en) * 1991-08-12 1993-02-23 Fuji Oil Co Ltd Method for fractioning 7s protein
JPH0923838A (en) * 1995-07-14 1997-01-28 Kao Corp Soybean milk composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510224B2 (en) 1971-11-13 1980-03-14
JPS5235739B2 (en) 1972-07-21 1977-09-10
JPS55124457A (en) 1979-03-19 1980-09-25 Noda Sangyo Kagaku Kenkyusho Preparation of 7s protein
US4370267A (en) 1981-08-10 1983-01-25 A. E. Staley Manufacturing Company Fractionation and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures
JPS59132865A (en) * 1983-01-19 1984-07-31 Fuji Oil Co Ltd Preparation of soya milk
JPS61187755A (en) 1985-02-14 1986-08-21 Fuji Oil Co Ltd Production of soya protein
JPS63219343A (en) * 1987-03-06 1988-09-13 Fuji Oil Co Ltd Product of soybean protein
US6171640B1 (en) 1997-04-04 2001-01-09 Monsanto Company High beta-conglycinin products and their use
JP3644283B2 (en) * 1998-12-28 2005-04-27 不二製油株式会社 Method for fractionating and preparing subunits from soybean 11S globulin and its product
JP3649126B2 (en) * 1999-03-30 2005-05-18 不二製油株式会社 Fractionation and production of soybean 7S globulin and 11S globulin
KR100754051B1 (en) * 2000-10-02 2007-08-31 후지 세이유 가부시키가이샤 Fractionated soybean protein and process for producing the same
JP3793723B2 (en) * 2002-01-15 2006-07-05 株式会社協和食品 Production method of soy milk products
JP3885194B2 (en) * 2002-09-30 2007-02-21 大塚食品株式会社 Processed soy powder material, soy beverage and tofu-like food
AU2003275628B2 (en) 2002-11-12 2008-04-03 Fuji Oil Company, Limited Fractionated soybean protein and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543597A (en) * 1991-08-12 1993-02-23 Fuji Oil Co Ltd Method for fractioning 7s protein
JPH0923838A (en) * 1995-07-14 1997-01-28 Kao Corp Soybean milk composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMOTO M. ET AL.: "Simple and efficient procedure for removing the 34 kDa allergenic soybean protein, Gly m I, from defatted soy milk", BIOSCI. BIOTECH. BIOCHEM., vol. 58, no. 11, 1994, pages 2123 - 2125, XP000486158 *
See also references of EP1905312A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507597A (en) * 2006-10-26 2010-03-11 エムスランド−シュテルケ ゲーエムベーハー Method for obtaining a medium molecular weight legume protein fraction, legume protein fraction and use thereof
WO2008072656A1 (en) * 2006-12-14 2008-06-19 Fuji Oil Company, Limited Noodles and noodle skins comprising soybean protein composition
JP5257074B2 (en) * 2006-12-14 2013-08-07 不二製油株式会社 Noodles and noodle skins containing soy protein composition
US8124157B2 (en) 2006-12-14 2012-02-28 Fuji Oil Company, Limited Noodles and noodle skins comprising soybean protein composition and the method of making same
WO2008105352A1 (en) * 2007-02-27 2008-09-04 Fuji Oil Company, Limited Liquid composition containing soybean protein and method for production thereof
WO2008123098A1 (en) * 2007-03-30 2008-10-16 Fuji Oil Company, Limited Dried food improver, and method for production of dried food and method for improvement of physical properties of dried food both using the dried food improver
JP5267465B2 (en) * 2007-10-30 2013-08-21 不二製油株式会社 Concentrated liquid food using soy protein ingredients
US8304522B2 (en) 2007-11-08 2012-11-06 Fuji Oil Company, Limited Soy protein gel and method of producing the same
JP4930597B2 (en) * 2008-03-04 2012-05-16 不二製油株式会社 Soy protein material for nephropathy patients and food using the same
WO2009110504A1 (en) 2008-03-04 2009-09-11 不二製油株式会社 Soybean protein material for patients with renal disease and foods made from the same
WO2010061575A1 (en) * 2008-11-25 2010-06-03 不二製油株式会社 Promoter for low temperature fermentation of yeast, and culture medium for growing yeast and method for producing fermented food or beverage each of which utilizes the promoter
JP2011182736A (en) * 2010-03-10 2011-09-22 Fuji Oil Co Ltd Medium for culturing animal cell
WO2011111771A1 (en) * 2010-03-10 2011-09-15 不二製油株式会社 Medium for culturing animal cells
JP2012016347A (en) * 2010-06-07 2012-01-26 Fuji Oil Co Ltd Soybean emulsion composition, fat-reduced soya milk and process for production thereof
WO2012029909A1 (en) * 2010-09-02 2012-03-08 不二製油株式会社 Processed soybean material and method for producing processed soybean material
US9345254B2 (en) 2010-09-02 2016-05-24 Fuji Oil Holdings Inc. Processed soybean material and method for producing processed soybean material
JP5327391B2 (en) * 2010-09-02 2013-10-30 不二製油株式会社 Processed soy material and soy material
WO2012101733A1 (en) * 2011-01-24 2012-08-02 不二製油株式会社 Powdery soybean material and edible composition using same
JP2012100647A (en) * 2011-04-07 2012-05-31 Fuji Oil Co Ltd Powdery soybean material, and edible composition using the same
US9101158B2 (en) 2011-06-07 2015-08-11 Fuji Oil Company Limited Application of soybean emulsion composition to soybean-derived raw material-containing food or beverage
JP2013143931A (en) * 2011-06-07 2013-07-25 Fuji Oil Co Ltd Soybean food and drink with improved flavor and method for producing the same
WO2012169347A1 (en) * 2011-06-07 2012-12-13 不二製油株式会社 Novel application of soybean emulsion composition to soybean-derived raw material-containing food or beverage
JP2014518087A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Liquid food composition comprising soy whey protein isolated from a processed stream
JP2014518088A (en) * 2011-06-29 2014-07-28 ソレイ リミテッド ライアビリティ カンパニー Dessert composition comprising soy whey protein isolated from a processed stream
JP2013031422A (en) * 2011-06-30 2013-02-14 Fuji Oil Co Ltd Texture or flavor improver for production of soybean processed food, and soybean processed food
JP2014110768A (en) * 2012-12-05 2014-06-19 Fuji Oil Co Ltd Bread and production method thereof
WO2020218402A1 (en) 2019-04-26 2020-10-29 株式会社Mizkan Holdings Emulsion composition using seed storage protein and method for producing same
WO2021234026A1 (en) * 2020-05-20 2021-11-25 Gea Mechanical Equipment Gmbh Method for obtaining proteins from a natural mixture of substances from soy or from soy milk
CN115666259A (en) * 2020-05-20 2023-01-31 Gea机械设备有限公司 Method for obtaining protein from natural substance mixture in soybean or soybean milk

Also Published As

Publication number Publication date
US20090232958A1 (en) 2009-09-17
JPWO2006129647A1 (en) 2009-01-08
JP4596006B2 (en) 2010-12-08
CN101184403B (en) 2013-05-29
CN101184403A (en) 2008-05-21
EP1905312B1 (en) 2012-04-11
EP1905312A4 (en) 2011-01-12
JP2010193909A (en) 2010-09-09
US9107428B2 (en) 2015-08-18
EP1905312A1 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4596006B2 (en) Fractionated soybean protein material, processed soybean suitable for the same, and production method thereof
EP2578089B1 (en) Fat-reduced soybean protein material and processes for production thereof
AU2002316717B2 (en) High protein, Bowman-Birk Inhibitor Concentrate and process for its manufacture
JP6191822B2 (en) Concentrated soy protein material
TW200803750A (en) Methods of separating fat from soy materials and compositions produced therefrom
JP2004520066A (en) Soy protein concentrate with high isoflavone content and method for producing the same
JPWO2004013170A1 (en) Method for producing soy protein
US7838633B2 (en) Method for production of fractionated soybean protein material
JP5327391B2 (en) Processed soy material and soy material
JP5772163B2 (en) Powdered soybean material and edible composition using the same
WO2012101733A1 (en) Powdery soybean material and edible composition using same
JP5532603B2 (en) Sterilization of low-denatured soy protein composition
CA3184228A1 (en) Production of non-precipitated plant protein isolates
JPWO2019188788A1 (en) Manufacturing method of soybean paste-like food or gel-like food
Gibbs Production and characterization of bioactive peptides from soy fermented foods and their hydrolysates.
JP2008206499A (en) Disinfection method of low denatured soybean protein composition
JP2013118841A (en) Renal function-improving composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019008.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007518999

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11921237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU