JP2008206499A - Disinfection method of low denatured soybean protein composition - Google Patents

Disinfection method of low denatured soybean protein composition Download PDF

Info

Publication number
JP2008206499A
JP2008206499A JP2007049091A JP2007049091A JP2008206499A JP 2008206499 A JP2008206499 A JP 2008206499A JP 2007049091 A JP2007049091 A JP 2007049091A JP 2007049091 A JP2007049091 A JP 2007049091A JP 2008206499 A JP2008206499 A JP 2008206499A
Authority
JP
Japan
Prior art keywords
soy protein
protein composition
low
denatured
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007049091A
Other languages
Japanese (ja)
Inventor
Jiro Kanamori
二朗 金森
Masahiko Samoto
将彦 佐本
Chiaki Miyazaki
千晶 宮崎
Masaaki Miyamoto
昌明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2007049091A priority Critical patent/JP2008206499A/en
Publication of JP2008206499A publication Critical patent/JP2008206499A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a soybean protein composition which achieves disinfection with low denaturation. <P>SOLUTION: A solution of low denatured soybean composition salinized with an ion intensity of 0.04 or more is heated for more than 30 min at 60°C or higher but below the denaturing temperature of the soybean protein to disinfect. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低変性大豆蛋白質組成物の殺菌法に関する。   The present invention relates to a method for sterilizing a low-denatured soy protein composition.

大豆由来の蛋白質はアミノ酸バランスが良く、近年では血清コレステロール低下作用等の生理効果が報告されている。米国食品・医薬品管理局(FDA)は、コレステロールのリスクと心臓病を減らすために、一日一人当り25g(一食当り6.25g)かそれ以上の高品質大豆蛋白質を食事に取り込むことを推奨している。日本でも特定保健用食品として、一日一人当り6g以上の大豆グロブリンの摂取を前提とした、血清コレステロール低下機能を持つ食品が認可されている。   Protein derived from soybean has a good amino acid balance, and recently, physiological effects such as serum cholesterol lowering activity have been reported. The US Food and Drug Administration (FDA) recommends that high-quality soy protein be taken into the diet at 25 g per person (6.25 g per serving) or more to reduce cholesterol risk and heart disease. ing. In Japan, foods with a function to lower serum cholesterol are approved as foods for specified health use, assuming the intake of 6 g or more of soy globulin per person per day.

通常大豆には土壌に由来する菌群が多く寄生しており、食品素材として供給するためには何らかの殺菌処理を施しておくことが好ましい。例えば大腸菌群を殺菌するには、60〜65℃で30分程度の加熱処理が有効であるが、大豆蛋白質は60℃付近から熱変性が始まるため、大豆蛋白質が変性しない温度域において、十分な加熱殺菌を安定的に行うことは困難であった。   In general, soybean has many parasitic fungi derived from soil, and it is preferable to perform some sterilization treatment in order to supply it as a food material. For example, to sterilize coliform bacteria, heat treatment at 60 to 65 ° C for about 30 minutes is effective, but soy protein begins to heat denature at around 60 ° C, so it is sufficient in the temperature range where soy protein does not denature. It has been difficult to perform heat sterilization stably.

分離大豆蛋白質、濃縮大豆蛋白質、豆乳粉末など、多くの大豆蛋白製品は殺菌のため高温加圧処理を行っており、蛋白質は変性されている。このような変性によって、大豆蛋白製品を添加された種々の小麦製品は、その物性に悪影響を受けるが、特に麺に添加された場合、製麺性が悪くなるなどの顕著な影響を受ける。その為に、実用的な大豆蛋白質強化麺は得られていなかった。   Many soy protein products such as isolated soy protein, concentrated soy protein, and soy milk powder are subjected to high temperature and pressure treatment for sterilization, and the protein is denatured. Due to such modification, various wheat products added with soy protein products are adversely affected by their physical properties, but particularly when added to noodles, they are significantly affected such as poor noodle-making properties. Therefore, a practical soy protein-enhanced noodle has not been obtained.

S. Utsumi, T. Nakamura, K. Harada and T. Mori, Agric. Biol. Chem., 51(8), 2139-2144(1987)S. Utsumi, T. Nakamura, K. Harada and T. Mori, Agric. Biol. Chem., 51 (8), 2139-2144 (1987) Thahn, V. H. and Shibasaki, K., J.Agric. Food Chem., 24, 117, 1976Thahn, V. H. and Shibasaki, K., J. Agric. Food Chem., 24, 117, 1976

本発明の目的は、低変性でかつ殺菌された大豆蛋白質組成物を提供することである。   An object of the present invention is to provide a soy protein composition that is low-denatured and sterilized.

本発明者等は前記課題を解決すべく鋭意研究を行った。殺菌するためには加熱温度を高める必要があるが、温度を高くすると蛋白は熱変性するという相反する現象を起こす。そこで更に鋭意研究するなかで、S. Utsumiらの、大豆蛋白質は塩類の添加によりイオン強度が増加すると、変性温度が上昇するとの報告(非特許文献1)を応用することを見出した。すなわち、塩類の添加によってイオン強度を増加せしめることによって、大豆蛋白質の変性温度を上昇させることで、安定的に加熱殺菌できるとの発明を完成させた。このように塩類による大豆蛋白質の変性温度の変化を加熱殺菌技術に応用しようという考え方はかつてなかった。   The present inventors have conducted intensive research to solve the above-mentioned problems. In order to sterilize, it is necessary to increase the heating temperature, but if the temperature is increased, a contradictory phenomenon occurs in which the protein is thermally denatured. Therefore, in further diligent research, it was found that S. Utsumi et al. Applied a report (Non-patent Document 1) that the denaturation temperature rises when the ionic strength of soybean protein increases with the addition of salts. That is, the present inventors have completed the invention that heat sterilization can be stably performed by increasing the denaturation temperature of soybean protein by increasing the ionic strength by adding salts. Thus, there has never been a concept of applying changes in the denaturation temperature of soy protein due to salts to heat sterilization technology.

すなわち本発明は、
(1)大豆蛋白質の水溶液に対し、加塩し、加熱することを特徴とする、低変性大豆蛋白質組成物の殺菌法。
(2)加塩時のイオン強度が0.04以上である、(1)記載の低変性大豆蛋白質組成物の殺菌法。
(3)加熱殺菌条件が、品温60℃以上、かつ、大豆蛋白質の変性温度未満である、請求項2に記載の低変性大豆蛋白質組成物の殺菌法。
(4)β-コングリシニンを10%以上含む大豆蛋白質組成物であり、かつ、加熱殺菌条件が、65℃未満である、請求項3に記載の低変性大豆蛋白質組成物の殺菌法。
(5)β-コングリシニンを10%未満含む大豆蛋白質組成物であり、かつ、加熱殺菌条件が、85℃未満である、請求項3に記載の低変性大豆蛋白質組成物の殺菌法。
(6)(1)〜(5)の殺菌法を用いる、低変性で殺菌された大豆蛋白質組成物の製造法。
(7)(6)の製造法で得られる、低変性で殺菌された大豆蛋白質組成物。
である。
That is, the present invention
(1) A method for sterilizing a low-denatured soy protein composition, wherein the solution is salted and heated in an aqueous solution of soy protein.
(2) The method for sterilizing a low-denatured soybean protein composition according to (1), wherein the ionic strength during salting is 0.04 or more.
(3) The method for sterilizing a low-denatured soy protein composition according to claim 2, wherein the heat sterilization condition is a product temperature of 60 ° C or higher and lower than the denaturation temperature of the soy protein.
(4) The method for sterilizing a low-denatured soy protein composition according to claim 3, which is a soy protein composition containing 10% or more of β-conglycinin, and the heat sterilization condition is less than 65 ° C.
(5) The method for sterilizing a low-denatured soy protein composition according to claim 3, wherein the soybean protein composition contains less than 10% β-conglycinin, and the heat sterilization conditions are less than 85 ° C.
(6) A method for producing a low-denatured and sterilized soybean protein composition using the sterilization method of (1) to (5).
(7) A low-denatured and sterilized soybean protein composition obtained by the production method of (6).
It is.

本発明により、殺菌された低変性大豆蛋白質組成物を得ることができ、麺類やその他の食品に安全に添加することができる。   According to the present invention, a sterilized low-denatured soy protein composition can be obtained, and can be safely added to noodles and other foods.

以下、本発明を詳細に説明する。本発明は、麺類等に添加する際に適した状態である、低変性状態を保ったまま加熱する、低変性大豆蛋白質組成物の殺菌法に関するものである。   Hereinafter, the present invention will be described in detail. The present invention relates to a method for sterilizing a low-denatured soy protein composition, which is suitable for addition to noodles and the like, and is heated while maintaining a low-denatured state.

ここでいう低変性大豆蛋白質組成物とは、大豆蛋白質を主成分とする組成物のことで、大豆,脱脂大豆等の大豆原料から、アルコールもしくは酸性液により洗浄した濃縮大豆蛋白質や、水または温水にて抽出して繊維質を除去した豆乳溶液や、豆乳溶液からpH4〜5程度の等電点沈殿で蛋白質を分離したのち、再溶解させた分離大豆蛋白質であり、あるいは、これら蛋白質溶液の噴霧乾燥や凍結乾燥等による乾燥物のうち、蛋白質が変性する処理を極力避け、後述する試験で低変性と確認できる大豆蛋白質組成物を示す。また、繊維質を除去する際の遠心分離のGを上げることで、クロロホルムメタノール抽出される極性脂質量の低い大豆蛋白質組成物が得られるが、これは風味物性が良く、低変性大豆蛋白質組成物として種々の用途に好適である。   The low-denatured soy protein composition referred to here is a composition containing soy protein as a main component, concentrated soy protein washed with alcohol or an acid solution from soybean raw materials such as soybean and defatted soybean, water or hot water. The soymilk solution extracted from the soymilk and the soymilk solution after separation of the protein from the soymilk solution by isoelectric precipitation at a pH of about 4 to 5, and then redissolved, or spraying of these protein solutions The soybean protein composition which can avoid the process which protein denatures as much as possible among the dried substances by drying, freeze-drying, etc., and can confirm with low denaturation by the test mentioned later is shown. Moreover, by increasing the G of the centrifugal separation when removing the fiber, a soybean protein composition having a low polar lipid content extracted with chloroform methanol can be obtained, which has good flavor properties and a low-denatured soybean protein composition. It is suitable for various uses.

更に、Thahn, V. H. ら(非特許文献2)から報告されているような分画処理によって得られたβ‐コングリシニン画分やグリシニン画分を使用することもできる。特に蛋白質中にβ‐コングリシニンを10%未満、好ましくは7%未満しか含まない高グリシニン低変性大豆蛋白質組成物は、β-コングリシニンを蛋白質中に10%以上含む通常の大豆蛋白質組成物より変性温度が高く、低変性大豆蛋白質組成物を調製する原料として好適である。ここで用いるβ‐コングリシニンの蛋白質中含量は、SDS-PAGEにより電気泳動したゲルをクマシーブリリアントブルーにより染色し、脱色後デンシトメーターにて測定することで求めたものとする。   Furthermore, a β-conglycinin fraction and a glycinin fraction obtained by fractionation as reported from Thahn, V. H. et al. (Non-patent Document 2) can also be used. In particular, a high glycinin low-denatured soy protein composition containing less than 10%, preferably less than 7% β-conglycinin in the protein has a denaturation temperature higher than that of a normal soy protein composition containing 10% or more β-conglycinin in the protein. And is suitable as a raw material for preparing a low-denatured soy protein composition. The protein content of β-conglycinin used here is determined by staining a gel electrophoresed by SDS-PAGE with Coomassie Brilliant Blue and measuring it with a densitometer after decolorization.

抽出,濃縮,殺菌,乾燥,物性の改良等を目的とした、低変性大豆蛋白質組成物調製に用いる種々の処理は、大豆蛋白質が変性を起こさない範囲の温度,pH,圧力等の条件下でのみ行なう必要がある。   Various treatments used to prepare a low-denatured soy protein composition for the purpose of extraction, concentration, sterilization, drying, improvement of physical properties, etc., under conditions such as temperature, pH, pressure, etc. that do not cause soy protein to denature. Only need to be done.

加熱殺菌による蛋白質の変性の程度は、以下に示す製麺試験によって、その物性すなわち生地の伸び、麺の硬さから測定することができる。具体的には、小麦粉33.5gと粉末化した大豆蛋白質組成物17.5g、食塩2.5gおよび水を、手で混合してそぼろ状の生地にする。水の量は生地が適度な硬さ(冷ご飯を握った硬さ)になるように調整する。5分間休ませた後に生地を練ってまとめ、真空シーラーで脱気する。手回し式パスタマシンにて複合・圧延して厚さ1.2mmの麺帯とする。さらに切り歯にて幅1.2mmに切り出して麺線とする。生地の物性測定は、貫入破断試験により行い、厚さ1.2mmに伸ばした麺帯を4℃で一晩放置し、常温に戻したのち、再度1.2mmのローラーに通し、40mm×40mmに切断する。直径16mmの穴の開いたプレートの上に生地を乗せ、さらにその上に同じ穴あきプレート(重量1002g)を乗せて固定する。直径5mmの球形プランジャーを用いて速度1mm/secで貫入し、破断点の変位(サンプルに接触したところを0点とする)を測定値(生地の伸び)として得る。大豆蛋白質組成物が同じ組成であれば、変性度が小さいほど高い値が得られる。   The degree of protein modification by heat sterilization can be measured from the physical properties, that is, the elongation of the dough and the hardness of the noodle, by the following noodle making test. Specifically, 33.5 g of wheat flour, 17.5 g of powdered soy protein composition, 2.5 g of sodium chloride and water are mixed by hand to make a rag-like dough. The amount of water is adjusted so that the dough has an appropriate hardness (hardness that holds cold rice). After resting for 5 minutes, knead the dough and degas with a vacuum sealer. Combined and rolled by hand-rolled pasta machine to make a 1.2mm thick noodle strip. Furthermore, it is cut into a width of 1.2 mm with incisors to make noodle strings. The physical properties of the dough are measured by an intrusion break test. The noodle strip stretched to a thickness of 1.2 mm is left overnight at 4 ° C., returned to room temperature, then passed through a 1.2 mm roller and cut into 40 mm × 40 mm. . Place the dough on a plate with a hole with a diameter of 16 mm, and then place the same holed plate (weight 1002 g) on it. A spherical plunger with a diameter of 5 mm is used to penetrate at a speed of 1 mm / sec, and the displacement at the breaking point (the point of contact with the sample is 0 point) is obtained as the measured value (elongation of the dough). If the soybean protein composition has the same composition, the smaller the degree of modification, the higher the value.

茹で後の麺の物性は、4℃で一晩放置した麺線を100℃で5分間茹でた後、茹で上がり15分後に、クサビ型プランジャーを用いて、プランジャー速度0.05mm/secで底面より0.1mmまで圧縮し、破断点の荷重を測定値(麺の硬さ)として得る。大豆蛋白質組成物が同じ組成であれば、変性度が小さいほど高い値が得られる。大豆蛋白質組成物の変性度は、この方法によって測定された生地の伸び、麺の硬さの値が、ともに加熱処理前の80%以上であることが低変性で好ましく、この範囲であれば加熱処理前後での変性度の差は実用上問題とならない。   The physical properties of the noodles after boiling were as follows: boiled noodle strings left at 4 ° C overnight, boiled at 100 ° C for 5 minutes, then boiled up and 15 minutes later, using a wedge-shaped plunger and a bottom surface at a plunger speed of 0.05 mm / sec. Compress to 0.1 mm and obtain the load at the breaking point as the measured value (hardness of noodles). If the soybean protein composition has the same composition, the smaller the degree of modification, the higher the value. The degree of denaturation of the soy protein composition is preferably low denaturation, in which the dough elongation and noodle hardness values measured by this method are both 80% or more before heat treatment. The difference in the degree of modification before and after treatment is not a problem in practice.

未殺菌の低変性大豆蛋白質組成物より殺菌された大豆蛋白質組成物を得るために、加熱による殺菌を行なう場合、大豆蛋白質組成物を水溶液とした上で、60℃,30分以上の加熱が必要である。しかし、β-コングリシニンを蛋白質中に10%以上含む通常の分離大豆蛋白質の場合、加塩しない状態では、63℃を越える温度で30分以上の加熱を行なうと変性が起こり、大豆蛋白質の物性が極端に変化するために、低変性大豆蛋白質組成物としてこれを利用する上において問題を生じる。   In order to obtain a sterilized soy protein composition from an unsterilized low-denatured soy protein composition, when sterilizing by heating, the soy protein composition should be heated to 60 ° C for 30 minutes or longer. It is. However, in the case of normal isolated soy protein containing 10% or more of β-conglycinin in the protein, denaturation occurs when heating for more than 30 minutes at a temperature exceeding 63 ° C without salting, resulting in extreme physical properties of the soy protein. Therefore, there is a problem in using this as a low-denatured soy protein composition.

そこで低変性大豆蛋白質組成物を加熱処理する際に、塩をイオン強度0.04以上、好ましくは0.08以上、更に好ましくは0.12以上添加することによって、大豆蛋白質の変性温度を高めることができる。イオン強度の上昇に従い変性温度も上昇し、イオン強度0.2では、5℃程の変性温度の上昇が認められる。イオン強度の上限は特に設けないが、イオン強度が高すぎると、低変性大豆蛋白質組成物の灰分が上昇し、異味が生じる。現実にはイオン強度0.5以下が好ましく、0.3以下が更に好ましい。   Therefore, when the low-denatured soy protein composition is heat-treated, the denaturation temperature of the soy protein can be increased by adding a salt with an ionic strength of 0.04 or more, preferably 0.08 or more, more preferably 0.12 or more. As the ionic strength increases, the denaturation temperature also increases. At an ionic strength of 0.2, an increase in the denaturation temperature of about 5 ° C. is observed. The upper limit of the ionic strength is not particularly set, but if the ionic strength is too high, the ash content of the low-denatured soy protein composition is increased, resulting in a taste. Actually, the ionic strength is preferably 0.5 or less, and more preferably 0.3 or less.

加熱時に添加する塩は、ナトリウム,カリウム等のアルカリ金属や、アンモニウム等をカチオンとした、硫酸塩,硝酸塩,炭酸塩,炭酸水素塩,塩化物等であり、例えば、塩化ナトリウム,塩化カリウム,硫酸ナトリウム,硫酸アンモニウムなどが使用できるが、風味や価格から塩化ナトリウムが最も好ましい。   Salts added during heating are sulfates, nitrates, carbonates, bicarbonates, chlorides, etc., with alkali metals such as sodium and potassium as well as ammonium as cations, for example, sodium chloride, potassium chloride, sulfuric acid. Sodium, ammonium sulfate and the like can be used, but sodium chloride is most preferable from the taste and price.

この加塩により、60℃以上67℃未満の温度で、好ましくは61℃以上65℃未満の温度で、更に好ましくは61℃以上63℃未満の温度で、低変性状態を維持したまま加熱殺菌処理を行なうことができる。60℃未満では殺菌の効果が弱く、68℃以上では変性が開始されてしまう。また、加熱時間は30分以上が必要である。加熱時間の上限は特に設けないが、長時間の加熱は生産効率が悪いために、通常は3時間以内、更には1時間以内が適切である。その際の大豆蛋白質組成物水溶液の濃度は、液中固形分として2〜20重量%、好ましくは5〜15重量%が適当である。   By this salting, heat sterilization treatment is performed at a temperature of 60 ° C. or more and less than 67 ° C., preferably at a temperature of 61 ° C. or more and less than 65 ° C., more preferably at a temperature of 61 ° C. or more and less than 63 ° C. while maintaining a low-denatured state. Can be done. Below 60 ° C, the effect of sterilization is weak, and at 68 ° C or higher, denaturation starts. The heating time needs to be 30 minutes or more. Although the upper limit of the heating time is not particularly set, heating for a long time is usually within 3 hours, more preferably within 1 hour, because production efficiency is poor. In this case, the concentration of the aqueous solution of soybean protein composition is 2 to 20% by weight, preferably 5 to 15% by weight as the solid content in the liquid.

また、低変性大豆蛋白質組成物が高グリシニン低変性大豆蛋白質組成物の場合、元々、通常の大豆蛋白質組成物に比較し変性温度が高いが、塩の添加によって80℃付近での加熱が可能となる。そこで、60℃以上85℃未満、好ましくは殺菌効果の高い70℃以上85℃未満の温度で、更に好ましくは80℃以上85℃未満の温度で、低変性状態を維持したまま、効率良い加熱殺菌処理を行なうことができる。この際、60℃未満では殺菌の効果が弱く、85℃以上では変性が開始されてしまう。   In addition, when the low-denatured soy protein composition is a high-glycinin low-denatured soy protein composition, the denaturation temperature is originally higher than that of a normal soy protein composition, but heating at around 80 ° C is possible by adding salt. Become. Therefore, efficient heat sterilization at a temperature of 60 ° C. or higher and lower than 85 ° C., preferably 70 ° C. or higher and lower than 85 ° C., more preferably 80 ° C. or higher and lower than 85 ° C., while maintaining a low denatured state. Processing can be performed. At this time, the effect of sterilization is weak when the temperature is lower than 60 ° C., and denaturation starts when the temperature is 85 ° C. or higher.

殺菌時のpHは、蛋白質が熱変性しにくいpH域で行なう必要がある。pH5〜8.5、好ましくはpH6.5〜7.5が適当であるが、加熱温度によってはこれ以外のpH域を用いることも可能である。   The pH at the time of sterilization needs to be in a pH range where the protein is not easily heat denatured. A pH of 5-8.5, preferably 6.5-7.5 is suitable, but other pH ranges can be used depending on the heating temperature.

前述の加熱条件で大腸菌をはじめ多くの菌類を死滅させることができ、工程中で毒素が産生されるなどの安全上の問題は著しく低減されるが、一部の耐熱性菌類、例えばBacillus属の耐熱性芽胞は死滅しないことがある。これに関しては製麺等の、低変性大豆蛋白質組成物を用いた大豆蛋白質食品の調製後に、さらに加熱殺菌を加えることによって、流通段階あるいは食事に供される段階で、二段に殺菌されたより安全な状態を確保できる。   Many fungi, including E. coli, can be killed under the heating conditions described above, and safety problems such as the production of toxins during the process are significantly reduced, but some heat-resistant fungi such as those of the genus Bacillus Thermostable spores may not die. In this regard, after preparing a soy protein food using a low-denatured soy protein composition, such as noodles, it is safer than two-stage sterilization at the distribution stage or at the stage of serving food by adding heat sterilization. Can be secured.

例えば、本発明により得られた低変性大豆蛋白質組成物を用いて、製麺された各種の麺および成型された各種の麺皮は、そのまま、または凍結保存後、あるいは乾燥後に湯または水に戻し、ボイル,スチーム,電磁加熱,加圧加熱等、各種の加熱処理を行ない、食事に供することができる。通常の食品の殺菌と同様に、湿熱環境の加圧加熱が特に有効である。この加熱により、配合された低変性大豆蛋白質組成物は変性を起こし、前述した低変性の条件からは外れることになる。しかし、大豆蛋白質組成物が低変性状態であることは、粉を加水し製麺する工程、いわゆる大豆蛋白質食品の成形工程でのみの必須要件であり、成形後のこれら変性は本低変性大豆蛋白質組成物の使用へ何ら問題を与えない。
For example, various types of noodles and various types of noodles formed using the low-denatured soy protein composition obtained according to the present invention are returned to hot water or water as they are, after cryopreservation or after drying. Various heat treatments such as boiling, steam, electromagnetic heating, and pressure heating can be performed and used for meals. As with normal food sterilization, pressurized heating in a humid heat environment is particularly effective. By this heating, the blended low-denatured soy protein composition is denatured and deviates from the above-mentioned conditions of low denaturation. However, the low-denatured state of the soy protein composition is an essential requirement only in the process of adding noodles to make noodles, the so-called soy protein food molding process. It does not pose any problems for the use of the composition.

以下に実施例を記載するが、この発明の技術思想がこれらの例示によって限定されるものではない。   Examples will be described below, but the technical idea of the present invention is not limited to these examples.

○各温度での加熱変性度の食塩の有無による違い
脱脂大豆に7倍量の水を加え、水酸化ナトリウムにてpH7に調整して混合・抽出し、遠心分離にて沈殿物を除去したのち、残渣にさらに脱脂大豆の5倍量の水を加えて同様に処理し、先の7倍量で抽出したものと合わせて抽出液を得た。塩酸でpH4.5に調整して蛋白質を沈殿させ、遠心分離にて回収した。水を加えたのち水酸化ナトリウムで中和し、熱風温度180℃,排風温度70℃にて噴霧乾燥して粉末状の分離大豆蛋白質Aを得た。
○ Difference in the degree of heat denaturation at each temperature with or without salt Add 7 times the amount of water to defatted soybeans, adjust to pH 7 with sodium hydroxide, mix and extract, and then remove the precipitate by centrifugation The residue was further treated with 5 times the amount of defatted soybean water and extracted in the same manner as that extracted with the previous 7 times amount. The protein was precipitated by adjusting the pH to 4.5 with hydrochloric acid and collected by centrifugation. After adding water, the mixture was neutralized with sodium hydroxide and spray-dried at a hot air temperature of 180 ° C. and an exhaust air temperature of 70 ° C. to obtain a powdered isolated soybean protein A.

分離大豆蛋白質Aを12重量%濃度に溶解し、恒温水槽中各温度で30分加熱した。食塩を加えたものは溶液中1.2重量%濃度(イオン強度0.21)で添加し、同様に加熱した。凍結乾燥後粉砕し、製麺試験によって変性度を評価した。食塩を加えたものについては、製麺時に食塩および蛋白質量が一定となるように配合を調整した。変性度は、未加熱の生地の伸び、および麺の硬さをそれぞれ100%として相対値で表した。   Separated soy protein A was dissolved to a concentration of 12% by weight and heated in a constant temperature bath at each temperature for 30 minutes. The salt added was added at a concentration of 1.2% by weight (ionic strength 0.21) in the solution and heated in the same manner. After freeze-drying, it was pulverized and the degree of modification was evaluated by a noodle making test. About what added salt, the mixing | blending was adjusted so that salt and protein mass might become fixed at the time of noodle making. The degree of modification was expressed as a relative value with the unheated dough elongation and the noodle hardness as 100%, respectively.

食塩無添加の比較例2〜4では加熱温度60℃までは生地の伸び、麺の硬さがともに80%以上あり、変性度は微少だったが、63℃以上では麺の硬さが80%を下回り、変性が認められた。食塩を添加した実施例1および2では、65℃まで生地の伸び、麺の硬さがともに80%以上あり、変性は微少だった。しかし食塩を添加しても、68℃で加熱した比較例5では、麺の硬さが80%を下回り、変性が認められた。   In Comparative Examples 2 to 4 to which no salt was added, the elongation of the dough and the hardness of the noodles were both 80% or more up to a heating temperature of 60 ° C, and the degree of modification was slight, but the hardness of the noodles was 80% at 63 ° C or more. Degeneration was observed. In Examples 1 and 2 to which salt was added, the elongation of the dough to 65 ° C. and the hardness of the noodles were both 80% or more, and the modification was slight. However, even when sodium chloride was added, in Comparative Example 5 heated at 68 ° C., the noodle hardness was less than 80%, and denaturation was observed.

〔表1〕各温度での加熱変性度の食塩の有無による違い

Figure 2008206499
[Table 1] Difference in degree of heat denaturation at each temperature with and without salt
Figure 2008206499

○加熱変性度の食塩濃度による違い
分離大豆蛋白質Aを12重量%濃度に溶解し、食塩を0.3〜0.9重量%(イオン強度0.05〜0.15)の各濃度で添加・溶解した後、恒温水槽中65℃で30分加熱した。凍結乾燥後粉砕し、製麺試験によって変性度を評価した。製麺時に食塩および蛋白質量が一定となるように配合を調整した。変性度は、未加熱の生地の伸び、麺の硬さをそれぞれ100%として相対値で表した。
○ Difference in degree of heat denaturation due to salt concentration Dissolved soy protein A was dissolved at 12% by weight, and sodium chloride was added and dissolved at various concentrations of 0.3 to 0.9% by weight (ionic strength 0.05 to 0.15). Heat at 30 ° C. for 30 minutes. After freeze-drying, it was pulverized and the degree of modification was evaluated by a noodle making test. The formulation was adjusted so that the salt and protein amounts were constant during the noodle making. The degree of modification was expressed as a relative value with the elongation of the unheated dough and the hardness of the noodles as 100%, respectively.

食塩を0.3重量%(イオン強度0.05)以上添加した実施例3〜5では、いずれも生地の伸び、麺の硬さがともに80%以上あり、変性は微少だった。   In Examples 3 to 5 to which sodium chloride was added in an amount of 0.3% by weight (ionic strength 0.05) or more, both the elongation of the dough and the hardness of the noodles were 80% or more, and the modification was slight.

〔表2〕加熱変性度の食塩濃度による違い

Figure 2008206499
[Table 2] Difference in degree of heat denaturation due to salt concentration
Figure 2008206499

○殺菌効果
分離大豆蛋白質Aを12重量%濃度に溶解した溶液に、大豆由来の菌群を培養したものを植菌し、恒温水槽中各温度で30分加熱した。食塩を加えたものは1.2重量%濃度(イオン強度0.21)で添加し、同様に加熱した。冷却後、標準寒天培地にて35℃,48時間の培養で一般生菌を、デソキシコレート培地にて35℃,24時間の培養で大腸菌群の測定を行った。
Bactericidal effect A solution obtained by culturing a group of soybean-derived fungi was inoculated into a solution in which isolated soybean protein A was dissolved at a concentration of 12% by weight, and heated at each temperature in a thermostatic bath for 30 minutes. The salt added was added at a concentration of 1.2% by weight (ionic strength 0.21) and heated in the same manner. After cooling, general viable bacteria were measured by culturing at 35 ° C. for 48 hours in a standard agar medium, and coliform bacteria were measured by culturing at 35 ° C. for 24 hours in a desoxycholate medium.

60℃以上の加熱で一般生菌は減少し、大腸菌群は検出されなくなった。食塩を加えた実施例6においても殺菌効果は変わらなかった。   Heating at 60 ° C or higher decreased general viable bacteria, and coliform bacteria were not detected. In Example 6 to which salt was added, the bactericidal effect was not changed.

〔表3〕殺菌効果

Figure 2008206499
[Table 3] Bactericidal effect
Figure 2008206499

○低変性大豆蛋白質組成物の調製例
[実施例7]
脱脂大豆に10倍量の水を加え、水酸化ナトリウムでpH6.7に調整して混合・抽出し、遠心分離にて沈殿物を除去し、抽出液を得た。塩酸でpH4.5に調整して蛋白質を沈殿させ、遠心分離にて回収した。水を加えて再度遠心分離することによって沈殿物を洗浄し、回収した。水を加えて固形分10重量%とし、水酸化ナトリウムでpH7.1に中和し、ホモジナイズして可溶化した。可溶化液に0.7重量%(イオン強度0.12)の食塩を加え、熱媒温度68℃の熱交換器にて液温度62℃に加熱した。61〜62℃の水浴中で45分間保ったのち、熱風温度183℃、排風温度68〜73℃にて噴霧乾燥し、粉末状の分離大豆蛋白質Bを得た。比較検討用として、可溶化した中和液を加熱することなく同様の条件で噴霧乾燥した粉末状の分離大豆蛋白質Cを得た。分離大豆蛋白質Bの製麺試験における生地の伸び、麺の硬さを測定し、それぞれ分離大豆蛋白質Cの値を100%とした時の相対値で表すと、生地の伸びが104%、麺の硬さが83.4%であり、加熱による変性は微少だった。
Example of preparation of low-denatured soy protein composition [Example 7]
Ten times the amount of water was added to defatted soybean, adjusted to pH 6.7 with sodium hydroxide, mixed and extracted, and the precipitate was removed by centrifugation to obtain an extract. The protein was precipitated by adjusting the pH to 4.5 with hydrochloric acid and collected by centrifugation. The precipitate was washed and recovered by adding water and centrifuging again. Water was added to a solid content of 10% by weight, neutralized to pH 7.1 with sodium hydroxide, and homogenized to solubilize. To the solubilized solution, 0.7% by weight (ionic strength 0.12) of sodium chloride was added and heated to a liquid temperature of 62 ° C. in a heat exchanger having a heat medium temperature of 68 ° C. After maintaining in a water bath at 61 to 62 ° C. for 45 minutes, spray drying was performed at a hot air temperature of 183 ° C. and an exhaust air temperature of 68 to 73 ° C. to obtain a powdered isolated soybean protein B. As a comparative study, powdered isolated soy protein C was obtained which was spray-dried under the same conditions without heating the solubilized neutralized solution. In the noodle making test of the isolated soy protein B, the elongation of the dough and the hardness of the noodles were measured. When the value of the isolated soy protein C was 100%, the elongation of the dough was 104%. Hardness was 83.4%, and denaturation by heating was slight.

○塩化カリウムの使用効果
[実施例8]
脱脂大豆に7倍量の水を加え、水酸化ナトリウムにてpH7に調整して混合・抽出し、遠心分離にて沈殿物を除去したのち、残渣にさらに脱脂大豆の5倍量の水を加えて同様に処理し、抽出液を得た。塩酸でpH4.5に調整して蛋白質を沈殿させ、遠心分離にて回収した。水を加えて再度遠心分離することによって沈殿物を洗浄し、回収した。水を加えて水酸化ナトリウムでpH7.1に中和し、乾燥重量11%に調整した。食塩0.35%(イオン強度0.06),塩化カリウム0.35%(イオン強度0.05)を加えて溶解し、65℃で45分加熱したのち、熱風温度180℃,排風温度72℃にて噴霧乾燥して粉末状の分離大豆蛋白質Dを得た。比較検討用として、中和液を加熱することなく同様の条件で噴霧乾燥した粉末状の分離大豆蛋白質Eを得た。分離大豆蛋白質Dの製麺試験における生地の伸び、麺の硬さを測定し、それぞれ分離大豆蛋白質Eの値を100%とした時の相対値で表すと、生地の伸びが81.5%、麺の硬さが84.8%であり、加熱による変性は微少だった。
○ Use effect of potassium chloride [Example 8]
Add 7 times the amount of water to the defatted soybean, adjust to pH 7 with sodium hydroxide, mix and extract, remove the precipitate by centrifugation, and then add 5 times the amount of water to the residue. In the same manner, an extract was obtained. The protein was precipitated by adjusting the pH to 4.5 with hydrochloric acid and collected by centrifugation. The precipitate was washed and recovered by adding water and centrifuging again. Water was added to neutralize to pH 7.1 with sodium hydroxide, and the dry weight was adjusted to 11%. Salt 0.35% (ionic strength 0.06) and potassium chloride 0.35% (ionic strength 0.05) were added and dissolved, heated at 65 ° C for 45 minutes, then spray dried at hot air temperature 180 ° C and exhaust air temperature 72 ° C to powder In the form of isolated soybean protein D. For comparative study, a powdered isolated soy protein E was obtained which was spray-dried under the same conditions without heating the neutralizing solution. The elongation of the dough and the hardness of the noodles in the noodle making test of the isolated soy protein D were measured, and expressed as a relative value when the value of the isolated soy protein E was 100%, the dough elongation was 81.5%, The hardness was 84.8%, and the denaturation by heating was slight.

○高グリシニン低変性大豆蛋白質組成物の調製例
脱脂大豆10kgに1.5kgの70%エタノールを混合しながら噴霧し、70℃で30分ホールドした。このエタノール処理脱脂大豆に対し、8倍量の水を加え、水酸化ナトリウムでpH7.7に調整して混合・抽出した。遠心分離にて沈殿物を除去したのち、残渣にさらに脱脂大豆の5倍量の水を加えて同様に処理し、抽出液を得た。エタノール処理脱脂大豆に対して0.15重量%量の次亜硫酸ナトリウムを加え、硫酸でpH5.8に調整し、遠心分離によって沈殿物を回収した。水を加えて再度遠心分離することによって沈殿物を洗浄し、回収した。再度水を加え、水酸化ナトリウムでpH7.5に中和し、熱風温度185℃、排風温度75℃にて噴霧乾燥し、高グリシニン大豆蛋白質粉末を得た。この物のSDS-PAGEにおける蛋白質組成は、蛋白質あたり、β-コングリシニン含量が5%、グリシニン含量が93%であった。
Preparation Example of High Glycinin and Low Denatured Soy Protein Composition Sprayed with 10 kg of defatted soybean while mixing 1.5 kg of 70% ethanol, and held at 70 ° C. for 30 minutes. To this ethanol-treated defatted soybean, 8 times the amount of water was added, adjusted to pH 7.7 with sodium hydroxide, and mixed and extracted. After removing the precipitate by centrifugation, the residue was further treated in the same manner by adding 5 times the amount of defatted soybean water to obtain an extract. Sodium hyposulfite in an amount of 0.15% by weight was added to ethanol-treated defatted soybeans, adjusted to pH 5.8 with sulfuric acid, and the precipitate was collected by centrifugation. The precipitate was washed and recovered by adding water and centrifuging again. Water was added again, neutralized to pH 7.5 with sodium hydroxide, and spray-dried at a hot air temperature of 185 ° C. and an exhaust air temperature of 75 ° C. to obtain a high glycinin soy protein powder. The protein composition of this product on SDS-PAGE was 5% β-conglycinin and 93% glycinin per protein.

高グリシニン大豆蛋白質粉末を12重量%濃度、1.2重量%食塩(イオン強度0.21)の有無において全量350gとし、90℃のオイルバス中で30分加熱処理した(液温度83℃)。凍結乾燥後、粉砕処理し、サンプルとした。   The high glycinin soy protein powder was heat treated in a 90 ° C. oil bath for 30 minutes (liquid temperature 83 ° C.) with a total amount of 350 g with or without 12 wt% concentration and 1.2 wt% sodium chloride (ionic strength 0.21). After freeze-drying, it was ground and used as a sample.

食塩無添加の比較例11では(表4)、生地の伸び、麺の硬さがともに80%を下回り、変性が認められた。食塩を添加した実施例9では、生地の伸び、麺の硬さがともに80%以上あり、変性は微少だった。また、実施例9では未加熱の比較例10に比べて一般生菌数が減少し、高い殺菌効果が認められた。   In Comparative Example 11 without addition of salt (Table 4), the elongation of the dough and the hardness of the noodles both fell below 80%, and denaturation was observed. In Example 9 in which salt was added, both the elongation of the dough and the hardness of the noodles were 80% or more, and the modification was slight. Moreover, in Example 9, the number of general viable bacteria decreased compared with the unheated comparative example 10, and the high bactericidal effect was recognized.

〔表4〕高グリシニン低変性大豆蛋白質組成物の調製例

Figure 2008206499
[Table 4] Preparation example of high glycinin low modified soybean protein composition
Figure 2008206499

○製麺後の加熱殺菌
脱脂大豆に7倍量の水を加え、水酸化ナトリウムにてpH7に調整して混合・抽出し、遠心分離にて沈殿物を除去したのち、残渣にさらに脱脂大豆の5倍量の水を加えて同様に処理し、先の7倍量で抽出したものと合わせて抽出液を得た。塩酸でpH4.5に調整して蛋白質を沈殿させ、遠心分離にて回収した。水を加えたのち水酸化ナトリウムでpH7に中和し、0.7重量%(イオン強度0.12)の食塩を加えた。大豆由来の菌群を培養したものを添加したのち、63℃で30分水浴中で加熱し、熱風温度180℃,排風温度70℃にて噴霧乾燥して粉末状の分離大豆蛋白質Fを得た。分離大豆蛋白質Fを35.2重量部、小麦粉33.5重量部、澱粉33.5重量部、食塩2.8重量部、水55重量部の配合にて製麺し、種々の加熱条件において処理を行ったのち、大腸菌群、一般生菌、耐熱性菌(100℃10分)の測定を行った。
○ Heat sterilization after noodle making Add 7 times the amount of water to defatted soybeans, adjust to pH 7 with sodium hydroxide, mix and extract, remove the precipitate by centrifugation, and then add defatted soybeans to the residue. A 5-fold amount of water was added and the same treatment was performed, and an extract was obtained together with the one extracted with the previous 7-fold amount. The protein was precipitated by adjusting the pH to 4.5 with hydrochloric acid and collected by centrifugation. After adding water, the mixture was neutralized with sodium hydroxide to pH 7, and 0.7% by weight (ionic strength 0.12) sodium chloride was added. After adding the cultured bacterial group derived from soybeans, heat in a water bath at 63 ° C for 30 minutes, and spray-dry at a hot air temperature of 180 ° C and an exhaust air temperature of 70 ° C to obtain powdered isolated soy protein F It was. Noodles are made by mixing 35.2 parts by weight of soy protein F, 33.5 parts by weight of wheat flour, 33.5 parts by weight of starch, 2.8 parts by weight of salt, and 55 parts by weight of water, and processed under various heating conditions. After the measurement, coliform bacteria, general live bacteria, and heat-resistant bacteria (100 ° C. for 10 minutes) were measured.

製麺後加熱していない実施例10では大腸菌群は検出されないものの、一般生菌、耐熱性菌は多く検出された。製麺後100℃,4分加熱した実施例11では、一般生菌は有意に減少したものの、耐熱性菌は未加熱とさほど変わらなかった。製麺後121℃,20分レトルトにて加熱した実施例12では、耐熱性菌を含むすべての菌類が検出されなかった。   In Example 10 which was not heated after noodle making, coliform bacteria were not detected, but many viable bacteria and heat-resistant bacteria were detected. In Example 11, which was heated at 100 ° C. for 4 minutes after the noodle making, the number of viable bacteria was significantly reduced, but the heat-resistant bacteria was not so different from that of unheated. In Example 12 heated at 121 ° C. for 20 minutes after the noodle making, all fungi including heat-resistant bacteria were not detected.

〔表5〕再加熱による殺菌効果

Figure 2008206499
[Table 5] Sterilization effect by reheating
Figure 2008206499

本発明により、殺菌された低変性大豆蛋白質組成物を得ることができる。麺類やその他の食品に、物性の低下なく蛋白質を安全に添加し、従来にない高蛋白質の食品を製造することができる。   According to the present invention, a sterilized low-denatured soy protein composition can be obtained. Proteins can be safely added to noodles and other foods without deterioration of physical properties, and unprecedented high protein foods can be produced.

Claims (7)

大豆蛋白質の水溶液に対し、加塩し、加熱することを特徴とする、低変性大豆蛋白質組成物の殺菌法。 A method for sterilizing a low-denatured soy protein composition, characterized by salting and heating an aqueous solution of soy protein. 加塩時のイオン強度が0.04以上である、請求項1記載の低変性大豆蛋白質組成物の殺菌法。 The method for sterilizing a low-denatured soy protein composition according to claim 1, wherein the ionic strength during salting is 0.04 or more. 加熱殺菌条件が、品温60℃以上、かつ、大豆蛋白質の変性温度未満である、請求項2に記載の低変性大豆蛋白質組成物の殺菌法。 The method for sterilizing a low-denatured soy protein composition according to claim 2, wherein the heat sterilization condition is a product temperature of 60 ° C or higher and lower than the denaturation temperature of the soy protein. β-コングリシニンを10%以上含む大豆蛋白質組成物であり、かつ、加熱殺菌条件が、65℃未満である、請求項3に記載の低変性大豆蛋白質組成物の殺菌法。 The method for sterilizing a low-denatured soy protein composition according to claim 3, which is a soy protein composition containing 10% or more of β-conglycinin and the heat sterilization condition is less than 65 ° C. β-コングリシニンを10%未満含む大豆蛋白質組成物であり、かつ、加熱殺菌条件が、85℃未満である、請求項3に記載の低変性大豆蛋白質組成物の殺菌法。 The method for sterilizing a low-denatured soy protein composition according to claim 3, which is a soy protein composition containing less than 10% of β-conglycinin and the heat sterilization condition is less than 85 ° C. 請求項1〜5の殺菌法を用いる、低変性で殺菌された大豆蛋白質組成物の製造法。 The manufacturing method of the soybean protein composition sterilized by low denaturation using the sterilization method of Claims 1-5. 請求項6の製造法で得られる、低変性で殺菌された大豆蛋白質組成物。 A low-denatured and sterilized soybean protein composition obtained by the production method of claim 6.
JP2007049091A 2007-02-28 2007-02-28 Disinfection method of low denatured soybean protein composition Pending JP2008206499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049091A JP2008206499A (en) 2007-02-28 2007-02-28 Disinfection method of low denatured soybean protein composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049091A JP2008206499A (en) 2007-02-28 2007-02-28 Disinfection method of low denatured soybean protein composition

Publications (1)

Publication Number Publication Date
JP2008206499A true JP2008206499A (en) 2008-09-11

Family

ID=39783365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049091A Pending JP2008206499A (en) 2007-02-28 2007-02-28 Disinfection method of low denatured soybean protein composition

Country Status (1)

Country Link
JP (1) JP2008206499A (en)

Similar Documents

Publication Publication Date Title
Boukid Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: a review
EP1905312B1 (en) Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean
JP7025619B2 (en) Functional composition derived from azuki beans
US8309159B2 (en) Process for obtaining legume protein fractions of moderate molecular weight, legume protein fractions and use thereof
JP5257074B2 (en) Noodles and noodle skins containing soy protein composition
KR20190072316A (en) Method for production for healthy vegetable cheese with soybean
JP5532603B2 (en) Sterilization of low-denatured soy protein composition
US7838633B2 (en) Method for production of fractionated soybean protein material
WO2007026674A1 (en) Noodles and noodle wraps containing soybean protein composition
JP5212107B2 (en) Method for producing soy protein composition
WO2020196440A1 (en) Method for producing protein-enriched breads
WO2008007667A1 (en) Chicken extract and method for production of chicken extract
JP2008206499A (en) Disinfection method of low denatured soybean protein composition
EP2984936A1 (en) Gelled composition of mung bean protein and cheese-like food
JP4687463B2 (en) Improved soybean 7S protein and method for producing the same
JP2001057842A (en) Foaming agent for cake and food using the same
JP2007151427A (en) Albumen hydrolyzate richly containing cysteine, and food and drink containing the same
KR101980042B1 (en) salty taste enhancing natural composition using vegetable materials and preparation method thereof
JPS61257146A (en) Production of buckwheat flour
KR101517735B1 (en) Meju comprising enriched rice rinse water, soybean pulp and wheat bran and a condiment sauceg using the same
Sharma DEVELOPMENT OF PROBIOTIC TOFU PRODUCTS USING SELECTED SOYBEAN VARIETIES AND LACTOBACILLUS STRAINS
CN100548369C (en) The medicament or the body fat percentage ratio that reduce body fat percentage ratio increase inhibitor
JPH10279595A (en) Yolk low-molecular peptide
JPWO2008065954A1 (en) Starch food dandruff inhibitor
JPS61141860A (en) Preparation of emulsion for food