WO2006129593A1 - 表示装置用蛍光体および電界放出型表示装置 - Google Patents
表示装置用蛍光体および電界放出型表示装置 Download PDFInfo
- Publication number
- WO2006129593A1 WO2006129593A1 PCT/JP2006/310646 JP2006310646W WO2006129593A1 WO 2006129593 A1 WO2006129593 A1 WO 2006129593A1 JP 2006310646 W JP2006310646 W JP 2006310646W WO 2006129593 A1 WO2006129593 A1 WO 2006129593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- light
- emitting
- phosphor layer
- activator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/10—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
- H01J31/12—Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
- H01J31/123—Flat display tubes
- H01J31/125—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
- H01J31/127—Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
- C09K11/7716—Chalcogenides
- C09K11/7718—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
Definitions
- the present invention relates to a phosphor for display device and a field emission display device using the same.
- field emission display devices field emission display; FED
- electron-emitting devices such as field-emission cold cathode devices display various information in a precise and high-definition manner.
- FED field emission display
- field-emission cold cathode devices display various information in a precise and high-definition manner.
- the basic display principle of the FED is the same as that of a cathode ray tube (CRT).
- CRT cathode ray tube
- a phosphor is excited by an electron beam to emit light, but the acceleration voltage (excitation voltage) of the electron beam is applied to the CRT.
- the acceleration voltage (excitation voltage) of the electron beam is applied to the CRT.
- the input charge amount per unit area has to be increased in order to obtain a predetermined luminance, which contributes to the deterioration of the life of the phosphor.
- the use of a phosphor based on zinc sulfide, which has been used for CRT in the past did not provide sufficient emission brightness and lifetime.
- FED phosphors with high emission brightness for example, see Patent Document 1
- Patent Document 1 Japanese Patent Laid-Open No. 2002-226847
- the present invention has been made to solve these problems, and an object of the present invention is to provide a phosphor for a display device having high emission luminance. Another object of the present invention is to provide a field emission display device (FED) having high luminance and excellent display characteristics such as color reproducibility by using such a phosphor.
- FED field emission display device
- the phosphor for display device of the present invention comprises cerium (Ce) or europium (Eu) as an activator.
- the accelerating voltage is mainly composed of a ternary compound phosphor that combines a first element belonging to Group I or II of the periodic table, a second element, and a third element belonging to Group VI of the periodic table.
- a phosphor that emits light when excited by an electron beam of 15 kV or less wherein the first element is at least one element selected from Na, Ba, Sr, and Ca, and the second element is yttrium (Y ) Or key (Si), and the third element is X (S).
- the field emission display device of the present invention includes a phosphor layer including a blue-emitting phosphor layer, a green-emitting phosphor layer, and a red-emitting phosphor layer, and an electron having an acceleration voltage of 15 kV or less in the phosphor layer.
- a field emission display device comprising: an electron source that emits light by irradiating a line; and an envelope that vacuum-seals the electron source and the phosphor layer. It includes a bright phosphor for a display device.
- the phosphor for display device is a combination of at least one element selected from Na, Ba, Sr, and Ca, yttrium (Y) or silicon (Si), and io (S).
- Y yttrium
- Si silicon
- io S
- cerium (C e) or europium (Eu) which has a high probability of the electronic state transitioning to the ground level force excited level, is included as an activator, and the acceleration voltage is 15 kV.
- FIG. 1 is a cross-sectional view schematically showing an FED according to an embodiment of the present invention.
- cerium (Ce) is used as an activator, and Ba, which is the first element, Ca (Si), which is the second element, and Y, which is the third element.
- This phosphor is mainly composed of a ternary compound combined with (S) and emits blue light when excited by an electron beam with an acceleration voltage of 15 kV or less.
- cerium-activated barium oxide substantially represented by the chemical formula: Ba SiS: Ce It is a blue light-emitting phosphor composed of silicate.
- Ce is an activator that forms an emission center and has a high transition probability. Therefore, high luminous efficiency can be obtained.
- Is an activator Ce is 0.1 to 5. 0 mole 0/0 for barium thiosulfate silicate is a matrix of the phosphor (Ba SiS)
- Ce is 0.5 to 3.0 mol%.
- the emission luminance and emission chromaticity are lowered, which is not preferable.
- cerium-activated barium thiosilicate phosphor according to the first embodiment of the present invention can be produced by, for example, the following method.
- a raw material containing an element constituting a phosphor base material and an activator or a compound containing the element is weighed so as to have a desired composition (Ba SiS: Ce).
- additive flux such as umya salt and magnesium as needed and mix them dry. Specifically, a predetermined amount of barium sulfide and silicon are mixed, and an appropriate amount of activator and flux are added to obtain a phosphor material.
- an acidic barium raw material such as barium sulfate may be used.
- such a phosphor material is filled into a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- sulfur it is preferable to mix a large amount of sulfur with a phosphor raw material using a renderer and the like, fill the mixed material in a heat-resistant container, and then cover the surface with sulfur.
- This is fired in a hydrogen sulfide atmosphere, a sulfur atmosphere such as a sulfur vapor atmosphere, or a reducing atmosphere (for example, an atmosphere of 3 to 5% hydrogen balance nitrogen).
- the formation temperature is preferably in the range of 900 to 1200 ° C.
- the firing time is 15 to 120 minutes depending on the set firing temperature, it is preferable to cool in the same atmosphere as the firing after firing. After that, the obtained fired product is washed with ion-exchanged water and dried, followed by sieving to remove coarse particles, if necessary, so that the cerium-activated barium silicate phosphor (Ba SiS : Ce) can be obtained.
- the blue light-emitting phosphor of the first embodiment thus obtained has an acceleration voltage of 15 kV or less. It emits light with good luminous efficiency by irradiation with a child wire, and high emission luminance is obtained.
- the color purity of light emission is slightly inferior to that of zinc sulfide phosphors that have been used as blue light-emitting phosphors for CRT, but it is considerably better than known cerium-activated phosphors. . Therefore, by using this blue phosphor, a high-intensity FED can be realized.
- europium (Eu) is used as an activator, the first element Na, the second element Ca (Si), and the third element Zio. It is a phosphor that emits blue light when excited by an electron beam with an accelerating voltage of 15 kV or less. More specifically, sodium substantially represented by the chemical formula: Na SiS: Eu
- Eu is an activator that forms a luminescent center and has a high transition probability. Therefore, high luminous efficiency can be obtained.
- an activator Eu is of from 0.2 to 10 mole 0/0 for sodium Chi butt cable HNa SiS) is a matrix of the phosphor
- the Eu content is 1 to 5 mol%. Eu content ratio S If the content is out of this range, the emission luminance and emission chromaticity are lowered, which is not preferable.
- Europium-activated sodium thiosilicate phosphor according to the second embodiment of the present invention is
- it can manufacture by the method shown below.
- a raw material containing an element constituting the phosphor base material and the activator or a compound containing the element is weighed so as to have a desired composition (Na SiS: Eu), and further the chlorination power.
- Add flux such as siamese-salt-magnesium if necessary and mix them dry. Specifically, a predetermined amount of sodium sulfate sodium and kaen is mixed, and an appropriate amount of activator and flux are added to obtain a phosphor material.
- An acidic sodium raw material such as sodium sulfate may be used in place of sodium sulfate.
- such a phosphor material is filled into a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- sulfur it is preferable to mix a large amount of sulfur with a phosphor raw material using a renderer and the like, fill the mixed material in a heat-resistant container, and then cover the surface with sulfur.
- This is hydrogen sulfide atmosphere, sulfur vapor atmosphere Baking in a sulfur atmosphere such as an atmosphere or a reducing atmosphere (for example, an atmosphere of 3 to 5% hydrogen balance nitrogen).
- the formation temperature is preferably in the range of 900 to 1200 ° C.
- the firing time is 15 to 120 minutes depending on the set firing temperature, it is preferable to cool in the same atmosphere as the firing after firing. Thereafter, the obtained fired product is washed with ion-exchanged water and dried and dried, followed by sieving to remove coarse particles, if necessary, so that the europium-activated sodium thiosilicate phosphor ( Na SiS: Eu) can be obtained.
- the blue light-emitting phosphor of the second embodiment thus obtained emits light with good luminous efficiency when irradiated with an electron beam having an acceleration voltage of 15 kV or less, and high emission luminance is obtained. Further, light emission having equivalent color purity can be obtained as compared with the zinc sulfide phosphor conventionally used as a blue light emitting phosphor for CRT. Therefore, by using this blue phosphor, a high-intensity FED with high brightness and color purity can be realized.
- a third embodiment of the present invention uses europium (Eu) as an activator, and is a key that is at least one element (first element) selected from Ba, Sr, and Ca and a second element. It is a phosphor that emits green light when excited by an electron beam with an accelerating voltage of 15 kV or less, mainly composed of a ternary compound composed of elemental (Si) and the third element Xu (S). . More specifically, the europium activated barium 'stron substantially represented by the chemical formula: (Ba, Sr) SiS: Eu
- a green light-emitting phosphor composed of thium thiosilicate can be exemplified.
- Eu is an activator that forms a luminescent center and has a high transition probability, and therefore has high luminous efficiency. can get.
- Is an activator Eu is preferably contained in the range of 0.2 to 10 mole 0/0 for a phosphor host Noriumu 'strike opening Nchiumu thio silicate. Content of more preferred Eu is from 1 to 5 mol 0/0. When the Eu content is out of this range, the emission luminance and chromaticity are lowered, which is preferable.
- the europium-activated barium strontium thiosilicate phosphor according to the third embodiment of the present invention can be produced, for example, by the method described below.
- Add flux such as salt-potassium or salt-magnesium if necessary, and mix them dry. Specifically, a predetermined amount of barium sulfide, strontium sulfide, and silicon are mixed, and an appropriate amount of activator and flux are added to obtain a phosphor material.
- barium sulfide and strontium sulfide acidic barium raw materials such as barium sulfate and strontium sulfate and acidic strontium raw materials may be used.
- a phosphor material is charged into a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- sulfur it is preferable to mix a large amount of sulfur with a phosphor raw material using a renderer and the like, fill the mixed material in a heat-resistant container, and then cover the surface with sulfur.
- This is fired in a hydrogen sulfide atmosphere, a sulfur atmosphere such as a sulfur vapor atmosphere, or a reducing atmosphere (for example, an atmosphere of 3 to 5% hydrogen balance nitrogen).
- Firing conditions are important in controlling the crystal structure of the phosphor matrix ((Ba, Sr) SiS).
- the firing temperature is preferably in the range of 900 to 1200 ° C. Although the firing time depends on the set firing temperature, it is preferably 15 to 120 minutes. After firing, it is preferable to cool in the same atmosphere as firing. After that, the obtained fired product is washed with ion-exchanged water and dried, followed by sieving to remove coarse particles as necessary, so that the europium-activated norium 'strontium thiosilicate phosphor ((Ba, Sr) SiS: Eu)
- the green light emitting phosphor of the third embodiment thus obtained emits light with good light emission efficiency when irradiated with an electron beam having an acceleration voltage of 15 kV or less, and high emission luminance is obtained.
- light emission with higher color purity can be obtained compared to the zinc sulfide phosphor conventionally used as a green light emitting phosphor for CRT. Therefore, by using this green phosphor, FED with high luminance and high color purity can be realized.
- the fourth embodiment of the present invention uses europium (Eu) as an activator, and at least one element selected from Ba, Sr, and Ca (first element) and yttrium that is the second element. (Y) and a ternary compound that is a combination of the third element Xu (S). It is a phosphor that emits red light when excited by an electron beam with an acceleration voltage of 15 kV or less. . More specifically Is a europium-activated strontium chelate substantially represented by the chemical formula: SrY S: Eu
- An example is a red-emitting phosphor composed of a thorium force.
- Eu is an activator that forms an emission center and has a high transition probability. Therefore, high luminous efficiency can be obtained.
- Eu is an activator is preferably contained in the range of 0.1 to 10 mole 0/0 for strontium Chi O yttrium is a fluorescent substance matrix (SrY S)
- Content of more preferred Eu is from 1 to 5 mol 0/0. When the Eu content is out of this range, the emission luminance and chromaticity are lowered, which is preferable.
- the europium-activated strontium yttrium phosphor that is the fourth embodiment of the present invention can be produced, for example, by the following method.
- strontium sulfide a predetermined amount of strontium sulfide and yttrium are mixed, and an appropriate amount of activator and flux are added to obtain a phosphor material.
- acidic strontium raw materials such as strontium sulfate may be used.
- such a phosphor material is filled in a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- a heat-resistant container such as a quartz crucible together with appropriate amounts of sulfur and activated carbon.
- sulfur it is preferable to mix a large amount of sulfur with a phosphor raw material using a renderer and the like, fill the mixed material in a heat-resistant container, and then cover the surface with sulfur.
- This is fired in a hydrogen sulfide atmosphere, a sulfur atmosphere such as a sulfur vapor atmosphere, or a reducing atmosphere (for example, an atmosphere of 3 to 5% hydrogen balance nitrogen).
- Firing conditions are important in controlling the crystal structure of the phosphor matrix (SrY S). Firing
- the temperature is preferably in the range of 900 ⁇ 1200 ° C.
- the firing time depends on the set firing temperature, it is preferably 15 to 120 minutes, and after firing, it is preferable to cool in the same atmosphere as firing. Thereafter, the obtained fired product is washed with ion-exchanged water and dried, followed by sieving to remove coarse particles, if necessary. SrY S: Eu) can be obtained.
- the red light-emitting phosphor of the fourth embodiment thus obtained emits light with good light emission efficiency when irradiated with an electron beam having an acceleration voltage of 15 kV or less, and high emission luminance is obtained.
- the phosphor layer can be formed by a known printing method or slurry method.
- a paste prepared by mixing the phosphor of the embodiment with a noinda solution having strength such as polybutyl alcohol, n-butyl alcohol, ethylene glycol, and water is screen-printed. It is applied on the substrate by a method such as Next, for example, a baking process is performed to decompose and remove the noinda component by heating at a temperature of 500 ° C. for 1 hour.
- the phosphor of the embodiment is mixed with a photosensitive material such as pure water, polyvinyl alcohol, and ammonium dichromate, a surfactant, and the like to prepare a phosphor slurry.
- a photosensitive material such as pure water, polyvinyl alcohol, and ammonium dichromate, a surfactant, and the like.
- a phosphor layer having a predetermined pattern can be formed.
- At least one of the blue light-emitting phosphor layer, the green light-emitting phosphor layer, and the red light-emitting phosphor layer is formed using at least one of the phosphors of the first to fourth embodiments.
- the formed field emission display (FED) will be described.
- FIG. 1 is a cross-sectional view showing a main configuration of an embodiment of the FED.
- reference numeral 1 denotes a face plate, which has a phosphor layer 3 formed on a transparent substrate such as a glass substrate 2.
- This phosphor layer 3 has a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer formed corresponding to the pixels, and a light absorbing layer 4 made of a black conductive material is interposed between these layers. It has a separate structure. At least one of the blue light-emitting phosphor layer, the green light-emitting phosphor layer, and the red light-emitting phosphor layer is formed using at least one of the phosphors of the first to fourth embodiments.
- the thickness of the phosphor layer formed by the phosphors of these embodiments is desirably 1 to: LO m, more preferably 6 to: LO m. Limit the phosphor layer thickness to: L m or more This is because it is difficult to form a phosphor layer having a thickness of less than 1 ⁇ m and phosphor particles uniformly arranged. On the other hand, if the thickness of the phosphor layer exceeds 10 m, the emission luminance is lowered and cannot be used practically.
- the phosphor layers other than the phosphor layer formed by the phosphors of the first to fourth embodiments can be formed using known phosphors, respectively. It is desirable that the thicknesses of the phosphor layers of the respective colors be the same so that no step is generated between the phosphor layers of the respective colors.
- the blue light-emitting phosphor layer, the green light-emitting phosphor layer, the red light-emitting phosphor layer, and the light absorption layer 4 that separates them are sequentially and repeatedly formed in the horizontal direction.
- a portion where the phosphor layer 3 and the light absorption layer 4 exist is an image display region.
- Various patterns such as dots or stripes can be applied to the arrangement pattern of the phosphor layer 3 and the light absorption layer 4.
- a metal back layer 5 is formed on the phosphor layer 3.
- the metal back layer 5 is made of a metal film such as an A 1 film, and reflects the light traveling in the rear plate direction, which will be described later, among the light generated in the phosphor layer 3 to improve the luminance.
- the metal back layer 5 has a function of imparting conductivity to the image display region of the face plate 1 to prevent electric charge from being accumulated, and serves as an anode electrode for the electron source of the rear plate. Fulfill.
- the metal back layer 5 has a function of preventing the phosphor layer 3 from being damaged by ions generated by ionizing the gas remaining in the face plate 1 and the vacuum vessel (envelope) with an electron beam.
- the gas generated from the phosphor layer 3 during use is prevented from being released into the vacuum container (envelope), and the vacuum degree is prevented from being lowered.
- a getter film 6 made of an evaporable getter material having a force such as Ba is formed on the metal back layer 5.
- the getter film 6 efficiently adsorbs gas generated during use.
- the face plate 1 and the rear plate 7 are arranged to face each other, and the space between them is hermetically sealed through the support frame 8.
- the support frame 8 is bonded to the face plate 1 and the rear plate 7 by a frit glass or a bonding material 9 having a force such as In or an alloy thereof, and the face plate 1, the rear plate 7 and the support frame 8
- a vacuum vessel is constructed as an envelope.
- the rear plate 7 has an insulating substrate such as a glass substrate or a ceramic substrate, or a substrate 10 having a force such as an Si substrate, and a large number of electron-emitting devices 11 formed on the substrate 10.
- These electron-emitting devices 11 include, for example, a field-emission cold cathode, a surface conduction electron-emitting device, and the like, and the surface of the rear plate 7 on which the electron-emitting devices 11 are formed is provided with wiring (not shown). That is, a large number of electron-emitting devices 11 are formed in a matrix according to the phosphors of each pixel, and wirings that cross each other (XY wiring) that drive the matrix-shaped electron-emitting devices 11 row by row. have.
- the support frame 8 is provided with a signal input terminal and a row selection terminal (not shown). These terminals correspond to the cross wiring (XY wiring) of the rear plate 7 described above.
- a reinforcing member (atmospheric pressure support member, spacer) 12 is appropriately disposed between the face plate 1 and the rear plate 7. May be.
- At least one of the phosphor layers of each color that emits light when irradiated with an electron beam with an acceleration voltage of 15 kV or less is at least one of the phosphors of the first to fourth embodiments. Since it is formed by one, it has high emission luminance, color purity, etc. and good display characteristics.
- the raw materials containing the phosphor matrix and the element constituting the activator or the compound containing the element are weighed so as to have the composition shown in Table 1 (Ba SiS: Ce and Na SiS: Eu).
- a blue light emitting phosphor layer having a thickness of 8 m was formed by screen printing, and an aluminum metal back layer was further formed thereon by a lacquer method.
- a blue light-emitting phosphor layer was formed in the same manner using silver and aluminum-activated zinc oxide phosphor (ZnS: Ag, A1), and an aluminum metal was further formed thereon by a lacquer method. A back layer was formed.
- the emission luminance was measured by irradiating each phosphor layer with an electron beam having an acceleration voltage of 10 kV and a current density of 2 OmAZcm 2 .
- the emission luminance was determined as a relative value when the luminance of the phosphor layer of Comparative Example 1 was 100.
- the emission chromaticity was measured using SR-3 manufactured by Topcon as a chromaticity measuring instrument.
- the luminescence chromaticity was measured in a dark room where the chromaticity at the time of luminescence was not affected externally.
- Table 1 shows the measurement results of emission brightness and emission chromaticity.
- the blue light-emitting phosphors obtained in Examples 1 and 2 had a higher current density at a lower acceleration voltage (15 kV or less) than the blue light-emitting phosphors of Comparative Example 1.
- the emission brightness when irradiated with the electron beam is greatly improved.
- it has a sufficiently good emission chromaticity.
- the raw material containing the phosphor matrix and the element constituting the activator or the compound containing the element is weighed to have the composition shown in Table 2 ((Ba, Sr) SiS: Eu), and the flux is added.
- a green light emitting phosphor layer having a thickness of 8 m was formed by screen printing, and an aluminum metal back layer was further formed thereon by a lacquer method.
- a green light-emitting phosphor layer was formed in the same manner using copper and aluminum-activated zinc oxide phosphor (ZnS: Cu, A1), and an aluminum metal was further formed thereon by a lacquer method. A back layer was formed.
- Example 3 and Comparative Example 2 were examined.
- the emission luminance was measured by irradiating each phosphor layer with an electron beam having an acceleration voltage of 10 kV and a current density of 20 mA / cm 2 . Then, the light emission luminance was obtained as a relative value when the luminance of the phosphor layer of Comparative Example 2 was 100.
- the emission chromaticity was measured using SR-3 manufactured by Topcon as a chromaticity measuring instrument. Luminous chromaticity was measured in a dark room where the chromaticity during light emission was not affected by the outside. Table 2 shows the measurement results of luminance and chromaticity.
- the raw materials containing the phosphor matrix and the element constituting the activator or the compound containing the element are weighed so as to have the composition shown in Table 3 (SrY S: Eu), and added with a flux.
- a red light emitting phosphor layer was formed, and an aluminum metal back layer was further formed thereon by a lacquer method.
- Example 4 and Comparative Example 3 were examined.
- the emission luminance was measured by irradiating each phosphor layer with an electron beam having an acceleration voltage of 10 kV and a current density of 20 mA / cm 2 .
- the emission luminance was determined as a relative value when the luminance of the phosphor layer of Comparative Example 3 was 100.
- the emission chromaticity was measured using SR-3 manufactured by Topcon as a chromaticity measuring instrument. Luminous chromaticity was measured in a dark room where the chromaticity during light emission was not affected by the outside. Table 3 shows the measurement results of emission luminance and emission chromaticity.
- the red light-emitting phosphor obtained in Example 4 was irradiated with an electron beam having a high current density at a lower acceleration voltage (15 kV or less) than the red light-emitting phosphor of Comparative Example 3. It can be seen that the light emission luminance of the light source is significantly improved and the light emission chromaticity is good.
- Example 6 Each of 2 2 was used to form a phosphor layer of each color on a glass substrate to form a face plate.
- This face plate and a rear plate having a large number of electron-emitting devices were assembled through a support frame, and these gaps were hermetically sealed while evacuating them. It was confirmed that the FED produced in this way is excellent in color reproducibility including light emission luminance, and also exhibits good luminance characteristics even after being driven at room temperature and rated operation for 1000 hours.
- Example 6 Example 6
- the blue light emitting phosphor (Na SiS: Eu) obtained in Example 2 and a known green light emitting phosphor.
- Copper and aluminum activated phosphorous zinc phosphors ZnS: Cu, A1
- europium activated oxysulfide phosphors YOS: Eu
- a phosphor layer of each color was formed on a glass substrate to form a face plate.
- This face plate and a rear plate having a large number of electron-emitting devices were assembled through a support frame, and these gaps were hermetically sealed while evacuating them. It was confirmed that the FED produced in this way is excellent in color reproducibility including light emission luminance, and also exhibits good luminance characteristics even after being driven at room temperature and rated operation for 1000 hours.
- Silver and aluminum activated phosphors ZnS: Ag, A1
- europium activated oxysulfide phosphors Y O S: Eu
- Each of 2 2 was used to form a phosphor layer of each color on a glass substrate to form a face plate.
- the face plate and the rear plate having a large number of electron-emitting devices were assembled through a support frame, and these gaps were hermetically sealed while being evacuated.
- the FED produced in this way has excellent color reproducibility including light emission luminance, and it has been confirmed that it has good luminance characteristics even after 1000 hours of driving at room temperature and rated operation. It was done.
- Silver and aluminum activated sulfur-zinc phosphors (ZnS: Ag, A1) and the known green light emitting phosphors, copper and aluminum activated sulfur-zinc phosphors (ZnS: Cu, A1) Each was used to form a phosphor layer of each color on a glass substrate to form a face plate.
- the face plate and a rear plate having a large number of electron-emitting devices were assembled through a support frame, and the gap between them was hermetically sealed while evacuating. It was confirmed that the FED produced in this way is excellent in color reproducibility including light emission luminance, and shows good luminance characteristics even after driving for 1000 hours at normal temperature and rated operation. .
- Example 9 The blue light-emitting phosphor (Ba SiS: Ce) obtained in Example 1 and the green light-emitting phosphor obtained in Example 3
- Each of 2 4 2 4 u) was used to form a phosphor layer of each color on a glass substrate to form a face plate.
- This fis plate and a rear plate having a large number of electron-emitting devices were assembled via a support frame, and these gaps were hermetically sealed while being evacuated. It was confirmed that the FED produced in this way is excellent in color reproducibility including light emission luminance, and also exhibits good luminance characteristics even after being driven at room temperature and rated operation for 1000 hours.
- Each of 2 4 2 4 u) was used to form a phosphor layer of each color on a glass substrate to form a face plate.
- This fis plate and a rear plate having a large number of electron-emitting devices were assembled via a support frame, and these gaps were hermetically sealed while being evacuated. It was confirmed that the FED produced in this way is excellent in color reproducibility including light emission luminance, and also exhibits good luminance characteristics even after being driven at room temperature and rated operation for 1000 hours.
- the phosphor for a display device of the present invention it is possible to obtain light emission with high luminance and good color purity when irradiated with an electron beam having a low voltage and a high current density. Therefore, by using such a phosphor, it is possible to realize a thin flat display device having high luminance and excellent display characteristics such as color reproducibility.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Abstract
この表示装置用蛍光体は、CeまたはEuを付活剤とする三元化合物蛍光体を主体とし、加速電圧が15kV以下の電子線により励起されて発光する蛍光体である。前記三元化合物を構成する第1の元素が、NaおよびBa,Sr,Caから選ばれる少なくとも1種類の元素であり、第2の元素がYまたはSiであり、第3の元素がSであることを特徴とする。色純度が高く発光輝度が向上した蛍光体が得られ、このような蛍光体を使用することで、高輝度で色再現性などの表示特性に優れた薄型の平面型表示装置を実現することができる。
Description
明 細 書
表示装置用蛍光体および電界放出型表示装置
技術分野
[0001] 本発明は、表示装置用蛍光体とそれを用いた電界放出型表示装置に関する。
背景技術
[0002] マルチメディア時代の到来に伴って、デジタルネットワークのコア機器となるディス プレイ装置には、大画面化や高精細化、コンピュータ等の多様なソースへの対応性 などが求められている。
[0003] ディスプレイ装置の中で、電界放出型冷陰極素子などの電子放出素子を用いた電 界放出型表示装置 (フィールドェミッションディスプレイ; FED)は、様々な情報を緻 密で高精細に表示することのできる大画面で薄型のデジタルデバイスとして、近年盛 んに研究 '開発が進められている。
[0004] FEDは、基本的な表示原理が陰極線管(CRT)と同じであり、電子線により蛍光体 を励起して発光させて 、るが、電子線の加速電圧 (励起電圧)が CRTに比べて低 ヽ ので、十分な輝度を得るために、 CRTに比べて非常に長い励起時間を必要としてい る。このことは、所定の輝度を得るために単位面積当たりの投入電荷量を多くしなけ ればならないことを意味しており、蛍光体の寿命の悪ィ匕を助長している。そのため、 従来から CRT用として使用されて!ヽる硫化亜鉛を母体とする蛍光体を使用したので は、十分な発光輝度や寿命が得られなかった。このような背景から、発光輝度の高い FED用蛍光体が要望されている。(例えば、特許文献 1参照)
特許文献 1:特開 2002— 226847公報
発明の開示
[0005] 本発明は、これらの問題を解決するためになされたもので、発光輝度が高い表示装 置用蛍光体を提供することを目的としている。また、そのような蛍光体を用いることに よって、高輝度で色再現性などの表示特性に優れた電界放出型表示装置 (FED)を 提供することを目的としている。
[0006] 本発明の表示装置用蛍光体は、セリウム (Ce)またはユーロピウム (Eu)を付活剤と
し、周期律表 I族または II族に属する第 1の元素と、第 2の元素、および周期律表 VI族 に属する第 3の元素を組合せた三元化合物蛍光体を主体とし、加速電圧が 15kV以 下の電子線により励起されて発光する蛍光体であり、前記第 1の元素が Na, Ba, Sr , Caから選ばれる少なくとも 1種類の元素であり、前記第 2の元素がイットリウム (Y)ま たはケィ素(Si)であり、前記第 3の元素がィォゥ(S)であることを特徴とする。
[0007] 本発明の電界放出型表示装置は、青色発光蛍光体層と緑色発光蛍光体層と赤色 発光蛍光体層をそれぞれ含む蛍光体層と、前記蛍光体層に加速電圧が 15kV以下 の電子線を照射して発光させる電子源と、前記電子源と前記蛍光体層を真空封止す る外囲器とを具備する電界放出型表示装置であり、前記蛍光体層が、前記した本発 明の表示装置用蛍光体を含むことを特徴とする。
[0008] 本発明の表示装置用蛍光体は、 Na, Ba, Sr,および Caから選ばれる少なくとも 1 種類の元素と、イットリウム (Y)またはケィ素(Si)と、ィォゥ(S)とを組合せた三元化合 物を母体とし、電子状態が基底準位力 励起準位に遷移する確率の高いセリウム (C e)またはユーロピウム (Eu)が付活剤として含有されているので、加速電圧が 15kV以 下の電子線の照射により優れた発光効率が実現され、高い発光輝度が得られる。
[0009] また、従来から CRT用蛍光体として使用されている硫化亜鉛蛍光体や酸硫化物蛍 光体に比べて、色純度の高い発光が得られる。したがって、この表示装置用蛍光体 を用いることで、高輝度で表示特性の良好な FEDなどの薄型平面型の表示装置を 実現することができる。
図面の簡単な説明
[0010] [図 1]本発明の実施形態である FEDを概略的に示す断面図である。
発明を実施するための最良の形態
[0011] 以下、本発明を実施するための形態について説明する。
[0012] 本発明の第 1の実施形態は、セリウム (Ce)を付活剤とし、第 1の元素である Baと第 2の元素であるケィ素(Si)および第 3の元素であるィォゥ(S)を組合せた三元化合物 を主体とし、加速電圧が 15kV以下の電子線により励起されて青色に発光する蛍光 体である。
[0013] より具体的には、化学式: Ba SiS : Ceで実質的に表されるセリウム付活バリウムチ
オシリケートから構成される青色発光蛍光体である。
[0014] 第 1の実施形態の蛍光体において、 Ceは発光中心を形成する付活剤であり、高い 遷移確率を有している。したがって、高い発光効率が得られる。付活剤である Ceは、 蛍光体の母体であるバリウムチオシリケート(Ba SiS )に対して 0. 1〜5. 0モル0 /0の
2 4
範囲で含有されることが好ましい。より好ましい Ceの含有割合は 0. 5〜3. 0モル% である。 Ceの含有割合がこの範囲を外れた場合には、発光輝度や発光色度が低下 するため好ましくない。
[0015] 本発明の第 1の実施形態であるセリウム付活バリウムチオシリケート蛍光体は、例え ば以下に示す方法で製造することができる。
[0016] すなわち、蛍光体の母体および付活剤を構成する元素またはその元素を含有する 化合物を含む原料を、所望の組成 (Ba SiS: Ce)となるように秤量し、さらに塩ィ匕カリ
2 4
ゥムゃ塩ィ匕マグネシウムなどのフラックスを必要に応じて添加し、これらを乾式で混合 する。具体的には、硫化バリウムとケィ素を所定量混合し、付活剤とフラックスを適量 添加することで蛍光体の原料とする。硫化バリウムの代わりに、硫酸バリウムなどの酸 性バリウム原料を使用してもよい。
[0017] 次いで、このような蛍光体原料を、適当量の硫黄および活性炭素とともに石英るつ ぼなどの耐熱容器に充填する。硫黄の添加'混合に当たっては、プレンダなどを使用 して硫黄を多めに蛍光体原料に混合し、この混合材料を耐熱容器に充填した後、そ の表面を硫黄で覆うようにすることが好ましい。これを硫化水素雰囲気、硫黄蒸気雰 囲気などの硫ィヒ性雰囲気、あるいは還元性雰囲気 (例えば 3〜5%水素 残部窒素 の雰囲気)で焼成する。
[0018] 焼成条件は、蛍光体母体 (Ba SiS )の結晶構造を制御するうえで重要である。焼
2 4
成温度は 900〜1200°Cの範囲とすることが好ましい。焼成時間は設定した焼成温 度にもよるが 15〜 120分とし、焼成後は焼成と同一雰囲気で冷却することが好ま 、 。その後、得られた焼成物をイオン交換水などで水洗し乾燥した後、必要に応じて粗 大粒子を除去するための篩別などを実施することによって、セリウム付活バリウムチォ シリケート蛍光体 (Ba SiS: Ce)を得ることができる。
2 4
[0019] こうして得られる第 1の実施形態の青色発光蛍光体は、加速電圧が 15kV以下の電
子線の照射により良好な発光効率で発光し、高い発光輝度が得られる。また、従来 から CRT用の青色発光蛍光体として使用されている硫化亜鉛蛍光体と比べて、発光 の色純度が若干劣るが、既知のセリウム付活蛍光体の中ではかなり良好なものであ る。したがって、この青色蛍光体を用いることで、高輝度の FEDを実現することができ る。
[0020] 本発明の第 2の実施形態は、ユーロピウム (Eu)を付活剤とし、第 1の元素である Na と第 2の元素であるケィ素(Si)および第 3の元素であるィォゥ(S)を糸且合せた三元化 合物を主体とし、加速電圧が 15kV以下の電子線により励起されて青色に発光する 蛍光体である。より具体的には、化学式: Na SiS : Euで実質的に表されるナトリウム
4 4
チオシリケートから構成される青色発光蛍光体である。
[0021] 第 2の実施形態の蛍光体において、 Euは発光中心を形成する付活剤であり、高い 遷移確率を有している。したがって、高い発光効率が得られる。付活剤である Euは、 蛍光体の母体であるナトリウムチオシリケー HNa SiS )に対して 0. 2〜10モル0 /0の
4 4
範囲で含有されることが好ま U、。より好まし 、Euの含有割合は 1〜5モル%である。 Euの含有割合力 Sこの範囲を外れた場合には、発光輝度や発光色度が低下するため 好ましくない。
[0022] 本発明の第 2の実施形態であるユーロピウム付活ナトリウムチオシリケート蛍光体は
、例えば以下に示す方法で製造することができる。
[0023] すなわち、蛍光体の母体および付活剤を構成する元素またはその元素を含有する 化合物を含む原料を、所望の組成 (Na SiS: Eu)となるように秤量し、さらに塩化力
4 4
リウムゃ塩ィ匕マグネシウムなどのフラックスを必要に応じて添加し、これらを乾式で混 合する。具体的には、硫ィ匕ナトリウムとケィ素を所定量混合し、付活剤とフラックスを 適量添加することで蛍光体の原料とする。硫ィ匕ナトリウムの代わりに、硫酸ナトリウム などの酸性ナトリウム原料を使用してもよい。
[0024] 次いで、このような蛍光体原料を、適当量の硫黄および活性炭素とともに石英るつ ぼなどの耐熱容器に充填する。硫黄の添加'混合に当たっては、プレンダなどを使用 して硫黄を多めに蛍光体原料に混合し、この混合材料を耐熱容器に充填した後、そ の表面を硫黄で覆うようにすることが好ましい。これを硫化水素雰囲気、硫黄蒸気雰
囲気などの硫ィヒ性雰囲気、あるいは還元性雰囲気 (例えば 3〜5%水素 残部窒素 の雰囲気)で焼成する。
[0025] 焼成条件は、蛍光体母体 (Na SiS )の結晶構造を制御するうえで重要である。焼
4 4
成温度は 900〜1200°Cの範囲とすることが好ましい。焼成時間は設定した焼成温 度にもよるが 15〜 120分とし、焼成後は焼成と同一雰囲気で冷却することが好ま 、 。その後、得られた焼成物をイオン交換水などで水洗し乾燥した後、必要に応じて粗 大粒子を除去するための篩別などを実施することによって、ユーロピウム付活ナトリウ ムチオシリケート蛍光体 (Na SiS : Eu)を得ることができる。
4 4
[0026] こうして得られる第 2の実施形態の青色発光蛍光体は、加速電圧が 15kV以下の電 子線の照射により良好な発光効率で発光し、高い発光輝度が得られる。また、従来 から CRT用の青色発光蛍光体として使用されている硫化亜鉛蛍光体と比べて、同等 の色純度を有する発光が得られる。したがって、この青色蛍光体を用いることで、高 輝度で色純度の高 ヽ FEDを実現することができる。
[0027] 本発明の第 3の実施形態は、ユーロピウム (Eu)を付活剤とし、 Ba, Sr, Caから選 ばれる少なくとも 1種類の元素 (第 1の元素)と第 2の元素であるケィ素(Si)、および第 3の元素であるィォゥ(S)を組合せた三元化合物を主体とするもので、加速電圧が 1 5kV以下の電子線により励起されて緑色に発光する蛍光体である。より具体的には、 化学式:(Ba, Sr) SiS: Euで実質的に表されるユーロピウム付活バリウム 'ストロン
2 4
チウムチオシリケートから構成される緑色発光蛍光体を例示することができる。
[0028] 第 3の実施形態であるユーロピウム付活バリウム 'ストロンチウムチオシリケート蛍光 体において、 Euは発光中心を形成する付活剤であり、高い遷移確率を有しているの で、高い発光効率が得られる。付活剤である Euは、蛍光体母体であるノリウム 'スト口 ンチウムチオシリケートに対して 0. 2〜 10モル0 /0の範囲で含有されることが好ましい 。より好ましい Euの含有割合は 1〜5モル0 /0である。 Euの含有割合がこの範囲を外 れた場合には、発光輝度や発光色度が低下するため好ましくな 、。
[0029] 本発明の第 3の実施形態であるユーロピウム付活バリウム 'ストロンチウムチオシリケ ート蛍光体は、例えば以下に示す方法で製造することができる。
[0030] すなわち、蛍光体の母体および付活剤を構成する元素またはその元素を含有する
化合物を含む原料を、所望の組成((Ba, Sr) SiS : Eu)となるように秤量し、さらに
2 4
塩ィ匕カリウムや塩ィ匕マグネシウムなどのフラックスを必要に応じて添加し、これらを乾 式で混合する。具体的には、硫化バリウムおよび硫化ストロンチウムとケィ素を所定量 混合し、付活剤とフラックスを適量添加することで蛍光体の原料とする。硫化バリウム および硫化ストロンチウムの代わりに、硫酸バリウムおよび硫酸ストロンチウムなどの 酸性バリウム原料並びに酸性ストロンチウム原料を使用してもよい。
[0031] 次いで、このような蛍光体原料を、適当量の硫黄および活性炭素とともに石英るつ ぼなどの耐熱容器に充填する。硫黄の添加'混合に当たっては、プレンダなどを使用 して硫黄を多めに蛍光体原料に混合し、この混合材料を耐熱容器に充填した後、そ の表面を硫黄で覆うようにすることが好ましい。これを硫化水素雰囲気、硫黄蒸気雰 囲気などの硫ィヒ性雰囲気、あるいは還元性雰囲気 (例えば 3〜5%水素 残部窒素 の雰囲気)で焼成する。
[0032] 焼成条件は、蛍光体母体((Ba, Sr) SiS )の結晶構造を制御するうえで重要であ
2 4
る。焼成温度は 900〜1200°Cの範囲とすることが好ましい。焼成時間は設定した焼 成温度にもよるが 15〜 120分とし、焼成後は焼成と同一雰囲気で冷却することが好 ましい。その後、得られた焼成物をイオン交換水などで水洗し乾燥した後、必要に応 じて粗大粒子を除去するための篩別などを実施することによって、ユーロピウム付活 ノリウム 'ストロンチウムチオシリケート蛍光体((Ba, Sr) SiS: Eu)を得ることができ
2 4
る。
[0033] こうして得られる第 3の実施形態の緑色発光蛍光体は、加速電圧が 15kV以下の電 子線の照射により良好な発光効率で発光し、高い発光輝度が得られる。また、従来 から CRT用の緑色発光蛍光体として使用されている硫化亜鉛蛍光体に比べて、色 純度が高い発光が得られる。したがって、この緑色蛍光体を用いることで、高輝度で 色純度の高 、FEDを実現することができる。
[0034] 本発明の第 4の実施形態は、ユーロピウム (Eu)を付活剤とし、 Ba, Sr, Caから選 ばれる少なくとも 1種類の元素 (第 1の元素)と第 2の元素であるイットリウム (Y)、およ び第 3の元素であるィォゥ(S)を組合せた三元化合物を主体とするもので、加速電圧 が 15kV以下の電子線により励起されて赤色に発光する蛍光体である。より具体的に
は、化学式: SrY S : Euで実質的に表されるユーロピウム付活ストロンチウムチォィ
2 4
ットリウム力 構成される赤色発光蛍光体が例示される。
[0035] 第 4の実施形態であるユーロピウム付活ストロンチウムチォイットリウム蛍光体におい て、 Euは発光中心を形成する付活剤であり、高い遷移確率を有している。したがって 、高い発光効率が得られる。付活剤である Euは、蛍光体母体であるストロンチウムチ ォイットリウム(SrY S )に対して 0. 1〜10モル0 /0の範囲で含有されることが好ましい
2 4
。より好ましい Euの含有割合は 1〜5モル0 /0である。 Euの含有割合がこの範囲を外 れた場合には、発光輝度や発光色度が低下するため好ましくな 、。
[0036] 本発明の第 4の実施形態であるユーロピウム付活ストロンチウムチォイットリウム蛍 光体は、例えば以下に示す方法で製造することができる。
[0037] すなわち、蛍光体の母体および付活剤を構成する元素またはその元素を含有する 化合物を含む原料を、所望の組成(SrY S: Eu)となるように秤量し、さらに塩ィ匕カリ
2 4
ゥムゃ塩ィ匕マグネシウムなどのフラックスを必要に応じて添加し、これらを乾式で混合 する。具体的には、硫化ストロンチウムとイットリウムを所定量混合し、付活剤とフラック スを適量添加することで蛍光体の原料とする。硫化ストロンチウムの代わりに、硫酸ス トロンチウムなどの酸性ストロンチウム原料を使用してもよ 、。
[0038] 次いで、このような蛍光体原料を、適当量の硫黄および活性炭素とともに石英るつ ぼなどの耐熱容器に充填する。硫黄の添加'混合に当たっては、プレンダなどを使用 して硫黄を多めに蛍光体原料に混合し、この混合材料を耐熱容器に充填した後、そ の表面を硫黄で覆うようにすることが好ましい。これを硫化水素雰囲気、硫黄蒸気雰 囲気などの硫ィヒ性雰囲気、あるいは還元性雰囲気 (例えば 3〜5%水素 残部窒素 の雰囲気)で焼成する。
[0039] 焼成条件は、蛍光体母体 (SrY S )の結晶構造を制御するうえで重要である。焼成
2 4
温度は 900〜1200°Cの範囲とすることが好まし 、。焼成時間は設定した焼成温度 にもよるが 15〜 120分とし、焼成後は焼成と同一雰囲気で冷却することが好ま 、。 その後、得られた焼成物をイオン交換水などで水洗し乾燥した後、必要に応じて粗 大粒子を除去するための篩別などを実施することによって、ユーロピウム付活ストロン チウムチォイットリウム蛍光体(SrY S: Eu)を得ることができる。
[0040] こうして得られる第 4の実施形態の赤色発光蛍光体は、加速電圧が 15kV以下の電 子線の照射により良好な発光効率で発光し、高い発光輝度が得られる。また、従来 から CRT用の赤色発光蛍光体として使用されている酸硫化物蛍光体に比べて、色 純度が高い発光が得られる。したがって、この赤色蛍光体を用いることで、高輝度で 色純度の高 、FEDを実現することができる。
[0041] 本発明の第 1乃至第 4の実施形態の蛍光体の少なくとも一つを使用し、公知の印刷 法あるいはスラリー法により蛍光体層を形成することができる。印刷法により蛍光体層 を形成するには、実施形態の蛍光体を、例えばポリビュルアルコール、 n—ブチルァ ルコール、エチレングリコール、水など力もなるノインダ溶液と混合して調製したぺー ストを、スクリーン印刷などの方法で基板上に塗布する。次いで、例えば 500°Cの温 度で 1時間加熱してノインダ成分を分解 ·除去するベーキング処理を行う。
[0042] また、スラリー法では、実施形態の蛍光体を、純水、ポリビニルアルコール、重クロム 酸アンモニゥムなどの感光性材料、界面活性剤などとともに混合して蛍光体スラリー を調製し、このスラリーをスピンコータなどを用いて基板上に塗布'乾燥した後、紫外 線などを照射して露光'現像し、乾燥する。こうして、所定のパターンの蛍光体層を形 成することができる。
[0043] 次に、第 1乃至第 4の実施形態の蛍光体の少なくとも一つを用いて、青色発光蛍光 体層と緑色発光蛍光体層と赤色発光蛍光体層のうちの少なくとも一つの層を形成し た電界放出型表示装置 (FED)について説明する。
[0044] 図 1は、 FEDの一実施形態の要部構成を示す断面図である。図 1にお 、て、符号 1 はフェイスプレートであり、ガラス基板 2などの透明基板上に形成された蛍光体層 3を 有している。この蛍光体層 3は、画素に対応させて形成した青色発光蛍光体層、緑 色発光蛍光体層および赤色発光蛍光体層を有し、これらの間を黒色導電材から成る 光吸収層 4により分離した構造となっている。青色発光蛍光体層と緑色発光蛍光体 層と赤色発光蛍光体層のうちの少なくとも一つの層が、前記した第 1乃至第 4の実施 形態の蛍光体の少なくとも一つを用いて形成されて 、る。
[0045] これらの実施形態の蛍光体により形成される蛍光体層の厚さは 1〜: LO mとするこ と力望ましく、より好ましくは 6〜: LO mとする。蛍光体層の厚さを: L m以上に限定し
たのは、厚さが 1 μ m未満で蛍光体粒子が均一に並んだ蛍光体層を形成することが 難しいためである。また、蛍光体層の厚さが 10 mを超えると、発光輝度が低下し実 用に供し得ない。第 1乃至第 4の実施形態の蛍光体により形成される蛍光体層以外 の蛍光体層は、それぞれ公知の蛍光体を用いて形成することができる。各色の蛍光 体層の間に段差が生じないように、各色の蛍光体層の厚さを同じにすることが望まし い。
[0046] 上述した青色発光蛍光体層、緑色発光蛍光体層、赤色発光蛍光体層、およびそ れらの間を分離する光吸収層 4は、それぞれ水平方向に順次繰り返し形成されてお り、これらの蛍光体層 3および光吸収層 4が存在する部分が画像表示領域となる。こ の蛍光体層 3と光吸収層 4との配置パターンには、ドット状またはストライプ状など、種 々のパターンが適用可能である。
[0047] そして、蛍光体層 3上にはメタルバック層 5が形成されている。メタルバック層 5は、 A 1膜などの金属膜からなり、蛍光体層 3で発生した光のうち、後述するリアプレート方向 に進む光を反射して輝度を向上させるものである。
[0048] また、メタルバック層 5は、フェイスプレート 1の画像表示領域に導電性を与えて電 荷が蓄積されるのを防ぐ機能を有し、リアプレートの電子源に対してアノード電極の 役割を果たす。また、メタルバック層 5は、フェイスプレート 1や真空容器 (外囲器)内 に残留したガスが電子線で電離して生成するイオンにより蛍光体層 3が損傷すること を防ぐ機能を有し、さらに、使用時に蛍光体層 3から発生したガスが真空容器 (外囲 器)内に放出されることを防ぎ、真空度の低下を防止するなどの効果も有している。
[0049] メタルバック層 5上には、 Baなど力もなる蒸発型ゲッタ材により形成されたゲッタ膜 6 が形成されている。このゲッタ膜 6によって、使用時に発生したガスが効率的に吸着さ れる。
[0050] そして、このようなフェイスプレート 1とリアプレート 7とが対向配置され、これらの間の 空間が支持枠 8を介して気密に封止されている。支持枠 8は、フェイスプレート 1およ びリアプレート 7に対して、フリットガラス、あるいは Inやその合金など力もなる接合材 9 により接合され、これらフェイスプレート 1、リアプレート 7および支持枠 8によって、外 囲器としての真空容器が構成されて 、る。
[0051] リアプレート 7は、ガラス基板やセラミックス基板などの絶縁性基板、あるいは Si基板 など力もなる基板 10と、この基板 10上に形成された多数の電子放出素子 11とを有し ている。これら電子放出素子 11は、例えば電界放出型冷陰極や表面伝導型電子放 出素子などを備え、リアプレート 7の電子放出素子 11の形成面には、図示を省略した 配線が施されている。すなわち、多数の電子放出素子 11は、各画素の蛍光体に応じ てマトリックス状に形成されており、このマトリックス状の電子放出素子 11を一行ずつ 駆動する、互いに交差する配線 (X—Y配線)を有している。なお、支持枠 8には、図 示を省略した信号入力端子および行選択用端子が設けられて!/ヽる。これらの端子は 前記したリアプレート 7の交差配線 (X—Y配線)に対応する。また、平板型の FEDを 大型化させる場合、薄い平板状であるためにたわみなどが生じるおそれがある。この ようなたわみを防止し、また大気圧に対して強度を付与するために、フェイスプレート 1とリアプレート 7との間に、補強部材 (大気圧支持部材、スぺーサ) 12を適宜配置し てもよい。
[0052] この FEDにおいては、加速電圧が 15kV以下の電子線の照射により発光する各色 の蛍光体層のうちの少なくとも一つの層が、第 1乃至第 4の実施形態の蛍光体のうち の少なくとも一つにより形成されているので、発光輝度や色純度などが高く表示特性 が良好である。
実施例
[0053] 次に、本発明の具体的な実施例について説明する。
[0054] 実施例 1 , 2 (青色発光蛍光体の調製)
蛍光体の母体および付活剤を構成する元素またはその元素を含有する化合物を含 む原料を、表 1に示す組成(Ba SiS : Ceおよび Na SiS : Eu)となるように秤量し、フ
2 4 4 4
ラックスを添加して十分に混合した。得られた蛍光体原料に、硫黄および活性炭素を 適当量添加して石英るつぼ内に充填し、これを還元性雰囲気中で焼成した。焼成条 件は 1000°C X 60分とした。その後、得られた焼成物を水洗および乾燥しさらに篩別 することによって、セリウム付活バリウムチオシリケート蛍光体 (Ba SiS: Ce) (実施例
2 4
1)とユーロピウム付活ナトリウムチオシリケート蛍光体 (Na SiS: Eu) (実施例 2)をそ
4 4
れぞれ得た。
[0055] 次いで、こうして得られた蛍光体を用い、スクリーン印刷により 8 mの厚さの青色発 光蛍光体層を形成し、さらにその上にラッカー法によりアルミニウムのメタルバック層 を形成した。また、比較例 1として、銀およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS : Ag, A1)を用いて同様にして青色発光蛍光体層を形成し、さらにその上にラッカー 法によりアルミニウムのメタルバック層を形成した。
[0056] 次に、実施例 1, 2および比較例 1で得られた青色発光蛍光体層の発光輝度と発光 色度をそれぞれ調べた。発光輝度は、各蛍光体層に、加速電圧 10kV、電流密度 2 OmAZcm2の電子線を照射して測定した。そして、比較例 1の蛍光体層の輝度を 10 0としたときの相対値として、発光輝度を求めた。
[0057] 発光色度は、色度測定機器としてトプコン社製 SR— 3を使用して測定した。発光色 度の測定は、発光時の色度が外部から影響を受けない暗室内で行った。発光輝度 および発光色度の測定結果を表 1に示す。
[0058] [表 1]
[0059] 表 1から明らかなように、実施例 1, 2で得られた青色発光蛍光体は、比較例 1の青 色発光蛍光体に比べて、低加速電圧(15kV以下)で高電流密度の電子線を照射し た際の発光輝度が大幅に向上している。しかも、十分に良好な発光色度を有してい ることがゎカゝる。
[0060] 実施例 3 (緑色発光蛍光体の調製)
蛍光体の母体および付活剤を構成する元素またはその元素を含有する化合物を含 む原料を、表 2に示す組成((Ba, Sr) SiS: Eu)となるように秤量し、フラックスを添
2 4
加して十分に混合した。得られた蛍光体原料に、硫黄および活性炭素を適当量添加 して石英るつぼ内に充填し、これを還元性雰囲気中で焼成した。焼成条件は 1000 °C X 60分とした。その後、得られた焼成物を水洗および乾燥しさらに篩別することに よって、ユーロピウム付活バリウム.ストロンチウムチオシリケート蛍光体((Ba, Sr) Si
S : Eu)を得た。
4
[0061] 次いで、こうして得られた蛍光体を用い、スクリーン印刷により 8 mの厚さの緑色発 光蛍光体層を形成し、さらにその上にラッカー法によりアルミニウムのメタルバック層 を形成した。また、比較例 2として、銅およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS : Cu, A1)を用いて同様にして緑色発光蛍光体層を形成し、さらにその上にラッカー 法によりアルミニウムのメタルバック層を形成した。
[0062] 次に、実施例 3および比較例 2で得られた緑色発光蛍光体層の発光輝度と発光色 度をそれぞれ調べた。発光輝度は、各蛍光体層に、加速電圧 10kV、電流密度 20m A/cm2の電子線を照射して測定した。そして、比較例 2の蛍光体層の輝度を 100と したときの相対値として、発光輝度を求めた。発光色度は、色度測定機器としてトプコ ン社製 SR— 3を使用して測定した。発光色度の測定は、発光時の色度が外部から 影響を受けない暗室内で行った。発光輝度および発光色度の測定結果を表 2に示 す。
[0064] 表 2から、実施例 3で得られた緑色発光蛍光体は、比較例 2の緑色発光蛍光体に 比べて、低加速電圧(15kV以下)で高電流密度の電子線を照射した際の発光輝度 が大幅に向上し、かつ良好な発光色度を有していることがわかる。
[0065] 実施例 4 (赤色発光蛍光体の調製)
蛍光体の母体および付活剤を構成する元素またはその元素を含有する化合物を含 む原料を、表 3に示す組成(SrY S: Eu)となるように秤量し、フラックスを添加して十
2 4
分に混合した。得られた蛍光体原料に、硫黄および活性炭素を適当量添加して石英 るつぼに充填し、これを還元性雰囲気中で焼成した。焼成条件は 1000°C X 60分と した。その後、得られた焼成物を水洗および乾燥しさらに篩別することによって、ユー 口ピウム付活ストロンチウムチォイットリウム蛍光体(SrY S : Eu)を得た。
2 4
[0066] 次いで、こうして得られた蛍光体を用い、スクリーン印刷により 8 mの厚さの赤色発
光蛍光体層を形成し、さらにその上にラッカー法によりアルミニウムのメタルバック層 を形成した。また、比較例 3として、ユーロピウム付活の酸硫ィ匕物蛍光体 (Y O S :Eu
2 2
)を用いて同様にして赤色発光蛍光体層を形成し、さらにその上にラッカー法により アルミニウムのメタルバック層を形成した。
[0067] 次に、実施例 4および比較例 3で得られた赤色発光蛍光体層の発光輝度と発光色 度をそれぞれ調べた。発光輝度は、各蛍光体層に、加速電圧 10kV、電流密度 20m A/cm2の電子線を照射して測定した。そして、比較例 3の蛍光体層の輝度を 100と したときの相対値として、発光輝度を求めた。発光色度は、色度測定機器としてトプコ ン社製 SR— 3を使用して測定した。発光色度の測定は、発光時の色度が外部から 影響を受けない暗室内で行った。発光輝度および発光色度の測定結果を表 3に示 す。
[0068] [表 3]
[0069] 表 3から、実施例 4で得られた赤色発光蛍光体は、比較例 3の赤色発光蛍光体に 比べて、低加速電圧(15kV以下)で高電流密度の電子線を照射した際の発光輝度 が大幅に向上し、かつ良好な発光色度を有していることがわかる。
[0070] 実施例 5
実施例 1で得られた青色発光蛍光体 (Ba SiS: Ce)と、公知の緑色発光蛍光体であ
2 4
る銅およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS : Cu, A1)、および公知の赤色発 光蛍光体であるユーロピウム付活酸硫化物蛍光体 (Y O S :Eu)
2 2 をそれぞれ用い、ガ ラス基板上に各色の蛍光体層を形成してフェイスプレートとした。このフェイスプレー トと多数の電子放出素子を有するリアプレートとを支持枠を介して組立てると共に、こ れらの間隙を真空排気しつつ気密封止した。このようにして作製された FEDは、発光 輝度をはじめとする色再現性に優れ、さらに常温、定格動作で 1000時間駆動させた 後にお 、ても良好な輝度特性を示すことが確認された。
[0071] 実施例 6
実施例 2で得られた青色発光蛍光体 (Na SiS: Eu)と、公知の緑色発光蛍光体であ
4 4
る銅およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS : Cu, A1)、および公知の赤色発 光蛍光体であるユーロピウム付活酸硫化物蛍光体 (Y O S :Eu)をそれぞれ用い、ガ
2 2
ラス基板上に各色の蛍光体層を形成してフェイスプレートとした。このフェイスプレー トと多数の電子放出素子を有するリアプレートとを支持枠を介して組立てると共に、こ れらの間隙を真空排気しつつ気密封止した。このようにして作製された FEDは、発光 輝度をはじめとする色再現性に優れ、さらに常温、定格動作で 1000時間駆動させた 後にお 、ても良好な輝度特性を示すことが確認された。
[0072] 実施例 7
実施例 3で得られた緑色発光蛍光体((Ba, Sr) SiS: Eu)と、公知の青色発光蛍光
2 4
体である銀およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS :Ag, A1)、および公知の 赤色発光蛍光体であるユーロピウム付活酸硫化物蛍光体 (Y O S :Eu)
2 2 をそれぞれ 用い、ガラス基板上に各色の蛍光体層を形成してフェイスプレートとした。このフェイ スプレートと多数の電子放出素子を有するリアプレートとを支持枠を介して組立てると 共に、これらの間隙を真空排気しつつ気密封止した。このようにして作製された FED は、発光輝度をはじめとする色再現性に優れ、さら〖こ常温、定格動作で 1000時間駆 動させた後にお ヽても良好な輝度特性を示すことが確認された。
[0073] 実施例 8
実施例 4で得られた赤色発光蛍光体 (SrY S : Eu)と、公知の青色発光蛍光体であ
2 4
る銀およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS :Ag, A1)、および公知の緑色発 光蛍光体である銅およびアルミニウム付活硫ィ匕亜鉛蛍光体 (ZnS: Cu, A1)をそれぞ れ用い、ガラス基板上に各色の蛍光体層を形成してフェイスプレートとした。このフエ イスプレートと多数の電子放出素子を有するリアプレートとを支持枠を介して組立てる と共に、これらの間隙を真空排気しつつ気密封止した。このようにして作製された FE Dは、発光輝度をはじめとする色再現性に優れ、さら〖こ常温、定格動作で 1000時間 駆動させた後においても良好な輝度特性を示すことが確認された。
[0074] 実施例 9
実施例 1で得られた青色発光蛍光体 (Ba SiS: Ce)と、実施例 3で得られた緑色発
2 4
光蛍光体((Ba, Sr) SiS: Eu)と、実施例 4で得られた赤色発光蛍光体 (SrY S : E
2 4 2 4 u)をそれぞれ用い、ガラス基板上に各色の蛍光体層を形成してフェイスプレートとし た。このフ イスプレートと多数の電子放出素子を有するリアプレートとを支持枠を介 して組立てると共に、これらの間隙を真空排気しつつ気密封止した。このようにして作 製された FEDは、発光輝度をはじめとする色再現性に優れ、さらに常温、定格動作 で 1000時間駆動させた後においても良好な輝度特性を示すことが確認された。
[0075] 実施例 10
実施例 2で得られた青色発光蛍光体 (Na SiS: Eu)と、実施例 3で得られた緑色発
4 4
光蛍光体((Ba, Sr) SiS: Eu)と、実施例 4で得られた赤色発光蛍光体 (SrY S : E
2 4 2 4 u)をそれぞれ用い、ガラス基板上に各色の蛍光体層を形成してフェイスプレートとし た。このフ イスプレートと多数の電子放出素子を有するリアプレートとを支持枠を介 して組立てると共に、これらの間隙を真空排気しつつ気密封止した。このようにして作 製された FEDは、発光輝度をはじめとする色再現性に優れ、さらに常温、定格動作 で 1000時間駆動させた後においても良好な輝度特性を示すことが確認された。 産業上の利用可能性
[0076] 本発明の表示装置用蛍光体によれば、低電圧で電流密度の高い電子線を照射し た場合に、高輝度で色純度の良好な発光を得ることができる。したがって、このような 蛍光体を使用することにより、高輝度で色再現性などの表示特性に優れた薄型の平 面型表示装置を実現することができる。
Claims
[1] セリウム (Ce)またはユーロピウム (Eu)を付活剤とし、周期律表 I族または II族に属す る第 1の元素と、第 2の元素、および周期律表 VI族に属する第 3の元素を組合せた三 元化合物蛍光体を主体とし、加速電圧が 15kV以下の電子線により励起されて発光 する蛍光体であり、
前記第 1の元素が Na, Ba, Sr, Caから選ばれる少なくとも 1種類の元素であり、前 記第 2の元素がイットリウム (Y)またはケィ素(Si)であり、前記第 3の元素力 Sィォゥ(S) であることを特徴とする表示装置用蛍光体。
[2] Ceを付活剤とし、加速電圧が 15kV以下の電子線により励起されて青色に発光す る蛍光体であり、前記第 1の元素が Baであり、前記第 2の元素が Siであることを特徴と する請求項 1記載の表示装置用蛍光体。
[3] Euを付活剤とし、加速電圧が 15kV以下の電子線により励起されて青色に発光す る蛍光体であり、前記第 1の元素が Naであり、前記第 2の元素が Siであることを特徴 とする請求項 1記載の表示装置用蛍光体。
[4] Euを付活剤とし、加速電圧が 15kV以下の電子線により励起されて緑色に発光す る蛍光体であり、前記第 1の元素が Ba, Sr, Caから選ばれる少なくとも 1種類の元素 であり、前記第 2の元素が Siであることを特徴とする請求項 1記載の表示装置用蛍光 体。
[5] Euを付活剤とし、加速電圧が 15kV以下の電子線により励起されて赤色に発光す る蛍光体であり、前記第 1の元素が Ba, Sr, Caから選ばれる少なくとも 1種類の元素 であり、前記第 2の元素が Yであることを特徴とする請求項 1記載の表示装置用蛍光 体。
[6] 青色発光蛍光体層と緑色発光蛍光体層と赤色発光蛍光体層をそれぞれ含む蛍光 体層と、前記蛍光体層に加速電圧が 15kV以下の電子線を照射して発光させる電子 源と、前記電子源と前記蛍光体層を真空封止する外囲器とを具備する電界放出型 表示装置であり、
前記蛍光体層が、請求項 1乃至 5のいずれか 1項記載の表示装置用蛍光体を含む ことを特徴とする電界放出型表示装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-164766 | 2005-06-03 | ||
JP2005164766A JP2006335967A (ja) | 2005-06-03 | 2005-06-03 | 表示装置用蛍光体および電界放出型表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006129593A1 true WO2006129593A1 (ja) | 2006-12-07 |
Family
ID=37481522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/310646 WO2006129593A1 (ja) | 2005-06-03 | 2006-05-29 | 表示装置用蛍光体および電界放出型表示装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006335967A (ja) |
TW (1) | TW200714695A (ja) |
WO (1) | WO2006129593A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074145A (ja) * | 2009-09-29 | 2011-04-14 | Sumitomo Metal Mining Co Ltd | 示温性材料 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007321139A (ja) * | 2006-06-05 | 2007-12-13 | National Univ Corp Shizuoka Univ | 蛍光体の製造方法、蛍光体、発光素子、発光装置、画像表示装置及び照明装置 |
JP5702903B2 (ja) * | 2007-01-30 | 2015-04-15 | 株式会社東芝 | 発光材料、この発光材料を含むシンチレータ、このシンチレータを備えたx線検出素子、およびこのx線検出素子を備えたx線検出器 |
JP5506215B2 (ja) * | 2009-03-13 | 2014-05-28 | 住友金属鉱山株式会社 | 蛍光体の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172459A (ja) * | 1996-12-12 | 1998-06-26 | Samsung Display Devices Co Ltd | プロジェクターシステム |
JP2004137480A (ja) * | 2002-09-20 | 2004-05-13 | Tdk Corp | 蛍光体薄膜およびその製造方法ならびにelパネル |
JP2006104413A (ja) * | 2004-10-08 | 2006-04-20 | Nec Lighting Ltd | 蛍光体およびそれを用いた白色発光素子 |
-
2005
- 2005-06-03 JP JP2005164766A patent/JP2006335967A/ja not_active Withdrawn
-
2006
- 2006-05-29 WO PCT/JP2006/310646 patent/WO2006129593A1/ja active Application Filing
- 2006-06-01 TW TW095119416A patent/TW200714695A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172459A (ja) * | 1996-12-12 | 1998-06-26 | Samsung Display Devices Co Ltd | プロジェクターシステム |
JP2004137480A (ja) * | 2002-09-20 | 2004-05-13 | Tdk Corp | 蛍光体薄膜およびその製造方法ならびにelパネル |
JP2006104413A (ja) * | 2004-10-08 | 2006-04-20 | Nec Lighting Ltd | 蛍光体およびそれを用いた白色発光素子 |
Non-Patent Citations (2)
Title |
---|
DO Y.R.: "Cathodoluminescence properties of SrY2S4:Eu phosphor for application in field emission display", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 147, no. 4, 2000, pages 1597 - 1600, XP008073416 * |
MATUMURA M. ET AL.: "Photoluminescence of sulfide phosphors with MB2S4 composition", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 139, no. 8, 1992, pages 2347 - 2352, XP000361884 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074145A (ja) * | 2009-09-29 | 2011-04-14 | Sumitomo Metal Mining Co Ltd | 示温性材料 |
Also Published As
Publication number | Publication date |
---|---|
JP2006335967A (ja) | 2006-12-14 |
TW200714695A (en) | 2007-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090039759A1 (en) | Phosphor for Display and Field Emission Display | |
KR100489575B1 (ko) | 표시 장치용 형광체 및 그것을 이용한 전계 방출형 표시장치 | |
WO2006129593A1 (ja) | 表示装置用蛍光体および電界放出型表示装置 | |
KR100821047B1 (ko) | 청색 형광체 및 그것을 이용한 디스플레이패널 | |
JP2002226847A (ja) | 表示装置用蛍光体およびそれを用いた電界放出型表示装置 | |
US20080265742A1 (en) | Display Unit-Use Blue Light Emitting Fluorescent Substance and Production Method Therefor and Field Emission Type Display Unit | |
WO2006120952A1 (ja) | 表示装置用青色発光蛍光体および電界放出型表示装置 | |
JP2002138279A (ja) | 表示装置用蛍光体とその製造方法、およびそれを用いた電界放出型表示装置 | |
EP1555306A1 (en) | Fluorescent material for display unit, process for producing the same and color display unit including the same | |
JP2004263068A (ja) | 低電圧・高電流密度用緑色発光蛍光体とそれを用いた電界放出型表示装置 | |
JP2008140617A (ja) | 赤色発光素子および電界放出型表示装置 | |
JP2007177078A (ja) | 表示装置用蛍光体および電界放出型表示装置 | |
JP2008184528A (ja) | 表示装置用蛍光体および電界放出型表示装置 | |
US20080265743A1 (en) | Green Light-Emitting Phosphor for Displays and Field-Emission Display Using Same | |
WO2006120953A1 (ja) | 表示装置用緑色発光蛍光体および電界放出型表示装置 | |
JP2007329027A (ja) | 電界放出型表示装置 | |
JP3982667B2 (ja) | 低速電子線励起蛍光体及び蛍光表示管 | |
JP2004339293A (ja) | 低電圧・高電流密度用青色発光蛍光体とそれを用いた電界放出型表示装置 | |
JP2008130305A (ja) | 緑色発光素子および電界放出型表示装置 | |
JP2008156580A (ja) | 発光素子および電界放出型表示装置 | |
JP2008156581A (ja) | 表示装置用蛍光体および電界放出型表示装置 | |
JP2006335968A (ja) | 表示装置用蛍光体および電界放出型表示装置 | |
JP2008179748A (ja) | 赤色発光素子および電界放出型表示装置 | |
JP2005036111A (ja) | 表示装置用蛍光体とその製造方法、およびそれを用いた電界放射型表示装置 | |
WO2006051601A1 (ja) | 表示装置用蛍光体とその製造方法、およびそれを用いた電界放射型表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06756691 Country of ref document: EP Kind code of ref document: A1 |