WO2006126746A1 - 燃料電池システムおよび燃料電池の運転方法 - Google Patents

燃料電池システムおよび燃料電池の運転方法 Download PDF

Info

Publication number
WO2006126746A1
WO2006126746A1 PCT/JP2006/311051 JP2006311051W WO2006126746A1 WO 2006126746 A1 WO2006126746 A1 WO 2006126746A1 JP 2006311051 W JP2006311051 W JP 2006311051W WO 2006126746 A1 WO2006126746 A1 WO 2006126746A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
amount
pressure
humidifier
exhaust gas
Prior art date
Application number
PCT/JP2006/311051
Other languages
English (en)
French (fr)
Inventor
Daisuke Yamazaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2006552412A priority Critical patent/JP4577313B2/ja
Priority to DE112006001344T priority patent/DE112006001344T5/de
Publication of WO2006126746A1 publication Critical patent/WO2006126746A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04522Humidity; Ambient humidity; Water content of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/0435Temperature; Ambient temperature of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell that generates electric power by receiving a supply of a predetermined gas, and more particularly to control of humidification using moisture contained in exhaust gas from the fuel cell.
  • Patent Document 1 discloses a system that discharges air that has passed through a fuel cell (hereinafter referred to as exhaust gas) to the outside via a humidifier.
  • a first pressure control valve is provided on the exhaust gas flow path between the fuel cell and the humidifier (that is, upstream of the humidifier), and a second pressure control is provided downstream of the humidifier.
  • Each valve is provided, and when the humidity of the air supplied to the fuel cell is low, control is performed to decrease the pressure in the humidifier by increasing the opening of the second pressure control valve. By doing so, it is said that the moisture contained in the exhaust gas can be converted to water vapor, and the humidifying efficiency of the humidifier can be increased. Disclosure of the invention However, this technology does not consider the exhaust gas discharged to the outside of the fuel cell, and there is a problem that the humidifying performance of the humidifier decreases depending on the amount of exhaust gas discharged.
  • the moisture content in the exhaust gas is not completely used by the humidifier, and a part of it is discharged to the outside together with the air as the exhaust gas.
  • the amount of water contained in the exhaust gas is the water produced by the power generation of the fuel cell and is determined according to the amount of power generation. For example, if the flow rate of air supplied to the fuel cell is increased to increase the amount of power generation, the flow rate of exhaust gas also increases. Even if the amount of water vapor is increased in this situation, the amount of moisture discharged to the outside as exhaust gas increases, and as a result, the amount of moisture that can be used for humidification decreases, and the humidification performance of the humidifier may decrease. There was this.
  • An object of the present invention is to provide a fuel cell system that performs appropriate humidification control in view of such a problem that the humidifying performance of the humidifier is lowered.
  • the fuel cell system of the present invention employs the following method.
  • a fuel cell system including a fuel cell that generates electricity by receiving a predetermined gas supply,
  • Humidification is provided in the exhaust gas piping from the fuel cell, and humidifies at least one type of supply gas supplied to the fuel cell using water contained in the exhaust gas discharged from the fuel cell.
  • Exhaust water amount detection means for detecting the amount of exhaust water contained in the exhaust gas and discharged to the downstream of the humidifier
  • the amount of discharged water By using such a generally detected temperature, it is possible to easily determine the amount of discharged water. Further, when the physical quantity is the flow rate of the exhaust gas, it is determined that the discharged water amount is greater than or equal to the predetermined amount when the detected flow rate is higher than a predetermined value. In other words, when the exhaust gas flow rate is high, the flow rate through the humidifier also increases, and sufficient humidification is not performed in the humidifier. When such a flow rate is high, it is determined that the amount of water discharged is greater than or equal to a predetermined amount, and the amount of water discharged downstream of the humidifier is suppressed. Therefore, appropriate humidification can be performed with a humidifier.
  • the pressure of the supply gas in the fuel cell is further adjusted by adjusting the pressure of the exhaust gas on the exhaust gas flow path and upstream of the humidifier.
  • An upstream pressure adjustment valve to adjust, and when the flow rate adjustment processing unit determines that the amount of discharged water is less than a predetermined amount, instead of adjusting the pressure by the downstream pressure adjustment valve, the upstream side
  • the pressure adjustment by the pressure adjustment valve may be executed. According to such a fuel cell system, when the amount of discharged water is small, the pressure adjustment by the upstream pressure regulating valve is executed without restricting the flow rate downstream of the humidifier. Since control is performed by the upstream pressure regulating valve close to the fuel cell, response delays can be reduced and controllability can be suppressed.
  • the present invention can be grasped as a fuel cell operation method, and can be grasped as a fuel cell system having the following modes.
  • One is a fuel cell that generates electric power when supplied with a predetermined gas, and a humidifier that humidifies the supply gas supplied to the fuel cell using moisture contained in the exhaust gas discharged from the fuel cell.
  • a fuel cell system comprising: a discharged water amount detecting means for detecting a discharged water amount contained in the exhaust gas and discharged downstream of the humidifier; and based on the detection result, the discharged water amount Is a flow rate adjustment processing means for performing a process of restricting the flow rate of the exhaust gas discharged downstream of the humidifier when it is determined that is equal to or greater than a predetermined amount.
  • FIG. 3 shows the pressure adjustment process of the second embodiment in the fuel cell system of the present embodiment. It is the first place in Frochia.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system as an embodiment of the present invention.
  • the fuel cell system 10 includes a fuel cell 20 that receives supply of hydrogen gas as a reaction gas and air, and generates power by an electrochemical reaction between hydrogen and oxygen in the air. It is mounted on a vehicle (not shown) powered by the generated power.
  • this system 10 includes a fuel cell 20, a hydrogen system 30 that supplies hydrogen gas to the fuel cell 20, an air system 40 that supplies air to the fuel cell 20, and various parts It consists of a control unit 1 2 0 etc. that controls
  • the fuel cell 20 has a plurality of unit cells 21 each having a hydrogen electrode (hereinafter referred to as an anode) and an oxygen electrode (hereinafter referred to as a force sword).
  • the single cell 21 is composed of a separator overnight, an anode, an electrolyte membrane, a force sword, and a separator evening, and a flow path for hydrogen gas and air is provided in the separator evening. This These fluid flow paths are connected to the inlet ports of various fluids provided on the end plate 28, respectively, and hydrogen gas and air supplied from the outside of the fuel cell 20 to the inlet port. Is supplied to each of the plurality of single cells 21 without any delay.
  • the end plate 28 is also provided with a refrigerant inlet port, and the refrigerant supplied from outside cools the fuel cell 20.
  • the air system 40 includes a supply line that supplies air to the fuel cell 20 and a fuel line. And an exhaust line that guides air discharged from the fuel cell 20 to an exhaust system 80 to be described later.
  • the supply line consists of an atmospheric pressure sensor 47 equipped with a semiconductor gauge inside, in order from the upstream of the air flow supplied to the fuel cell 20, an air cleaner 41 that removes dust and dirt in the air, and hot wire type Air flow meter 4 2, air compressor 4 3 with motor as power source, intercooler 4 4 that cools air to increase air density, and humidifier 4 8 that humidifies the supplied air Supply pipes 45, 46, etc., and the air compressor 43 is driven to take in air from the atmosphere and supply it to the fuel cell 20.
  • the air taken in from the outside by the drive of the air compressor 43 is first purified by the air cleaner 41 and passes through the air flow meter 42.
  • the air that has passed through the air flow meter 4 2 is compressed by the air compressor 4 3, cooled by the intercooler 4 4, and humidified by the humidifier 4 8.
  • the humid air thus humidified flows through the supply pipe 46 connected to the end plate 28 of the fuel cell 20 and is supplied to the fuel cell 20.
  • a hollow fiber membrane type humidifier is used as the humidifier 48.
  • a plurality of hollow fiber membranes are provided inside the humidifier 48, and a dry gas is provided outside the hollow fiber membrane (this is referred to as a primary side), and an inside of the hollow fiber membrane (this is referred to as a secondary side).
  • the primary dry gas is humidified by passing each of the wet gases.
  • the hollow fiber membrane has a plurality of fine capillaries from the inside to the outside, and the water vapor of the wet gas passing through the secondary side is sucked out as moisture by capillary action. The water sucked out in this way is supplied to the dry gas on the primary side.
  • the primary side of the humidifier 48 is arranged on the supply line, and the secondary side of the humidifier 48 is arranged on the exhaust line as will be described later.
  • the air discharged from the fuel cell 20 is a wet gas because it contains the water produced on the cathode side by the above-described electrochemical reaction as water vapor.
  • the air supplied to the fuel cell 20 is humidified by using the exhausted air in the wet state.
  • the atmospheric pressure sensor 47 detects the pressure P 1 as the external atmospheric pressure, and the air flow meter 42 detects the air flow rate q.
  • the detected pressure P 1 and flow rate q are output to the control unit 1 2 0 to control the operation of the fuel cell system 1 0, for example, an air compressor 4 for supplying an air amount corresponding to the required power generation amount 4 This is used to control the number of motor revolutions in No. 3.
  • the temperature sensor 5 5 with a built-in temperature sensor, the semiconductor-type pressure sensor 5 6, and the opening of the valve
  • two pressure regulating valves 50 and 58 are provided as described above.
  • the two pressure regulating valves 50 and 58 both adjust the air pressure at the outlet of the fuel cell 20 and control the pressure of the air supplied into the fuel cell 20 within a predetermined range.
  • the outlet pressure adjustment process air can be supplied appropriately without applying an excessive load to the electrolyte membrane in the fuel cell 20.
  • poppet type valve bodies are used for the pressure regulating valves 50 and 58, and the pressure is adjusted by adjusting the valve opening by the forward / backward movement of the poppet valve. .
  • the valve opening degree is controlled by the control unit 120, and is controlled by controlling the rotation angle of the poppet valve drive motor.
  • the control unit 120 has a CPU, ROM, RAM, timer, input / output port, and so on.
  • the ROM stores a program for performing the above-described pressure adjustment processing and various programs for controlling the entire fuel cell system 10.
  • the CPU executes these programs by expanding them on RAM.
  • Various sensors and various types of action are connected to the input / output port.
  • the fuel cell 20 of the fuel cell system 10 having such a structure is connected to the cooling system 70, the exhaust system 80, the output system 9, etc. in addition to the hydrogen system 30 and the air system 40 described above. Yes.
  • the cooling system 70 is composed of a Laje evening 7 1, a pump 7 2, and pipes connecting them, and is connected to the end plate 28 of the fuel cell 20 through the pipes. Since the electrochemical reaction inside the fuel cell 20 is an exothermic reaction, the internal temperature rises. In order to suppress this temperature rise, the cooling water (refrigerant) flowing into the fuel cell 20 is cooled by the radiator 71 and circulated by the pump 72.
  • the exhaust system 80 is mainly provided with a muffler 8 1, and the air flowing from the exhaust pipe 5 2 of the air system 40 is discharged into the atmosphere through the muffler 8 1. Note that nitrogen contained in the air may leak to the anode side through the electrolyte membrane, and high-concentration nitrogen may be generated by the circulation of hydrogen gas in the hydrogen system 30. Although not shown, the exhaust system 80 is also connected to the hydrogen system 30, and such nitrogen is diluted with air and discharged to the outside at a predetermined timing.
  • the output system 90 is composed of an inverter 9 1, a vehicle travel motor 9 2, a DC / DC comparator 9 3, a secondary battery 9 4, and the like.
  • the electric power generated by the electrochemical reaction between hydrogen gas and air supplied to the fuel cell 20 is used to drive the vehicle's driving motor 9 2 via the inverter 91.
  • the surplus generated at times is regenerated using the motor 92 as a generator and stored in the secondary battery 94 via the DC / DC converter 93.
  • the atmospheric pressure sensor 47, the temperature sensor 55, the air flow meter 42 (air compressor 43), and the control unit ⁇ 20 are the claims.
  • the first pressure regulating valve 50 is an upstream pressure regulating valve in the claims
  • the second pressure regulating valve 58 is a downstream pressure regulating valve in the claims.
  • the control unit 120 constitutes the flow rate adjustment processing means in the claims.
  • FIG. 2 is a flowchart showing the pressure adjustment processing as the first embodiment in the fuel cell system 10 of the present embodiment.
  • This process is a process executed by the control unit 120 after the air compressor 43 supplies air from the outside to the fuel cell 20 when the fuel cell system 10 is activated.
  • the first pressure regulating valve 50 is set to a predetermined opening (default value), and the opening of the second pressure regulating valve 58 is set to fully open. . That is, at the initial stage, the air outlet pressure of the fuel cell 20 is adjusted to a predetermined range by the first pressure regulating valve 50.
  • the control unit 1 2 0 inputs the pressure P 1 that is the detection value of the atmospheric pressure sensor 4 7 (step S 2 0 0).
  • step S 2 15 it is determined whether or not the input pressure P 1 is lower than a predetermined reference pressure ⁇ .
  • Atmospheric pressure is a physical quantity that affects the amount of moisture (referred to as the amount of discharged water) in the air flow discharged to the outside. Using this atmospheric pressure, it is estimated that the amount of discharged water and the amount of discharged water will increase or decrease. it can.
  • the determination step S 2 15 here is a step in which the amount of discharged water is determined from the atmospheric pressure, and the determination as to whether or not the determined amount of discharged water is equal to or greater than a predetermined amount is performed with pressure.
  • the predetermined reference pressure ⁇ here is preset as a reference value based on the amount of discharged water, and is stored in the ROM of the control unit 120.
  • the reference pressure a thus set based on the amount of discharged water is a reference pressure for determining whether or not the external environment of the fuel cell system 10 is a so-called “high altitude”. If it is determined in step S 2 15 that the pressure P 1 is lower than the reference pressure a, that is, the atmospheric pressure is lower than the reference value and corresponds to the “high altitude” (high altitude condition) (Y es), The opening of the first pressure regulating valve 50 is set to fully open (step S 2 30), and the outlet pressure adjustment processing by the second pressure regulating valve 58 is executed (step S 2 40).
  • the valve for executing the outlet pressure adjustment process is switched at this step.
  • control is performed so that the outlet pressure of the air of the fuel cell 20 (and consequently the inlet pressure) falls within a predetermined pressure range. For example, the current power generation of the fuel cell 20 relative to the required power generation amount in the control unit 1 2 0 If it is determined that the amount is excessive, the control unit 120 controls the motor speed of the air compressor 43 to decrease and the flow rate of the air supplied to the fuel cell 20 to decrease. Along with this, the pressure in the exhaust pipe 51 decreases.
  • the control unit 1 2 0 determines the pressure drop of the exhaust pipe 5 ⁇ ⁇ ⁇ based on the pressure value P 2 of the pressure sensor 5 6, and decreases the opening of the second pressure control valve 5 8 (that is, the flow path And control to increase the decreased pressure value P2. Accordingly, if it is determined that the current power generation amount of the fuel cell 20 is insufficient in the control unit 120, the control unit 120 increases the motor rotation speed of the air compressor 43, and the fuel cell 20 Control is performed to increase the flow rate of air supplied to. Along with this, the pressure in the exhaust pipe 51 increases.
  • the control unit 1 2 0 determines an increase in the pressure of the exhaust pipe 51 based on the pressure value P 2 of the pressure sensor 5 6 and increases the opening of the second pressure regulating valve 5 8 (that is, Open) and control to decrease the increased pressure value P2.
  • the control unit 120 keeps the pressure in the fuel cell 20 substantially constant.
  • the flow rate of the air discharged downstream of the humidifier 48 is limited by the second pressure regulating valve 58, and the humidification located upstream from the second pressure regulating valve 58
  • the pressure in the vessel 48 is adjusted to a predetermined range higher than the atmospheric pressure. After executing such processing for a predetermined period, the process exits to NEXT.
  • the second pressure regulating valve 58 is controlled to a value obtained by subtracting the pressure loss (pressure loss) of the humidifier 48 from the target pressure value at the outlet of the fuel cell 20.
  • the pressure P 1 is equal to or higher than the reference pressure ⁇ , that is, the atmospheric pressure is If it is determined that it is higher than the standard value and does not correspond to the high altitude condition (N o), the opening of the second pressure regulating valve 58 is set to fully open (step S 2 60), and the first pressure regulating valve The outlet pressure adjustment process using 50 is executed (step S 27 0).
  • the process is continued as it is.
  • the outlet pressure adjustment process by the first pressure regulating valve 50 is executed in the same manner as the process by the second pressure regulating valve 58 described above, and the pressure in the fuel cell 20 is kept substantially constant. After executing such a process for a predetermined period, the process exits to NEXT. As a result, the series of processes described above are repeated at a predetermined timing.
  • the pressure in the humidifier 48 disposed downstream of the first pressure regulating valve 50 is regulated. It is almost atmospheric pressure.
  • the second pressure regulating valve 5 8 on the downstream side of the humidifier 48 is used to 2 Adjust the pressure in 0 (adjust the air outlet pressure). That is, the control unit 120 adjusts the pressure of the air in the fuel cell 20 to a predetermined range higher than the atmospheric pressure by reducing the opening of the second pressure regulating valve 58 and narrowing the flow path. . As a result, the inside of the humidifier 48 is adjusted to a predetermined pressure higher than the atmospheric pressure, and the humidifying efficiency of the humidifier 48 is improved as compared to when the pressure is low (for example, the atmospheric pressure in the highland).
  • the humidification efficiency of the humidifier 48 increases. If the humidification efficiency of the humidifier 48 is improved and the proportion of moisture used for humidification is increased, the amount of moisture discharged together with the exhaust gas is consequently reduced. Therefore, the humidifier 4 8 upstream first regulating valve 5 0 1 under high altitude environment Compared to the case where the pressure is adjusted more, the amount of water discharged to the outside of the humidifier 48 (the amount of discharged water) can be suppressed. In other words, it is possible to suppress a decrease in water vapor exchange efficiency in the humidifier 48, and it is possible to sufficiently humidify the air even in an environment of high altitude conditions.
  • the solid polymer membrane is used as the electrolyte membrane.
  • any electrolyte membrane may be used as long as the electrolyte membrane works well in a predetermined range of wet state. If the fuel cell system is equipped with such a fuel cell having an electrolyte membrane and a humidifier that humidifies the supply air using moisture in the exhaust gas, the pressure adjustment processing of this embodiment is applied and an appropriate amount is applied. Moisture can be performed.
  • an increase of the amount of water discharged from the humidifier 48 is determined based on the atmospheric pressure, but the pressure adjustment process of the second embodiment Judgment is based on the outlet temperature of the fuel cell 20.
  • the pressure adjustment process of the second embodiment is different from the pressure adjustment process of the first embodiment in the process of determining the increase in the amount of water, and the other processes (the outlet pressure adjustment process using any pressure regulating valve) are This is the same as the pressure adjustment process of the first embodiment. Therefore, the outlet pressure adjustment process will be briefly described.
  • the hardware configuration for executing the pressure adjustment process of the second embodiment is basically the same as that of the fuel cell system 10 shown in FIG. FIG.
  • step S300 the control unit 120 inputs the outlet temperature T of the air of the fuel cell 20 that is the detected value of the temperature sensor 55 (step S300). Subsequently, it is determined whether or not the outlet temperature T is higher than a predetermined reference temperature i8 (step S3 15). As in the case of the atmospheric pressure in Example IV, the outlet temperature of the air of the fuel cell 20 is a physical quantity that affects the amount of discharged water.
  • the determination step S 3 15 is a step in which the amount of discharged water is determined from the outlet temperature, and the determination as to whether or not the determined amount of discharged water is equal to or greater than a predetermined amount is performed with the temperature.
  • the predetermined reference temperature 3) here is preset as a reference value based on the amount of discharged water, and is stored in the ROM of the control unit 120. If it is determined in step S 3 15 that the outlet temperature T is higher than the reference temperature / 3, that is, the water vapor contained in the air is increasing (Yes), the first pressure regulating valve 50 is opened.
  • step S 3 15 if it is determined in step S 3 15 that the outlet temperature T is lower than the reference temperature 3, that is, the water vapor contained in the air has not increased (No), the second pressure regulating valve 58 Is set to fully open (step S 360), and the outlet pressure adjustment processing by the first pressure regulating valve 50 is executed for a predetermined period (step S 3 70) 'and then extracted to N EXT. I will. As a result, the above-described series of processing is repeated at a predetermined timing.
  • This outlet pressure adjustment process is the same as steps S 2 60 and S 2 70 of the pressure adjustment process of the first embodiment shown in FIG.
  • the outlet pressure adjustment by the second pressure regulating valve 58 is performed.
  • Humidifier 4 8 Limit the flow rate of air discharged downstream. Therefore, similarly to the pressure adjustment process of the first embodiment, the amount of water (the amount of discharged water) discharged outside the humidifier 48 can be suppressed, and appropriate humidification can be performed by the humidifier 48. Further, the physical quantity of the reaction gas such as the air outlet temperature T of the fuel cell 20 is generally detected for the control of the fuel cell system 10. By using these physical quantities for pressure adjustment processing, a system can be constructed relatively easily.
  • the flow rate q of air supplied to the fuel cell 20 may be used instead of the outlet temperature T.
  • the control unit 1 2 0 inputs the detected value (flow rate q) of air flow meter 4 2, and the flow rate q and a predetermined reference Compare the value with.
  • the outlet pressure adjustment processing by the second pressure regulating valve 5 8 in steps S 3 30 and S 3 4 0 is executed, and the flow rate q reaches the predetermined reference value.
  • the flow rate of the supplied air may be estimated from the number of revolutions of the air compressor 43.
  • the control unit 1 2 0 inputs the pressure P 1 that is the atmospheric pressure (step S 2 0 0), and determines whether or not the atmospheric pressure is lower than the reference value (step S 2 1 5). . If it is determined in step S 2 15 that the atmospheric pressure is equal to or higher than the reference value (N o), the second pressure regulating valve 5 8 is fully opened (step S 2 60), and the first pressure regulating valve Execute outlet pressure adjustment processing (step S 2 7 0) by 50 for a predetermined period, and exit to NEXT. That is, outlet pressure adjustment processing is performed on the upstream side of the humidifier 48 for a predetermined period.
  • step S425) determines whether or not the required humidification amount thus obtained is larger than a predetermined value. If it is determined in step S425 that the required humidification amount is larger than the predetermined value ⁇ (Yes), the first pressure regulating valve 50 is fully opened (step S230), and the second pressure regulating valve 58 is used.
  • the outlet pressure adjustment process (step S 240) is executed for a predetermined period, and the process goes to N EXT. That is, outlet pressure adjustment processing is performed on the downstream side of the humidifier 48 for a predetermined period.
  • the outlet pressure adjustment is performed upstream of the humidifier 48. Execute the process. In other words, even if it is determined that the amount of discharged water increases to a predetermined amount or more, the humidification amount required in the current fuel cell 20 is less than the predetermined amount, so the necessity for humidification is not high. In such a case, priority is given to the responsiveness (controllability) of the air outlet pressure of the fuel cell 20, and the outlet pressure is controlled by the first pressure regulating valve 50 located near the air outlet of the fuel cell 20. Execute the adjustment process. In this way, the outlet pressure can be controlled with good responsiveness.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

所定ガスの供給を受けて発電する燃料電池と、該燃料電池に供給される供給ガスを該燃料電池から排出される排出ガスに含まれる水分を用いて加湿する加湿器とを有する燃料電池システムであって、前記排出ガスに含まれて前記加湿器の下流へ排出される排出水分量の検出を行なう排出水分量検出手段と、前記検出結果に基づいて、前記排出水分量が所定量以上であると判断した場合に、前記加湿器の下流へ排出される前記排出水分量を制限する処理を行なう調整処理手段とを備えた燃料電池システムとする。この結果、適切な加湿の制御を実行することができる。

Description

明細書
燃料電池システムおよび燃料電池の運転方法
技術分野
本発明は、 所定ガスの供給を受けて発電する燃料電池を備えた燃料電池システ 厶に関し、 詳しくは燃料電池からの排出ガスに含まれる水分を利用した加湿の制 御に関する。 背景技術
反応ガスとしての空気と水素ガスとを燃料電池に供給し、 空気に含まれる酸素 と、 水素との電気化学反応を利用して発電する燃料電池システムでは、 所定の発 電効率を確保するため、 燃料電池に供給される空気を加湿する必要がある。 従来 から、 燃料電池システムでは、 電気化学反応により酸素極側で生成された水分を 含む排ガスを利用した加湿器を備え、 燃料電池に供給する空気の加湿を行なう技 術が知られている (例えば、 特開 2 0 0 2— 7 5 4 1 8号公報参照) 。 例えば、 下記特許文献 1では、 燃料電池を通過した空気 (以下、 排ガスと呼 ぶ) を、 加湿器を介して外部に排出するシステムが開示されている。 このシステ 厶では、 排ガスの流路上であって、 燃料電池と加湿器との間 (つまり、 加湿器の 上流側) に第 1の圧力制御弁を、 加湿器の下流側に第 2の圧力制御弁を、 それぞ れ備え、 燃料電池に供給される空気の湿度が低い場合に、 第 2の圧力制御弁の開 度を増やすことで加湿器内の圧力を下げる制御を行なっている。 こうすることで、 排ガスに含まれる水分を水蒸気とすることができ、 加湿器の加湿効率を高めるこ とができるとされている。 発明の開示 しかしながら、 かかる技術では、 燃料電池の外部へ排出される排ガスについて は考慮されておらず、 排出される排ガスの量によっては加湿器の加湿性能が低下 するという問題があった。 すなわち、 排ガス中の水分量は、 加湿器により全て使 用されるわけではなく、 その一部は排ガスとしての空気と共に外部に排出されて しまうからである。 排ガス中に含まれる水分量は、 燃料電池の発電に伴う生成水 であり、 発電量に応じて定まる量である。 例えば、 発電量を増大するため燃料電 池への供給空気の流速を増やすと、 排ガスの流速も増大する。 こうした状況で水 蒸気の量を増やしても、 排ガスとして外部へ排出される水分量が増大し、 結果的 に、 加湿に使用できる水分量が低下し、 加湿器の加湿性能が低下してしまうおそ れがあった。 本発明は、 こうした加湿器の加湿性能の低下といった問題を踏まえて、 適切な 加湿の制御を実行する燃料電池システムを提供することを目的とする。 本発明の燃料電池システムは、 上記課題を鑑み、 以下の手法を採った。 すなわ ち、 所定ガスの供給を受けて発電する燃料電池を備えた燃料電池システムであつ て、
前記燃料電池からの排出ガスの配管路に設けられ、 該燃料電池に供給される供 給ガスの少なくとも一種類を、 該燃料電池から排出される排出ガスに含まれる水 分を用いて加湿する加湿器と、
前記排出ガスに含まれて前記加湿器の下流へ排出される排出水分量の検出を行 なう排出水分量検出手段と、
前記検出結果に基づいて、 前記排出水分量が所定量以上であると判断した場合 に、 前記加湿器の下流へ排出される前記排出水分量を制限する処理を行なう調整 処理手段と を備えることを要旨としている。 本発明の燃料電池システムによれば、 加湿器の下流へ排出される排出水分量を 検出し、 排出水分量が所定量以上となる場合には排出水分量を制限する。 したが つて、 加湿器下流へ排出されてしまう水分量を抑制し、 排出ガスに含まれる水分 の多くを加湿器内での供給ガスの加湿に利用することができる。 その結果、 加湿 器の加湿効率の低下を抑え、 加湿器での適切な加湿に効果を奏する。 上記の構成の燃料電池システムの排出水分量検出手段は、 前記排出ガスに含ま れて前記加湿器の下流へ排出される排出水分量に影響を与える物理量により検出 する手段であるものとしても良い。 かかる燃料電池システムによれば、 排出水分量に影響を与える物理量を検出し、 検出した物理量に基づき排出水分量を検出するから、 物理量から間接的に排出水 分量を求めることができる。 なお、 こうした物理量としては、 大気圧、 燃料電池の排出ガスの出口温度、 燃 料電池の排出ガスの流速などが考えられるが、 排出水分量に影響を与えるもので あればどのような物理量であっても良い。 物理量が、 大気圧である場合には、 検出した大気圧が所定圧よりも低い場合に、 排出水分量が所定量以上であると判断する。 すなわち、 大気圧が低い場合には加 湿器内の圧力が低下し、 排出水分量が所定量以上であると判断し、 この場合に加 湿器下流へ排出される水分量を抑制する。 したがって、 大気圧の低い環境下で燃 料電池システムを稼動する場合であっても、 適切な加湿を実行ずることができる。 また、 物理量が出口温度である場合には、 検出した出口温度が所定値よりも高 い場合に、 排出水分量が所定量以上であると判断する。 すなわち、 燃料電池から 排出される排出ガスの温度が高い場合には、 排ガスの含まれる水分が多く、 排出 水分量が所定量以上であると判断し、 この場合に加湿器下流へ排出される水分量 を抑制する。 こうした一般的に検出される温度を用いることで、 排出水分量の判 断を容易に行なうことができる。 さらに、 物理量が排出ガスの流速である場合には、 検出した流速が所定値より も高い場合に、 排出水分量が所定量以上であると判断する。 すなわち、 排出ガス の流速が高い場合には、 加湿器内を通過する流速も高くなり、 加湿器内では十分 な加湿が行なわれない。 こうした流速が高い場合には排出水分量が所定量以上で あると判断し、 加湿器下流へ排出される水分量を抑制する。 したがって、 加湿器 での適切な加湿を行なうことができる。 上記の構成の燃料電池システムは、 さらに、 前記排出ガスの流路上であって前 記加湿器よりも下流側に、 該排出ガスの圧力を調整することで前記燃料電池内の 供給ガスの圧力を調整する下流側圧力調整弁を備え、 前記流量調整処理手段は、 前記加湿器下流への前記排出水分量の制限を、 前記下流側圧力調整弁による圧力 調整で実行するものとしても良い。 かかる燃料電池システムによれば、 下流側圧力調整弁による圧力調整を実行す ることで、 結果的に、 排出される流量を制限することができる。 つまり、 圧力調 整弁を加湿器の下流側に配置するのみで、 比較的容易にシステムを構築すること ができる。 上記の構成の燃料電池システムは、 さらに、 前記排出ガスの流路上であって前 記加湿器よりも上流側に、 該排出ガスの圧力を調整することで前記燃料電池内の 供給ガスの圧力を調整する上流側圧力調整弁を備え、 前記流量調整処理手段は、 前記排出水分量が所定量よりも少ないと判断した場合には、 前記下流側圧力調整 弁による圧力調整に代えて、 前記上流側圧力調整弁による圧力調整を実行するも のとしても良い。 かかる燃料電池システムによれば、 排出水分量が少ない場合には、 加湿器下流 への流量を制限することなく、 上流側圧力調整弁による圧力調整を実行する。 燃 料電池に近い上流側の圧力調整弁によって制御を行なうため、 応答遅れなどを低 減し、 制御性の低下を抑制することができる。 上記の構成の燃料電池システムは、 さらに、 前記燃料電池における発電の状態 に見合った要求加湿量を推定する要求加湿量推定手段を備え、 前記流量調整処理 手段は、 前記推定された要求加湿量が所定値以下である場合には、 前記排出水分 量が所定量以上であるか否かの判断に係わらず、 前記上流側圧力調整弁による圧 力調整を実行するものとしても良い。 かかる燃料電池システムによれば、 要求加湿量が少ない場合には、 上流側圧力 調整弁による処理を実行する。 すなわち、 排出水分量が所定量以上であると判断 された場合であっても、 必要とされる加湿量が少なくて良い場合には、 加湿器の 加湿効率よりも制御性を優先して上流側圧力調整弁による制御を実行する。 した がって、 必要なときに適切な加湿を実行することができる。
" ' また、 本発明は、 燃料電池運転方法としても把握することもでき他、 以下の態 様を備えた燃料電池システムとして把握することができる。 一つは、 所定ガスの 供給を受けて発電する燃料電池と、 該燃料電池に供給される供給ガスを該燃料電 池から排出される排出ガスに含まれる水分を用いて加湿する加湿器とを有する燃 料電池システムであって、 前記排出ガスに含まれて前記加湿器の下流へ排出され る排出水分量の検出を行なう排出水分量検出手段と、 前記検出結果に基づいて、 前記排出水分量が所定量以上であると判断した場合に、 前記加湿器の下流へ排出 される前記排出ガスの流量を制限する処理を行なう流嗇調整処理手段とを備えた システムである。 また、 もう一つは、 所定ガスの供給を受けて発電する燃料電池を備えた燃料電 池システムであって、 前記燃料電池からの排出ガスの配管路に設けられ、 該燃料 電池に供給される供給ガスの少なくとも一種類を、 該燃料電池から排出される排 出ガスに含まれる水分を用いて加湿する加湿器と、 前記排出ガスの状態量に基づ いて、 該排出ガスに含まれて前記加湿器の下流へ排出される排出水分量が増加す る条件が成立するか否かを判断する判断手段と、 前記排出水分量が増加する条件 が成立すると判断した場合には、 前記加湿器における加湿効率が向上するよう、 該加湿器における前記排出ガスの圧力を増加する圧力増加手段とを備えるシステ 厶である。 図面の簡単な説明
図 1は、 本発明の実施例としての燃料電池システムの概略構成図である。 図 2は、 本実施例の燃料電池システムにおける第 1実施例の圧力調整処理を示 すフローチヤ一卜である。
図 3は、 本実施例の燃料電池システムにおける第 2実施例の圧力調整処理を示 すフローチヤ一卜である。
図 4は、 第 1実施例の圧力調整処理に要求加湿量の判断処理を加えた圧力調整 処理のフローチャートである。 発明を実施するための最良の形態
本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A . 燃料電池システムの概略構成:
B . 第 1実施例の圧力調整処理:
C . 第 2実施例の圧力調整処理:
D . 変形例:
A . 燃料電池システムの概略構成:
図 1は、 本発明の実施例としての燃料電池システムの概略構成図である。 この 燃料電池システム 1 0は、 反応ガスとしての水素ガスと空気との供給を受け、 水 素と空気中の酸素との電気化学反応により発電する燃料電池 2 0を備え、 燃料電 池 2 0の発電した電力を動力とする図示しない車両に搭載されている。 このシス テム 1 0は、 図示するように、 燃料電池 2 0の他、 燃料電池 2 0に水素ガスを供 給する水素系統 3 0, 燃料電池 2 0に空気を供給するエア系統 4 0, 各部を制御 する制御ユニット 1 2 0などから構成されている。 燃料電池 2 0は、 水素極 (以下、 アノードと呼ぶ) と酸素極 (以下、 力ソード と呼ぶ) とを備えた単セル 2 1を複数枚有し、 積層された複数枚の単セル 2 1を 両端からエンドプレー卜 2 8, 2 9で挟み込んで形成されている。 単セル 2 1は、 セパレ一夕、 アノード、 電解質膜、 力ソード、 セパレー夕を順に重ね合わせて構 成され、 セパレー夕には水素ガス, 空気の流路がそれぞれ設けられている。 これ らの各種流体の流路は、 エンドプレー卜 2 8に設けられた各種流体の入口ポート とそれぞれ接続されており、 燃料電池 2 0の外部から入口ポ一卜に供給された水 素ガス, 空気は、 複数の単セル 2 1のそれぞれに滞りなく供給される。 なお、 ェ ンドプレート 2 8には、 冷媒の入口ポートも設けられており、 外部から供給され た冷媒は燃料電池 2 0を冷却している。 各単セル 2 1内のアノードに供給された水素ガスは、 アノードを構成する触媒 層の触媒作用を受けて水素イオンを発生する。 この水素イオンは、 電解質膜を力 ソード側へ透過し、 力ソードに供給された空気中の酸素と反応する。 この電気化 学反応により、 単セル 2 1は発電する。 燃料電池 2 0は、 こうした単セル 2 1を 複数直列に接続することで、 高い電力を出力している。 なお、 本実施例では、 電 解質膜に固体高分子膜を使用している。 こうした電解質膜は、 所定範囲の湿潤状 態で良好に作用する。 水素系統 3 0は、 高圧の水素ガスを貯蔵する水素タンク 3 1, 水素循環ポンプ 3 2や図示しないバルブ等から構成され、 バルブにより圧力, 流量を調整した水 素ガスを燃料電池 2 0に供給している。 燃料電池 2 0に供給された水素ガス中の 水素は、 上述の電気化学反応により消費されるが、 その一部が消費されずに燃料 電池 2 0から排出される場合がある。 水素循環ポンプ 3 2は、 燃料電池 2 0から 排出された水素ガスを再度、 燃料電池 2 0へ供給し、 電気化学反応に使用されず に排出された水素を有効に利用している。 なお、 燃料電池 2 0への水素ガスの供 給は、 水素タンク 3 1からの供給に代えて、 例えば、 メタン、 メタノール等を改 質して水素を生成し、 これを供給するものとしても良い。 エア系統 4 0は、 大きくは、 燃料電池 2 0に空気を供給する供給ラインと、 燃 料電池 2 0から排出された空気を後述する排気系統 8 0へ導く排気ラインとから 構成されている。 供給ラインは、 燃料電池 2 0に供給される空気の流れの上流から順に、 内部に 半導体のゲージを備えた大気圧センサ 4 7, 空気中のごみやほこりを除去するェ ァクリーナ 4 1, 熱線式のェアフロメータ 4 2, 動力源としてモータを備えたェ アコンプレッサ 4 3, 空気を冷却して空気密度を高めるインタークーラ 4 4, 供 給される空気を加湿する加湿器 4 8と、 こうした機器を接続する供給配管 4 5 , 4 6等から構成され、 エアコンプレッサ 4 3の駆動により大気中の空気を取り込 んで、 燃料電池 2 0に供給している。 エアコンプレッサ 4 3の駆動により外部から取り込む空気は、 まず、 エアクリ ーナ 4 1により浄化され、 ェアフロメータ 4 2を通過する。 ェアフロメータ 4 2 を通過した空気は、 エアコンプレッサ 4 3による圧縮の後、 インタークーラ 4 4 により冷却されて、 加湿器 4 8により加湿される。 こうして加湿された湿潤状態 の空気は、 燃料電池 2 0のエンドプレー卜 2 8と接続された供給配管 4 6を流れ て、 燃料電池 2 0に供給される。 本実施例では、 加湿器 4 8として中空糸膜型の加湿装置を使用している。 この 加湿器 4 8内部には複数本の中空糸膜が設けられており、 中空糸膜の外側 (これ を一次側と呼ぶ) に乾燥ガスを、 中空糸膜の内側 (これを二次側と呼ぶ) に湿潤 ガスを、 それぞれ通過させることで、 一次側の乾燥ガスを加湿する。 中空糸膜は、 内側から外側に至る微細な毛管を複数備えており、 二次側を通過する湿潤ガスの 水蒸気は毛管現象により水分として吸い出される。 こうして吸い出された水分は、 一次側の乾燥ガスに供給される。 本実施例では、 供給ライン上に加湿器 4 8の一次側を配置し、 後述するように 排気ライン上に加湿器 4 8の二次側を配置する。 燃料電池 2 0から排出される空 気は、 上述の電気化学反応によりカソード側で発生した生成水を水蒸気として含 んでいるため、 湿潤状態のガスとなっている。 この湿潤状態の排出された空気を 利用することで、 燃料電池 2 0に供給される空気を加湿している。 こうした空気の供給ラインにおいて、 大気圧センサ 4 7は外部の大気圧として 圧力 P 1を検出し、 ェアフロメータ 4 2は空気の流量 qを検出する。 検出された 圧力 P 1, 流量 qは制御ユニット 1 2 0に出力され、 燃料電池システム 1 0の運 転の制御、 例えば、 要求される発電量に対応した空気量を供給するためのエアコ ンプレッサ 4 3のモータ回転数の制御などに利用されている。 他方、 排気ラインは、 燃料電池 2 0から排出される空気の流れの上流から順に、 サ一ミス夕を内蔵した温度センサ 5 5, 半導体式の圧力センサ 5 6, 弁の開度に より圧力を調整する第 1調圧バルブ 5 0, 上述の加湿器 4 8 (二次側) , 第 1調 圧バルブ 5 0と同様な構造の第 2調圧バルブ 5 8およびこれらを接続する排気配 管 5 1, 5 2等から構成され、 燃料電池 2 0から排出された空気は排気配管 5 1, 5 2を経て外部へ排出される。 この排気ライン上には、 上述のように 2つの調圧バルブ 5 0, 5 8を備えてい る。 2つの調圧バルブ 5 0, 5 8は共に、 燃料電池 2 0の出口における空気の圧 力を調整し、 燃料電池 2 0内に供給する空気の圧力を所定範囲に制御する。 こう した出口圧力の調整 (以下、 これを出口圧力調整処理と呼ぶ) により、 燃料電池 2 0内の電解質膜等に過大な負荷をかけることなく、 適切に空気を供給すること ができる。 なお、 調圧バルブ 5 0, 5 8にはポぺッ卜タイプの弁体を使用してお リ、 ポペット弁の進退動作によりバルブ開度を調整することで、 圧力の調整を行 なっている。 バルブ開度の制御は、 制御ユニット 1 2 0により実行され、 ポぺッ 卜弁の駆動用モータの回転角を制御することで行なわれる。 こうした空気の排気ラインにおいて、 温度センサ 5 5は燃料電池 2 0から排出 された空気の温度 Tを検出し、 圧力センサ 5 6は燃料電池 2 0から排出された空 気の圧力 P 2を検出する。 検出された温度 T, 圧力 Ρ 2は制御ユニット 1 2 0に 出力され、 燃料電池システム 1 0の運転の制御に利用される。 特に、 本実施例で は、 加湿器 4 8における供給空気の加湿を適切に行なうための圧力調整処理に利 用されている。 圧力調整処理とは、 上述の出口圧力調整処理を、 所定条件に応じ て、 2つの調圧バルブ 5 0, 5 8のいずれかにより実行する処理である。 例えば、 加湿器 4 8の下流側である第 2調圧バルブ 5 8により出口圧力調整処理が実行さ れる場合には、 加湿器 4 8内も所定範囲の圧力に調整され、 加湿器 4 8内を通過 して外部へ排出される空気の流量が調整される。 こうして外部へ排出される空気 の流量を調整することで、 加湿器 4 8の加湿性能を向上することができる。 この 圧力調整処理については、 後に詳しく説明する。 制御ユニット 1 2 0は、 C P Uや R O M , R A M , タイマ, 入出力ポー卜等を 備えている。 R O Mには上述の圧力調整処理を行なうためのプログラムや、 燃料 電池システム 1 0全体を制御する種々のプログラムが記憶されている。 C P Uは、 これらのプログラムを R A M上に展開して処理を実行している。 入出力ポー卜に は、 各種センサおよび各種ァクチユエ一夕が接続されている。 制御ユニット 1 2 0は、 各種センサからの信号を受け、 車両の運転状態を判断し、 各種ァクチユエ —夕を制御している。 具体的には、 上述の大気圧センサ 4 7, 圧力センサ 5 6, 温度センサ 5 5, ェ アフロメ一夕 4 2, 後述する出力系統 9 0の電流計 9 5 , 図示しないアクセルポ ジシヨンセンサ, 車速センサ等の各種センサから、 それぞれ圧力 P 1, P 2、 温 度丁、 空気流量 q、 出力電流 A、 アクセル開度 0、 車速 V等を入力し、 要求され る出力 (電力) に対応して、 エアコンプレッサ 4 3, 第 1調圧バルブ 5 0, 第 2 調圧バルブ 5 8, 水素循環ポンプ 3 2, 後述する冷却系統 7 0のポンプ 7 2等を 制御して燃料電池システム 1 0を運転している。 こうした構成からなる燃料電池システム 1 0の燃料電池 2 0は、 上述の水素系 統 3 0 , エア系統 4 0の他、 冷却系統 7 0, 排気系統 8 0, 出力系統 9ひ等とも 接続している。 冷却系統 7 0は、 ラジェ一夕 7 1, ポンプ 7 2と、 これらを接続する配管等か ら構成され、 配管を介して燃料電池 2 0のエンドプレー卜 2 8と接続されている。 燃料電池 2 0内部での電気化学反応は発熱反応であるため、 内部の温度は上昇す る。 この温度上昇を抑えるために燃料電池 2 0に流入する冷却水 (冷媒)は、 ラジ エー夕 7 1 にて冷却され、 ポンプ 7 2により循環されている。 排気系統 8 0は、 主にマフラ 8 1を備えており、 エア系統 4 0の排気配管 5 2 から流れてきた空気を、 マフラ 8 1を介して大気中に排出する。 なお、 空気中に 含まれる窒素は電解質膜を介してアノード側に漏れ出すことがあり、 水素系統 3 0での水素ガスの循環により高濃度の窒素が生成される場合がある。 図示は省略 したが、 排気系統 8 0は、 水素系統 3 0とも接続しており、 こうした窒素を空気 で希釈し、 所定のタイミングで外部へ排出している。 出力系統 9 0は、 インバー夕 9 1、 車両の走行モータ 9 2、 D C / D Cコンパ 一夕 9 3、 二次電池 9 4等から構成されている。 燃料電池 2 0に供給された水素 ガスと空気との電気化学反応により発電された電力は、 インバー夕 9 1を介して 車両の走行モータ 9 2の駆 に使用され、 例えば、 定常走行時や減速時などに発 生する余剰分は、 モータ 9 2を発電機として用いて回生し、 D C/D Cコンバー 夕 9 3を介して二次電池 9 4に蓄電されている。 以上の構成の本実施例の燃料電池システム 1 0において、 大気圧センサ 4 7, 温度センサ 5 5, ェアフロメータ 4 2 (エアコンプレッサ 4 3 ) と、 制御ュニッ 卜 Ί 2 0とは、 特許請求の範囲における排出水分量検出手段を構成する。 また、 第 1調圧バルブ 5 0は特許請求の範囲における上流側圧力調整弁を、 第 2調圧バ ルブ 5 8は特許請求の範囲における下流側圧力調整弁を、 それぞれ示し、 これら のバルブと制御ユニット 1 2 0とは、 特許請求の範囲の流量調整処理手段を構成 する。
B . 第 1実施例の圧力調整処理:
図 2は、 本実施例の燃料電池システム 1 0における第 1実施例としての圧力調 整処理を示すフローチヤ一卜である。 この処理は、 燃料電池システム 1 0の起動 によりエアコンプレッサ 4 3が外部からの空気を燃料電池 2 0に供給した後に、 制御ユニット 1 2 0にて実行される処理である。 なお、 燃料電池システム 1 0の 起動と共に、 第 1調圧バルブ 5 0は所定の開度 (デフォルト値) に設定され、 ま た、 第 2調圧バルブ 5 8の開度は全開に設定される。 すなわち、 初期段階では、 第 1調圧バルブ 5 0により燃料電池 2 0の空気の出口圧力は所定範囲に調整され る。 ' 処理を開始すると、 制御ユニット 1 2 0は、 大気圧センサ 4 7の検出値である 圧力 P 1を入力する (ステップ S 2 0 0 ) 。 続いて、 入力した圧力 P 1が所定の 基準圧力 αよりも低いか否かを判断する (ステップ S 2 1 5 ) 。 大気圧は、 外部へ排出される空気流量中の水分暈 (排出水分量と呼ぶ) に影響 を与える物理量であり、 この大気圧を用いることで排出水分量、 排出水分量の増 減等が推定できる。 ここでの判断ステップ S 2 1 5は、 大気圧から排出水分量を 求め、 求めた排出水分量が所定量以上であるか否かの判断を、 圧力に置き換えて 行なうステップである。 つまり、 ここでの所定の基準圧力 αは、 排出水分量に基 づく基準値として予め設定ざれ、 制御ユニット 1 2 0の R O M内に記憶されてい る。 なお、 こうして排出水分量に基づき設定される基準圧力 aは、 燃料電池シス テム 1 0の外部環境が、 いわゆる 「高地」 であるか否かを判断する基準圧力とな る。 ステップ S 2 1 5で、 圧力 P 1が基準圧力 aよりも低い、 つまり、 大気圧が基 準値よりも低く 「高地」 (高地条件) に該当する (Y e s ) と判断した場合には、 第 1調圧バルブ 5 0の開度を全開に設定し (ステップ S 2 3 0 ) 、 第 2調圧バル ブ 5 8による出口圧力調整処理を実行する (ステップ S 2 4 0 ) 。 初期段階で第 1調圧バルブ 5 0による出口圧力調整処理が行なわれていた場合には、 このステ ップによリ、 出口圧力調整処理を実行するバルブを切リ換えることとなる。 第 2調圧バルブ 5 8による出口圧力調整処理では、 燃料電池 2 0の空気の出口 圧力 (結果的に入口圧力) を所定の圧力範囲内に収める制御が行なわれる。 例え ば、 制御ユニット 1 2 0において要求発電量に対して燃料電池 2 0の現状の発電 量が過剰であると判断されると、 制御ユニット 1 2 0はエアコンプレッサ 4 3の モータ回転数を減少し、 燃料電池 2 0に供給する空気の流量を減少させる制御を 行なう。 これに伴い排気配管 5 1の圧力は低下する。 制御ュニヅ卜 1 2 0は、 圧 力センサ 5 6の圧力値 P 2に基づいて排気配管 5 〗の圧力低下を判断し、 第 2調 圧バルブ 5 8の開度を減少し (つまり、 流路を絞り) 、 低下した圧力値 P 2を上 昇させる制御を行なう。 これに ¾し、 制御ュニッ 1 2 0において燃料電池 2 0の現状の発電量が不足 すると判断されると、 制御ユニット 1 2 0はエアコンプレッサ 4 3のモータ回転 数を増加し、 燃料電池 2 0に供給する空気の流量を増加させる制御を行なう。 こ れに伴い排気配管 5 1の圧力は上昇する。 制御ュニッ卜 1 2 0は、 圧力センサ 5 6の圧力値 P 2に基づいて排気配管 5 1の圧力上昇を判断し、 第 2調圧バルブ 5 8の開度を増加し (つまり、 流路を開放し) 、 上昇した圧力値 P 2を低下させる 制御を行なう。 こうした処理を繰り返すことで、 制御ユニット 1 2 0は、 燃料電池 2 0内の圧 力を略一定に保持している。 出口圧力調整処理の結果、 加湿器 4 8の下流に排出 される空気の流量は第 2調圧バルブ 5 8により制限され、 第 2調圧バルブ 5 8よ リも上流側に配置されている加湿器 4 8内の圧力は、 大気圧よりも高い所定範囲 の圧力に調整される。 こうした処理を所定期間、 実行した後、 N E X Tに抜ける。 この結果、 上述した一連の処理は所定のタイミングで繰り返される。 なお、 第 2 調圧バルブ 5 8は、 燃料電池 2 0の出口の目標圧力値から、 加湿器 4 8の圧力損 失 (圧損) 分を差し引いた庄カ値に制御されている。 他方、 ステップ S 2 1 5で、 圧力 P 1が基準圧力 α以上、 つまり、 大気圧が基 準値よりも高く、 高地条件に該当しない (N o ) と判断した場合には、 第 2調圧 バルブ 5 8の開度を全開に設定し (ステップ S 2 6 0 ) 、 第 1調圧バルブ 5 0に よる出口圧力調整処理を実行する (ステップ S 2 7 0 ) 。 初期段階で第 1調圧バ ルブ 5 0による出口圧力調整処理が行なわれていた場合には、 そのまま処理を継 続することとなる。 第 1調圧バルブ 5 0による出口圧力調整処理は、 上述した第 2調圧バルブ 5 8 による処理と同様に実行され、 燃料電池 2 0内の圧力を略一定に保持する。 こう した処理を所定期間、 実行した後、 N E X Tに抜ける。 この結果、 上述した一連 の処理は所定のタイミングで繰り返される。 なお、 第 1調圧バルブ 5 0による出 口圧力調整処理が実行されている場合には、 第 1調圧バルブ 5 0よりも下流側に 配置された加湿器 4 8内の圧力は調圧されず、 ほぼ大気圧程度となる。 以上の第 1実施例の圧力調整処理によれば、 大気圧が低く、 高地条件に該当す る場合には、 加湿器 4 8の下流側の第 2調圧バルブ 5 8を用いて、 燃料電池 2 0 内の圧力を調整する (空気の出口圧力を調整する) 。 つまり、 制御ユニット 1 2 0は、 第 2調圧バルブ 5 8の開度を減少し、 流路を絞ることで、 燃料電池 2 0内 の空気の圧力を大気圧よりも高い所定範囲に調整する。 その結果、 加湿器 4 8内 は大気圧より高い所定圧力に調整され、 加湿器 4 8の加湿効率は、 圧力が低い (例えば高地の大気圧) ときと比べて向上する。 加湿効率が向上すると、 加湿器 4 8を通過する空気の加湿に用いられる水分の割合は増加する。 なお、 加湿器 4 8の加湿効率が向上して加湿に用いられる水分の割合が増加すると、 排出ガスと 共に排出される水分量は結果的に低減するのである。 したがって、 高地条件の環境下で、 加湿器 4 8上流側の第 1調庄バルブ 5 0 1 より圧力調整を行なう場合に比べて、 加湿器 4 8の外部へ排出してしまう水分量 (排出水分量) を抑えることができる。 換言すると、 加湿器 4 8における水蒸気 の交換効率の低下を抑制することができ、 高地条件の環境下でも、 空気の加湿を 十分に行なうことができる。 例えば、 高地条件の環境下において、 加湿器 4 8の上流側の第 1調圧バルブ 5 0により燃料電池 2 0内の圧力を調整した場合には、 加湿器 4 8内 (厳密には湿 潤状態の空気が流れる側) の圧力は大気圧程度まで低下し、 加湿効率は低くなる から、 加湿に用いられる水分は減り、 加湿器 4 8を通過する空気中の水蒸気量は 増大する。 これをそのまま外部に排出すると、 多量の水蒸気 (水分) が空気と共 に排出される。 本実施例の処理によれば、 燃料電池 2 0から排出される空気の水 分量 (排出水分量) の所定量以上の増大を大気圧により判断し、 加湿器 4 8内か ら持ち去られてしまう水分量を低減する。 したがって、 大気圧が低い高地条件で の燃料電池システム 1 0の運転であっても、 水分のバランスを確保した適切な加 湿を行なうことができ、 燃料電池 2 0の性能の低下を抑制することができる。 なお、 高地条件に該当しない場合には、 加湿器 4 8上流側での出口圧力調整処 理を実行しているが、 この場合には加湿器 4 8の加湿性能が大きく低下すること はないため、 適切な加湿を実行することができる。 かかる場合に、 燃料電 2 0の 空気の出口に近い位置の調圧バルブ (第 1調圧バルブ 5 0 ) により出口圧力調整 処理を実行することで、 出口圧力調整処理における応答性を向上することができ る。 なお、 高地条件に該当するか否かについて、 本実施例では、 空気の取り入れ 側に設けた大気圧センサ 4 7により検出した大気圧を用いたが、 加湿器 4 8にお ける排出ガスの状態量の一つとしてその圧力を検出し、 この圧力が所定以下にな れば、 高地条件となっていると判断しても良い。 またカーナビなどの装置から、 標高のデータを取得して高地条件を判断しても差し支えない。 排出ガスの状態量 としては、 後述する実施例、 変形例で説明するように、 排出ガスの温度や、 流量 (流速で代替) などを考えることができる。 本実施例では、 固体高分子膜を電解質膜として用いるものとしたが、 所定範囲 の湿潤状態で良好に作用する電解質膜であれば、 どのような電解質膜であっても 良い。 こうした電解質膜を有する燃料電池と、 排出ガス中の水分を利用して供給 空気を加湿する加湿器とを備えた燃料電池システムであれば、 本実施例の圧力調 整処理を適用し、 適切な如湿を行なうことができる。
C . 第 2実施例の圧力調整処理:
第 1実施例の圧力調整処理では、 加湿器 4 8から排出される排出水分量の所定 量以上の増大を、 大気圧を基準として判断するものとしたが、 第 2実施例の圧力 調整処理では、 燃料電池 2 0の出口温度を基準として判断する。 すなわち、 第 2 実施例の圧力調整処理は、 第 1実施例の圧力調整処理とは水分量の増大の判断処 理が異なり、 その他の処理 (いずれかの調圧バルブによる出口圧力調整処理) は 第 1実施例の圧力調整処理と同様である。 したがって、 出口圧力調整処理の部分 については簡単に説明する。 なお、 第 2実施例の圧力調整処理を実行するハード 構成は、 図 1 に示した燃料電池システム 1 0と基本的に同様であるため説明を省 赂する。 図 3は、 本実施例の燃料電池システム 1 0における第 2実施例としての圧力調 整処理を示すフローチャートである。 この処理は、 処理プログラムとして制御ュ ニット 1 2 0の R O M内に言己憶されており、 C P Uが R O M内からプログラムを 読み出し、 R A M上に展開することで処理が実行される-。 処理を開始すると、 制御ユニット 1 20は、 温度センサ 55の検出値である燃 料電池 20の空気の出口温度 Tを入力する (ステップ S 300) 。 続いて、 出口 温度 Tが所定の基準温度 i8よりも高いか否かを判断する (ステップ S 3 1 5) 。 第 Ί実施例の大気圧の場合と同様、 燃料電池 20の空気の出口温度は、 排出水 分量に影響を与える物理量であり、 この出口温度を用いることで排出水分量、 排 出水分量の増減等が推定できる。 ここでの判断ステップ S 3 1 5は、 出口温度か ら排出水分量を求め、 求めた排出水分量が所定量以上であるか否かの判断を、 温 度に置き換えて行なうステップである。 つまり、 ここでの所定の基準温度 )3は、 排出水分量に基づく基準値として予め設定され、 制御ユニット 1 20の ROM内 に記憶されている。 ステップ S 3 1 5で出口温度 Tが基準温度 /3よりも高い、 すなわち、 空気中に 含まれる水蒸気が増大していると判断した (Y e s) 場合には、 第 1調圧バルブ 50の開度を全開に設定し (ステップ S 330) 、 第 2調圧バルブ 58による出 口圧力調整処理を所定期間実行して (ステップ S 340) 、 N EXTに抜ける。 この結果、 上述の一連の処理は所定のタイミングで繰り返される。 この出口圧力 調整処理は、 図 2に示した第 1実施例の圧力調整処理のステップ S 230, S 2 40と同様である。 他方、 ステップ S 3 1 5で出口温度 Tが基準温度3よりも低い、 すなわち、 空 気中に含まれる水蒸気が増大していないと判断した (N o) 場合には、 第 2調圧 バルブ 58の開度を全開に設定し (ステップ S 360) 、 第 1調圧バルブ 50に よる出口圧力調整処理を所定期間実行して (ステップ S 3 70) '、 N EXTに抜 ける。 この結果、 上述の一連の処理は所定のタイミングで繰り返される。 この出 口圧力調整処理は、 図 2に示した第 1実施例の圧力調整処理のステップ S 2 6 0 , S 2 7 0と同様である。 以上の第 2実施例の圧力調整処理によれば、 出口温度 Tが高く、 空気中に含ま れる水蒸気が増大している場合に、 第 2調圧バルブ 5 8による出口圧力調整を実 行し、 加湿器 4 8下流へ排出される空気の流量を制限する。 したがって、 第 1実 施例の圧力調整処理と同様、 加湿器 4 8の外部へ排出してしまう水分量 (排出水 分量) を抑え、 加湿器 4 8による適切な加湿を行なうことができる。 また、 燃料電池 2 0の空気の出口温度 Tといった反応ガスの物理量は、 燃料電 池システム 1 0の制御上、 一般的に検出されている。 こうした物理量を圧力調整 処理に用いることで、 比較的容易にシステムを構築することができる。 なお、 排 出水分量の所定量以上の増大を判断するに際し、 出口温度 Tに代えて、 燃料電池 2 0に供給される空気の流量 qを用いるものとしても良い。 この場合、 図 2のステップ S 3 0 0, S 3 1 5に代えて、 制御ュニッ卜 1 2 0 は、 エアフロメ一夕 4 2の検出値 (流量 q ) を入力し、 流量 qと所定の基準値と を比較するものとすれば良い。 流量 qが所定の基準値を超えた場合には、 ステツ プ S 3 3 0, S 3 4 0の第 2調圧バルブ 5 8による出口圧力調整処理を実行し、 流量 qが所定の基準値を超えない場合には、 ステップ S 3 6 0, 3 3 7 0の第1 調圧バルブ 5 0による出口圧力調整処理を実行する。 すなわち、 単位時間あたりの供給流量 qが所定基準値を超えるほど増大した場 合には、 燃料電池 2 0から排出される空気の流速も増大し、 加湿器 4 8の加湿性 能が低下すると判断する。 この所定基準値も、 第 1, 第 2実施例と同様、 排出水 分量に基づいて設定される基準値である。 かかる場合には、 加湿器 4 8の下流側の第 2調圧バルブ 5 8による出口圧力調 整処理を行なうことで、 加湿器 4 8の下流へ排出される空気の流量を制限する。 こうすることで、 第 1調圧バルブ 5 0を用いて出口圧力調整処理を実行した場合 に比べて、 加湿器 4 8の外部へ排出される水分量 (排出水分量) を低減すること ができる。 なお、 供給される空気の流量 (送気量) は、 エアコンプレッサ 4 3の モ一夕回転数から推定するものとしても良い。
D . 変形例:
以上、 本発明の実施の形態について説明したが、 本発明はこうした実施の形態 に何ら限定されるものではなく、 本発明の趣旨を逸脱しない範囲において様々な 形態で実施し得ることは勿論である。 本実施例では、 所定の基準値 (《ゃ/3 ) を 設定するに際し、 大気圧や出口温度などの物理量から排出水分量を求めるものと したが、 必ずしも排出水分量そのものを求める必要はない。 例えば、 排出水分量 そのものは分からなくても、 実験的に、 物理量と排出水分量との間に強い相関が あることが分かっていれば、 圧力や温度の所定の基準値を設定することができる。 本実施例では、 所定の基準値を境に、 加湿器 4 8下流へ排出される流量を制限 するものとしたが、 排出水分量が大きいほど、 流量の制限度合を大きくする制御
(リニア制御) を行なうものとしても良い。 例えば、 大気圧を用いる場合には、 検出した圧力値に応じて制限する流量を予め設定しておけば良い。 本実施例では、'大気圧や出口温度、 あるいは、 供給空気の送気量などをそれぞ れ単独で判断基準として用いるものとしたが、 これらを全て入力し、 いずれか一 つが条件を満たせば、 加湿器の下流に備えた調圧バルブによる出口圧力調整処理 を実行するものとしても良い。
また、 第 1実施例の圧力調整処理および第 2実施例の圧力調整処理では、 大気 圧や出口温度 (あるいは、 供給空気の送気量) に基づいて、 加湿器の上流、 下流 に備えた 2つの調圧バルブのいずれで出口圧力調整処理を実行するかを決定する ものとしたが、 さらに、 燃料電池 2 0による適切な発電を行なうために必要とな る要求加湿量を考慮して、 出口圧力調整処理を実行する調圧バルブを決定するも のとしても良い。 図 4は、 第〗実施例の圧力調整処理に要求加湿量の判断処理を加えた圧力調整 処理のフローチャートである。 この処理は、 図 2に示した第 1実施例の圧力調整 処理と同様、 制御ュニッ卜 1 2 0にて実行される。 なお、 第 1実施例の圧力調整 処理と同じ処理には、 同一のステップ番号を付している。 処理を開始すると、 制御ユニット 1 2 0は、 大気圧である圧力 P 1を入力し (ステップ S 2 0 0 ) 、 大気圧が基準値より低いか否かを判断する (ステップ S 2 1 5 ) 。 ステップ S 2 1 5で、 大気圧が基準値以上である (N o ) と判断した 場合には、 第 2調圧バルブ 5 8を全開とし (ステップ S 2 6 0 ) 、 第 1調圧バル プ 5 0による出口圧力調整処理 (ステップ S 2 7 0 ) を所定期間実行して、 N E X Tに抜ける。 すなわち、 所定の期間、 加湿器 4 8の上流側で出口圧力調整処理 を行なう。 N E X Tに抜けた結果、 上述の一連の処理は所定のタイミングで繰り 返される。 これに対し、 ステップ S 21 5で、 大気圧が基準値よりも低い (Y e s) と判 断した場合には、 各種センサの検出値から要求加湿量を算出する (ステップ S 4 20) o 具体的には、 ェアフロメータ 42の検出値から供給空気の量を、 電流計 95の 検出値から電気化学反応に使用された酸素の消費量, 生成された水量を、 温度セ ンサ 55, 圧力センサ 56, 調圧バルブ 50, 58の開度から排出される空気の 流量を、 それぞれ算出し、 これらの算出値から現状の燃料電池 20内の空気の保 有水分量を求める。 この保有水分量と、 予め発電量に対して設定された水分量の マップとを比較し、 適切な発電のために必要となる要求加湿量を算出する。 続いて、 制御ユニット 1 2,0は、 こうして求めた要求加湿量が所定値ァよりも 大きいか否かを判断する (ステップ S 425) 。 ステップ S 425で、 要求加湿量が所定値 τよりも大きい (Ye s) と判断し た場合には、 第 1調圧バルブ 50を全開とし (ステップ S 230) 、 第 2調圧バ ルブ 58による出口圧力調整処理 (ステップ S 240) を所定期間実行して、 N EXTに抜ける。 すなわち、 所定の期間、 加湿器 48の下流側で出口圧力調整処 理を行なう。 N EXTに抜けた結果、 上述の一連の処理は所定のタイミングで繰 り返される。 他方、 ステップ S 425で、 要求加湿量が所定値ァ以下である (N o) と判断 した場合には、 第 2調圧バルブ 58を全開とし (ステップ S 260) 、 第 1調圧 バルブ 50による出口圧力調整処理 (ステップ S 270) を所定期間実行して、 N EXTに抜ける。 すなわち、 所定の期間、 加湿器 48の上流側で出口圧力調整 処理を行なう。 N E X Tに抜けた結果、 上述の一連の処理は所定のタイミングで 繰り返される。 以上の圧力調整処理によれば、 大気圧が低く、 高地条件に該当すると判断して も、 要求される加湿量が所定値以下である場合には、 加湿器 4 8め上流側で出口 圧力調整処理を実行する。 つまり、 排出水分量が所定量以上に増大すると判断し ても、 現状の燃料電池 2 0内で必要とされる加湿量は所定量以下であるため、 加 湿の必要性は高くない。 こうした場合には、.燃料電池 2 0の空気の出口圧力の応 答性 (制御性) を優先し、 燃料電池 2 0の空気の出口に近い位置の第 1調圧バル ブ 5 0により出口圧力調整処理を実行する。 こうすることで、 応答性よく出口圧 力の制御を行なうことができる。 本実施例では、 加湿器の上流側と下流側に、 それぞれ調圧バルブを設け、 所定 の条件で燃料電池の空気の出口圧力を調整するバルブを切り換えるものとしたが、 必ずしもどちらかのバルブに切り換えて出口圧力調整処理を行なう必要はない。 例えば、 出口圧力調整処理は、 基本的に加湿器の上流側のバルブで常に調圧する ものとし、 大気圧の低下、 出口温度の上昇、 排出される空気の流速の増大など、 排出水分量が所定量以上に増大する可能性のある場合に、 加湿器の下流側のバル ブの開度を減少する (流路を絞る) ものとしても良い。 こうすることで、 外部へ 排出される水分量を抑え、 加湿器の加湿性能の低下を抑制することができる。 さ らには、 2つのバルブの制御を容易なものとすることができる。

Claims

請求の範囲
1 . 所定ガスの供給を受けて発電する燃料電池を備えた燃料電池システムで あって、
前記燃料電池からの排出ガスの配管路に設けられ、 該燃料電池に供給される供 給ガスの少なくとも一種類を、 該燃料電池から排出される排出ガスに含まれる水 分を用いて加湿する加湿器と、
前記排出ガスに含まれて前記加湿器の下流へ排出される排出水分量の検出を行 なう排出水分量検出手段と、
前記検出結果に基づいて、 前記排出水分量が所定量以上であると判断した場合 に、 前記加湿器の下流へ排出される前記排出水分量を制限する処理を行なう調整 処理手段と
を備える。
2 . 請求項 1 に記載の燃料電池システムであって、
前記排出水分量検出手段は、 前記排出水分量を、 該排出水分量に影響を与える 物理量により検出する。
3 . 請求項 2に記載の燃料電池システムであって、
前記排出水分量検出手段は、 前記物理量として、 大気圧を検出する圧力検出セ ンサであり、
前記調整処理手段は、 前記検出された大気圧が所定圧以下の場合に、 前記排出 水分量が所定量以上であると判断する。
4 . 請求項 2または 3に記載の燃料電池システムであって、 前記排出水分量検出手段は、 前記物理量として、 前記燃料電池の排出ガスの出 口での温度を検出する温度センサであり、
前記調整処理手段は、 前記検出された温度が所定温度以上の場合に、 前記排出 水分量が所定量以上であると判断する。
5 . 請求項 2ないし 4のいずれかに記載の燃料電池システムであって、 前記排出水分量検出手段は、 前記物理量として、 前記燃料電池の排出ガスの流 速を検出する流速センサであり、
前記調整処理手段は、 前記検出された流速が所定値以上の場合に、 前記排出水 分量が所定量以上であると判断する。
6 . 請求項 2ないし 5のいずれかに記載の燃料電池システムであって、 前記調整処理手段は、
前記排出ガスの配管路であって前記加湿器よりも下流側に、 該排出ガスの圧 力を調整することで前記燃料電池内の供給ガスの圧力を調整する下流側圧力調整 弁を備え、
前記加湿器下流への前記排出水分量の制限を、 前記下流側圧力調整弁による圧 力調整で実行する。
7 . 請求項 6に記載の燃料電池システムであって、
前記調整処理手段は、
前記排出ガスの配管路であって前記加湿器よりも上流側に、 該排出ガスの圧力 を調整することで前記燃料電池内の供給ガスの圧力を調整する上流側圧力調整弁 を備え、
前記排出水分量が所定量よりも少ないと判断した場合には、 前記下流側圧力調 整弁による圧力調整に代えて、 前記上流側圧力調整弁による圧力調整を実行する 燃料電池システム。
8 . 請求項 7に記載の燃料電池システムであって、 さらに、
前記燃料電池における発電の状態に見合った要求加湿量を推定する要求加湿量 推定手段を備え、
前記流量調整処理手段は、 前記推定された要求加湿量が所定値以下である場合 ' には、 前記排出水分量が所定量以上であるか否かの判断に係わらず、 前記上流側 圧力調整弁による圧力調整を実行する
燃料電池システム。
9 . 所定ガスの供給を受けて発電する燃料電池を備えた燃料電池システムで あって、
前記燃料電池からの排出ガスの配管路に設けられ、 該燃料電池に供給される供 給ガスの少なくとも一種類を、 該燃料電池から排出される排出ガスに含まれる水 分を用いて加湿する加湿器と、
前記排出ガスの状態量に基づいて、 該排出ガスに含まれて前記加湿器の下流へ 排出される排出水分量が増加する条件が成立するか否かを判断する判断手段と、 前記排出水分量が増加する条件が成立すると判断した場合には、 前記加湿器に おける加湿効率が向上するよう、 該加湿器における前記排出ガスの圧力を増加す る圧力増加手段と
を備える。
1 0 . 請求項 9記載の燃料電池システムであって、
前記判断手段は、 前記排出ガスの前記加湿器における圧力、 温度、 流量のいず れか一つに基づいて、 前記条件の成立を判断する手段である。
1 1 . 請求項 9または 1 0記載の燃料電池システムであって、
前記圧力増加手段は、 前記加湿器の下流側に圧力調整弁を備え、 該圧力調整弁 を制御することにより前記圧力の増加を行なう。
Ί 2 . 所定ガスの供給を受けて発電する燃料電池の運転方法であって、 前記燃料電池からの排出ガスの配管路に設けられた加湿器によリ、 該燃料電池 に供給される供給ガスを、 該燃料電池から排出される排出ガスに含まれる水分を 用いて加湿し、
前記排出ガスに含まれて前記加湿器の下流へ排出される排出水分量の検出を行 ない、
該検出された排出水分量に基づいて、 前記加湿器の下流側に排出される前記排 出水分量が所定量以上とならないように、 該排出水分量を制限する。
1 3 . 燃料ガスの供給を受けて発電する燃料電池の運転方法であって、 前記燃料電池からの排出ガスの配管路に設けられた加湿器により、 該燃料電池 に供給される供給ガスを、 該燃料電池から排出される排出ガスに含まれる水分を 用いて加湿し、
前記排出ガスの状態量に基づいて、 該排出ガスに含まれて前記加湿器の下流へ 排出される排出水分量が増加する条件が成立するか否かを判断し、
前記排出水分量が増加する条件が成立すると判断した場合には、 前記加湿器に おける加湿効率が向上するよう、 該加湿器における前記排出ガスの圧力を増加す る。
1 4 . 燃料ガスとしての水素ガスと酸化ガスとしての空気との供給を受けて 発電する燃料電池を備えた燃料電池システムであって、
前記前記燃料電池からの前記空気系統の排出ガスの配管路に設けられ、 該燃料 電池に供給される前記空気を、 該燃料電池から排出される排出ガスに含まれる水 分を用いて加湿する加湿器と、
前記排出ガスに含まれて前記加湿器の下流へ排出される排出水分量の多寡に対 応した物理量としての大気圧, 該排出ガスの温度、 および流量のうちの少なくと も一つを検出するセンサと、
前記加湿器の下流側に設けられ、 該センサの検出結果に基づいて、 前記排出水 分量が所定量以上であると判断した場合に、 前記排出ガスの流路を絞って、 前記 加湿器における前記排出ガスの圧力を増加する調圧弁と
を備える。
PCT/JP2006/311051 2005-05-27 2006-05-26 燃料電池システムおよび燃料電池の運転方法 WO2006126746A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006552412A JP4577313B2 (ja) 2005-05-27 2006-05-26 燃料電池システムおよび燃料電池の運転方法
DE112006001344T DE112006001344T5 (de) 2005-05-27 2006-05-26 Brennstoffzellensystem und Betriebsverfahren für Brennstoffzellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005155056 2005-05-27
JP2005-155056 2005-05-27

Publications (1)

Publication Number Publication Date
WO2006126746A1 true WO2006126746A1 (ja) 2006-11-30

Family

ID=37452152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311051 WO2006126746A1 (ja) 2005-05-27 2006-05-26 燃料電池システムおよび燃料電池の運転方法

Country Status (5)

Country Link
US (1) US20080088043A1 (ja)
JP (1) JP4577313B2 (ja)
CN (1) CN100570939C (ja)
DE (1) DE112006001344T5 (ja)
WO (1) WO2006126746A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110826A (ja) * 2007-10-31 2009-05-21 Panasonic Corp 燃料電池システム
JP2010003509A (ja) * 2008-06-19 2010-01-07 Honda Motor Co Ltd 燃料電池車両およびその高地における制御方法
US20100047643A1 (en) * 2007-09-21 2010-02-25 Akinori Yukimasa Fuel cell system
WO2013157488A1 (ja) * 2012-04-16 2013-10-24 本田技研工業株式会社 燃料電池システム
JP2022092767A (ja) * 2020-12-11 2022-06-23 株式会社フクハラ 燃料電池に接続される圧縮空気圧回路構造

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591896B2 (ja) * 2007-11-27 2010-12-01 本田技研工業株式会社 燃料電池電源システムが搭載された車両
EP2164123A1 (de) * 2008-09-15 2010-03-17 SFC Smart Fuel Cell AG Erhöhung der Wasserrückgewinnung und Wärmerückgewinnung eines Direkt-Methanol-Brennstoffzellensystems
KR101910919B1 (ko) 2016-03-15 2018-10-23 현대자동차주식회사 수분량 추정을 통한 연료전지 제어 방법 및 장치
KR102552485B1 (ko) * 2016-12-16 2023-07-06 현대자동차주식회사 연료전지 시스템
JP2022143747A (ja) * 2021-03-18 2022-10-03 本田技研工業株式会社 燃料電池システム及び燃料電池システムの低温起動方法
FR3123764B1 (fr) * 2021-06-02 2023-04-28 Safran Power Units Procédé et module de commande d’une vanne de régulation de la pression interne d’un circuit de fluide dans un dispositif électrochimique
DE102021213328A1 (de) 2021-11-26 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
EP4266432A1 (en) * 2022-04-19 2023-10-25 Volvo Truck Corporation An air management system and a method for controlling intake air pressure and exhaust back pressure of a fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075418A (ja) * 2000-08-30 2002-03-15 Honda Motor Co Ltd 燃料電池用加湿装置
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
JP2005347189A (ja) * 2004-06-07 2005-12-15 Toyota Motor Corp 燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2610100A (en) * 1999-01-12 2000-08-01 Energy Partners, L.C. Method and apparatus for maintaining neutral water balance in a fuel cell system
US6376111B1 (en) * 2000-01-25 2002-04-23 General Motors Corporation System and method for controlling the humidity level of a fuel cell
JP4824853B2 (ja) * 2000-07-18 2011-11-30 本田技研工業株式会社 燃料電池用ガス供給装置
JP4672183B2 (ja) * 2001-05-23 2011-04-20 本田技研工業株式会社 燃料電池の制御装置および燃料電池車両の制御装置
JP3835357B2 (ja) * 2002-06-12 2006-10-18 株式会社デンソー 燃料電池システム
US20040258968A1 (en) * 2003-03-21 2004-12-23 Voss Mark G. Cathode inlet gas humidification system and method for a fuel cell system
US6939633B2 (en) * 2003-09-17 2005-09-06 General Motors Corporation Fuel cell shutdown and startup using a cathode recycle loop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075418A (ja) * 2000-08-30 2002-03-15 Honda Motor Co Ltd 燃料電池用加湿装置
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
JP2005347189A (ja) * 2004-06-07 2005-12-15 Toyota Motor Corp 燃料電池システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047643A1 (en) * 2007-09-21 2010-02-25 Akinori Yukimasa Fuel cell system
JP2009110826A (ja) * 2007-10-31 2009-05-21 Panasonic Corp 燃料電池システム
JP2010003509A (ja) * 2008-06-19 2010-01-07 Honda Motor Co Ltd 燃料電池車両およびその高地における制御方法
WO2013157488A1 (ja) * 2012-04-16 2013-10-24 本田技研工業株式会社 燃料電池システム
JP5698410B2 (ja) * 2012-04-16 2015-04-08 本田技研工業株式会社 燃料電池システム
JPWO2013157488A1 (ja) * 2012-04-16 2015-12-21 本田技研工業株式会社 燃料電池システム
US10249889B2 (en) 2012-04-16 2019-04-02 Honda Motor Co., Ltd. Fuel cell system
JP2022092767A (ja) * 2020-12-11 2022-06-23 株式会社フクハラ 燃料電池に接続される圧縮空気圧回路構造

Also Published As

Publication number Publication date
US20080088043A1 (en) 2008-04-17
CN101185189A (zh) 2008-05-21
JPWO2006126746A1 (ja) 2008-12-25
JP4577313B2 (ja) 2010-11-10
DE112006001344T5 (de) 2008-04-17
CN100570939C (zh) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4577313B2 (ja) 燃料電池システムおよび燃料電池の運転方法
JP5077836B2 (ja) 燃料電池システム
US9893371B2 (en) Fuel cell system
US9735437B2 (en) Wet state control device for fuel cell
JP6376184B2 (ja) 燃料電池システムおよび車両
JP2007035389A (ja) 燃料電池システムおよびその制御方法
WO2005088754A1 (ja) 燃料電池システムの制御装置
WO2005104283A1 (ja) 燃料電池システム
JP2004179000A (ja) 燃料電池システム
WO2007117018A1 (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の凍結防止方法
US8580447B2 (en) Fuel cell system and control method for the same
JP2007257956A (ja) 燃料電池システム
JP2004342473A (ja) 燃料電池システムの運転制御
WO2009017140A1 (ja) 燃料電池システム
EP3021404B1 (en) Fuel cell system and vehicle equipped with fuel cell
JP2007042309A (ja) 燃料電池システム
WO2007122979A1 (ja) 燃料電池システム、および燃料電池システムを搭載する車両
US8241804B1 (en) Method for controlling fuel cell system
JP2007066717A (ja) 燃料電池システムおよびその運転方法
JP5060105B2 (ja) 燃料電池システム
JP2019079757A (ja) 燃料電池システム
JP2005251517A (ja) 燃料電池システム
KR101350187B1 (ko) 연료전지 시스템의 냉시동 프리컨디셔닝 제어방법
JP7310707B2 (ja) 燃料電池システム及び燃料電池を制御する方法
JP2019091594A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018600.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006552412

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11987069

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060013440

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006001344

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06747096

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607