WO2006123839A1 - 電動パワーステアリング装置の制御装置 - Google Patents

電動パワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2006123839A1
WO2006123839A1 PCT/JP2006/310507 JP2006310507W WO2006123839A1 WO 2006123839 A1 WO2006123839 A1 WO 2006123839A1 JP 2006310507 W JP2006310507 W JP 2006310507W WO 2006123839 A1 WO2006123839 A1 WO 2006123839A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
motor
control signal
motor control
steering torque
Prior art date
Application number
PCT/JP2006/310507
Other languages
English (en)
French (fr)
Inventor
Yusuke Itakura
Nobuyuki Kobayashi
Tomonori Hisanaga
Osamu Miyoshi
Shinji Kanai
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to EP06756607A priority Critical patent/EP1886897A4/en
Priority to JP2007516366A priority patent/JP5082846B2/ja
Priority to US11/915,073 priority patent/US20090071745A1/en
Publication of WO2006123839A1 publication Critical patent/WO2006123839A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to a control device for an electric power steering device that applies a steering assist force by a motor to a steering system of an automobile or a vehicle, and in particular, when the assist of the control device is stopped, the twisting force of a tire is suddenly released.
  • the present invention relates to a control device for an electric power steering apparatus that reduces the burden on the driver caused by the operation and prevents the driver from feeling uncomfortable. Background art
  • An electric power steering device that biases an automobile or a vehicle steering device with an auxiliary load by the rotational force of a motor transmits a driving force of a motor to a steering shaft or a rack by a transmission mechanism such as a gear or a belt via a reduction gear. Auxiliary load is applied to the shaft.
  • Such a conventional electric power steering device performs feedback control of the motor current in order to accurately generate assist torque (steering assist torque).
  • the motor application voltage is adjusted so that the difference between the current command value and the motor current detection value is small. (Width modulation) This is done by adjusting the duty ratio of the control.
  • the column shaft 2 of the steering handle 1 passes through the reduction gear 3, the universal joints 4A and 4B, and the pinion rack mechanism 5. It is connected to the steering wheel evening rod 6.
  • the column shaft 2 is provided with a torque sensor 1 0 for detecting the steering torque of the steering handle 1.
  • a motor 20 for assisting the steering force is connected to the column shaft 2 via a reduction gear 3.
  • the control unit 30 that controls the power steering device is supplied with electric power from the battery 14 and also receives an input key signal from the innovation key 11, and the control unit 30 is detected by the torque sensor 10.
  • the steering assist command value I of the assist command is calculated based on the steering torque T and the vehicle speed V detected by the vehicle speed sensor 12 and supplied to the motor 20 based on the calculated steering assist command value I. Control the current.
  • the control unit 30 is mainly composed of C P U (or M P U or M C U).
  • Fig. 2 shows the general functions executed by the program inside the C P U.
  • the steering torque T detected and input by the torque sensor 10 is a phase compensator to improve the stability of the steering system.
  • the phase is compensated by 1 and the phase compensated steering torque TA is input to the steering assist command value calculator 32.
  • the vehicle speed V detected by the vehicle speed sensor 12 is also input to the steering assist command value calculator 32.
  • the steering assist command value calculator 3 2 refers to the characteristic map (lookup table) 3 3 based on the input steering torque TA and vehicle speed V, and controls the control target value of the current supplied to the motor 20.
  • the steering assist command value I is determined.
  • the steering assist command value I is input to the subtractor '3 0 A, and is also input to the feedforward differential compensator 3 4 to increase the response speed, and the deviation (I — I) is input to the proportional calculator 35 and to the integral calculator 36 for improving the characteristics of the feed pack system.
  • the proportional output and the output of the integral calculator 36 are input to the adder 30B, the output of the differential compensator 34 is also added to the adder 30B, and the adder 30B
  • the current command value E that is the result of the addition of is input to the motor drive circuit 37 as a motor drive signal.
  • the motor current value i of the motor 20 is detected by the motor current detection circuit 38, and the motor current detection value i is input to the subtractor 30A and fed back.
  • the motor drive circuit 37 is composed of an H bridge (in the case of a two-phase motor) or a three-phase bridge (in the case of a three-phase motor) of drive elements such as FETs.
  • Such an electric power steering device is used when the ignition key 11 is turned from the on state to the off state, or when a stop signal is generated from a failure diagnosis means (not shown) for detecting a failure of the control device. Assist is stopped by the motor control. When such an assist is stopped, the twisting force of the evening is suddenly released, and the burden on the driver's steering is increased, causing an uncomfortable feeling in steering. .
  • the electric power steering device described in Japanese Patent Publication No. 7-9 4 2 2 6 includes an operation stop detection means for detecting an operation stop command of the motor control signal generating means, and a detection signal from the operation stop detection means. Based on this, there is provided correction means for gradually decreasing the motor control signal with time, and the correction means is provided between the motor control signal generation means and the motor drive means.
  • FIG. 3 shows the configuration thereof.
  • Steering state detection means 10 comprising steering torque detection means 10 0 1 for detecting the steering torque of the steering system and steering rotation detection means 1 0 2 for detecting the steering rotational speed.
  • Steering state detection means 1 0 0 Electric motor control signal generation means for determining and outputting an electric motor control signal based on the detection signal 1 1 0, Electric motor driving means for driving the electric motor based on the electric motor control signal 1 1 1
  • switches such as key switches 1 1 2, device failure diagnosis means 1 1 3, operation stop detection that detects the operation stop of the device itself Means 1 1 4; Operation stop detection means 1 1
  • the electric power steering apparatus disclosed in Japanese Patent Publication No. 7-9 4 2 2 7 is based on an initial state detecting means for detecting an operation start state of the motor control signal generating means, and a detection signal from the detecting means.
  • Correction means for correcting the motor control signal so as to gradually increase the motor control signal to the determined value with time, and the correction means is provided between the motor control signal generating means and the motor driving means.
  • FIG. 4 shows the configuration. When a switch such as a key switch is turned on, detection signals are output from the steering torque detection means 1 31 and the initial state detection means 1 3 2. In the electric motor control signal generating means 1 3 3, the electric motor control signal is determined and output based on the steering torque signal output from the steering torque detecting means 1 3 1.
  • the motor control signal is gradually increased to the determined value of the motor control signal.
  • the motor is driven and controlled by the motor drive means 1 3 4 based on the corrected motor control signal.
  • FIG. 5 shows an example of an apparatus disclosed in Japanese Patent Application Laid-Open No. 2 0 2-1 2 7 9 2 6, which has a monitoring function even when the assist is reduced.
  • the steering torque detection signal from the steering torque detection means 41 constituting the steering state detection means is input to the steering torque input correction means 50 and the failure diagnosis means 42, and is corrected by the steering torque input correction means 50.
  • the correction signal for the torque detection signal is input to the motor control signal generating means 43 and the motor control signal monitoring means 44.
  • the output of the key switch 45 is input to the operation stop detection means 46, and the motor drive means 47 drives and controls the motor according to the motor control signal from the motor control signal generation means 43.
  • the failure diagnosis means 4 2 monitors the presence or absence of a failure in the steering torque detection means 4 1, the motor control signal monitoring means 4 4 and the motor drive means 4 7, and the diagnosis result of the failure diagnosis means 4 2 detects the operation stop.
  • Means 46 and motor control signal generating means 43 are inputted.
  • the operation stop detection means 46 detects the off operation by the key switch 45 and detects the operation stop command of the motion control signal generation means 43.
  • step S 1 the entire control system is initialized (step S 1), and the failure diagnosis means 42 receives a steering torque detection signal from the steering torque detection means 41 (step S 2) and performs failure diagnosis (step S 3).
  • the failure diagnosis means 4 2 then inputs a current detection signal from the motor drive means 47 (step S 4), performs the same failure diagnosis (step S 5), and the motor control signal monitoring means 4 4 monitors.
  • Executes the function, and the operation stop detection means 4 6 inputs the detection signal from the key switch 4 5 (Step S 6), and further inputs the battery voltage (Step S 7), the occurrence of a failure, the key switch operation, the battery It is determined whether or not an operation stop state has occurred due to any of the voltage transitions outside the operating range (step S 1 0).
  • the motor control signal generation means 4 3 calculates the motor control signal according to the steering torque detection signal from the steering torque detection means 4 1 via the steering torque input correction means 50 (step). Since the motor control signal is output (step S 1 2), the motor is controlled through the motor drive means 47. Along with this operation, the process returns to step S2.
  • step S 14 determines that the operation has been stopped in step S10
  • the steering torque input correction means 50 receives the steering torque detection signal from the steering torque detection means 41 gradually according to time. Decrease (step S 1 3), determine the complete stop condition (step S 1 4), and the motor control ⁇ monitor unit 44 determines whether the steering torque correction signal is “0” ( Step S1 5). If the steering torque correction signal is not "0", the process proceeds to step S11. If it is "0", the power steering device (EPS) is stopped and the process ends (step S16). Note that the determination in step S 14 is a determination of complete operation stop due to a lower voltage drop than usual.
  • FIG. 7 shows the assist torque characteristic according to the above Japanese Patent Laid-Open No.
  • the control device for the electric power steering is composed of a plurality of functional blocks, and in order to realize these, a plurality of circuit blocks are constructed.
  • the phase compensator 3 1 is configured by a filter
  • the blocks 3 2 to 3 6 are configured by a microcomputer
  • a motor drive circuit 3 7, and a motor current detection circuit 3 8 are configured.
  • the components used differ for each circuit block configured, and as a result, the operable voltages differ for each block.
  • the assist control in the case of a voltage drop, the assist control must be stopped in accordance with the function block that stops functioning at the highest voltage among the function blocks related to normal assist control. there were.
  • some functional blocks such as microcomputers can operate at relatively low voltages, so that they can be used to perform brake control to relatively low voltages. It is.
  • the present invention has been made under the circumstances described above, and the object of the present invention is to control the motor even when the motor control is stopped on the low voltage side or the high voltage side outside the normal operating range of the battery voltage. Without stopping the function of the signal monitoring means, it improves the steering feeling when the control of the control device is stopped, and at the same time reduces the burden on the driver due to the sudden release of the torsional force of the tire when the assist is stopped.
  • the purpose is to provide a control device for a high-performance electric power steering device that reduces the noise and prevents the driver from feeling uncomfortable. Disclosure of the invention
  • the present invention is connected to a steering system of a vehicle and generates a steering assist torque based on a current command value, a steering torque detecting means for detecting a steering torque of the steering system, and detected by the steering torque detecting means
  • An electric power steerer comprising a motor drive means for driving the motor based on the steering torque.
  • the above object of the present invention can be achieved more effectively when the steering torque correction insufficient amount is time or when the electromagnetic brake is performed by short-circuiting the terminals of the motor.
  • the present invention includes a steering state detection unit that detects a steering state of a steering system, a motor control signal generation unit that determines and outputs a motor control signal based on a steering state detection signal from the steering state detection unit, and the motor control A motor driving means for driving the motor based on the motor control signal from the signal generating means, and a motor for monitoring the motor control signal generating means based on the signals from the steering state detecting means and the motor driving means. Evening control signal monitoring means, an operation stop detecting means for detecting an operation stop command of the morning control signal generating means, and a steering state signal provided between the steering state detecting means and the morning control signal generating means.
  • the above-mentioned object of the present invention is based on the detection of the operation stop detection means.
  • the steering state detection signal which is an input of the motor control signal generation means, is corrected according to time, and the steering torque correction shortage calculation means is completely stopped by the operation stop detection means. Is detected
  • the steering torque correction deficiency is calculated and a brake signal is output, and the electromagnetic brake means is achieved by applying an electromagnetic brake to the motor according to the brake signal.
  • the present invention also provides a steering state detecting means for detecting a steering state of a steering system, and a motor control signal generating means for determining and outputting a motor control signal based on a steering state detection signal from the steering state detecting means ⁇ : A motor driving means for driving a motor based on a motor control signal from the motor control signal generating means, an operation stop detecting means for detecting an operation stop command of the motor control signal generating means, and the steering state detection And a plurality of steering state signal correcting means provided between the motor control signal generating means and a correction method selecting means for selecting and using the plurality of steering state signal correcting means.
  • the above-mentioned object of the present invention relates to a steering torque that calculates a steering torque correction deficiency based on detection by the operation stop detection means.
  • a correction deficient amount calculating means; and an electromagnetic brake means provided in the motor control signal generating means; and the steering state signal correcting means selected by the correction method selecting means is detected from the operation stop detecting means.
  • the steering state detection signal which is an input of the motor control signal generating means, is corrected according to time, and the steering torque correction insufficient amount calculating means is used when the operation stop detecting means detects the complete operation stop This is achieved by calculating the steering torque correction deficiency and outputting a brake signal, and applying the electromagnetic brake to the motor according to the brake signal.
  • the object of the present invention is to determine the steering torque correction deficiency in time, or to determine the restart condition after the electromagnetic brake is performed by a short circuit of the motor terminal, or after the short circuit, More effective by providing a restart function when restart conditions are met Is achieved.
  • FIG. 1 is a diagram showing a general structural example of an electric power steering apparatus.
  • FIG. 2 is a block diagram showing a configuration example of the control unit.
  • FIG. 3 is a block diagram showing an example of a conventional control device.
  • FIG. 4 is a block diagram showing another example of a conventional control device.
  • FIG. 5 is a block diagram showing still another example of a conventional control device.
  • FIG. 6 is a flowchart showing an operation example of a conventional control device.
  • FIG. 7 is a diagram showing an example of characteristics of a conventional control device.
  • FIG. 8 is a block diagram showing an embodiment of the present invention.
  • FIG. 9 is a flowchart showing an operation example of the present invention.
  • FIG. 10 is a diagram for explaining the operation of the present invention.
  • FIG. 11 is a diagram for explaining the operation of the present invention.
  • FIG. 12 is a block diagram showing an example of contact connection when applying an electromagnetic brake.
  • FIG. 13 is a diagram for explaining the operation of the present invention.
  • FIG. 14 is a characteristic diagram showing the effect of the present invention.
  • FIG. 15 is a block diagram showing another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the steering torque correction insufficient amount is calculated, and the motor torque is adjusted according to the calculated steering torque correction insufficient amount.
  • Applying an electromagnetic brake will prevent the tire from twisting as much as possible. I try to continue.
  • the electromagnetic brake works with the generator by short-circuiting the motor terminal, and the brake is applied by regenerative braking by the generator, preventing tire twisting without supplying electric power overnight. Can be achieved.
  • the signal corresponding to the motor current command is decreased or increased according to the time as the calculation result by the motor control signal generation means itself, and the operation stop state or the control start state is detected. Since the motor control signal is calculated later using the steering state detection signal, monitoring is possible even during correction. By correcting the torque system, it is possible to make corrections while taking advantage of control blocks other than the torque system, so stable correction is possible.
  • FIG. 8 shows an embodiment of the present invention corresponding to FIG. 5, and the steering torque correction insufficient amount for calculating the steering torque correction insufficient amount when the operation stop detecting means 46 detects the operation stop.
  • the calculation means 60 is provided, and the electromagnetic brake means 4 3 A for applying the electromagnetic brake to the motor according to the steering torque correction deficiency calculated by the steering torque correction deficiency calculation means 60. 4 Provided in 3.
  • the steering torque detection signal from the steering torque detection means 41 constituting the steering state detection means is input to the steering torque input correction means 50 and the failure diagnosis means 42, and is corrected by the steering torque input correction means 50.
  • the corrected steering torque detection signal is input to the motor control signal generating means 43 and the motor control signal monitoring means 44.
  • the output of the key switch 45 is input to the operation stop detection means 46, and the motor drive means 47 controls the driving of the motor according to the motor control signal from the motor control signal generation means 43.
  • the failure diagnosis means 4 2 monitors the presence or absence of a failure of the steering torque detection means 4 1, the motor control signal monitoring means 4 4 and the motor drive means 4 7, and the diagnosis result of the failure diagnosis means 4 2 is
  • the operation stop detection means 4 6 and the motor control signal generation means 4 3 are input.
  • the operation stop detection means 4 6 detects the operation stop command of the motor control signal generation means 4 3 by either detecting the OFF operation by the key switch 4 5 or detecting the failure occurrence by the failure diagnosis means 4 2. ing.
  • the battery voltage is input to the operation stop detection means 46.
  • the entire control system is initialized (step S 2 0), and the failure diagnosis means 42 receives the steering torque detection signal from the steering torque detection means 41 (step S 2 1) and performs failure diagnosis (step S twenty two ).
  • the failure diagnosis means 42 receives the current detection signal from the motor drive means 47 (step S2 3), performs the same failure diagnosis (step S2 4), and monitors the motor control signal monitoring means 4 4 performs the monitoring function, and the operation stop detection means 4 6 inputs the detection signal from the key switch 3 5 (step S 2 5), and further inputs the battery voltage (step S 2 6). It is determined whether or not an operation stop state has occurred due to either one switch operation or the battery voltage transitioning out of the operating range (step S 30).
  • the motor control signal generation means 4 3 calculates the motor control signal according to the steering torque detection signal from the steering torque detection means 4 1 via the steering torque input correction means 50 (step S). 3 1) Since the motor control signal is output (step S 3 2), the motor is driven and controlled via the motor driver 47. Along with this operation, the process returns to step S 21.
  • step S 3 0 if it is determined in step S 3 0 that the operation stop detection means 4 6 is in the operation stop state, the steering torque detection signal from the steering torque detection means 4 1 in the steering torque input correction means 50 is (Step S 3 3), determine the complete stop condition and Step S 3 4), the motor control signal monitoring means 44 determines whether or not the steering torque correction signal is “0” (Step S 3 5). If the steering torque correction signal is not “0”, the process proceeds to step S 3 1, and if it is “0”, the electric power steering device (EPS) is stopped and the process is terminated (step S 3 6). Note that the determination in step S 3 4 is a determination of complete operation stop due to a lower voltage than in the normal case.
  • EPS electric power steering device
  • the steering torque correction insufficient amount calculation means 60 calculates the necessary electromagnetic brake amount according to the method shown in FIG. (Step S40). That is, in FIG. 10, when a normal operation stop is detected at time t 1 by the operation stop detection means 46, the total steering torque correction amount up to time t 3 is determined in advance at that time tl. It is calculated from the characteristic data as shown in Fig. 11. Next, when a complete stoppage is detected by the stoppage detection means 46 at time t2, it is necessary from the total steering torque correction amount and the steering torque correction execution amount from time t1 to time t2. Calculate the amount of electromagnetic brake to be performed (step S40) and determine the electromagnetic brake time (step S41). The steering torque correction insufficient amount calculation means 60 outputs a brake signal Br according to the determined electromagnetic brake time.
  • the electromagnetic brake means 4 3 A receives, for example, switching elements (eg, FETs) of the drive circuit as shown in FIG. Turn on all lower stages and turn off the upper switching elements to control the electromagnetic brake (step S 3 4).
  • switching elements eg, FETs
  • the motor operates as a generator and acts as a regenerative brake, so the assist amount increases accordingly.
  • the relationship between the remaining brake force and the braking force is as shown in Fig. 13 for example.
  • the electromagnetic brake control the upper switching element may be turned on and the lower switching element may be turned off, contrary to FIG.
  • the three-phase mode is shown in Fig. 12, it can be similarly applied to the H-ridge circuit in the two-phase mode.
  • step S 4 3 the end of brake control is determined by whether or not the remaining amount of brake is less than the predetermined value. If the brake and control are not completed, the restart condition (brake control During the normal control can be started or whether the idance key is turned on again, etc. (Step S44), and if the restart condition is met Returns to step S 21 above. If the brake control is terminated in step S 4 3 above, and the restart condition is not satisfied in step S 4 4, the electric power steering device is stopped and terminated (step S 3 6). .
  • the assist characteristics shown in Fig. 14 can be obtained.
  • the assist reduction starts (time t 1 0)
  • the motor terminal is short-circuited at time t 1 1 to apply the electromagnetic brake, so the amount of assistance increases and sudden stop based on the voltage drop It can reduce the burden on the driver.
  • the assist is gradually reduced at low voltage, the required amount of brake is calculated when the operation is completely stopped, and the motor terminals are short-circuited to form an electromagnetic brake state. Therefore, it is possible to continue the tire twisting prevention operation.
  • FIG. 15 shows another embodiment of the present invention corresponding to FIG. 8.
  • the steering torque input correcting means 50 is divided into two steering torque input correcting means 5 1 and 5 2 having different characteristics.
  • a correction method selection means 48 for performing the switching.
  • a steering torque correction insufficient amount calculating means 61 for calculating the steering torque correction insufficient amount is provided, and an electromagnetic brake means 4 3 A operated by the brake signal Br is provided in the motor control signal generating means 43.
  • steering torque input correction means 51 and 52 having different characteristics are provided, and a correction method selection means 4 for selecting a correction means optimal for the system based on a detection signal from the operation stop detection means 46. 8 is provided.
  • a correction method selection means 4 for selecting a correction means optimal for the system based on a detection signal from the operation stop detection means 46. 8 is provided.
  • the steering torque detection signal input to the motor control signal generation means 4 3 is optimally reduced according to the system status.
  • Conditions for switching the steering torque input correction means 5 1 and 5 2 include when the normal system is shut down due to the key being turned off, and when the system is shut down as a fail-safe due to a failure of the steering torque input system.
  • the correction method selection means 4 8 determines that the correction is due to turning off the idance key, the normal torque input is used as the input of the motor control signal generation means 4 3, the attenuation is performed with a constant gain as the correction calculation, and the steering torque input
  • the correction time in correction means 51 should be sufficiently long.
  • the torque input value before the failure is used as the input to the motor control signal generator 4 3, and the maximum input value is attenuated as the correction calculation in the steering torque input correction unit 5 2.
  • the correction time ends in a short time.
  • the operation is the same as in the flowchart of FIG. 9, and the electromagnetic brake operation as shown in FIG. 14 can also be realized in this example.
  • the assist is gradually reduced at low voltage, the required amount of brake is calculated at the time of complete operation stop, and the electromagnetic brake state is formed by short-circuiting between the motor terminals.
  • the operation to prevent the twisting force of the tire can be continued without supplying electric power.
  • the motor's terminals are short-circuited (short circuit), so that the return force of the torsion acts on the motor and the motor enters the regenerative braking state.
  • the return force can be suppressed, and the return force acting on the steering handle can be suppressed.
  • the assist is gradually reduced and the motor terminals are short-circuited at a low voltage to form an electromagnetic brake state, so that the torsional force of the tire is prevented without supplying power to the motor. be able to.
  • the signal corresponding to the motor current command is decreased or increased according to time as the calculation result by the motor control signal generating means itself, Or, by correcting the torque system by calculating the motor control signal using the steering state detection signal after detecting the control start state, it can be corrected while taking advantage of control blocks other than the torque system, so stable correction is possible. is there.
  • the voltage condition for stopping the motor control has been described in the case of the low voltage side control particularly outside the battery voltage normal operation range.
  • the present invention is not limited to this and is defined in advance. Needless to say, it can be applied to the high-voltage mode stop control on the high-voltage side outside the normal operating range of the battery voltage, and has the same effect as the low-voltage side control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

操舵補助トルクの発生中にモータ制御を停止させた場合でも、モータ制御信号監視手段の機能を停止させることなく操舵トルク補正不足量を計算し、操舵トルク補正不足量に応じてモータに電磁ブレーキをかけることにより、制御装置の制御の停止時の操舵フィーリングを向上させると共に、アシスト停止時にタイヤの捩れ力が急に開放されることによるドライバへの負担を軽減し、ドライバに違和感を感じさせないようにした高性能な電動パワーステアリング装置の制御装置である。

Description

明 細 書 電動パワーステアリング装置の制御装置 技術分野
本発明は、 自動車や車両の操舵系にモ一夕による操舵補助力を付与す るようにした電動パワーステアリング装置の制御装置に関し、 特に制御 装置のアシスト停止時に、 タイヤの捩れ力が急に開放されることによる ドライバへの負担を軽減し、 ドライバが違和感を感じないように改善し た電動パワーステアリング装置の制御装置に関する。 背景技術
自動車や車両のステアリング装置をモータの回転力で補助負荷付勢す る電動パワーステアリング装置は、 モ一夕の駆動力を、 減速機を介して ギア又はベルト等の伝達機構により、 ステアリングシャフト或いはラッ ク軸に補助負荷付勢するようになっている。 かかる従来の電動パワース テアリング装置は、 アシストトルク (操舵補助トルク) を正確に発生さ せるため、 モ一夕電流のフィ一ドバック制御を行っている。 フィードバ ック制御は、 電流指令値とモ一夕電流検出値との差が小さくなるように モ一タ印加電圧を調整するものであり、 モータ印加電圧の調整は、 一般 的に P WM (パルス幅変調) 制御のデューティ比の調整で行っている。
ここで、 電動パワーステアリング装置の一般的な構成を第 1図に示し て説明すると、 操向ハンドル 1のコラム軸 2は減速ギア 3、 ュニバーサ ルジョイント 4 A及び 4 B、 ピニオンラック機構 5を経て操向車輪の夕 ィロッド 6に連結されている。 コラム軸 2には、 操向ハンドル 1の操舵 トルクを検出するトルクセンサ 1 0が設けられており、 操向ハンドル 1 の操舵力を補助するモータ 2 0が減速ギア 3を介してコラム軸 2に連結 されている。 パワーステアリング装置を制御するコントロールュニッ ト 3 0にはバッテリ 1 4から電力が供給されると共に、 イダニシヨンキー 1 1からイダニションキ一信号が入力され、 コントロールュニット 3 0 は、 トルクセンサ 1 0で検出された操舵トルク Tと車速センサ 1 2で検 出された車速 Vとに基づいてアシスト指令の操舵補助 令値 Iの演算を 行い、 演算された操舵補助指令値 I に基づいてモータ 2 0に供給する電 流を制御する。
コントロールュニッ ト 3 0は主として C P U (又は M P Uや M C U ) で構成されるが、 その C P U内部においてプログラムで実行される一般 的な機能を示すと、 第 2図のようになつている。
第 2図を参照してコントロールユニッ ト 3 0の機能及び動作を説明す ると、 トルクセンサ 1 0で検出されて入力される操舵トルク Tは、 操舵 系の安定性を高めるために位相補償器 3 1で位相補償され、 位相補償さ れた操舵トルク T Aが操舵補助指令値演算器 3 2に入力される。 又、 車 速センサ 1 2で検出された車速 Vも操舵補助指令値演算器 3 2に入力さ れる。 操舵補助指令値演算器 3 2は、 入力された操舵トルク T A及び車 速 Vに基づいて特性マップ (ルックアップテ一ブル) 3 3を参照して、 モータ 2 0に供給する電流の制御目標値である操舵補助指令値 I を決定 する。
操舵補助指令値 Iは減算器' 3 0 Aに入力されると共に、 応答速度を高 めるためのフィードフォワード系の微分補償器 3 4に入力され、 減算器 3 0 Aで求められる偏差 ( I — i ) は比例演算器 3 5に入力されると共 に、 フィードパック系の特性を改善するための積分演算器 3 6に入力さ れる。 その比例出力及び積分演算器 3 6の出力は加算器 3 0 Bに入力さ れ、 微分補償器 3 4の出力も加算器 3 0 Bに加算され、 加算器 3 0 Bで の加算結果である電流指令値 Eが、 モー夕駆動信号としてモータ駆動回 路 3 7に入力される。 モータ 2 0のモータ電流値 i はモータ電流検出回 路 3 8で検出され、 モータ電流検出値 iは減算器 3 0 Aに入力されてフ イードバックされる。 モータ駆動回路 3 7は、 F E T等で成る駆動素子 の Hブリッジ ( 2相モ一夕の場合) 又は 3相ブリッジ ( 3相モータの場 合) で構成されている。
このような電動パワーステアリング装置は、 ィグニションキー 1 1を オン状態からオフ状態とした場合や、 制御装置の故障を検出する故障診 断手段 (図示せず) から停止信号が発生された場合などには、 モー夕制 御によりアシストを停止させている。 このようなアシスト停止時には夕 ィャの捩れ力が急に開放され、 ドライバの操舵への負担が増加し、 操舵 に違和感を生じさせることになる。 .
従来、 かかる問題に関連する電動パワーステアリング装置として、 特 公平 7— 9 4 2 2 6号、 特公平 7— 9 4 2 2 7号に示すものがある。 特公平 7— 9 4 2 2 6号公報に記載された電動パワーステアリング装 置は、 電動機制御信号発生手段の作動停止命令を検出する作動停止検出 手段と、 この作動停止検出手段からの検出信号に基づき電動機制御信号 を時間と共に次第に減少させる補正手段とを設けたものであり、 補正手 段は電動機制御信号発生手段と電動機駆動手段との間に設けられている。 第 3図はその構成を示しており、 ステアリング系の操舵トルクを検出 する操舵トルク検出手段 1 0 1 と、 操舵回転数を検出する操舵回転検出 手段 1 0 2とで成る操舵状態検出手段 1 0 0、 操舵状態検出手段 1 0 0 からの検出信号に基づいて電動機制御信号を決定し出力する電動機制御 信号発生手段 1 1 0、 電動機制御信号に基づいて電動機を駆動する電動 機駆動手段 1 1 1を備え、 更にキースィッチ等のスィッチ類 1 1 2、 装 置の故障診断手段 1 1 3、 装置自身の作動停止を検出する作動停止検出 手段 1 1 4、 作動停止検出手段 1 1 4からの検出信号に基づいて電動機 制御信号を時間と共に次第に減少させるために、 電動機制御信号発生手 段 1 1 0と電動機駆動手段 1 1 1 との間に配設された補正手段 1 2 0を 具備している。
このような構成において、 装置自身を作動停止させるスィッチ類 1 1 2のオフ時や、故障診断手段 1 1 3からの停止信号が出 された時には、 これらの信号により装置が作動停止されることを作動停止検出手段 1 1 4が検出する。 そして、 補正手段 1 2 0は、 作動停止検出手段 1 1 4か らの検出信号に基づいて電動機制御信号を時間と共に減少させて電動機 駆動手段 1 1 1に出力し、 電動機を穏やかに停止させる。
また、 特公平 7— 9 4 2 2 7号公報に示される電動パワーステアリン グ装置は、 電動機制御信号発生手段の作動開始状態を検出する初期状態 検出手段と、 この検出手段からの検出信号に基づいて、 電動機制御信号 をその決定値まで時間と共に次第に増大させるように電動機制御信号を 補正する補正手段とを設けたものであり、 補正手段は電動機制御信号発 生手段と電動機駆動手段との間に設けられている。 第 4図はその構成を 示しており、 キースィッチ等のスィッチが投入されると、 操舵トルク検 出手段 1 3 1及び初期状態検出手段 1 3 2から各検出信号が出力される。 電動機制御信号発生手段 1 3 3においては、 操舵トルク検出手段 1 3 1 から出力される操舵トルク信号に基づいて電動機制御信号が決定されて 出力される。 補正手段 1 3 0 ίこおいては、 初期状態検出手段 1 3 2から 始動状態であることを示す検出信号が入力されると、 電動機制御信号の 決定値まで電動機制御信号を次第に増大させるために補正され、 この補 正された電動機制御信号に基づいて、 電動機が電動機駆動手段 1 3 4に より駆動制御される。
上記各特公平 7 - 9 4 2 2 6号公報及び 2に示される手法では、 電動 機制御信号発生手段と無関係に電動機制御信号を減少又は増加させるた め、 モータ制御信号を減少又は増加させている間はモータ制御偉号監視 手段を機能させることができない問題がある。 つまり、 作動停止状態又 は初期状態を検出すると、 モー夕制御信号の演算結果を強制的に変更し て時間と共に減少又は増加させており、 結果的にモー夕制御信号の演算 結果を補正することとなっている。 このため、 通常の镌舵検出信号と実 際にモ一タを駆動する電流との関係が成り立たなくなつており、 補正中 は監視を中止せざるを得なかった。
かかる問題を解決する装置として、 特開 2 0 0 2— 1 2 7 9 2 6号公 報に示されるものがある。
第 5図は特開 2 0 0 2— 1 2 7 9 2 6号公報に示される装置例を示し ており、アシスト減少時においても監視機能を有する構成となっている。 操舵状態検出手段を構成する操舵トルク検出手段 4 1からの操舵トルク 検出信号は、 操舵トルク入力補正手段 5 0及び故障診断手段 4 2に入力 され、 操舵トルク入力補正手段 5 0で補正された操舵トルク検出信号の 補正信号は、 モータ制御信号発生手段 4 3及びモータ制御信号監視手段 4 4に入力される。 また、 キースィッチ 4 5の出力は作動停止検出手段 4 6に入力され、 モータ駆動手段 4 7はモ一夕制御信号発生手段 4 3か らのモータ制御信号に従ってモー夕を駆動制御する。 故障診断手段 4 2 は、 操舵トルク検出手段 4 1、 モ一夕制御信号監視手段 4 4及びモータ 駆動手段 4 7の故障の有無を監視し、 故障診断手段 4 2の診断結果は作 動停止検出手段 4 6及びモータ制御信号発生手段 4 3に入力されている。 作動停止検出手段 4 6はキースィツチ 4 5によるオフ動作を検出すると 共に、 モー夕制御信号発生手段 4 3の作動停止命令を検出するようにな つている。
このような構成において、 その動作を第 6図のフローチャートを参照 して説明する。
先ず制御系全体をイニシャライズし (ステップ S 1 )、 故障診断手段 4 2は操舵トルク検出手段 4 1から操舵トルク検出信号を入力し (ステツ プ S 2 )、 故障診断を行う (ステップ S 3 )。 故障診断手段 4 2は、 次に モータ駆動手段 4 7から電流検出信号を入力し (ステップ S 4 )、 同様の 故障診断を行うと共に (ステップ S 5 )、 モー夕制御信号監視手段 4 4は 監視機能を実行し、 作動停止検出手段 4 6はキ一スィッチ 4 5からの検 出信号を入力し (ステップ S 6 )、 更にバッテリ電圧を入力し (ステップ S 7 )、 故障発生、 キースィツチ操作、 パッテリ電圧の動作範囲外への遷 移のいずれかによる作動停止状態が発生していないか否かを判断する (ステップ S 1 0 )。作動状態が停止でなければ、 モータ制御信号発生手 段 4 3は、 操舵トルク入力補正手段 5 0を経て操舵トルク検出手段 4 1 からの操舵トルク検出信号に従ってモータ制御信号の演算を行い (ステ ップ S 1 1 )、 モータ制御信号の出力を行うので (ステヅプ S 1 2 )、 こ れによりモ一夕はモータ駆動手段 4 7を介して駆動制御される。 この動 作と共に、 上記ステップ S 2にリターンする。
一方、 上記ステップ S 1 0において、 作動停止検出手段 4 6によって 作動停止状態と判断された場合、 操舵トルク入力補正手段 5 0において 操舵トルク検出手段 4 1からの操舵トルク検出信号を時間に従って次第 に減少させ(ステップ S 1 3 )、完全な作動停止条件を判定すると共に(ス テツプ S 1 4 )、 モータ制御 ίί号監視手段 4 4は操舵トルク補正信号が " 0 "か否かを判断する (ステップ S 1 5 )。操舵トルク補正信号が" 0 " でなければ上記ステップ S 1 1に進み、 " 0 "であればパワーステアリン グ装置 (E P S ) を停止して終了する (ステップ S 1 6 )。 なお、 上記ス テツプ S 1 4の判定は、 通常のより低い電圧低下による完全動作停止の 判定である。 上記特開 2 0 0 2— 1 2 7 9 2 6号公報によるアシスト トルク特性は 第 7図に示すようになり、 時点 t 1においてアシス卜低減処理を開始し た場合、 例えばその後の時点 t 2に電圧低下による急停止が生じると、 操舵に伴う操舵系の捩れの戻り力が、 操舵系を介してこれと連結された 操向ハンドルに作用し、 ドライバに負担をかけることになり、 操舵フィ ーリングが損なわれて違和感となる。
一方、 電動パワーステアリングは、 自動車用電源という限られた電源 環境で大量の電力を必要とするので、 電圧低下時に大量の電力を消費す ることは、 更なる電圧低下を招くので、 電圧低下が著しい場合にこのよ うな処理を行っていると、 電動パワーステアリングはもとより他の電装 品、 ひいては車両のエンジンをも停止させてしまうという問題があり、 電圧低下時には、 正常に動作し続けることができない領域があった。 こ のため、 従来は、 タイヤの捩れ防止のためのアシスト低減中でも、 電圧 低下で正常に動作し続けることができない領域に入ると、 アシストを停 止するような制御を行っていた。
ただし、 通常の使用状況では電圧は徐々に低下するので、 タイヤの捩 れ防止のアシス卜低減処理中にアシス卜が停止されても、 それまでの低 減処理で、 ドライバに違和感を与えるようなタイヤの捩れが残るような ことはなかった。
しかしながら、 最近の電動パワーステアリング適応車種は大型化して 来ており、 アシスト力増加のため発生する捩れ力が大きくなり、 防止処 理の必要量が増加していると共に、 アシストカ増加のため消費電力が増 加し、 防止処理中に電圧低下する可能性が増加している。 また、 電動パ ワーステアリングに求められる性能も高くなって来ている。 このような 状況において、 電動パワーステアリング装置では、 可能な限りタイヤの 捩れ防止処理を継続することが求められるようになった。 また、 電動パワーステアリングの制御装置は、、 第 2図に示されるよう に複数の機能ブロックから構成されており、 これらを実現するために複 数の回路ブロックを構成している。 例えば位相補償器 3 1をフィルタ、 ブロック 3 2〜 3 6をマイクロコンピュー夕で構成し、 モータ駆動回路 3 7、 モ一夕電流検出回路 3 8といった構成である。 このため、 構成さ れる回路ブロック毎に使用部品が異なり、 結果として各ブロック毎に動 作可能な電圧が異なっている。 そのため電圧低下に対しては、 通常のァ シスト制御に関係する機能プロックの中で最も高い電圧で機能しなくな る機能ブロックに合わせて、 アシスト制御を中止せざるを得ないのが実 情であった。 しかし、 通常のアシスト制御が不能な領域でも、 マイクロ コンピュータを初めとした幾つかの機能ブロックは比較的低い電圧まで 動作可能であるため、 それらを用いて、 ブレーキ制御は比較的低い電圧 まで実施可能である。
本発明は上述のような事情よりなされたものであり、本発明の目的は、 バッテリ電圧通常動作範囲外の低電圧側又は高電圧側においてモ一夕制 御を停止させた場合でも、 モータ制御信号監視手段の機能を停止させる ことなく、 制御装置の制御停止時の操舵フィーリングを向上させると共 に、 アシスト停止時にタイヤの捩れ力が急に開放されることによるドラ ィバへの負担を軽減し、 ドライバに違和感を感じさせないようにした高 性能な電動パワーステアリング装置の制御装置を提供することにある。 発明の開示
本発明は、 車両の操舵系に連結され、 電流指令値に基づいて操舵補助 トルクを発生するモータと、 前記操舵系の操舵トルクを検出する操舵ト ルク検出手段と、 前記操舵トルク検出手段で検出した操舵トルクを基に 前記モータを駆動するモー夕駆動手段とを備えた電動パワーステアリン グ装置の制御装置に関し、 本発明の上記目的は、 前記操舵補助トルクの 発生中に前記モータを停止させるときに、 前記モー夕の通常制御が可能 な領域では、 操舵トルク入力補正手段により操舵トルクを補正し、 前記 モータの通常制御が不可能な領域では前記モー夕をブレーキ制御するこ とで達成され、 更に前記ブレーキ制御は、 操舵トルク補正不足量を計算 し、 前記操舵トルク補正不足量に応じて前記モータに電磁ブレーキをか ける手段を設けることにより達成される。
本発明の上記目的は、 前記操舵トルク補正不足量が時間であることに より、 或いは前記電磁ブレーキが前記モ一夕の端子の短絡によって行わ れることにより、 より効果的に達成される。
本発明は、ステアリング系の操舵状態を検出する操舵状態検出手段と、 前記操舵状態検出手段からの操舵状態検出信号に基づきモータ制御信号 を決定して出力するモータ制御信号発生手段と、 前記モータ制御信号発 生手段からのモータ制御信号に基づいてモータを駆動するモータ駆動手 段と、 前記操舵状態検出手段及び前記モータ駆動手段からの信号に基づ いて前記モータ制御信号発生手段の監視を行うモー夕制御信号監視手段 と、 前記モー夕制御信号発生手段の作動停止命令を検出する作動停止検 出手段と、 前記操舵状態検出手段及び前記モー夕制御信号発生手段の間 に設けられた操舵状態信号補正手段とを具備した電動パワーステアリン グ装置の制御装置に関し、 本発明の上記目的は、 前記作動停止検出手段 の検出に基づいて操舵トルク ffi正不足量を計算する操舵トルク補正不足 量計算手段と、 前記モータ制御信号発生手段内に設けられた電磁ブレー キ手段とを備え、 前記操舵状態信号補正手段は前記作動停止検出手段か らの検出信号に基づいて、 前記モー夕制御信号発生手段の入力である操 舵状態検出信号を時間に従って補正すると共に、 前記操舵トルク補正不 足量計算手段は前記作動停止検出手段が完全作動停止を検出したときに 前記操舵トルク補正不足量を計算してブレーキ信号を出力し、 前記電磁 ブレーキ手段は前記ブレーキ信号に従って前記モー夕に電磁ブレーキを かけることにより達成される。
また、 本発明は、 ステアリング系の操舵状態を検出する操舵状態検出 手段と、 前記操舵状態検出手段からの操舵状態検出信号に基づきモー夕 制御信号を決定して出力するモータ制御信号発生手段^:、 前記モータ制 御信号発生手段からのモー夕制御信号に基づいてモータを駆動するモー 夕駆動手段と、 前記モータ制御信号発生手段の作動停止命令を検出する 作動停止検出手段と、 前記操舵状態検出手段及び前記モー夕制御信号発 生手段の間に設けられた複数の操舵状態信号補正手段と、 前記複数の操 舵状態信号補正手段を選択して利用するための補正方法選択手段とを具 備した電動パワーステアリング装置の制御装置に関し、 本発明の上記目 的は、 前記作動停止検出手段の検出に基づいて操舵トルク補正不足量を 計算する操舵トルク補正不足量計算手段と、 前記モータ制御信号発生手 段内に設けられた電磁ブレーキ手段とを備え、 前記補正方法選択手段で 選択された前記操舵状態信号補正手段は前記作動停止検出手段からの検 出信号に基づいて、 前記モータ制御信号発生手段の入力である操舵状態 検出信号を時間に従って補正すると共に、 前記操舵トルク補正不足量計 算手段は前記作動停止検出手段が完全作動停止を検出したときに前記操 舵トルク補正不足量を計算してブレーキ信号を出力し、 前記電磁ブレー キ手段は前記ブレーキ信号に従って前記モー夕に電磁ブレーキをかける ことにより達成される。
本発明の上記目的は、 前記操舵トルク補正不足量を時間で求めること により、 或いは前記電磁ブレーキが前記モータの端子の短絡によって行 われることにより、 或いは前記短絡の後に再起動条件を判定し、 前記再 起動条件を満たす場合に再起動する機能を設けることにより、 より効果 的に達成される。 図面の簡単な説明
第 1図は、 電動パワーステアリング装置の一般的な構造例を示す図で ある。
第 2図は、 コントロールユニッ トの構成例を示すブロック'図である。 第 3図は、 従来の制御装置の一例を示すブロック構成図である。
第 4図は、 従来の制御装置の他の例を示すブロック構成図である。 第 5図は、従来の制御装置の更に別の例を示すブロック構成図である。 第 6図は、 従来の制御装置の動作例を示すフローチャートである。 第 7図は、 従来の制御装置の特性例を示す図である。
第 8図は、 本発明の一実施例を示すブロック構成図である。
第 9図は、 本発明の動作例を示すフローチャートである。
第 1 0図は、 本発明の動作を説明するための図である。
第 1 1図は、 本発明の動作を説明するための図である。
第 1 2図は、 電磁ブレーキをかける場合の接点接続例を示す構成図で ある。
第 1 3図は、 本発明の動作を説明するための図である。
第 1 4図は、 本発明の効果を示す特性図である。
第 1 5図は、 本発明の他の実施例を示すブロック構成図である。 発明を実施するための最良の形態
本発明では、 電動パワーステアリング装置の操舵補助トルクを発生中 にモータを停止させるときに、 つまりアシスト停止時に操舵トルク補正 不足量を計算し、 計算された操舵トルク補正不足量に応じてモー夕に電 磁ブレーキをかけることにより、 可能な限りタイヤの捩れ力防止処理を 継続するようにしている。 電磁ブレーキはモ一夕端子を短絡させること により発電機と作動させ、 発電機による回生制動によってブレーキをか けるようにしているので、 モ一夕に電力を供給することなくタイヤの捩 れカ防止を図ることができる。 また、 モー夕制御信号発生手段の機能を 生かしたままで、 モータ制御信号発生手段自身による演算結果として、 モータ電流指令に相当する信号を時間に従って減少又は増加させ、 作動 停止状態又は制御開始状態を検出後に操舵状態検出信号を用いてモータ 制御信号の演算を行っているので、 補正中も監視が可能である。 トルク 系を補正することで、 トルク系以外の制御ブロックを生かしながら補正 できるので、 安定した補正が可能である。
以下、 本発明の実施の形態を図面に基づいて説明する。
第 8図は本発明の実施例を第 5図に対応させて示しており、 作動停止 検出手段 4 6が作動停止を検出したときに操舵トルクの補正不足量を計 算する操舵トルク補正不足量計算手段 6 0を設けると共に、 操舵トルク 補正不足量計算手段 6 0で計算された操舵トルク補正不足量に従って、 モー夕に電磁ブレーキをかける電磁ブレーキ手段 4 3 Aをモ一夕制御信 号発生手段 4 3内に設けている。
操舵状態検出手段を構成する操舵トルク検出手段 4 1からの操舵トル ク検出信号は、 操舵トルク入力補正手段 5 0及び故障診断手段 4 2に入 力され、 操舵トルク入力補正手段 5 0で補正された操舵トルク検出信号 の補正信号は、 モータ制御信号発生手段 4 3及びモータ制御信号監視手 段 4 4に入力される。 また、 キースィッチ 4 5の出力は作動停止検出手 段 4 6に入力され、 モータ駆動手段 4 7はモータ制御信号発生手段 4 3 からのモータ制御信号に従ってモ一夕を駆動制御する。 故障診断手段 4 2は、 操舵トルク検出手段 4 1、 モー夕制御信号監視手段 4 4及びモー 夕駆動手段 4 7の故障の有無を監視し、 故障診断手段 4 2の診断結果は 作動停止検出手段 4 6及びモータ制御信号発生手段 4 3に入力されてい る。 作動停止検出手段 4 6はキースィッチ 4 5によるオフ動作の検出、 又は故障診断手段 4 2による故障発生の検出のいずれかにより、 モータ 制御信号発生手段 4 3の作動停止命令を検出するようになっている。 な お、 作動停止検出手段 4 6にはバッテリ電圧が入力されている。
このような構成において、 その動作を第 9図のフロ一チヤ一卜を参照 して説明する。
先ず制御系全体をイニシャライズし (ステップ S 2 0 )、故障診断手段 4 2は操舵トルク検出手段 4 1から操舵トルク検出信号を入力し (ステ ップ S 2 1 )、故障診断を行う (ステップ S 2 2 )。故障診断手段 4 2は、 次にモータ駆動手段 4 7から電流検出信号を入力し (ステップ S 2 3 )、 同様の故障診断を行うと共に (ステップ S 2 4 )、 モー夕制御信号監視手 段 4 4は監視機能を実行し、 作動停止検出手段 4 6はキースィッチ 3 5 からの検出信号を入力し (ステップ S 2 5 )、 更にバッテリ電圧を入力し (ステップ S 2 6 )、 故障発生、 キ一スィツチ操作、 パッテリ電圧の動作 範囲外への遷移のいずれかによる作動停止状態が発生していないか否か を判断する (ステップ S 3 0 )。 作動状態が停止でなければ、 モータ制御 信号発生手段 4 3は、 操舵トルク入力補正手段 5 0を経て操舵トルク検 出手段 4 1からの操舵トルク検出信号に従ってモータ制御信号の演算を 行い (ステップ S 3 1 )、 モー夕制御信号の出力を行うので (ステップ S 3 2 )、これによりモータはモー夕駆動手段 4 7を介して駆動制御される。 この動作と共に、 上記ステツプ S 2 1にリターンする。
—方、 上記ステップ S 3 0において、 作動停止検出手段 4 6によって 作動停止状態と判断された場合、 操舵トルク入力補正手段 5 0において 操舵トルク検出手段 4 1からの操舵トルク検出信号を時間に従って次第 に減少させ(ステップ S 3 3 )、完全な作動停止条件を判定すると共に(ス テツプ S 3 4 )、 モータ制御信号監視手段 4 4は操舵トルク補正信号が " 0 "か否かを判断する (ステップ S 3 5 )。操舵トルク補正信号が" 0 " でなければ上記ステップ S 3 1に進み、 " 0 "であれば電動パワーステア リング装置 (E P S ) を停止して終了する (ステップ S 3 6 )。 なお、 上 記ステップ S 3 4の判定は、 通常の場合より低い電圧低下による完全動 作停止の判定である。
上記ステップ S 3 4で、 作動停止検出手段 4 6によって完全作動停止 条件が判定されると、 操舵トルク補正不足量計算手段 6 0は第 1 0図に 示す手法に従って必要な電磁ブレーキ量を計算する (ステップ S 4 0 )。 即ち、 第 1 0図において、 時点 t 1に作動停止検出手段 4 6によって通 常の作動停止が検出されると、 その時点 t lにおいて、 時点 t 3までの 全操舵トルク補正量が予め定められている第 1 1図に示すような特性デ —夕から算出される。 次いで、 時点 t 2に作動停止検出手段 4 6によつ て完全作動停止が検出されると、 全操舵トルク補正量と、 時点 t 1から 時点 t 2までの操舵トルク補正実行量とから必要とする電磁ブレーキ量 を計算し (ステップ S 4 0 )、 電磁ブレーキ時間を決定する (ステップ S 4 1 )。操舵トルク補正不足量計算手段 6 0は決定された電磁ブレーキ時 間に従ってブレーキ信号 B rを出力する。
そして、 電磁ブレーキ手段 4 3 Aは操舵トルク補正不足量計算手段 6 0からブレーキ信号 B rが入力されると、 第 1 2図に示すように駆動回 路内のスイッチング素子 (例えば F E T ) の例えば下段を全てオンする と共に、 上段のスイッチング素子をオフして電磁ブレーキ制御する (ス テツプ S 3 4 )。 このように、 モー夕端子をショート (短絡) することに よりモー夕は発電機として動作し、 回生ブレーキとして作用するので、 その分だけアシスト量が増加する。 この場合、 ブレーキ残量とブレーキ 力の関係は、 例えば第 1 3図に示すようになつている。 なお、 電磁ブレーキ制御は、 第 1 2図とは逆に上段のスイッチング素 子をオンして、 下段のスイッチング素子をオフしても良い。 また、 第 1 2図では 3相モ一夕について示しているが、 2相モー夕における Hプリ ッジ回路にも同様に適用できる。
その後、 ブレーキ残量が所定値より小さくなつたか否か等によってブ レ一キ制御の終了を判定し (ステツプ S 4 3 )、 ブレーキ,制御の終了でな い場合には再起動条件 (ブレーキ制御中に通常制御が開始できる電圧に 復帰したか否か、 或いはイダニシヨンキーが再投入されたか否か等) が 成立するか否かを判定し (ステップ S 4 4 )、再起動条件が成立する場合 には上記ステップ S 2 1にリターンする。 また、 上記ステップ S 4 3で ブレーキ制御の終了となった場合、 上記ステップ S 4 4で再起動条件が 成立しない場合には、電動パワーステリング装置を停止して終了する(ス テツプ S 3 6 )。
以上のような電磁ブレーキ制御を実行することにより、 第 1 4図に示 すようなアシスト特性を得ることができる。 この特性図からも分かるよ うに、 アシスト低減開始 (時点 t 1 0 ) 後、 時点 t 1 1にモ一タ端子を 短絡させて電磁ブレーキをかけるのでアシスト量が増加し、 電圧低下に 基づく急停止もなく、 ドライバの負担を軽減できる。 即ち、 低電圧時に 徐々にアシストを低減すると共に、 完全作動停止時にブレーキ必要量を 計算し、 モータ端子間を短絡させて電磁ブレーキ状態を形成しているの で、 モー夕に電力を供給することなくタイヤの捩れ力の防止動作を継続 させることができる。
第 1 5図は本発明の他の実施例を第 8図に対応させて示しており、 本 例は操舵トルク入力補正手段 5 0を特性の異なる 2つの操舵トルク入力 補正手段 5 1及び 5 2にすると共に、 その切替えを行う補正方法選択手 段 4 8を設けている。 本例においても、 作動停止検出手段 4 6に従って 操舵トルク補正不足量を計算する操舵トルク補正不足量計算手段 6 1を 設けると共に、 ブレーキ信号 B rによって動作する電磁ブレーキ手段 4 3 Aをモー夕制御信号発生手段 4 3内に設けている。
本例では、 特性の異なる操舵トルク入力補正手段 5 1及び 5 2が設け られており、 作動停止検出手段 4 6からの検出信号でシステムに最適な 補正手段を選択するための補正方法選択手段 4 8が設け,られている。 補 正方法選択手段 4 8によって操舵トルク入力補正手段 5 1及び 5 2を切 替えることによって、 モータ制御信号発生手段 4 3に入力される操舵ト ルク検出信号をシステムの状態に応じて最適に減少させることができる。 操舵トルク入力補正手段 5 1及び 5 2を切替える条件として、 イダニシ ョンキーのオフによる通常のシステムの停止時、 操舵トルク入力系の故 障によるフェールセーフとしてのシステムの停止時等がある。
補正方法選択手段 4 8が、 イダニシヨンキ一のオフによる補正と判断 した場合、 モータ制御信号発生手段 4 3の入力として通常のトルク入力 を用い、 補正演算として一定ゲインでの減衰を行い、 操舵トルク入力補 正手段 5 1における補正時間を十分に長い時間とする。 トルク系の故障 検出による補正と判断した場合は、 モータ制御信号発生手段 4 3の入力 としてフェール前のトルク入力値を用い、 操舵トルク入力補正手段 5 2 における補正演算として最大入力値の減衰を行い、 補正時間は短い時間 で終了させるようになつている。
このような構成において、 の動作は第 9図のフローチャートと同様 であり、 本例においても第 1 4図に示すような電磁ブレーキ動作を実現 できる。 つまり、 本例によっても、 低電圧時に徐々にアシストを低減さ せ、 更に完全作動停止時にブレーキ必要量を計算し、 モータ端子間を短 絡させて電磁ブレーキ状態を形成しているので、 モータに電力を供給す ることなくタイヤの捩れ力の防止動作を継続させることができる。 操舵補助トルクを発生している状態でモータを停止させた場合、 操舵 に伴う操舵系の捩れの戻り力が操舵系を介してこれと連結された操佝ハ ンドルに作用するが、 本発明の電動パワーステアリング装置の制御装置 によれば、 モー夕を停止させるときに、 モータの端子間をショート (短 絡) することにより、 捩れの戻り力がモー夕に作用しモータが回生制動 状態となり、 戻り力を抑制することができ、 操向ハンドルに作用する戻 り力を抑制することができるという効果を奏する。
また、 本発明では徐々にアシストを低減すると共に、 低電圧時にモー 夕端子間を短絡させ、 電磁ブレーキ状態を形成しているので、 モー夕に 電力を供給することなくタイヤの捩れ力を防止することができる。
更に本発明によれば、 モータ制御信号発生手段の機能を生かしたまま で、 モータ制御信号発生手段自身による演算結果として、 モータ電流指 令に相当する信号を時間に従って減少又は増加させ、 作動停止状態又は 制御開始状態を検出後に操舵状態検出信号を用いてモータ制御信号の演 算を行ってトルク系を補正することで、 トルク系以外の制御ブロックを 生かしながら補正できるので、 安定した補正が可能である。
なお、 上述の説明では、 モータ制御停止の電圧条件として、 パッテリ 電圧通常動作範囲外のうち特に低電圧側制御の場合について説明したが、 本発明はそれに限られるものではなく、 予め規定されているバッテリ電 圧通常動作範囲外の高電圧側のモ一夕停止制御においても適用可能であ り、 低電圧側制御と同様の効桌があることはいうまでもない。

Claims

請 求 の 範 囲
1 . 車両の操舵系に連結され、 電流指令値に基づいて操舵補助トルクを 発生するモー夕と、 前記操舵系の操舵トルクを検出する操舵トルク検出 手段.と、 前記操舵トルク検出手段で検出した操舵トルクを基に前記モー 夕を駆動するモータ駆動手段とを備えた電動パワーステアリング装置の 制御装置において、 前記操舵補助トルクの発生中に前記モー夕を停止さ せるときに操舵トルク補正不足量を計算し、 前記操舵トルク補正不足量 に応じて前記モータに電舉ブレーキをかける手段を具備したことを特徴 とする電動パヮ一ステアリング装置の制御装置。
2 . 前記操舵トルク補正不足量が時間である請求の範囲第 1項に記載の 電動パワーステアリング装置の制御装置。
3 . 前記電磁ブレーキが、 前記モータの端子の短絡によって行われる請 求の範囲第 1項に記載の電動パワーステアリング装置の制御装置。
4 . ステアリング系の操舵状態を検出する操舵状態検出手段と、 前記操 舵状態検出手段からの操舵状態検出信号に基づきモータ制御信号を決定 して出力するモータ制御信号発生手段と、 前記モータ制御信号発生手段 からのモー夕制御信号に基づいてモータを駆動するモ一夕駆動手段と、 前記操舵状態検出手段及び前記モータ駆動手段からの信号に基づいて前 記モー夕制御信号発生手段の監視を行うモー夕制御信号監視手段と、 前 記モータ制御信号発生手段の作動停止命令を検出する作動停止検出手段 と、 前記操舵状態検出手段及び前記モータ制御信号発生手段の間に設け られた操舵状態信号補正手段とを具備した電動パワーステアリング装置 の制御装置において、 前記作動停止検出手段の検出に基づいて操舵トル ク補正不足量を計算する操舵トルク補正不足量計算手段と、 前記モータ 制御信号発生手段内に設けられた電磁ブレーキ手段とを備え、 前記操舵 状態信号捕正手段は前記作動停止検出手段からの検出信号に基づいて、 前記モータ.制御信号発生手段の入力である操舵状態検出信号を時間に従 つて補正すると共に、 前記操舵トルク補正不足量計算手段は前記作動停 止検出手段が完全作動停止を検出したときに前記操舵トルク補正不足量 を計算してブレーキ信号を出力し、 前記電磁ブレ キ手段は前記ブレー キ信号に従って前記モー夕に電磁ブレーキをかけるようになっているこ とを特徵とする電動パワーステアリング装置の制御装置。
5 . 前記操舵トルク捕正不足量を時間で求めるようになっている請求の 範囲第 4項に記載の電動パワーステアリング装置の制御装置。
6 . 前記電磁ブレーキが、 前記モータの端子の短絡によって行われる請 求の範囲第 4項に記載の電動パワーステアリング装置の制御装置。
7 . 前記短絡の後に再起動条件を判定し、 前記再起動条件を満たす場合 に再起動する機能を具備している請求の範囲第 4項に記載の電動パワー ステアリング装置の制御装置。
8 . ステアリング系の操舵状態を検出する操舵状態検出手段と、 前記操 舵状態検出手段からの操舵状態検出信号に基づきモータ制御信号を決定 して出力するモータ制御信号発生手段と、 前記モー夕制御信号発生手段 からのモー夕制御信号に基づいてモー夕を駆動するモー夕駆動手段と、 前記モータ制御信号発生手段の作動停止命令を検出する作動停止検出手 段と、 前記操舵状態検出手段及び前記モータ制御信号発生手段の間に設 けられた複数の操舵状態信号補正手段と、 前記複数の操舵状態信号補正 手段を選択して利用するための補正方法選択手段とを具備した電動パヮ —ステアリング装置の制御装置において、 前記作動停止検出手段の検出 に基.づいて操舵トルク補正不足量を計算する操舵トルク補正不足量計算 手段と、 前記モータ制御信号発生手段内に設けられた電磁ブレーキ手段 とを備え、 前記補正方法選択手段 選択された前記操舵状態信号補正手 段は前記作動停止検出手段からの検出信号に基づいて、 前記モータ制御 信号発生手段の入力である操舵状態検出信号を時間に従って補正すると 共に、 前記操舵トルク補正不足量計算手段は前記作動停止検出手段が完 全作動停止を検出したときに前記操舵トルク補正不足量を計算してブレ ーキ信号を出力し、 前記電磁ブレーキ手段は前記ブレーキ信号に従って 前記モ一夕に電磁ブレーキをかけるようになっていることを特徵とする 電動パワーステアリング装置の制御装置。
9 . 前記操舵トルク補正不足量を時間で求めるようになつている請求の 範囲第 8項に記載の電動パワーステアリング装置の制御装置。
1 0 . 前記電磁ブレーキが、 前記モ一夕の端子の短絡によって行われる 請求の範囲第 8項に記載の電動パワーステアリング装置の制御装置。
1 1 . 前記短絡の後に再起動条件を判定し、 前記再起動条件を満たす場 合に再起動する機能を具備している請求の範囲第 8項に記載の電動パヮ —ステアリング装置の制御装置。
PCT/JP2006/310507 2005-05-20 2006-05-19 電動パワーステアリング装置の制御装置 WO2006123839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06756607A EP1886897A4 (en) 2005-05-20 2006-05-19 CONTROL FOR ELECTRIC POWER STEERING DEVICE
JP2007516366A JP5082846B2 (ja) 2005-05-20 2006-05-19 電動パワーステアリング装置の制御装置
US11/915,073 US20090071745A1 (en) 2005-05-20 2006-05-19 Control unit for electric power steering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-147622 2005-05-20
JP2005147622 2005-05-20

Publications (1)

Publication Number Publication Date
WO2006123839A1 true WO2006123839A1 (ja) 2006-11-23

Family

ID=37431396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310507 WO2006123839A1 (ja) 2005-05-20 2006-05-19 電動パワーステアリング装置の制御装置

Country Status (4)

Country Link
US (1) US20090071745A1 (ja)
EP (1) EP1886897A4 (ja)
JP (1) JP5082846B2 (ja)
WO (1) WO2006123839A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279953A (ja) * 2007-05-11 2008-11-20 Nsk Ltd 電動パワーステアリング装置
JPWO2007108358A1 (ja) * 2006-03-17 2009-08-06 日本精工株式会社 電動パワーステアリング装置
KR101323336B1 (ko) 2009-02-10 2013-10-30 스카니아 씨브이 악티에볼라그 차량의 조향 장치에서의 조향감을 변경시키는 방법
JP2017506196A (ja) * 2014-02-25 2017-03-02 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH ステアリングシステムを作動させる方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1864886A2 (en) * 2006-06-07 2007-12-12 NSK Ltd. Electric power steering apparatus
WO2011040494A1 (ja) * 2009-09-29 2011-04-07 本田技研工業株式会社 アイドルストップ制御装置
CN102224059B (zh) * 2010-02-17 2013-03-20 日本精工株式会社 电动动力转向装置
EP2617970B1 (en) * 2010-09-13 2020-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2012037951A2 (en) * 2010-09-23 2012-03-29 Thyssenkrupp Presta Ag Driver assistance control in an electric steering system
KR101199058B1 (ko) * 2010-12-06 2012-11-07 기아자동차주식회사 Isg시스템 및 그의 제어 방법
DE102013220519B4 (de) * 2012-10-29 2017-12-21 Ford Global Technologies, Llc Erkennen von erhöhter Reibung in einer Servolenkung mit Kugelgewindetrieb
CN103786783B (zh) * 2012-10-29 2018-10-26 福特全球技术公司 具有滚珠丝杠的动力转向系统
EP2977295B1 (en) * 2013-03-18 2018-08-08 NSK Ltd. Electric power steering device
JP6156077B2 (ja) * 2013-11-08 2017-07-05 トヨタ自動車株式会社 車両制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318381U (ja) * 1986-07-22 1988-02-06
JPS6452870U (ja) * 1987-09-29 1989-03-31
JPH0238276U (ja) * 1988-09-03 1990-03-14
JPH0794227A (ja) 1993-09-24 1995-04-07 Yuhshin Co Ltd コネクタの端子固定装置
JPH0794226A (ja) 1993-07-22 1995-04-07 Whitaker Corp:The 電気端子
JP2002127926A (ja) 2000-10-20 2002-05-09 Nsk Ltd 電動パワーステアリング装置
JP2002127927A (ja) * 2000-10-20 2002-05-09 Nsk Ltd 電動パワーステアリング装置
JP2002249062A (ja) * 2001-02-26 2002-09-03 Toyoda Mach Works Ltd 電動パワーステアリング制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824493B2 (ja) * 1989-12-20 1998-11-11 光洋精工株式会社 動力舵取装置
JP3397065B2 (ja) * 1996-12-26 2003-04-14 日産自動車株式会社 電動操舵装置
JP3452299B2 (ja) * 1997-09-03 2003-09-29 本田技研工業株式会社 電動パワーステアリング装置
US6470944B1 (en) * 1999-10-20 2002-10-29 Albany International Corp. Woven endless and needlepunched corrugator single facer belt
GB2368053A (en) * 2000-10-20 2002-04-24 Nsk Ltd Electric power steering control
JP2002249026A (ja) * 2001-02-22 2002-09-03 Nissan Motor Co Ltd 負荷駆動装置
JP2003170845A (ja) * 2001-12-07 2003-06-17 Nsk Ltd 電動パワーステアリング装置の制御装置
JP3933536B2 (ja) * 2002-07-03 2007-06-20 株式会社ジェイテクト 電動パワーステアリング装置
JP3763472B2 (ja) * 2002-09-30 2006-04-05 三菱電機株式会社 電動パワーステアリング制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318381U (ja) * 1986-07-22 1988-02-06
JPS6452870U (ja) * 1987-09-29 1989-03-31
JPH0238276U (ja) * 1988-09-03 1990-03-14
JPH0794226A (ja) 1993-07-22 1995-04-07 Whitaker Corp:The 電気端子
JPH0794227A (ja) 1993-09-24 1995-04-07 Yuhshin Co Ltd コネクタの端子固定装置
JP2002127926A (ja) 2000-10-20 2002-05-09 Nsk Ltd 電動パワーステアリング装置
JP2002127927A (ja) * 2000-10-20 2002-05-09 Nsk Ltd 電動パワーステアリング装置
JP2002249062A (ja) * 2001-02-26 2002-09-03 Toyoda Mach Works Ltd 電動パワーステアリング制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1886897A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007108358A1 (ja) * 2006-03-17 2009-08-06 日本精工株式会社 電動パワーステアリング装置
JP4715919B2 (ja) * 2006-03-17 2011-07-06 日本精工株式会社 電動パワーステアリング装置
JP2008279953A (ja) * 2007-05-11 2008-11-20 Nsk Ltd 電動パワーステアリング装置
KR101323336B1 (ko) 2009-02-10 2013-10-30 스카니아 씨브이 악티에볼라그 차량의 조향 장치에서의 조향감을 변경시키는 방법
JP2017506196A (ja) * 2014-02-25 2017-03-02 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH ステアリングシステムを作動させる方法

Also Published As

Publication number Publication date
US20090071745A1 (en) 2009-03-19
JP5082846B2 (ja) 2012-11-28
EP1886897A4 (en) 2010-03-17
EP1886897A1 (en) 2008-02-13
JPWO2006123839A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2006123839A1 (ja) 電動パワーステアリング装置の制御装置
JP3763472B2 (ja) 電動パワーステアリング制御装置
WO2011102028A1 (ja) 電動パワーステアリング装置
US20030173140A1 (en) Electric power steering apparatus
JP2001030937A (ja) 電動パワーステアリング装置
US9399485B2 (en) Electric power steering system
JP5098454B2 (ja) 電動パワーステアリング装置
JP4923785B2 (ja) 電動パワーステアリング装置の制御方法及び装置
JP3433713B2 (ja) 車両の電動パワーステアリング装置
JP2004114755A (ja) 電動パワーステアリング装置
JP4048082B2 (ja) 操舵装置のモータ駆動方法
JP3905997B2 (ja) 電動パワーステアリング装置
JP2007062499A (ja) 電動パワーステアリング装置
JP2007283916A (ja) 電動パワーステアリング制御装置、および方法
JP5181540B2 (ja) 電動パワーステアリング装置
JP2003312507A (ja) 電動パワーステアリング装置
JP2005028900A (ja) 電動ステアリング装置におけるバッテリ状態判定装置
JP4333399B2 (ja) 車両操舵装置
JP2007062526A (ja) 電動パワーステアリング装置
JP2009166674A (ja) 電動パワーステアリング装置
JP4564159B2 (ja) 電動パワーステアリング装置
EP4219270A1 (en) Steering control device and standard value adjustment method
JP2009001044A (ja) 電動パワーステアリング装置
JP2619665B2 (ja) 電動モータ式パワーステアリング装置
JP2009248922A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516366

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11915073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756607

Country of ref document: EP