WO2006121111A1 - Method for producing polyether polyol - Google Patents

Method for producing polyether polyol Download PDF

Info

Publication number
WO2006121111A1
WO2006121111A1 PCT/JP2006/309469 JP2006309469W WO2006121111A1 WO 2006121111 A1 WO2006121111 A1 WO 2006121111A1 JP 2006309469 W JP2006309469 W JP 2006309469W WO 2006121111 A1 WO2006121111 A1 WO 2006121111A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
polyether polyol
acid
polyol
Prior art date
Application number
PCT/JP2006/309469
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Taniguchi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2006121111A1 publication Critical patent/WO2006121111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives

Definitions

  • the present invention relates to a method for producing a polyether polyol by a dehydration condensation reaction of a polyol.
  • Polyether polyol is a polymer having a wide range of uses, including raw materials for soft segments such as elastic fibers and plastic elastomers.
  • Typical examples of polyether polyols include polyethylene glycol, poly (1,2-propanediol), and polytetramethylene ether glycol.
  • poly (1,2-propane diol) is widely used because it is liquid at room temperature, easy to handle and inexpensive.
  • poly (1,2-propanediol) has a primary hydroxyl group and a secondary hydroxyl group, the difference in physical properties of these hydroxyl groups becomes a problem depending on the application.
  • polytrimethylene ether glycol which is a dehydration condensate of 1,3 propanediol, has recently attracted attention because it has only primary hydroxyl groups and a low melting point.
  • polyether polyols can be produced by a dehydration condensation reaction of corresponding polyols.
  • ethylene glycol, 1,4 butanediol, 1,5 pentanediol and the like produce 5- or 6-membered cyclic ethers, that is, 1,4-dioxane, tetrahydrofuran and tetrahydropyran, respectively, upon dehydration condensation.
  • a polyether polyol corresponding to a polymer of ethylene glycol and 1,4 butanediol is produced by ring-opening polymerization of a corresponding cyclic ether, that is, ethylene oxide and tetrahydrofuran.
  • a polyether polyol corresponding to a polymer of 1, pentanediol is difficult to obtain because tetrahydropyran, which is a cyclic ether, is thermodynamically advantageous.
  • the production of a polyether polyol by a dehydration condensation reaction of a polyol is generally performed using an acid catalyst.
  • Catalysts include inorganic acids such as iodine, hydrogen iodide and sulfuric acid, organic acids such as paratoluenesulfonic acid, and perfluoroalkylsulfonic acid groups.
  • Combinations of coconut resin, sulfuric acid, activated clay, zeolite, organic sulfonic acid, heteropoly acid, etc., in the side chain with salt and cuprous cup have been proposed.
  • a reaction method first, a dehydration condensation reaction is performed under a nitrogen atmosphere! Next, a dehydration condensation reaction is performed under reduced pressure in the next step.
  • Patent Document 1 US Patent Application Publication No. 2002Z0007043
  • Patent Document 2 Pamphlet of International Publication No. 2004Z048440
  • the present invention intends to provide a method for producing a polyether polyol having a high degree of polymerization in a short time by dehydrating condensation of a polyether polyol under mild conditions.
  • a polyether polyol when a polyether polyol is produced by a dehydration condensation reaction of a polyol, the reaction is performed in the presence of an acid catalyst and at least one metal compound selected from the group consisting of Group 4 and Group 13.
  • an acid catalyst and at least one metal compound selected from the group consisting of Group 4 and Group 13.
  • the first gist of the present invention is selected from the group consisting of groups 4 and 13 when producing a polyether polyol by a dehydration condensation reaction of a polyol containing 50 mol% or more of 1,3-propanediol.
  • the present invention resides in a method for producing a polyether polyol, wherein the reaction is carried out in the presence of at least one metal compound and an acid catalyst.
  • the second gist of the present invention is that the polyether polyol according to claim 1, wherein the abundance of the metal compound is 0.01 mol% or more in terms of metal atom with respect to the polyol used as a raw material. Lies in the manufacturing method of the tool.
  • the third gist of the present invention resides in the above method for producing a polyether polyol, wherein the reaction is carried out at 120 ° C. or higher and 250 ° C. or lower.
  • the present invention is based on the long periodic table (based on the group 18 system recommended by IUPAC in 1989, the same applies below) when producing a polyether polyol by dehydration condensation polymerization reaction of polyol.
  • Powerful group force It is characterized by using at least one kind of metal compound and acid as a catalyst.
  • Examples of the Group 4 and Group 13 metals constituting the metal compound in the present invention include titanium, zirconium, hafnium, aluminum, gallium, indium, and thallium.
  • titanium, zirconium, aluminum, and gallium are dehydrating polyols.
  • Aluminum is particularly preferred because it is readily available and inexpensive because it promotes the condensation reaction.
  • the metal compound selected from the group consisting of Group 4 and Group 13 include inorganic acid salts and organic acid salts, and specific examples include sulfates, hydrogen sulfates, halides, phosphorus compounds. Salts of mineral acids such as acid salts, hydrogen phosphates and borates, organic sulfonates such as trifluoromethanesulfonate, paratoluenesulfonate, methanesulfonate, formate, acetate, etc. Examples thereof include carboxylates. Further, in the reaction system, when a metal compound selected from Group 4 and Z or Group 13 and an acid catalyst described later coexist, the acid forming these metal compounds and the acid of the acid catalyst are the same. It is preferable.
  • an acid catalyst and a metal compound selected from the group consisting of Group 4 and Group 13 are used.
  • the desired acid catalyst can be obtained by reacting a metal carbonate, hydrogen carbonate, hydroxide, metal simple substance, etc. selected from the group consisting of Group 4 and Group 13 with an excess acid catalyst.
  • a metal compound of a metal and an acid selected from the group consisting of Group 13 and Group 13. For example, it is possible to react a Group 4 and Z or 13 metal carbonate with sulfuric acid in a polyol which is a reaction substrate to obtain a solution containing sulfuric acid and a Group 4 and Z or 13 metal salt of sulfuric acid.
  • These catalysts can be used alone or as a mixed catalyst of two or more.
  • the amount of the metal compound selected from the group consisting of Group 4 and Group 13 used for the production is usually 0.01 mol%, more preferably 0.02 mol%, in terms of metal atom, relative to the raw material polyol. Particularly preferred is 0.05 mol%.
  • the upper limit is usually 1. 0 molar 0/0, so that preferably 0.9 mol 0/0, more preferably 0.7 mol 0/0, and particularly preferably a 0.5 molar% It is good to use for. If the amount of the metal compound used is too large, the reaction rate will not increase, and it will tend to be difficult to separate the metal catalyst in the post-treatment process, and if it is too small, the reaction rate will not increase.
  • an ether bond is generated by a conventional dehydration condensation reaction of an alcoholic hydroxyl group, and any one can be used.
  • the acid may be either dissolved in the reaction system and acting as a homogeneous catalyst, or not dissolved but acting as a heterogeneous catalyst.
  • acids include heteropoly acids such as sulfuric acid, phosphoric acid, fluorosulfuric acid, and phosphotungstic acid, methanesulfonic acid, trifluoromethanesulfonic acid, octanessulfonic acid, 1, 1, 2, 2 -Alkyl chains such as tetrafluoroethane sulfonic acid may be fluorinated, but alkyl sulfonic acid, benzene sulfonic acid or ring having an alkyl side chain may be benzene sulfonic acid such as para Examples of the latter, such as aryl sulfonic acid such as toluene sulfonic acid, include activated clay, zeolite, metal composite oxides such as silica alumina and silica zircourea, and a resin having a perfluoroalkyl sulfonic acid group in the side chain. Etc. Of these, sulfuric acid, phosphoric acid, benzene
  • the acid catalyst is usually used at a lower limit of 0.001 times by weight and an upper limit of 0.3 times the weight of the starting polyol.
  • the lower limit is 0.002 times by weight and the upper limit is 0.2 times by weight.
  • the lower limit is usually 0.005 times by weight and the upper limit is usually 0.2 times by weight, preferably the lower limit is usually 0.001 times by weight and the upper limit is usually 0.1. Weight times.
  • the lower limit of the amount of the acid catalyst used for the metal compound selected from the group consisting of Group 4 and Group 13 is usually 0.01 equivalents, more preferably 0.02 equivalents, and particularly preferably 0.05. Equivalent.
  • the upper limit is usually 1.0 equivalent, preferably 0.9 equivalent, more preferably 0.7 equivalent, and particularly preferably 0.5 equivalent. If this ratio is too large, the reaction rate will not increase, and it will tend to be difficult to remove the metal catalyst in the post-treatment process. If it is too small, the reaction rate will not increase.
  • the raw material polyol is continuously supplied to the reactor, and the raw material polyol is continuously supplied thereto.
  • the lower limit is usually 0.1 times by weight and the upper limit is usually 10000 times by weight, and preferably the lower limit is 1 times by weight and the upper limit is usually 0.1 times the weight of the acid staying in the reactor.
  • the raw material polyol is supplied in 1 hour at 1000 times the weight.
  • the equivalent ratio of the metal compound selected from the group consisting of Group 4 or Group 13 to the acid in the reactor may decrease over time, so if necessary, together with the raw material polyol.
  • Supplying a compound of a metal that also has a group force of group 4 or group 13 power, and maintaining an equivalent ratio of the compound of at least one metal that also has a group force of group 4 and group 13 power to the acid to the desired value Like that.
  • Polyols used as raw materials for polyether polyols are 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,6 monohexanediol, 1, 7 — It is preferable to use a diol having two primary hydroxyl groups, such as heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol.
  • the lower limit of 1,3 propanediol needs to be 50 mol% with respect to the total polyol of the raw material. More preferably, the lower limit is 60 mol%, particularly preferably 70 mol%, and the upper limit is usually 100 mol%. If this content is too small, the production of the high molecular weight product tends to take time.
  • diols can be used in combination with di- to 9-mer oligomers obtained by the dehydration condensation reaction of the main diols.
  • triol or higher polyols such as trimethylolethane, trimethylolpropane, pentaerythritol, or oligomers of these polyols can be used in combination.
  • 1,3 propanediol should account for more than 50 mol%.
  • diols with 3 to 10 carbon atoms with two primary hydroxyl groups except for those that produce 5- or 6-membered cyclic ethers by dehydration condensation reactions such as 1,4-butanediol and 1,5-pentanediol Or a mixture of this and other polyols in which the ratio of the other polyols is less than 50 mol% is subjected to the reaction.
  • 1,3 propanediol, 2-methyl-1,3 propandiol, 2,2 dimethyl-1,3 diols selected from the group consisting of propanediol, or 1,3 propanediol and other polyols.
  • a mixture having a ratio of other polyols of less than 50 mol% is used for the reaction.
  • the production of the polyether polyol by the dehydration condensation reaction of the polyol according to the method of the present invention can be carried out either batchwise or continuously.
  • a raw material polyol and catalyst acid and a metal compound selected from the group consisting of Group 4 and Group 13 may be charged into the reactor and reacted with stirring.
  • a polyol and a catalyst as raw materials and a one-stop force of a reaction apparatus in which a large number of stirring tanks are connected in series or a flow-type reaction apparatus are continuously supplied, and the inside of the apparatus is in a piston flow or a mode close to this. It is possible to use a method in which the reaction solution is continuously extracted by moving the other end force.
  • the lower limit of the temperature of the dehydration condensation reaction is usually 120 ° C and the upper limit is usually 250 ° C, preferably the lower limit is 140 ° C and the upper limit is 200 ° C, more preferably the lower limit is 150 ° C. ° C, upper limit is 190 ° C. If this temperature is too high, the coloring tends to be poor, and if it is too low, the reaction rate tends not to increase.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • the reaction pressure is arbitrary as long as the reaction system is maintained in a liquid phase, and it is usually carried out under normal pressure. If desired, the reaction can be carried out under reduced pressure or an inert gas can be circulated through the reaction system to promote the elimination of water produced by the reaction from the reaction system.
  • the reaction time varies depending on the amount of catalyst used, the reaction temperature, and the yield and physical properties desired for the dehydration condensate to be produced, but the lower limit is usually 0.5 hours and the upper limit is usually 50 hours. The lower limit is 1 hour and the upper limit is 20 hours.
  • the reaction is usually carried out without a solvent, but a solvent can be used if desired.
  • the solvent should be appropriately selected from organic solvents used in ordinary organic synthesis reactions in consideration of vapor pressure, stability, solubility of raw materials and products under the reaction conditions.
  • Separation / recovery of the produced polyether polyol can be performed by a conventional method.
  • an acid that acts as a heterogeneous catalyst the suspended acid is first removed from the reaction solution by filtration or centrifugation. Next, by distilling or extracting with water or the like, an oligomer having a low boiling point or at least one metal compound having a group force of group 4 and group 13 is removed to obtain a target polyether polyol.
  • an acid that acts as a homogeneous catalyst first, water is added to the reaction solution, and a polyether polyol layer and an acid, at least one metal compound selected from the group consisting of Group 4 and Group 13, and And an aqueous layer containing oligomers.
  • polyether polyols Since some of the polyether polyols form an acid and an ester used as a catalyst, water is added to the reaction solution and then heated to hydrolyze the ester to separate the force. In this case, if an organic solvent having an affinity for both the polyether polyol and water is used together with water, hydrolysis can be promoted. In addition, when the polyether polyol has a high viscosity and the operability of the separation layer is not good, it is preferable to use an organic solvent that has an affinity for the polyether polyol and can be easily separated from the polyether polyol by distillation. Better ,. Polyether obtained by layering The polyol phase is distilled to remove the remaining water and organic solvent to obtain the desired polyether polyol. If acid remains in the polyether polyol phase obtained by layer separation, it can be washed with water or an aqueous alkali solution or treated with a solid base such as calcium hydroxide to remove the remaining acid. And then used for distillation.
  • the obtained polyether polyol is usually stored under an inert gas atmosphere such as nitrogen or argon.
  • the number average molecular weight of the polyether polyol of the present invention can be adjusted according to the type of catalyst used and the amount of catalyst used.
  • the lower limit is usually 80, preferably 600, more preferably 1000, and the upper limit force S is usually 10,000. Better ⁇ is 7000, more preferred ⁇ is 5000.
  • the number average molecular weight is an average molecular weight per molecule.
  • the Hazen color number of the polyether polyol is preferably as close to 0, and the upper limit is usually 500, preferably 400, more preferably 200.
  • the polytrimethylene ether glycol obtained by the method of the present invention can be used for applications such as elastic fibers, thermoplastic polyester elastomers, thermoplastic polyurethane elastomers, and coating materials.
  • the yield calculation method is as follows.
  • Yield (%) (Weight of polytrimethylene glycol after polymerization) 100 / ⁇ Weight of 1,3-pump pan diol (Weight of 1,3-propanediol) 18/76 ⁇
  • the molecular weight of the polyether polyol after the polymerization reaction was measured by nuclear magnetic resonance (NMR). Black mouth form 1 d (ALDRICH, TMS 0.03 v / v%, 99.8 + atom%
  • the degree of coloration of the polyether polyol is represented by the Hazen color number specified in the standard of the Hazen color number American Public Health Association (APH A).
  • the Hazen color number was obtained by colorimetry according to JIS K0071 1 using a standard solution prepared by diluting APHA color number standard solution (NO. 500) manufactured by Kishida Chemical Co., Ltd.
  • the color difference meter was a colorimetric color difference meter ZE 2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the cell thickness was measured under the condition of 10 mm.
  • the water produced by the reaction was distilled off accompanying nitrogen.
  • the reaction solution was allowed to cool to room temperature, transferred to a 300 mL two-necked flask containing 50 g of demineralized water using 50 g of 1-butanol, and gently refluxed for 2 hours to hydrolyze the sulfate. After cooling to room temperature and cooling, the lower layer (water layer) separated into two layers was removed. After adding 50 ml of water to the upper layer (oil layer) and stirring, the oil layer was washed with water by performing an operation of leaving still and removing the aqueous layer once. 1-Butanol and water were distilled off under reduced pressure by heating to 60 ° C. The obtained oil layer was vacuum-dried in an oil bath at 60 ° C. for 3 hours to obtain polytrimethylene ether diol, which was used to measure the Hazen color number.
  • a polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that aluminum sulfate was not added. The results are shown in Table 1.
  • a polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that 0.0348 g of sodium carbonate was used instead of aluminum sulfate. The results are shown in Table 1.
  • Polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that the amount of concentrated sulfuric acid (95%) added was 0.577 g. The results are shown in Table 1.
  • Polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that 0.247 g of gallium sulfate (18 hydrate) was used instead of aluminum sulfate. The results are shown in Table 1.
  • Polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1, except that 0.217 g of titanium (IV) sulfate (4-6 hydrate) was used instead of aluminum sulfate. The results are shown in Table 1.
  • a polyether polyol having a high degree of polymerization can be obtained in a high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

A method for producing a polyether polyol having a high polymerization degree in good yield by the dehydration condensation of a polyol is provided. A method for producing a polyether polyol by a dehydration condensation reaction of a polyol containing 50 mole % or more of 1,3-propandiol, wherein the reaction is carried out in the presence of a compound of a metal selected from the metals belonging to 4 or 13 Group and an acid catalyst.

Description

ポリエーテルポリオールの製造方法  Method for producing polyether polyol
技術分野  Technical field
[0001] 本発明はポリオールの脱水縮合反応によりポリエーテルポリオールを製造する方法 に関するものである。  The present invention relates to a method for producing a polyether polyol by a dehydration condensation reaction of a polyol.
背景技術  Background art
[0002] ポリエーテルポリオールは弾性繊維や可塑性エラストマ一などのソフトセグメントの 原料をはじめ、広範囲な用途を有するポリマーである。ポリエーテルポリオールの代 表的なものとしては、ポリエチレングリコール、ポリ(1, 2—プロパンジオール)、ポリテ トラメチレンエーテルグリコールなどが知られている。これらのなかでもポリ(1, 2—プ 口パンジオール)は、室温で液状であって取り扱いが容易であり、かつ安価なので広 く用いられている。しかしポリ(1, 2—プロパンジオール)は 1級水酸基と 2級水酸基を 有しているので、用途によってはこれらの水酸基の物性の相異が問題になる。これに 対し、 1, 3 プロパンジオールの脱水縮合物であるポリトリメチレンエーテルグリコー ルは、 1級水酸基のみを有しており、かつ融点も低いので、近年注目されている。  [0002] Polyether polyol is a polymer having a wide range of uses, including raw materials for soft segments such as elastic fibers and plastic elastomers. Typical examples of polyether polyols include polyethylene glycol, poly (1,2-propanediol), and polytetramethylene ether glycol. Among these, poly (1,2-propane diol) is widely used because it is liquid at room temperature, easy to handle and inexpensive. However, since poly (1,2-propanediol) has a primary hydroxyl group and a secondary hydroxyl group, the difference in physical properties of these hydroxyl groups becomes a problem depending on the application. In contrast, polytrimethylene ether glycol, which is a dehydration condensate of 1,3 propanediol, has recently attracted attention because it has only primary hydroxyl groups and a low melting point.
[0003] ポリエーテルポリオールは、一般に、相当するポリオールの脱水縮合反応によって 製造することができる。ただしエチレングリコール、 1, 4 ブタンジオールおよび 1, 5 ペンタンジオールなどは、脱水縮合に際して 5員環または 6員環の環状エーテル、 すなわちそれぞれ 1, 4 ジォキサン、テトラヒドロフラン及びテトラヒドロピランを生ず る。そのため、エチレングリコール、 1, 4 ブタンジオールのポリマーに相当するポリ エーテルポリオールは、対応する環状エーテル、すなわちエチレンオキサイド、テトラ ヒドロフランの開環重合によって製造されている。なお、 1, ペンタンジオールのポ リマーに相当するポリエーテルポリオールは、環状エーテルであるテトラヒドロピラン が熱力学的に有利となるため、得ることが困難である。  [0003] Generally, polyether polyols can be produced by a dehydration condensation reaction of corresponding polyols. However, ethylene glycol, 1,4 butanediol, 1,5 pentanediol and the like produce 5- or 6-membered cyclic ethers, that is, 1,4-dioxane, tetrahydrofuran and tetrahydropyran, respectively, upon dehydration condensation. Therefore, a polyether polyol corresponding to a polymer of ethylene glycol and 1,4 butanediol is produced by ring-opening polymerization of a corresponding cyclic ether, that is, ethylene oxide and tetrahydrofuran. A polyether polyol corresponding to a polymer of 1, pentanediol is difficult to obtain because tetrahydropyran, which is a cyclic ether, is thermodynamically advantageous.
[0004] ポリオールの脱水縮合反応によるポリエーテルポリオールの製造は、一般には酸触 媒を用いて行われている。触媒としては、沃素、沃化水素や硫酸などの無機酸、およ びパラトルエンスルフォン酸などの有機酸、パーフルォロアルキルスルフォン酸基を 側鎖に有する榭脂、硫酸、活性白土、ゼォライト、有機スルフォン酸、ヘテロポリ酸な どと塩ィ匕第一銅との組み合わせなどが提案されている。また、反応方法としては、ま ず窒素雰囲気下で脱水縮合反応を行!ヽ、次!ヽで減圧下に脱水縮合反応を行う方法[0004] The production of a polyether polyol by a dehydration condensation reaction of a polyol is generally performed using an acid catalyst. Catalysts include inorganic acids such as iodine, hydrogen iodide and sulfuric acid, organic acids such as paratoluenesulfonic acid, and perfluoroalkylsulfonic acid groups. Combinations of coconut resin, sulfuric acid, activated clay, zeolite, organic sulfonic acid, heteropoly acid, etc., in the side chain with salt and cuprous cup have been proposed. As a reaction method, first, a dehydration condensation reaction is performed under a nitrogen atmosphere! Next, a dehydration condensation reaction is performed under reduced pressure in the next step.
(特許文献 1参照)も提案されて 、る。 (See Patent Document 1) has also been proposed.
[0005] 一方、重合速度および着色を改善する方法として、酸および塩基より成る触媒存在 下にて反応を行う方法が提案されて ヽる (特許文献 2参照)。 [0005] On the other hand, as a method for improving the polymerization rate and coloration, a method in which a reaction is carried out in the presence of a catalyst comprising an acid and a base has been proposed (see Patent Document 2).
特許文献 1:米国特許出願公開第 2002Z0007043号明細書  Patent Document 1: US Patent Application Publication No. 2002Z0007043
特許文献 2:国際公開第 2004Z048440号パンフレット  Patent Document 2: Pamphlet of International Publication No. 2004Z048440
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明者らの検討によれば、これらの従来力 提案されている方法では、高重合度 のポリエーテルポリオールを製造するには高温での反応や長時間の反応が必要であ り、得られるポリエーテルポリオールが着色するという問題があった。また、特許文献 2 に開示してある方法を用いても、重合速度が向上し色度も改善されたが、重合速度 は工業的には不十分であるという問題があった。そこで、本発明は、穏和な条件下で のポリエーテルポリオールの脱水縮合により、高重合度のポリエーテルポリオールを 短時間で製造する方法を提供しょうとするものである。 [0006] According to the study by the present inventors, in these conventionally proposed methods, a reaction at a high temperature or a long time is required to produce a polyether polyol having a high degree of polymerization. There was a problem that the polyether polyol obtained was colored. Further, even when the method disclosed in Patent Document 2 was used, the polymerization rate was improved and the chromaticity was also improved, but there was a problem that the polymerization rate was industrially insufficient. Therefore, the present invention intends to provide a method for producing a polyether polyol having a high degree of polymerization in a short time by dehydrating condensation of a polyether polyol under mild conditions.
課題を解決するための手段  Means for solving the problem
[0007] 本発明によれば、ポリオールの脱水縮合反応によりポリエーテルポリオールを製造 するに際し、 4族及び 13族からなる群から選ばれる少なくとも一種の金属の化合物と 酸触媒との共存下に反応を行うことにより、高重合度のポリエーテルポリオールを効 率よく製造する方法を見出し、本発明を完成するに至った。  According to the present invention, when a polyether polyol is produced by a dehydration condensation reaction of a polyol, the reaction is performed in the presence of an acid catalyst and at least one metal compound selected from the group consisting of Group 4 and Group 13. As a result, a method for efficiently producing a polyether polyol having a high degree of polymerization was found, and the present invention was completed.
即ち本発明の第 1の要旨は、 1, 3—プロパンジオールを 50モル%以上含有するポ リオールの脱水縮合反応によりポリエーテルポリオールを製造するに際し、 4族及び 1 3族からなる群から選ばれる少なくとも一種の金属の化合物と酸触媒との存在下に反 応を行うことを特徴とするポリエーテルポリオールの製造方法に存する。  That is, the first gist of the present invention is selected from the group consisting of groups 4 and 13 when producing a polyether polyol by a dehydration condensation reaction of a polyol containing 50 mol% or more of 1,3-propanediol. The present invention resides in a method for producing a polyether polyol, wherein the reaction is carried out in the presence of at least one metal compound and an acid catalyst.
[0008] 本発明の第 2の要旨は、原料として用いるポリオールに対し、金属化合物の存在量 が金属原子換算として 0. 01モル%以上である請求項 1に記載のポリエーテルポリオ ールの製造方法に存する。 [0008] The second gist of the present invention is that the polyether polyol according to claim 1, wherein the abundance of the metal compound is 0.01 mol% or more in terms of metal atom with respect to the polyol used as a raw material. Lies in the manufacturing method of the tool.
本発明の第 3の要旨は、反応を 120°C以上 250°C以下で行うことを特徴とする上記 記載のポリエーテルポリオールの製造方法に存する。  The third gist of the present invention resides in the above method for producing a polyether polyol, wherein the reaction is carried out at 120 ° C. or higher and 250 ° C. or lower.
発明の効果  The invention's effect
[0009] 本発明によれば、穏和な条件下でのポリエーテルポリオールの脱水縮合により、高 重合度のポリエーテルポリオールを短時間で製造する方法を提供することができる。 発明を実施するための最良の形態  [0009] According to the present invention, it is possible to provide a method for producing a polyether polyol having a high polymerization degree in a short time by dehydrating condensation of a polyether polyol under mild conditions. BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明につき詳細に説明する。  [0010] Hereinafter, the present invention will be described in detail.
<触媒>  <Catalyst>
本発明は、ポリオールの脱水縮重合反応によりポリエーテルポリオールを製造する 際に、長周期表(1989年に IUPACにより推奨された 18族方式に基づくものである。 以下同様)の 4族及び 13族力 なる群力 選ばれる少なくとも一種の金属の化合物 及び酸を触媒とすることを特徴とする。  The present invention is based on the long periodic table (based on the group 18 system recommended by IUPAC in 1989, the same applies below) when producing a polyether polyol by dehydration condensation polymerization reaction of polyol. Powerful group force It is characterized by using at least one kind of metal compound and acid as a catalyst.
[0011] (1)金属化合物触媒  [0011] (1) Metal compound catalyst
本発明における金属化合物を構成する 4族及び 13族の金属としては、チタン、ジル コニゥム、ハフニウム、アルミニウム、ガリウム、インジウム、タリウムが挙げられ、この中 でもチタン、ジルコニウム、アルミニウム、ガリウムがポリオールの脱水縮合反応を促 進する点で好ましぐ入手が容易で安価である点ではアルミニウムが特に好ま 、。  Examples of the Group 4 and Group 13 metals constituting the metal compound in the present invention include titanium, zirconium, hafnium, aluminum, gallium, indium, and thallium. Among these, titanium, zirconium, aluminum, and gallium are dehydrating polyols. Aluminum is particularly preferred because it is readily available and inexpensive because it promotes the condensation reaction.
[0012] 4族及び Z又は 13族の金属を用いるにあたり、これらの金属と酸とで金属塩を形成 しているものが好ましく用いられる。具体的には、 4族及び 13族からなる群から選ば れる金属の化合物として、無機酸塩や有機酸塩などが挙げられ、具体的には、硫酸 塩、硫酸水素塩、ハロゲンィ匕物、リン酸塩、リン酸水素塩、ホウ酸塩等の鉱酸の塩、ト リフルォロメタンスルフォン酸塩、パラトルエンスルフォン酸塩、メタンスルフォン酸塩 等の有機スルフォン酸塩、蟻酸塩、酢酸塩等のカルボン酸塩などが挙げられる。また 、反応系内では、 4族及び Z又は 13族から選ばれる金属の化合物と後述する酸触 媒を共存させる際に、これらの金属化合物を形成する酸と酸触媒の酸とは同一であ ることが好ましい。  [0012] In using the Group 4 and Z or Group 13 metals, those in which a metal salt is formed with these metals and an acid are preferably used. Specific examples of the metal compound selected from the group consisting of Group 4 and Group 13 include inorganic acid salts and organic acid salts, and specific examples include sulfates, hydrogen sulfates, halides, phosphorus compounds. Salts of mineral acids such as acid salts, hydrogen phosphates and borates, organic sulfonates such as trifluoromethanesulfonate, paratoluenesulfonate, methanesulfonate, formate, acetate, etc. Examples thereof include carboxylates. Further, in the reaction system, when a metal compound selected from Group 4 and Z or Group 13 and an acid catalyst described later coexist, the acid forming these metal compounds and the acid of the acid catalyst are the same. It is preferable.
[0013] この場合、酸触媒と 4族及び 13族からなる群から選ばれる金属の化合物を各々用 いても良いが、 4族及び 13族からなる群から選ばれる金属の炭酸塩、炭酸水素塩、 水酸化物、金属単体等を過剰の酸触媒と反応せしめることにより所望の酸触媒、並 びに 4族及び 13族からなる群から選ばれる金属と酸との金属化合物を調製することも できる。例えば、反応基質であるポリオール中にて 4族及び Z又は 13族の金属炭酸 塩と硫酸を反応せしめ、硫酸及び硫酸の 4族及び Z又は 13族の金属塩を含む液と することができる。 [0013] In this case, an acid catalyst and a metal compound selected from the group consisting of Group 4 and Group 13 are used. However, the desired acid catalyst can be obtained by reacting a metal carbonate, hydrogen carbonate, hydroxide, metal simple substance, etc. selected from the group consisting of Group 4 and Group 13 with an excess acid catalyst. It is also possible to prepare a metal compound of a metal and an acid selected from the group consisting of Group 13 and Group 13. For example, it is possible to react a Group 4 and Z or 13 metal carbonate with sulfuric acid in a polyol which is a reaction substrate to obtain a solution containing sulfuric acid and a Group 4 and Z or 13 metal salt of sulfuric acid.
[0014] これら触媒は、単独でも、 2種以上の混合触媒としても使用することができる。  [0014] These catalysts can be used alone or as a mixed catalyst of two or more.
製造に用いる 4族及び 13族からなる群から選ばれる金属の化合物の使用量は、原 料のポリオールに対し、金属原子換算として下限は通常 0. 01モル%、より好ましくは 0. 02モル%であり、特に好ましくは 0. 05モル%である。また、上限は通常、 1. 0モ ル0 /0であり、好ましくは 0. 9モル0 /0、より好ましくは 0. 7モル0 /0、特に好ましくは 0. 5モ ル%となるように用いるのが良い。金属化合物の使用量が多すぎると、反応速度が上 力 ないことや、後処理過程で金属触媒の分離が困難になる傾向があり、少なすぎる と反応速度が上がらない傾向がある。 The amount of the metal compound selected from the group consisting of Group 4 and Group 13 used for the production is usually 0.01 mol%, more preferably 0.02 mol%, in terms of metal atom, relative to the raw material polyol. Particularly preferred is 0.05 mol%. The upper limit is usually 1. 0 molar 0/0, so that preferably 0.9 mol 0/0, more preferably 0.7 mol 0/0, and particularly preferably a 0.5 molar% It is good to use for. If the amount of the metal compound used is too large, the reaction rate will not increase, and it will tend to be difficult to separate the metal catalyst in the post-treatment process, and if it is too small, the reaction rate will not increase.
[0015] (2)酸触媒  [0015] (2) Acid catalyst
本発明で用いる酸触媒としては、従来力 アルコール性水酸基の脱水縮合反応に よりエーテル結合を生成することが知られて 、る任意のものを用いることができる。酸 は反応系に溶解して均一系触媒として作用するもの、および溶解せずに不均一系触 媒として作用するもののいずれであってもよい。このような酸としては、例えば前者とし ては、硫酸、燐酸、フルォロ硫酸、リンタングステン酸等のへテロポリ酸、メタンスルフ オン酸、トリフルォロメタンスルフォン酸、オクタンスルフォン酸、 1, 1, 2, 2—テトラフ ルォロエタンスルフォン酸等のアルキル鎖がフッ素化されて 、てもよ 、アルキルスル フォン酸、ベンゼンスルフォン酸や環にアルキル側鎖を有して 、てもよ 、ベンゼンス ルフォン酸、例えばパラトルエンスルフォン酸等のァリールスルフォン酸など、後者と しては、活性白土、ゼォライト、シリカ アルミナやシリカ ジルコユア等の金属複合 酸化物、およびパーフルォロアルキルスルフォン酸基を側鎖に有する榭脂などがあ げられる。これらのうちで入手が容易でかつ安価である点では、硫酸、燐酸、ベンゼ ンスルフォン酸、パラトルエンスルフォン酸などが好ましぐこれらの中でも硫酸が最も 好ましい。 As the acid catalyst used in the present invention, it is known that an ether bond is generated by a conventional dehydration condensation reaction of an alcoholic hydroxyl group, and any one can be used. The acid may be either dissolved in the reaction system and acting as a homogeneous catalyst, or not dissolved but acting as a heterogeneous catalyst. Examples of such acids include heteropoly acids such as sulfuric acid, phosphoric acid, fluorosulfuric acid, and phosphotungstic acid, methanesulfonic acid, trifluoromethanesulfonic acid, octanessulfonic acid, 1, 1, 2, 2 -Alkyl chains such as tetrafluoroethane sulfonic acid may be fluorinated, but alkyl sulfonic acid, benzene sulfonic acid or ring having an alkyl side chain may be benzene sulfonic acid such as para Examples of the latter, such as aryl sulfonic acid such as toluene sulfonic acid, include activated clay, zeolite, metal composite oxides such as silica alumina and silica zircourea, and a resin having a perfluoroalkyl sulfonic acid group in the side chain. Etc. Of these, sulfuric acid, phosphoric acid, benzene sulfonic acid, paratoluene sulfonic acid, etc. are preferred because sulfuric acid is the most easily available and inexpensive. preferable.
[0016] 酸触媒は原料のポリオールに対して、下限は通常 0. 001重量倍、上限は 0. 3重 量倍で用いる。好ましくは、下限は 0. 002重量倍、上限は 0. 2重量倍である。均一 系触媒として作用する酸であれば、下限は通常 0. 0005重量倍、上限は通常 0. 2重 量倍であり、好ましくは、下限は通常 0. 001重量倍、上限は通常 0. 1重量倍である。  [0016] The acid catalyst is usually used at a lower limit of 0.001 times by weight and an upper limit of 0.3 times the weight of the starting polyol. Preferably, the lower limit is 0.002 times by weight and the upper limit is 0.2 times by weight. In the case of an acid that acts as a homogeneous catalyst, the lower limit is usually 0.005 times by weight and the upper limit is usually 0.2 times by weight, preferably the lower limit is usually 0.001 times by weight and the upper limit is usually 0.1. Weight times.
[0017] 4族及び 13族から成る群から選ばれる金属の化合物に対する酸触媒の使用量は、 下限は通常 0. 01当量、より好ましくは 0. 02当量であり、特に好ましくは、 0. 05当量 である。また、上限は通常、 1. 0当量であり、好ましくは 0. 9当量、より好ましくは 0. 7 当量、特に好ましくは 0. 5当量となるように用いるのが良い。この比が多すぎると、反 応速度が上がらないことや、後処理工程において金属触媒の除去が困難になる傾 向があり、少なすぎると反応速度が上がらない傾向がある。  [0017] The lower limit of the amount of the acid catalyst used for the metal compound selected from the group consisting of Group 4 and Group 13 is usually 0.01 equivalents, more preferably 0.02 equivalents, and particularly preferably 0.05. Equivalent. The upper limit is usually 1.0 equivalent, preferably 0.9 equivalent, more preferably 0.7 equivalent, and particularly preferably 0.5 equivalent. If this ratio is too large, the reaction rate will not increase, and it will tend to be difficult to remove the metal catalyst in the post-treatment process. If it is too small, the reaction rate will not increase.
[0018] なお、連続反応でかつパーフルォロアルキルスルフォン酸基を側鎖に有する榭脂 のように不均一触媒として作用する酸を用いる場合には、これを反応液と一緒に抜き 出さずに反応装置内に滞留させておき、これに原料のポリオールを連続的に供給す る方法を採用することができる。この場合には、通常は反応装置内に滞留している酸 に対して、下限は通常 0. 1重量倍、上限は通常 10000重量倍であり、好ましくは、下 限は 1重量倍、上限は 1000重量倍で原料ポリオールを 1時間に供給する。なお、こ の場合には反応装置内の酸に対する 4族または 13族から成る群から選ばれる金属 の化合物の当量比が経時的に低下することがあるので、必要に応じて原料ポリオ一 ルと共に 4族または 13族力も成る群力も選ばれる金属の化合物を供給して、酸に対 する 4族及び 13族力 なる群力も選ばれる少なくとも一種の金属の化合物の当量比 が所望の値を維持するようにする。  [0018] When an acid acting as a heterogeneous catalyst such as a resin having a perfluoroalkyl sulfonic acid group in the side chain is used in a continuous reaction, this is not extracted together with the reaction solution. It is possible to employ a method in which the raw material polyol is continuously supplied to the reactor, and the raw material polyol is continuously supplied thereto. In this case, the lower limit is usually 0.1 times by weight and the upper limit is usually 10000 times by weight, and preferably the lower limit is 1 times by weight and the upper limit is usually 0.1 times the weight of the acid staying in the reactor. The raw material polyol is supplied in 1 hour at 1000 times the weight. In this case, the equivalent ratio of the metal compound selected from the group consisting of Group 4 or Group 13 to the acid in the reactor may decrease over time, so if necessary, together with the raw material polyol. Supplying a compound of a metal that also has a group force of group 4 or group 13 power, and maintaining an equivalent ratio of the compound of at least one metal that also has a group force of group 4 and group 13 power to the acid to the desired value Like that.
[0019] <原料ポリオール >  [0019] <Raw material polyol>
ポリエーテルポリオールの原料となるポリオールは、 1, 3—プロパンジオール、 2— メチルー 1, 3—プロパンジオール、 2, 2—ジメチルー 1, 3—プロパンジオール、 1, 6 一へキサンジオール、 1, 7—ヘプタンジオール、 1, 8—オクタンジオール、 1, 9ーノ ナンジオール、 1, 10—デカンジオール、 1, 4ーシクロへキサンジメタノール等の 2個 の 1級水酸基を有するジオールを用いるのが好ましい。ただし、 2個の 1級水酸基を 有するジオールであっても、エチレングリコール、 1, 4 ブタンジオール, 1, 5 ペン タンジオール等は、前述のように脱水縮合反応により環状エーテルエーテルを生成 するので、本発明方法の原料としては好ましくない。通常はこれらのポリオールを単 独で用いる力 所望ならば 2種以上のポリオールの混合物として用いることができる。 Polyols used as raw materials for polyether polyols are 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,6 monohexanediol, 1, 7 — It is preferable to use a diol having two primary hydroxyl groups, such as heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol. However, two primary hydroxyl groups Even if it is a diol, ethylene glycol, 1,4 butanediol, 1,5 pentanediol, etc. are not preferable as the raw material of the method of the present invention because they produce a cyclic ether ether by the dehydration condensation reaction as described above. Usually, the ability to use these polyols alone can be used as a mixture of two or more polyols if desired.
[0020] ただし、本発明においては、 1, 3 プロパンジオールは、原料の全ポリオールに対 して、下限は 50モル%であることが必要である。より好ましくは、下限は 60モル%で あり、特に好ましくは、 70モル%であり、上限は通常、 100モル%である。この含有量 が少なすぎると、高分子量体の製造に時間が力かる傾向がある。  [0020] However, in the present invention, the lower limit of 1,3 propanediol needs to be 50 mol% with respect to the total polyol of the raw material. More preferably, the lower limit is 60 mol%, particularly preferably 70 mol%, and the upper limit is usually 100 mol%. If this content is too small, the production of the high molecular weight product tends to take time.
[0021] また、これらのジオールに主たるジオールの脱水縮合反応により得られた 2〜9量 体のオリゴマーを併用することができる。さらには、トリメチロールェタン、トリメチロー ルプロパン、ペンタエリスリトール等のトリオール以上のポリオール、あるいはこれらの ポリオールのオリゴマーを併用することもできる。しかしこれらの場合でも 1, 3 プロ パンジオールが 50モル%以上を占めるようにする。通常は 1, 4 ブタンジオールや 1, 5 ペンタンジオールなどの脱水縮合反応により 5員環や 6員環の環状エーテル を生成するものを除き、 2個の一級水酸基を有する炭素数 3〜 10のジオール、または これと他のポリオールとの混合物であって他のポリオールの比率が 50モル%未満の ものを反応に供する。好ましくは、 1, 3 プロパンジオール、 2—メチルー 1, 3 プロ パンジオール、 2, 2 ジメチルー 1, 3 プロパンジオールよりなる群から選ばれたジ オール、または 1, 3 プロパンジオールと他のポリオールとの混合物であって他のポ リオールの比率が 50モル%未満のものを反応に供する。  [0021] These diols can be used in combination with di- to 9-mer oligomers obtained by the dehydration condensation reaction of the main diols. Furthermore, triol or higher polyols such as trimethylolethane, trimethylolpropane, pentaerythritol, or oligomers of these polyols can be used in combination. However, even in these cases, 1,3 propanediol should account for more than 50 mol%. Normally, diols with 3 to 10 carbon atoms with two primary hydroxyl groups, except for those that produce 5- or 6-membered cyclic ethers by dehydration condensation reactions such as 1,4-butanediol and 1,5-pentanediol Or a mixture of this and other polyols in which the ratio of the other polyols is less than 50 mol% is subjected to the reaction. Preferably, 1,3 propanediol, 2-methyl-1,3 propandiol, 2,2 dimethyl-1,3 diols selected from the group consisting of propanediol, or 1,3 propanediol and other polyols. A mixture having a ratio of other polyols of less than 50 mol% is used for the reaction.
[0022] <ポリエーテルポリオールの製造方法 >  <Method for producing polyether polyol>
本発明方法によるポリオールの脱水縮合反応によるポリエーテルポリオールの製造 は、回分方式でも連続方式でも行うことができる。回分方式の場合には、反応器に原 料のポリオールおよび触媒の酸と 4族及び 13族からなる群から選ばれる金属の化合 物とを仕込み、攪拌下に反応させればよい。連続反応の場合には、例えば多数の攪 拌槽を直列にした反応装置や流通式反応装置の一端力 原料のポリオールと触媒 を連続的に供給し、装置内をピストンフローないしはこれに近い態様で移動させて、 他端力 反応液を連続的に抜き出す方法を用いることができる。 [0023] 脱水縮合反応の温度は、下限は通常 120°C、上限は通常 250°Cであり、好ましくは 、下限は 140°C、上限は 200°Cであり、より好ましくは、下限は 150°C、上限は 190°C である。この温度が高すぎると着色が悪ィ匕する傾向があり、低すぎると反応速度が上 がらない傾向がある。 The production of the polyether polyol by the dehydration condensation reaction of the polyol according to the method of the present invention can be carried out either batchwise or continuously. In the case of a batch system, a raw material polyol and catalyst acid and a metal compound selected from the group consisting of Group 4 and Group 13 may be charged into the reactor and reacted with stirring. In the case of continuous reaction, for example, a polyol and a catalyst as raw materials and a one-stop force of a reaction apparatus in which a large number of stirring tanks are connected in series or a flow-type reaction apparatus are continuously supplied, and the inside of the apparatus is in a piston flow or a mode close to this. It is possible to use a method in which the reaction solution is continuously extracted by moving the other end force. [0023] The lower limit of the temperature of the dehydration condensation reaction is usually 120 ° C and the upper limit is usually 250 ° C, preferably the lower limit is 140 ° C and the upper limit is 200 ° C, more preferably the lower limit is 150 ° C. ° C, upper limit is 190 ° C. If this temperature is too high, the coloring tends to be poor, and if it is too low, the reaction rate tends not to increase.
反応は窒素やアルゴン等の不活性ガス雰囲気下で行うのが好ましい。反応圧力は 反応系が液相に保持される範囲であれば任意であり、通常は常圧下で行われる。所 望ならば反応により生成した水の反応系からの脱離を促進するため、反応を減圧下 で行ったり、反応系に不活性ガスを流通させてもょ ヽ。  The reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. The reaction pressure is arbitrary as long as the reaction system is maintained in a liquid phase, and it is usually carried out under normal pressure. If desired, the reaction can be carried out under reduced pressure or an inert gas can be circulated through the reaction system to promote the elimination of water produced by the reaction from the reaction system.
[0024] 反応時間は触媒の使用量、反応温度および生成する脱水縮合物に所望の収率や 物性などにより異なるが、下限は通常 0. 5時間、上限は通常 50時間であり、好ましく は、下限は 1時間、上限は 20時間である。  [0024] The reaction time varies depending on the amount of catalyst used, the reaction temperature, and the yield and physical properties desired for the dehydration condensate to be produced, but the lower limit is usually 0.5 hours and the upper limit is usually 50 hours. The lower limit is 1 hour and the upper limit is 20 hours.
なお、反応は通常は無溶媒で行うが、所望ならば溶媒を用いることもできる。溶媒 は反応条件下での蒸気圧、安定性、原料および生成物の溶解性などを考慮して、常 用の有機合成反応に用いる有機溶媒から適宜選択して用いればょ ヽ。  The reaction is usually carried out without a solvent, but a solvent can be used if desired. The solvent should be appropriately selected from organic solvents used in ordinary organic synthesis reactions in consideration of vapor pressure, stability, solubility of raw materials and products under the reaction conditions.
[0025] 生成ポリエーテルポリオールの反応系力もの分離 ·回収は常法により行うことができ る。酸として不均一系触媒として作用するものを用いた場合には、まず濾過や遠心分 離により反応液からけん濁している酸を除去する。次いで蒸留または水などの抽出に より低沸点のオリゴマーや 4族及び 13族力もなる群力も選ばれる少なくとも一種の金 属の化合物を除去して、目的とするポリエーテルポリオールを取得する。均一系触媒 として作用する酸を用いた場合には、まず反応液に水を加えてポリエーテルポリオ一 ル層と酸、 4族及び 13族からなる群から選ばれる少なくとも一種の金属の化合物およ びオリゴマーなどを含む水層を分層させる。なお、ポリエーテルポリオールの一部は 触媒として用いた酸とエステルを形成しているので、反応液に水を加えた後、加熱し てエステルを加水分解して力も分層させる。この際、ポリエーテルポリオールおよび水 の双方に親和性のある有機溶媒を水と一緒に用いると、加水分解を促進することが できる。また、ポリエーテルポリオールが高粘度で分層の操作性がよくない場合には 、ポリエーテルポリオールに親和性があり、かつ蒸留によりポリエーテルポリオールか ら容易に分離しうる有機溶媒を用いるのも好まし 、。分層により取得したポリエーテル ポリオール相は蒸留して残存する水や有機溶媒を留去し、 目的とするポリエーテルポ リオールを取得する。なお、分層により取得したポリエーテルポリオール相に酸が残 存している場合には、水やアルカリ水溶液で洗浄したり、水酸化カルシウム等の固体 塩基で処理して残存している酸を除去してから蒸留に供する。 [0025] Separation / recovery of the produced polyether polyol can be performed by a conventional method. When an acid that acts as a heterogeneous catalyst is used, the suspended acid is first removed from the reaction solution by filtration or centrifugation. Next, by distilling or extracting with water or the like, an oligomer having a low boiling point or at least one metal compound having a group force of group 4 and group 13 is removed to obtain a target polyether polyol. When an acid that acts as a homogeneous catalyst is used, first, water is added to the reaction solution, and a polyether polyol layer and an acid, at least one metal compound selected from the group consisting of Group 4 and Group 13, and And an aqueous layer containing oligomers. Since some of the polyether polyols form an acid and an ester used as a catalyst, water is added to the reaction solution and then heated to hydrolyze the ester to separate the force. In this case, if an organic solvent having an affinity for both the polyether polyol and water is used together with water, hydrolysis can be promoted. In addition, when the polyether polyol has a high viscosity and the operability of the separation layer is not good, it is preferable to use an organic solvent that has an affinity for the polyether polyol and can be easily separated from the polyether polyol by distillation. Better ,. Polyether obtained by layering The polyol phase is distilled to remove the remaining water and organic solvent to obtain the desired polyether polyol. If acid remains in the polyether polyol phase obtained by layer separation, it can be washed with water or an aqueous alkali solution or treated with a solid base such as calcium hydroxide to remove the remaining acid. And then used for distillation.
得られたポリエーテルポリオールは、通常窒素やアルゴン等の不活性ガス雰囲気 下にて保存しておく。  The obtained polyether polyol is usually stored under an inert gas atmosphere such as nitrogen or argon.
[0026] <ポリエーテルポリオールの物性 >  <Physical properties of polyether polyol>
本発明のポリエーテルポリオールの数平均分子量は、用いる触媒の種類や触媒量 により調整することができ、下限が通常 80、好ましくは 600、より好ましくは 1000であ り、上限力 S通常 10000、好まし <は 7000、より好まし <は 5000である。  The number average molecular weight of the polyether polyol of the present invention can be adjusted according to the type of catalyst used and the amount of catalyst used. The lower limit is usually 80, preferably 600, more preferably 1000, and the upper limit force S is usually 10,000. Better <is 7000, more preferred <is 5000.
[0027] 数平均分子量とは、分子 1個当たりの平均の分子量を示す。 [0027] The number average molecular weight is an average molecular weight per molecule.
ポリエーテルポリオールのハーゼン色数は、 0に近いほど好ましく、上限は通常、 50 0であり、好ましくは 400、より好ましくは 200である。  The Hazen color number of the polyether polyol is preferably as close to 0, and the upper limit is usually 500, preferably 400, more preferably 200.
<ポリエーテルポリオールの用途 >  <Use of polyether polyol>
本発明の方法により得られるポリトリメチレンエーテルグリコールは弾性繊維や熱可 塑性ポリエステルエラストマ一、熱可塑性ポリウレタンエラストマ一、コーティング材な どの用途に使用できる。  The polytrimethylene ether glycol obtained by the method of the present invention can be used for applications such as elastic fibers, thermoplastic polyester elastomers, thermoplastic polyurethane elastomers, and coating materials.
実施例  Example
[0028] 以下に実施例により本発明をさらに具体的に説明する。  [0028] The present invention will be described more specifically with reference to the following examples.
<収率算出方法 >  <Yield calculation method>
収率計算方法は以下の通りである。  The yield calculation method is as follows.
収率(%) = (重合後のポリトリメチレングリコールの重量) 100/{仕込み 1, 3 プ 口パンジオールの重量 (仕込み 1, 3 プロパンジオールの重量) 18/76}  Yield (%) = (Weight of polytrimethylene glycol after polymerization) 100 / {Weight of 1,3-pump pan diol (Weight of 1,3-propanediol) 18/76}
<分子量 >  <Molecular weight>
重合反応後のポリエーテルポリオールの分子量は核磁気共鳴法 (NMR)により測 定した。クロ口ホルム一 d (ALDRICH社製、 TMS 0. 03v/v%, 99. 8 + atom% The molecular weight of the polyether polyol after the polymerization reaction was measured by nuclear magnetic resonance (NMR). Black mouth form 1 d (ALDRICH, TMS 0.03 v / v%, 99.8 + atom%
D, lot: 09904PB)に試料を溶解させ、1 H— NMR装置(BRUKER製 AVANC E400 (400MHz) )により分析した。硫酸エステルが生成するが、それらが全て加水 分解されたときの分子量として以下の式により求めた (ppmは TMS基準)。 D, lot: 09904PB), the sample was dissolved and analyzed by 1 H-NMR apparatus (AVANC E400 (400 MHz) manufactured by BRUKER). Sulfuric acid esters are formed, all of which are hydrolyzed The molecular weight when decomposed was determined by the following formula (ppm is based on TMS).
分子量 = 58 (3. 4〜3. 7ppmのメチレンピーク積分値) Z(3. 8ppmのメチレンピ ーク積分値 +4. 3〜4. 4ppmのメチレンピーク積分値) + 18  Molecular weight = 58 (3.4 to 3.7 ppm methylene peak integration value) Z (3.8 ppm methylene peak integration value +4.3 to 4.4 ppm methylene peak integration value) + 18
<ハーゼン色数 >  <Hazen color number>
ポリエーテルポリオールの着色の程度は、ハーゼン色数米国公衆衛生協会 (APH A)の規格に規定されているハーゼン色数で表した。ハーゼン色数はキシダ化学社 製 APHA色数標準液 (NO. 500)を希釈して調製した標準液を用い、 JIS K0071 1に準じて比色して求めた。色差計は日本電色工業株式会社製 測色色差計 ZE 2000を用い、セル厚み: 10mmの条件で測定した。  The degree of coloration of the polyether polyol is represented by the Hazen color number specified in the standard of the Hazen color number American Public Health Association (APH A). The Hazen color number was obtained by colorimetry according to JIS K0071 1 using a standard solution prepared by diluting APHA color number standard solution (NO. 500) manufactured by Kishida Chemical Co., Ltd. The color difference meter was a colorimetric color difference meter ZE 2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the cell thickness was measured under the condition of 10 mm.
[0029] 実施例 1 [0029] Example 1
< 1, 3 プロパンジオールの蒸留精製 >  <1, 3 Distillative purification of propanediol>
還流冷却管および撹拌機を備えた 1Lナスフラスコに窒素雰囲気下に、 500. Ogの 1, 3 プロパンジオール (Aldrich社製試薬、純度 98%、 Batch # 04427AB)、 50 0. Ogの脱塩水、 6. 78gの濃硫酸(95%)を仕込んだ。フラスコをオイルバスに入れ て加熱し、 8時間還流させた。フラスコをオイルバス力 取り出して室温まで放置して 冷却後、撹拌させながら水酸ィ匕ナトリウム水溶液 (水酸ィ匕ナトリウム 5. 26gを脱塩水 1 Ogに溶力したもの)をゆっくりとカ卩えた。 4 mのフィルターでろ過して不溶物を除去後 、ろ液を 80°Cに加熱して減圧下に水を留去した。室温まで冷却された反応液を 1L 四つ口フラスコに移し、減圧下、約 100°Cにて残存している水を完全に除去した。次 いで、減圧下、約 100°Cにて単蒸留を行い、初留 20gを捨て、留出物 380gを回収し た。  In a 1 L eggplant flask equipped with a reflux condenser and a stirrer, under nitrogen atmosphere, 500. Og of 1,3 propanediol (Aldrich reagent, purity 98%, Batch # 04427AB), 50 0. Og of demineralized water, 6. Charged 78 g of concentrated sulfuric acid (95%). The flask was placed in an oil bath and heated to reflux for 8 hours. Remove the flask from the oil bath and let it cool to room temperature. After cooling, slowly add a sodium hydroxide aqueous solution (a solution of sodium hydroxide 5.26 g in 1 Og of demineralized water) while stirring. . After filtering through a 4 m filter to remove insoluble matter, the filtrate was heated to 80 ° C. and water was distilled off under reduced pressure. The reaction solution cooled to room temperature was transferred to a 1 L four-necked flask, and water remaining at about 100 ° C. was completely removed under reduced pressure. Next, simple distillation was performed at about 100 ° C under reduced pressure, 20 g of the first fraction was discarded, and 380 g of distillate was recovered.
[0030] < 1 , 3 プロパンジオールの脱水縮合反応 >  [0030] <1,3 Dehydration condensation reaction of propanediol>
上記の方法により精製した 1, 3 プロパンジオール 50gを蒸留管、窒素導入管、水 銀温度計および攪拌機を備えた lOOmL四つ口フラスコに窒素を lOONmLZminで 供給しながら仕込んだ。これに 0. 207gの硫酸アルミニウム(14— 18水和物)を仕込 んだ後、攪拌しつつゆっくりと 0. 678gの濃硫酸(95%)を添加した。このフラスコをォ ィルバス中に浸して加熱し、約 1時間でフラスコ内液温を 170°Cに到達させた。フラス コ内液温が 170°Cになった時点を反応開始とし、以後、液温を 170〜172°Cに保持 して 8時間反応させた。反応により生成した水は窒素に同伴させて留去した。室温ま で放冷された反応液を 50gの 1—ブタノールを用いて 50gの脱塩水が入った 300mL の二つ口フラスコに移し、緩やかに 2時間還流させて硫酸エステルの加水分解を行 つた。室温まで放冷して冷却した後、 2層に分離した下層(水層)を除去した。上層( 油層)に 50mlの水を加えて攪拌した後、静置し水層を除去する操作を 1回行って油 層を水洗した。 60°Cに加熱して減圧下に 1—ブタノール、水を留去した。得られた油 層を 60°Cのオイルバス中にて 3時間真空乾燥したものをポリトリメチレンエーテルダリ コールとし、これを用いてハーゼン色数を測定した。 50 g of 1,3 propanediol purified by the above method was charged into a lOOmL four-necked flask equipped with a distillation tube, a nitrogen inlet tube, a mercury thermometer and a stirrer while supplying nitrogen at lOONmLZmin. To this was added 0.207 g of aluminum sulfate (14-18 hydrate), and then slowly added 0.678 g of concentrated sulfuric acid (95%) with stirring. The flask was immersed in an oil bath and heated, and the liquid temperature in the flask reached 170 ° C. in about 1 hour. The reaction starts when the liquid temperature in the flask reaches 170 ° C. Thereafter, the liquid temperature is maintained at 170 to 172 ° C. And allowed to react for 8 hours. The water produced by the reaction was distilled off accompanying nitrogen. The reaction solution was allowed to cool to room temperature, transferred to a 300 mL two-necked flask containing 50 g of demineralized water using 50 g of 1-butanol, and gently refluxed for 2 hours to hydrolyze the sulfate. After cooling to room temperature and cooling, the lower layer (water layer) separated into two layers was removed. After adding 50 ml of water to the upper layer (oil layer) and stirring, the oil layer was washed with water by performing an operation of leaving still and removing the aqueous layer once. 1-Butanol and water were distilled off under reduced pressure by heating to 60 ° C. The obtained oil layer was vacuum-dried in an oil bath at 60 ° C. for 3 hours to obtain polytrimethylene ether diol, which was used to measure the Hazen color number.
[0031] 比較例 1 [0031] Comparative Example 1
硫酸アルミニウムを添加しな力つた以外は実施例 1と全く同様にしてポリトリメチレン エーテルグリコールを得た。結果を表 1に示す。  A polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that aluminum sulfate was not added. The results are shown in Table 1.
比較例 2  Comparative Example 2
硫酸アルミニウムの代わりに 0. 0348gの炭酸ナトリウムを使用した以外は実施例 1 と全く同様にしてポリトリメチレンエーテルグリコールを得た。結果を表 1に示す。  A polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that 0.0348 g of sodium carbonate was used instead of aluminum sulfate. The results are shown in Table 1.
[0032] 実施例 2 [0032] Example 2
濃硫酸(95%)の添加量を 0. 577gにした以外は実施例 1と全く同様にしてポリトリ メチレンエーテルグリコールを得た。結果を表 1に示す。  Polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that the amount of concentrated sulfuric acid (95%) added was 0.577 g. The results are shown in Table 1.
実施例 3  Example 3
硫酸アルミニウムの代わりに 0. 247gの硫酸ガリウム(18水和物)を使用した以外は 実施例 1と全く同様にしてポリトリメチレンエーテルグリコールを得た。結果を表 1に示 す。  Polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that 0.247 g of gallium sulfate (18 hydrate) was used instead of aluminum sulfate. The results are shown in Table 1.
[0033] 実施例 4  [0033] Example 4
硫酸アルミニウムの代わりに 0. 217gの硫酸チタン (IV) (4— 6水和物)を使用した 以外は実施例 1と全く同様にしてポリトリメチレンエーテルグリコールを得た。結果を 表 1に示す。  Polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1, except that 0.217 g of titanium (IV) sulfate (4-6 hydrate) was used instead of aluminum sulfate. The results are shown in Table 1.
実施例 5  Example 5
濃硫酸(950/0)の添力卩量を 0. 664g【こし、硫酸 ノレミニクムの代わり【こ 0. 0234gの 硫酸ジルコニウム (IV) (4水和物)を使用した以外は実施例 1と全く同様にしてポリトリ メチレンエーテルグリコールを得た。結果を表 1に示す。 Concentrated sulfuric acid (95 0/0) 添力卩量0. 664 g [stiffness of, except for using zirconium sulfate instead [this 0. 0234G sulfate Noreminikumu (IV) (4 hydrates) of Example 1 Polytri in exactly the same way Methylene ether glycol was obtained. The results are shown in Table 1.
[表 1] [table 1]
Figure imgf000012_0001
本発明方法によれば、高重合度のポリエーテルポリオールを高収率で得ることがで きる。
Figure imgf000012_0001
According to the method of the present invention, a polyether polyol having a high degree of polymerization can be obtained in a high yield.

Claims

請求の範囲 The scope of the claims
1, 3—プロパンジオールを 50モル%以上含有するポリオールの脱水縮合反応によ りポリエーテルポリオールを製造するに際し、 4族及び 13族からなる群から選ばれる 少なくとも一種の金属の化合物と酸触媒との存在下に反応を行うことを特徴とするポ リエーテルポリオールの製造方法。  In producing a polyether polyol by a dehydration condensation reaction of a polyol containing 1,3-propanediol at 50 mol% or more, at least one compound selected from the group consisting of Group 4 and Group 13 and an acid catalyst A method for producing a polyether polyol, wherein the reaction is carried out in the presence of.
原料として用いるポリオールに対し、金属化合物の存在量が金属原子換算として 0 . 01モル%以上である請求項 1に記載のポリエーテルポリオールの製造方法。  2. The method for producing a polyether polyol according to claim 1, wherein the abundance of the metal compound is 0.01 mol% or more in terms of metal atom with respect to the polyol used as a raw material.
反応を 120°C以上 250°C以下で行うことを特徴とする請求項 1または 2に記載のポ リエーテルポリオールの製造方法。  3. The method for producing a polyether polyol according to claim 1, wherein the reaction is performed at 120 ° C. or more and 250 ° C. or less.
PCT/JP2006/309469 2005-05-13 2006-05-11 Method for producing polyether polyol WO2006121111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005140716 2005-05-13
JP2005-140716 2005-05-13

Publications (1)

Publication Number Publication Date
WO2006121111A1 true WO2006121111A1 (en) 2006-11-16

Family

ID=37396619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309469 WO2006121111A1 (en) 2005-05-13 2006-05-11 Method for producing polyether polyol

Country Status (1)

Country Link
WO (1) WO2006121111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052697A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Chemical Corporation Polyalkylene ether glycol and process for production thereof
WO2008118495A1 (en) * 2007-03-27 2008-10-02 E. I. Du Pont De Nemours And Company Lower-color polytrimethylene ether glycol using zero-valent metals
EP2483328A2 (en) * 2009-09-30 2012-08-08 E. I. Du Pont De Nemours And Company Polytrimethylene ether glycol or copolymers thereof having improved color and processes for their preparation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140120A (en) * 1974-06-14 1976-04-03 Eritsuku Rosufujeru Rorufu Karaashashinkara tokuchorinkakuomotomeruhoho
JPS61123630A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Production of polyalkylene ether polyol
JP2003517071A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Formation of polytrimethylene ether glycol and its copolymer
JP2003517082A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Continuous process for the preparation of polytrimethylene ether glycol
WO2004048440A1 (en) * 2002-11-22 2004-06-10 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2006001482A1 (en) * 2004-06-29 2006-01-05 Mitsubishi Chemical Corporation Process for producing polyether polyol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140120A (en) * 1974-06-14 1976-04-03 Eritsuku Rosufujeru Rorufu Karaashashinkara tokuchorinkakuomotomeruhoho
JPS61123630A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Production of polyalkylene ether polyol
JP2003517071A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Formation of polytrimethylene ether glycol and its copolymer
JP2003517082A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Continuous process for the preparation of polytrimethylene ether glycol
WO2004048440A1 (en) * 2002-11-22 2004-06-10 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2006001482A1 (en) * 2004-06-29 2006-01-05 Mitsubishi Chemical Corporation Process for producing polyether polyol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052697A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Chemical Corporation Polyalkylene ether glycol and process for production thereof
WO2008118495A1 (en) * 2007-03-27 2008-10-02 E. I. Du Pont De Nemours And Company Lower-color polytrimethylene ether glycol using zero-valent metals
EP2483328A2 (en) * 2009-09-30 2012-08-08 E. I. Du Pont De Nemours And Company Polytrimethylene ether glycol or copolymers thereof having improved color and processes for their preparation
EP2483328A4 (en) * 2009-09-30 2014-09-24 Du Pont Polytrimethylene ether glycol or copolymers thereof having improved color and processes for their preparation

Similar Documents

Publication Publication Date Title
US20050272911A1 (en) Method for producing polyether polyol
JP2003517071A (en) Formation of polytrimethylene ether glycol and its copolymer
JP5001831B2 (en) Process for producing α-hydroxy-ω-glycidyl ether
JP2004182974A (en) Producing method of polyether polyol
JP4976422B2 (en) Production of polytrimethylene ether glycol
JP5476568B2 (en) Method for producing thiophene derivative
US20160002196A1 (en) Method for producing glycolide
CA2360125C (en) Purification of recycled 1,3-propanediol during polyester preparation
WO2006121111A1 (en) Method for producing polyether polyol
JP2006342344A (en) Method for producing polyether polyol
JP3540822B2 (en) Method for producing glycerol carbonate
JP2004189898A (en) Method of manufacturing polyethylene terephthalate
WO2004099110A1 (en) Method for producing 1,3-propane diol
TW201245277A (en) Processes for preparing polytrimethylene ether glycol
US6384241B2 (en) Purified salt of β-hydroxyethoxy acetic acid, purified 2-p-dioxanone, and manufacturing method therefor
CN102652132B (en) Depolymerization of oligomeric cyclic ethers
JP2000336133A (en) New oxetanesulfonic ester, oxetane-derived novolak resin using the same and its production
JP3755629B2 (en) Method for producing phenol aralkyl resin
JP4446651B2 (en) Method for producing high purity α-hydroxy-ω-glycidyl ether
JP2004352713A (en) Method for producing 1,3-propanediol
JP2006089716A (en) Method for producing polyether polyol
JPH0558012B2 (en)
JP2010222373A (en) Method for producing glycidyloxybutyl acrylate
WO1999016762A1 (en) Process for purifying tetrahydrofurans used as starting material for polyether polyols
JP2005247810A (en) Epoxy group-terminated (meth)acrylate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746278

Country of ref document: EP

Kind code of ref document: A1