JP2004189898A - Method of manufacturing polyethylene terephthalate - Google Patents

Method of manufacturing polyethylene terephthalate Download PDF

Info

Publication number
JP2004189898A
JP2004189898A JP2002359817A JP2002359817A JP2004189898A JP 2004189898 A JP2004189898 A JP 2004189898A JP 2002359817 A JP2002359817 A JP 2002359817A JP 2002359817 A JP2002359817 A JP 2002359817A JP 2004189898 A JP2004189898 A JP 2004189898A
Authority
JP
Japan
Prior art keywords
depolymerization
pet
bhet
terephthalate
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002359817A
Other languages
Japanese (ja)
Inventor
Masanori Inuzuka
正憲 犬塚
Hiroshi Ishikawa
石川  浩
Masakazu Sakano
正和 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2002359817A priority Critical patent/JP2004189898A/en
Publication of JP2004189898A publication Critical patent/JP2004189898A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-quality regenerated PET by reducing the weight ratio of the DEG component in obtained PET. <P>SOLUTION: The method has a depolymerizing process of forming crude bis-(β-hydroxyethyl)terephthalate(BHET) by reacting a polyethylene terephthalate(PET) raw material with ethylene glycol in the final stage to depolymerize the PET raw material, a purifying process of forming purified BHET by purifying the crude BHET at least through distillation and a polymerizing process of obtaining PET by adding a polymerization catalyst to the purified BHET to polymerize it. In the polymerizing process, a specified amount of terephthalic acid is added. The method permits increasing the amount of regenerated PET produced and lowering the weight ratio of the DEG component in the regenerated PET according to the amount of regenerated PET increased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はポリエチレンテレフタレート(以下、PETともいう)の製造方法に関し、より詳しくはPETを解重合することにより得られたビス−(β−ヒドロキシエチル)テレフタレ−ト(以下、BHETともいう)を原料とする、PETの製造方法に関する。
【0002】
【従来の技術】
PETは化学的安定性に優れ、軽量かつ適度な強度をもつため、飲料ボトルやフィルム、衣料用繊維等に好適に使用されている。それとともにPET製品の廃棄物(以下、廃PETという)も増加しており、資源回収及びゴミの減量化の観点からも、廃PETをケミカルリサイクルし、リサイクル品も新品のPETと同様に使用できることが求められている。
【0003】
PETのケミカルリサイクルとして、廃PETを直接エチレングリコール(以下、EGともいう)と反応させて解重合することによりPETの中間原料であるBHETを生成し、得られた粗製BHETに対して、脱色・脱イオン・EG除去等を行った後に蒸留操作を行って精製BHETとし、これを再生PET原料として重縮合する方法が知られている(例えば、特許文献1参照。)。
【0004】
また、高結晶化状態にあるPETでも効率的に分解することのできるPETの解重合方法として、PETとBHET及び/又はその低縮合物とを加熱して予備解重合し、得られた予備解重合生成物をEGと反応させる方法が知られている(例えば、特許文献2参照。)。こうして予備解重合及びEGによる解重合を経て得られた粗製BHETは、脱色・脱イオン・EG除去工程等を経て蒸留操作により精製BHETとされた後、重縮合により再生PETとされる。
【0005】
なお、粗製BHETを精製するための従来の蒸留操作では、精製BHETを留出した後の蒸留残渣は廃棄していた。そこで、本出願人は、オリゴエチレンテレフタレートを含む物質によってPETを予備解重合した後、得られた予備解重合生成物をEGとの反応により解重合して粗製BHETとし、しかもこの粗製BHETを蒸留により精製する際に発生する蒸留残渣を、上記オリゴエチレンテレフタレートを含む物質に用いるという、極めて効率的なPETのリサイクル方法について、既に特許出願している(特願2002−124502号)。この方法によれば、従来は廃棄していた蒸留残渣の有効利用を図れるとともに、解重合に要するEGの使用量を低減させることができる。
【0006】
【特許文献1】
国際公開第01/29110 A1号パンフレット(第4−6頁、第11−13頁)
【特許文献2】
特開2001−48834号公報(第3−5頁)
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の方法により得られる精製BHETは、予備解重合工程やEGによる解重合工程の他、精製工程等でEGを含む状態で繰り返し加熱されるためか、正確な原因は不明であるが、不純物としてのジエチレングリコール(以下、DEGと略す。)成分が増加する傾向があった。このため、このDEG成分を含む精製BHETを重縮合して得られたPETは、PET中に含まれるDEG成分の重量比の高いもの(5重量%程度)となり、PETの軟化点が低下する等、品質上の問題があった。
【0008】
本発明は上記実情に鑑みてなされたものであり、得られるPET中のDEG成分の重量比を低下させることのできるPETの製造法を提供することを解決すべき技術課題とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明のポリエチレンテレフタレートの製造方法は、ポリエチレンテレフタレート原料を最終的にはエチレングリコールと反応させて解重合することにより、粗製BHETを得る解重合工程と、上記粗製BHETを少なくとも蒸留操作することにより精製して精製BHETを得る精製工程と、上記精製BHETに重合触媒を加えて重合することによりポリエチレンテレフタレートを得る重合工程とを備えたポリエチレンテレフタレートの製造方法において、上記重合工程でテレフタル酸を所定量添加することを特徴とするものである。
【0010】
このPETの製造方法では、重合工程で精製BHETを重合する際に、重合触媒の他に所定量のテレフタル酸を添加することにより、得られる再生PETの生成量を増やすことができ、その結果再生PETの増量分に応じて該再生PET中のDEG成分の重量比(再生PET全体の重量に対するDEG成分の重量)を低下させることができる。したがって、本発明の製造方法によれば、軟化点が低下する等の品質低下を招くことがなく、高品質のPETを得ることができる。
【0011】
好適な態様において、前記テレフタル酸の添加量は、前記精製BHETのモル数以下であり、かつ、該精製BHETに不可避的に含有されるジエチレングリコール成分のモル数以上である。
【0012】
好適な態様において、前記解重合工程は、前記ポリエチレンテレフタレート原料を、BHET及びそのオリゴマー並びにオリゴエチレンテレフタレートのうちの少なくとも一種を含む予備解重合用物質によって予備解重合して予備解重合生成物を得る予備解重合工程と、該予備解重合生成物を前記エチレングリコールよって解重合して前記粗製BHETを得る本解重合工程とからなる。
【0013】
ここに、上記オリゴエチレンテレフタレートとは、下記化学式で示されるものをいう。
【0014】
−[OCH2 CH2 OCOC6 4 CO]n 、(nは2〜20程度)
この態様によれば、解重合に要する反応時間の短縮化を図ることができるとともに、解重合に使用するEG量や触媒量を低減させることができる。
【0015】
好適な態様において、前記予備解重合工程では、前記予備解重合用物質中に含まれるBHET及びそのオリゴマー並びにオリゴエチレンテレフタレートの総量が、前記ポリエチレンテレフタレート原料1重量部に対して0.3〜3重量部となるように、該ポリエチレンテレフタレート原料に対して該予備解重合用物質を用いる。
【0016】
好適な態様において、前記予備解重合用物質は、前記精製工程以前に実施した先の精製工程で副生された既得蒸留残渣を少なくとも一部に含む。
【0017】
この態様によれば、従来は廃棄していた蒸留残渣の有効利用を図ることができるとともに、廃棄物の発生量を低減させることができる。
【0018】
【発明の実施の形態】
本発明のPETの製造方法は、解重合工程と、精製工程と、重合工程とを備えている。
【0019】
上記解重合工程では、ポリエチレンテレフタレート原料を最終的にはエチレングリコールと反応させて解重合することにより、粗製BHETを得る。
【0020】
この重解合工程で用いる上記PET原料としては、飲料ボトル、フィルムや衣料用繊維等の新品のPET製品を製造する段階で発生する屑PETや、PET製品としての飲料ボトル等を使用した後の回収PETを好適に使用することができる。また、テレフタル酸やEG以外の成分(例えば、製品の用途に応じて適宜加えられるイソフタル酸等)が5モル%程度共重合されたPETを使用することもできる。
【0021】
上記PET原料の形状としては特に制限はなく、解重合槽に投入しうる形状であれば如何なる形状でもよい。例えば、回収PETのそのままの製品形状でも、フィルムやボトル等を裁断したフレーク状のものでもよい。
【0022】
この重解合工程では、PET原料を直接EGと反応させて解重合することによりPETの中間原料であるBHETを生成してもよいが、PET原料をいったん予備解重合し、得られた予備解重合生成物をEGによって解重合することが好ましい。こうすれば、反応時間の短縮化を図ることができるとともに、解重合に使用するEG量や触媒量を低減させることができる。
【0023】
すなわち、上記解重合工程は、上記ポリエチレンテレフタレート原料を、BHET及びそのオリゴマー並びにオリゴエチレンテレフタレートのうちの少なくとも一種を含む予備解重合用物質によって予備解重合して予備解重合生成物を得る予備解重合工程と、該予備解重合生成物をEGによって解重合して粗製BHETを得る本解重合工程とからなることが好ましい。
【0024】
ここに、上記予備解重合工程で用いる上記予備解重合用物質としては、公知の任意の方法で生成されたBHET及び/又はそのオリゴマーや、公知の任意の方法で生成されたオリゴエチレンテレフタレートを用いることもできるが、当該精製工程以前に実施した先の精製工程(当該予備解重合工程を実施する当該サイクル以前に実施した先のサイクルにおける精製工程)で副生された既得蒸留残渣を少なくとも一部に含むものを用いることが好ましい。こうすれば、従来は廃棄していた蒸留残渣の有効利用を図ることができるとともに、廃棄物の発生量を低減させることができる。
【0025】
なお、精製工程で粗製BHETを蒸留操作により精製する際に副生される蒸留残渣は、主としてエチレンテレフタレートあるいはこの低縮合物からなり、その組成の一例を挙げると、エチレンテレフタレートが60〜80重量%程度(約70重量%)、エチレンテレフタレートダイマーが15〜25重量%程度(約20重量%)、及びエチレンテレフタレートトリマーを含むその他の物質が1〜15重量%程度(約10重量%)の割合で混在する物質である。
【0026】
また、この予備解重合工程で用いる予備解重合用物質としては、当該予備解重合工程以前に実施した先の予備解重合工程(当該予備解重合工程を実施する当該サイクル以前に実施した先のサイクルにおける予備解重合工程や、別途単独で先に実施した予備解重合工程)で得られた既得予備解重合生成物を少なくとも一部に含むものを用いることもできる。
【0027】
なお、予備解重合工程で得られる予備解重合生成物は、オリゴエチレンテレフタレート(エチレンテレフタレートのオリゴマー)を主成分とする物質である。
【0028】
このように、上記予備解重合用物質としては、好適には、先の精製工程で副生された既得蒸留残渣若しくは先の予備解重合工程で得られた既得予備解重合生成物を単独で又はこれらを混合して用いたり、又はこれらに公知の任意の方法で生成されたBHET(及び/又はそのオリゴマー)を混合したもの用いたりすることができる。
【0029】
なお、PETの製造工程に付随して行われるEG(このEGはPETの製造時に副生したもの)の精製蒸留時に副生する蒸留残渣もBHET及びそのオリゴマー並びにオリゴエチレンテレフタレートの少なくとも一つを含んでいる限り使用することができる。
【0030】
また、上記予備解重合用物質には、BHET及びそのオリゴマー並びにオリゴエチレンテレフタレート以外に、EGや他成分が少量共重合された改質PET等が含まれていてもよい。ただし、BHET及びそのオリゴマー並びにオリゴエチレンテレフタレート以外の物質が予備解重合用物質中に含まれる場合の許容量は、該予備解重合用物質100重量部に対して1〜5重量部未満である。
【0031】
ここに、上記既得蒸留残渣及び上記既得予備解重合生成物の少なくとも一つを上記予備解重合用物質に用いる場合は、先の精製工程や先の予備解重合工程での溶融状態を保持したままの既得蒸留残渣や既得予備解重合生成物を用いることが好ましい。溶融状態にある既得蒸留残渣や既得予備解重合生成物を溶融状態のままで用いれば、予備解重合する際に所定温度に加熱するための手間やエネルギを低減させることができる。
【0032】
また、上記既得蒸留残渣及び上記既得予備解重合生成物の少なくとも一つを上記予備解重合用物質に用いる場合は、PETの解重合反応をより促進させる観点より、BHET及びそのオリゴマーのうちの少なくとも一種であって該既得蒸留残渣や該既得予備解重合生成物よりも平均重縮合度が小さいものを加えることが好ましい。
【0033】
上記予備解重合工程では、上記予備解重合用物質中に含まれるBHET及びそのオリゴマー並びにオリゴエチレンテレフタレートの総量が、上記PET原料1重量部に対して0.3〜3重量部となるように、該PET原料に対して該予備解重合用物質を用いることが好ましい。特に好ましくは、PET原料1重量部に対して、予備解重合用物質中に含まれるBHET及びそのオリゴマー並びにオリゴエチレンテレフタレートの総量を0.5〜2重量部とすることである。PET原料に対する予備解重合用物質の使用量を少なくし過ぎると、予備解重合の開始時に、溶融状態の予備解重合用物質に固体であるPETが溶け込みにくくなることから、該予備解重合が進んで攪拌が容易に可能となるまでに時間が掛かるだけでなく、該予備解重合が完了して反応物が均一の溶液になるまでに時間が掛かることとなり、予備解重合の反応時間が極端に長くなってしまうおそれがある。また、得られる予備解重合生成物の平均重縮合度が大きくなってしまい、予備解重合の効果の不十分な生成物を本解重合工程に用いることとなり、好ましくない。一方、PET原料に対する予備解重合用物質の使用量を多くし過ぎれば、反応容器が過大となり、経済的に有利でない。
【0034】
また、本発明の解重合工程では、従来から公知の解重合触媒を用いることができる。この解重合触媒としては、エステル交換反応を促進する化合物であれば如何なるものでもよく、例えばアルカリ金属の水酸化物、炭酸塩等を挙げることができる。より具体的には、苛性ソーダ、炭酸ナトリウム、ナトリウムメチラート等を用いることができる。
【0035】
上記解重合触媒の添加時期は、PET原料を直接EGにより解重合させる場合はPET原料をEGにより解重合させる反応の開始時までの段階であればよく、また、上記予備解重合工程を実施する場合は予備解重合生成物をEGにより解重合させる反応の開始時までの段階であればよい。
【0036】
解重合触媒の添加量は、PET原料を直接EGにより解重合させる場合はPET原料1重量部に対して0.01〜0.0001重量部とすることが好ましく、また、上記予備解重合工程を実施する場合はPET原料及び予備解重合用物質(この予備解重合用物質中に含まれるBHET及びそのオリゴマー並びにオリゴエチレンテレフタレートの総量)の総量1重量部に対して0.01〜0.0001重量部とすることが好ましい。この解重合触媒の添加量が0.0001重量部よりも少ないと十分な触媒効果が発揮されず、逆に0.01重量部を超えて添加してもそれに見合う効果の向上を期待できないばかりでなく、精製工程に悪影響を及ぼすことがある。
【0037】
上記予備解重合工程を実施するには、まず上記予備解重合用物質を所定量予備解重合槽に仕込み、加熱して液状となす。加熱温度は該物質が液状となる温度以上であればよい。予備解重合用物質が液状になる温度は、該予備解重合用物質中に含まれている物質の重縮合度によって変化するが、120〜250℃程度とすることができる。なお、前述したように溶融状態にある既得蒸留残渣等を予備解重合用物質に用いる場合は、既に液状となっているので、予備解重合槽の加熱温度を200℃程度以下とすることができる。
【0038】
次いで、液状となった予備解重合用物質に所定量のPET原料を添加し予備解重合を進める。このときの予備解重合温度は120〜250℃程度とすることができる。なお、予備解重合温度が120℃よりも低いと、生成する粗BHETが固化したり、解重合反応の速度が小さくなったりして、好ましくない。また、予備解重合の反応時間に制限はないが、PETの添加後、このPETが見掛け上完全に反応液中に溶け込んだ状態となった時点以降1時間程度、同温度と攪拌を保てば十分である。
【0039】
こうして予備解重合工程を実施した後は、得られた予備解重合生成物をEGによって解重合して粗製BHETを得る本解重合工程を実施する。
【0040】
この本解重合工程を実施するには、予備解重合に用いた反応槽(予備解重合槽)に予め加熱しておいたEGの所定量を添加して、あるいはこの工程を実施するために用意され、所定量のEGが仕込まれて加熱された状態にある別の反応槽(本解重合槽)へ予備解重合生成物の所定量を添加して解重合を進めればよい。
【0041】
このとき添加されるEGの量は、理論的には、該反応に供する予備解重合生成物中のEG成分及び添加されるEG中のEG成分の総量と該予備解重合生成物中のテレフタル酸成分とのモル比が2:1となる量であるが、該解重合反応を円滑に行う為及び次の精製工程を円滑に実施する為に、上記理論量の2〜10倍量のEGを添加することが好ましく、上記理論量の4〜8倍量のEGを添加することが特に好ましい。
【0042】
本解重合工程における反応温度は180〜250℃の範囲が好ましい。180℃未満の温度では、反応速度が小さくなり好ましくない。一方、250℃を超える温度にすると、EGの常圧下の沸点を大きく超えるため、反応装置の耐圧上の問題から好ましくない。
【0043】
本解重合工程における反応時間は反応温度によって変化するが、予備解重合生成物と添加EGとが均一の液体となったことが確認された後3時間程度で十分である。
【0044】
なお、上記予備解重合工程を実施することなく、PET原料を直接EGと反応させて解重合することによりBHETを生成する場合も、上記本解重合工程に準ずる方法により実施することができる。
【0045】
こうして得られた粗製BHETのEG溶液は、次の精製工程で少なくとも蒸留操作されることにより精製されて精製BHETとされる。
【0046】
ここに、上記粗製BHETのEG溶液中には、着色剤や添加物等、PET原料中に含まれていた不純物が残存している。これらの不純物を残存させたまま蒸留精製すると、得られる精製BHETは黄褐色に変色することがあり、これを次の重縮合工程で重縮合しても製品に用いることができる高品質のPETを得ることができない。
【0047】
そこで、精製工程では、解重合工程で得られた粗製BHETのEG溶液から着色剤、アニオン・カチオン等を除去する脱色・脱イオン工程を、蒸留操作により精製する蒸留工程の前に実施することが好ましい。
【0048】
上記脱色工程では、上記粗製BHETのEG溶液を公知の脱色剤(例えば活性炭や白土)に接触させることにより、脱色することができる。
【0049】
上記脱イオン工程では、上記粗製BHETのEG溶液をカチオン交換樹脂及び/又はアニオン交換樹脂と接触させることにより、該粗製BHETのEG溶液から金属カチオンとその対アニオンを除去することができる。
【0050】
ここに、粗製BHET中のイオン(アニオン及びカチオン)含有量が100ppm以上であると、蒸留精製時に悪影響を及ぼすおそれがある。このため、上記脱イオン工程では、粗製BHET中のイオン含有量が50ppm以下となるように脱イオンすることが好ましい。
【0051】
上記蒸留操作により精製する蒸留工程では、粗製BHETのEG溶液からEGを除去する方法は特に限定されない。しかし、BHETの化学的な性質上、出来る限り低温でかつ出来る限り短時間で蒸留しなければ、蒸留釜に滞留中や蒸発中に望まぬ重合が進むおそれがある。そこで、この蒸留工程では、より短時間でかつより低温でEGを除去すべく、分子蒸留器を用いることが好ましい。このとき、分子蒸留器内の圧力は30Pa以下、蒸留温度は220℃以下、蒸留器内でのBHETの滞留時間は1分以内とすることが好ましい。このような条件で分子蒸留すれば、粗製BHETのEG溶液の仕込量を調整することにより、仕込まれたBHETの約90重量%を精製BHETとして単離することが可能となる。
【0052】
ここに、上記蒸留工程で、精製BHETの回収率を高くし過ぎると、すなわち蒸留残渣を少なくし過ぎると、蒸留残渣中の不純物の濃度が高くなりすぎ、場合によっては重合反応を起こしてPETが生成されてしまう。そして、このPETによって蒸留器の抜出口付近が閉塞され、蒸留器が故障する等のトラブルが発生するおそれがあるため、蒸留残渣をある程度残しておくことが好ましい。一方、前述のとおり、蒸留残渣は上記予備解重合工程で上記予備解重合用物質として利用することができ、予備解重合用物質として利用する場合は蒸留残渣中のBHET成分の含有量が多い方が予備解重合をより短時間で完了させることができるが、蒸留残渣中のBHET成分の含有量を多くし過ぎると精製BHETの回収率が低下してしまう。これらを比較考慮して、精製BHETの回収率は70〜90重量%程度とすることが好ましく、80重量%程度とすることが特に好ましい。なお、残りのBHET成分は高沸点の残渣と共に釜残として蒸留器底部に残る。
【0053】
こうして得られた精製BHETは、次の重合工程で、重合触媒を加えて重合することにより再生PETとされる。
【0054】
この重合工程で用いる重合触媒としては特に限定されないが、三酸化アンチモンや二酸化ゲルマニウム等を好適に用いることができる。その添加量は使用する触媒の種類によって異なるが、例えば三酸化アンチモンを使用する場合には、重合工程で精製されるPETに対して8ミリモル%程度、二酸化ゲルマニウムの場合には30ミリモル%程度で十分である。
【0055】
ここに、公知の方法により製造されるPETには、その製造中に不可避的に副生されるDEG成分が混在している。このため、本発明で用いるPET原料にもDEG成分が含まれている。そして、このPET原料を用いて、上記解重合工程及び上記精製工程を実施すると、正確な理由は定かでないが、これらの工程中にDEGの副生が進む。このため、上記精製工程で得られた精製BHETには、PET原料における含有率よりも高い含有率でDEG成分が含まれている。なお、このDEG成分中には、DEGとテレフタル酸とからなるエステル化合物も含まれている。そして、このDEG成分を多く含んだ精製BHETを公知の重合方法で重合すると、得られるPET中にはDEG成分が5重量%以上含まれてくる可能性があるので、前述のとおり軟化点の低下等の品質劣化が著しくなる。
【0056】
そこで、本発明に係る重合工程では、上記精製BHETに上記重合触媒を加えて重合する際に、テレフタル酸を所定量添加することを特徴とする。このように重合工程でテレフタル酸を添加することにより、得られる再生PETの生成量を増やすことができ、その結果再生PETの増量分に応じて該再生PET中のDEG成分の重量比(再生PET全体の重量に対するDEG成分の重量)を低下させるできる。したがって、本発明の製造方法によれば、軟化点が低下する等の品質低下を招くことがなく、高品質のPETを得ることができる。
【0057】
すなわち、BHET1モル中には2モル分のEG単位と1モル分のテレフタル酸単位とが含まれている。一方、生成しようとするPETの繰り返し単位には1モル分のEG単位と1モル分のテレフタル酸単位とが含まれている。このため、BHETを公知の方法でそのまま高温、高真空下で重合触媒により重縮合してPETを製造する場合には、理論的には、BHET1モル当たり、1モル分のPET(PETの繰り返し単位の分子量に等しいグラム数のPETの量を1モルとして計算している。以下、同様。)が生成されるとともに、1モルのEGが副生されることになる。
【0058】
この点、本発明に係る重合工程のように、上記精製BHETを重合する際にテレフタル酸が添加されると、理論的には、BHET1モル当たり、BHET1モル中に含まれる2モル分のEG単位及び1モル分のテレフタル酸単位と、添加された1モル分のテレフタル酸とが反応することにより、2モル分のPETが生成されることになる。このため、重合に供する精製BHET量及び添加されるテレフタル酸の添加量に応じて、得られる再生PETの生成量を増やすことができ、その結果再生PETの増量分に応じて該再生PET中のDEG成分の重量比を低下させるできる。
【0059】
このとき、テレフタル酸の添加量の下限は、上記精製BHETに不可避的に含有されているDEG成分のモル数とすることが好ましい。テレフタル酸の添加量が上記精製BHETに含有されているDEG成分のモル数よりも少ないと、再生PET中のDEG成分の重量比を低下させる効果が小さくなり、好ましくない。
【0060】
一方、テレフタル酸の添加量の上限は、上記精製BHETのモル数とすることが好ましい。テレフタル酸の添加量が上記精製BHETのモル数よりも多いと、生成されるPETにおいてTA末端(テレフタル酸の末端)の数が多くなりすぎ、生成されるPETの品質低下が生じるため、好ましくない。
【0061】
また、上述のとおり、BHET1モル中にはEG単位が2モル分含まれている一方、PETの繰り返し単位にはEG単位が1モル分含まれており、BHETを公知の方法でそのまま高温、高真空下で重縮合してPETを製造する場合には、BHET1モル当たり1モル分のEG単位に相当するEGが副生され、これを系外に除去する必要がある。この点、本発明に係る重合工程では、添加されたテレフタル酸1モル分と副生されるはずであったEG1モル分とが反応して1モル分のPETが生成され、EGの副生が回避される。このため、テレフタル酸の添加量に応じて、副生されるEGの量を低減させることができる。このとき、重合に供する精製BHETのモル数と添加されるテレフタル酸のモル数とが同等であれば、理論的には、副生されるEG量を零とすることが可能となる。したがって、テレフタル酸の添加量としては、副生されるEG量をより低減させる観点からは、重合に供する精製BHETのモル数と同等のモル数とすることが最適となる。
【0062】
なお、上記重合工程における温度や真空度等の反応条件は、特に限定されず、公知の重合方法と同程度とすることができる。
【0063】
また、上記重合工程におけるテレフタル酸の添加時期としては、BHETの重合開始時以前であればいつでもよく、例えば重合用の反応器に上記精製BHETの一部を仕込み、加熱溶解させたところへ、残余の上記精製BHETに予めテレフタル酸を混合させたスラリー状の混合物を一気に、又は徐々に添加して重合を進めることができる。
【0064】
上述の通り、本発明は廃棄物或いは屑としてしか扱えなかったPETから高品質の再生PETを効率的に製造する方法であり、産業上或いは社会的に要求されている廃棄物低減という目的に合致する極めて優れた方法である。
【0065】
【実施例】
以下、実施例により、本発明を更に詳しく説明するが本発明はこれらに限定されるものではない。なお、以下の記述において「部」として示すものは特に限定しない限り、重量部を示す。
【0066】
(実施例1)
本実施例は、以下に示す予備解重合工程、本解重合工程、精製工程及び重合工程を実施することにより、回収PETボトルから再生PETを製造するものである。
【0067】
<出発原料の準備>
まず、使用済みの回収PETボトルを公知の方法で粉砕、異樹脂等の除去及び脱水処理することにより、PETフレークとし、このPETフレークを後述する予備解重合工程で用いるPET原料(A)とした。
【0068】
一方、テレフタル酸とEGとを1:1.4のモル比でエステル化重縮合することにより、BHET約35重量%と、重縮合度2〜4のBHETのオリゴマー約65%とを含む予備解重合用物質(B)を準備した。
【0069】
<予備解重合工程>
そして、ステンレス製予備解重合反応容器に上記予備解重合用物質(B)190部を入れ、約190℃まで加熱することによって溶解させた後、攪拌下に上記PET原料(A)384部を投入した。同温度で予備解重合反応を1.5時間続け、反応を終了した。この反応器には還流器をセットしていたので、反応中実質的に系外へ除去されるものはなかった。こうして予備解重合生成物(C)574部を得た。
【0070】
<本解重合工程>
次に、上記予備解重合生成物(C)の半量287部を温度を低下させずに別の容器(本解重合反応容器)へ移した。そして、前もって180℃まで加熱しておいたEG300部と、解重合触媒としての炭酸ソーダ3部とを本解重合反応容器に加え、攪拌下に温度を220℃に保ちながら2時間解重合反応を行うことにより、粗製BHETのEG溶液(D)を得た。
【0071】
この粗製BHETのEG溶液(D)の一部を取出し、分析したところ、BHET約360部、EG215部、及びその他12部からなり、総量587部であった。なお、このその他の部分は殆ど解重合が不十分なオリゴエチレンテレフタレートであった。
【0072】
<精製工程>
上記粗製BHETのEG溶液(D)587部を80℃、大気圧の条件下で活性炭を充填した塔に通して脱色処理した後、同じ条件下でカチオン交換塔及びアニオン交換塔を通して脱イオン処理した。こうして脱色・脱イオン処理した粗製BHETのEG溶液を分子蒸留器に通して先ずEGの蒸留除去を行い、次いでBHETそのものの蒸留を行って精製BHET(E)を得た。得られた精製BHETの分量、回収率及びDEG含有量等を表1に示す。
【0073】
【表1】

Figure 2004189898
【0074】
なお、イオン含有量はイオンクロマトグラフィーによる分析値である。また、蒸留残渣は、エチレンテレフタレートが約70重量%、エチレンテレフタレートダイマーが約20重量%、及びエチレンテレフタレートトリマーを含むその他の物質が約10重量%の割合で混在する物質であった。
【0075】
<重合工程>
上記精製BHET(E)を用いて以下に示す方法にて重合した。
【0076】
窒素置換されたステンレス製溶解容器に上記精製BHET(E)80部を入れ、160℃まで加熱してこのBHETを完全に溶解した後、市販の触媒グレードの三酸化アンチモン0.03部を追加し、この三酸化アンチモン粉末が溶解したことを確認後、テレフタル酸166部を更に追加し、均一の混合物(F)とした。
【0077】
一方、窒素置換された別のステンレス製重合用容器に上記精製BHET(E)174部を入れ、攪拌下に130℃まで加熱溶解させ、そこへ上記混合物(F)を徐々に添加した。混合されたテレフタル酸が完全に分散された後、加熱を強め徐々に内温を上げ、この混合物が透明な液体となるまで常圧下に加熱を続けた。透明となつた時点での内温は240℃であり、大部分水からなる低沸成分が蒸留除去されたが、除去されたものの中にはEGは実質的に含まれていなかった。また、上記混合部(F)の添加以降、反応に要した時間は約1時間であった。
【0078】
その後、系の圧力を徐々に減じて最終的に15Paまで低下し、60分経過後、重合反応を終了させた。
【0079】
こうして得られたPET(G)の一部350部を取出し、35℃のオルソクロロフェノール中に1.2g/100mlの濃度でPETを添加したときの粘度、カラーマシンによる色調b値、及びこのPET中に含まれるDEG成分の含有率を調べた。その結果を表2に示す。なお、粘度はオルソクロロフェノールの粘度との対数粘度で示している。また、色調b値は、色差計で測定した値でASTM−D1482−57Tによる表示法で示している。
【0080】
【表2】
Figure 2004189898
【0081】
表2に示されるように、本実施例により得られた再生PETは、テレフタル酸とEGとの重縮合反応により得られた新品PETと同等以上の品質を有していた。
【0082】
(実施例2)
本実施例は、以下に示す予備解重合工程、本解重合工程、精製工程及び重合工程を実施することにより、回収PETボトルから再生PETボトルを製造するものである。
【0083】
<出発原料の準備>
まず、実施例1と同様に、使用済みの回収PETボトルからPETフレークを得て、このPETフレークの一部を後述する予備解重合工程で用いるPET原料(a)とした。
【0084】
一方、ステンレス反応容器にEG4,700部及び解重合触媒としての炭酸ソーダ7.0部を入れて密閉し、攪拌下に加熱をしながら上記PETフレーク1,920部を一気に加え、反応温度を210℃まで上げた。この時の圧力は0.2MPa・Gだった。その約2時間後には該PETフレークが完全にEGに溶解したが、更に同温度での攪拌と加熱を続け、ほぼ完全にPETがBHETに分解するまで反応を続けた。得られた反応物から不溶物を濾過して除いたところ、僅かに黄色に着色した透明な溶液が得られた。
【0085】
この溶液を80℃まで冷却し、大気圧下で活性炭を充填した塔に通して脱色処理した後、同じ条件下でカチオン交換塔及びアニオン交換塔を通して脱イオン処理した。
【0086】
こうして、粗製BHETのEG溶液6,420部を得た。この粗製BHET中に含まれるイオン含有量(金属カチオン及び対アニオン類の総量)は45ppmであった。
【0087】
次いで、上記粗製BHETのEG溶液を再度120℃まで加熱し、分子蒸留器を用いて、圧力200〜300Pa、温度140〜160℃にて蒸留し、単離しているEG約1,500部を蒸留除去した。除去後の混合溶液にはBHET2,460部が残留していた。この溶液を更に、分子蒸留器へ導入し、圧力10〜30Pa、温度190から220℃にて蒸留し、EG3,800部を更に除去し、BHET1970部を単離したところ、蒸留残渣490部が得られた。
【0088】
なお、この蒸留操作により得られた蒸留残渣は、エチレンテレフタレートが約70重量%、エチレンテレフタレートダイマーが約20重量%、及びエチレンテレフタレートトリマーを含むその他の物質が約10重量%の割合で混在する物質であった。
【0089】
そして、この既得蒸留残渣を後述する予備解重合工程で用いる予備解重合用物質(b)とした。
【0090】
<予備解重合工程>
予備解重合用物質(B)の代わりに予備解重合用物質(b)を用いること以外は、実施例1と同様にして、予備解重合生成物(c)574部を得た。
【0091】
<本解重合工程>
予備解重合生成物(C)の代わりに予備解重合生成物(c)を用いること及び添加するEG量を320部とする以外は、上記実施例1と同様にして、粗製BHETのEG溶液(d)を得た。
【0092】
この粗製BHETのEG溶液(d)の一部を取出し、分析したところ、BHET約365部、EG235部、及びその他7部からなり、総量607部であった。なお、このその他の部分は殆ど解重合が不十分なオリゴエチレンテレフタレートであった。
【0093】
<精製工程>
粗製BHETのEG溶液(D)587部の代わりに粗製BHETのEG溶液(d)を用いること以外は、上記実施例1と同様にして、精製BHET(e)を得た。得られた精製BHETの分量、回収率、DEG含有量等を表3に示す。
【0094】
【表3】
Figure 2004189898
【0095】
なお、蒸留残渣は、エチレンテレフタレートが約70重量%、エチレンテレフタレートダイマーが約20重量%、及びエチレンテレフタレートトリマーを含むその他の物質が約10重量%の割合で混在する物質であった。
【0096】
<重合工程>
上記精製BHET(e)を用いて以下に示す方法にて重合した。
【0097】
窒素置換されたステンレス製溶解容器に上記精製BHET(e)127部を入れ、130℃まで加熱してこのBHETを完全に溶解した後、市販の触媒グレードの二酸化ゲルマニウム0.03部を追加し、この二酸化ゲルマニウム粉末が溶解したことを確認後、テレフタル酸166部を更に追加し、均一の混合物(f)とした。
【0098】
一方、窒素置換された別のステンレス製重合用容器に上記精製BHET(e)127部を入れ、攪拌下に130℃まで加熱溶解させ、そこへ上記混合物(f)を徐々に添加した。混合されたテレフタル酸が完全に分散された後、加熱を強め徐々に内温を上げ、この混合物が透明な液体となるまで常圧下に加熱を続けた。透明となつた時点での内温は240℃であり、大部分水からなる低沸成分が蒸留除去されたが、除去されたものの中にはEGは実質的に含まれていなかった。また、上記混合部(f)の添加以降、反応に要した時間は約70分であった。
【0099】
その後、系の圧力を徐々に減じて最終的に19Paまで低下し、80分経過後、重合反応を終了させた。
【0100】
こうして得られたPET(g)の一部340部を取出し、35℃のオルソクロロフェノール中に1.2g/100mlの濃度でPETを添加したときの粘度、カラーマシンによる色調b値、及びこのPET中に含まれるDEG成分の含有率を調べた。その結果を表4に示す。
【0101】
【表4】
Figure 2004189898
【0102】
表4に示されるように、本実施例により得られた再生PETは、テレフタル酸とEGとの重縮合反応により得られた新品PETと同等以上の品質を有していた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing polyethylene terephthalate (hereinafter, also referred to as PET), and more particularly, to bis- (β-hydroxyethyl) terephthalate (hereinafter, also referred to as BHET) obtained by depolymerizing PET. And a method of manufacturing PET.
[0002]
[Prior art]
Since PET has excellent chemical stability, is lightweight and has appropriate strength, it is suitably used for beverage bottles, films, textiles for clothing, and the like. At the same time, waste of PET products (hereinafter referred to as waste PET) is increasing, and from the viewpoint of resource recovery and reduction of garbage, waste PET can be chemically recycled, and recycled products can be used like new PET. Is required.
[0003]
As a chemical recycling of PET, waste PET is directly reacted with ethylene glycol (hereinafter, also referred to as EG) and depolymerized to produce BHET which is an intermediate material of PET, and the obtained crude BHET is decolorized. A method is known in which after performing deionization and EG removal, a distillation operation is performed to obtain purified BHET, and this is polycondensed as a recycled PET raw material (for example, see Patent Document 1).
[0004]
In addition, as a method of depolymerizing PET that can efficiently decompose even PET in a highly crystallized state, PET and BHET and / or a low condensate thereof are heated to be preliminarily depolymerized, and the resulting preliminarily depolymerized polymer is obtained. A method of reacting a polymerization product with EG is known (for example, see Patent Document 2). The crude BHET obtained through the preliminary depolymerization and the depolymerization by EG is converted into purified BHET by a distillation operation through decolorization / deionization / EG removal steps and the like, and is then converted into regenerated PET by polycondensation.
[0005]
In the conventional distillation operation for purifying crude BHET, the distillation residue after distilling purified BHET was discarded. Therefore, the present applicant preliminarily depolymerizes PET with a substance containing oligoethylene terephthalate, depolymerizes the obtained predepolymerized product by reaction with EG to obtain crude BHET, and furthermore, distills this crude BHET by distillation. A patent application has already been filed for a highly efficient PET recycling method in which a distillation residue generated during purification by using as a substance containing oligoethylene terephthalate is used (Japanese Patent Application No. 2002-124502). According to this method, it is possible to effectively use the distillation residue conventionally discarded, and to reduce the amount of EG required for depolymerization.
[0006]
[Patent Document 1]
WO 01/29110 A1 pamphlet (pages 4-6, 11-13)
[Patent Document 2]
JP 2001-48834 A (pages 3 to 5)
[0007]
[Problems to be solved by the invention]
However, the exact cause of the purified BHET obtained by the above-described conventional method is unknown, probably because it is repeatedly heated in a state including EG in the purification step in addition to the preliminary depolymerization step and the depolymerization step using EG. The diethylene glycol (hereinafter abbreviated as DEG) component as an impurity tended to increase. Therefore, the PET obtained by polycondensation of the purified BHET containing the DEG component has a high weight ratio (about 5% by weight) of the DEG component contained in the PET, and the softening point of the PET decreases. There was a quality problem.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing PET that can reduce the weight ratio of the DEG component in the obtained PET.
[0009]
[Means for Solving the Problems]
The method for producing polyethylene terephthalate of the present invention for solving the above-mentioned problems includes a depolymerization step of obtaining a crude BHET by finally reacting a polyethylene terephthalate raw material with ethylene glycol to depolymerize, and at least distilling the crude BHET. A method for producing polyethylene terephthalate, comprising: a purification step of obtaining purified BHET by operation and a polymerization step of adding a polymerization catalyst to the purified BHET to obtain polyethylene terephthalate. It is characterized in that a predetermined amount of acid is added.
[0010]
In this method for producing PET, when a purified BHET is polymerized in the polymerization step, a predetermined amount of terephthalic acid is added in addition to the polymerization catalyst, so that the amount of regenerated PET obtained can be increased. The weight ratio of the DEG component in the recycled PET (the weight of the DEG component relative to the weight of the entire recycled PET) can be reduced according to the increase in the amount of the PET. Therefore, according to the production method of the present invention, high-quality PET can be obtained without causing deterioration in quality such as a decrease in softening point.
[0011]
In a preferred embodiment, the amount of the terephthalic acid added is equal to or less than the number of moles of the purified BHET, and equal to or more than the number of moles of the diethylene glycol component inevitably contained in the purified BHET.
[0012]
In a preferred embodiment, the depolymerization step comprises preliminarily depolymerizing the polyethylene terephthalate raw material with a predepolymerization material containing at least one of BHET and its oligomers and oligoethylene terephthalate to obtain a predepolymerization product A pre-depolymerization step; and a main depolymerization step of depolymerizing the pre-depolymerized product with the ethylene glycol to obtain the crude BHET.
[0013]
Here, the oligoethylene terephthalate refers to one represented by the following chemical formula.
[0014]
-[OCHTwoCHTwoOCOC6HFourCO]n , (N is about 2 to 20)
According to this aspect, the reaction time required for depolymerization can be reduced, and the amount of EG and catalyst used for depolymerization can be reduced.
[0015]
In a preferred embodiment, in the preliminary depolymerization step, the total amount of BHET and its oligomer and oligoethylene terephthalate contained in the substance for preliminary depolymerization is 0.3 to 3 parts by weight based on 1 part by weight of the polyethylene terephthalate raw material. The pre-depolymerization substance is used for the polyethylene terephthalate raw material so as to be a part.
[0016]
In a preferred embodiment, the material for pre-depolymerization includes at least a part of a previously obtained distillation residue by-produced in a previous purification step performed before the purification step.
[0017]
According to this aspect, it is possible to effectively use the distillation residue conventionally discarded, and it is possible to reduce the amount of waste generated.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing PET of the present invention includes a depolymerization step, a purification step, and a polymerization step.
[0019]
In the depolymerization step, the raw material of polyethylene terephthalate is finally reacted with ethylene glycol to depolymerize, thereby obtaining crude BHET.
[0020]
As the PET raw material used in this multiple disassembly step, beverage bottles, scrap PET generated at the stage of manufacturing new PET products such as films and clothing fibers, and beverage bottles as PET products after using the same are used. Recovered PET can be suitably used. Further, PET in which components other than terephthalic acid and EG (eg, isophthalic acid appropriately added depending on the use of the product) are copolymerized at about 5 mol% can also be used.
[0021]
The shape of the PET raw material is not particularly limited, and may be any shape as long as it can be put into the depolymerization tank. For example, the recovered PET may be used as it is, or may be in the form of a flake formed by cutting a film, a bottle, or the like.
[0022]
In this heavy disassembly step, BHET, which is an intermediate material of PET, may be produced by directly reacting the PET raw material with EG to depolymerize the PET raw material. Preferably, the polymerization product is depolymerized with EG. In this way, the reaction time can be shortened, and the amount of EG and the amount of catalyst used for depolymerization can be reduced.
[0023]
That is, in the depolymerization step, the polyethylene terephthalate raw material is preliminarily depolymerized by a preliminarily depolymerizing substance containing at least one of BHET and its oligomer and oligoethylene terephthalate to obtain a preliminarily depolymerized product. Preferably, the method comprises a step and a main depolymerization step of obtaining a crude BHET by depolymerizing the preliminary depolymerized product with EG.
[0024]
Here, as the substance for pre-depolymerization used in the pre-depolymerization step, BHET produced by any known method and / or an oligomer thereof, or oligoethylene terephthalate produced by any known method is used. However, at least a part of the obtained distillation residue by-produced in the previous purification step performed before the purification step (the purification step in the previous cycle performed before the cycle in which the preliminary depolymerization step is performed) is performed. Is preferably used. This makes it possible to effectively use the distillation residue that has been conventionally discarded, and to reduce the amount of waste generated.
[0025]
The distillation residue produced as a by-product when the crude BHET is purified by a distillation operation in the purification step is mainly composed of ethylene terephthalate or a low condensate thereof. (About 70% by weight), about 15 to 25% by weight of ethylene terephthalate dimer (about 20% by weight), and about 1 to 15% by weight of other substances including ethylene terephthalate trimer (about 10% by weight). It is a mixed substance.
[0026]
In addition, as the material for the pre-depolymerization used in the pre-depolymerization step, the pre-depolymerization step performed before the pre-depolymerization step (the previous cycle performed before the cycle in which the pre-depolymerization step is performed) is used. In which the pre-depolymerization product obtained in the preliminary de-polymerization step or the pre-depolymerization step separately carried out previously) can be used.
[0027]
The pre-depolymerization product obtained in the pre-depolymerization step is a substance containing oligoethylene terephthalate (oligomer of ethylene terephthalate) as a main component.
[0028]
Thus, as the material for pre-depolymerization, preferably, the obtained pre-depolymerized residue obtained in the previous pre-depolymerization step or the obtained distillation residue by-produced in the previous purification step alone or These can be used as a mixture, or BHET (and / or an oligomer thereof) produced by any known method can be used as a mixture.
[0029]
The distillation residue produced as a by-product during the purification and distillation of EG (the EG produced as a by-product during the production of PET) performed in connection with the PET production process also contains at least one of BHET, its oligomer, and oligoethylene terephthalate. Can be used as long as
[0030]
In addition, in addition to BHET and its oligomer and oligoethylene terephthalate, EG and modified PET obtained by copolymerizing a small amount of other components may be contained in the above-mentioned material for preliminary depolymerization. However, when a substance other than BHET and its oligomer and oligoethylene terephthalate is contained in the pre-depolymerization substance, the allowable amount is 1 to less than 5 parts by weight based on 100 parts by weight of the pre-depolymerization substance.
[0031]
Here, when at least one of the previously obtained distillation residue and the previously obtained pre-depolymerization product is used as the pre-depolymerization substance, the molten state in the previous purification step or the previous pre-depolymerization step is maintained. It is preferable to use a previously obtained distillation residue or a previously obtained pre-depolymerized product. If the previously obtained distillation residue and the previously obtained pre-depolymerized product in the molten state are used in the molten state, the time and energy required for heating to a predetermined temperature during the pre-depolymerization can be reduced.
[0032]
When at least one of the previously obtained distillation residue and the previously obtained pre-depolymerization product is used as the pre-depolymerization substance, at least one of BHET and its oligomer is used from the viewpoint of further promoting the depolymerization reaction of PET. It is preferable to add one which is one kind and has an average degree of polycondensation smaller than that of the previously obtained distillation residue or the previously obtained pre-depolymerized product.
[0033]
In the pre-depolymerization step, the total amount of BHET and its oligomer and oligoethylene terephthalate contained in the pre-depolymerization substance is 0.3 to 3 parts by weight with respect to 1 part by weight of the PET raw material. It is preferable to use the pre-depolymerization substance with respect to the PET raw material. Particularly preferably, the total amount of BHET, its oligomer and oligoethylene terephthalate contained in the material for pre-depolymerization is 0.5 to 2 parts by weight with respect to 1 part by weight of the PET raw material. If the amount of the pre-depolymerization substance used is too small relative to the PET raw material, at the start of the pre-depolymerization, the solid PET hardly dissolves into the molten pre-depolymerization substance, so that the pre-depolymerization proceeds. Not only does it take time until stirring becomes easily possible, but it also takes time before the pre-depolymerization is completed and the reactants become a homogeneous solution, and the pre-depolymerization reaction time is extremely There is a risk that it will be longer. Further, the average degree of polycondensation of the obtained pre-depolymerization product becomes large, and a product having an insufficient pre-depolymerization effect is used in the main depolymerization step, which is not preferable. On the other hand, if the amount of the material for preliminary depolymerization with respect to the PET raw material is too large, the reaction vessel becomes excessively large, which is not economically advantageous.
[0034]
In the depolymerization step of the present invention, a conventionally known depolymerization catalyst can be used. As the depolymerization catalyst, any compound may be used as long as it promotes the transesterification reaction, and examples thereof include hydroxides and carbonates of alkali metals. More specifically, caustic soda, sodium carbonate, sodium methylate and the like can be used.
[0035]
When the PET raw material is directly depolymerized by EG, the addition timing of the depolymerization catalyst may be a stage until the start of the reaction of depolymerizing the PET raw material by EG, and the preliminary depolymerization step is performed. In this case, it may be a stage up to the start of the reaction for depolymerizing the pre-depolymerized product by EG.
[0036]
When the PET raw material is directly depolymerized by EG, the amount of the depolymerization catalyst is preferably 0.01 to 0.0001 parts by weight based on 1 part by weight of the PET raw material. When it is carried out, 0.01 to 0.0001 weight per 1 weight part of the total amount of the PET raw material and the substance for preliminary depolymerization (total amount of BHET and its oligomer and oligoethylene terephthalate contained in this substance for preliminary depolymerization) It is preferable to use a part. If the amount of the depolymerization catalyst is less than 0.0001 part by weight, a sufficient catalytic effect cannot be exhibited. Conversely, if the amount exceeds 0.01 part by weight, the effect corresponding thereto cannot be expected to be improved. And may adversely affect the purification process.
[0037]
In order to carry out the pre-depolymerization step, first, a predetermined amount of the pre-depolymerization substance is charged into a pre-depolymerization tank and heated to a liquid state. The heating temperature may be higher than the temperature at which the substance becomes liquid. The temperature at which the substance for pre-depolymerization becomes liquid varies depending on the degree of polycondensation of the substance contained in the substance for pre-depolymerization, but can be about 120 to 250 ° C. In addition, as described above, when the obtained distillation residue or the like in a molten state is used as a substance for preliminary depolymerization, since the liquid is already in a liquid state, the heating temperature of the preliminary depolymerization tank can be set to about 200 ° C. or less. .
[0038]
Next, a predetermined amount of a PET raw material is added to the liquid material for preliminary depolymerization, and the preliminary depolymerization proceeds. The preliminary depolymerization temperature at this time can be about 120 to 250 ° C. If the preliminary depolymerization temperature is lower than 120 ° C., the resulting crude BHET is undesirably solidified or the rate of the depolymerization reaction is reduced. The reaction time of the pre-depolymerization is not limited. However, after the addition of PET, the same temperature and stirring are maintained for about one hour after the PET is apparently completely dissolved in the reaction solution. It is enough.
[0039]
After performing the pre-depolymerization step in this way, the pre-depolymerization step of obtaining the crude BHET by depolymerizing the obtained pre-depolymerization product with EG is performed.
[0040]
In order to carry out the main depolymerization step, a predetermined amount of EG which has been heated in advance is added to the reaction tank (preliminary depolymerization tank) used for the preliminary depolymerization, or it is prepared to carry out this step. Then, a predetermined amount of the preliminary depolymerization product may be added to another reaction tank (main depolymerization tank) in which a predetermined amount of EG is charged and heated, and the depolymerization may proceed.
[0041]
The amount of EG added at this time is, theoretically, the total amount of the EG component in the predepolymerized product to be subjected to the reaction and the EG component in the added EG, and the terephthalic acid in the predepolymerized product. The molar ratio to the components is 2: 1. In order to smoothly perform the depolymerization reaction and smoothly perform the next purification step, EG is used in an amount of 2 to 10 times the theoretical amount. It is preferable to add EG, and it is particularly preferable to add 4 to 8 times the theoretical amount of EG.
[0042]
The reaction temperature in this depolymerization step is preferably in the range of 180 to 250 ° C. If the temperature is lower than 180 ° C., the reaction rate is undesirably reduced. On the other hand, if the temperature exceeds 250 ° C., the boiling point of EG under normal pressure is greatly exceeded, which is not preferable from the viewpoint of the pressure resistance of the reactor.
[0043]
Although the reaction time in the present depolymerization step varies depending on the reaction temperature, about 3 hours is sufficient after it is confirmed that the preliminary depolymerization product and the added EG have become a uniform liquid.
[0044]
In addition, even if BHET is produced by directly reacting a PET raw material with EG and depolymerizing without performing the preliminary depolymerization step, it can be performed by a method according to the above-described depolymerization step.
[0045]
The EG solution of the crude BHET thus obtained is purified by performing at least a distillation operation in the next purification step to obtain purified BHET.
[0046]
Here, in the EG solution of the crude BHET, impurities such as coloring agents and additives contained in the PET raw material remain. Purification by distillation with these impurities remaining may result in the resulting purified BHET turning yellow-brown, and high-quality PET that can be used in products even if polycondensed in the next polycondensation step. I can't get it.
[0047]
Therefore, in the purification step, a decolorization / deionization step of removing a colorant, anions and cations from the EG solution of crude BHET obtained in the depolymerization step may be performed before the distillation step of purifying by a distillation operation. preferable.
[0048]
In the decolorization step, decolorization can be performed by bringing the EG solution of the crude BHET into contact with a known decolorizing agent (for example, activated carbon or clay).
[0049]
In the deionization step, the metal cation and its counter anion can be removed from the crude BHET EG solution by contacting the crude EG solution of BHET with a cation exchange resin and / or an anion exchange resin.
[0050]
Here, if the content of ions (anions and cations) in the crude BHET is 100 ppm or more, there is a possibility of adverse effects during distillation purification. For this reason, in the above deionization step, it is preferable to perform deionization so that the ion content in the crude BHET becomes 50 ppm or less.
[0051]
In the distillation step of purifying by the above-mentioned distillation operation, the method of removing EG from the EG solution of crude BHET is not particularly limited. However, due to the chemical nature of BHET, undesired polymerization may proceed during residence or evaporation in the still if the distillation is not carried out at the lowest possible temperature and in the shortest possible time. Therefore, in this distillation step, it is preferable to use a molecular still in order to remove EG in a shorter time and at a lower temperature. At this time, the pressure in the molecular still is preferably 30 Pa or less, the distillation temperature is 220 ° C. or less, and the residence time of BHET in the still is preferably 1 minute or less. By performing molecular distillation under such conditions, it is possible to isolate about 90% by weight of the charged BHET as purified BHET by adjusting the charged amount of the EG solution of the crude BHET.
[0052]
Here, in the above-mentioned distillation step, if the recovery rate of the purified BHET is too high, that is, if the distillation residue is too small, the concentration of impurities in the distillation residue becomes too high, and in some cases, a polymerization reaction occurs and PET is generated. Will be generated. Then, since the PET may block the vicinity of the outlet of the distiller and cause troubles such as breakdown of the distiller, it is preferable to leave some distillation residue. On the other hand, as described above, the distillation residue can be used as the pre-depolymerization substance in the pre-depolymerization step, and when the distillation residue is used as the pre-depolymerization substance, the content of the BHET component in the distillation residue is larger. Can complete the preliminary depolymerization in a shorter time, but if the content of the BHET component in the distillation residue is too large, the recovery of purified BHET will be reduced. In consideration of these, the recovery rate of the purified BHET is preferably about 70 to 90% by weight, and particularly preferably about 80% by weight. The remaining BHET component remains in the bottom of the still as a bottom with the high boiling point residue.
[0053]
In the next polymerization step, the purified BHET obtained in this manner is polymerized by adding a polymerization catalyst to be recycled PET.
[0054]
The polymerization catalyst used in this polymerization step is not particularly limited, but antimony trioxide, germanium dioxide and the like can be suitably used. The amount of addition depends on the type of catalyst used. For example, when antimony trioxide is used, it is about 8 mmol% with respect to PET purified in the polymerization step, and when germanium dioxide is used, it is about 30 mmol%. It is enough.
[0055]
Here, the PET component produced by a known method contains a DEG component inevitably produced as a by-product during the production. Therefore, the PET component used in the present invention also contains a DEG component. When the above-mentioned depolymerization step and the above-mentioned purification step are carried out using this PET raw material, the by-product of DEG proceeds during these steps, although the exact reason is not clear. For this reason, the purified BHET obtained in the above purification step contains the DEG component at a higher content than the content in the PET raw material. The DEG component also contains an ester compound composed of DEG and terephthalic acid. When the purified BHET containing a large amount of the DEG component is polymerized by a known polymerization method, the obtained PET may contain 5% by weight or more of the DEG component. And the like, the quality deterioration becomes remarkable.
[0056]
Therefore, in the polymerization step according to the present invention, a predetermined amount of terephthalic acid is added when the polymerization is performed by adding the polymerization catalyst to the purified BHET. By adding terephthalic acid in the polymerization step in this manner, the amount of the obtained regenerated PET can be increased, and as a result, the weight ratio of the DEG component (regenerated PET) in the regenerated PET depends on the increased amount of the regenerated PET. (The weight of the DEG component with respect to the total weight). Therefore, according to the production method of the present invention, high-quality PET can be obtained without causing deterioration in quality such as a decrease in softening point.
[0057]
That is, one mole of BHET contains two moles of EG units and one mole of terephthalic acid units. On the other hand, the PET repeating unit to be formed contains one mole of EG unit and one mole of terephthalic acid unit. For this reason, when BHET is subjected to polycondensation with a polymerization catalyst under high temperature and high vacuum as it is in a known manner to produce PET, theoretically, 1 mol of PET (PET repeating unit) per mol of BHET Is calculated assuming that the amount of PET in the number of grams equal to the molecular weight of is 1 mol. The same applies to the following.), And 1 mol of EG is by-produced.
[0058]
In this regard, when terephthalic acid is added during the polymerization of the purified BHET as in the polymerization step according to the present invention, theoretically, 2 moles of EG unit contained in 1 mole of BHET per mole of BHET And one mole of terephthalic acid reacts with one mole of terephthalic acid added, thereby producing two moles of PET. For this reason, the amount of the obtained regenerated PET can be increased in accordance with the amount of purified BHET to be subjected to polymerization and the amount of terephthalic acid to be added. As a result, the amount of regenerated PET in the The weight ratio of the DEG component can be reduced.
[0059]
At this time, the lower limit of the addition amount of terephthalic acid is preferably the number of moles of the DEG component inevitably contained in the purified BHET. If the amount of terephthalic acid added is smaller than the number of moles of the DEG component contained in the purified BHET, the effect of reducing the weight ratio of the DEG component in the recycled PET becomes small, which is not preferable.
[0060]
On the other hand, the upper limit of the amount of terephthalic acid to be added is preferably the number of moles of the purified BHET. If the amount of terephthalic acid added is greater than the number of moles of the purified BHET, the number of TA terminals (terephthalic acid terminals) in the produced PET becomes too large, and the quality of the produced PET is deteriorated. .
[0061]
Further, as described above, one mole of BHET contains two moles of EG units, while one mole of PET repeating units contains one mole of EG units. In the case of producing PET by polycondensation under vacuum, EG corresponding to 1 mole of EG unit per mole of BHET is produced as a by-product, and it is necessary to remove this out of the system. In this regard, in the polymerization step according to the present invention, 1 mole of the added terephthalic acid reacts with 1 mole of EG which should have been by-produced to produce 1 mole of PET, and EG by-product is produced. Be avoided. Therefore, the amount of EG produced as a by-product can be reduced in accordance with the amount of terephthalic acid added. At this time, if the number of moles of purified BHET to be used for polymerization is equal to the number of moles of terephthalic acid to be added, theoretically, the amount of by-produced EG can be reduced to zero. Therefore, from the viewpoint of further reducing the amount of EG produced as a by-product, the amount of terephthalic acid to be added is optimally the same as the number of moles of purified BHET used for polymerization.
[0062]
The reaction conditions such as the temperature and the degree of vacuum in the polymerization step are not particularly limited, and may be the same as those of a known polymerization method.
[0063]
The terephthalic acid may be added in the polymerization step at any time before the start of the polymerization of BHET. For example, a part of the purified BHET is charged into a polymerization reactor, and the residue is heated and dissolved. The above-mentioned purified BHET may be mixed with terephthalic acid in advance, or a slurry-like mixture may be added at once or gradually to promote the polymerization.
[0064]
As described above, the present invention is a method for efficiently producing high-quality recycled PET from PET that could only be treated as waste or waste, and meets the purpose of industrial or socially demanding waste reduction. This is a very good way to
[0065]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In the following description, “parts” means “parts by weight” unless otherwise specified.
[0066]
(Example 1)
In this example, recycled PET is produced from a recovered PET bottle by performing the following preliminary depolymerization step, main depolymerization step, purification step, and polymerization step.
[0067]
<Preparation of starting materials>
First, a used recovered PET bottle is pulverized by a known method, removed of a different resin, etc., and dewatered to obtain a PET flake, and the PET flake is used as a PET raw material (A) used in a preliminary depolymerization step described later. .
[0068]
On the other hand, terephthalic acid and EG are esterified and polycondensed at a molar ratio of 1: 1.4, whereby a preliminary solution containing about 35% by weight of BHET and about 65% of an oligomer of BHET having a degree of polycondensation of 2 to 4 is obtained. A substance for polymerization (B) was prepared.
[0069]
<Preliminary depolymerization step>
Then, 190 parts of the substance for pre-depolymerization (B) is put into a stainless steel pre-depolymerization reaction vessel, dissolved by heating to about 190 ° C., and 384 parts of the PET raw material (A) is added under stirring. did. Preliminary depolymerization reaction was continued at the same temperature for 1.5 hours to complete the reaction. Since a reflux condenser was set in this reactor, there was substantially no substance removed outside the system during the reaction. Thus, 574 parts of a pre-depolymerization product (C) was obtained.
[0070]
<Main depolymerization step>
Next, 287 parts of the half amount of the pre-depolymerization product (C) was transferred to another container (main depolymerization reaction container) without lowering the temperature. Then, 300 parts of EG previously heated to 180 ° C. and 3 parts of sodium carbonate as a depolymerization catalyst are added to the depolymerization reaction vessel, and the depolymerization reaction is performed for 2 hours while maintaining the temperature at 220 ° C. with stirring. As a result, an EG solution (D) of crude BHET was obtained.
[0071]
A part of this crude EG solution (B) of BHET was taken out and analyzed, and as a result, it was composed of about 360 parts of BHET, 215 parts of EG, and 12 parts of others, and the total amount was 587 parts. In addition, the other part was oligoethylene terephthalate which was almost insufficiently depolymerized.
[0072]
<Purification process>
587 parts of the above crude BHET EG solution (D) were decolorized by passing through a column filled with activated carbon at 80 ° C. and atmospheric pressure, and then deionized through a cation exchange column and an anion exchange column under the same conditions. . The EG solution of the crude BHET thus decolorized and deionized was passed through a molecular still to remove EG by distillation, and then the BHET itself was distilled to obtain purified BHET (E). Table 1 shows the amount, recovery rate, DEG content, and the like of the obtained purified BHET.
[0073]
[Table 1]
Figure 2004189898
[0074]
In addition, the ion content is an analysis value by ion chromatography. The distillation residue was a substance containing about 70% by weight of ethylene terephthalate, about 20% by weight of ethylene terephthalate dimer, and about 10% by weight of other substances including ethylene terephthalate trimer.
[0075]
<Polymerization step>
Using the purified BHET (E), polymerization was carried out by the method shown below.
[0076]
80 parts of the purified BHET (E) was placed in a nitrogen-displaced stainless steel dissolving vessel, heated to 160 ° C. to completely dissolve the BHET, and then 0.03 parts of a commercially available catalyst grade antimony trioxide was added. After confirming that the antimony trioxide powder was dissolved, 166 parts of terephthalic acid was further added to obtain a uniform mixture (F).
[0077]
On the other hand, 174 parts of the purified BHET (E) was placed in another stainless steel polymerization vessel purged with nitrogen, and dissolved by heating to 130 ° C. with stirring, and the mixture (F) was gradually added thereto. After the mixed terephthalic acid was completely dispersed, the heating was increased to gradually increase the internal temperature, and heating was continued under normal pressure until the mixture became a transparent liquid. The internal temperature at the time when it became transparent was 240 ° C., and the low-boiling components composed mostly of water were distilled off, but EG was not substantially contained in the removed components. The time required for the reaction after the addition of the mixing section (F) was about 1 hour.
[0078]
Thereafter, the pressure of the system was gradually decreased to finally decrease to 15 Pa, and after 60 minutes, the polymerization reaction was terminated.
[0079]
A part (350 parts) of the PET (G) thus obtained was taken out, and the viscosity when adding PET at a concentration of 1.2 g / 100 ml in orthochlorophenol at 35 ° C., the color b value by a color machine, and the PET The content of the DEG component contained therein was examined. Table 2 shows the results. The viscosity is shown as a logarithmic viscosity with respect to the viscosity of orthochlorophenol. The color tone b value is a value measured by a color difference meter, and is indicated by a display method according to ASTM-D1482-57T.
[0080]
[Table 2]
Figure 2004189898
[0081]
As shown in Table 2, the recycled PET obtained in this example had a quality equal to or higher than that of a new PET obtained by a polycondensation reaction between terephthalic acid and EG.
[0082]
(Example 2)
In this example, a recycled PET bottle is manufactured from a recovered PET bottle by performing the following preliminary depolymerization step, main depolymerization step, purification step, and polymerization step.
[0083]
<Preparation of starting materials>
First, in the same manner as in Example 1, PET flakes were obtained from a used recovered PET bottle, and a part of the PET flakes was used as a PET raw material (a) used in a preliminary depolymerization step described later.
[0084]
On the other hand, 4,700 parts of EG and 7.0 parts of sodium carbonate as a depolymerization catalyst were placed in a stainless steel reaction vessel, which was then sealed. ℃. The pressure at this time was 0.2 MPa · G. About 2 hours later, the PET flakes were completely dissolved in EG, but stirring and heating were continued at the same temperature, and the reaction was continued until PET was almost completely decomposed into BHET. When the insolubles were removed by filtration from the obtained reaction product, a transparent solution slightly colored yellow was obtained.
[0085]
The solution was cooled to 80 ° C., decolorized by passing through a column filled with activated carbon under atmospheric pressure, and then deionized through a cation exchange column and an anion exchange column under the same conditions.
[0086]
Thus, 6,420 parts of a crude BHET EG solution was obtained. The ion content (total amount of metal cations and counter anions) contained in the crude BHET was 45 ppm.
[0087]
Next, the above crude EG solution of BHET was heated again to 120 ° C., and distilled at a pressure of 200 to 300 Pa and a temperature of 140 to 160 ° C. using a molecular still to distill about 1,500 parts of the isolated EG. Removed. 2,460 parts of BHET remained in the mixed solution after the removal. The solution was further introduced into a molecular still, and distilled at a pressure of 10 to 30 Pa and a temperature of 190 to 220 ° C. to further remove 3,800 parts of EG and isolate 1970 parts of BHET to obtain 490 parts of a distillation residue. Was done.
[0088]
The distillation residue obtained by this distillation operation is a substance containing about 70% by weight of ethylene terephthalate, about 20% by weight of ethylene terephthalate dimer, and about 10% by weight of other substances including ethylene terephthalate trimer. Met.
[0089]
Then, the obtained distillation residue was used as a pre-depolymerization substance (b) used in a pre-depolymerization step described later.
[0090]
<Preliminary depolymerization step>
574 parts of a pre-depolymerization product (c) was obtained in the same manner as in Example 1 except that the pre-depolymerization substance (B) was used instead of the pre-depolymerization substance (B).
[0091]
<Main depolymerization step>
Except that the pre-depolymerization product (C) is used in place of the pre-depolymerization product (C) and the amount of EG to be added is 320 parts, the EG solution of crude BHET ( d) was obtained.
[0092]
A part of the crude EG solution (d) of BHET was taken out and analyzed. As a result, it was composed of about 365 parts of BHET, 235 parts of EG, and other 7 parts, and the total amount was 607 parts. In addition, the other part was oligoethylene terephthalate which was almost insufficiently depolymerized.
[0093]
<Purification process>
Purified BHET (e) was obtained in the same manner as in Example 1 except that the crude BHET EG solution (d) was used instead of 587 parts of the crude BHET EG solution (D). Table 3 shows the amount, recovery rate, DEG content, etc. of the obtained purified BHET.
[0094]
[Table 3]
Figure 2004189898
[0095]
The distillation residue was a substance containing about 70% by weight of ethylene terephthalate, about 20% by weight of ethylene terephthalate dimer, and about 10% by weight of other substances including ethylene terephthalate trimer.
[0096]
<Polymerization step>
Using the purified BHET (e), polymerization was carried out by the method shown below.
[0097]
127 parts of the purified BHET (e) were placed in a nitrogen-displaced stainless steel dissolution vessel, heated to 130 ° C. to completely dissolve the BHET, and then 0.03 parts of a commercially available catalyst-grade germanium dioxide was added. After confirming that the germanium dioxide powder was dissolved, 166 parts of terephthalic acid was further added to obtain a uniform mixture (f).
[0098]
Separately, 127 parts of the purified BHET (e) were placed in another nitrogen-purged stainless steel polymerization vessel, heated and dissolved to 130 ° C. with stirring, and the mixture (f) was gradually added thereto. After the mixed terephthalic acid was completely dispersed, the heating was increased to gradually increase the internal temperature, and heating was continued under normal pressure until the mixture became a transparent liquid. The internal temperature at the time when it became transparent was 240 ° C., and the low-boiling components composed mostly of water were distilled off, but EG was not substantially contained in the removed components. The time required for the reaction after the addition of the mixing section (f) was about 70 minutes.
[0099]
Thereafter, the pressure of the system was gradually reduced to finally decrease to 19 Pa, and after 80 minutes, the polymerization reaction was terminated.
[0100]
A portion (340 parts) of the PET (g) thus obtained was taken out, and the viscosity when adding PET at a concentration of 1.2 g / 100 ml in orthochlorophenol at 35 ° C., the color tone b value by a color machine, and the PET The content of the DEG component contained therein was examined. Table 4 shows the results.
[0101]
[Table 4]
Figure 2004189898
[0102]
As shown in Table 4, the recycled PET obtained in this example had a quality equal to or higher than that of a new PET obtained by a polycondensation reaction between terephthalic acid and EG.

Claims (5)

ポリエチレンテレフタレート原料を最終的にはエチレングリコールと反応させて解重合することにより、粗製ビス−(β−ヒドロキシエチル)テレフタレ−トを得る解重合工程と、
上記粗製ビス−(β−ヒドロキシエチル)テレフタレ−トを少なくとも蒸留操作することにより精製して精製ビス−(β−ヒドロキシエチル)テレフタレ−トを得る精製工程と、
上記精製ビス−(β−ヒドロキシエチル)テレフタレ−トに重合触媒を加えて重合することによりポリエチレンテレフタレートを得る重合工程とを備えたポリエチレンテレフタレートの製造方法において、
上記重合工程でテレフタル酸を所定量添加することを特徴とするポリエチレンテレフタレートの製造方法。
A depolymerization step of obtaining a crude bis- (β-hydroxyethyl) terephthalate by finally reacting the polyethylene terephthalate raw material with ethylene glycol to depolymerize;
A purification step of purifying the crude bis- (β-hydroxyethyl) terephthalate by performing at least a distillation operation to obtain a purified bis- (β-hydroxyethyl) terephthalate;
A polymerization step of obtaining a polyethylene terephthalate by adding a polymerization catalyst to the purified bis- (β-hydroxyethyl) terephthalate and polymerizing the same,
A method for producing polyethylene terephthalate, wherein a predetermined amount of terephthalic acid is added in the polymerization step.
前記テレフタル酸の添加量は、前記精製ビス−(β−ヒドロキシエチル)テレフタレ−トのモル数以下であり、かつ、該精製ビス−(β−ヒドロキシエチル)テレフタレ−トに不可避的に含有されるジエチレングリコール成分のモル数以上であることを特徴とする請求項1記載のポリエチレンテレフタレートの製造方法。The amount of the terephthalic acid to be added is not more than the number of moles of the purified bis- (β-hydroxyethyl) terephthalate, and is inevitably contained in the purified bis- (β-hydroxyethyl) terephthalate. The method for producing polyethylene terephthalate according to claim 1, wherein the number of moles of the diethylene glycol component is equal to or greater than the number of moles. 前記解重合工程は、前記ポリエチレンテレフタレート原料を、ビス−(β−ヒドロキシエチル)テレフタレ−ト及びそのオリゴマー並びにオリゴエチレンテレフタレートのうちの少なくとも一種を含む予備解重合用物質によって予備解重合して予備解重合生成物を得る予備解重合工程と、該予備解重合生成物を前記エチレングリコールよって解重合して前記粗製ビス−(β−ヒドロキシエチル)テレフタレ−トを得る本解重合工程とからなることを特徴とする請求項1又は2記載のポリエチレンテレフタレートの製造方法。In the depolymerization step, the polyethylene terephthalate raw material is pre-depolymerized by a pre-depolymerization substance containing at least one of bis- (β-hydroxyethyl) terephthalate, an oligomer thereof, and oligoethylene terephthalate. A pre-depolymerization step of obtaining a polymerization product; and a main depolymerization step of depolymerizing the pre-depolymerization product with the ethylene glycol to obtain the crude bis- (β-hydroxyethyl) terephthalate. The method for producing polyethylene terephthalate according to claim 1 or 2, wherein: 前記予備解重合工程では、前記予備解重合用物質中に含まれるビス−(β−ヒドロキシエチル)テレフタレ−ト及びそのオリゴマー並びにオリゴエチレンテレフタレートの総量が、前記ポリエチレンテレフタレート原料1重量部に対して0.3〜3重量部となるように、該ポリエチレンテレフタレート原料に対して該予備解重合用物質を用いることを特徴とする請求項3記載のポリエチレンテレフタレートの製造方法。In the pre-depolymerization step, the total amount of bis- (β-hydroxyethyl) terephthalate, its oligomer and oligoethylene terephthalate contained in the pre-depolymerization substance is 0 to 1 part by weight of the polyethylene terephthalate raw material. 4. The method for producing polyethylene terephthalate according to claim 3, wherein the material for preliminary depolymerization is used with respect to the polyethylene terephthalate raw material so as to be 3 to 3 parts by weight. 前記予備解重合用物質は、前記精製工程以前に実施した先の精製工程で副生された既得蒸留残渣を少なくとも一部に含むことを特徴とする請求項3又は4記載のポリエチレンテレフタレートの製造方法。The method for producing polyethylene terephthalate according to claim 3 or 4, wherein the material for pre-depolymerization includes at least a part of a previously obtained distillation residue by-produced in a previous purification step performed before the purification step. .
JP2002359817A 2002-12-11 2002-12-11 Method of manufacturing polyethylene terephthalate Withdrawn JP2004189898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359817A JP2004189898A (en) 2002-12-11 2002-12-11 Method of manufacturing polyethylene terephthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359817A JP2004189898A (en) 2002-12-11 2002-12-11 Method of manufacturing polyethylene terephthalate

Publications (1)

Publication Number Publication Date
JP2004189898A true JP2004189898A (en) 2004-07-08

Family

ID=32759100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359817A Withdrawn JP2004189898A (en) 2002-12-11 2002-12-11 Method of manufacturing polyethylene terephthalate

Country Status (1)

Country Link
JP (1) JP2004189898A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192856A (en) * 2008-02-15 2009-08-27 Fuji Xerox Co Ltd Polyester resin for electrostatic charge image developing toner and method of manufacturing the same, electrostatic charge image developing toner and method of manufacturing the same, electrostatic charge image developer, image forming method, and image forming device
CN102675113A (en) * 2012-06-08 2012-09-19 沈冬杰 Method for preparing diglycol phthalate by performing alcoholysis on polyester (PET)
CN109134244A (en) * 2018-09-26 2019-01-04 东华大学 A kind of biodegrading process of waste and old polyester
KR20190077807A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Method for preparing thermoplastic polyester elastomer and method for glycolysis of polyester resin
WO2020156966A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a terephthalate polyester from a monomeric mixture comprising a diester
CN111849026A (en) * 2020-08-27 2020-10-30 华润化学材料科技股份有限公司 Method and system for producing rPET bottle grade polyester chip
JP2021503035A (en) * 2017-09-14 2021-02-04 ペトロレオ ブラジレイロ ソシエダッド アノニマ−ペトロブラス Enzymatic process for depolymerization of used poly (ethylene terephthalate) by glycolysis reaction, process for recycling used poly (ethylene terephthalate), and recycled poly (ethylene terephthalate)
WO2021245577A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
WO2021245578A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
WO2021245576A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
WO2022108071A1 (en) * 2020-11-18 2022-05-27 에스케이케미칼 주식회사 Method for purifying bis-2-hydroxylethyl terephthalate and polyester resin comprising same
JP7435842B1 (en) 2022-08-17 2024-02-21 東洋紡株式会社 Chemically recycled polyethylene terephthalate resin and molded products thereof
EP4421116A1 (en) * 2023-02-22 2024-08-28 Plasta Rei S.r.l. Production of recycled polyesters from polyester waste through chemical recycling methodology

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192856A (en) * 2008-02-15 2009-08-27 Fuji Xerox Co Ltd Polyester resin for electrostatic charge image developing toner and method of manufacturing the same, electrostatic charge image developing toner and method of manufacturing the same, electrostatic charge image developer, image forming method, and image forming device
CN102675113A (en) * 2012-06-08 2012-09-19 沈冬杰 Method for preparing diglycol phthalate by performing alcoholysis on polyester (PET)
JP2021503035A (en) * 2017-09-14 2021-02-04 ペトロレオ ブラジレイロ ソシエダッド アノニマ−ペトロブラス Enzymatic process for depolymerization of used poly (ethylene terephthalate) by glycolysis reaction, process for recycling used poly (ethylene terephthalate), and recycled poly (ethylene terephthalate)
KR20190077807A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Method for preparing thermoplastic polyester elastomer and method for glycolysis of polyester resin
KR102196124B1 (en) 2017-12-26 2020-12-29 주식회사 엘지화학 Method for preparing thermoplastic polyester elastomer and method for glycolysis of polyester resin
CN109134244A (en) * 2018-09-26 2019-01-04 东华大学 A kind of biodegrading process of waste and old polyester
WO2020156966A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a terephthalate polyester from a monomeric mixture comprising a diester
TWI834807B (en) * 2019-02-01 2024-03-11 法商Ifp新能源公司 Process for the production of a terephthalate polyester from a monomer mixture comprising a diester
WO2021245577A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
WO2021245578A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
WO2021245576A1 (en) 2020-06-05 2021-12-09 Koch Technology Solutions, Llc A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
CN111849026A (en) * 2020-08-27 2020-10-30 华润化学材料科技股份有限公司 Method and system for producing rPET bottle grade polyester chip
WO2022108071A1 (en) * 2020-11-18 2022-05-27 에스케이케미칼 주식회사 Method for purifying bis-2-hydroxylethyl terephthalate and polyester resin comprising same
US12077634B2 (en) 2020-11-18 2024-09-03 Sk Chemicals Co., Ltd. Method for purifying bis-2-hydroxylethyl terephthalate and polyester resin comprising same
JP7435842B1 (en) 2022-08-17 2024-02-21 東洋紡株式会社 Chemically recycled polyethylene terephthalate resin and molded products thereof
EP4421116A1 (en) * 2023-02-22 2024-08-28 Plasta Rei S.r.l. Production of recycled polyesters from polyester waste through chemical recycling methodology

Similar Documents

Publication Publication Date Title
JP3712739B2 (en) Synthesis method of polyester prepolymer
US5559159A (en) Process including depolymerization in polyester reactor for recycling polyester materials
JP5189266B2 (en) Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate
WO2001010812A9 (en) METHODS FOR THE PREPARATION OR PURIFICATION OF BIS-β-HYDROXYETHYL TEREPHTHALATE
EP1456276B1 (en) Process for making polytrimethylene terephthalate
EP0723951A1 (en) Process to prepare bis (2-hydroxyethyl) terephthalate
JP2004189898A (en) Method of manufacturing polyethylene terephthalate
JP2003055300A (en) METHOD FOR PRODUCING BIS-beta-HYDROXYETHYL TEREPHTHALATE
CN110590551A (en) Method for producing bis (2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate
JP2005089572A (en) Method for producing polybutylene terephthalate
WO2005035621A1 (en) Polyethylene terephthalate for molding and process for producing the same
KR100722161B1 (en) Bis-?-hydroxyethyl terephthalate
CN101415746A (en) Process for making polybutylene terephthalate (PBT) from polyethylene terephthalate (PET)
JP2004231855A (en) Method for producing polyethylene terephthalate
JP2006342344A (en) Method for producing polyether polyol
TW200301248A (en) Method of deionizing solution yielded from polyester decomposition with ethylene glycol
JP2006016548A (en) Method for producing polyester
JP3866876B2 (en) Method for recovering dimethyl terephthalate
JPH11147944A (en) Production of polyester
JP3216242B2 (en) How to recover germanium
JPH10287741A (en) Method for recovering dimethyl terephthalate from polyalkylene terephthalate
JP2002060543A (en) Method for recycling polyester waste
JP4444443B2 (en) Method for recovering valuable components from polyester waste
JP3866872B2 (en) Method for recovering dimethyl terephthalate
JP4187979B2 (en) Method for treating ethylene glycol recovered distillation residue

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307