WO2006001482A1 - Process for producing polyether polyol - Google Patents

Process for producing polyether polyol Download PDF

Info

Publication number
WO2006001482A1
WO2006001482A1 PCT/JP2005/011980 JP2005011980W WO2006001482A1 WO 2006001482 A1 WO2006001482 A1 WO 2006001482A1 JP 2005011980 W JP2005011980 W JP 2005011980W WO 2006001482 A1 WO2006001482 A1 WO 2006001482A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polyol
solid acid
amount
producing
acid catalyst
Prior art date
Application number
PCT/JP2005/011980
Other languages
French (fr)
Japanese (ja)
Inventor
Naoko Fujita
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020067027443A priority Critical patent/KR20070032725A/en
Priority to US11/631,015 priority patent/US20080071118A1/en
Publication of WO2006001482A1 publication Critical patent/WO2006001482A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used

Definitions

  • the present invention relates to a method for producing a polyether polyol by a dehydration condensation reaction of a polyol. Specifically, the present invention relates to a method for efficiently producing a polyether polyol with little coloration by carrying out this reaction in the presence of a catalyst having specific acid properties.
  • Polyether polyol is a polymer having a wide range of uses, including raw materials for soft segments such as elastic fibers and plastic elastomers.
  • Typical examples of polyether polyols include polyethylene glycol, poly (1,2-propanediol), and polytetramethylene ether glycol.
  • poly (1,2-propandiol) is widely used because it is liquid at room temperature, easy to handle, and inexpensive.
  • poly (1,2-propanediol) has a primary hydroxyl group and a secondary hydroxyl group, the physical properties of these hydroxyl groups may be problematic depending on the application.
  • polytrimethylene ether glycol which is a dehydration condensate of 1,3-propanediol, has recently attracted attention because it has only primary hydroxyl groups and has a low melting point.
  • polyether polyols can be produced by a dehydration condensation reaction of corresponding polyols.
  • ethylene glycol, 1,4-butanediol, 1,5-pentanediol, and the like produce 5- or 6-membered cyclic ethers, that is, 1,4-dioxane, tetrahydrofuran, and tetrahydropyran, respectively, during dehydration condensation.
  • a polyether polyol corresponding to a polymer of ethylene glycol and 1,4-butanediol is produced by ring-opening polymerization of a corresponding cyclic ether, that is, ethylene oxide and tetrahydrofuran.
  • Polyether polyols corresponding to 1,5-pentanediol polymers are difficult to produce because tetrahydropyran, a cyclic ether, is thermodynamically advantageous.
  • Catalysts include iodine, inorganic acids such as hydrogen iodide and sulfuric acid, and And organic acids such as para-toluene sulfonic acid (see Patent Document 1), perfluoroalkyl sulfonic acid groups having a side chain (see Patent Document 2), a combination of sulfuric acid and cuprous chloride, activity White clay, zeolite, organic sulfonic acid, heteropoly acid (see Patent Document 3) and the like have been proposed.
  • inorganic acids such as iodine, hydrogen iodide and sulfuric acid
  • organic acids such as para-toluenesulfonic acid, organic sulfonic acids and heteropolyacids are homogeneous acid catalysts.
  • the reactor used for the polymerization reaction corrodes, and the reactor corrodes, so that the metal component is eluted and the product polyether polyol
  • the eluted polyol is contained in the polyether polyol.
  • it is necessary to use a reactor that uses glass or glass-lined reactors and high-grade materials such as hastelloy. Met.
  • an ester derived from the catalyst acid may be contained at the end of the polyether polyol of the product, and the hydrolysis of the ester may be required, resulting in a large number of steps.
  • the problem of wastewater treatment also arises.
  • a uniform acid catalyst is contained in the polyether polyol, it is necessary to remove these acid catalysts by methods such as neutralization and washing with water, and there is a problem that a purification step of the polyether polyol is required for that purpose. To the eye.
  • Patent Document 2 Pamphlet of International Publication No. 92Z09647
  • Patent Document 3 U.S. Patent No. 5659089
  • Patent Document 4 US Patent Application Publication No. 2002Z0007043
  • the present invention intends to provide a method for producing a polyether polyol with high selectivity and low coloration in high yield by dehydrating condensation of a polyol using a solid catalyst.
  • the gist of the present invention is that a solid acid catalyst satisfying at least one of the following conditions (1) to (3) is used when producing a polyether polyol by a dehydration condensation reaction of a polyol.
  • Acidity function H measured by Hammett's indicator adsorption method is greater than -3
  • TPD temperature-programmed desorption analysis
  • TG thermogravimetric analysis
  • the second gist is a method for producing a polyether polyol as described above, wherein the solid acid catalyst contains 0.01 to 2.5 equivalents of a metal element and Z or an organic base with respect to the acid. Exist.
  • the third gist is the polyether polyol as described above, wherein the metal element is an alkali metal.
  • the manufacturing method is the polyether polyol as described above, wherein the metal element is an alkali metal.
  • the fourth gist lies in the method for producing a polyether polyol as described above, wherein the organic base has a pyridine skeleton.
  • the fifth gist lies in the method for producing a polyether polyol as described above, wherein the solid acid catalyst, the metal element-containing compound and Z or an organic base are used in combination.
  • the sixth gist is that the solid acid catalyst is an intercalation compound, zeolite, mesoporous material, metal composite oxide, oxide or composite oxide containing a sulfonic acid group, a carbon material containing a sulfonic acid group, And a method for producing a polyether polyol as described above, which is at least one member selected from the group consisting of a resin having a perfluoroalkylsulfonic acid group in the side chain.
  • the seventh gist is a polyol having 3 or more and 10 or less carbon atoms having two primary hydroxyl groups (excluding those forming a 5- or 6-membered cyclic ether by dehydration), or This is a mixture of this with other polyols, and the ratio of the other polyols is less than 50 mol%.
  • An eighth aspect resides in the above-described method for producing a polyether polyol, wherein the reaction is performed at 120 ° C or higher and 250 ° C or lower.
  • the solid acid catalyst used in the production method of the present invention shall satisfy at least one of the conditions described in (1) to (3) below. Among these conditions, those satisfying the two conditions are more preferable. Specifically, (1) and (2), (1) and (3), or (2) and (
  • a solid acid catalyst satisfying the condition 3) is more preferable. Furthermore, a solid acid catalyst that satisfies all the conditions (1), (2), and (3) is particularly preferred.
  • the solid acid catalyst used in the present invention must have an acid strength that is not too strong for this reaction. Yes, with acidity function H measured by Hammett's indicator adsorption method greater than -3, + 1.
  • a value larger than 5 is more preferable +2 or more.
  • the acidity function H measured by Hammett's indicator adsorption method has a stronger acid point as the value is smaller. Therefore
  • V weak it means that it is acid nature.
  • Hammett's acid strength function here is obtained by measuring acid strength in a commercially available benzene solution with Hammett's indicator after treating a solid acid catalyst in saturated steam at 25 ° C for 2 days. .
  • an indicator for measuring acidity can be conveniently measured by changing the acidity of Hammett's indicator to an acidic color on a solid acid catalyst when it shows acidity. If the solid acid catalyst power is originally colored, it is difficult to recognize a change in the color of the indicator visually, so the change in the indicator may be analyzed by, for example, a spectroscopic technique.
  • the acid amount and strength of the solid acid catalyst used in this reaction is strong, and the amount of acid sites is preferably large.
  • the temperature range is 100 to 350 ° C by temperature programmed desorption analysis (TPD) of ammonia. It is preferable that the ammonia desorption amount at 60% is 60% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). Among these, 70% or more is more preferable.
  • the ammonia desorption amount in the region of 100 to 300 ° C is preferably 50% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). 60% or more Is more preferable.
  • ammonia desorption amount in the region of 100 to 250 ° C is preferably 40% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). Is more preferable.
  • the ammonia desorption amount in the region of 300 to 450 ° C is 0.6 times or less, preferably 0.5 times or less, more preferably the ammonia desorption amount in the region of 100 to 300 ° C. It is preferably 0.3 times or less, particularly 0.2 times or less. Among them, the range of 400 to 700 ° C It is particularly preferable that the amount of ammonia desorbed at 2 mmolZg or less, preferably ImmolZg or less, more preferably 0.5 mmolZg or less, even more preferably 0.4 mmolZg or less. Further, it is further preferable that the ammonia desorption amount in the region of 100 to 300 ° C. is 0.1 ImmolZg or more, preferably 0.2 mmolZg, more preferably 0.3 mmolZg or more.
  • the solid acid catalyst used in this reaction is 3% or more, more preferably 5% or more, more preferably 50 to 200 ° C of the reference weight between 32 and 250 ° C in thermogravimetric analysis (TG).
  • TG thermogravimetric analysis
  • a solid acid catalyst from which 5% or more of the standard weight of water is eliminated is preferable.
  • the TG analysis method and the reference weight are based on the method in Examples described later.
  • the solid acid catalyst used in this reaction can be selected using acid strength measurement with Hammett's indicator, temperature-programmed desorption analysis of ammonia, or thermogravimetric analysis. A polyether polyol with little coloration can be obtained.
  • a solid acid catalyst that satisfies at least one of the above conditions, a part of the acid substituted with a metal element, a metal element or an organic base modified, or the solid
  • the metal element-containing compound or organic base component is added in the form of coexistence in the reaction system, the effect increases.
  • Such a solid acid catalyst is a catalyst having an acidity function H measured by Hammett's indicator adsorption method of the present invention of greater than -3, or 100 to 350 in the temperature programmed desorption measurement of ammonia.
  • a catalyst whose ammonia desorption amount in the region of ° C is 60% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C), or between 30 and 250 ° C in thermogravimetric analysis This is a solid acid catalyst from which 3% or more of the reference weight is eliminated.
  • Any solid acid catalyst that satisfies at least one of the above conditions (1) to (3) is not particularly limited, but is preferably an intercalation compound such as activated clay, zeolite, mesoporous material, silica-alumina, silica-zircoua, etc.
  • an intercalation compound such as activated clay, zeolite, mesoporous material, silica-alumina, silica-zircoua, etc.
  • Metal complex oxides, oxides or complex oxides containing sulfonic acid groups, carbon compounds containing sulfonic acid groups, organic compounds such as ion-exchange resins, and perfluoroalkylsulfonic acid groups in the side chain Can be used.
  • intercalation compounds such as activated clay, zeolite, mesoporous materials, metal composite oxides such as silica-alumina and silica-zirconia, oxides containing sulfonic acid groups
  • intercalation compounds such as activated clay, zeolite, mesoporous materials, oxidation containing sulfonic acid groups Sulfur and composite oxides, and carbon materials containing sulfonic acid groups are more preferred.
  • Particularly preferred are oxides or composite oxides containing phonic acid groups, and carbon materials containing sulfonic acid groups.
  • Preferable metal elements that can be replaced with protons at the acid sites of solid acid catalysts or metal elements that can be modified are alkali metals, alkaline earth metals, group 3-12 transition metals, and group 13 elements.
  • Alkali metals are particularly preferred, with alkali metals and alkaline earth metals being more preferred.
  • As the alkali metal Li, Na, K, and Cs are preferable. Na is particularly preferable.
  • the content of the metal element is preferably 0.01 equivalents or more, more preferably 0.05 equivalents or more, and preferably 2.5 equivalents or less, as the metal element with respect to the acid amount of the solid acid catalyst. Preferably, it is used so that it is 1 equivalent or less, more preferably 0.5 equivalent or less.
  • the acid amount refers to a theoretical acid amount or an acid amount obtained by a neutral salt decomposition method.
  • the theoretical acid amount for which the amount of A1 is calculated zeolite containing elements other than A1, mesoporous materials, sulfonic acid-containing solid catalysts, oxides, complex oxides, activated clay
  • it means the acid amount determined by the neutral salt decomposition method.
  • the neutral salt decomposition method means that a solid acid catalyst is washed with a saturated sodium chloride aqueous solution at 20 to 25 ° C.
  • the H + ion exchanged with Na + is determined by titration with an aqueous solution of sodium hydroxide and sodium hydroxide of known concentration.
  • a catalyst having an acid point substituted with a metal may be obtained in advance.
  • the content of the metal element is equivalent to the original acid amount when the metal element is not substituted with the acid point of the solid acid.
  • the acid amount when the metal is not substituted is 1 mmolZg, and the acid amount when the metal is substituted is 0.
  • the metal element content of the metal-substituted solid acid is 0.3 equivalent to the acid amount.
  • the amount of metal substitution can also be determined by elemental analysis.
  • a compound containing a metal element can be used, and metal sulfate, hydrogen sulfate, nitrate, halide, phosphate, hydrogen phosphate, borate, etc.
  • Mineral acid salt And metal salts such as organic sulfonates such as trifluoromethanesulfonate, paratoluenesulfonate, methanesulfonate, carboxylates such as formate and acetate, metal hydroxide, metal alkoxide, metal Specific examples include acetylylacetonate.
  • the organic base is preferably a nitrogen-containing organic base, particularly a nitrogen-containing organic base having a tertiary or quaternary nitrogen atom.
  • the organic base is preferably 0.01 equivalents or more, more preferably 0.05 relative to the acid amount of the solid acid catalyst (in this case, the acid amount in the case of unsubstituted as in the case of the metal element). It should be used so that it is at least equivalent, preferably 2.5 equivalent or less, more preferably 1 equivalent or less, and particularly preferably less than 1 equivalent.
  • a method for modifying an organic base to a solid acid catalyst a method in which a solid acid catalyst is mixed in a solution containing a desired base, a method in which impregnation is forcibly supported, a base-containing solution is pore-filled, and then dried.
  • the catalyst can be obtained by a known method such as a method, and these catalysts can be washed and dried as necessary.
  • a metal element and Z or an organic base are used in combination. May be. Specifically, these may be added separately to the reaction system, or these compounds may be mixed and then used in the reaction. In this case, the sum of the amounts of all metal elements and organic bases present in the reaction system should be within the above range.
  • the solid acid catalyst and the metal element or organic base may exist separately in the reaction system, or a salt may be formed between the solid acid catalyst and the metal element or organic base. Good.
  • Reaction polyols include 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,7- It is preferable to use a diol having two primary hydroxyl groups such as heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decandiol, 1,4-cyclohexanedimethanol. 1,3-propanediol is more preferred.
  • ethylene glycol, 1,4-butanediol, 1,5-pentanediol, etc. generate cyclic ether ethers by the dehydration condensation reaction as described above. Therefore, it is not preferable as a raw material for the method of the present invention.
  • the ability to use these diols alone can be used as a mixture of two or more diols if desired.
  • the main diol accounts for 50 mol% or more.
  • the oligomer of the 2-9 mer obtained by the dehydration condensation reaction of the main diol can be used together with these diols.
  • polyols of triol or higher such as trimethylolethane, trimethylolpropane, pentaerythritol, or oligomers of these polyols can be used in combination. Even in these cases, it is preferable that the main diol occupies 50 mol% or more.
  • a mixture of polyols with a ratio of other polyols of less than 50 mol% is used for the reaction.
  • a diol selected from the group consisting of 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, or another polyol and this Mixtures with a proportion of other polyols of less than 50 mol%, particularly preferably 1,3-propanediol or a mixture of this with other polyols with a proportion of other polyols of less than 50 mol% Subject to reaction.
  • the production of the polyether polyol by the dehydration condensation reaction of the polyol can be carried out either batchwise or continuously.
  • a raw material polyol and a solid acid catalyst and, if necessary, a metal element or an organic base may be charged and reacted with stirring.
  • the solid acid catalyst is usually used in the range of 0.01 to 1 times by weight with respect to the starting polyol.
  • a solid acid catalyst is retained in a reaction apparatus or a flow reaction apparatus in which a large number of stirring tanks are connected in series, and the raw material polyol is continuously supplied to the reactor.
  • a method can be used in which only the reaction solution containing no solid acid catalyst is continuously extracted from the other end. In this case, either a suspension bed or a fixed bed reaction can be employed.
  • the lower limit is usually 0.01 times by weight or more, preferably 0.1 times by weight or more, and the upper limit is usually 10,000 times by weight or less, with respect to the solid acid catalyst usually staying in the reactor.
  • a raw material polyol of 1000 times by weight or less is fed in one hour.
  • the equivalent ratio of the base to the solid acid catalyst in the reaction apparatus may decrease with time. Therefore, if necessary, the solid acid catalyst may be withdrawn little by little to charge a new catalyst, The base is supplied together with the solvent so that the equivalent ratio of organic base to acid maintains the desired value.
  • the lower limit of the temperature of the dehydration condensation reaction is usually 120 ° C or higher, preferably 140 ° C or higher, and the upper limit is usually 250 ° C, preferably 200 ° C or lower.
  • the reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen nitrogen.
  • the reaction pressure is maintained in the liquid phase of the reaction system. As long as it is within the range, it is optional and is usually carried out under normal pressure. If desired, the reaction can be carried out under reduced pressure or an inert gas can be circulated through the reaction system to promote the elimination of water produced by the reaction from the reaction system.
  • the reaction time varies depending on the amount of catalyst used, the reaction temperature, and the desired yield and physical properties of the dehydration condensate to be produced, but the lower limit is usually 0.5 hours or more, preferably 1 hour or more. Is usually 50 hours or less, preferably 20 hours or less.
  • the reaction is usually carried out in a non-solvent, but a solvent can be used if desired.
  • the solvent should be selected as appropriate according to the organic solvent power used in conventional organic synthesis reactions, taking into consideration the vapor pressure, stability, and solubility of raw materials and products under the reaction conditions.
  • Separation / recovery of the produced polyether polyol can be carried out by a conventional method.
  • the suspended solid acid catalyst is removed from the reaction solution by filtration or centrifugation.
  • a metal compound is added to the reaction system, it can be removed by washing with water or a hardly soluble salt can be formed and removed by filtration.
  • an organic base it can be removed by distillation if it can be distilled, and the extracted organic base can be returned to the reaction system. If it cannot be distilled, it can be removed by washing with water.
  • the low-boiling oligomers are removed by distillation or extraction with water to obtain the desired polyether polyol.
  • a light-boiling component or a low-boiling oligomer is removed from the taken-out reaction solution by distillation or water washing as necessary to obtain the desired polyether polyol.
  • polyether polyols can be made into products through a drying step if necessary.
  • the color of the polyether polyol obtained by the method of the present invention is so preferable that it is not colored.
  • the number average molecular weight of the polyether polyol of the present invention depends on the type of catalyst used and
  • the lower limit is usually 80 or more, preferably 600 or more, more preferably 1000 or more, and the upper limit is usually 10000 or less, preferably 7000 or less, more preferably 5000 or less.
  • the preferred upper limit is usually 3 or less, preferably 2.5 or less.
  • the polyether polyol of the present invention can be used for applications such as elastic fibers, thermoplastic polyester elastomers, thermoplastic polyurethane elastomers, and coating materials.
  • Example 1 thermoplastic polyester elastomers, thermoplastic polyurethane elastomers, and coating materials.
  • the acid amount was measured by the neutral salt decomposition method as follows. A sample lOmg was precisely weighed to the first decimal place, 30 ml of a saturated aqueous sodium chloride solution (prepared with Pure Chemical's special grade sodium chloride and demineralized water) was added, and the mixture was stirred for 15 minutes at room temperature.
  • a saturated aqueous sodium chloride solution prepared with Pure Chemical's special grade sodium chloride and demineralized water
  • the solid acid catalyst was filtered off, washed with demineralized water, and the filtrate was titrated with 0.025 M aqueous solution of sodium hydroxide and sodium to obtain the amount of protons ion-exchanged. The amount was determined.
  • Hammett indicator is anthraquinone (pKa-8. 2) ⁇ benzalacetophenone (pKa-5.
  • Anthraquinone (pKa-8.2), benzalacetophenone (pKa-5.6), and disinnamalaceton (pKa-3.0) have no discoloration to acidic color.
  • the acidity function H is smaller than ⁇ 3, for example, anthraquinone (pKa-8.2) or ben
  • the temperature programmed desorption analysis of ammonia was performed by the following method.
  • Measuring device Anelva AGS-7000 EI method 70eV
  • Sample pretreatment conditions He 80ml / min, raised from room temperature to 250 ° C at 30 ° CZmin, then kept at 250 ° C for 30 minutes.
  • Ammonia adsorption condition “After evacuating the sample with a rotary pump at 100 ° C, inject ammonia gas (purity 100%) for 90 torr at the same temperature and hold for 15 minutes” ⁇ “Vacuum exhaustion” 100 ° CX 30 minutes ” ⁇ “ He 200ml / min, 100 ° CX 30 minutes ” ⁇ “ TPD measurement starts 5 minutes after returning to room temperature. ”
  • TPD measurement temperature range room temperature to 700 ° C (temperature rise at 10 ° C Zmin)
  • Thermogravimetric analysis was performed by the following method.
  • Sample Sampling in air at room temperature after pretreatment for 2 days in saturated steam.
  • Measuring device SII Nanotechnology Co., Ltd. TG-DTA 6300
  • Sample amount about 10 mg
  • Measurement method Dry nitrogen gas (purity 99.999% or more, dew point-60 ° C) Flow through 200mlZmin, hold at 30 ° C for 30 minutes at room temperature, then heat up at 10 ° C Zmin, then heat up to 500 ° C.
  • Reference weight The weight obtained by subtracting the weight loss to 32 ° C from the weight of the measured sample shall be the reference weight.
  • Table 1 shows the results of thermogravimetric analysis (TG).
  • the amounts quantified by the following method were used for the amounts of Al, Na, and Si contained in the zeolite catalyst.
  • Example 4 The sample was melted, cooled, glass-beaded, and then quantified by fluorescent X-ray (XRF (fundamental parameter method: FP method)).
  • XRF fundamental parameter method: FP method
  • Chemical analysis method (2) The sample was dried at 120 ° C for 2 hours, allowed to cool, and collected, and the total amount was resolved by dry ashing to obtain a solution, which was quantified by AAS and calibration curve method.
  • Mn number average molecular weight
  • the light boiling components and 1,3-propanediol contained in the obtained oil layer were analyzed by gas chromatography (GC).
  • Carrier Nitrogen approx. 1.5mlZmin, split ratio approx. 40
  • Oven temperature 50 ° C- (10 ° C, min temperature rise) -230 ° C (10 minutes hold)
  • Example 1 the catalysts used in Examples 2 and 8 and Comparative Examples 1 and 3 were used after being previously dried at 300 ° C. for 12 hours.
  • the mixture was stirred at room temperature for 10 minutes, and after sufficiently removing oxygen in the reactor, the oil bath temperature was set to 200 ° C and heating was started. The temperature of the reaction solution was adjusted to 185 ° C. ⁇ 3 ° C. and held for 6 hours for reaction, and then the flask was removed from the oil bath and allowed to cool to room temperature. The water generated during the reaction was allowed to flow out with nitrogen, and a trap that had been cooled with dry ice-ethanol solution along with the by-product 1,3-propanediol was used.
  • the oil layer was measured with a gel permeation chromatography and the number average molecular weight (Mn) was determined.
  • Mn number average molecular weight
  • the amount of 1,3-propanepandiol contained in this oil layer was analyzed and quantitatively analyzed by gas chromatography.
  • the amount of unreacted 1,3-propanediol is determined for each of the light boiling component and the component in the oil reservoir.
  • the selectivity for the polyether polyol was determined from the following formula, subtracting the amount of 1,3-propanediol from the obtained oil layer and using the remainder as the polyether polyol.
  • Polytrimethyl ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table-1.
  • Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
  • a polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that nitrogen was supplied in an amount of lOONmlZ. The results are shown in Table 1.
  • the ammonia desorption amount at 100 to 250 ° C was 0.19 mmolZg, and the total ammonia desorption amount (region of 25 ° C to 700 ° C) was 33 %Met.
  • the ammonia desorption amount at 100-300 ° C is 0.25 mmolZg
  • the ammonia desorption amount at 100-350 ° C is 0.33 mmolZg, with 43% of the ammonia desorption amount (region of 25 ° C-700 ° C), and the total (25 ° C- It was 57% of the amount of ammonia desorbed in the 700 ° C region).
  • the ammonia desorption amount in the region of 300 to 450 ° C was 0.24 mmol Zg. At this time, the ammonia desorption amount in the region of 300-450 ° C was 0.96 times the ammonia desorption amount in the region of 100-300 ° C. Desorption of NH desorbing in the region of 400 to 700 ° C
  • Example 3 Similar to the method for preparing a metal element-substituted solid acid in Example 3, except that 25 g of sodium nitrate, 280 g of demineralized water, and 30 g of ZSM-5zelite used in Comparative Example 1 were used as the solid acid catalyst. Obtained 5 zeolite.
  • Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
  • the product was taken out into a 100 ml eggplant flask, the solvent was distilled off, dried, pulverized, powdered in a mortar, and then dried at 70 ° C for 3 hours at 2 mmHg.
  • the ammonia desorption amount at 100 to 250 ° C was 0.83 mmolZg, and the total ammonia desorption amount (25 ° C to 700 ° C region) 53%.
  • the ammonia desorption amount at 100-300 ° C is 1. ImmolZg, 69% of the total ammonia desorption amount (25 ° C-700 ° C region), at 100-350 ° C
  • the amount of ammonia desorbed was 1.2 mmolZg, which was 76% of the total amount of ammonia desorbed (range from 25 ° C to 700 ° C).
  • the ammonia desorption amount in the region of 300 to 450 ° C was 0.15 mmolZg. At this time, the ammonia desorption amount in the region of 300 to 450 ° C was 0.14 times the ammonia desorption amount in the region of 100 to 300 ° C.
  • Polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that 5 g of the above catalyst was used as the solid acid catalyst and the reaction temperature was 189 ⁇ 3 ° C. The results are shown in Table-1.
  • Example 7 6 g of the catalyst used in Example 7 was charged with 10 g of demineralized water, and 66 ml of lN-NaOHO. Was added dropwise at room temperature while stirring at room temperature. Washed. After repeating this twice, the same operation was performed using 1.46 ml of ⁇ -NaOH aqueous solution, washed with demineralized water in the same manner, dried, dried under reduced pressure at 16 mmHg at room temperature, and Na-substituted sulfonic acid group Containing silica was obtained.
  • the acid amount by the neutral salt decomposition method was 0.70 mmol Zg. Therefore, the substitution amount of Na + is 0.45 equivalent to the original acid amount.
  • Polytrimethylene was prepared in the same manner as in Example 8, except that 0.26 g of pyridine (0.5 times the theoretical amount of acid) and 10 g of the same ZSM-5 zeolite used in Comparative Example 1 were used as the solid acid catalyst. Ether glycol was obtained. The results are shown in Table 1.
  • Example 5 0.18 g of pyridine (1 equivalent to the acid amount obtained by the neutral salt decomposition method) was used as a solid acid catalyst.
  • Preparation method of metal element-substituted solid acid in Example 5 Using the same Aldrich reagent Nafion NR50 2.5 used in the above, heat the oil bath to 182 ° C and the reaction temperature to 169 ° C ⁇ Polytrimethylene glycol was obtained in the same manner as in Example 7 except that the temperature was adjusted to 3 ° C. and the catalyst was separated by decantation. The results are shown in Table-1.
  • Polytrimethylene ether diol was obtained in the same manner as in Example 7, except that 0.036 g (0.46 mmol) of pyridine and 5 g of the same Nafion powder used in Example 10 were used as the solid acid catalyst.
  • the total amount of metal element and base is 1.1 times equivalent to the original acid amount. The results are shown in Table 1.
  • the zeolite was filtered off and washed with 80 ° C demineralized water. This was repeated twice. After air drying, it was dried in an oven at 120 ° C for 12 hours and then calcined in air at 500 ° C for 2 hours to obtain H + type fluorite.
  • a polytrimethyl compound was prepared in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. Ren ether glycol was obtained. The results are shown in Table 1.
  • Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
  • Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.

Abstract

A process for producing at a high efficiency with high selectivity a polyether polyol reduced in coloration through the dehydrating condensation of a polyol. In producing a polyether polyol through the dehydrating condensation of a polyol, a solid acid catalyst satisfying at least one of the following (1) to (3) is used: (1) the acidity function H0 as measured by Hammett's indicator adsorption method is larger than -3; (2) in analysis by temperature programmed ammonia desorption (TPD), the amount of ammonia desorbed in the region of 100-350°C is at least 60% of the amount of ammonia desorbed in the whole test region (25-700°C region); and (3) in a thermogravimetric (TG) analysis, the amount of water desorbed in the region of 32-250°C is 3 wt.% or larger based on the basis weight.

Description

明 細 書  Specification
ポリエーテルポリオールの製造方法  Method for producing polyether polyol
技術分野  Technical field
[0001] 本発明はポリオールの脱水縮合反応によりポリエーテルポリオールを製造する方法 に関する。詳しくはこの反応を特定の酸性質をもった触媒の存在下に行うことにより、 着色の少ないポリエーテルポリオールを効率的に製造する方法に関するものである。 背景技術  The present invention relates to a method for producing a polyether polyol by a dehydration condensation reaction of a polyol. Specifically, the present invention relates to a method for efficiently producing a polyether polyol with little coloration by carrying out this reaction in the presence of a catalyst having specific acid properties. Background art
[0002] ポリエーテルポリオールは弾性繊維や可塑性エラストマ一などのソフトセグメントの 原料をはじめ、広範囲な用途を有するポリマーである。ポリエーテルポリオールの代 表的なものとしては、ポリエチレングリコール、ポリ(1, 2-プロパンジオール)、ポリテト ラメチレンエーテルグリコールなどが知られている。これらのなかでもポリ(1, 2-プロ パンジオール)は、室温で液状であって取り扱いが容易であり、かつ安価なので広く 用いられている。し力しポリ(1, 2-プロパンジオール)は 1級水酸基と 2級水酸基を有 しているので、用途によってはこれらの水酸基の物性の相異が問題になる。これに対 し、 1, 3-プロパンジオールの脱水縮合物であるポリトリメチレンエーテルグリコールは 、 1級水酸基のみを有しており、かつ融点も低いので、近年注目されている。  [0002] Polyether polyol is a polymer having a wide range of uses, including raw materials for soft segments such as elastic fibers and plastic elastomers. Typical examples of polyether polyols include polyethylene glycol, poly (1,2-propanediol), and polytetramethylene ether glycol. Among these, poly (1,2-propandiol) is widely used because it is liquid at room temperature, easy to handle, and inexpensive. However, since poly (1,2-propanediol) has a primary hydroxyl group and a secondary hydroxyl group, the physical properties of these hydroxyl groups may be problematic depending on the application. On the other hand, polytrimethylene ether glycol, which is a dehydration condensate of 1,3-propanediol, has recently attracted attention because it has only primary hydroxyl groups and has a low melting point.
[0003] ポリエーテルポリオールは、一般に、相当するポリオールの脱水縮合反応によって 製造することができる。ただしエチレングリコール、 1, 4-ブタンジオールおよび 1, 5- ペンタンジオールなどは、脱水縮合に際して 5員環または 6員環の環状エーテル、す なわちそれぞれ 1, 4-ジォキサン、テトラヒドロフラン及びテトラヒドロピランを生ずる。 そのため、エチレングリコール、 1, 4-ブタンジオールのポリマーに相当するポリエー テルポリオールは、対応する環状エーテル、すなわちエチレンオキサイド、テトラヒドロ フランの開環重合によって製造されている。なお、 1, 5-ペンタンジオールのポリマー に相当するポリエーテルポリオールは、環状エーテルであるテトラヒドロピランが熱力 学的に有利となるため、製造が困難である。  [0003] Generally, polyether polyols can be produced by a dehydration condensation reaction of corresponding polyols. However, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, and the like produce 5- or 6-membered cyclic ethers, that is, 1,4-dioxane, tetrahydrofuran, and tetrahydropyran, respectively, during dehydration condensation. . Therefore, a polyether polyol corresponding to a polymer of ethylene glycol and 1,4-butanediol is produced by ring-opening polymerization of a corresponding cyclic ether, that is, ethylene oxide and tetrahydrofuran. Polyether polyols corresponding to 1,5-pentanediol polymers are difficult to produce because tetrahydropyran, a cyclic ether, is thermodynamically advantageous.
[0004] ポリオールの脱水縮合反応によるポリエーテルポリオールの製造は、一般には酸触 媒を用いて行われている。触媒としては、沃素、沃化水素や硫酸などの無機酸、およ びパラトルエンスルフォン酸などの有機酸 (特許文献 1参照)、パーフルォロアルキル スルフォン酸基を側鎖に有する榭脂 (特許文献 2参照)、硫酸と塩化第一銅の組み合 わせ、活性白土、ゼォライト、有機スルフォン酸、ヘテロポリ酸 (特許文献 3参照)など が提案されている。 [0004] The production of a polyether polyol by a dehydration condensation reaction of a polyol is generally performed using an acid catalyst. Catalysts include iodine, inorganic acids such as hydrogen iodide and sulfuric acid, and And organic acids such as para-toluene sulfonic acid (see Patent Document 1), perfluoroalkyl sulfonic acid groups having a side chain (see Patent Document 2), a combination of sulfuric acid and cuprous chloride, activity White clay, zeolite, organic sulfonic acid, heteropoly acid (see Patent Document 3) and the like have been proposed.
[0005] また、反応方法としては、まず窒素雰囲気下で脱水縮合反応を行 ヽ、次 ヽで減圧 下に脱水縮合反応を行う方法 (特許文献 4参照)も提案されて!ヽる。  [0005] Further, as a reaction method, a method in which a dehydration condensation reaction is first performed under a nitrogen atmosphere and then a dehydration condensation reaction is performed under reduced pressure (see Patent Document 4) is also proposed.
[0006] これらのうち、沃素、沃化水素や硫酸などの無機酸、およびパラトルエンスルフォン 酸などの有機酸、有機スルフォン酸、ヘテロポリ酸などは、均一系の酸触媒であるが 、均一系の酸触媒を用いる場合には、酸触媒が強酸性質を示すために、重合反応 に用いる反応器が腐食してしまうこと、反応器が腐食することにより、金属成分が溶出 し、製品のポリエーテルポリオールが着色する、溶出した金属成分がポリエーテルポ リオールに含有されるという問題があった。また、腐食を防ぐためには、ガラスまたは ガラスライニングの反応器を採用する力、ハステロィ等の高級材質を用いた反応器を 用いる必要があり、設備の大型化の際や建設費の面でおおきな問題であった。さら には、均一系の触媒を用いた場合には、製品のポリエーテルポリオールの末端に触 媒の酸に由来するエステルが含有されエステルの加水分解が必要となる場合があり 、工程数が多ぐ廃水処理の問題も生じる。またポリエーテルポリオール中に均一の 酸触媒が含有されることから、中和、水洗等の方法によりこれら酸触媒を除かなけれ ばならず、そのためのポリエーテルポリオールの精製工程が必要となるという問題が めつに。  Among these, inorganic acids such as iodine, hydrogen iodide and sulfuric acid, and organic acids such as para-toluenesulfonic acid, organic sulfonic acids and heteropolyacids are homogeneous acid catalysts. When an acid catalyst is used, since the acid catalyst exhibits strong acid properties, the reactor used for the polymerization reaction corrodes, and the reactor corrodes, so that the metal component is eluted and the product polyether polyol There is a problem that the eluted polyol is contained in the polyether polyol. In order to prevent corrosion, it is necessary to use a reactor that uses glass or glass-lined reactors and high-grade materials such as hastelloy. Met. Furthermore, when a homogeneous catalyst is used, an ester derived from the catalyst acid may be contained at the end of the polyether polyol of the product, and the hydrolysis of the ester may be required, resulting in a large number of steps. The problem of wastewater treatment also arises. In addition, since a uniform acid catalyst is contained in the polyether polyol, it is necessary to remove these acid catalysts by methods such as neutralization and washing with water, and there is a problem that a purification step of the polyether polyol is required for that purpose. To the eye.
[0007] 触媒として固体触媒をもちいることができれば、これらの諸問題をすベて解決するこ とができ、格段に有利な方法となる。  [0007] If a solid catalyst can be used as the catalyst, all of these problems can be solved, and this is a particularly advantageous method.
[0008] ポリオールの脱水縮合反応に用いることのできる固体酸触媒としては、前述の参考 文献から、パーフルォロアルキルスルホン酸基を側鎖に有する榭脂、活性白土、ゼ オライトがあげられる力 これらをポリオールの脱水縮合反応に用いた場合、ァリルァ ルコールなどの副反応生成物が多ぐポリエーテルポリオール選択率が非常に低ぐ ポリエーテルポリオール自体の着色が激し 、と 、う問題があり、実用できるレベルに はなかった。 特許文献 1:米国特許第 2520733号明細書 [0008] As solid acid catalysts that can be used in the dehydration condensation reaction of polyols, from the above-mentioned references, the ability to include rosin, activated clay, and zeolite having a perfluoroalkylsulfonic acid group in the side chain. When these are used in the dehydration condensation reaction of polyols, there are many side reaction products such as aryl alcohol, and the polyether polyol selectivity is very low. It was not at a practical level. Patent Document 1: US Pat. No. 2,520,733
特許文献 2:国際公開第 92Z09647号パンフレット  Patent Document 2: Pamphlet of International Publication No. 92Z09647
特許文献 3 :米国特許第 5659089号明細書  Patent Document 3: U.S. Patent No. 5659089
特許文献 4 :米国特許出願公開第 2002Z0007043号明細書  Patent Document 4: US Patent Application Publication No. 2002Z0007043
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、固体触媒を用いてポリオールを脱水縮合することにより、選択率よく着 色の少ないポリエーテルポリオールを高収率で製造する方法を提供しょうとするもの である。 The present invention intends to provide a method for producing a polyether polyol with high selectivity and low coloration in high yield by dehydrating condensation of a polyol using a solid catalyst.
課題を解決するための手段  Means for solving the problem
[0010] 本反応は、上記のように均一触媒の場合には強い酸が活性であるため、不均一触 媒の場合にも強い酸性質をもつ固体酸触媒が好ましいと考えられてきた。しかし、驚 くべきことに、本発明者の検討から、強すぎる酸点は、分子内脱水などの副反応を促 進することが明らかとなり、強酸性質をもつ触媒は不適であることが明らかになった。 そこで本発明者らは、強い酸点をもたない固体酸触媒を用いることにより上記目的を 達成することができることを見出し、本発明を完成するに至った。 [0010] In the present reaction, since a strong acid is active in the case of a homogeneous catalyst as described above, it has been considered that a solid acid catalyst having a strong acid property even in the case of a heterogeneous catalyst is preferable. Surprisingly, however, it is clear from the study of the present inventor that an acid point that is too strong promotes side reactions such as intramolecular dehydration, and that a catalyst having a strong acid property is unsuitable. became. Therefore, the present inventors have found that the above object can be achieved by using a solid acid catalyst having no strong acid point, and have completed the present invention.
[0011] 即ち本発明の要旨は、ポリオールの脱水縮合反応によりポリエーテルポリオールを 製造するに際し、下記(1)〜(3)の条件のうち少なくとも 1つを満たす固体酸触媒を 用いることを特徴とするポリエーテルポリオールの製造方法、に存する。  That is, the gist of the present invention is that a solid acid catalyst satisfying at least one of the following conditions (1) to (3) is used when producing a polyether polyol by a dehydration condensation reaction of a polyol. A method for producing a polyether polyol.
• Hammettの指示薬吸着法で測定した酸度関数 Hが- 3より大きいものである  • Acidity function H measured by Hammett's indicator adsorption method is greater than -3
0  0
• アンモニアの昇温脱離分析(TPD)にお!/、て 100〜350°Cの領域でのアンモニア 脱離量が全体(25°C〜700°Cの領域)のアンモニア脱離量の 60%以上である • 熱重量分析 (TG)にお 、て水の脱離量が 32〜250°Cの領域で基準重量の 3重量 %以上である  • For temperature-programmed desorption analysis (TPD) of ammonia, the ammonia desorption amount in the region of 100 to 350 ° C is 60% of the total ammonia desorption amount (region of 25 ° C to 700 ° C). • In thermogravimetric analysis (TG), the desorption amount of water is 3% by weight or more of the reference weight in the region of 32 to 250 ° C.
第 2の要旨は、固体酸触媒が、酸に対し 0. 01当量以上 2. 5当量以下の金属元素お よび Zまたは有機塩基を含有するものである、上記記載のポリエーテルポリオールの 製造方法、に存する。  The second gist is a method for producing a polyether polyol as described above, wherein the solid acid catalyst contains 0.01 to 2.5 equivalents of a metal element and Z or an organic base with respect to the acid. Exist.
第 3の要旨は、金属元素がアルカリ金属である、上記記載のポリエーテルポリオール の製造方法、に存する。 The third gist is the polyether polyol as described above, wherein the metal element is an alkali metal. The manufacturing method.
[0012] 第 4の要旨は、有機塩基がピリジン骨格を有するものである、上記記載のポリエー テルポリオールの製造方法、に存する。  [0012] The fourth gist lies in the method for producing a polyether polyol as described above, wherein the organic base has a pyridine skeleton.
第 5の要旨は、固体酸触媒と、金属元素含有化合物および Zまたは有機塩基とを併 用する、上記記載のポリエーテルポリオールの製造方法、に存する。  The fifth gist lies in the method for producing a polyether polyol as described above, wherein the solid acid catalyst, the metal element-containing compound and Z or an organic base are used in combination.
[0013] 第 6の要旨は、固体酸触媒が、層間化合物、ゼォライト、メソポーラス物質、金属複 合酸化物、スルホン酸基を含有する酸化物または複合酸化物、スルホン酸基を含有 する炭素材料、およびパーフルォロアルキルスルホン酸基を側鎖に有する榭脂より なる群力 選ばれる少なくとも 1種である、上記記載のポリエーテルポリオールの製造 方法、に存する。 [0013] The sixth gist is that the solid acid catalyst is an intercalation compound, zeolite, mesoporous material, metal composite oxide, oxide or composite oxide containing a sulfonic acid group, a carbon material containing a sulfonic acid group, And a method for producing a polyether polyol as described above, which is at least one member selected from the group consisting of a resin having a perfluoroalkylsulfonic acid group in the side chain.
第 7の要旨は、ポリオールが 2個の 1級水酸基を有する炭素数 3以上 10以下のジォ ール (ただし脱水により 5員環または 6員環の環状エーテルを形成するものを除く)、 またはこれと他のポリオールとの混合物であって、他のポリオールの比率が 50モル% 未満のものである、上記記載のポリエーテルポリオールの製造方法、に存する。  The seventh gist is a polyol having 3 or more and 10 or less carbon atoms having two primary hydroxyl groups (excluding those forming a 5- or 6-membered cyclic ether by dehydration), or This is a mixture of this with other polyols, and the ratio of the other polyols is less than 50 mol%.
[0014] 第 8の要旨は、反応を 120°C以上 250°C以下で行う、上記記載のポリエーテルポリ オールの製造方法、に存する。 [0014] An eighth aspect resides in the above-described method for producing a polyether polyol, wherein the reaction is performed at 120 ° C or higher and 250 ° C or lower.
発明の効果  The invention's effect
[0015] 本発明の製造方法によれば、穏和な条件下で着色の少ないポリエーテルポリオ一 ルを効率よく製造することができる。  [0015] According to the production method of the present invention, it is possible to efficiently produce a polyether polyol with little coloration under mild conditions.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] <固体酸触媒 > [0016] <Solid acid catalyst>
本発明の製造方法において用いる固体酸触媒は、下記に示す(1)〜(3)に記載す る条件を少なくとも 1つを満たすものとする。これらの条件の中でも、 2つの条件を満 たすものがより好ましぐ具体的には、(1)及び (2)、(1)及び (3)、もしくは(2)及び( The solid acid catalyst used in the production method of the present invention shall satisfy at least one of the conditions described in (1) to (3) below. Among these conditions, those satisfying the two conditions are more preferable. Specifically, (1) and (2), (1) and (3), or (2) and (
3)の条件を満たす固体酸触媒がより好ましい。更には、(1)、(2)及び (3)のすベて の条件を満たす固体酸触媒が特に好まし ヽ。 A solid acid catalyst satisfying the condition 3) is more preferable. Furthermore, a solid acid catalyst that satisfies all the conditions (1), (2), and (3) is particularly preferred.
(1) Hammettの指示薬吸着法  (1) Hammett's indicator adsorption method
本発明で用いる固体酸触媒は、本反応にぉ 、て酸強度が強すぎな 、ことが必要で あり、 Hammettの指示薬吸着法で測定した酸度関数 Hが- 3より大きいもの、 + 1. The solid acid catalyst used in the present invention must have an acid strength that is not too strong for this reaction. Yes, with acidity function H measured by Hammett's indicator adsorption method greater than -3, + 1.
0  0
5よりも大きいものがより好ましぐ + 2以上であることが特に好ましい。 Hammettの指 示薬吸着法で測定した酸度関数 Hは、数値が小さいほど強酸点をもつ。したがって  It is particularly preferable that a value larger than 5 is more preferable +2 or more. The acidity function H measured by Hammett's indicator adsorption method has a stronger acid point as the value is smaller. Therefore
0  0
酸度関数 Hが- 3より大きいとは、 pKa=-3の Hammett指示薬で酸性色の着色がな  An acidity function H greater than -3 means that a Hammett indicator with pKa = -3 will not be colored acidic.
0  0
Vヽ弱 、酸性質であると 、うことを意味する。  V weak, it means that it is acid nature.
ここでいう Hammettの酸強度関数は、固体酸触媒を飽和水蒸気中で 25°Cにて 2 日間処理したものを、市販のベンゼン溶液中で Hammettの指示薬にて酸強度を測 定することにより求める。  Hammett's acid strength function here is obtained by measuring acid strength in a commercially available benzene solution with Hammett's indicator after treating a solid acid catalyst in saturated steam at 25 ° C for 2 days. .
[0017] Hammettの指示薬法では、酸性を測定するための指示薬は、酸性を示す場合に は固体酸触媒上で Hammettの指示薬が酸性色に変化することによって簡便に測 定することができる。固体酸触媒力もともと着色している場合には、目視による指示薬 の色の変化は認識しにくいので、指示薬の変化をたとえば分光学的な手法で分析す ればよい。 [0017] In Hammett's indicator method, an indicator for measuring acidity can be conveniently measured by changing the acidity of Hammett's indicator to an acidic color on a solid acid catalyst when it shows acidity. If the solid acid catalyst power is originally colored, it is difficult to recognize a change in the color of the indicator visually, so the change in the indicator may be analyzed by, for example, a spectroscopic technique.
(2)アンモニアの昇温脱離分析方法 (TPD)  (2) Ammonia temperature programmed desorption analysis method (TPD)
本反応で用いる固体酸触媒の酸量及び酸強度は強 、酸点の量が多くな 、ことが 好ましく、アンモニアの昇温脱離分析(TPD : Temperature programmeddesorpti on)による 100〜350°Cの領域でのアンモニア脱離量が全体(25°C〜700°Cの領域 )のアンモニア脱離量の 60%以上であることが好ましい。その中でも 70%以上である ことがより好ましい。  The acid amount and strength of the solid acid catalyst used in this reaction is strong, and the amount of acid sites is preferably large. The temperature range is 100 to 350 ° C by temperature programmed desorption analysis (TPD) of ammonia. It is preferable that the ammonia desorption amount at 60% is 60% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). Among these, 70% or more is more preferable.
[0018] また、 100〜300°Cの領域でのアンモニア脱離量が全体(25°C〜700°Cの領域) のアンモニア脱離量の 50%以上であることが好ましぐ 60%以上であることがより好 ましい。  [0018] The ammonia desorption amount in the region of 100 to 300 ° C is preferably 50% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). 60% or more Is more preferable.
[0019] 更に、 100〜250°Cの領域でのアンモニア脱離量が全体(25°C〜700°Cの領域) のアンモニア脱離量の 40%以上であることが好ましぐ 50%以上であることがより好 ましい。  [0019] Further, the ammonia desorption amount in the region of 100 to 250 ° C is preferably 40% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C). Is more preferable.
[0020] また、 100〜300°Cの領域でのアンモニア脱離量に対する 300〜450°Cの領域で のアンモニア脱離量が 0. 6倍以下、好ましくは 0. 5倍以下、より好ましくは 0. 3倍以 下、特には 0. 2倍以下であることが好ましい。また、その中でも 400〜700°Cの領域 でのアンモニア脱離量が 2mmolZg以下、好ましくは ImmolZg以下、より好ましく は 0. 5mmolZg以下であることが好ましぐ特に好ましくは、 0. 4mmolZg以下であ ると、さらに好ましい。また、 100〜300°Cの領域のアンモニア脱離量が 0. ImmolZ g以上、好ましくは 0. 2mmolZg、より好ましくは 0. 3mmolZg以上である場合にも 更に好ましい。 [0020] Further, the ammonia desorption amount in the region of 300 to 450 ° C is 0.6 times or less, preferably 0.5 times or less, more preferably the ammonia desorption amount in the region of 100 to 300 ° C. It is preferably 0.3 times or less, particularly 0.2 times or less. Among them, the range of 400 to 700 ° C It is particularly preferable that the amount of ammonia desorbed at 2 mmolZg or less, preferably ImmolZg or less, more preferably 0.5 mmolZg or less, even more preferably 0.4 mmolZg or less. Further, it is further preferable that the ammonia desorption amount in the region of 100 to 300 ° C. is 0.1 ImmolZg or more, preferably 0.2 mmolZg, more preferably 0.3 mmolZg or more.
[0021] (3)熱重量分析方法 (TG) [0021] (3) Thermogravimetric analysis method (TG)
本反応で用いる固体酸触媒は、熱重量分析 (TG)において 32〜250°Cの間に基 準重量の 3%以上、より好ましくは 5%以上、さらに好ましくは 50〜200°Cの間に基準 重量の 5%以上の水が脱離する固体酸触媒であることが好ましい。この際の TGの分 析方法、基準重量とは後述する実施例における方法によるものとする。  The solid acid catalyst used in this reaction is 3% or more, more preferably 5% or more, more preferably 50 to 200 ° C of the reference weight between 32 and 250 ° C in thermogravimetric analysis (TG). A solid acid catalyst from which 5% or more of the standard weight of water is eliminated is preferable. In this case, the TG analysis method and the reference weight are based on the method in Examples described later.
本反応に用いられる固体酸触媒は、 Hammettの指示薬による酸強度の測定、もし くはアンモニアの昇温脱離分析、もしくは熱重量分析を用いて選び出すことができ、 高 、ポリエーテルポリオール選択率で、着色の少な 、ポリエーテルポリオールを得る ことができる。  The solid acid catalyst used in this reaction can be selected using acid strength measurement with Hammett's indicator, temperature-programmed desorption analysis of ammonia, or thermogravimetric analysis. A polyether polyol with little coloration can be obtained.
[0022] また、更に上記条件の少なくとも一つを満たす固体酸触媒の酸の一部を金属元素 で置換させたもの、金属元素や有機塩基を修飾させたものを用いたり、あるいは、上 記固体酸触媒に加えて更に金属元素含有化合物や有機塩基の成分が反応系に共 存する形で加えられるとその効果が増大する。  [0022] Further, a solid acid catalyst that satisfies at least one of the above conditions, a part of the acid substituted with a metal element, a metal element or an organic base modified, or the solid In addition to the acid catalyst, if the metal element-containing compound or organic base component is added in the form of coexistence in the reaction system, the effect increases.
固体酸触媒の酸強度や強酸点の量、水の脱離挙動がポリオールの脱水縮合反応 において、影響を与える理由は明らかではないが、以下のように考えられる。  The reason why the acid strength of the solid acid catalyst, the amount of the strong acid point, and the desorption behavior of water have an influence on the dehydration condensation reaction of the polyol is not clear, but is considered as follows.
[0023] 具体的には、固体酸触媒の場合、さまざまな酸性質をもつサイトがあり、触媒の酸 性質が均一ではない。さらに、本反応は、均一触媒の場合には強い酸が活性である ため、不均一触媒の場合にも強い酸性質をもつ触媒が好ましいと考えられてきた。し かし、本発明者の検討から、強すぎる酸点は、分子内脱水などの副反応を促進する ことが明ら力となり、強酸性質をもつ ZSM-5などは不適であることが明らかになった。  [0023] Specifically, in the case of a solid acid catalyst, there are sites having various acid properties, and the acid properties of the catalyst are not uniform. Furthermore, since a strong acid is active in this reaction in the case of a homogeneous catalyst, it has been considered that a catalyst having a strong acid property even in the case of a heterogeneous catalyst is preferable. However, from the study by the present inventor, it is clear that an acid point that is too strong promotes side reactions such as intramolecular dehydration, and ZSM-5 having strong acid properties is unsuitable. became.
[0024] このような強い酸点を潰し、本反応にとって有効な酸点から構成される固体酸触媒 を用いれば、選択率高ぐポリエーテルポリオールをえることができ、副反応が少ない 結果としてポリエーテルポリオール自身の着色も軽減される。 [0025] このような固体酸触媒が、本発明の Hammettの指示薬吸着法で測定した酸度関 数 Hが- 3より大きい触媒、もしくはアンモニアの昇温脱離測定において 100〜350[0024] If a solid acid catalyst composed of acid points effective for this reaction is crushed by using such a strong acid point, a polyether polyol having a high selectivity can be obtained, resulting in less side reaction. The coloring of the ether polyol itself is also reduced. [0025] Such a solid acid catalyst is a catalyst having an acidity function H measured by Hammett's indicator adsorption method of the present invention of greater than -3, or 100 to 350 in the temperature programmed desorption measurement of ammonia.
0 0
°Cの領域でのアンモニア脱離量が全体(25°C〜700°Cの領域)のアンモニア脱離量 の 60%以上である触媒、もしくは、熱重量分析において 30〜250°Cの間に基準重 量の 3%以上の水が脱離する固体酸触媒ということになる。  A catalyst whose ammonia desorption amount in the region of ° C is 60% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C), or between 30 and 250 ° C in thermogravimetric analysis This is a solid acid catalyst from which 3% or more of the reference weight is eliminated.
また、これら固体酸触媒が 32〜250°Cの温度範囲で基準重量の 3%以上の水を脱 離させると 、うことは、次のような意味があると考えられる。  In addition, when these solid acid catalysts release water of 3% or more of the reference weight in the temperature range of 32 to 250 ° C., it is considered that the following meanings are obtained.
[0026] 本反応では、脱水縮合反応により水が生成する。また、反応温度は 120〜250°C である。熱重量分析 (TG)で 32〜250°Cの温度範囲で水が脱離するということは、反 応温度付近で水の放出、水の保持があることにほかならない。逆に、この温度領域で 水の脱離がな 、と 、うことは、触媒の周囲に反応に関与できる水が存在しな 、ことを 意味する。水は固体酸触媒の酸点を被毒する作用があるため反応温度領域で触媒 が水を保持すれば、強すぎる酸点が潰れて良好な酸点のみが反応に関与し、ポリエ 一テルポリオール選択性が向上すると考えられる。 [0026] In this reaction, water is generated by a dehydration condensation reaction. The reaction temperature is 120-250 ° C. In thermogravimetric analysis (TG), the desorption of water in the temperature range of 32 to 250 ° C means that water is released and retained near the reaction temperature. Conversely, the fact that water is not desorbed in this temperature range means that there is no water that can participate in the reaction around the catalyst. Since water has the action of poisoning the acid sites of the solid acid catalyst, if the catalyst retains water in the reaction temperature range, the acid sites that are too strong are crushed and only good acid sites are involved in the reaction. Selectivity is thought to improve.
さらにこれらの固体酸触媒に金属元素や塩基を置換、修飾したり、反応系にこれら の成分を添加することは、固体酸触媒上のさらに微小な強酸点をつぶし、さらに副反 応サイトをなくしていると考えられる。  Furthermore, substitution and modification of metal elements and bases in these solid acid catalysts, and addition of these components to the reaction system will crush even more minute strong acid spots on the solid acid catalyst and further eliminate side reaction sites. It is thought that.
以上(1)〜(3)のうち少なくとも 1つの条件を満たす固体酸触媒であれば特に限定 されないが、好ましくは活性白土などの層間化合物、ゼォライト、メソポーラス物質、 シリカ-アルミナやシリカ-ジルコユア等の金属複合酸ィ匕物、スルホン酸基を含有する 酸化物または複合酸化物、スルホン酸基を含有する炭素材料やイオン交換榭脂等 の有機化合物、およびパーフルォロアルキルスルホン酸基を側鎖に有する榭脂など を用いることができる。これらのうち反応条件下で安定であるという点では、活性白土 などの層間化合物、ゼォライト、メソポーラス物質、シリカ-アルミナやシリカ-ジルコ- ァ等の金属複合酸化物、スルホン酸基を含有する酸化物または複合酸化物、スルホ ン酸基を含有する炭素材料、がより好ましぐ活性が高く安価である点を考慮すると、 活性白土などの層間化合物、ゼォライト、メソポーラス物質、スルホン酸基を含有する 酸化物または複合酸化物、スルホン酸基を含有する炭素材料がさらに好ましぐスル ホン酸基を含有する酸化物または複合酸化物、スルホン酸基を含有する炭素材料が 特に好ましい。 Any solid acid catalyst that satisfies at least one of the above conditions (1) to (3) is not particularly limited, but is preferably an intercalation compound such as activated clay, zeolite, mesoporous material, silica-alumina, silica-zircoua, etc. Metal complex oxides, oxides or complex oxides containing sulfonic acid groups, carbon compounds containing sulfonic acid groups, organic compounds such as ion-exchange resins, and perfluoroalkylsulfonic acid groups in the side chain Can be used. Among these, in terms of being stable under reaction conditions, intercalation compounds such as activated clay, zeolite, mesoporous materials, metal composite oxides such as silica-alumina and silica-zirconia, oxides containing sulfonic acid groups Or, considering the fact that composite oxides and carbon materials containing sulfonic acid groups are more preferable and have high activity and low cost, intercalation compounds such as activated clay, zeolite, mesoporous materials, oxidation containing sulfonic acid groups Sulfur and composite oxides, and carbon materials containing sulfonic acid groups are more preferred. Particularly preferred are oxides or composite oxides containing phonic acid groups, and carbon materials containing sulfonic acid groups.
[0027] またこれらの固体酸触媒を合成する場合、公知の方法を利用する事により合成する ことができる。  [0027] Further, when these solid acid catalysts are synthesized, they can be synthesized by using a known method.
[0028] <金属元素 >  [0028] <Metal element>
固体酸触媒の酸点のプロトンと置換できる金属元素または修飾することのできる金 属元素としては、アルカリ金属、アルカリ土類金属、 3〜12族の遷移金属、 13族の元 素が好ましぐアルカリ金属、アルカリ土類金属がより好ましぐアルカリ金属が特に好 ましい。アルカリ金属としては、 Li, Na, K, Csが好ましぐ Naが特に好ましい。  Preferable metal elements that can be replaced with protons at the acid sites of solid acid catalysts or metal elements that can be modified are alkali metals, alkaline earth metals, group 3-12 transition metals, and group 13 elements. Alkali metals are particularly preferred, with alkali metals and alkaline earth metals being more preferred. As the alkali metal, Li, Na, K, and Cs are preferable. Na is particularly preferable.
[0029] 金属元素の含有量は固体酸触媒の酸量に対し、金属元素として、好ましくは 0. 01 当量以上、より好ましくは 0. 05当量以上であり、好ましくは 2. 5当量以下、より好まし くは 1当量以下、さらに好ましくは 0. 5当量以下となるように用いるのがよい。  [0029] The content of the metal element is preferably 0.01 equivalents or more, more preferably 0.05 equivalents or more, and preferably 2.5 equivalents or less, as the metal element with respect to the acid amount of the solid acid catalyst. Preferably, it is used so that it is 1 equivalent or less, more preferably 0.5 equivalent or less.
[0030] ここで酸量とは、理論酸量、または中性塩分解法により求めた酸量を指す。 A1と珪 素からなるゼォライトの場合には A1の量力も計算される理論酸量、 A1以外の元素を 含有するゼオライト、メソポーラス物質、スルホン酸含有固体触媒や、酸化物、複合酸 化物、活性白土等の層間化合物の場合には、中性塩分解法により求めた酸量を意 味する。  Here, the acid amount refers to a theoretical acid amount or an acid amount obtained by a neutral salt decomposition method. In the case of zeolite composed of A1 and silicon, the theoretical acid amount for which the amount of A1 is calculated, zeolite containing elements other than A1, mesoporous materials, sulfonic acid-containing solid catalysts, oxides, complex oxides, activated clay In the case of intercalation compounds such as the above, it means the acid amount determined by the neutral salt decomposition method.
[0031] ここで中性塩分解法とは、固体酸触媒を 20〜25°Cで飽和塩化ナトリウム水溶液で [0031] Here, the neutral salt decomposition method means that a solid acid catalyst is washed with a saturated sodium chloride aqueous solution at 20 to 25 ° C.
15分間イオン交換し、 Na+とイオン交換された H+を、濃度が既知の水酸ィ匕ナトリウム 水溶液で滴定することにより求める。 After ion exchange for 15 minutes, the H + ion exchanged with Na + is determined by titration with an aqueous solution of sodium hydroxide and sodium hydroxide of known concentration.
[0032] なお、固体酸触媒の場合、予め、金属で酸点が置換されている触媒を入手する場 合がある。金属元素の含有量は、金属元素が固体酸の酸点と置換してないとした場 合のもとの酸量に対する当量を 、う。 [0032] In the case of a solid acid catalyst, a catalyst having an acid point substituted with a metal may be obtained in advance. The content of the metal element is equivalent to the original acid amount when the metal element is not substituted with the acid point of the solid acid.
[0033] すなわち、金属未置換の場合の酸量が lmmolZg、金属置換した場合の酸量が 0[0033] That is, the acid amount when the metal is not substituted is 1 mmolZg, and the acid amount when the metal is substituted is 0.
. 7mmolZgなら、金属置換した固体酸の金属元素の含有量は酸量に対し 0. 3当 量となる。また、金属の置換量は元素分析により求めることもできる。 If it is 7mmolZg, the metal element content of the metal-substituted solid acid is 0.3 equivalent to the acid amount. The amount of metal substitution can also be determined by elemental analysis.
[0034] 金属元素源としては、金属元素含有ィ匕合物を用いることができ、金属の硫酸塩、硫 酸水素塩、硝酸塩、ハロゲン化物、リン酸塩、リン酸水素塩、ホウ酸塩等の鉱酸の塩 やトリフルォロメタンスルフォン酸塩、パラトルエンスルホン酸塩、メタンスルホン酸塩 等の有機スルフォン酸塩、蟻酸塩、酢酸塩等のカルボン酸塩などの金属塩、金属水 酸化物、金属アルコキシド、金属のァセチルァセトネートなどが具体例として挙げられ る。 [0034] As the metal element source, a compound containing a metal element can be used, and metal sulfate, hydrogen sulfate, nitrate, halide, phosphate, hydrogen phosphate, borate, etc. Mineral acid salt And metal salts such as organic sulfonates such as trifluoromethanesulfonate, paratoluenesulfonate, methanesulfonate, carboxylates such as formate and acetate, metal hydroxide, metal alkoxide, metal Specific examples include acetylylacetonate.
[0035] 固体酸触媒に金属元素を置換または修飾する方法としては、固体酸触媒を所望の 金属化合物の溶液中でイオン交換する方法、含浸強制担持する方法、金属化合物 の溶液をポアフィリングし、乾燥する方法などの公知の方法により得ることができ、ま たこれらの触媒は必要に応じて水洗、乾燥、焼成の処理を採用することもできる。  [0035] As a method of substituting or modifying a metal element in the solid acid catalyst, a method of ion exchange of a solid acid catalyst in a solution of a desired metal compound, a method of forcibly supporting impregnation, a pore filling of a solution of a metal compound, These catalysts can be obtained by a known method such as a drying method, and these catalysts can be subjected to water washing, drying and calcination treatments as necessary.
[0036] <有機塩基 >  [0036] <Organic base>
有機塩基としては、含窒素有機塩基、特に 3級または 4級窒素原子を有する含窒素 有機塩基が好ましい。そのいくつかを例示すると、ピリジン、ピコリン、キノリン、 2, 6- ルチジン等のピリジン骨格を有する含窒素複素環式ィ匕合物、 N-メチルイミダゾール、 1, 5-ジァザビシクロ [4. 3. 0]- 5-ノネン、 1, 8-ジァザビシクロ [5. 4. 0]- 7-ゥンデ セン等の N-C=N結合を有する含窒素複素環式ィ匕合物、トリェチルァミンやトリプチ ルァミン等のトリアルキルァミン、 1-メチルピリジ-ゥムクロライド等の 4級アンモ-ゥム 塩などが挙げられる。これらのなかでも、ピリジン骨格を有するもの、 N-C=N結合を 有するものが好ましぐピリジン骨格を有するものが特に好ましい。 The organic base is preferably a nitrogen-containing organic base, particularly a nitrogen-containing organic base having a tertiary or quaternary nitrogen atom. Some examples are nitrogen-containing heterocyclic compounds having a pyridine skeleton such as pyridine, picoline, quinoline, 2,6-lutidine, N-methylimidazole, 1,5-diazabicyclo [4. ]-5-Nonene, 1,8-diazabicyclo [5. 4. 0]-Nitrogen-containing heterocyclic compounds having N- C = N bond such as 7-undecene, and triethylamine and triptyluamine Examples include quaternary ammonium salts such as alkylamines and 1-methylpyridicum chloride. Of these, those having a pyridine skeleton and those having a NC = N bond are preferred, and those having a pyridine skeleton are particularly preferred.
[0037] 有機塩基は固体酸触媒の酸量 (この場合も金属元素の場合と同じく未置換の場合 の酸量を指す。 )に対し、好ましくは 0. 01当量以上、より好ましくは 0. 05当量以上で あり、好ましくは 2. 5当量以下、より好ましくは 1当量以下、特に好ましくは 1当量未満 となるように用いるのがよい。  [0037] The organic base is preferably 0.01 equivalents or more, more preferably 0.05 relative to the acid amount of the solid acid catalyst (in this case, the acid amount in the case of unsubstituted as in the case of the metal element). It should be used so that it is at least equivalent, preferably 2.5 equivalent or less, more preferably 1 equivalent or less, and particularly preferably less than 1 equivalent.
[0038] 固体酸触媒に有機塩基を修飾させる方法としては、固体酸触媒を所望の塩基を含 む溶液中で混合する方法、含浸強制担持する方法、塩基含有の溶液をポアフィリン グし、乾燥する方法などの公知の方法により得ることができ、またこれらの触媒は必要 に応じて水洗、乾燥の処理を採用することもできる。  [0038] As a method for modifying an organic base to a solid acid catalyst, a method in which a solid acid catalyst is mixed in a solution containing a desired base, a method in which impregnation is forcibly supported, a base-containing solution is pore-filled, and then dried. The catalyst can be obtained by a known method such as a method, and these catalysts can be washed and dried as necessary.
[0039] <固体酸触媒と金属元素および Zまたは有機塩基との併用 >  [0039] <Combination of solid acid catalyst with metal element and Z or organic base>
本発明にお 、ては、上記した(1) Hammettの指示薬吸着法で測定した酸度関数 Hが- 3より大きい固体酸触媒もしくは、(2)アンモニアの昇温脱離測定において、 10 0〜350°Cの領域でのアンモニア脱離量が全体(25°C〜700°Cの領域)のアンモニ ァ脱離量の 60%以上である触媒、もしくは(3)熱重量分析にお!、て 32〜250°Cの 間に基準重量の 3%以上の水が脱離する触媒、の条件のうち少なくとも 1つを満たす 固体酸触媒に加えて、更に金属元素および Zまたは有機塩基を併用してもよい。具 体的にはこれらを別々に反応系に添加してもよいし、これらの化合物を混合した後、 反応に用いてもよい。この場合、反応系に存在する全金属元素、有機塩基の量の和 が上記範囲となるようにする。 In the present invention, (1) a solid acid catalyst having an acidity function H measured by Hammett's indicator adsorption method of greater than −3, or (2) temperature-programmed desorption measurement of ammonia, A catalyst whose ammonia desorption amount in the range of 0 to 350 ° C is 60% or more of the total ammonia desorption amount (region of 25 ° C to 700 ° C), or (3) For thermogravimetric analysis! In addition to the solid acid catalyst that satisfies at least one of the conditions of 3% or more of the standard weight of water desorbing between 32 and 250 ° C, a metal element and Z or an organic base are used in combination. May be. Specifically, these may be added separately to the reaction system, or these compounds may be mixed and then used in the reaction. In this case, the sum of the amounts of all metal elements and organic bases present in the reaction system should be within the above range.
[0040] 上記の固体酸触媒と金属元素または有機塩基は、反応系内で別々に存在してい ても良いし、また、固体酸触媒と金属元素または有機塩基とで塩を形成していても良 い。 [0040] The solid acid catalyst and the metal element or organic base may exist separately in the reaction system, or a salt may be formed between the solid acid catalyst and the metal element or organic base. Good.
[0041] この場合に用いることのできる金属元素及び有機塩基としては、上述したのと同様 のものを用いることができる。  [0041] As the metal element and the organic base that can be used in this case, the same elements as described above can be used.
[0042] <原料ポリオール >  [0042] <Raw material polyol>
反応原料のポリオールとしては、 1, 3-プロパンジオール、 2-メチル - 1, 3-プロパン ジオール、 2, 2-ジメチル- 1, 3-プロパンジオール、 1, 6-へキサンジオール、 1, 7- ヘプタンジオール、 1, 8-オクタンジオール、 1, 9-ノナンジオール、 1, 10-デカンジ オール、 1, 4-シクロへキサンジメタノール等の 2個の 1級水酸基を有するジオールを 用いるのが好ましぐ 1, 3-プロパンジオールがさらに好ましい。ただし、 2個の 1級水 酸基を有するジオールであっても、エチレングリコール、 1, 4-ブタンジオール, 1, 5- ペンタンジオール等は、前述のように脱水縮合反応により環状エーテルエーテルを 生成するので、本発明方法の原料としては好ましくない。通常はこれらのジオールを 単独で用いる力 所望ならば 2種以上のジオールの混合物として用いることができる 。し力しこの場合でも主たるジオールが 50モル%以上を占めるようにするのが好まし い。また、これらのジオールに主たるジオールの脱水縮合反応により得られた 2〜9 量体のオリゴマーを併用することができる。さらには、トリメチロールェタン、トリメチロ ールプロパン、ペンタエリスリトール等のトリオール以上のポリオール、あるいはこれら のポリオールのオリゴマーを併用することもできる。し力 これらの場合でも主たるジォ ールが 50モル%以上を占めるようにするのが好ましい。通常は 1, 4-ブタンジオール や 1, 5-ペンタンジオールなどの脱水縮合反応により 5員環や 6員環の環状エーテル を生成するものを除き、 2個の一級水酸基を有する炭素数 3〜 10のジオール、または これと他のポリオールとの混合物であって他のポリオールの比率が 50モル%未満の ものを反応に供する。好ましくは、 1, 3-プロパンジオール、 2-メチル - 1, 3-プロパン ジオール、 2, 2-ジメチル- 1, 3-プロパンジオールよりなる群から選ばれたジオール、 またはこれと他のポリオールとの混合物であって他のポリオールの比率が 50モル% 未満のもの、特に好ましくは、 1, 3-プロパンジオール、またはこれと他のポリオールと の混合物であって他のポリオールの比率が 50モル%未満のものを反応に供する。 Reaction polyols include 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,7- It is preferable to use a diol having two primary hydroxyl groups such as heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decandiol, 1,4-cyclohexanedimethanol. 1,3-propanediol is more preferred. However, even if it is a diol having two primary hydroxyl groups, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, etc. generate cyclic ether ethers by the dehydration condensation reaction as described above. Therefore, it is not preferable as a raw material for the method of the present invention. Usually, the ability to use these diols alone can be used as a mixture of two or more diols if desired. However, even in this case, it is preferable that the main diol accounts for 50 mol% or more. Moreover, the oligomer of the 2-9 mer obtained by the dehydration condensation reaction of the main diol can be used together with these diols. Furthermore, polyols of triol or higher such as trimethylolethane, trimethylolpropane, pentaerythritol, or oligomers of these polyols can be used in combination. Even in these cases, it is preferable that the main diol occupies 50 mol% or more. Usually 1,4-butanediol Diols having 3 to 10 carbon atoms with two primary hydroxyl groups, or those other than those that produce 5- or 6-membered cyclic ethers by dehydration condensation reactions such as 1, 5-pentanediol, etc. A mixture of polyols with a ratio of other polyols of less than 50 mol% is used for the reaction. Preferably, a diol selected from the group consisting of 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, or another polyol and this Mixtures with a proportion of other polyols of less than 50 mol%, particularly preferably 1,3-propanediol or a mixture of this with other polyols with a proportion of other polyols of less than 50 mol% Subject to reaction.
[0043] <ポリエーテルポリオールの製造方法 >  <Method for producing polyether polyol>
本発明にお 、てポリオールの脱水縮合反応によるポリエーテルポリオールの製造 は、回分方式でも連続方式でも行うことができる。回分方式の場合には、反応器に原 料のポリオールおよび固体酸触媒と必要に応じ金属元素または有機塩基とを仕込み 、攪拌下に反応させればよい。この場合、固体酸触媒は原料のポリオールに対し、通 常 0. 01重量倍以上 1重量倍以下の範囲で用いる。  In the present invention, the production of the polyether polyol by the dehydration condensation reaction of the polyol can be carried out either batchwise or continuously. In the case of a batch system, a raw material polyol and a solid acid catalyst and, if necessary, a metal element or an organic base may be charged and reacted with stirring. In this case, the solid acid catalyst is usually used in the range of 0.01 to 1 times by weight with respect to the starting polyol.
[0044] 連続反応の場合には、例えば多数の攪拌槽を直列にした反応装置や流通式反応 装置内に固体酸触媒を滞留させておき、反応器に原料のポリオールを連続的に供 給し、他端から固体酸触媒を含有しない反応液のみを連続的に抜き出す方法を用 いることができる。この場合、懸濁床でも固定床反応でも採用することができる。  [0044] In the case of continuous reaction, for example, a solid acid catalyst is retained in a reaction apparatus or a flow reaction apparatus in which a large number of stirring tanks are connected in series, and the raw material polyol is continuously supplied to the reactor. In addition, a method can be used in which only the reaction solution containing no solid acid catalyst is continuously extracted from the other end. In this case, either a suspension bed or a fixed bed reaction can be employed.
[0045] 通常は反応装置内に滞留している固体酸触媒に対して、下限が、通常 0. 01重量 倍以上、好ましくは 0. 1重量倍以上であり、上限が通常 10000重量倍以下、好ましく は 1000重量倍以下の原料ポリオールを 1時間に供給する。なお、この場合には反応 装置内の固体酸触媒に対する塩基の当量比が経時的に低下することがあるので、 必要に応じて固体酸触媒を少量ずつ抜き出し、新触媒をチャージしたり、原料ポリオ ールと共に塩基を供給して、酸に対する有機塩基の当量比が所望の値を維持するよ うにすることちでさる。  [0045] The lower limit is usually 0.01 times by weight or more, preferably 0.1 times by weight or more, and the upper limit is usually 10,000 times by weight or less, with respect to the solid acid catalyst usually staying in the reactor. Preferably, a raw material polyol of 1000 times by weight or less is fed in one hour. In this case, the equivalent ratio of the base to the solid acid catalyst in the reaction apparatus may decrease with time. Therefore, if necessary, the solid acid catalyst may be withdrawn little by little to charge a new catalyst, The base is supplied together with the solvent so that the equivalent ratio of organic base to acid maintains the desired value.
[0046] 脱水縮合反応の温度は、下限が、通常 120°C以上、好ましくは 140°C以上であり、 上限が通常 250°C、好ましくは 200°C以下で反応を行うのがよい。反応は窒素ゃァ ルゴン等の不活性ガス雰囲気下で行うのが好ましい。反応圧力は反応系が液相に保 持される範囲であれば任意であり、通常は常圧下で行われる。所望ならば反応により 生成した水の反応系からの脱離を促進するため、反応を減圧下で行ったり、反応系 に不活性ガスを流通させてもょ ヽ。 [0046] The lower limit of the temperature of the dehydration condensation reaction is usually 120 ° C or higher, preferably 140 ° C or higher, and the upper limit is usually 250 ° C, preferably 200 ° C or lower. The reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen nitrogen. The reaction pressure is maintained in the liquid phase of the reaction system. As long as it is within the range, it is optional and is usually carried out under normal pressure. If desired, the reaction can be carried out under reduced pressure or an inert gas can be circulated through the reaction system to promote the elimination of water produced by the reaction from the reaction system.
[0047] 反応時間は触媒の使用量、反応温度および生成する脱水縮合物に所望の収率や 物性などにより異なるが下限が、通常、 0. 5時間以上、好ましくは 1時間以上であり、 上限が通常 50時間以下、好ましくは 20時間以下である。なお、反応は通常は無溶 媒で行うが、所望ならば溶媒を用いることもできる。溶媒は反応条件下での蒸気圧、 安定性、原料および生成物の溶解性などを考慮して、常用の有機合成反応に用い る有機溶媒力 適宜選択して用いればょ 、。  [0047] The reaction time varies depending on the amount of catalyst used, the reaction temperature, and the desired yield and physical properties of the dehydration condensate to be produced, but the lower limit is usually 0.5 hours or more, preferably 1 hour or more. Is usually 50 hours or less, preferably 20 hours or less. The reaction is usually carried out in a non-solvent, but a solvent can be used if desired. The solvent should be selected as appropriate according to the organic solvent power used in conventional organic synthesis reactions, taking into consideration the vapor pressure, stability, and solubility of raw materials and products under the reaction conditions.
[0048] 生成ポリエーテルポリオールの反応系力もの分離 ·回収は常法により行うことができ る。  [0048] Separation / recovery of the produced polyether polyol can be carried out by a conventional method.
[0049] 懸濁床の場合には、まず濾過や遠心分離により反応液からけん濁している固体酸 触媒を除去する。反応系に金属化合物を添加した場合には、水洗により除去するか 、難溶性の塩を形成させて、ろ過により除去する方法を採用することができる。有機 塩基の場合には、蒸留可能な場合には蒸留操作により除き、取り出した有機塩基は また反応系にもどすことができる。蒸留できない場合には、水洗によりのぞくことがで きる。  [0049] In the case of a suspended bed, first, the suspended solid acid catalyst is removed from the reaction solution by filtration or centrifugation. When a metal compound is added to the reaction system, it can be removed by washing with water or a hardly soluble salt can be formed and removed by filtration. In the case of an organic base, it can be removed by distillation if it can be distilled, and the extracted organic base can be returned to the reaction system. If it cannot be distilled, it can be removed by washing with water.
[0050] また、必要に応じて蒸留または水などの抽出により低沸点のオリゴマーを除去して、 目的とするポリエーテルポリオールを取得する。  [0050] If necessary, the low-boiling oligomers are removed by distillation or extraction with water to obtain the desired polyether polyol.
[0051] 固定床反応の場合には、とりだした反応液から軽沸成分や低沸点のオリゴマーを 必要に応じ蒸留や水洗により除き、目的とするポリエーテルポリオールを取得す る。 [0051] In the case of a fixed bed reaction, a light-boiling component or a low-boiling oligomer is removed from the taken-out reaction solution by distillation or water washing as necessary to obtain the desired polyether polyol.
[0052] これらのポリエーテルポリオールは、必要であればさらに乾燥工程を経て製品とす ることがでさる。  [0052] These polyether polyols can be made into products through a drying step if necessary.
[0053] <ポリエーテルポリオール > [0053] <Polyether polyol>
本発明の方法により得られるポリエーテルポリオールの色は着色がないほど好まし The color of the polyether polyol obtained by the method of the present invention is so preferable that it is not colored.
V、。着色の程度としては目視で黒色 >茶色 >黄色 >無色(白色)の順となる。 V ,. The degree of coloring is visually in the order of black> brown> yellow> colorless (white).
[0054] また、本発明のポリエーテルポリオールの数平均分子量は、用いる触媒の種類や 触媒量により調整することができ、下限が通常 80以上、好ましくは 600以上、より好ま しくは 1000以上であり、上限が通常 10000以下、好ましくは 7000以下、より好ましく は 5000以下である。 [0054] The number average molecular weight of the polyether polyol of the present invention depends on the type of catalyst used and The lower limit is usually 80 or more, preferably 600 or more, more preferably 1000 or more, and the upper limit is usually 10000 or less, preferably 7000 or less, more preferably 5000 or less.
[0055] 分子量分布 (重量平均分子量 Z数平均分子量)は 1に近いほど好ましぐ上限が通 常 3以下、好ましくは 2. 5以下である。  [0055] As the molecular weight distribution (weight average molecular weight Z number average molecular weight) is closer to 1, the preferred upper limit is usually 3 or less, preferably 2.5 or less.
[0056] 本発明のポリエーテルポリオールは、弾性繊維や熱可塑性ポリエステルエラストマ 一、熱可塑性ポリウレタンエラストマ一、コーティング材などの用途に使用できる。 実施例 1 [0056] The polyether polyol of the present invention can be used for applications such as elastic fibers, thermoplastic polyester elastomers, thermoplastic polyurethane elastomers, and coating materials. Example 1
[0057] 以下に実施例により本発明をさらに具体的に説明する。  [0057] The present invention will be described more specifically with reference to the following examples.
[0058] <中性塩分解法による酸量の測定方法 > [0058] <Method for measuring acid amount by neutral salt decomposition method>
中性塩分解法による酸量の測定は以下のように行った。試料 lOmgを少数第一位 まで精秤し、 30mlの飽和塩化ナトリウム水溶液 (純正化学製特級塩化ナトリウムと脱 塩水により調製)を加えて 15分間攪拌子で室温で攪拌した。  The acid amount was measured by the neutral salt decomposition method as follows. A sample lOmg was precisely weighed to the first decimal place, 30 ml of a saturated aqueous sodium chloride solution (prepared with Pure Chemical's special grade sodium chloride and demineralized water) was added, and the mixture was stirred for 15 minutes at room temperature.
[0059] その後、固体酸触媒を濾別、脱塩水で洗浄し、濾液を 0. 025M水酸ィ匕ナトリウム水 溶液にて滴定し、イオン交換されたプロトンの量を求め、単位重量あたりの酸量を求 めた。 [0059] Thereafter, the solid acid catalyst was filtered off, washed with demineralized water, and the filtrate was titrated with 0.025 M aqueous solution of sodium hydroxide and sodium to obtain the amount of protons ion-exchanged. The amount was determined.
[0060] < Hammettの酸強度関数測定方法 >  [0060] <Method of measuring Hammett's acid strength function>
固体酸触媒 0. lgを室温 (25°C ± 3°C)で飽和水蒸気下で 2日保持し、飽和水蒸気 を吸着させる。これに国産化学製特級ベンゼン 2mlをカロえたのち 0. lwt%溶液の H ammett指示薬を 2滴滴下し、触媒上の色の変化を観察した。  Hold solid acid catalyst 0. lg at room temperature (25 ° C ± 3 ° C) under saturated steam for 2 days to adsorb saturated steam. To this was added 2 ml of a 0.1 wt% solution of Hammett's indicator after observing 2 ml of special grade benzene produced by Kokusan Kagaku, and the color change on the catalyst was observed.
[0061] Hammett指示薬はアントラキノン(pKa-8. 2)→ベンザルァセトフエノン(pKa-5.  [0061] Hammett indicator is anthraquinone (pKa-8. 2) → benzalacetophenone (pKa-5.
6)→ジシンナマルアセトン(pKa- 3. 0)→4 -ベンゼンァゾジフエ-ルァミン(pKa+ 1 . 5)→p-ジメチルアミノアゾベンゼン(pKa+ 3. 3)→4 -ベンゼンァゾ- 1-ナフチルァ ミン(pKa + 4. 0)→メチルレッド(pKa + 4. 8)→ニユートラルレッド(pKa + 6. 8)の 順に滴下した。  6) → Dicinnamalacetone (pKa-3.0) → 4-Benzazodiphenylamine (pKa + 1.5) → p-dimethylaminoazobenzene (pKa + 3.3) → 4-Benzazol-1-naphthylamine The solution was dropped in the order of (pKa + 4.0) → methyl red (pKa + 4.8) → neutral red (pKa + 6.8).
[0062] 「Hammettの指示薬吸着法で測定した酸度関数 Hが- 3より大き  [0062] “Acidity function H measured by Hammett's indicator adsorption method is greater than −3
0 、」とは、例えば 0, "for example
、アントラキノン(pKa-8. 2)、ベンザルァセトフエノン(pKa-5. 6)、ジシンナマルア セトン(pKa-3. 0)までは酸性色への変色がなぐ pKaが- 3. 0より大きい、 4-ベンゼ ンァゾジフエ-ルァミン(pKa + 1. 5)、 p-ジメチルアミノアゾベンゼン(pKa + 3. 3)、 4-ベンゼンァゾ- 1-ナフチルァミン(pKa+4. 0)、メチルレッド(pKa+4. 8)、ニュー トラルレッド (pKa+6. 8)の指示薬で酸性色への着色を示すか、いずれの指示薬も 酸性色への着色を示さな ヽことを表す。 , Anthraquinone (pKa-8.2), benzalacetophenone (pKa-5.6), and disinnamalaceton (pKa-3.0) have no discoloration to acidic color. -Benze Nazodiphenylamine (pKa + 1.5), p-dimethylaminoazobenzene (pKa + 3.3), 4-benzeneazo-1-naphthylamine (pKa + 4.0), methyl red (pKa + 4.8), new This means that the indicator of Tral Red (pKa + 6.8) shows acid coloration, or none of the indicators show acid coloration.
[0063] 逆に、酸度関数 Hが- 3より小さいとは、例えば、アントラキノン (pKa-8. 2)やベン [0063] On the other hand, the acidity function H is smaller than −3, for example, anthraquinone (pKa-8.2) or ben
0  0
ザルァセトフエノン(pKa-5. 6)のように、ジシンナマルアセトン(pKa-3. 0)よりも小さ V、pKaの指示薬で酸性色への変色があることを示す。  It shows that there is a color change to an acidic color with an indicator of V and pKa smaller than dicinnamalacetone (pKa-3. 0) as in zalacetophenone (pKa-5. 6).
[0064] 表 1には、たとえば、 4-ベンゼンァゾジフエ-ルァミン(pKa+ 1. 5)では酸性色 への着色がなぐ P-ジメチルアミノアゾベンゼン (pKa+ 3. 3)で着色があった場合、「 + 1. 5<H≤+ 3. 3」と表す。 pKa + 6. 8でも酸性色への変化がない場合、酸強度 [0064] In Table 1, for example, when 4-benzeneazodiamine (pKa + 1.5) does not have an acidic color, P-dimethylaminoazobenzene (pKa + 3.3) has a color. , “+ 1.5 <H ≤ + 3.3”. If pKa + 6.8 does not change to acidic color, acid strength
0  0
は H > +6. 8と表す。各触媒の Hを表 1に示す。  Represents H> +6.8. Table 1 shows the H of each catalyst.
0 0  0 0
くアンモニアの昇温脱離分析方法 (TPD) >  Ammonia Thermal Desorption Analysis Method (TPD)>
アンモニアの昇温脱離分析は以下の方法により行った。  The temperature programmed desorption analysis of ammonia was performed by the following method.
[0065] 測定装置:ァネルバ(株) AGS— 7000 EI法 70eV  [0065] Measuring device: Anelva AGS-7000 EI method 70eV
手法: TPD— MS、丄、 emperature Programmed Desorption Mass— Spe ctrometry)  Method: TPD—MS, 丄, emperature Programmed Desorption Mass—Spe ctrometry)
測定条件:  Measurement condition:
試料量;約 30mgを精秤  Sample volume; approx. 30 mg precisely weighed
試料の前処理条件; He 80ml/min,室温から 250°Cまで 30°CZminで昇温後 、 250°C X 30分保持。  Sample pretreatment conditions: He 80ml / min, raised from room temperature to 250 ° C at 30 ° CZmin, then kept at 250 ° C for 30 minutes.
[0066] アンモニア吸着条件; 「100°Cでロータリーポンプで試料を真空排気したのち、同 温度で 90torr分のアンモニアガス(純度 100%)を試料に注入し、 15分保持」→「真 空排気 100°C X 30分」→「He 200ml/min, 100°C X 30分」→「室温に戻ったの ち 5min後 TPD測定開始する。」  [0066] Ammonia adsorption condition: “After evacuating the sample with a rotary pump at 100 ° C, inject ammonia gas (purity 100%) for 90 torr at the same temperature and hold for 15 minutes” → “Vacuum exhaustion” 100 ° CX 30 minutes ”→“ He 200ml / min, 100 ° CX 30 minutes ”→“ TPD measurement starts 5 minutes after returning to room temperature. ”
TPD測定ガス; He 80ml/min  TPD measurement gas; He 80ml / min
TPD測定温度範囲;室温〜 700°C (10°CZminで昇温)  TPD measurement temperature range; room temperature to 700 ° C (temperature rise at 10 ° C Zmin)
脱離したアンモニア量の定量;各サンプルの測定とは別に、一定量のアンモニアを 注入し、その量 (モル数)とそのときのイオン強度 (m/z= 16)の面積から、検量線を 作成した。各サンプルの脱離したアンモニア量は、該当する温度範囲でのイオン強 度の面積を求め、先に求めた検量線力 計算、定量した。 Quantification of the amount of desorbed ammonia: Separately from the measurement of each sample, a fixed amount of ammonia was injected, and a calibration curve was calculated from the area of the amount (mole number) and the ionic strength (m / z = 16) at that time. Created. The amount of ammonia desorbed from each sample was determined by calculating the area of the ionic strength in the corresponding temperature range, calculating the calibration curve force obtained earlier, and quantifying it.
[0067] 尚、アンモニア由来の mZz= 16に対し、無視できない量の他の化合物(代表例: 水)由来の mZz= 16を有する恐れがある試料の場合は、その化合物由来の mZz = 16のイオン強度を算出し、その寄与分をアンモニア定量値より除く必要がある。  [0067] In addition, in the case of a sample that may have a non-negligible amount of mZz = 16 derived from another compound (typical example: water) in contrast to mZz = 16 derived from ammonia, mZz = 16 derived from that compound. It is necessary to calculate the ionic strength and remove the contribution from the quantitative ammonia value.
[0068] 当該化合物の mZz= 16のイオン強度は、その化合物本来の「mZz= 16以外の mZzのイオン強度」と「mZz= 16のイオン強度」の比から、 TPD測定データ中のそ の化合物由来の mZz = 16のイオン強度を計算することができる。 [0068] The ionic strength of the compound at mZz = 16 is calculated from the ratio of the original ionic strength of mZz other than mZz = 16 to the ionic strength of mZz = 16. The ionic strength of the derived mZz = 16 can be calculated.
<熱重量分析 (TG) >  <Thermogravimetric analysis (TG)>
熱重量分析は以下の方法により行った。  Thermogravimetric analysis was performed by the following method.
[0069] 試料;飽和水蒸気中で 2日間保持の前処理後、室温、空気中でサンプリング。 [0069] Sample: Sampling in air at room temperature after pretreatment for 2 days in saturated steam.
[0070] 測定装置;エスアイアイ ·ナノテクノロジー株式会社 TG-DTA 6300 [0070] Measuring device: SII Nanotechnology Co., Ltd. TG-DTA 6300
温度の校正; In, Pb, Snの 3種類の金属で校正  Temperature calibration; calibration with three metals: In, Pb, and Sn
重量の校正;室温で分銅にて校正。シユウ酸カルシウムで校正。  Calibration of weight; calibration with weight at room temperature. Calibration with calcium oxalate.
[0071] 試料量;約 lOmg [0071] Sample amount: about 10 mg
試料容器; A1製、 5mm X 2. 5mm  Sample container: A1, 5mm X 2.5mm
測定方法;乾燥窒素ガス(純度 99. 999%以上、露点- 60°C) 200mlZmin流通、 30°Cで 30分室温で保持したのち 10°CZminで昇温、 500°Cまで昇温。  Measurement method: Dry nitrogen gas (purity 99.999% or more, dew point-60 ° C) Flow through 200mlZmin, hold at 30 ° C for 30 minutes at room temperature, then heat up at 10 ° C Zmin, then heat up to 500 ° C.
[0072] 基準重量; 32°Cまでの減量を、計りとつた試料の重量から差し引いた重量を基準重 量とする。 [0072] Reference weight: The weight obtained by subtracting the weight loss to 32 ° C from the weight of the measured sample shall be the reference weight.
[0073] 水の脱離量;所定の温度範囲における減量の、基準重量に対する割合 (%)。  [0073] Desorption amount of water; ratio (%) of the weight loss in a predetermined temperature range to the reference weight.
[0074] 熱重量分析 (TG)の結果を表 1に示す。 [0074] Table 1 shows the results of thermogravimetric analysis (TG).
[0075] <元素分析 > [0075] <Elemental analysis>
ゼォライト触媒に含有される Al、 Na、 Siの量については、特に断らない限り次の方 法により定量した数値を採用した。  Unless otherwise specified, the amounts quantified by the following method were used for the amounts of Al, Na, and Si contained in the zeolite catalyst.
[0076] XRF法:試料を 120°Cで 2h乾燥し、放冷後 500mg分取し、 LiB O 5. OOgと混合 [0076] XRF method: The sample was dried at 120 ° C for 2 h, allowed to cool, and 500 mg was taken and mixed with LiB O 5. OOg
4 7  4 7
し、溶融、冷却し、ガラスビード成型したのち蛍光 X線 (XRF (ファンダメンタルパラメ 一ター法: FP法))で定量した。 [0077] なお、実施例 4で用いた ZSM- 5(シリカライト)は Al、 Naの含有量が少なかったため 、次の方法で定量した。 The sample was melted, cooled, glass-beaded, and then quantified by fluorescent X-ray (XRF (fundamental parameter method: FP method)). [0077] ZSM-5 (silicalite) used in Example 4 was quantified by the following method because the content of Al and Na was small.
[0078] 化学分析法:試料を 120°Cで 2h乾燥し、放冷後分取し、湿式分解法で全量を分解 させ、溶液とし、 ICP-AES (A1,検量線法), AAS (Na,検量線法)にて定量した。  [0078] Chemical analysis method: The sample was dried at 120 ° C for 2 h, collected after standing to cool, and decomposed by the wet decomposition method to make a solution, and then ICP-AES (A1, calibration curve method), AAS (Na Quantitative analysis using a calibration curve method).
[0079] スルホン酸基含有シリカおよび Nafion中の Na, K量は以下の方法で分析した。 [0079] The amount of Na and K in the sulfonic acid group-containing silica and Nafion was analyzed by the following method.
[0080] 化学分析法 (2):試料を 120°Cで 2h乾燥、放冷後分取し、乾式灰化法で全量を分 解させ、溶液とし、 AAS、検量線法にて定量した。 [0080] Chemical analysis method (2): The sample was dried at 120 ° C for 2 hours, allowed to cool, and collected, and the total amount was resolved by dry ashing to obtain a solution, which was quantified by AAS and calibration curve method.
[0081] <数平均分子量 (Mn)の測定 > [0081] <Measurement of number average molecular weight (Mn)>
ポリエーテルポリオールの数平均分子量(Mn)の測定は、ゲルパーミエーシヨンクロ マトグラフィ一により下記の条件で行い、ポリテトラヒドロフランを基準に算出した。 カラム:  The number average molecular weight (Mn) of the polyether polyol was measured by gel permeation chromatography under the following conditions and calculated based on polytetrahydrofuran. Column:
TSK-GEL GMHXL- N (7. 8mmID X 30. OcmL) (東ソ一株式会社)  TSK-GEL GMHXL- N (7.8 mm ID X 30. OcmL) (Tosohichi Corporation)
質量較正:  Mass calibration:
POLYTRTRAHYDROFURAN CALIBRATION KIT (Polymer Laboratorie s)  POLYTRTRAHYDROFURAN CALIBRATION KIT (Polymer Laboratorie s)
( Mp= 547000, 283000, 99900, 67500, 35500, 15000, 6000, 2170, 160 0, 1300 )  (Mp = 547000, 283000, 99900, 67500, 35500, 15000, 6000, 2170, 160 0, 1300)
溶媒:テトラヒドロフラン  Solvent: Tetrahydrofuran
< GC分析条件 >  <GC analysis conditions>
軽沸成分及びえられた油層中に含有される 1 , 3-プロパンジオールはガスクロマト グラフ (GC)により分析した。  The light boiling components and 1,3-propanediol contained in the obtained oil layer were analyzed by gas chromatography (GC).
カラム: HR- 20M 膜厚 0. 25 ^ m, 0. 25mmID X 30m  Column: HR-20M film thickness 0.25 ^ m, 0.25mmID X 30m
キャリアー:窒素 約 1. 5mlZmin、スプリット比 約 40  Carrier: Nitrogen approx. 1.5mlZmin, split ratio approx. 40
オーブン温度: 50°C- (10°C,min昇温) -230°C (10分保持)  Oven temperature: 50 ° C- (10 ° C, min temperature rise) -230 ° C (10 minutes hold)
注入口、検出器温度: 240°C  Inlet and detector temperature: 240 ° C
内部標準; n-テトラデカン  Internal standard; n-tetradecane
以下の実施例において、実施例 2、 8及び比較例 1、 3で用いた触媒は予め 300 °Cで 12時間乾燥させた後、用いた。 [0082] 実施例 1 In the following examples, the catalysts used in Examples 2 and 8 and Comparative Examples 1 and 3 were used after being previously dried at 300 ° C. for 12 hours. [0082] Example 1
< 1, 3-プロパンジオールの蒸留精製 >  <Distillation purification of 1,3-propanediol>
還流冷却管、窒素導入管、温度計および攪拌機を備えたパイレックス (登録商標) 製 500ml四つ口フラスコに窒素雰囲気下に、 250gの 1, 3-プロパンジオール(アル ドリツチ社製試薬、純度 98%, Batch # 10508AB)および 1. 75gの水酸化カリウム を仕込んだ。フラスコをオイルバスに入れて加熱し、液温が 162°Cになったならば温 度を 162〜168°Cに保持した。 2時間後、フラスコをオイルノ スから取り出して室温ま で放置して冷却した。次いで減圧下、約 90°Cにて単蒸留した。初留 l lgをすて、留 出物約 230gを回収した。  In a Pyrex (registered trademark) 500 ml four-necked flask equipped with a reflux condenser, nitrogen inlet tube, thermometer and stirrer, 250 g of 1,3-propanediol (Aldrich reagent, purity 98%) in a nitrogen atmosphere , Batch # 10508AB) and 1.75 g of potassium hydroxide. The flask was placed in an oil bath and heated. When the liquid temperature reached 162 ° C, the temperature was maintained at 162-168 ° C. After 2 hours, the flask was removed from the oil nose and allowed to cool to room temperature. Subsequently, simple distillation was performed at about 90 ° C. under reduced pressure. About 230 g of distillate was recovered by draining the first distillate.
[0083] < 1, 3-プロパンジオールの脱水縮合反応 > [0083] <Dehydration condensation reaction of 1,3-propanediol>
上記の方法により蒸留精製した 1, 3-プロパンジオール 20gを、蒸留管、窒素導入 管、温度計およびメカ-カルスターラーを備えたパイレックス (登録商標)製 100ml四 つ口フラスコに、窒素を 40NmlZ分で供給しながら仕込んだ。このフラスコを 25°Cの オイルバスにつけながら攪拌しながら東ソー製 HYゼォライト(HSZ- 320HOA、 SiO ZA1 O (モル比) = 5. 3、 lot. 2001) 10gをゆっくり添加した。  20 g of 1,3-propanediol purified by distillation using the above method was added to a Pyrex (registered trademark) 100 ml four-necked flask equipped with a distillation tube, a nitrogen inlet tube, a thermometer and a mechano-cal stirrer. It was charged while supplying at. While stirring this flask in an oil bath at 25 ° C., 10 g of Tosoh HY zeolite (HSZ-320HOA, SiO ZA1 O (molar ratio) = 5.3, lot. 2001) was slowly added.
2 2 3  2 2 3
[0084] 固体酸触媒を添加したのち 10分間室温で攪拌し、反応器内の酸素を十分のぞい たのち、オイルバスの温度を 200°Cに設定し加熱を開始した。反応液の温度を 185 °C ± 3°Cに調節して 6時間保持して反応させたのちフラスコをオイルバスから取り出し 室温まで放置して冷却した。反応の間に生成した水は窒素に同伴させて流出させ、 副生成物、 1, 3-プロパンジオールとともにドライアイス一エタノール溶液で周囲を冷 却したトラップを  [0084] After adding the solid acid catalyst, the mixture was stirred at room temperature for 10 minutes, and after sufficiently removing oxygen in the reactor, the oil bath temperature was set to 200 ° C and heating was started. The temperature of the reaction solution was adjusted to 185 ° C. ± 3 ° C. and held for 6 hours for reaction, and then the flask was removed from the oil bath and allowed to cool to room temperature. The water generated during the reaction was allowed to flow out with nitrogen, and a trap that had been cooled with dry ice-ethanol solution along with the by-product 1,3-propanediol was used.
用いて捕集した。これらは軽沸成分とし、別途ガスクロマトグラフィーで含有される 1, 3-プロパンジオールの量を分析した。  Used to collect. These were light-boiling components, and the amount of 1,3-propanediol contained separately was analyzed by gas chromatography.
[0085] 室温まで冷却された反応液に 50gのテトラヒドロフランをカ卩えて 1時間攪拌したのち 、固体酸触媒を 1 mの PTFE製のフィルターでろ過した。 30mlのテトラヒドロフラン( 0. 03wt%BHT (ブチルヒドロキシルトルエン)含有)を用いて反応器内部と濾過器 内を洗浄し、上記ろ液と混合した。この操作を 2回繰り返したのち、集めた有機層から 減圧下にテトラヒドロフランを留去した。得られた油層を 50°Cに加熱して 3時間 2〜3 mmHgで真空乾燥した。この油層につ 、てゲルパーミッションクロマトグラ フィ一にて測定し、数平均分子量 (Mn)を求めた。また、この油層に含まれる 1, 3-プ 口パンジオールの量はガスクロマトグラフィーで分析し、定量した。 [0085] 50 g of tetrahydrofuran was added to the reaction solution cooled to room temperature and stirred for 1 hour, and then the solid acid catalyst was filtered through a 1-m PTFE filter. The inside of the reactor and the inside of the filter were washed with 30 ml of tetrahydrofuran (containing 0.03 wt% BHT (butylhydroxyl toluene)) and mixed with the above filtrate. After repeating this operation twice, tetrahydrofuran was distilled off from the collected organic layer under reduced pressure. Heat the resulting oil layer to 50 ° C for 3 hours 2-3 Vacuum dried at mmHg. The oil layer was measured with a gel permeation chromatography and the number average molecular weight (Mn) was determined. In addition, the amount of 1,3-propanepandiol contained in this oil layer was analyzed and quantitatively analyzed by gas chromatography.
[0086] 未反応の 1, 3-プロパンジオールの量は軽沸成分と油層中の成分のそれぞれにつ き求 [0086] The amount of unreacted 1,3-propanediol is determined for each of the light boiling component and the component in the oil reservoir.
め合計値を求め、下記の式より 1, 3-プロパンジオールの転ィ匕率を求めた。ポリエー テルポリオールの選択率は、得られた油層の中から、 1, 3-プロパンジオールの量を 差し引き、残りをポリエーテルポリオールとして、以下の式から求めた。  Therefore, the total value was obtained, and the conversion rate of 1,3-propanediol was obtained from the following formula. The selectivity for the polyether polyol was determined from the following formula, subtracting the amount of 1,3-propanediol from the obtained oil layer and using the remainder as the polyether polyol.
[0087] <原料 1, 3-プロパンジオールの転化率 >  [0087] <Conversion rate of raw material 1,3-propanediol>
(1、 3-プロパンジオールの転化率)(%) = { (仕込みの 1, 3-プロパンジオールの モル数)-(残存した 1, 3-プロパンジオールのモル数)} X 100Z (仕込みの 1, 3-プ 口パンジオールのモル数)  (1, conversion rate of 3-propanediol) (%) = {(number of moles of 1,3-propanediol charged)-(number of moles of 1,3-propanediol remaining)} X 100Z (1 of charge , 3-Pole diol in moles)
<ポリエーテルポリオール選択率 >  <Polyether polyol selectivity>
(ポリエーテルポリオール選択率)(0/0) =[{ (油層の重量 (g) ZMn) X (Mn-18) /5 8}- (油層中の 1, 3-プロパンジオールのモル数)] X 100Z (転化した 1, 3-プロパン ジオールのモル数) (Polyether polyol selectivity) (0/0) = [{(weight of oil layer (g) ZMn) X (Mn -18) / 5 8} - (1 in the oil layer, the number of moles of 3-propanediol) X 100Z (number of moles of 1,3-propanediol converted)
結果を表 1に示す。  The results are shown in Table 1.
[0088] 実施例 2  [0088] Example 2
固体酸触媒として、東ソー製 USYゼォライト(HSZ- 330HUA、 Na O/SiO /Al  USY zeolite (HSZ-330HUA, Na 2 O / SiO 2 / Al) as a solid acid catalyst
2 2 2 2 2 2
O (モル比) =0. 02Z6Z1 (製造元公称値) lot. C2- 0719)を用いた以外は実施例O (molar ratio) = 0.02Z6Z1 (manufacturer nominal value) lot.C2- 0719)
3 Three
1と全く同様にしてポリトリメチレンエーテルグリコールを得た。結果を表— 1に示す。  Polytrimethylene ether glycol was obtained in the same manner as in 1. The results are shown in Table-1.
[0089] 実施例 3 [0089] Example 3
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
メカ-カルスターラーを備えたパイレックス (登録商標)製 4つ口フラスコに、キシダ 化学製硝酸ナトリウム特級 l lgを仕込んだ後、脱塩水 100gを加えて攪拌しながら溶 解させ、 1. 3molZlの硝酸ナトリウム水溶液約 100mlを調製した。さらに攪拌させな がら、ここに実施例 2で使用したと同じ東ソー製 USYゼォライト (HSZ- 330HUA)を 20g添加し液温を 80°Cで 2時間に保った後、ゼォライトを濾別し 80°Cの 脱塩水で洗浄した。風乾したのち、 120°Cで 12時間乾燥器で乾燥させた後、 500°C 2時間で空気中で焼成し、 Na部分置換 USYゼォライトを得た。元素分析の結果、 N a O/SiO /Al O (モル比) =0. 07/6. Pyrex (registered trademark) four-necked flask equipped with mecha-car stirrer was charged with Kishida Chemical's sodium nitrate special grade l lg, and 100 g of demineralized water was added and dissolved with stirring. 1. 3 mol Zl of nitric acid About 100 ml of an aqueous sodium solution was prepared. While further stirring, 20 g of the same Tosoh USY zeolite (HSZ-330HUA) used in Example 2 was added here, and the liquid temperature was maintained at 80 ° C. for 2 hours. C Washed with demineralized water. After air drying, it was dried in an oven at 120 ° C for 12 hours and then calcined in air at 500 ° C for 2 hours to obtain Na partially substituted USY zeolite. As a result of elemental analysis, NaO / SiO 2 / Al 2 O (molar ratio) = 0.07 / 6.
2 2 3 4Zlであった。  2 2 3 4Zl.
2  2
[0090] < 1, 3-プロパンジオールの脱水縮合反応 >  [0090] <Dehydration condensation reaction of 1,3-propanediol>
固体酸触媒として、上記触媒を用いた以外は実施例 1と同様の方法でポリトリメチレ ンエーテルグリコールを得た。結果を表— 1に示す。  Polytrimethyl ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table-1.
[0091] 実施例 4  [0091] Example 4
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
メカ-カルスターラーを備えたパイレックス (登録商標)製 4つ口フラスコに、キシダイ匕 学製硝酸アンモ-ゥム特級 7. 8gを仕込んだ後、脱塩水 100gを加えて攪拌しながら 溶解させ、 0. 95molZlの硝酸アンモ-ゥム水溶液約 100mlを調製した。さらに攪拌 させながら、ここに NEケムキャット製 ZSM- 5(シリカライト)、(K- MCM- 04、 Na O/Si  Pyrex (registered trademark) four-necked flask equipped with mecha-car stirrer was charged with 8 g of ammonium nitrate ammonium special grade 7.8 by Kishidai Chemical, 100 g of demineralized water was added and dissolved while stirring, 0 About 100 ml of 95 mol Zl aqueous ammonium nitrate solution was prepared. While further stirring, NE Chemcat ZSM-5 (silicalite), (K-MCM-04, Na O / Si
2  2
O /Al O (モル  O / Al O (mol
2 2 3 比) =2lZl640Zl (製造元分析値) 13gを添力卩し液温を 80°Cで 2 時間に保った後、ゼォライトを濾別し 80°Cの脱塩水で洗浄した。風乾したのち、 120 °Cで 12時間乾燥器で乾燥させた後、 500°C2時間で空気中で焼成し、 Na部分置換 シリカライトを得た。元素分析の結果、 Na O/SiO /Al O (モル比) =0. 14/144  2 2 3 ratio) = 2lZl640Zl (Manufacturer analysis value) 13 g was added and the liquid temperature was kept at 80 ° C. for 2 hours, and then the zeolite was filtered off and washed with 80 ° C. demineralized water. After air drying, it was dried in a dryer at 120 ° C. for 12 hours and then calcined in air at 500 ° C. for 2 hours to obtain Na partially substituted silicalite. As a result of elemental analysis, Na 2 O / SiO 2 / Al 2 O (molar ratio) = 0.14 / 144
2 2 2 3  2 2 2 3
6Z1であった。  It was 6Z1.
[0092] < 1, 3-プロパンジオールの脱水縮合反応 > [0092] <Dehydration condensation reaction of 1,3-propanediol>
固体酸触媒として、上記触媒を用いた以外は、実施例 1と同様の方法でポリトリメチ レンエーテルグリコールを得た。結果を表 1に示す。  Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
[0093] 比較例 1  [0093] Comparative Example 1
1, 3-プロパンジオールを 40. 5g、固体酸触媒として、 NEケムキャット製 ZSM- 5ゼ オライト(K- MCM- 02- 2、 Na OZSiO /Al O (モル比) = 0Z47ZDを 16. 6g、  40.5 g of 1,3-propanediol, as a solid acid catalyst, ZSM-5 Zeolite manufactured by NE Chemcat (K-MCM-02-2, Na OZSiO / Al 2 O (molar ratio) = 16.6 g of 0Z47ZD,
2 2 2 3  2 2 2 3
窒素を lOONmlZ分で供給した以外は実施例 1と全く同様にしてポリトリメチレンエー テルグリコールを得た。結果を表 1に示す。  A polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1 except that nitrogen was supplied in an amount of lOONmlZ. The results are shown in Table 1.
また、この触媒の TPDを測定したところ、 100〜250°Cでのアンモニア脱離量は、 0. 19mmolZgであり、全体の(25°C〜700°Cの領域)のアンモニア脱離量の 33%で あった。また、 100〜300°Cでのアンモニア脱離量は、 0. 25mmolZgであり、全体 の(25°C〜700°Cの領域)のアンモニア脱離量の 43%で、 100〜350°Cでのアンモ -ァ脱離量は、 0. 33mmolZgであり、全体の(25°C〜700°Cの領域)のアンモニア 脱離量の 57%であった。 Further, when the TPD of this catalyst was measured, the ammonia desorption amount at 100 to 250 ° C was 0.19 mmolZg, and the total ammonia desorption amount (region of 25 ° C to 700 ° C) was 33 %Met. In addition, the ammonia desorption amount at 100-300 ° C is 0.25 mmolZg, The ammonia desorption amount at 100-350 ° C is 0.33 mmolZg, with 43% of the ammonia desorption amount (region of 25 ° C-700 ° C), and the total (25 ° C- It was 57% of the amount of ammonia desorbed in the 700 ° C region).
[0094] また、 300〜450°Cの領域でのアンモニア脱離量は 0. 24mmolZgであった。この とき、 100〜300°Cの領域でのアンモニア脱離量に対する 300〜450°Cの領域での アンモニア脱離量は 0. 96倍となった。 400〜700°Cの領域で脱離する NHの脱離 [0094] The ammonia desorption amount in the region of 300 to 450 ° C was 0.24 mmol Zg. At this time, the ammonia desorption amount in the region of 300-450 ° C was 0.96 times the ammonia desorption amount in the region of 100-300 ° C. Desorption of NH desorbing in the region of 400 to 700 ° C
3 直は、 0. 15mmol, gで teつた。  3 strait was 0.15 mmol, g te.
[0095] 比較例 2 [0095] Comparative Example 2
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
硝酸ナトリウムを 25g、脱塩水を 280g、固体酸触媒として比較例 1で使用した ZSM —5ゼォライト 30g用いた以外は実施例 3の金属元素置換固体酸の調製方法と同様 に、 Na部分置換 ZSM- 5ゼォライトを得た。  Similar to the method for preparing a metal element-substituted solid acid in Example 3, except that 25 g of sodium nitrate, 280 g of demineralized water, and 30 g of ZSM-5zelite used in Comparative Example 1 were used as the solid acid catalyst. Obtained 5 zeolite.
元素分析の結果、  As a result of elemental analysis,
Na O/SiO  Na O / SiO
2 2 ZA1 O (モル  2 2 ZA1 O (mol
2 3 比) =0. 26Z49Z1であった  2 3 ratio) = 0.26Z49Z1
< 1, 3-プロパンジオールの脱水縮合反応 >  <Dehydration condensation reaction of 1,3-propanediol>
固体酸触媒として、上記触媒を用いた以外は、実施例 1と同様の方法でポリトリメチ レンエーテルグリコールを得た。結果を表 1に示す。  Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
実施例 5  Example 5
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
アルドリッチ社製試薬 Nafion NR- 50 (Beads 7-9mesh) 4gに脱塩水 10gを加え 、 ΙΝ-NaOH水溶液を 3. 3mlメスピペットを用いて室温で滴下し、 2時間攪拌したの ち 100mlの脱塩水で水洗、乾燥し、 50°C、 2mmHgで減圧下乾燥した。中性塩分解 法による酸量は、 0. l lmmolZgであった。実施例 5で用いた Nafionの酸量は 0. 9 OmmmolZgであったので、 88%の H+が Na+と置換された。  Add 10g of demineralized water to 4g of Aldrich reagent Nafion NR-50 (Beads 7-9mesh), add ΙΝ-NaOH aqueous solution dropwise at room temperature using 3.3ml measuring pipette, stir for 2 hours, then 100ml Washed with water, dried, and dried under reduced pressure at 50 ° C. and 2 mmHg. The acid amount by the neutral salt decomposition method was 0.1 lmmolZg. Since the acid amount of Nafion used in Example 5 was 0.9 OmmmolZg, 88% of H + was replaced with Na +.
[0096] < 1, 3-プロパンジオールの脱水縮合反応 > [0096] <Dehydration condensation reaction of 1,3-propanediol>
固体酸触媒として、上記触媒を 2. 5g使用し、オイルバスの温度を 182°Cに加熱し 、反応温度を 169°C± 3°Cに調節し、触媒の分離をデカンテーシヨンにより行った以 外は実施例 1と全く同様にしてポリトリメチレンエーテルグリコールを得た。 [0097] 結果を表 1に示す。 As the solid acid catalyst, 2.5 g of the above catalyst was used, the temperature of the oil bath was heated to 182 ° C, the reaction temperature was adjusted to 169 ° C ± 3 ° C, and the catalyst was separated by decantation. Except for this, polytrimethylene ether glycol was obtained in exactly the same manner as in Example 1. [0097] The results are shown in Table 1.
[0098] 実施例 6 [0098] Example 6
<固体酸の調製方法 >  <Method for preparing solid acid>
メカ-カルスターラーを備えたパイレックス (登録商標)製 100ml三口フラスコに、信 越化学製メルカプトプロピルトリメトキシシランオリゴマー(X- 41- 1805、 lot305006) 20g、及び純正化学製特級エタノール 39gをカ卩ぇ攪拌しながら脱塩水 1. 7gを加え、 30分室温で攪拌した。その後攪拌しながらフラスコ内の温度を 70°Cに 20時間保持 し加水分解を進行させ、次第にゲルイ匕した。ー且室温にもどしたのち、 100mlのナス フラスコに生成物をとりだし、溶媒を留去、乾燥後粉砕し、乳鉢で粉体にしたのち、 2 mmHgで 70°Cで 3時間乾燥させた。  Pyrex (registered trademark) 100 ml three-necked flask equipped with mecha-car stirrer was charged with 20 g of Shin-Etsu Chemical mercaptopropyltrimethoxysilane oligomer (X-41-1805, lot305006) and 39 g of pure chemical special grade ethanol While stirring, 1.7 g of demineralized water was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the temperature in the flask was maintained at 70 ° C. for 20 hours with stirring to allow hydrolysis to proceed and gradually gelled. -After returning to room temperature, the product was taken out into a 100 ml eggplant flask, the solvent was distilled off, dried, pulverized, powdered in a mortar, and then dried at 70 ° C for 3 hours at 2 mmHg.
[0099] このものを 13g、 100mlの三口フラスコに仕込み、メカ-カルスターラーで攪拌しな がら、 30%の過酸ィ匕水素水 36gを 4時間かけて滴下した。滴下途中で発熱がおきる ので、水浴で冷却しながら SH基を SO H基に酸ィ匕した。 [0099] 13 g of this product was charged into a 100 ml three-necked flask, and 36 g of 30% peroxy hydrogen peroxide solution was added dropwise over 4 hours while stirring with a mechano-car stirrer. Since heat was generated during the dropping, the SH group was oxidized to the SO H group while cooling in a water bath.
3  Three
[0100] 12時間室温で放置したのち、 70°Cで 4時間攪拌し、熟成させた。室温まで冷却し たのち、 1M硫酸水溶液で固体酸の濃度が lwt%になるように仕込み、イオン交換を おこなつたのち、水洗、乾燥し、 16mmHgで 3時間減圧乾燥し、スルホン酸基含有シ リカを得た。中性塩分解法による酸量は、 1. 3mmolZgであった。また元素分析によ り、 Na+と K+の置換量の合計は酸量に対して 0. 002当量であることがわかった。また 、この触媒の TPDを測定したところ、 100〜250°Cでのアンモニア脱離量は、 0. 83 mmolZgであり、全体の(25°C〜700°Cの領域)のアンモニア脱離量の 53%であつ た。また、 100〜300°Cでのアンモニア脱離量は、 1. ImmolZgであり、全体の(25 °C〜700°Cの領域)のアンモニア脱離量の 69%で、 100〜350°Cでのアンモニア脱 離量は、 1. 2mmolZgであり、全体の(25°C〜700°Cの領域)のアンモニア脱離量 の 76%であった。  [0100] After standing at room temperature for 12 hours, the mixture was aged by stirring at 70 ° C for 4 hours. After cooling to room temperature, a 1M sulfuric acid aqueous solution was added so that the solid acid concentration would be lwt%, and after ion exchange, it was washed with water, dried, and dried under reduced pressure at 16 mmHg for 3 hours. I got Rika. The acid amount by the neutral salt decomposition method was 1.3 mmolZg. Elemental analysis revealed that the total amount of Na + and K + substitution was 0.002 equivalents with respect to the acid amount. When the TPD of this catalyst was measured, the ammonia desorption amount at 100 to 250 ° C was 0.83 mmolZg, and the total ammonia desorption amount (25 ° C to 700 ° C region) 53%. In addition, the ammonia desorption amount at 100-300 ° C is 1. ImmolZg, 69% of the total ammonia desorption amount (25 ° C-700 ° C region), at 100-350 ° C The amount of ammonia desorbed was 1.2 mmolZg, which was 76% of the total amount of ammonia desorbed (range from 25 ° C to 700 ° C).
[0101] また、 300〜450°Cの領域でのアンモニア脱離量は 0. 15mmolZgであった。この とき、 100〜300°Cの領域でのアンモニア脱離量に対する 300〜450°Cの領域での アンモニア脱離量は 0. 14倍となった。  [0101] The ammonia desorption amount in the region of 300 to 450 ° C was 0.15 mmolZg. At this time, the ammonia desorption amount in the region of 300 to 450 ° C was 0.14 times the ammonia desorption amount in the region of 100 to 300 ° C.
[0102] 400〜700°Cの領域で脱離する NHの脱離量は、 0. 34mmolZgであった。 [0103] < 1, 3-プロパンジオールの脱水縮合反応 > [0102] The amount of NH desorbed in the region of 400 to 700 ° C was 0.34 mmol Zg. [0103] <Dehydration condensation reaction of 1,3-propanediol>
固体酸触媒として、上記触媒を 5g用い、反応温度を 189 ± 3°Cとした以外は、実施 例 1と同様の方法でポリトリメチレンエーテルグリコールを得た。結果を表— 1に示す。  Polytrimethylene ether glycol was obtained in the same manner as in Example 1 except that 5 g of the above catalyst was used as the solid acid catalyst and the reaction temperature was 189 ± 3 ° C. The results are shown in Table-1.
[0104] 実施例 7 [0104] Example 7
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
実施例 7で用いた触媒 6gに脱塩水 10gをカ卩え、室温で攪拌しながら lN-NaOHO . 66mlを室温で滴下したのち引き続き 2時間攪拌したのち、触媒を濾別し脱塩水 10 Omlで洗浄した。これを 2回繰り返したのち、 ΙΝ-NaOH水溶液を 1. 46ml用いて同 様の操作を行い、同様に脱塩水で洗浄し、乾燥し、室温で 16mmHgで減圧下乾燥 させ、 Na置換スルホン酸基含有シリカを得た。中性塩分解法による酸量は、 0. 70m molZgであった。よって Na+の置換量はもとの酸量に対し 0. 45当量となる。  6 g of the catalyst used in Example 7 was charged with 10 g of demineralized water, and 66 ml of lN-NaOHO. Was added dropwise at room temperature while stirring at room temperature. Washed. After repeating this twice, the same operation was performed using 1.46 ml of ΙΝ-NaOH aqueous solution, washed with demineralized water in the same manner, dried, dried under reduced pressure at 16 mmHg at room temperature, and Na-substituted sulfonic acid group Containing silica was obtained. The acid amount by the neutral salt decomposition method was 0.70 mmol Zg. Therefore, the substitution amount of Na + is 0.45 equivalent to the original acid amount.
[0105] < 1, 3-プロパンジオールの脱水縮合反応 >  [0105] <Dehydration condensation reaction of 1,3-propanediol>
1、 3-プロパンジオール 20gを、四つ口フラスコに仕込み、純正化学製特級ピリジン を 0. 0514g (0. 65mmol)を添カ卩し十分攪拌したのち、このフラスコを 25°Cのオイル ノ スにつけ、攪拌しながら固体酸触媒として、上記触媒を 5. 06gを添加した以外は、 実施例 6と同様の方法でポリトリメチレンエーテルグリコールを得た。 Na+とピリジン合 計量はもとの酸量に対し 0. 55当量である。結果を表 1に示す。  Add 20 g of 1,3-propanediol to a four-necked flask, add 0.0514 g (0.665 mmol) of pure chemical special grade pyridine, stir well, and then add the flask to an oil nose at 25 ° C. The polytrimethylene ether glycol was obtained in the same manner as in Example 6 except that 5.06 g of the above catalyst was added as a solid acid catalyst while stirring. The combined amount of Na + and pyridine is 0.55 equivalents of the original acid amount. The results are shown in Table 1.
[0106] 実施例 8  [0106] Example 8
ピリジンを 0. 34g (理論酸量に対し 0. 14倍当量)、固体酸触媒として東ソー製 USY ゼォライト(HSZ- 350HUA、 Na O/SiO /Al O (モル比) =0. 01/9. 2/1, lot  0.34g of pyridine (0.14 times equivalent to the theoretical amount of acid), USY Zelite (HSZ-350HUA, Na 2 O 3 / SiO 2 / Al 2 O (molar ratio) = 0. 01 / 9.2 as a solid acid catalyst / 1, lot
2 2 2 3  2 2 2 3
. C2— 1X05) ) lOgゆっくり添加し、反応温度を 185 ± 3°Cとした以外は実施例 7と 同様の方法でポリトリメチレンエーテルグリコールを得た。結果を表— 1に示す。  C2-1—X05)) Polytrimethylene ether glycol was obtained in the same manner as in Example 7 except that lOg was slowly added and the reaction temperature was 185 ± 3 ° C. The results are shown in Table-1.
[0107] 比較例 3 [0107] Comparative Example 3
ピリジンを 0. 26g (理論酸量に対し 0. 5倍当量)、固体酸触媒として比較例 1で用 いたと同じ ZSM-5ゼォライト 10g を用いた以外は実施例 8と同様の方法でポリトリメ チレンエーテルグリコールを得た。結果を表 1に示す。  Polytrimethylene was prepared in the same manner as in Example 8, except that 0.26 g of pyridine (0.5 times the theoretical amount of acid) and 10 g of the same ZSM-5 zeolite used in Comparative Example 1 were used as the solid acid catalyst. Ether glycol was obtained. The results are shown in Table 1.
[0108] 実施例 9 [0108] Example 9
ピリジンを 0. 18g (中性塩分解法による酸量に対し 1倍当量)、固体酸触媒として実 施例 5のく金属元素置換固体酸の調製方法 >で用いたと同じアルドリッチ社製試薬 Nafion NR50 2. 5gを用い、オイルバスの温度を 182°Cに加熱し、反応温度を 16 9°C± 3°Cに調節し、触媒の分離をデカンテーシヨンにより行った以外は実施例 7と同 様の方法でポリトリメチレングリコールを得た。結果を表— 1に示す。 0.18 g of pyridine (1 equivalent to the acid amount obtained by the neutral salt decomposition method) was used as a solid acid catalyst. Preparation method of metal element-substituted solid acid in Example 5 Using the same Aldrich reagent Nafion NR50 2.5 used in the above, heat the oil bath to 182 ° C and the reaction temperature to 169 ° C ± Polytrimethylene glycol was obtained in the same manner as in Example 7 except that the temperature was adjusted to 3 ° C. and the catalyst was separated by decantation. The results are shown in Table-1.
[0109] 実施例 10  [0109] Example 10
1, 3 プロパンジオールを 40g、固体酸触媒として Nafion Powder (Dupont社 製、 XR- 500 Powder, 13S49- 8055- K+ 1200EW、中性塩分解法による酸量 は、 0. 04mmol/goまた、元素分析により Na+, K+の置換量の合計はもとの酸量に 対し 0. 95当量であることがわ力つた。) 13gを用い、窒素を lOONmlZ分で供給した 以外は実施例 6と同様の方法でポリトリメチレンエーテルグリコールを得た。結果を表 1に示す。 1,3 Propanediol 40g, Nafion Powder (Dupont, XR-500 Powder, 13S49-8055-K + 1200EW as solid acid catalyst, acid amount by neutral salt decomposition method is 0.04mmol / g o Elemental analysis The result showed that the total amount of Na + and K + substituted was 0.95 equivalent to the original acid amount.) The same method as in Example 6 except that 13 g was used and nitrogen was supplied in lOONmlZ. To obtain polytrimethylene ether glycol. The results are shown in Table 1.
[0110] 実施例 11  [0110] Example 11
ピリジン 0. 036g (0. 46mmol)、固体酸触媒として実施例 10で用いたと同じ Nafio n powder 5gを用いた以外は実施例 7と同様の方法でポリトリメチレンエーテルダリ コールを得た。金属元素と塩基の合計量はもとの酸量に対し 1. 1倍等量となる。結果 を表 1に示す。  Polytrimethylene ether diol was obtained in the same manner as in Example 7, except that 0.036 g (0.46 mmol) of pyridine and 5 g of the same Nafion powder used in Example 10 were used as the solid acid catalyst. The total amount of metal element and base is 1.1 times equivalent to the original acid amount. The results are shown in Table 1.
実施例 12  Example 12
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
メカ-カルスターラーを備えたパイレックス製 4つ口フラスコに、キシダ化学製硝酸ァ ンモ -ゥム特級 48. 8gを仕込んだ後、脱塩水 600mlを加えて攪拌しながら溶解させ 、 ImolZlの硝酸アンモ-ゥム水溶液約 600mlを調製した。さらに攪拌させながら、 ここに東ソー製フェリエライト(HSZ— 720KOA(K O/Na O/SiO /Al O (モル  Pyrex 4-neck flask equipped with mecha-car stirrer was charged with 48.8 g of ammonium nitrate humic grade made by Kishida Chemical Co., and then dissolved with stirring with 600 ml of demineralized water. About 600 ml of aqueous solution was prepared. While stirring further, fermented by Tosoh (HSZ—720KOA (K O / Na O / SiO / Al O (mol
2 2 2 2 3 比) =0. 23/0. 70/17. 7Z13 (公称値)、 lot. 5001)、 30. 3gを添加し液温を 80 2 2 2 2 3 ratio) = 0. 23/0. 70/17. 7Z13 (nominal value), lot. 5001), 30.3 g are added, and the liquid temperature is 80
°Cで 2時間に保った後、ゼォライトを濾別し 80°Cの脱塩水で洗浄した。これを 2回繰り 返した。風乾したのち、 120°Cで 12時間乾燥器で乾燥させた後、 500°C2時間で空 気中で焼成し、 H+型フ リエライトを得た。 After maintaining at ° C for 2 hours, the zeolite was filtered off and washed with 80 ° C demineralized water. This was repeated twice. After air drying, it was dried in an oven at 120 ° C for 12 hours and then calcined in air at 500 ° C for 2 hours to obtain H + type fluorite.
[0111] < 1, 3 プロパンジオールの脱水縮合反応 > [0111] <Dehydration condensation reaction of 1, 3 propanediol>
固体酸触媒として、上記触媒を用いた以外は、実施例 1と同様の方法でポリトリメチ レンエーテルグリコールを得た。結果を表 1に示す。 A polytrimethyl compound was prepared in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. Ren ether glycol was obtained. The results are shown in Table 1.
[0112] 比較例 4 [0112] Comparative Example 4
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
硝酸ナトリウムを 8. 5g、脱塩水を lOOgとして ImolZlの硝酸ナトリウム水溶液を用 V、、固体酸触媒として比較例 1で使用した ZSM— 5ゼォライト 20g用いた以外は実施 例 3の金属元素置換固体酸の調製方法と同様に、 Na部分置換 ZSM— 5ゼォライト を得た。  8.5 g of sodium nitrate, lOOg of demineralized water, ImolZl of sodium nitrate aqueous solution V, and ZSM-5 Zeolite 20 g used in Comparative Example 1 as a solid acid catalyst In the same manner as in the preparation method, Na partially substituted ZSM-5 zeolite was obtained.
[0113] 元素分析の結果、 Na O/SiO /Al O (モル比) =0. 23Z51Z1であった。  As a result of elemental analysis, Na 2 O / SiO 2 / Al 2 O 3 (molar ratio) = 0.23Z51Z1.
2 2 2 3  2 2 2 3
[0114] < 1, 3 プロパンジオールの脱水縮合反応 >  [0114] <Dehydration condensation reaction of 1, 3 propanediol>
固体酸触媒として、上記触媒を用いた以外は、実施例 1と同様の方法でポリトリメチ レンエーテルグリコールを得た。結果を表 1に示す。  Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
実施例 13  Example 13
<金属元素置換固体酸の調製方法 >  <Method for preparing metal element-substituted solid acid>
硝酸ナトリウムを 5. 36g、脱塩水を 50ml用い、 1. 3molZlの硝酸ナトリウム水溶液 を用い、東ソー製 USYゼォライト(HSZ— 350HUA lot. C2— 1X05、 Na OZSi  Using sodium nitrate 5.36g, demineralized water 50ml, 1. 3molZl sodium nitrate aqueous solution, Tosoh USY zeolite (HSZ—350HUA lot. C2—1X05, Na OZSi
2 2
O /Al O (モル比) =0. 01/9. 2/1) 15gを用いた以外は、実施例 3と同様の方法O 2 / Al 2 O (molar ratio) = 0.01 / 9. 2/1) The same method as in Example 3 except that 15 g was used.
2 2 3 2 2 3
で、 Na置換 USYゼォライトを得た。(Na OZSiO ZAl O (モル比) =0· 12/10/  Thus, Na-substituted USY zeolite was obtained. (Na OZSiO ZAl O (molar ratio) = 0 · 12/10 /
2 2 2 3  2 2 2 3
1)  1)
< 1, 3 プロパンジオールの脱水縮合反応 >  <1, 3 Dehydration condensation reaction of propanediol>
固体酸触媒として、上記触媒を用いた以外は、実施例 1と同様の方法でポリトリメチ レンエーテルグリコールを得た。結果を表 1に示す。  Polytriethylene ether glycol was obtained in the same manner as in Example 1 except that the above catalyst was used as the solid acid catalyst. The results are shown in Table 1.
[0115] [表 1] 表一 1 [0115] [Table 1] Table 1
Figure imgf000026_0001
Figure imgf000026_0001
( )内 Si02/Al203モル比、 *酸置に対するモル比 () Si0 2 / Al 2 0 3 molar ratio, * molar ratio relative to acid position
[0116] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更および変形が可能であることは、当業者にとって明らかである。 [0116] Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
[0117] なお、本出願は、 2004年 6月 29日付けで出願された日本特許出願 (特願 2004— 191567)、 2004年 6月 29日付けで出願された日本特許出願 (特願 2004— 19156 8)、 2004年 8月 23日付けで出願された日本特許出願(特願 2004— 242744)、 20 04年 8月 23日付けで出願された日本特許出願 (特願 2004— 242745)、に基づ ヽ ており、その全体が引用により援用される。  [0117] This application is based on a Japanese patent application filed on June 29, 2004 (Japanese Patent Application No. 2004-191567), and a Japanese patent application filed on June 29, 2004 (Japanese Patent Application No. 2004-). 19156 8), Japanese patent applications filed on August 23, 2004 (Japanese Patent Application No. 2004-242744), and Japanese patent applications filed on August 23, 2004 (Japanese Patent Application No. 2004-242745). And is incorporated by reference in its entirety.
産業上の利用可能性  Industrial applicability
[0118] 本発明によれば、固体触媒を用いてポリオールを脱水縮合することにより、選択率 よく着色の少ないポリエーテルポリオールを高収率で製造する方法を提供することが できる。 [0118] According to the present invention, it is possible to provide a method for producing a polyether polyol with high selectivity and low coloration in high yield by dehydrating and condensing a polyol using a solid catalyst.

Claims

請求の範囲 The scope of the claims
[1] ポリオールの脱水縮合反応によりポリエーテルポリオールを製造するに際し、下記( 1)〜(3)の条件のうち少なくとも 1つを満たす固体酸触媒を用いることを特徴とするポ リエーテルポリオールの製造方法。  [1] Manufacture of a polyether polyol, wherein a solid acid catalyst satisfying at least one of the following conditions (1) to (3) is used when producing a polyether polyol by a dehydration condensation reaction of the polyol: Method.
• Hammettの指示薬吸着法で測定した酸度関数 Hが- 3より大きいものである  • Acidity function H measured by Hammett's indicator adsorption method is greater than -3
0  0
• アンモニアの昇温脱離分析 (TPD)において 100〜350°Cの領域  • Ammonia temperature programmed desorption analysis (TPD) in the range of 100 to 350 ° C
でのアンモニア脱離量が全体(25°C〜700°Cの領域)のアンモニア脱離量の 6 0%以上である  Ammonia desorption amount at 60% or more of the total ammonia desorption amount (25 ° C to 700 ° C region)
• 熱重量分析 (TG)にお 、て水の脱離量が 32〜250°Cの領域で基準重量の 3重量 %以上である  • In thermogravimetric analysis (TG), the amount of water desorption is 3% by weight or more of the reference weight in the region of 32 to 250 ° C.
[2] 固体酸触媒が、酸に対し 0. 01当量以上 2. 5当量以下の金属元素および Zまたは 有機塩基を含有するものである、請求項 1に記載のポリエーテルポリオールの製造方 法。  [2] The method for producing a polyether polyol according to claim 1, wherein the solid acid catalyst contains 0.01 to 2.5 equivalents of a metal element and Z or an organic base with respect to the acid.
[3] 金属元素がアルカリ金属である、請求項 2に記載のポリエーテルポリオールの製造 方法。  [3] The method for producing a polyether polyol according to claim 2, wherein the metal element is an alkali metal.
[4] 有機塩基がピリジン骨格を有するものである、請求項 2に記載のポリエーテルポリオ ールの製造方法。  [4] The method for producing a polyether polyol according to claim 2, wherein the organic base has a pyridine skeleton.
[5] 固体酸触媒と、金属元素含有化合物および Zまたは有機塩基とを併用する、請求 項 1に記載のポリエーテルポリオールの製造方法。  5. The method for producing a polyether polyol according to claim 1, wherein the solid acid catalyst is used in combination with the metal element-containing compound and Z or an organic base.
[6] 固体酸触媒が、層間化合物、ゼォライト、メソポーラス物質、金属複合酸化物、スル ホン酸基を含有する酸化物または複合酸化物、スルホン酸基を含有する炭素材料、 およびパーフルォロアルキルスルホン酸基を側鎖に有する榭脂よりなる群カゝら選ば れる少なくとも 1種である、請求項 1〜5のいずれか 1項に記載のポリエーテルポリオ ールの製造方法。  [6] The solid acid catalyst is an intercalation compound, zeolite, mesoporous material, metal composite oxide, oxide or composite oxide containing a sulfonic acid group, a carbon material containing a sulfonic acid group, and a perfluoroalkyl. The method for producing a polyether polyol according to any one of claims 1 to 5, which is at least one selected from the group consisting of a resin having a sulfonic acid group in the side chain.
[7] ポリオールが 2個の 1級水酸基を有する炭素数 3以上 10以下のジオール (ただし脱 水により 5員環または 6員環の環状エーテルを形成するものを除く)、またはこれと他 のポリオールとの混合物であって、他のポリオールの比率が 50モル%未満のもので ある、請求項 1〜6のいずれ力 1項に記載のポリエーテルポリオールの製造方法。 [8] 脱水縮合反応を 120°C以上 250°C以下で行う、請求項 1〜7のいずれか 1項に記 載のポリエーテルポリオールの製造方法。 [7] Diol having 2 or more primary hydroxyl groups and 3 to 10 carbon atoms (excluding those that form a 5- or 6-membered cyclic ether by dehydration), or other polyols The method for producing a polyether polyol according to any one of claims 1 to 6, wherein the ratio of the other polyol is less than 50 mol%. [8] The method for producing a polyether polyol according to any one of claims 1 to 7, wherein the dehydration condensation reaction is performed at 120 ° C or higher and 250 ° C or lower.
PCT/JP2005/011980 2004-06-29 2005-06-29 Process for producing polyether polyol WO2006001482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020067027443A KR20070032725A (en) 2004-06-29 2005-06-29 Process for producing polyether polyol
US11/631,015 US20080071118A1 (en) 2004-06-29 2005-06-29 Process for producing polyether polyol

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004191567 2004-06-29
JP2004-191567 2004-06-29
JP2004191568 2004-06-29
JP2004-191568 2004-06-29
JP2004242744 2004-08-23
JP2004-242745 2004-08-23
JP2004-242744 2004-08-23
JP2004242745 2004-08-23

Publications (1)

Publication Number Publication Date
WO2006001482A1 true WO2006001482A1 (en) 2006-01-05

Family

ID=35781901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011980 WO2006001482A1 (en) 2004-06-29 2005-06-29 Process for producing polyether polyol

Country Status (2)

Country Link
KR (1) KR20070032725A (en)
WO (1) WO2006001482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121111A1 (en) * 2005-05-13 2006-11-16 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2007052697A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Chemical Corporation Polyalkylene ether glycol and process for production thereof
WO2007083519A1 (en) * 2006-01-20 2007-07-26 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2008118495A1 (en) * 2007-03-27 2008-10-02 E. I. Du Pont De Nemours And Company Lower-color polytrimethylene ether glycol using zero-valent metals
CN111499826A (en) * 2020-04-08 2020-08-07 上海抚佳精细化工有限公司 Thermoplastic polyurethane elastomer and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156630A (en) * 1983-12-21 1985-08-16 ヘキスト・アクチエンゲゼルシヤフト Manufacture of polyglycerine
JPS61123630A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Production of polyalkylene ether polyol
JPH01125338A (en) * 1987-11-10 1989-05-17 Nippon Oil & Fats Co Ltd Production of glycerol condensate
JPH06503113A (en) * 1990-11-27 1994-04-07 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガナイゼーション Poly(alkylene oxide)s
JP2003517071A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Formation of polytrimethylene ether glycol and its copolymer
JP2003517082A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Continuous process for the preparation of polytrimethylene ether glycol
WO2004048440A1 (en) * 2002-11-22 2004-06-10 Mitsubishi Chemical Corporation Method for producing polyether polyol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156630A (en) * 1983-12-21 1985-08-16 ヘキスト・アクチエンゲゼルシヤフト Manufacture of polyglycerine
JPS61123630A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Production of polyalkylene ether polyol
JPH01125338A (en) * 1987-11-10 1989-05-17 Nippon Oil & Fats Co Ltd Production of glycerol condensate
JPH06503113A (en) * 1990-11-27 1994-04-07 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガナイゼーション Poly(alkylene oxide)s
JP2003517071A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Formation of polytrimethylene ether glycol and its copolymer
JP2003517082A (en) * 1999-12-17 2003-05-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Continuous process for the preparation of polytrimethylene ether glycol
WO2004048440A1 (en) * 2002-11-22 2004-06-10 Mitsubishi Chemical Corporation Method for producing polyether polyol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121111A1 (en) * 2005-05-13 2006-11-16 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2007052697A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Chemical Corporation Polyalkylene ether glycol and process for production thereof
WO2007083519A1 (en) * 2006-01-20 2007-07-26 Mitsubishi Chemical Corporation Method for producing polyether polyol
WO2008118495A1 (en) * 2007-03-27 2008-10-02 E. I. Du Pont De Nemours And Company Lower-color polytrimethylene ether glycol using zero-valent metals
CN111499826A (en) * 2020-04-08 2020-08-07 上海抚佳精细化工有限公司 Thermoplastic polyurethane elastomer and preparation method thereof

Also Published As

Publication number Publication date
KR20070032725A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
EP3325460B1 (en) Reactive distillation process for the esterification of furandicarboxylic acid
EP2350038B1 (en) Method for producing phenolphthalein using a heteropolyacid catalyst
JP6515230B2 (en) Allyl ether resin and epoxy resin
WO2006001482A1 (en) Process for producing polyether polyol
Shimizu et al. Design of active centers for bisphenol-A synthesis by organic–inorganic dual modification of heteropolyacid
WO2004048440A1 (en) Method for producing polyether polyol
JP2009523894A (en) Production of polytrimethylene ether glycol
Chen et al. Dual-functionalized large pore mesoporous silica as an efficient catalyst for bisphenol-A synthesis
CN101928267B (en) Method for epoxidating methyl oleate
WO2010035186A2 (en) Catalytic method for producing phenolphthalein compounds
JP2006089716A (en) Method for producing polyether polyol
US20080071118A1 (en) Process for producing polyether polyol
KR950006529B1 (en) Process for producing methacrylic acid
EP1121980B1 (en) Process of oxidation with a catalyst comprising a composition of antimony trifluoride and silica
US20020054847A1 (en) Synthesis of heteropolyacids
JPWO2005040246A1 (en) Acyloxyacetic acid polymer and process for producing the same
TW442513B (en) Method for preparing polyether diol
TW201245277A (en) Processes for preparing polytrimethylene ether glycol
Lambert et al. The catalytic oxidation of cyclohexanone to caprolactone using hexagonal mesoporous silica supported SbF 3
CN101973867B (en) Method for preparing 3,3,3-trifluoropropionic acid
JP2006342344A (en) Method for producing polyether polyol
CN102643232A (en) Method for preparing caprolactam by beckmann rearrangement for cyclohexanone-oxime
WO2006121111A1 (en) Method for producing polyether polyol
WO2013175936A1 (en) Method for producing alicyclic diepoxy compound
CN114163319A (en) Preparation method of bio-based acrolein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067027443

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580022173.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067027443

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11631015

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11631015

Country of ref document: US