WO2006117907A1 - Methods for manufacturing semiconductor element and circuit board, and semiconductor element and circuit board - Google Patents

Methods for manufacturing semiconductor element and circuit board, and semiconductor element and circuit board Download PDF

Info

Publication number
WO2006117907A1
WO2006117907A1 PCT/JP2006/301444 JP2006301444W WO2006117907A1 WO 2006117907 A1 WO2006117907 A1 WO 2006117907A1 JP 2006301444 W JP2006301444 W JP 2006301444W WO 2006117907 A1 WO2006117907 A1 WO 2006117907A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
semiconductor
circuit board
manufacturing
channel
Prior art date
Application number
PCT/JP2006/301444
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Hara
Yuichi Saito
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006117907A1 publication Critical patent/WO2006117907A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing

Definitions

  • SEMICONDUCTOR ELEMENT AND CIRCUIT BOARD MANUFACTURING METHOD
  • SEMICONDUCTOR ELEMENT AND CIRCUIT BOARD MANUFACTURING METHOD
  • the present invention relates to a semiconductor element, a method for manufacturing a circuit board, and a semiconductor element, a circuit board, and an electronic device. More specifically, a method for manufacturing a semiconductor element suitable for manufacturing a thin film transistor or the like, a method for manufacturing a circuit board suitable for manufacturing an active matrix substrate or the like, a semiconductor element such as a thin film transistor, or a circuit substrate such as an active matrix substrate or the like. And an electronic apparatus such as an imaging apparatus, an image input apparatus, and a display apparatus. Background art
  • a resist material (photoresist material) having photosensitivity is applied to the entire surface of a substrate, and a heat treatment is performed to obtain a resist film.
  • exposure is performed using an exposure apparatus such as a stepped projection exposure apparatus (stepper) and a photomask having a predetermined pattern.
  • the resist pattern film is obtained on the substrate by developing with a developer containing an organic alkali or the like.
  • the resist pattern film is exposed to an etching atmosphere by a wet etching method or a dry etching method, whereby the thin film on the substrate is processed into a predetermined pattern.
  • the resist pattern film is removed at a suitable stage with a stripping solution containing an organic solvent or the like.
  • Devices have been disclosed (for example, see Patent Document 2).
  • photolithography is not used to form a thin film in a thin film device, so that the number of times of photolithography can be reduced.
  • there was room for improvement in that the shape of the formed film and variations in device characteristics were likely to increase.
  • the ink jet method a method of pre-treating a substrate in advance before dropping a droplet has been considered. This is performed for the purpose of relaxing the positional accuracy (landing accuracy) when the dropped droplet reaches the substrate, or for increasing the processing speed by reducing the number of required droplets. .
  • an affinity region and a non-affinity region for the wiring forming material are formed on the substrate on which the wiring is to be formed, and the wiring is formed by dropping a droplet of the wiring material into the affinity region by an inkjet method ( For example, see Patent Document 3.) 0
  • An exposure apparatus and a photomask are used to form this affinity region and non-affinity region.
  • a bank is formed so as to surround the wiring formation region, and the upper portion of this bank is formed. Disclosure of non-lyophilic and lyophilic wiring formation area (See, for example, Patent Document 4.) 0 An exposure apparatus and a photomask are also used to produce this bank.
  • TFT array substrate includes TFTs as source wiring, gate wiring, and switching elements connected to these on the substrate, and is suitably used for, for example, a liquid crystal display device.
  • This TFT array substrate is manufactured, for example, by a series of processes as shown in Non-Patent Document 3, and in many cases, the manufacture of a TFT array substrate requires five or more times of photolithography. It was.
  • a general disadvantage of using photolithography is that a resist material having photosensitivity is applied to the entire surface of the substrate, so that a large amount of resist material, a developer for developing, and a stripping solution for removing the resist are used. Examples include the use of chemicals and the need for highly accurate equipment such as resist coating equipment and exposure equipment. For this reason, when conventional general photolithography is used, the environmental burden may be large, the material cost may be high, and a large amount of capital investment may be required. Therefore, reducing the number of photolithography operations in manufacturing circuit boards and devices has been an important issue. Above all,
  • Patent Document 1 Pamphlet of International Publication No. 97Z43689
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-145333
  • Patent Document 3 Japanese Patent Laid-Open No. 11-204529
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-353594
  • Non-Patent Document 1 Nikkei Electronics, June 17, 2002, Nikkei Business Publications, June 17, 2002, No. 824, p. 67-78
  • Non-Patent Document 2 Takeo Kawase et al., “Invited Paper: All-Polymer Thin Film Transistors Fabricated by High—Resolution Ink—jet PrintingJ, SID 01 DI GEST, (USA), Society for Information Display, 2001, No. 32 , 1st edition, p. 40-43
  • Non-Patent Document 3 Nikkei Microdevices, “Flat Panel Display 1999”, Nikkei BP, 1998, p. 129
  • the present invention has been made in view of the above-described present situation, and can selectively form a film and can reduce the number of times of photolithography necessary for forming an element structure. It is an object of the present invention to provide a method for manufacturing a substrate, and a semiconductor element, a circuit substrate, and an electronic device obtained by using them.
  • the present inventors have studied various methods for manufacturing a semiconductor device having a channel. As a result, the groove portion (channel groove) on the channel region or below the channel region formed in the element formation process by channel etching or the like is formed. We focused on effective use. Then, as shown in FIG. 1, by dropping a functional material having fluidity into the channel groove, the functional layer can be selectively and highly accurately formed even by coating formation. We have found that it is possible to reduce the number of photolithography required for formation. As a result, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • the present invention is a method of manufacturing a semiconductor device having a channel, and the manufacturing method includes a step of forming a functional layer by dropping a functional material having fluidity into a channel groove. It is a manufacturing method of an element.
  • a semiconductor element manufactured according to the present invention has a channel.
  • the semiconductor element includes a structure in which a source electrode and a drain electrode are opposed to each other, and the channel is formed of a source electrode and a drain in a semiconductor layer positioned below or above the source electrode and the drain electrode. It is formed in a region corresponding to the electrode.
  • the above The channel groove refers to a groove formed between a source electrode and a drain electrode facing each other when the source electrode and the drain electrode are formed separately in the manufacturing process of the semiconductor element.
  • the channel groove functions as a groove portion of the bank pattern that controls the shape of the droplet. Variations in characteristics of semiconductor elements due to variations can be suppressed.
  • the functional layer is formed by selectively dropping a functional material having fluidity into the channel groove on the substrate, the functional layer is formed on the entire surface of the substrate and then patterned. It is possible to reduce photolithography once. As a result, loss of the functional material can be reduced and damage to the base film during patterning can be eliminated. Furthermore, since an exposure process and a development process are not required, a photomask, an exposure apparatus, and a developer can be reduced.
  • the functional material having fluidity is not particularly limited as long as it can form a functional layer by drying or heat treatment after dropping, and can be applied by an inkjet apparatus. It is preferable that it is a thing.
  • a preferable form of the functional material is an insulating material, and a protective layer (insulating layer) can be formed as the functional layer.
  • the fluid insulating material is not particularly limited as long as a protective layer (insulating layer) can be formed by drying or heat treatment after dropping.
  • the protective layer is preferably impermeable to moisture.
  • preferred embodiments of the method for manufacturing a semiconductor element of the present invention include (1) sequentially forming a gate electrode, a gate insulating film, a semiconductor layer, and a source electrode and a drain electrode on a substrate.
  • a step of forming a protective layer by dropping a fluid insulating material into a channel groove formed by at least the source electrode and the drain electrode, (2) a gate electrode, a gate insulating film, A semiconductor film, a source electrode and a drain electrode are sequentially formed on the substrate, and a fluid insulating material is dropped and maintained in at least a channel groove formed by the source electrode and the drain electrode.
  • An embodiment includes a step of forming a protective layer and a step of patterning a semiconductor film using the protective layer to form a semiconductor layer.
  • a protective layer (insulating layer) can be selectively formed by a simple method, and the channel portion of the semiconductor element is protected. be able to.
  • the protective layer may be formed of a material that can also serve as a light shielding layer.
  • the patterning of the semiconductor film is performed before the step of forming the protective layer.
  • patterning of the semiconductor film is performed after the step of forming the protective layer.
  • the semiconductor layer includes a lower semiconductor layer and a pair of upper semiconductor layers, and the channel groove is formed by a pair of upper semiconductor layers, a source electrode, and a drain electrode. It can be a thing.
  • the semiconductor film includes a lower semiconductor film and a pair of upper semiconductor layers, and the channel groove is formed by a pair of upper semiconductor layers, a source electrode, and a drain electrode.
  • the lower semiconductor film may be patterned using the protective layer to form the lower semiconductor layer. In this case, the patterning of the upper semiconductor film is performed before the protective layer forming step, and the patterning of the lower semiconductor film is performed after the protective layer forming step.
  • a form of the channel groove formed using the source electrode and the drain electrode for example, a form formed between the source electrode and the drain electrode, a stacked film of the source electrode and the photoresist, Form formed between the drain electrode and the laminated film of the photoresist, formed between the laminated film of the source side upper semiconductor layer and the source electrode, and the laminated film of the drain side upper layer semiconductor layer and the drain electrode. And a form formed between the laminated film of the source side upper semiconductor layer, the source electrode and the photoresist, and the laminated film of the drain side upper layer semiconductor layer, the drain electrode and the photoresist.
  • the photoresist used as a mask in channel etching may be left when the functional material having fluidity is dropped or may be removed.
  • the photoresist is preferably a resist having liquid repellency (liquid repellent resist) with respect to the functional material having fluidity from the viewpoint of increasing the dropping accuracy of the functional material having fluidity.
  • the functional layer may also protrude the channel groove force after the photoresist is removed.
  • the functional layer (protective layer) made of the insulating material may be further formed on the wiring.
  • the wiring can be protected by corrosion or the like by a functional layer made of an insulating material.
  • a preferable form of the functional material is a semiconductor material, and a semiconductor layer can be formed as the functional layer.
  • the semiconductor material having fluidity is not particularly limited as long as a semiconductor layer can be formed by drying or heat treatment after dropping.
  • a gate electrode, a gate insulating film, a source electrode and a drain electrode are sequentially formed on the substrate, and the source electrode and the drain electrode are formed.
  • a step of dropping a fluid semiconductor material into a channel groove to form a semiconductor layer According to this, the semiconductor layer of the semiconductor element can be selectively formed by a simple method.
  • the form of the channel groove formed by the source electrode and the drain electrode for example, a form formed between the source electrode and the drain electrode, a laminated film of the source electrode and the photoresist, and the drain electrode And a form formed between the laminated film of the photoresist and the like.
  • the photoresist resists a liquid repellent resist (repellent repellent) with respect to the fluid functional material from the viewpoint of improving the dropping accuracy of the fluid functional material. (Liquid resist) is preferred.
  • a preferred form of the functional material is a light shielding material, and a light shielding layer can be formed as the functional layer.
  • the light-shielding material having fluidity is not particularly limited as long as it can form a light-shielding layer by performing drying or heat treatment after dropping.
  • a preferred embodiment of the method for manufacturing a semiconductor device of the present invention is that the source electrode and the drain electrode are sequentially formed on the substrate, and at least in the channel groove formed by the source electrode and the drain electrode.
  • An aspect including a step of forming a light shielding layer by dropping a light shielding material having fluidity, and a step of sequentially forming a semiconductor layer, a gate insulating layer, and a gate electrode on the light shielding layer, a source electrode and a drain electrode, and Sequentially forming a pair of lower semiconductor layers on a substrate; Forming a light shielding layer by dropping a light shielding material having fluidity in a channel groove formed by the lower semiconductor layer, the source electrode, and the drain electrode, and an upper semiconductor layer on the lower semiconductor layer and the light shielding layer. And a step of sequentially forming a layer, a gate insulating layer, and a gate electrode.
  • the light shielding layer of the semiconductor element can be selectively formed by a simple method.
  • the form of the channel groove formed using the source electrode and the drain electrode for example, a form formed between the source electrode and the drain electrode, a stacked film of the source electrode and the photoresist, Form formed between the drain electrode and the laminated film of the photoresist, formed between the laminated film of the source electrode and the source-side lower semiconductor layer, and the laminated film of the drain electrode and the drain-side lower semiconductor layer
  • Examples include a form formed between a stacked film of a form, a source electrode, a source-side lower semiconductor layer and a photoresist, and a stacked film of a drain electrode, a drain-side lower semiconductor layer, and a photoresist.
  • the photoresist is a resist having liquid repellency to the resist material having fluidity (liquid repellent) from the viewpoint of increasing the dropping accuracy of the functional material having fluidity.
  • Preferred to be a sex resist is a resist having liquid repellency to the resist material having fluidity (liquid repellent) from the viewpoint of increasing the dropping accuracy of the functional material having fluidity.
  • the functional material may be any one of an insulating material, a semiconductor material, and a light shielding material, and these materials may be mixed. Moreover, the insulating material may have two or more functions as in the case where the insulating material also serves as a light shielding material.
  • the method for producing a semiconductor device of the present invention preferably includes a step of bonding fluorine atoms and Z or a fluorine compound to the substrate surface before dropping the functional material having fluidity. That is, in the present invention, since the functional layer is formed by selectively dropping a functional material having fluidity, the surface treatment is performed on the substrate before dropping, so that at least the channel groove is formed on the substrate surface. It is preferable to adjust the lyophobic property with respect to the functional material having fluidity. As a result, it is possible to prevent the functional material having fluidity from being excessively spread on the surface of the substrate, and to effectively reduce the shape variation of the functional layer.
  • the manufacturing method of the semiconductor element of this invention includes the surface treatment process using plasma, before dripping the functional material which has fluidity
  • the surface treatment step is preferably performed in a plasma containing a fluorine-based gas.
  • the fluorine-based gas is not particularly limited as long as the gas is a compound containing a fluorine atom, and examples thereof include carbon tetrafluoride.
  • a method for adjusting the lyophobic property of the surface it is also possible to use a method in which a material having liquid repellency is applied and dispersed.
  • the method for producing a semiconductor element of the present invention preferably includes a dry etching step before dropping the functional material having fluidity.
  • a dry etching step before dropping the functional material having fluidity.
  • the functional material having fluidity is applied using a coating apparatus having a multi-nozzle type ejection head and a substrate stage.
  • a coating apparatus having a multi-nozzle type ejection head and a substrate stage.
  • the substrate stage is not particularly limited as long as the substrate can be mounted. It is preferable that the substrate can be held horizontally, and it is preferable that the substrate stage has a mechanism for moving and Z or rotating the substrate.
  • the coating device is preferably an inkjet device, but more preferably a piezo method or a bubble method (thermal method).
  • Inkjet devices are widely used especially for printers, and since they have accumulated technology, they can drop a small amount of several pi units, and they have fluidity for channel grooves of several / zm to several tens / zm units. It is suitable for selectively producing a functional layer by selectively dropping a functional material having
  • the functional material having the above fluidity has an ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol having a boiling point of 180 ° C or higher at 1 atm. It is preferable to contain at least one ether, ester, diester and Z or ether ester selected from the group consisting of tripropylene glycols, polypropylene glycols, and butylene glycols, or hydrocarbons. Above all, at 1 atm mentioned above Examples of ethers, esters, diesters, ether esters or hydrocarbons having a boiling point of 180 ° C.
  • tetralin tetrahydronaphthalene
  • ethylene glycol ethylene glycol diacetate, ethylene glycol jetinoleate
  • Ethylene glycol monobutyl etherate ethylene glycol monoacetate, ethylene glycol monoethyl etherate acetate, ethylene glycol monobutinoate etherate, ethylene glycol monohexyl ether, 1, 3 —Otatiendalicol, glyceryl triacetate, diethylene glycol, diethylene glycol ethyl methyl ether, polyethylene glycol chlorohydrin, diethylene glycol jetino ether, diethylene glycol -Resin chinoleatenore, diethyleneglycolenomonochinenoatenoate, diethyleneglycolenomonochinenoatenoateate, diethyleneglycolenomonobutinorecatenoate , Diethylene glycol monomethenoate ether, dipropylene glycol, dipropylene
  • the inkjet head is preferably moved in the left-right direction.
  • the viscosity of the functional material having fluidity is preferably 5 cP or more and 30 cP or less. Yes. If it is in this viscosity range, it is suitable for application
  • the amount of dripping per discharge depends on the shape and size of the channel groove, but for example, when manufacturing TFTs in a TFT array substrate used for a display device, 0.5 pl or more, It is preferable that it is below lOpl.
  • the present invention is also a circuit board manufacturing method in which a semiconductor element is formed on a substrate using the semiconductor element manufacturing method of the present invention.
  • the semiconductor element include a thin film transistor (TFT) and a thin film diode.
  • the circuit board is not particularly limited as long as it has a circuit including a semiconductor element on the substrate, and examples thereof include a TFT array substrate. According to the circuit board manufacturing method of the present invention, it is possible to reduce the number of times of photolithography by one, and it is possible to reduce the environmental load, material cost, and capital investment cost in circuit board manufacturing.
  • the circuit board constitutes a display device or an imaging device, and a semiconductor element in the display region or the imaging region and the non-display region or the non-imaging region is a gate. It is arranged on a group of parallel lines extending in the extending direction of the wiring and the Z or source wiring, and the functional layer forming step is performed in the display area or the imaging area and the non-display area or the non-imaging area. It is preferable to apply the functional material having fluidity by continuously moving the discharge head or the substrate stage in the stretching direction.
  • the functional material is dropped by scanning the ejection head in the extending direction of the gate wiring and Z or the source wiring, thereby constituting the circuit board constituting the display device.
  • the semiconductor element in the display region and the semiconductor element in the non-display region can be manufactured together.
  • the semiconductor element in the imaging region and the semiconductor in the non-imaging region Since the devices can be manufactured in a lump, the processing time can be shortened in addition to the reduction of environmental burden, material cost, and capital investment cost in circuit board manufacturing.
  • the display area or imaging area is usually located at the center of the circuit board, for example, a switch for applying a voltage to the pixel electrode.
  • a TFT for ching is arranged for each pixel.
  • the non-display area or the non-imaging area is usually located in the peripheral portion (frame portion) of the circuit board.
  • TFTs provided in the display area thin film diodes for preventing electrostatic breakdown of wiring, and driving circuits TFT for driver is arranged.
  • the circuit board has a configuration in which semiconductor elements in a display region or an imaging region and a non-display region or a non-imaging region are arranged on a common parallel line group extending in the extending direction of the gate wiring and the Z or source wiring.
  • a semiconductor element may be arranged on another parallel line group extending in the extending direction of the gate wiring and the Z or source wiring.
  • semiconductor elements may be arranged on the circuit board.
  • the discharge head is continuously moved in the extending direction of the gate wiring.
  • Many gate wirings and source wirings are arranged in a direction orthogonal to a circuit board such as a TFT array substrate.
  • the spacing between adjacent gate wirings is equal to the spacing between adjacent source wirings (source wiring pitch). In many cases. For this reason, by sequentially applying functional materials in the extending direction of the gate wiring, it is possible to reduce the number of nozzle mechanisms provided in the discharge head. This leads to a decrease.
  • the present invention is also a semiconductor device manufactured using the method for manufacturing a semiconductor device of the present invention. According to the semiconductor device of the present invention, it is possible to manufacture by reducing the number of times of photolithography, and it is possible to reduce the environmental load, material cost, and capital investment cost in manufacturing the semiconductor device.
  • the present invention is also a semiconductor element having a channel, and the semiconductor element includes a semiconductor element having a functional layer having a curved shape at an end portion located between a source electrode and a drain electrode (hereinafter referred to as a semiconductor element) Also referred to as a first semiconductor element).
  • the first semiconductor element of the present invention has characteristics when the functional layer of the channel portion is formed of a fluid material, and can be manufactured by the method for manufacturing a semiconductor element of the present invention.
  • a functional layer is formed in a channel portion by using a source electrode and a drain electrode for a bank and dropping a functional material having fluidity between the source electrode and the drain electrode.
  • the functional material dropped between the source electrode and the drain electrode has a curved shape due to its surface tension. Therefore, when the functional layer is formed in the channel portion using such a functional material, the end of the functional layer located between the source electrode and the drain electrode has a curved shape in the obtained semiconductor element. become. Examples of the curved shape of the end portion of the functional layer include an oval shape protruding in the end direction, an oval shape protruding in the direction opposite to the end portion, and the like.
  • the first semiconductor element of the present invention is therefore
  • the device structure can be formed by reducing the number of times of photolithography, and the environmental load, material cost, and capital investment cost in the manufacture of semiconductor devices can be reduced.
  • the present invention is also a semiconductor device having a channel, wherein the source electrode and the Z or drain electrode have a notch at the end on the channel side (hereinafter also referred to as a second semiconductor device). Also).
  • the second semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is also formed with a fluid material force. That is, by having a notch at the end on the channel side of the source electrode and the Z or drain electrode force channel (facing the channel), it is possible to provide a liquid reservoir in the channel groove and increase its volume. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy.
  • Such a second semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
  • the notch is not particularly limited as long as the channel groove or the resist groove can be enlarged.
  • the shape of the notch is not particularly limited, and examples thereof include a triangular shape, a quadrangular shape, and a semicircular shape.
  • the number of notches is not particularly limited, and may be one or plural for one semiconductor element.
  • the present invention is also a semiconductor element having a channel, and the semiconductor element is also a semiconductor element having a dummy channel in the vicinity of the channel (hereinafter also referred to as a third semiconductor element).
  • the third semiconductor element of the present invention has a structure advantageous when the functional layer of the channel portion is also formed with a fluid material force. That is, when the semiconductor element has a dummy channel in the vicinity of the channel, a liquid reservoir can be provided in the vicinity of the channel groove. As a result, the fluid material dripped into the channel groove can be easily retained in the groove by holding it in the liquid reservoir, and the functional film can be accurately formed.
  • Such a third semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
  • the dummy channel is not particularly limited as long as it is a region provided on the semiconductor layer by a cutout portion of the source electrode and the Z or drain electrode and can function as a liquid reservoir. From the viewpoint of more effectively functioning as a liquid reservoir, it is more preferable that the channel is provided at a position within 20 ⁇ m from the channel force.
  • the shape of the dummy channel is not particularly limited.
  • the number of dummy channels is not particularly limited, and may be one or more than one semiconductor element.
  • the present invention is also a semiconductor element having a channel, and the semiconductor element is also a semiconductor element having a dummy electrode between a source electrode and a drain electrode (hereinafter also referred to as a fourth semiconductor element). is there.
  • the fourth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed from a fluid material. In other words, if the channel width of the channel groove is too large relative to the size of the droplet at the time of landing of the fluid material that drops into the groove, the gap between the source electrode and the drain electrode is reduced.
  • the channel groove can be divided into a plurality of parts, and the fluid material dropped into the groove can be divided and held. As a result, the fluid material dropped into the groove can be easily retained in the groove, and the functional film can be formed with high accuracy.
  • Such a fourth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
  • the dummy electrode is effective in controlling the shape of a droplet dropped between the source electrode and the drain electrode, and is a structure provided independently of the other electrodes. Although there is no particular limitation as long as it is used, it is more preferable that it is provided at a position within 20 ⁇ m from the source electrode and the drain electrode from the viewpoint of more effective use for liquid storage.
  • the material of the dummy electrode is not particularly limited, but is preferably the same material as the source electrode and the drain electrode. In this case, it can be manufactured in the same process as the formation of the source electrode and the drain electrode.
  • the shape of the dummy electrode is not particularly limited.
  • the number of dummy electrodes is not particularly limited, and may be one or more per semiconductor element.
  • Preferred forms of the second to fourth semiconductor elements of the present invention include, for example, a mode in which the channel has a protruding portion on the source electrode side and the Z or drain electrode side, and a channel on the outer side.
  • the source electrode and the Z or drain electrode force have a comb tooth portion (notch portion) of 2 or more, and a dummy channel is formed between the comb tooth portions, the source electrode and the Z or drain electrode are notched.
  • a dummy channel is formed between dummy electrodes.
  • a shape in which the line width of the notch is equal to the channel length of the semiconductor element (TFT) is preferably used.
  • the present invention is also a semiconductor element having a channel, wherein the channel of the semiconductor element is a semiconductor element bent to 2 or more (hereinafter also referred to as a fifth semiconductor element).
  • the fifth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed into a fluid material force. That is, even if the length of the entire channel is the same, the channel of the semiconductor element is bent to 2 or more, so that the entire channel can be put in a smaller circle, so that the functional layer can be easily formed. .
  • Such a fifth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
  • the bent part of the channel may be a right angle or a curved shape.
  • a form in which the channel has a U-shape for example, a form in which the channel has a U-shape, a form having a U-shape, a form having a Z-shape, and the like can be mentioned.
  • a channel has U shape or U shape.
  • the present invention is also a semiconductor element having a channel, wherein the source electrode and the drain electrode have a corner on both sides of the end of the channel (hereinafter also referred to as a sixth semiconductor element). But there is.
  • the sixth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed from a fluid material. Channel groove Edge force When formed in a portion where the corner of the source electrode and the corner of the drain electrode face each other, the material having fluidity is channeled along the bank portions located on both sides of the channel groove. It is possible to suppress spreading out of the groove. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy.
  • the functional film can be formed with high accuracy by the method for manufacturing a semiconductor element of the present invention.
  • the sixth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
  • the outline shape of the corners of the source electrode and the drain electrode may be formed by curves, but is formed by two straight lines. It is more preferable that The angle of the corners of the source electrode and the drain electrode is preferably 135 ° or less, more preferably 90 ° or less, and even more preferably 90 °.
  • the source electrode and the drain electrode preferably have corner portions on both sides of the end portion of the dummy channel.
  • the semiconductor element of the present invention may be any element as long as it has any of the first to sixth semiconductor elements, and may be a combination of these! /.
  • the dimension of the channel groove is determined so as to have a predetermined performance mainly in the form of use as a product, but is determined in consideration of the amount of droplets of the functional material to be applied and other manufacturing conditions to be set.
  • the channel groove dimensions are 5 ⁇ m or more and 100 ⁇ m or less in length, 1 ⁇ m or more and 10 m or less in width, and depth. Is preferably 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the length of the channel groove means the length in the extending direction of the channel groove, and the width of the channel groove corresponds to the distance between the source electrode and the drain electrode.
  • the number of channel grooves may be one per semiconductor element or plural.
  • a material having fluidity from the inside of the channel groove If there is a risk of overflowing, it is preferable to take measures to define the direction of overflowing. Specific examples include a method of controlling the electrode shape of the source electrode and the drain electrode, the dropping conditions of the fluid material, and the like. For example, in the case of a TFT in a TFT array substrate used in a liquid crystal display device, if the capacitance (Cg-d) between the gate electrode Z and the drain electrode varies, the capacitance (Cg-s) between the gate electrode Z and the source electrode varies. This will have a greater effect on the display quality than when it occurs. Therefore, it is more preferable that the material having fluidity easily overflows to the source electrode side.
  • the semiconductor element of the present invention is preferably a thin film transistor (TFT) or a thin film diode (TFD).
  • TFT thin film transistor
  • TFD thin film diode
  • the TFD is usually formed by electrically connecting a gate electrode and a source electrode, or a gate electrode and a drain electrode.
  • the present invention also provides a semiconductor element manufactured using the method for manufacturing a semiconductor element of the present invention, or a circuit board having the first to sixth semiconductor elements of the present invention (hereinafter referred to as the first circuit board). It is also called).
  • a first circuit board of the present invention can reduce the environmental load, the material cost and the capital investment cost in the manufacturing process.
  • the present invention is also a circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, and the circuit board constitutes a display device or an imaging device, and the display region or the imaging region Including a configuration in which the semiconductor element is arranged on a group of parallel lines extending in the extending direction of the gate wiring and the Z or source wiring, and the semiconductor element in the non-display area or the non-imaging area is arranged on the parallel line group. It is also a circuit board (hereinafter also referred to as a second circuit board) including the above-described configuration.
  • the functional material is dropped by scanning the ejection head in the extending direction of the gate wiring and Z or the source wiring by using the semiconductor element manufacturing method of the present invention. Therefore, in the manufacture of the circuit board constituting the display device, the semiconductor elements in the display region and the semiconductor element in the non-display region can be manufactured at once. Since semiconductor elements and non-imaging area semiconductor elements can be manufactured together, the processing time can be shortened in addition to reducing the environmental burden, material costs, and capital investment costs in circuit board manufacturing. is there.
  • the circuit board has a common parallel extension extending in the extending direction of the gate wiring and Z or source wiring in the display area or imaging area and non-display area or non-imaging area.
  • the semiconductor device may have a configuration in which the semiconductor element is arranged on another group of parallel lines extending in the extending direction of the gate wiring and the z or source wiring.
  • semiconductor elements may be arranged on the circuit board.
  • a preferable form of the circuit board includes, for example, an active matrix substrate in which semiconductor elements as active elements are arranged in a matrix in a display area or an imaging area.
  • the present invention is also a circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, and the circuit board constitutes a display device or an imaging device.
  • the semiconductor element includes a configuration in which the semiconductor element is arranged on a parallel line group (also referred to as a first parallel line group) extending in the extending direction of the gate wiring and the Z or source wiring, and the non-display area or the non-imaging area
  • a circuit board (hereinafter referred to as a third circuit) including a configuration in which a semiconductor element is arranged on a straight line group (also referred to as a second parallel line group) determined by a distance of an integer of the interval between the parallel line groups. Also called a substrate).
  • the discharge head is formed of the gate wiring and the Z or source wiring by using the semiconductor element manufacturing method of the present invention.
  • semiconductor elements in the display area and semiconductor elements in the non-display area can be manufactured together in the manufacture of the circuit board constituting the display device.
  • the semiconductor elements in the imaging region and the semiconductor elements in the non-imaging region can be manufactured together.
  • processing time can be shortened.
  • semiconductor elements may be arranged on the circuit board.
  • a preferable form of the circuit board includes, for example, an active matrix substrate in which semiconductor elements as active elements are arranged in a matrix in a display area or an imaging area.
  • the second and third circuit boards of the present invention preferably include a configuration in which the semiconductor elements in the display region or the imaging region are arranged on a group of parallel lines extending in the extending direction of the gate wiring.
  • the functional material can be dropped by scanning the ejection head in the extending direction of the gate wiring.
  • a large number of gate wirings and source wirings are arranged in a direction orthogonal to a circuit board such as a TFT array substrate.
  • the spacing between adjacent gate wirings is the spacing between adjacent source wirings (source wiring). In many cases, it is wider than the wiring pitch. For this reason, by sequentially applying functional materials in the gate wiring direction, the number of nozzle mechanisms provided in the ejection head can be reduced, which makes it easier to produce the ejection head and reduce equipment costs. Connected.
  • a plurality of semiconductor elements arranged in the display region or imaging region are arranged at each intersection of the gate wiring and the source wiring, and are arranged at the intersection.
  • the plurality of semiconductor elements preferably include a configuration in which the plurality of semiconductor elements are arranged on one parallel line group extending in the extending direction of the gate wiring or the source wiring.
  • the semiconductor element arranged in the display area or the imaging area is preferably a thin film transistor.
  • the thin film transistor is suitable for manufacturing using the method for manufacturing a semiconductor element of the present invention.
  • it is possible to obtain excellent display quality or imaging quality by switching the voltage applied to the electrodes provided in the display area or imaging area using a thin film transistor.
  • the semiconductor element disposed in the non-display area or non-imaging area is preferably a thin film diode.
  • the thin film diode is suitable for manufacturing using the method for manufacturing a semiconductor device of the present invention.
  • electrostatic breakdown in a switching element such as a thin film transistor provided in the display area can be prevented, and an excellent display quality or imaging quality can be obtained. .
  • the present invention is also a circuit board manufactured using the circuit board manufacturing method of the present invention, or an electronic device comprising the circuit board of the present invention.
  • Such an electronic device of the present invention can reduce the environmental load, material cost, and capital investment cost in the manufacturing process.
  • an imaging device, a display device, an image input device, and the like are preferable as the electronic device of the present invention.
  • the imaging device include a flat panel X-ray image sensor device.
  • the flat panel X-ray image sensor device has, for example, a structure in which an TFT array substrate is provided with an X-ray light receiving layer and a signal readout circuit, and is used for medical applications, fluoroscopic inspection applications, and the like. is there.
  • a liquid crystal display device, an organic electroluminescence display device, or the like is suitable.
  • a functional layer can be selectively and accurately formed by dropping a functional material having fluidity into a channel groove.
  • the number of times of photolithography necessary for forming the substrate can be reduced, and the method is suitably used for manufacturing a semiconductor element formed on a circuit board or the like.
  • Embodiment 1 a method of manufacturing an inverted staggered amorphous silicon TFT (thin film transistor) according to Embodiment 1 will be described with reference to FIGS.
  • the characteristic of this embodiment is the protective film formation process. After obtaining the source electrode and drain electrode, the source Z drain pattern is used to protect the TFT gap and wiring parts from corrosion. Only by using an inkjet device, a droplet of insulating material is selectively landed to form a TFT protective film.
  • FIG. 1 (a) is a schematic plan view showing the structure of a TFT fabricated using the manufacturing method of the present embodiment and its vicinity, and (b) is an AA line in (a).
  • FIG. 1 (a) is a schematic plan view showing the structure of a TFT fabricated using the manufacturing method of the present embodiment and its vicinity, and (b) is an AA line in (a).
  • the TFT 7 manufactured in this example has a bottom gate structure, and a gate electrode 10 branched from a gate wiring 9 on a glass substrate (insulating substrate) 8.
  • the drain connection wiring 16 is formed for the purpose of, for example, connecting a pixel electrode (not shown) and the drain electrode 17 in a display application.
  • a portion of the amorphous silicon layer 12 positioned between the source electrode 15 and the drain electrode 17 is the TFT channel portion 18, and a protective film (functional film) 35 is formed.
  • the ink jet apparatus includes a mounting table (substrate stage) 20 on which a substrate 19 (corresponding to the glass substrate 8 in FIG. 1) is mounted.
  • An inkjet head 21 as a droplet ejection means for ejecting or dropping a fluid material as droplets, an X-direction drive unit 22 for moving the inkjet head 21 in the X direction, and a Y-direction drive unit 23 for moving in the Y direction.
  • the ink jet apparatus includes an ink supply system 24 that supplies a fluid material to the ink jet head 21, ejection control of the ink jet head 21, and drive control of the X direction driving unit 22 and the vertical direction driving unit 23. And a control unit 25 for performing various controls. From the control unit 25, ejection position information is output to the X direction driving unit 22 and the Y direction driving unit 23, and ejection information is output to a head driver (not shown) of the inkjet head 21. As a result, the inkjet head 21 operates in conjunction with the X-direction drive unit 22 and the Y-direction drive unit 23, and a target amount of droplets is dropped at a target position on the substrate 19.
  • the inkjet head 21 a piezo type using a piezoelectric actuator, a bubble type having a heater in the head, or the like can be used. Control of the droplet discharge amount from the inkjet head 21 is performed by controlling applied voltage or the like.
  • the droplet discharge method of the pattern forming apparatus used in the present invention is not limited to the ink jet method, and may be any method that can discharge or drop a fluid material as droplets.
  • the gate electrode Z wiring forming step, the gate insulating film Z lower layer semiconductor film Z, the upper layer semiconductor film forming step, the lower layer and upper layer semiconductor film patterning step, and the source z drain electrode After the z wiring formation process and the channel etching process are sequentially performed, the protective film formation process is performed.
  • a titanium (Ti) film having a thickness of 0.2 m was formed on the glass substrate 8 by sputtering at a film forming temperature of 100 ° C. to obtain a gate metal film made of titanium.
  • a resist pattern film is formed on the gate metal film using a resist material, and patterning is performed using the resist pattern film as a mask, that is, gate wiring 9 by photolithography.
  • a dry etching method was used as the gate metal film etching method at this time.
  • Etching gases include chlorine (C1) gas and three
  • a salty boron (BC1) gas or the like was used in combination. Subsequently, using organic solvent, etc.
  • the photoresist film was peeled off.
  • the metal constituting the gate metal film is not particularly limited.
  • aluminum (A1), copper (Cu), chromium (Cr), tantalum (Ta), molybdenum (Mo), indium Metals or metal compounds such as mu tin oxide (ITO), titanium and molybdenum (Mo) can be used.
  • the gate metal film may be formed as a single layer or may have a stacked structure.
  • a method for forming the gate metal film is not particularly limited, and a vapor deposition method or the like can be used in addition to the sputtering method.
  • the thickness of the gate metal film is not particularly limited. Further, the etching method of the gate metal film is not particularly limited, and a wet etching method or the like can be used.
  • a gate insulating film 11, an amorphous silicon film (lower semiconductor film), and an n + type amorphous silicon film (upper semiconductor film) are formed on the glass substrate 8 that has undergone the gate electrode / wiring forming process.
  • the gate insulating film 11 is made of silicon nitride (SiN). These films were continuously formed in the same vacuum chamber by a plasma chemical vapor deposition (CVD) method at a film forming temperature of 300 ° C. The thickness of each film was set to 0.4 / zm (gate insulating film 11), 0.2 / zm (amorphous silicon film) and 0.1 / ⁇ ⁇ ( ⁇ + type amorphous silicon film), respectively.
  • the film forming method and film thickness of each film are not particularly limited.
  • an amorphous silicon film and an ⁇ + type amorphous silicon film were formed into islands (island shapes) by performing a dry etching process using photolithography.
  • a dry etching process using photolithography.
  • a source metal film was obtained by depositing titanium (Ti) with a film thickness of 0.2 m by the same film formation method as that for the gate metal film.
  • the source metal film is later subjected to patterning to become the source electrode 15 and the drain electrode 17.
  • the source metal film is not particularly limited to the form of this embodiment as well as the gate metal film.
  • a resist pattern film was obtained on the source metal film using a photosensitive resist material.
  • the film thickness of the resist pattern film was 2.
  • the source metal film and the n + type amorphous silicon film were successively etched to obtain the source electrode 15, the drain electrode 17, and the n + type amorphous silicon layer 13. Thereafter, the resist pattern film was peeled and removed.
  • the gap L between the source electrode 15 and the drain electrode 17 is set to the size of the gap formed between the source electrode 15 and the drain electrode 17 (also referred to as a TFT gap portion or a channel groove).
  • L 3 m
  • a dry etching method is used as an etching method for the source metal film and the n + type amorphous silicon film, and a chlorine (C1) gas is used as an etching gas.
  • the method is not particularly limited, and a wet etching method or the like may be used.
  • a wet etching method or the like may be used.
  • an over-etching process may be performed to etch a part on the upper layer side of the amorphous silicon film, but this is not shown in FIG. 1 (b).
  • the surface of the source electrode 15, the drain electrode 17, the gate insulating film 11, the amorphous silicon layer 12, and the like is lyophilic and lyophobic for the protective material used in the next step.
  • the process which provides sex was performed.
  • the lyophobic property refers to the property of getting wet or repelling when the liquid comes into contact with the solid surface.
  • four foot Surface treatment was performed by a plasma treatment method using carbon fluoride (CF 3) gas.
  • the contact angle of the end face of the n + type amorphous silicon layer 13 exposed on the TFT gap side is about 20 to 80 ° from the measurement result of the film surface of the same material processed under the same conditions as in this example. Presumed.
  • the surface treatment method used in the present invention is not particularly limited to the method of this example, and any method may be used as long as the lyophobic property can be adjusted.
  • the value of the contact angle is also just an example, and is not particularly limited in the present invention.
  • the space between the opposing source electrode 15 and drain electrode 17 and the removed portion of the n + -type amorphous silicon layer 13 are used as channel grooves.
  • FIG. 3 (a) is a schematic plan view showing a state at the moment when a droplet has landed on the TFT gap portion 31, and
  • FIG. 3 (b) is a schematic cross-sectional view taken along line FF in FIG. 3 (a).
  • SOG material a solution in which a metal alkoxide is dissolved in a diethylene glycol monobutyl ether solvent can be used.
  • SiO 2 silicate glass
  • a liquid material droplet may be selectively discharged or dropped onto the substrate surface.
  • the volume of the droplets 32 discharged at this time was 1 to 2 pl.
  • the planar shape of the droplet 32 seems to be nearly circular at the moment of landing. However, this planar shape is affected by the shape of the droplet during the flight after the droplet 32 is ejected from the inkjet head 21 of the inkjet device, and it is therefore fully conceivable that the shape is other than this. As shown in FIG. 3 (b), after the droplets 32 land, the droplets 32 are applied to the surfaces and end surfaces of the source electrode 15 and the drain electrode 17, the end surface of the n + type amorphous silicon layer 13, and the surface of the amorphous silicon layer 12. Touch.
  • an ink jet apparatus is used as the pattern forming apparatus.
  • the present invention is not particularly limited.
  • the number of droplets discharged to each TFT gap portion 31 is not necessarily one, and two or more droplets may be discharged.
  • the volume of the droplet is merely an example, and is not particularly limited in the present invention. However, the volume of the droplet needs to be set appropriately according to the size of the target pattern.
  • Fig. 4 (a) is a schematic plan view showing a state in which the droplet 32 shown in Fig. 3 (a) has landed and deformed due to its fluidity, and (b) shows ( It is a schematic sectional drawing in the GG line of a).
  • the droplet 32 changed into a shape like the droplet 33 shown in FIG. 4 after landing.
  • the TFT gap portion 31 is widened to fill, and the TFT gap portion 31 has a shape having an interface near both ends 34.
  • the shape of the droplet 33 is given by the bank pattern shape (bank pattern) that also includes the edge force of the source electrode 15, the drain electrode 17 and the n + type amorphous silicon layer 13, and the surface treatment in the previous step. It is controlled and realized by the lyophobic property.
  • the droplet 32 immediately after landing has a contact angle of 90 ° or less at the contact portion of the source electrode 15, the drain electrode 17, the amorphous silicon layer 12, and the like. So they try to get wet on those surfaces.
  • the direction of wetting and spreading at this time is controlled by the step formed by the stacked structure of the source electrode 15 and the drain electrode 17 constituting both sides of the TFT gap portion 31 and the n + type amorphous silicon layer 13.
  • the bank This bank limits the direction of wetting and spreading of the droplet, and the droplet spreads in the TFT gap 31.
  • the source electrode 15 and the drain Since the contact angular force on the electrode 17 is higher than that on the gate insulating film 11, the droplet preferentially enters the TFT gap 31.
  • the liquid droplet extends and spreads in the TFT gap portion 31! /, But when the surface tension of the liquid droplet and the force to spread the liquid are balanced, Stops moving. Here, the droplet tends to stay in the TFT gap portion 31 and in the vicinity thereof as much as possible due to the capillary phenomenon and the surface tension of the droplet.
  • the amount, viscosity and the like of the droplet it was possible to obtain the droplet 33 that spreads to the vicinity of both ends 34 of the TFT gap portion 31.
  • the shape of the droplet can be controlled by using the bank pattern including the.
  • the shape of the droplet 33 in this embodiment is merely an example, and is not particularly limited in the present invention.
  • FIG. 5-1 (a) is a schematic plan view showing a state in which the protective film 35 is formed in the TFT gap portion 31, and (b) is a schematic cross section taken along the line H—H in (a).
  • FIG. 5-1 (a) is a schematic plan view showing a state in which the protective film 35 is formed in the TFT gap portion 31, and (b) is a schematic cross section taken along the line H—H in (a).
  • the protective film 35 was formed by heat-treating the substrate at 300 ° C. to volatilize the organic solvent contained in the droplet 33 and to hydrolyze and polymerize the metal alkoxide. Due to the volume contraction at this time, the inside of the droplet 33 temporarily becomes a negative pressure, a part of the droplet 33 protruding from both ends 34 of the TFT gap 31 is absorbed, and the protective film 35 is formed as shown in FIG. It was formed by slightly changing the shape from the shape of the droplet 33 in (a). By this action, the shape of the protective film 35 in the TFT gap 31 can easily be made constant as shown in Fig. 5-1, by absorbing variations in conditions such as the contact angle.
  • the evaporation of the organic solvent and the hydrolysis / polymerization of the metal alkoxide in the droplet 33 were performed by heating the substrate at 300 ° C. for 30 minutes.
  • the method for volatilization of the organic solvent and hydrolysis of the metal alkoxide is not particularly limited. In the present invention, the method for heating the substrate is not particularly limited.
  • an insulating material is deposited only on the TFT gap portion 31 using an inkjet device.
  • CV for forming the protective film 35 is formed.
  • the D process and the photoetching process for patterning are not required, and the number of photolithography can be reduced by one.
  • the amount of chemicals used in photolithography such as resist materials, developing solutions, resist stripping solutions, etc., could be reduced.
  • a fluid material such as an insulating material is also used in the ink jet method, but since the material is selectively ejected, the amount used is overwhelmingly small. Therefore, with regard to TFT manufacturing, material costs can be reduced, and the impact on the surrounding environment (environmental impact) associated with the use of chemicals can be reduced!
  • the source electrode Z wiring and the drain electrode Z wiring do not require etching resistance during etching of the protective film, so that the choice of materials that can be used increases. For example, single layer structure, poor etching resistance, and ink wiring can be used.
  • the advantages of forming the protective film 35 by coating are as follows: (1) Amorphous silicon which needs to protect moisture, impurities, etc. by using the step of the source Z drain. The point that the channel region of the layer 12 can be efficiently and completely covered, and (2) the use of the above step makes the spread of the protective film material uniform (if the spread is uneven, the transmittance, (3) By using the above difference and surface contact angle, it is possible to form a thick film only on the required TFT gap 31. (4) Utilization efficiency of materials can be improved by selectively forming a film using an inkjet apparatus.
  • the source metal is a three-layer structure of MoZAlZMo, it is difficult to make a forward taper shape.
  • the source metal has a reverse taper shape. Even in some cases, it can be protected without interruption.
  • a material having a light shielding property may be used as the protective film material.
  • the pattern of the semiconductor film is not limited to the form shown in FIG. 5-1, but is the form shown in FIG. May be.
  • the semiconductor pattern is completely covered with the protective film 35 (SOG material) by forming the semiconductor film pattern smaller than the source Z drain pattern. As a result, the end face of the semiconductor film is not exposed, so that the protection can be improved.
  • means for improving the dropping accuracy with respect to the TFT gap portion 31 include means such as control of the surface contact angle and device of the source Z drain pattern.
  • a bank is provided on a substrate when using the ink jet method.
  • a bank pattern is formed so as to surround the wiring formation region, and the upper part of the bank pattern is made non-lyophilic.
  • a technique is disclosed in which the wiring formation region is made lyophilic and the landing accuracy required for the ink jet apparatus is eased.
  • this technique only drops droplets of ink material or the like in the area surrounded by the bank.
  • the bank pattern of the first embodiment has open portions at both ends 34 of the TFT gap portion 31 as described above. That is, the bank pattern used in Example 1 does not have banks at both ends 34 of the force TFT channel portion 31 having banks at positions where the source electrode 15 and the drain electrode 17 are located.
  • a bank pattern having an open portion when a bank pattern having an open portion is used, a pair of electrodes are provided on the same plane as the source electrode 15 and the drain electrode 17 of the TFT 7, and a droplet is dropped at a position corresponding to the gap portion.
  • the thin film element such as a TFT can be manufactured with a smaller number of steps than the conventional manufacturing method.
  • the bank pattern in the prior art is purposely produced using photolithography for the purpose of forming wiring and the like, and does not lead to a reduction in the number of times of photolithography.
  • the source electrode 15, the drain electrode 17 and the n + type amorphous silicon film 13 on both sides of the TFT gap portion 31 manufactured in the original manufacturing process are stacked. Since the step formed by the structure is used as the bank pattern, it is possible to reduce the landing accuracy required for the ink jet apparatus without increasing the number of times of photolithography.
  • Example 1 the force for obtaining the protective film 35 as shown in FIGS. 5-1 (a) and (b) In the present invention, the shape of the protective film 35 is not particularly limited. .
  • Example 1 the surface treatment is performed by a plasma treatment method using carbon tetrafluoride (CF 3) gas.
  • CF 3 carbon tetrafluoride
  • a method of forming a desired lyophobic film (lyophobic film) on the surface may be used.
  • the lyophobic film may be a thin film in which molecules are arranged three-dimensionally or may be a monomolecular film.
  • Materials for forming the lyophobic film include silane materials such as alkyl silane, fluorinated alkyl silane, acrylic resin, novolac resin, silicone resin, and fluorine resin, and alcohol and fluorine-based solvents.
  • a fluid material composed of an organic solvent such as water or the like can be used.
  • examples of the method for forming the lyophobic film include a spray method, a vapor deposition method, a CVD method, a sputtering method, a spin coating method, a dipping method, an ink jet method, and the like, and may be combined with the plasma treatment method.
  • the lyophobic film may be left in the structure of TFT.
  • FIG. 6A the lyophobic film 76 is left in the TFT gap portion 31.
  • FIG. 6B is a schematic cross-sectional view taken along the line O—O in FIG.
  • the gate electrode Z wiring forming process, the gate insulating film Z lower semiconductor film Z upper semiconductor film forming process, the source Z drain electrode Z wiring forming process, the channel etching process (upper semiconductor film pattern) are sequentially performed, followed by a protective film forming process, followed by a lower semiconductor film patterning process. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 7, the lower semiconductor film patterning process is performed after the protective film 35 is formed, and is formed using the SOG material applied and formed in the TFT gap portion. The same process as in Example 1 can be performed except that the lower amorphous silicon film 27 is removed by etching using the protective film 35 and the source Z drain pattern as a mask.
  • a TFT having the planar pattern shown in FIG. 8 can be manufactured.
  • 7A is a schematic cross-sectional view showing the TFT after the channel etching process of Example 2 and the configuration in the vicinity thereof
  • FIG. 7B is a schematic view of the TFT after the protective film forming process of Example 2.
  • FIG. 4C is a schematic cross-sectional view showing the configuration in the vicinity thereof
  • FIG. 5C is a schematic cross-sectional view showing the configuration of the TFT after the semiconductor film patterning step of Example 2 and the configuration in the vicinity thereof.
  • FIG. 8 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor film patterning process of the second embodiment.
  • the same effects as those of the first embodiment can be obtained, and the photoresist forming process for patterning the amorphous silicon film 27 can be reduced.
  • the semiconductor layer forming process is performed. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 9, a coating-type semiconductor material is applied and formed in the TFT gap portion by an inkjet apparatus. This eliminates the need for semiconductor layer deposition by a CVD apparatus. According to the present embodiment, a TFT having the planar pattern shown in FIG. 10 can be manufactured.
  • FIG. 9A is a schematic cross-sectional view showing the structure of the TFT after the source Z drain electrode Z wiring formation step and its vicinity in Example 3
  • FIG. 9B is a schematic cross-sectional view of the semiconductor layer of Example 3. It is a schematic sectional drawing which shows the structure of TFT after the formation process, and its vicinity.
  • FIG. 10 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor layer forming step of the third embodiment.
  • Examples of the solid content of the semiconductor material include tin oxide, indium oxide, titanium oxide, strontium titanate, zinc oxide, gallium nitride, and copper indium oxide. Furthermore, on the semiconductor layer 36 made of a semiconductor material, a film such as an SOG material may be laminated as a protective film.
  • the advantages of forming the semiconductor layer 36 by coating are as follows: (1) By using the step between the source Z and the drain, the TFT gap (channel groove) is made into a silicon (Si) layer. (2) By using the above step, the spread of the semiconductor layer material becomes uniform (because the area of the semiconductor layer becomes nonuniform when spread unevenly, Capacitance and IV characteristics may change between adjacent picture elements and display quality may deteriorate.) (3) By using the above step and surface contact angle, a thick film is formed only in the necessary TFT gap. The point which can be mentioned.
  • a TFT with a positive stagger structure was manufactured. Specifically, after the electrode Z wiring formation process of the source Z drain and the lower semiconductor layer formation process are sequentially performed, the light shielding layer formation process is performed, followed by the upper semiconductor layer formation process and the gate insulation process. A film forming process and a gate electrode Z wiring forming process are sequentially performed. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 11, a light shielding material is applied and formed by an inkjet device in the TFT gap portion after the source Z drain patterning. This eliminates the need for resist film formation, exposure, etching and stripping steps for forming the light shielding layer 37.
  • the step portion formed by the lower semiconductor layer (for example, n + type amorphous silicon layer) and the electrode Z wiring of the source Z drain, that is, the channel groove, is filled with a light-shielding material having fluidity. It is possible to prevent breakage when forming a layer (for example, an amorphous silicon layer). According to this embodiment, a TFT having the planar pattern shown in FIG. 12 can be manufactured.
  • FIG. 11 (a) is a schematic cross-sectional view showing the TFT and the structure in the vicinity thereof after the lower semiconductor layer forming step of Example 4, and FIG. 11 (b) is after the light shielding layer forming step of Example 4.
  • FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT and its vicinity
  • FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT and its vicinity after the gate electrode Z wiring formation process of Example 4.
  • FIG. 12 is a schematic plan view showing the configuration of the TFT and its vicinity after the gate electrode Z wiring forming process of the fourth embodiment.
  • the advantages of forming the light shielding layer 37 by coating are as follows: (1) By using the step between the source Z drain, the TFT gap portion (channel groove) is made more efficient by the light shielding material. (2) Use of the above steps makes the spread of the light shielding material uniform (if the light shielding material spreads unevenly in unnecessary parts, the aperture ratio (3) By using the above step and surface contact angle, only the necessary TFT gap area can be obtained. It is possible to form a thick film.
  • the functional film may be formed by applying a functional material such as an SOG material to the wiring portion simultaneously with the protection of the TFT portion.
  • a functional material such as an SOG material
  • it may be formed on the source wiring 14 as shown in FIG.
  • a functional film on the wiring (1) by applying a functional material such as a low dielectric constant SOG material on the gate, the source, the pixel electrode, and the counter electrode The capacity of can be reduced. However, in this case, when the gate patterning is completed, it is necessary to apply and form a functional material using an ink jet apparatus using the gate pattern. (2) Capacitance between the pixel electrode and the counter electrode can be reduced by applying and forming a low dielectric constant functional material on the source. In this case, it can be formed at the same time as the functional material is applied to the TFT gap.
  • a functional material such as a low dielectric constant SOG material
  • the capacitance between the gate and the counter electrode can be reduced by applying and forming a low dielectric constant functional material on the source.
  • the functional material is applied and formed on the gate and the side surface of the semiconductor layer (eg, Si layer) can also be covered, the semiconductor layer (eg, Si layer) can be formed without increasing the number of masks. Protection is possible.
  • Comparative Example 1 a conventional method for manufacturing an inverted staggered amorphous silicon TFT will be described with reference to FIGS.
  • FIG. 14A is a schematic cross-sectional view showing the TFT after the channel etching process of Comparative Example 1 and the configuration in the vicinity thereof
  • FIG. 14B is the TFT after the protective film forming process of Comparative Example 1 and its TFT.
  • FIG. 4C is a schematic cross-sectional view showing a configuration in the vicinity
  • FIG. 5C is a schematic cross-sectional view showing a TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof.
  • FIG. 15 is a schematic plan view showing the configuration of the TFT and its vicinity after the protective film patterning process of Comparative Example 1.
  • FIG. 16 is a schematic cross-sectional view corresponding to (a) to (c) of FIG.
  • FIG. 6 is a schematic cross-sectional view showing the source wiring after the protective film formation process of Example 1 and the configuration in the vicinity thereof, and (c) shows the configuration of the source wiring after the protective film patterning process in Comparative Example 1 and the vicinity thereof. It is a schematic sectional drawing.
  • Comparative Example 1 the gate electrode Z wiring forming step, the gate insulating film Z the lower semiconductor film Z, the upper semiconductor film forming step, the lower and upper semiconductor film patterning steps, and the source Z drain electrode Z wiring
  • a protective film formation process using a CVD method is performed, followed by a protective film patterning process for forming a photoresist, etching, and resist removal. Is called. That is, in Comparative Example 1, as shown in the manufacturing process flow in FIG. 14, after the protective film 35a is formed on the entire surface of the substrate by the CVD method, the patterning force photolithography of the protective film 35a is performed. Therefore, in Comparative Example 1, the number of photoresists is one more than in Example 1.
  • Example 5 force showing the TFT manufacturing method of the present invention
  • TFT shapes suitable for these manufacturing methods will be described with reference to FIGS. 17-1 and 17-2.
  • components having substantially the same functions as those in the first embodiment are denoted by the same reference numerals.
  • Fig. 17-1 (a) is a schematic plan view showing the structure of the TFT of Example 5, and (b) is an X of (a).
  • the TFT 121 of this embodiment has a bottom gate structure, and has a gate electrode 10 branched from the gate wiring 9 on the glass substrate 8 and an upper layer thereof.
  • the gate insulating film 11, the amorphous silicon layer 12, the n + type amorphous silicon layer 13, the source wiring 14, the branched source electrode 15, and the drain electrode 122 connected to the drain connection wiring 16 are configured.
  • the drain electrode 122 has a partial notch at the end on the channel portion side.
  • a TFT channel portion 18 is formed in a lower layer region of a gap portion formed between the source electrode 15 and the drain electrode 122, and the TFT channel portion 18 is formed in the gap portion.
  • a protective film (functional film) 35 is formed to cover the film.
  • the drain connection wiring 16 is formed, for example, for connecting a pixel electrode (not shown) and the drain electrode 122 in a display application.
  • Ding 121 has a notch 122a near the center of drain electrode 122.
  • the notch 122a is also formed on the glass substrate 8 with the gate electrode 10 and the gate. Since the gate insulating film 11 and the amorphous silicon film 12 are stacked, it can function as a TFT channel.
  • Example 1 It is assumed that the manufacturing method of Example 1 is used as the TFT manufacturing method of this example.
  • the protective film 35 is formed in the TFT gap portion 31.
  • the protective film 35 is produced by landing droplets of an insulating material having fluidity on the substrate using an ink jet apparatus as described in the first embodiment. Expands to fill the TF T gap 31.
  • the volume of the liquid droplet filling the TFT gap 31 was calculated. That is, in the gap region between the source electrode 15 and the drain electrode 17, the height was calculated as the volume filling the step formed by the n + -type amorphous silicon layer 13 and the source electrode 15 or drain electrode 17 layer. As a result of calculation using the numerical values described in Example 1, the volume of the TFT gap portion 31 was 0.054 pl.
  • Example 1 when the production method of Example 1 is used, an appropriate droplet volume is too much if 0.5 pl is considered as a guide if the solid content concentration is 10% by volume.
  • the surface tension limit is exceeded at both ends 34 of the TFT gap 31, and a large amount of droplets overflows from both ends 34 of the TFT gap 31.
  • the volume of droplets ejected in Example 1 that is often about lpl or more was 1 to 2pl. This is due to the structure of the head of the ink jet device. In other words, the smaller the droplet, the smaller the diameter of the nozzle (discharge hole), so that high processing accuracy is required and the nozzle is likely to be clogged.
  • the minimum volume of droplets that can be ejected by the ink jet apparatus is a value that is at least twice as large as the volume of the TFT gap portion 31 of Example 1 previously calculated.
  • the source electrode and the Z or drain It is preferable to provide a notch in the in-electrode.
  • the notch can be made a place for absorbing excess droplets.
  • the volume of the TFT gear portion is 0.069pl, which can be close to the volume of droplets that can be ejected by the ink jet apparatus. Therefore, in the protective film formation step, the force at both ends 34 of the TFT gap portion 31 can be prevented from overflowing a large amount of droplets, and the shape of the TFT 121 can be manufactured more stably.
  • the present inventors can confirm the above-described effects by experiments in which respective patterns with or without the notches 122a are prepared, and it is effective to provide notches in the source electrode and the Z or drain electrode. I found out. Note that the notch 122a is provided in the drain electrode 122, so that the on-current value of the TFT is slightly reduced. This is achieved by optimizing the entire size, etc., so that the TFT having the desired electrical characteristics can be restored. Can be designed.
  • a TFT is manufactured by the manufacturing method of Example 1, by providing a partial cutout at the end of at least one of the source electrode and the drain electrode on the channel side, The separation between the volume of the TFT channel portion and the minimum volume of droplets that can be ejected by the inkjet apparatus can be reduced, and the TFT can be manufactured with a stable shape.
  • it is not limited to the manufacturing method of Example 1, When using the manufacturing method of Examples 2-4, the same effect can be obtained.
  • the shape of the notch may be a shape as shown in Fig. 17-2. That is, the drain electrode 124 has a notch 124a.
  • the width Wb is the same value as the TFT channel length L.
  • the protective film made of droplets becomes bowl-shaped (the cross-sectional shape is U-shaped), that is, the film thickness tends to decrease as the distance from the source or drain electrode within the TFT gap section increases. If the film thickness is reduced in this way, the role as a protective film may not be sufficiently fulfilled.
  • the cutout is provided with the same width as the TFT channel length formed using the best resolution of photolithography, so as to avoid a reduction in the thickness of the central portion as much as possible. Can do. A plurality of such notches may be provided. Yes.
  • the TFT of the present invention may be a TFT including a U-shaped or U-shaped portion in the shape of the channel portion. This embodiment shows such a TFT.
  • FIG. 18 (a) is a schematic plan view showing the TFT 125
  • FIG. 18 (b) is a schematic cross-sectional view taken along line YY in FIG. 18 (a).
  • the TFT 125 shown in FIG. 18 has a shape in which the TFT channel portion 18 has a U-shape (U-shape) and is bent at two locations.
  • the drain electrode 126 has a U-shaped shape.
  • the force source electrode 127 has a linear shape.
  • the shape of the TFT channel portion 18 is a U-shaped shape, it will fit within a smaller circle!
  • Such a shape of the TFT 125 is suitable for the manufacturing method of the first embodiment. This is related to the fact that the droplet immediately after landing on the substrate in the protective film forming step has a substantially circular planar shape.
  • the liquid droplet can fill many locations in the TFT gap portion immediately after landing. Therefore, it is possible to produce a TFT having a substantially longer channel width and TFT without extending the distance of the droplet after landing so much, and the channel portion is particularly long in the method of the present invention! ⁇ Effective when manufacturing TFTs.
  • the area ratio of the channel in the portion of the semiconductor layer constituting the semiconductor element can be increased, and the volume of the channel groove can be increased. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy.
  • FIG. 19 is an enlarged schematic plan view showing the source electrode 127 and the drain electrode 126 in FIG. 18 (a).
  • W2 ll ⁇ m
  • W3 40 ⁇ m
  • W4 43 ⁇ m.
  • Source electrode 127 and W3 and W4 are close Considering that the TFT channel part is formed in the TFT gap part 31, which is the gap between the drain electrodes 126, it can be said that the shape of the TFT 125 is almost nearly square.
  • the X coordinate and Y coordinate in the table represent the amount of shift from the center of the TFT gap portion 31, and the unit is / zm.
  • the X and Y axes were oriented as shown in FIG. As shown in Table 1, in this example, the X coordinate is ⁇ 9 m to +9 m, and the Y coordinate is ⁇ 9 ⁇ to + 6 / ⁇ ⁇ , all being good.
  • FIGS. 20 (a) and (b) show such TFT128.
  • Fig. 20 (a) is a schematic plan view
  • Fig. 20 (b) is a schematic cross-sectional view along line ⁇ - ⁇ of Fig. 20 (&).
  • the drain electrode 129 has a U-shaped TFT channel portion 18 and further has two cutout portions 129a and 129b.
  • FIGS. 21 (a) and (b) A similar example is shown in FIGS. 21 (a) and (b).
  • FIG. 21 (a) is a schematic plan view
  • FIG. 21 (b) is a schematic cross-sectional view along the line AB-AB in FIG. 21 (a).
  • the TFT 131 in these drawings has a source electrode 133 and a drain electrode 132 having a notch 132a.
  • the channel length of the TFT corresponds to a portion provided with the partial force notch 132a in which the channel length is partially enlarged.
  • the TFT of the present invention may be a TFT in which the source electrode and the drain electrode have corner portions (corner portions) near the end portion of the TFT channel portion.
  • the present embodiment relates to such a TFT.
  • the TFT of this embodiment has the same form as TFT 7 shown in FIGS. 1 (a) and (b), for example.
  • Fig. 22 (a) is an enlarged view of the main part of the source electrode 15 etc. shown in Fig. 1 (a), partially extracted.
  • the source The electrode 15 and the drain electrode 17 have corner portions 143, 144, 145, and 146.
  • TFTs with a drain electrode having a corner portion are preferable. Especially when the angle of the corner portion is 90 °, the shape of the TFT is stabilized. [0119] This can be confirmed, for example, by fabricating TFT 147 shown in Fig. 22 (b) by the method of Example 1 for comparison and comparing it with the case of Fig. 22 (a).
  • Fig. 22 (b) is an enlarged view of the main part of the TFT source electrode 149, etc. partially extracted.
  • the source electrode 149 connected to the source wiring 148 and the drain connection wiring 150 are connected.
  • the source electrode 149 and the drain electrode 151 have corner portions 155 and 156 in the vicinity of the end portion 153 of the TFT channel portion 152, but only the source electrode 149 has a corner portion 157 in the vicinity of the other end portion 154.
  • the drain connection wiring 150 and the drain electrode 151 are connected in a straight line shape, that is, have no corner portion.
  • the TFT has a source electrode and a drain electrode with corner portions near all ends of the TFT channel portion, such as TFT7 shown in FIG.
  • the shape at both ends of the membrane was stable.
  • the source electrode and the drain electrode have corner portions near all the ends of the TFT channel portion as in this embodiment.
  • the TFT shape is preferable, especially if the corner angle is 90 ° or less. Is stable.
  • FIGS. FIG. 23 (a) is a schematic plan view
  • FIG. 23 (b) is a schematic cross-sectional view of the AC—AC line of FIG. 23 (a).
  • the TFT 158 has a U-shape in a region 160 in the force diagram having the TFT channel portion 159.
  • the TFTs and their manufacturing methods shown in Examples 1 to 7 can also be applied to diodes having the same structure as those of the TFTs.
  • the present embodiment relates to such a diode.
  • FIG. 24 (a) is a schematic plan view showing the configuration of the diode of this example and the vicinity thereof.
  • Figure 24 (b) shows a schematic cross-sectional view along the line AD-AD.
  • the diode 171 of this example has an inverted staggered structure, and has a gate electrode 173, a gate insulating film 174, an amorphous silicon layer 175, and an n + type amorphous silicon layer 176 on a glass substrate 172. And a drain electrode 178 connected to the connection wiring 177, a source electrode 180 connected to the connection wiring 179, a protective film (functional film) 181 and a conductive film 182 for connection are stacked. Have A protective film 181 is formed between the drain electrode 178 and the source electrode 180.
  • a part of the amorphous silicon layer 175 forms a channel portion 183, and the TFT portion 185 having the same structure as the TFT is formed by this and the gate electrode 173 and the like.
  • a contact portion 184 is formed in part of the connection wiring 179.
  • the gate insulating film 174 is opened, and a conductive film 182 for connection is provided in the upper layer with the opening as a center, and the gate electrode 173, the connection wiring 179, and the source electrode 180 are electrically connected.
  • the conductive film 182 for connection is made of ITO ( The other constituent elements are the same as in Example 1.
  • the diode 171 of this embodiment is formed so as to connect between arbitrary wirings such as adjacent source wirings and gate wirings in the active matrix substrate.
  • the purpose of this is to prevent elements such as TFTs and wiring in the substrate from being burned out due to static electricity.
  • static electricity accumulates on a certain wiring and has a sufficiently higher potential than the surroundings, the source electrode and gate electrode of the diode electrically connected to the potential also become high potential, Since the TFT section is turned on and conducted, static electricity on this wiring can be released. Therefore, the above-described burnout and the like can be prevented.
  • the TFT portion is not in an on state, so that the wiring having high resistance can be substantially electrically separated.
  • a step of forming the conductive film for connection 182 may be added, and a film for forming this is formed on the entire surface of the substrate. And it can produce by patterning by photolithography.
  • the connection conductive film 182 was formed by a sputtering method.
  • the shape reflects the shape of the droplet of the insulating material having fluidity discharged using the ink jet apparatus.
  • the shape of the protective film 181 is not circular because the direction in which the droplets flow is controlled by the banks that form the drain electrode 178 and the source electrode 180 and the volatilization of the organic solvent in the droplets. In some cases, liquid droplets were formed between the drain electrode 178 and the source electrode 180.
  • the TFT fabrication methods of Examples 1 to 7 can be applied to a diode having a structure part of those TFTs inside, and this example is also an example. Like 1-7, it contributes to the reduction of the number of photolithography. Therefore, the same manufacturing merit can be obtained.
  • the active matrix substrate (circuit substrate) of this example is a TFT array substrate and has the form shown in FIG. 25-1.
  • Figure 25-1 shows the configuration of the active matrix substrate of Example 9. It is a schematic plan view.
  • the active matrix substrate 191 of this embodiment has a source wiring 192, a gate wiring 193, and a TFT 194, which is a kind of semiconductor element, corresponding to each intersection point thereof.
  • a large number of TFTs 194 are formed, and can be divided into, for example, an effective region 195 used as an image display region and a peripheral region 196 located outside the effective region 196.
  • the peripheral area 196 is an area for providing wiring for driving the active matrix substrate 191, terminals (not shown) for connection to an external substrate, and the like.
  • a diode 197 which is a kind of semiconductor element, is provided in the peripheral region 196.
  • the TFT 194 is connected to a pixel electrode (not shown) for performing image display and the like, a source wiring 192 and a gate wiring 193, and the shape thereof has the shape shown in the first embodiment.
  • the diode 197 has a shape shown in Embodiment 8 by connecting adjacent gate wirings 193 to serve as a protective element for preventing the wiring and elements from being burned by static electricity.
  • the methods described in Examples 1 to 4 and 8 can be used.
  • the active matrix substrate 191 of this embodiment is characterized in that a TFT 194 and a diode 197 are arranged in a straight line group (parallel line group) with an equal interval in the gate wiring direction. That is.
  • the TFT 194 is a semiconductor element in the effective area 195
  • the diode 197 is a semiconductor element in the peripheral area 196, and the semiconductor elements for different purposes in such different areas are in a straight line. Is characteristic.
  • an ink jet apparatus is used as a pattern forming apparatus capable of discharging or dropping a fluid insulating material or the like as droplets at a selective place on a substrate surface. Was used.
  • the ink jet apparatus includes an ink jet head, and ejects droplets while changing the relative position between the ink jet head and the substrate.
  • the movement of the inkjet head viewed from the substrate side repeats scanning in one direction in the plane, and moves the ink jet head by a predetermined amount in the direction perpendicular to the scanning direction between the scans. It is common.
  • the number of scans If you reduce the amount of
  • the nozzles for ejecting droplets are arranged at equal intervals in the ink jet head, the droplets cannot be ejected to the substrate region located between the nozzles. Drops can be dropped in a single scan only at locations on the straight line group at equal intervals through which each nozzle passes. Therefore, in order to minimize the number of scans, it is preferable that the positions where droplets or the like are landed, that is, the locations where the semiconductor elements are formed are on a group of straight lines as equally spaced as possible.
  • the arrangement of TFT 194 and diode 197 in this example is suitable for the TFT manufacturing method of Examples 1 to 4 and the diode manufacturing method of Example 8, and the number of scans of the ink jet head. This makes it possible to efficiently process the substrate.
  • semiconductor elements such as TFTs and diodes other than TFT 194 and diode 197 are provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 191. However, all the semiconductor elements that need to be arranged must be arranged on a group of equally spaced lines.
  • FIG. 25-2 is a schematic plan view showing a configuration of an active matrix substrate 202 which is a modification of the present embodiment.
  • TFTs other than TFT 199 and diode 200, semiconductor elements such as diodes, and the like may be provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 202. Good.
  • the interval between the gate lines is often wider than the interval between the source lines. Therefore, the inkjet head is viewed from the substrate side. Therefore, it is preferable to scan in the gate wiring direction. This is because the interval between the nozzles provided in the ink jet head can be widened, so that the number of nozzles is reduced, and processing accuracy and uniformity of droplet landing distribution between the nozzles can be easily maintained.
  • the active matrix substrate is provided in the effective area, and the source wiring.
  • An active matrix substrate having a plurality of semiconductor elements arranged corresponding to each intersection of the gate wiring and the gate wiring, and these semiconductor elements are an active matrix substrate on a group of evenly spaced lines. Moyo.
  • the active matrix substrate 207 may be located on the TFTs 203 and 204, the diode 205, and the straight line group 206 at equal intervals in the force source wiring direction.
  • FIG. 25-3 is a schematic plan view showing a configuration of an active matrix substrate 207 which is a modification of the present embodiment.
  • semiconductor elements such as TFTs and diodes other than TFTs 203 and 204 and diodes 205 are provided in either or both of the effective region 195 and the peripheral region 196 on the active matrix substrate 207. Good.
  • the active matrix substrate is an active matrix substrate having a plurality of source wirings, a plurality of gate wirings, and semiconductor elements on a (glass) substrate, and a large number of the semiconductor elements are formed.
  • the semiconductor element force arranged in the effective region is arranged on two equally-spaced straight line groups in the gate wiring direction and the Z or source wiring direction.
  • the active region substrate may be an active matrix substrate in which the (second) semiconductor element in the peripheral region is arranged on the straight line group! For example, as shown in FIG.
  • TFTs 208 and 209 are provided in the vicinity of the intersection of the source wiring 192 and the gate wiring 193, and the TFT 208 and the diode 210 are equally spaced from each other in the gate wiring direction.
  • the TFT 209 located on the straight line group 211 may be an active matrix substrate 213 located on the second straight line group 212 in the gate wiring direction that is equally spaced from each other.
  • FIG. 25-4 is a schematic plan view showing a configuration of an active matrix substrate 213 which is a modification of the present embodiment.
  • semiconductor elements such as TFTs and diodes other than TFTs 209 and 209 and diodes 210 may be provided in either or both of the effective region 195 and the peripheral region 196 on the active matrix substrate 213. Good.
  • the active matrix substrate is an active matrix substrate having a plurality of source wirings, a plurality of gate wirings, and semiconductor elements on a (glass) substrate, and a large number of the semiconductor elements are formed.
  • Effective area and surrounding area around it, Semiconductor element power disposed in the effective area has a portion disposed on at least one equally spaced line group in the gate wiring direction and z or source wiring direction, and is an integral part of the distance between the straight line group from the straight line group.
  • the active matrix substrate may be an active matrix substrate in which the (second) semiconductor element in the peripheral region is arranged on a straight line determined by a distance of 1.
  • FIG. 25-5 a TFT 214 is provided, and on a fourth straight line group 216 determined by a distance 12 from a third straight line group 215 equally spaced from each other corresponding to the arrangement of the TFT 214, An active matrix substrate 218 having a diode 217 in the peripheral region may be used.
  • 12 11/3.
  • FIG. 25-5 is a schematic plan view showing the configuration of an active matrix substrate 218 which is a modification of the present embodiment.
  • semiconductor elements such as TFTs and diodes other than TFT 214 and diode 217 may be provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 218. .
  • FIG. 1 (a) is a schematic plan view showing a TFT fabricated using the manufacturing method of Example 1 and the configuration in the vicinity thereof, and (b) is an A—A diagram of (a). It is a schematic sectional drawing in a line.
  • FIG. 2 is a schematic perspective view showing the configuration of the ink jet apparatus.
  • FIG. 3 (a) is a schematic plan view showing a state at the moment when a droplet has landed on the TFT gap portion 31, and (b) is a schematic cross-sectional view taken along the line FF in (a).
  • FIG. 4 (a) is a schematic plan view showing a state in which the liquid droplet 32 shown in FIG. 3 (a) has landed and then deformed due to its fluidity, and (b) is (a) It is a schematic sectional drawing in the GG line of).
  • FIG. 5-1 (a) is a schematic plan view showing a state in which a protective film 35 is formed in the TFT gap portion 31, and (b) is a schematic cross-sectional view taken along line H—H in (a). It is.
  • FIG. 5-2 (a) is a schematic plan view showing another example of a state in which the protective film 35 is formed in the TFT gap portion 31, and (b) is a line H—H in (a).
  • FIG. ⁇ 6] (a) is a schematic plan view showing a state in which the lyophobic film 76 is left in the TFT gap portion 18, and (b) is a schematic cross-sectional view taken along the line OO in (a). .
  • FIG. 7 (a) is a schematic cross-sectional view showing the TFT after the channel etching process of Example 2 and the configuration in the vicinity thereof, and (b) is the TFT after the protective film forming process of Example 2 and its FIG. 5C is a schematic cross-sectional view showing a configuration in the vicinity, and FIG. 5C is a schematic cross-sectional view showing a configuration of the TFT after the semiconductor film patterning process of Example 2 and the configuration in the vicinity thereof.
  • FIG. 8 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor film patterning process of Example 2.
  • FIG. 9 (a) is a schematic cross-sectional view showing the configuration of the TFT after the source Z drain electrode Z wiring formation step and its vicinity in Example 3, and (b) is a semiconductor layer of Example 3. It is a schematic sectional drawing which shows the structure of TFT after the formation process, and its vicinity.
  • FIG. 10 A schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor layer formation step of Example 3.
  • FIG. 11 (a) is a schematic cross-sectional view showing the configuration of the TFT after the source Z drain electrode Z wiring formation process and its vicinity in Example 4, and (b) is a light shielding layer of Example 4.
  • FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT after the formation process and the vicinity thereof, and FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT after the formation process of the gate electrode Z wiring of Example 4 and the vicinity thereof.
  • FIG. 12 A schematic plan view showing the configuration of the TFT and its vicinity after the light shielding layer forming step of Example 4.
  • FIG. 12 A schematic plan view showing the configuration of the TFT and its vicinity after the light shielding layer forming step of Example 4.
  • FIG. 13 (a) is a schematic cross-sectional view showing an arrangement state of the source wiring 14 before forming the protective film 35 in Examples 2 and 4, and (b) is a protective film on the source wiring 14. 6 is a schematic cross-sectional view showing a configuration after forming 35.
  • FIG. 13 (a) is a schematic cross-sectional view showing an arrangement state of the source wiring 14 before forming the protective film 35 in Examples 2 and 4, and (b) is a protective film on the source wiring 14. 6 is a schematic cross-sectional view showing a configuration after forming 35.
  • FIG. 14 (a) is a schematic cross-sectional view showing the TFT after the channel etching process of Comparative Example 1 and the configuration in the vicinity thereof, and (b) is the TFT after the protective film forming process of Comparative Example 1 and its TFT
  • FIG. 5C is a schematic cross-sectional view showing a configuration in the vicinity
  • FIG. 5C is a schematic cross-sectional view showing a configuration of the TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof.
  • FIG. 15 A schematic plan view showing the structure of the TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof.
  • FIG. 16 is a schematic cross-sectional view corresponding to (a) to (c) of FIG. 14 and showing the arrangement state of the source wiring after the channel etching process of Comparative Example 1, and (b) of FIG.
  • FIG. 7 is a schematic cross-sectional view showing the arrangement state of the source wiring after the protective film forming step
  • (c) is a schematic cross-sectional view showing the arrangement state of the source wiring after the protective film patterning step of Comparative Example 1 .
  • FIG. 17-1 (a) is a schematic plan view showing the configuration of the TFT of Example 5, and (b) is a schematic cross-sectional view taken along line XX of (a).
  • FIG. 17-2 is a schematic plan view showing another example of the structure of the TFT of Example 5.
  • FIG. 18 (a) is a schematic plan view showing a TFT 125, and (b) is a schematic cross-sectional view taken along line Y—Y in (a).
  • FIG. 19 is an enlarged schematic plan view showing the source electrode 127 and the drain electrode 126 in FIG. 18 (a).
  • FIG. 20 (a) shows a TFT 1 implemented by combining the embodiment in which the drain electrode shown in Example 5 has a notch and the embodiment shown in Example 6 in which the channel has a U-shape or U-shape.
  • 28 is a schematic plan view showing the configuration of 28, and (b) is a schematic sectional view taken along the line AA-AA in (a).
  • FIG. 21 (a) shows a TFT 1 implemented by combining the embodiment in which the drain electrode shown in Example 5 has a notch and the embodiment shown in Example 6 in which the channel has a U-shape or U-shape.
  • FIG. 32 is a schematic plan view showing the configuration of 31, and (b) is a schematic sectional view taken along line AB-AB of (a).
  • FIG. 22 (a) is an enlarged view of the main part of the source electrode 15 shown in Fig. 1 (a), partially extracted, and (b) is for comparison with the case of (a).
  • FIG. 9 is an enlarged view of a main part, partially showing a TFT source electrode 149 and the like manufactured by the method of Example 1 (Example 7).
  • FIG. 23 A form having a U-shaped channel or a U-shaped channel as shown in Example 6, and a portion where the source and drain electrodes are corners near all ends of the TFT channel part shown in Example 7.
  • FIG. 2 is a schematic plan view showing a configuration of a TFT 158 implemented in combination with a configuration having a line (b), and (b) is a schematic cross-sectional view taken along an AC-AC line in (a).
  • FIG. 24 (a) is a schematic plan view showing the configuration of the diode of Example 8 and the vicinity thereof, and (b) is a schematic cross-sectional view taken along the line AD-AD in (a).
  • FIG. 25-1 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
  • FIG. 25-2 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
  • FIG. 25-3 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
  • 25-4 A schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
  • FIG. 25-5 A schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
  • Y direction drive Ink supply system: Control group: Amorphous silicon film: n + type amorphous silicon film: TFT gap
  • drain electrode notch 9b drain electrode notch 0: source electrode 131: TFT
  • Gate insulating film 175 Amorphous silicon layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)

Abstract

Methods for manufacturing semiconductor element and circuit board by which selective film forming is made possible and a number of times of photolithography required for forming an element structure is reduced, a semiconductor element, a circuit board, an electronic device and a display device obtained by using such methods are provided. The method for manufacturing semiconductor element is a method for manufacturing a semiconductor element having a channel and includes a step of forming a functional layer by dropping a functional material having fluidity in a channel groove.

Description

明 細 書  Specification
半導体素子及び回路基板の製造方法、並びに、半導体素子及び回路基 板  SEMICONDUCTOR ELEMENT AND CIRCUIT BOARD MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT AND CIRCUIT BOARD
技術分野  Technical field
[0001] 本発明は、半導体素子及び回路基板の製造方法、並びに、半導体素子、回路基板 及び電子装置に関する。より詳しくは、薄膜トランジスタ等を製造するのに好適な半 導体素子の製造方法、アクティブマトリクス基板等を製造するのに好適な回路基板の 製造方法、薄膜トランジスタ等の半導体素子、アクティブマトリクス基板等の回路基板 、及び、撮像装置、画像入力装置、表示装置等の電子装置に関するものである。 背景技術  The present invention relates to a semiconductor element, a method for manufacturing a circuit board, and a semiconductor element, a circuit board, and an electronic device. More specifically, a method for manufacturing a semiconductor element suitable for manufacturing a thin film transistor or the like, a method for manufacturing a circuit board suitable for manufacturing an active matrix substrate or the like, a semiconductor element such as a thin film transistor, or a circuit substrate such as an active matrix substrate or the like. And an electronic apparatus such as an imaging apparatus, an image input apparatus, and a display apparatus. Background art
[0002] シリコン (Si)基板に代表される半導体基板、アルカリガラス基板や無アルカリガラス 基板に代表されるガラス基板、プリント配線基板に用いられるガラス'エポキシ基板、 フレキシブル基板、ディスプレイ用途やその他幅広く用いられるプラスチック基板等 の基板上に、精密なパターン配線やディスプレイ用途等の微細なパターン薄膜を高 精度で形成することが求められる場合、フォトリソグラフィが用いられることが多い。  [0002] Semiconductor substrates typified by silicon (Si) substrates, glass substrates typified by alkali glass substrates and non-alkali glass substrates, glass-epoxy substrates used for printed wiring boards, flexible substrates, display applications, and other widely used Photolithography is often used when it is required to form a fine pattern thin film with high accuracy on a substrate such as a plastic substrate, which is used for precise pattern wiring and display.
[0003] 一般的なフォトリソグラフィでは、まず基板上に感光性を有するレジスト材料 (フオトレ ジスト材料)を基板上の全面に塗布し、加熱処理することでレジスト膜を得る。続いて 、ステップ式投影露光装置 (ステツパ)等の露光装置と所定のパターンを有するフォト マスクとを用いて露光する。続いて、有機アルカリ等を含む現像液にて現像すること で、基板上にレジストパターン膜を得る。続いて、このレジストパターン膜をマスクとし 、基板をウエットエッチング法又はドライエッチング法にてエッチング雰囲気に晒すこ とにより、基板上の薄膜を所定のパターンに加工する。なお、レジストパターン膜は、 適当な段階で有機溶剤等を含む剥離液により除去される。  In general photolithography, first, a resist material (photoresist material) having photosensitivity is applied to the entire surface of a substrate, and a heat treatment is performed to obtain a resist film. Subsequently, exposure is performed using an exposure apparatus such as a stepped projection exposure apparatus (stepper) and a photomask having a predetermined pattern. Subsequently, the resist pattern film is obtained on the substrate by developing with a developer containing an organic alkali or the like. Subsequently, using the resist pattern film as a mask, the substrate is exposed to an etching atmosphere by a wet etching method or a dry etching method, whereby the thin film on the substrate is processed into a predetermined pattern. The resist pattern film is removed at a suitable stage with a stripping solution containing an organic solvent or the like.
[0004] このようなフォトリソグラフィでは、レジストパターン膜の作製回数をなるベく少なくする ことが製造上有利である。これまでに、 目的とするデバイスや配線等の構造を最適化 して、レジストパターン膜の作製回数を減らす試みが多く行われて!/、る。  In such photolithography, it is advantageous in manufacturing to reduce the number of times of producing the resist pattern film as much as possible. Many attempts have been made to reduce the number of times the resist pattern film is produced by optimizing the structure of the target device and wiring.
[0005] 近年においては、プリンター用途に開発されてきたインクジェット技術を回路基板の 作製に利用することが考えられた。これは、インクジェット法により、基板上に直接、パ ターンを有する金属膜等を形成する技術であり、配線や受動素子 (コンデンサゃ抵 抗、インダクタ)の作製が考えられている。この技術では、配線をつくる場合は金属微 粒子を含む液滴を、コンデンサ等をつくる場合は金属酸化物材料等を含む液滴を、 インクジェット装置により滴下し、基板の所定の場所に配線や受動素子を形成するも のである (例えば非特許文献 1参照。 ) o [0005] In recent years, the inkjet technology developed for printer applications has been It was considered to be used for production. This is a technique for forming a metal film having a pattern directly on a substrate by an ink-jet method, and production of wiring and passive elements (capacitor resistance, inductor) is considered. In this technology, droplets containing metal fine particles are used to make wiring, and droplets containing metal oxide material are used to make capacitors, etc. (See Non-Patent Document 1, for example.) O
[0006] また、 TFT (薄膜トランジスタ)に関し、絶縁層又は保護用絶縁層を、流動性の材料を 塗布し熱処理することにより形成する技術が開示されている(例えば、特許文献 1参 照。)。  [0006] In addition, regarding a TFT (Thin Film Transistor), a technique is disclosed in which an insulating layer or a protective insulating layer is formed by applying a fluid material and heat-treating (for example, see Patent Document 1).
更に、インクジェット法を使用し、全て有機物を材料として TFTを形成する技術も開 示されている (例えば、非特許文献 2参照。 )0 Furthermore, using an ink jet method, a technique for forming a TFT all organic as the material has also been shown to open (e.g., non-patent document 2 reference.) 0
そして、 TFT等の薄膜デバイスを構成する薄膜積層構造のうちの少なくとも 1層の薄 膜が、薄膜の構成成分を含む液体が塗布された後に熱処理されて得られる塗布膜 にて形成されている薄膜デバイスが開示されている(例えば、特許文献 2参照。 )0 これらのインクジェット技術によれば、薄膜デバイス中の薄膜を形成するのにフォトリソ グラフィを用いないため、フォトリソグラフィの回数を削減することができるものの、塗布 形成した膜の形状がばらつきやすぐ素子特性のばらつきが大きくなりやすいという 点で改善の余地があった。 A thin film formed of a coating film obtained by heat-treating at least one thin film of a thin film laminated structure constituting a thin film device such as a TFT after a liquid containing a thin film component is applied. Devices have been disclosed (for example, see Patent Document 2). 0 According to these ink jet technologies, photolithography is not used to form a thin film in a thin film device, so that the number of times of photolithography can be reduced. However, there was room for improvement in that the shape of the formed film and variations in device characteristics were likely to increase.
[0007] これに対し、インクジェット法では、液滴を滴下する前に、あらかじめ基板に前処理を 行う方法も考えられている。これは、滴下する液滴が基板に到達したときの位置精度 (着弾精度)を緩和する目的で、又は、必要な液滴の数を低減させて処理速度を向 上させる等の目的で行われる。この技術では、配線を形成する基板上に、配線形成 材料に対する親和領域と非親和領域とを形成し、親和領域にインクジェット法にて配 線材料の液滴を滴下することにより配線を形成する(例えば、特許文献 3参照。 )0こ の親和領域と非親和領域の形成には露光装置とフォトマスク等が用いられる。 [0007] On the other hand, in the ink jet method, a method of pre-treating a substrate in advance before dropping a droplet has been considered. This is performed for the purpose of relaxing the positional accuracy (landing accuracy) when the dropped droplet reaches the substrate, or for increasing the processing speed by reducing the number of required droplets. . In this technology, an affinity region and a non-affinity region for the wiring forming material are formed on the substrate on which the wiring is to be formed, and the wiring is formed by dropping a droplet of the wiring material into the affinity region by an inkjet method ( For example, see Patent Document 3.) 0 An exposure apparatus and a photomask are used to form this affinity region and non-affinity region.
[0008] これとは別に、同様にインクジェット法による配線形成技術において、配線形成領域 力もの配線材料のはみ出しを抑制するために、配線形成領域を囲むようにバンクを 形成し、このバンクの上部を非親液性とし、配線形成領域を親液性とすることが開示 されている(例えば、特許文献 4参照。 ) 0このバンクの作製にも露光装置とフォトマス ク等が用いられる。 [0008] Apart from this, similarly, in the wiring formation technology by the ink jet method, in order to suppress the protrusion of wiring material that is strong in the wiring formation region, a bank is formed so as to surround the wiring formation region, and the upper portion of this bank is formed. Disclosure of non-lyophilic and lyophilic wiring formation area (See, for example, Patent Document 4.) 0 An exposure apparatus and a photomask are also used to produce this bank.
[0009] このようにインクジェット法を用いる場合には、従来のスパッタ法又は CVD法のような 真空成膜装置で成膜される膜と同等の特性を得るためには、特別な製法が必要とな る。したがって、現状では従来法を置き換えるには至っていない。  [0009] When the ink jet method is used in this way, a special manufacturing method is required to obtain the same characteristics as a film formed by a vacuum film forming apparatus such as a conventional sputtering method or a CVD method. Become. Therefore, at present, the conventional method has not been replaced.
[0010] 以上に説明したように、基板上の半導体素子の製造においては、特に微細なパター ンゃ高い精度が求められるような場合、フォトリソグラフィが用いられることが多い。こ のフォトリソグラフィを多用する回路基板としては、例えば TFTアレイ基板がある。 TF Tアレイ基板は、基板上にソース配線、ゲート配線、これらと接続されるスイッチング 素子として TFTを備え、例えば液晶表示装置等に好適に用いられる。この TFTァレ ィ基板は、例えば、非特許文献 3に示されるような一連の工程により製造されており、 TFTアレイ基板の製造には、多くの場合は 5回以上のフォトリソグラフィが必要とされ ていた。  [0010] As described above, in the manufacture of semiconductor elements on a substrate, photolithography is often used particularly when a fine pattern requires high accuracy. As a circuit board that frequently uses this photolithography, for example, there is a TFT array substrate. The TFT array substrate includes TFTs as source wiring, gate wiring, and switching elements connected to these on the substrate, and is suitably used for, for example, a liquid crystal display device. This TFT array substrate is manufactured, for example, by a series of processes as shown in Non-Patent Document 3, and in many cases, the manufacture of a TFT array substrate requires five or more times of photolithography. It was.
[0011] フォトリソグラフィを用いることの一般的なデメリットとしては、感光性を有するレジスト 材料を基板上の全面に塗布するため、レジスト材料、現像用の現像液、レジスト除去 用の剥離液として多量の化学薬品が用いられることや、レジストの塗布装置、露光装 置等に精度の高い装置が必要なこと等が挙げられる。このため、従来の一般的なフ オトリソグラフィを用いた場合、環境負荷が大きくなつたり、材料費が高額になったり、 多額の設備投資費用が力かったりすることがある。したがって、回路基板やデバイス の製造上におけるフォトリソグラフィの回数の低減は重要な課題であった。とりわけ、 [0011] A general disadvantage of using photolithography is that a resist material having photosensitivity is applied to the entire surface of the substrate, so that a large amount of resist material, a developer for developing, and a stripping solution for removing the resist are used. Examples include the use of chemicals and the need for highly accurate equipment such as resist coating equipment and exposure equipment. For this reason, when conventional general photolithography is used, the environmental burden may be large, the material cost may be high, and a large amount of capital investment may be required. Therefore, reducing the number of photolithography operations in manufacturing circuit boards and devices has been an important issue. Above all,
TFTアレイ基板の製造においては、大型の基板上に多層の薄膜が形成されることか ら、フォトリソグラフィの回数の低減は重要な課題であった。 In the manufacture of TFT array substrates, the reduction of the number of times of photolithography was an important issue because a multilayer thin film was formed on a large substrate.
特許文献 1:国際公開第 97Z43689号パンフレット  Patent Document 1: Pamphlet of International Publication No. 97Z43689
特許文献 2 :特開 2004— 145333号公報  Patent Document 2: Japanese Unexamined Patent Application Publication No. 2004-145333
特許文献 3:特開平 11― 204529号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-204529
特許文献 4:特開 2000— 353594号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2000-353594
非特許文献 1 :日経エレクトロニクス, 2002年 6月 17日号, 日経 BP社, 2002年 6月 1 7日,第 824号, p. 67〜78 非特許文献 2 :Takeo Kawase他,「Invited Paper: All -Polymer Thin Film Tr ansistors Fabricated by High— Resolution Ink— jet PrintingJ , SID 01 DI GEST, (米国), Society for Information Display, 2001年,第 32卷,第 1版 , p. 40〜43 Non-Patent Document 1: Nikkei Electronics, June 17, 2002, Nikkei Business Publications, June 17, 2002, No. 824, p. 67-78 Non-Patent Document 2: Takeo Kawase et al., “Invited Paper: All-Polymer Thin Film Transistors Fabricated by High—Resolution Ink—jet PrintingJ, SID 01 DI GEST, (USA), Society for Information Display, 2001, No. 32 , 1st edition, p. 40-43
非特許文献 3 :日経マイクロデバイス編, 「フラットパネル'ディスプレイ 1999」, 日経 B P社, 1998年, p. 129  Non-Patent Document 3: Nikkei Microdevices, “Flat Panel Display 1999”, Nikkei BP, 1998, p. 129
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、上記現状に鑑みてなされたものであり、選択的な成膜が可能であり、素子 構造の形成に必要なフォトリソグラフィの回数を削減することができる半導体素子及 び回路基板の製造方法、並びに、それらを用いて得られる半導体素子、回路基板及 び電子装置を提供することを目的とするものである。 [0012] The present invention has been made in view of the above-described present situation, and can selectively form a film and can reduce the number of times of photolithography necessary for forming an element structure. It is an object of the present invention to provide a method for manufacturing a substrate, and a semiconductor element, a circuit substrate, and an electronic device obtained by using them.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者らは、チャネルを有する半導体素子の製造方法について種々検討したとこ ろ、チャネルエッチング等により素子形成過程で形成されるチャネル領域上又はチヤ ネル領域下の溝部 (チャネル溝)を効果的に利用することに着目した。そして、図 1に 示すように、チャネル溝内に流動性を有する機能材料を滴下することで、塗布形成に よっても機能層を選択的かつ高精度に形成することが可能であり、素子構造の形成 に必要なフォトリソグラフィの回数を削減することが可能となることを見いだした。その 結果、上記課題をみごとに解決することができることに想到し、本発明に到達したもの である。 [0013] The present inventors have studied various methods for manufacturing a semiconductor device having a channel. As a result, the groove portion (channel groove) on the channel region or below the channel region formed in the element formation process by channel etching or the like is formed. We focused on effective use. Then, as shown in FIG. 1, by dropping a functional material having fluidity into the channel groove, the functional layer can be selectively and highly accurately formed even by coating formation. We have found that it is possible to reduce the number of photolithography required for formation. As a result, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
[0014] すなわち、本発明は、チャネルを有する半導体素子の製造方法であって、上記製造 方法は、流動性を有する機能材料をチャネル溝内に滴下して機能層を形成するェ 程を含む半導体素子の製造方法である。  That is, the present invention is a method of manufacturing a semiconductor device having a channel, and the manufacturing method includes a step of forming a functional layer by dropping a functional material having fluidity into a channel groove. It is a manufacturing method of an element.
[0015] 本発明により製造される半導体素子は、チャネルを有するものである。通常、上記半 導体素子は、ソース電極とドレイン電極とが対向するように配置された構造を含み、 上記チャネルは、ソース電極及びドレイン電極の下層又は上層に位置する半導体層 中のソース電極とドレイン電極との間に相当する領域に形成される。また、上記チヤ ネル溝とは、半導体素子の製造過程において、ソース電極とドレイン電極とが分離し て形成された際に、対向するソース電極とドレイン電極との間に形成される溝のことを いう。 [0015] A semiconductor element manufactured according to the present invention has a channel. Usually, the semiconductor element includes a structure in which a source electrode and a drain electrode are opposed to each other, and the channel is formed of a source electrode and a drain in a semiconductor layer positioned below or above the source electrode and the drain electrode. It is formed in a region corresponding to the electrode. In addition, the above The channel groove refers to a groove formed between a source electrode and a drain electrode facing each other when the source electrode and the drain electrode are formed separately in the manufacturing process of the semiconductor element.
[0016] 本発明の半導体素子の製造方法によれば、流動性を有する機能材料を滴下した際 に、チャネル溝が液滴の形状を制御するバンクパターンの溝部として機能するため、 機能層の形状ばらつきによる半導体素子の特性ばらつきを抑制することができる。ま た、流動性を有する機能材料を基板上のチャネル溝内に選択的に滴下することで機 能層を形成するため、基板全面に機能膜を形成した後にパターニングして形成され る場合に比べ、フォトリソグラフィを 1回削減することが可能である。その結果、機能材 料のロスを少なくすることができるとともに、パター-ングの際の下地膜へのダメージ をなくすことができる。更に露光工程、現像工程を必要としないのでフォトマスク、露 光装置及び現像液の削減が可能である。したがって、環境負荷、材料費、設備投資 費用を低減して半導体素子の製造 (加工)を行うことが可能である。なお、本明細書 において、流動性を有する機能材料とは、滴下後に乾燥又は加熱処理を行うことに よって機能層を形成することができるものであれば特に限定されず、インクジェット装 置により塗布可能なものであることが好ましい。  According to the method for manufacturing a semiconductor element of the present invention, when the functional material having fluidity is dropped, the channel groove functions as a groove portion of the bank pattern that controls the shape of the droplet. Variations in characteristics of semiconductor elements due to variations can be suppressed. In addition, since the functional layer is formed by selectively dropping a functional material having fluidity into the channel groove on the substrate, the functional layer is formed on the entire surface of the substrate and then patterned. It is possible to reduce photolithography once. As a result, loss of the functional material can be reduced and damage to the base film during patterning can be eliminated. Furthermore, since an exposure process and a development process are not required, a photomask, an exposure apparatus, and a developer can be reduced. Therefore, it is possible to manufacture (process) semiconductor elements with reduced environmental impact, material costs, and capital investment costs. In this specification, the functional material having fluidity is not particularly limited as long as it can form a functional layer by drying or heat treatment after dropping, and can be applied by an inkjet apparatus. It is preferable that it is a thing.
[0017] 本発明の半導体素子の製造方法における好ましい態様について以下に説明する。 [0017] A preferred embodiment of the method for manufacturing a semiconductor device of the present invention will be described below.
上記機能材料の好ましい形態としては、絶縁材料が挙げられ、機能層として保護層( 絶縁層)を形成することができる。なお、本明細書において、流動性を有する絶縁材 料とは、滴下後に乾燥又は加熱処理を行うことによって保護層(絶縁層)を形成する ことができるものであれば特に限定されるものではない。保護層は、非透湿性である ことが好ましい。保護層を形成する場合、本発明の半導体素子の製造方法の好まし い態様としては、(1)ゲート電極、ゲート絶縁膜、半導体層、並びに、ソース電極及び ドレイン電極を基板上に順次形成する工程と、少なくともソース電極及びドレイン電極 により形成されるチャネル溝内に、流動性を有する絶縁材料を滴下して保護層を形 成する工程とを含む態様、(2)ゲート電極、ゲート絶縁膜、半導体膜、並びに、ソース 電極及びドレイン電極を基板上に順次形成する工程と、少なくともソース電極及びド レイン電極により形成されるチャネル溝内に、流動性を有する絶縁材料を滴下して保 護層を形成する工程と、上記保護層を用いて半導体膜をパターユングし、半導体層 を形成する工程とを含む態様が挙げられる。これらによれば、逆スタガ型 (ボトムゲー ト型)の薄膜トランジスタ等の半導体素子において、保護層(絶縁層)を簡便な方法に より選択的に形成することができ、半導体素子のチャネル部を保護することができる。 また、上記保護層は遮光層を兼ねることのできる材料により形成されてもよい。 A preferable form of the functional material is an insulating material, and a protective layer (insulating layer) can be formed as the functional layer. Note that in this specification, the fluid insulating material is not particularly limited as long as a protective layer (insulating layer) can be formed by drying or heat treatment after dropping. . The protective layer is preferably impermeable to moisture. In the case of forming the protective layer, preferred embodiments of the method for manufacturing a semiconductor element of the present invention include (1) sequentially forming a gate electrode, a gate insulating film, a semiconductor layer, and a source electrode and a drain electrode on a substrate. And a step of forming a protective layer by dropping a fluid insulating material into a channel groove formed by at least the source electrode and the drain electrode, (2) a gate electrode, a gate insulating film, A semiconductor film, a source electrode and a drain electrode are sequentially formed on the substrate, and a fluid insulating material is dropped and maintained in at least a channel groove formed by the source electrode and the drain electrode. An embodiment includes a step of forming a protective layer and a step of patterning a semiconductor film using the protective layer to form a semiconductor layer. According to these, in a semiconductor element such as an inverted staggered type (bottom gate type) thin film transistor, a protective layer (insulating layer) can be selectively formed by a simple method, and the channel portion of the semiconductor element is protected. be able to. The protective layer may be formed of a material that can also serve as a light shielding layer.
[0018] 上記(1)の態様では、半導体膜のパターユングが保護層の形成工程の前に行われ る。一方、上記(2)の態様では、半導体膜のパターユングが保護層の形成工程の後 に行われる。  [0018] In the above aspect (1), the patterning of the semiconductor film is performed before the step of forming the protective layer. On the other hand, in the above aspect (2), patterning of the semiconductor film is performed after the step of forming the protective layer.
また、上記(1)の態様では、上記半導体層は、下層半導体層及び一対の上層半導 体層からなり、上記チャネル溝は、一対の上層半導体層、ソース電極及びドレイン電 極により形成されるものであってもよ 、。  In the above aspect (1), the semiconductor layer includes a lower semiconductor layer and a pair of upper semiconductor layers, and the channel groove is formed by a pair of upper semiconductor layers, a source electrode, and a drain electrode. It can be a thing.
更に、上記 (2)の態様では、上記半導体膜は、下層半導体膜及び一対の上層半導 体層からなり、上記チャネル溝は、一対の上層半導体層、ソース電極及びドレイン電 極により形成され、上記保護層を用いて下層半導体膜をパターユングし、下層半導 体層を形成するものであってもよい。この場合、上層半導体膜のパターユングが保護 層の形成工程の前に行われ、下層半導体膜のパターユングが保護層の形成工程の 後に行われる。  Further, in the above aspect (2), the semiconductor film includes a lower semiconductor film and a pair of upper semiconductor layers, and the channel groove is formed by a pair of upper semiconductor layers, a source electrode, and a drain electrode. The lower semiconductor film may be patterned using the protective layer to form the lower semiconductor layer. In this case, the patterning of the upper semiconductor film is performed before the protective layer forming step, and the patterning of the lower semiconductor film is performed after the protective layer forming step.
[0019] 上記ソース電極及びドレイン電極を用いて形成されるチャネル溝の形態としては、例 えば、ソース電極とドレイン電極との間に形成された形態、ソース電極及びフォトレジ ストの積層膜と、ドレイン電極及びフォトレジストの積層膜との間に形成された形態、ソ ース側上層半導体層及びソース電極の積層膜と、ドレイン側上層半導体層及びドレ イン電極の積層膜との間に形成された形態、ソース側上層半導体層、ソース電極及 びフォトレジストの積層膜と、ドレイン側上層半導体層、ドレイン電極及びフォトレジス トの積層膜との間に形成された形態等が挙げられる。すなわち、チャネルエッチング の際にマスクとして用 、たフォトレジストは、流動性を有する機能材料を滴下する際に 残存させていてもよいし、除去していてもよい。残存させる場合には、フォトレジストは 、流動性を有する機能材料の滴下精度を高める観点から、流動性を有する機能材料 に対する撥液性を有するレジスト (撥液性レジスト)であることが好ましい。なお、フォト レジストをチャネル溝の一部として残存させた場合には、フォトレジスト除去後に、機 能層がチャネル溝力も突出することがある。 [0019] As a form of the channel groove formed using the source electrode and the drain electrode, for example, a form formed between the source electrode and the drain electrode, a stacked film of the source electrode and the photoresist, Form formed between the drain electrode and the laminated film of the photoresist, formed between the laminated film of the source side upper semiconductor layer and the source electrode, and the laminated film of the drain side upper layer semiconductor layer and the drain electrode. And a form formed between the laminated film of the source side upper semiconductor layer, the source electrode and the photoresist, and the laminated film of the drain side upper layer semiconductor layer, the drain electrode and the photoresist. That is, the photoresist used as a mask in channel etching may be left when the functional material having fluidity is dropped or may be removed. In the case of remaining, the photoresist is preferably a resist having liquid repellency (liquid repellent resist) with respect to the functional material having fluidity from the viewpoint of increasing the dropping accuracy of the functional material having fluidity. Photo If the resist is left as part of the channel groove, the functional layer may also protrude the channel groove force after the photoresist is removed.
[0020] 上記絶縁材料からなる機能層(保護層)は、更に配線上に形成されて ヽてもよ ヽ。こ の場合、絶縁材料カゝらなる機能層により配線を腐蝕等カゝら保護することができる。  [0020] The functional layer (protective layer) made of the insulating material may be further formed on the wiring. In this case, the wiring can be protected by corrosion or the like by a functional layer made of an insulating material.
[0021] また、上記機能材料の好ましい形態としては、半導体材料が挙げられ、機能層として 半導体層を形成することができる。なお、本明細書において、流動性を有する半導体 材料とは、滴下後に乾燥又は加熱処理を行うことによって半導体層を形成することが できるものであれば特に限定されるものではない。この場合、本発明の半導体素子の 製造方法の好ましい態様としては、ゲート電極、ゲート絶縁膜、並びに、ソース電極 及びドレイン電極を基板上に順次形成する工程と、ソース電極及びドレイン電極によ り形成されるチャネル溝内に、流動性を有する半導体材料を滴下して半導体層を形 成する工程とを含む態様が挙げられる。これによれば、半導体素子の半導体層を簡 便な方法により選択的に形成することができる。  [0021] A preferable form of the functional material is a semiconductor material, and a semiconductor layer can be formed as the functional layer. Note that in this specification, the semiconductor material having fluidity is not particularly limited as long as a semiconductor layer can be formed by drying or heat treatment after dropping. In this case, as a preferred embodiment of the method for manufacturing a semiconductor element of the present invention, a gate electrode, a gate insulating film, a source electrode and a drain electrode are sequentially formed on the substrate, and the source electrode and the drain electrode are formed. And a step of dropping a fluid semiconductor material into a channel groove to form a semiconductor layer. According to this, the semiconductor layer of the semiconductor element can be selectively formed by a simple method.
[0022] 上記ソース電極及びドレイン電極により形成されるチャネル溝の形態としては、例え ば、ソース電極とドレイン電極との間に形成された形態、ソース電極及びフォトレジス トの積層膜と、ドレイン電極及びフォトレジストの積層膜との間に形成された形態等が 挙げられる。フォトレジストをチャネル溝の一部として残存させる場合には、フォトレジ ストは、流動性を有する機能材料の滴下精度を高める観点から、流動性を有する機 能材料に対する撥液性を有するレジスト (撥液性レジスト)であることが好ま 、。  [0022] As the form of the channel groove formed by the source electrode and the drain electrode, for example, a form formed between the source electrode and the drain electrode, a laminated film of the source electrode and the photoresist, and the drain electrode And a form formed between the laminated film of the photoresist and the like. In the case where the photoresist remains as a part of the channel groove, the photoresist resists a liquid repellent resist (repellent repellent) with respect to the fluid functional material from the viewpoint of improving the dropping accuracy of the fluid functional material. (Liquid resist) is preferred.
[0023] 更に、上記機能材料の好ましい形態としては、遮光材料が挙げられ、機能層として遮 光層を形成することができる。なお、本明細書において、流動性を有する遮光材料と は、滴下後に乾燥又は加熱処理を行うことによって遮光層を形成することができるも のであれば特に限定されるものではない。この場合、本発明の半導体素子の製造方 法の好ま 、態様としては、ソース電極及びドレイン電極を基板上に順次形成するェ 程と、少なくともソース電極及びドレイン電極により形成されるチャネル溝内に、流動 性を有する遮光材料を滴下して遮光層を形成する工程と、遮光層上に、半導体層、 ゲート絶縁層及びゲート電極を順次形成する工程とを含む態様や、ソース電極及び ドレイン電極、並びに、一対の下層半導体層を基板上に順次形成する工程と、一対 の下層半導体層、ソース電極及びドレイン電極により形成されるチャネル溝内に、流 動性を有する遮光材料を滴下して遮光層を形成する工程と、下層半導体層及び遮 光層上に、上層半導体層、ゲート絶縁層及びゲート電極を順次形成する工程とを含 む態様が挙げられる。これらによれば、正スタガ型(トップゲート型)の薄膜トランジス タ等の半導体素子において、半導体素子の遮光層を簡便な方法により選択的に形 成することができる。 Furthermore, a preferred form of the functional material is a light shielding material, and a light shielding layer can be formed as the functional layer. In the present specification, the light-shielding material having fluidity is not particularly limited as long as it can form a light-shielding layer by performing drying or heat treatment after dropping. In this case, a preferred embodiment of the method for manufacturing a semiconductor device of the present invention is that the source electrode and the drain electrode are sequentially formed on the substrate, and at least in the channel groove formed by the source electrode and the drain electrode. An aspect including a step of forming a light shielding layer by dropping a light shielding material having fluidity, and a step of sequentially forming a semiconductor layer, a gate insulating layer, and a gate electrode on the light shielding layer, a source electrode and a drain electrode, and Sequentially forming a pair of lower semiconductor layers on a substrate; Forming a light shielding layer by dropping a light shielding material having fluidity in a channel groove formed by the lower semiconductor layer, the source electrode, and the drain electrode, and an upper semiconductor layer on the lower semiconductor layer and the light shielding layer. And a step of sequentially forming a layer, a gate insulating layer, and a gate electrode. According to these, in a semiconductor element such as a positive stagger type (top gate type) thin film transistor, the light shielding layer of the semiconductor element can be selectively formed by a simple method.
[0024] 上記ソース電極及びドレイン電極を用いて形成されるチャネル溝の形態としては、例 えば、ソース電極とドレイン電極との間に形成された形態、ソース電極及びフォトレジ ストの積層膜と、ドレイン電極及びフォトレジストの積層膜との間に形成された形態、ソ ース電極及びソース側下層半導体層の積層膜と、ドレイン電極及びドレイン側下層 半導体層の積層膜との間に形成された形態、ソース電極、ソース側下層半導体層及 びフォトレジストの積層膜と、ドレイン電極、ドレイン側下層半導体層及びフォトレジス トの積層膜との間に形成された形態等が挙げられる。フォトレジストをチャネル溝の一 部として残存させる場合には、フォトレジストは、流動性を有する機能材料の滴下精 度を高める観点から、流動性を有するレジスト材料に対する撥液性を有するレジスト( 撥液性レジスト)であることが好ま 、。  [0024] As the form of the channel groove formed using the source electrode and the drain electrode, for example, a form formed between the source electrode and the drain electrode, a stacked film of the source electrode and the photoresist, Form formed between the drain electrode and the laminated film of the photoresist, formed between the laminated film of the source electrode and the source-side lower semiconductor layer, and the laminated film of the drain electrode and the drain-side lower semiconductor layer Examples include a form formed between a stacked film of a form, a source electrode, a source-side lower semiconductor layer and a photoresist, and a stacked film of a drain electrode, a drain-side lower semiconductor layer, and a photoresist. In the case where the photoresist is left as part of the channel groove, the photoresist is a resist having liquid repellency to the resist material having fluidity (liquid repellent) from the viewpoint of increasing the dropping accuracy of the functional material having fluidity. Preferred to be a sex resist).
[0025] なお、上記機能材料は、絶縁材料、半導体材料及び遮光材料のいずれかであって もよぐこれらの材料が混合されたものであってもよい。また、絶縁材料が遮光材料を 兼ねる場合のように、 2以上の機能を兼ね備えたものであってもよ 、。  [0025] The functional material may be any one of an insulating material, a semiconductor material, and a light shielding material, and these materials may be mixed. Moreover, the insulating material may have two or more functions as in the case where the insulating material also serves as a light shielding material.
[0026] 本発明の半導体素子の製造方法は、流動性を有する機能材料を滴下する前に、基 板表面にフッ素原子及び Z又はフッ素化合物を結合させる工程を含むことが好まし い。すなわち、本発明では、機能層が流動性を有する機能材料を選択的に滴下する ことにより形成されるので、滴下前の基板にあら力じめ表面処理を行い、基板面の少 なくともチャネル溝の周囲において、流動性を有する機能材料に対しての親撥液性 を調整しておくことが好ましい。これにより、流動性を有する機能材料が基板表面に なじんで広がり過ぎることを防止して、機能層の形状ばらつきを効果的に低減するこ とができる。なかでも、本発明の半導体素子の製造方法は、流動性を有する機能材 料を滴下する前に、プラズマを用いた表面処理工程を含むことが好ましい。特に、上 記表面処理工程は、フッ素系ガスを含むプラズマ中で行われることが好ましい。これ により、良好な撥液性を有する表面状態の形成が可能となる。上記フッ素系ガスとし ては、フッ素原子を含んで構成される化合物カゝらなるガスであれば特に限定されず、 四フッ化炭素等が挙げられる。その他、表面の親撥液性を調整する方法としては、撥 液性を有する材料を塗布 ·散布する方法を用いることも可能である。 [0026] The method for producing a semiconductor device of the present invention preferably includes a step of bonding fluorine atoms and Z or a fluorine compound to the substrate surface before dropping the functional material having fluidity. That is, in the present invention, since the functional layer is formed by selectively dropping a functional material having fluidity, the surface treatment is performed on the substrate before dropping, so that at least the channel groove is formed on the substrate surface. It is preferable to adjust the lyophobic property with respect to the functional material having fluidity. As a result, it is possible to prevent the functional material having fluidity from being excessively spread on the surface of the substrate, and to effectively reduce the shape variation of the functional layer. Especially, it is preferable that the manufacturing method of the semiconductor element of this invention includes the surface treatment process using plasma, before dripping the functional material which has fluidity | liquidity. Especially on The surface treatment step is preferably performed in a plasma containing a fluorine-based gas. Thereby, it is possible to form a surface state having good liquid repellency. The fluorine-based gas is not particularly limited as long as the gas is a compound containing a fluorine atom, and examples thereof include carbon tetrafluoride. In addition, as a method for adjusting the lyophobic property of the surface, it is also possible to use a method in which a material having liquid repellency is applied and dispersed.
[0027] 本発明の半導体素子の製造方法は、流動性を有する機能材料を滴下する前に、ドラ ィエッチング工程を含むことが好ましい。本発明においては、ドライエッチングを行つ た同一真空チャンバ内で、引き続き基板に表面処理を行うことが可能な場合がある。 このような場合には、パターユング等を目的としたドライエッチング工程と表面処理ェ 程とを連続的に処理することが可能となり、効率的である。  [0027] The method for producing a semiconductor element of the present invention preferably includes a dry etching step before dropping the functional material having fluidity. In the present invention, it may be possible to continue the surface treatment of the substrate in the same vacuum chamber where dry etching is performed. In such a case, the dry etching process and the surface treatment process for the purpose of patterning can be continuously performed, which is efficient.
[0028] 上記流動性を有する機能材料は、マルチノズル型吐出ヘッド及び基板ステージを有 する塗布装置を用いて塗布されることが好ましい。すなわち、基板上に多数の機能 層を形成する場合には、機能材料の吐出機構として多数のノズルを備えるマルチノ ズル型吐出ヘッドを用いること力 1基板あたりの処理時間の短縮につながることから 有利である。なお、基板ステージは、基板を載せることができれば特に限定されない 力 基板を水平に保持できることが好ましぐまた、基板を移動及び Z又は回転させ る機構を有することが好まし 、。  [0028] It is preferable that the functional material having fluidity is applied using a coating apparatus having a multi-nozzle type ejection head and a substrate stage. In other words, when a large number of functional layers are formed on a substrate, it is advantageous to use a multi-nozzle type ejection head having a large number of nozzles as a functional material ejection mechanism because this leads to a reduction in processing time per substrate. is there. The substrate stage is not particularly limited as long as the substrate can be mounted. It is preferable that the substrate can be held horizontally, and it is preferable that the substrate stage has a mechanism for moving and Z or rotating the substrate.
[0029] 上記塗布装置は、インクジェット装置であることが好ましぐなかでも、ピエゾ方式、バ ブル方式 (サーマル方式)を用いたものがより好ま 、。インクジェット装置は特にプリ ンター用途で広く用いられており、技術の蓄積があるため、数 pi単位の微量の滴下が 可能であり、数/ z m〜数十/ z m単位のチャネル溝に対し、流動性を有する機能材料 を選択的に滴下して機能層を選択的に作製するのに好適である。  [0029] The coating device is preferably an inkjet device, but more preferably a piezo method or a bubble method (thermal method). Inkjet devices are widely used especially for printers, and since they have accumulated technology, they can drop a small amount of several pi units, and they have fluidity for channel grooves of several / zm to several tens / zm units. It is suitable for selectively producing a functional layer by selectively dropping a functional material having
この場合、上記流動性を有する機能材料は、 1気圧での沸点が 180°C以上である、 エチレングリコール類、ジエチレングリコール類、トリエチレングリコール類、ポリエチレ ングリコール類、プロピレングリコール類、ジプロピレングリコール類、トリプロピレング リコール類、ポリプロピレングリコール類、及び、ブチレングリコール類からなる群より 選択された少なくとも 1種のエーテル、エステル、ジエステル及び Z若しくはエーテル エステル、又は、炭化水素類を含有することが好ましい。なかでも、上述の 1気圧での 沸点が 180°C以上である、エーテル、エステル、ジエステル、エーテルエステル又は 炭化水素類としては、例えば、テトラリン (テトラヒドロナフタレン)、エチレングリコール 、エチレングリコールジァセタート、エチレングリコールジェチノレエ一テル、エチレング リコーノレジブチノレエーテノレ、エチレングリコールモノァセタート、エチレングリコールモ ノエチノレエーテノレァセタート、エチレングリコーノレモノブチノレエーテノレァセタート、ェ チレングリコールモノへキシルエーテル、 1, 3—オタチレンダリコール、グリセリントリ ァセタート、ジエチレングリコール、ジエチレングリコールェチルメチルエーテル、ジェ チレングリコールクロロヒドリン、ジエチレングリコールジェチノレエーテル、ジエチレン グリコーノレジブチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレン グリコーノレモノェチノレエーテノレァセタート、ジエチレングリコーノレモノブチノレエーテノレ 、ジエチレングリコーノレモノブチノレエーテノレァセタート、ジエチレングリコーノレモノメチ ノレエーテノレ、ジプロピレングリコール、ジプロピレングリコールモノェチルエーテル、ジ プロピレングリコールモノブチルエーテル、ジプロピレングリコーノレモノプロピノレエ一 テル、ジプロピレングリコーノレモノメチノレエーテル、テトラエチレンダリコール、トリェチ レングリコール、トリエチレングリコールジー 2—ェチルブチラート、トリエチレングリコ ールジメチノレエーテル、トリエチレングリコーノレモノェチノレエーテル、トリエチレングリ コーノレモノメチノレエーテル、トリグリコールジクロリド、トリプロピレングリコール、トリプロ ピレングリコーノレモノメチノレエーテル、トリプロピレングリコーノレモノェチノレエーテル、ト リプロピレングリコールモノブチルエーテル、トリメチレングリコール、 1, 3—ブタンジォ ール、プロピレングリコール、プロピレングリコールフエ二ノレエーテル、へキシレングリ コール、 1, 5—ペンタンジォール等が好適に用いられる。このような溶剤を含む機能 材料は、常温付近において乾燥しにくいため、インクジェット装置により塗布するのに 好適である。 In this case, the functional material having the above fluidity has an ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol having a boiling point of 180 ° C or higher at 1 atm. It is preferable to contain at least one ether, ester, diester and Z or ether ester selected from the group consisting of tripropylene glycols, polypropylene glycols, and butylene glycols, or hydrocarbons. Above all, at 1 atm mentioned above Examples of ethers, esters, diesters, ether esters or hydrocarbons having a boiling point of 180 ° C. or higher include tetralin (tetrahydronaphthalene), ethylene glycol, ethylene glycol diacetate, ethylene glycol jetinoleate, Ethylene glycol monobutyl etherate, ethylene glycol monoacetate, ethylene glycol monoethyl etherate acetate, ethylene glycol monobutinoate etherate, ethylene glycol monohexyl ether, 1, 3 —Otatiendalicol, glyceryl triacetate, diethylene glycol, diethylene glycol ethyl methyl ether, polyethylene glycol chlorohydrin, diethylene glycol jetino ether, diethylene glycol -Resin chinoleatenore, diethyleneglycolenomonochinenoatenoate, diethyleneglycolenomonochinenoatenoateate, diethyleneglycolenomonobutinorecatenoate , Diethylene glycol monomethenoate ether, dipropylene glycol, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol monomonopropynol ether, dipropylene glycol monomonomethyl ether, tetraethylene daritolol , Triethylene glycol, triethylene glycol di 2-ethyl butyrate, triethylene glycol dimethylol ether, triethylene glycol monomethenoate , Triethyleneglycol monomethinole ether, triglycol dichloride, tripropylene glycol, tripropylene glycolenomonomethylenoether, tripropylene glycolenomonoethylenoether, tripropylene glycol monobutyl ether, trimethylene glycol, 1 3,3-butanediol, propylene glycol, propylene glycol phenol ether, hexylene glycol, 1,5-pentanediol, and the like are preferably used. A functional material containing such a solvent is suitable for application by an ink jet apparatus because it is difficult to dry at around room temperature.
なお、複数のチャネル溝がマトリクス状に配列され、かつ、隣接するチャネル溝同士 の左右方向の間隔が、上下方向の間隔よりも小さい場合、ノズル加工の容易性及び 処理時間の短縮ィ匕等の観点から、インクジェットヘッドは、左右方向に移動されること が好ましい。 If a plurality of channel grooves are arranged in a matrix and the distance between the adjacent channel grooves in the left-right direction is smaller than the distance in the up-down direction, nozzle processing is easy and processing time is reduced. From the viewpoint, the inkjet head is preferably moved in the left-right direction.
また、流動性を有する機能材料の粘度は、 5cP以上、 30cP以下であることが好まし い。この粘度範囲内であれば、インクジェット装置による塗布に適しており、インクジェ ットヘッドからの滴下を安定させることができる。なお、流動性を有する機能材料の粘 度は、含まれる固形分の増加に伴って高くなる傾向にあるので、固形分濃度は所望 の粘度になるように調整することが好まし 、。 In addition, the viscosity of the functional material having fluidity is preferably 5 cP or more and 30 cP or less. Yes. If it is in this viscosity range, it is suitable for application | coating with an inkjet apparatus, and dripping from an inkjet head can be stabilized. In addition, since the viscosity of the functional material having fluidity tends to increase as the contained solid content increases, it is preferable to adjust the solid content concentration to a desired viscosity.
更に、 1回の吐出当たりの滴下量は、チャネル溝の形状、大きさ等にもよるが、例えば 、表示装置に用いる TFTアレイ基板内の TFTを製造する場合であれば、 0. 5pl以上 、 lOpl以下であることが好ましい。  Furthermore, the amount of dripping per discharge depends on the shape and size of the channel groove, but for example, when manufacturing TFTs in a TFT array substrate used for a display device, 0.5 pl or more, It is preferable that it is below lOpl.
[0031] 本発明はまた、本発明の半導体素子の製造方法を用いて基板上に半導体素子を形 成する回路基板の製造方法でもある。上記半導体素子としては、薄膜トランジスタ (T FT)、薄膜ダイオード等が挙げられる。また、上記回路基板としては、基板上に半導 体素子を含む回路を有するものであれば特に限定されず、 TFTアレイ基板等が挙げ られる。本発明の回路基板の製造方法によれば、フォトリソグラフィ回数を 1回減らす ことが可能であり、回路基板の製造における環境負荷、材料費、設備投資費用の低 減が可能である。 [0031] The present invention is also a circuit board manufacturing method in which a semiconductor element is formed on a substrate using the semiconductor element manufacturing method of the present invention. Examples of the semiconductor element include a thin film transistor (TFT) and a thin film diode. The circuit board is not particularly limited as long as it has a circuit including a semiconductor element on the substrate, and examples thereof include a TFT array substrate. According to the circuit board manufacturing method of the present invention, it is possible to reduce the number of times of photolithography by one, and it is possible to reduce the environmental load, material cost, and capital investment cost in circuit board manufacturing.
[0032] 本発明の回路基板の製造方法において、上記回路基板は、表示装置又は撮像装 置を構成するものであり、表示領域又は撮像領域及び非表示領域又は非撮像領域 の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に伸びる平行線群 上に配置されており、上記機能層形成工程は、表示領域又は撮像領域及び非表示 領域又は非撮像領域でゲート配線及び Z又はソース配線の延伸方向に吐出ヘッド 又は基板ステージを連続的に移動させて、流動性を有する機能材料の塗布が行わ れることが好ましい。これにより、本発明の半導体素子の製造方法を用いて、吐出へ ッドをゲート配線及び Z又はソース配線の延伸方向に走査させて機能材料の滴下を 行うことより、表示装置を構成する回路基板の製造では、表示領域の半導体素子と 非表示領域の半導体素子とを一括して作製することができ、撮像装置を構成する回 路基板の製造では、撮像領域の半導体素子と非撮像領域の半導体素子とを一括し て作製することができるので、回路基板の製造における環境負荷、材料費、設備投 資費用の低減に加え、処理時間の短縮が可能である。上記表示領域又は撮像領域 は、通常、回路基板の中央部分に位置し、例えば、画素電極への電圧印加のスイツ チング用の TFTが画素毎に配置される。一方、上記非表示領域又は非撮像領域は 、通常、回路基板の周辺部分 (額縁部分)に位置し、例えば、表示領域に設けられた TFTや配線の静電破壊防止用の薄膜ダイオード、駆動回路 (ドライバ)用の TFT等 が配置される。上記回路基板は、表示領域又は撮像領域及び非表示領域又は非撮 像領域の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に伸びる共 通の平行線群上に配置された構成を有するとともに、ゲート配線及び Z又はソース 配線の延伸方向に伸びる他の平行線群上に半導体素子が配置された構成を有して いてもよい。また、上記回路基板には、ゲート配線又はソース配線の延伸方向に伸び る平行線群上に配置された半導体素子以外にも、半導体素子が配置されていてもよ い。 In the method for manufacturing a circuit board according to the present invention, the circuit board constitutes a display device or an imaging device, and a semiconductor element in the display region or the imaging region and the non-display region or the non-imaging region is a gate. It is arranged on a group of parallel lines extending in the extending direction of the wiring and the Z or source wiring, and the functional layer forming step is performed in the display area or the imaging area and the non-display area or the non-imaging area. It is preferable to apply the functional material having fluidity by continuously moving the discharge head or the substrate stage in the stretching direction. Thus, using the semiconductor element manufacturing method of the present invention, the functional material is dropped by scanning the ejection head in the extending direction of the gate wiring and Z or the source wiring, thereby constituting the circuit board constituting the display device. In the manufacturing of the semiconductor device, the semiconductor element in the display region and the semiconductor element in the non-display region can be manufactured together. In the manufacture of the circuit board constituting the imaging device, the semiconductor element in the imaging region and the semiconductor in the non-imaging region Since the devices can be manufactured in a lump, the processing time can be shortened in addition to the reduction of environmental burden, material cost, and capital investment cost in circuit board manufacturing. The display area or imaging area is usually located at the center of the circuit board, for example, a switch for applying a voltage to the pixel electrode. A TFT for ching is arranged for each pixel. On the other hand, the non-display area or the non-imaging area is usually located in the peripheral portion (frame portion) of the circuit board. For example, TFTs provided in the display area, thin film diodes for preventing electrostatic breakdown of wiring, and driving circuits TFT for driver is arranged. The circuit board has a configuration in which semiconductor elements in a display region or an imaging region and a non-display region or a non-imaging region are arranged on a common parallel line group extending in the extending direction of the gate wiring and the Z or source wiring. In addition, a semiconductor element may be arranged on another parallel line group extending in the extending direction of the gate wiring and the Z or source wiring. In addition to the semiconductor elements arranged on the parallel lines extending in the extending direction of the gate wiring or the source wiring, semiconductor elements may be arranged on the circuit board.
また、この場合、上記吐出ヘッドは、ゲート配線の延伸方向に連続的に移動させるこ とが好ま ヽ。 TFTアレイ基板等の回路基板には多数のゲート配線とソース配線とが 直交する方向に配置されるが、隣り合うゲート配線の間隔 (ゲート配線ピッチ)は、隣り 合うソース配線の間隔 (ソース配線ピッチ)よりも広い場合が多い。このため、ゲート配 線の延伸方向に機能材料を順に塗布して ヽくことで、吐出ヘッドに設けるノズル機構 の数を少なくすることができるので、吐出ヘッドの作製が容易になり、設備費用の低 減につながる。  In this case, it is preferable that the discharge head is continuously moved in the extending direction of the gate wiring. Many gate wirings and source wirings are arranged in a direction orthogonal to a circuit board such as a TFT array substrate. The spacing between adjacent gate wirings (gate wiring pitch) is equal to the spacing between adjacent source wirings (source wiring pitch). In many cases. For this reason, by sequentially applying functional materials in the extending direction of the gate wiring, it is possible to reduce the number of nozzle mechanisms provided in the discharge head. This leads to a decrease.
[0033] 本発明はまた、本発明の半導体素子の製造方法を用いて製造される半導体素子で もある。本発明の半導体素子によれば、フォトリソグラフィ回数を 1回減らして製造する ことが可能であり、半導体素子の製造における環境負荷、材料費、設備投資費用の 低減が可能である。  [0033] The present invention is also a semiconductor device manufactured using the method for manufacturing a semiconductor device of the present invention. According to the semiconductor device of the present invention, it is possible to manufacture by reducing the number of times of photolithography, and it is possible to reduce the environmental load, material cost, and capital investment cost in manufacturing the semiconductor device.
[0034] 本発明はまた、チャネルを有する半導体素子であって、上記半導体素子は、ソース 電極とドレイン電極との間に位置する端部が曲線形状を有する機能層を備える半導 体素子 (以下、第 1の半導体素子ともいう)でもある。本発明の第 1の半導体素子は、 チャネル部分の機能層が流動性を有する材料カゝら形成されたときの特徴を備えるも のであり、本発明の半導体素子の製造方法等により製造することができるものである The present invention is also a semiconductor element having a channel, and the semiconductor element includes a semiconductor element having a functional layer having a curved shape at an end portion located between a source electrode and a drain electrode (hereinafter referred to as a semiconductor element) Also referred to as a first semiconductor element). The first semiconductor element of the present invention has characteristics when the functional layer of the channel portion is formed of a fluid material, and can be manufactured by the method for manufacturing a semiconductor element of the present invention. Can
。すなわち、ソース電極とドレイン電極とをバンクに用い、流動性を有する機能材料を ソース電極とドレイン電極との間に滴下することによりチャネル部分に機能層を形成し ようとした場合には、ソース電極とドレイン電極との間に滴下された機能材料は、その 表面張力により曲線形状を有することになる。したがって、このような機能材料を利用 してチャネル部分に機能層を形成した場合、得られる半導体素子は、ソース電極とド レイン電極との間に位置する機能層の端部が曲線形状を有することになる。機能層 の端部の曲線形状としては、例えば、端部方向に突出した楕円形状、端部とは逆方 向に突出した楕円形状等が挙げられる。本発明の第 1の半導体素子は、したがって. That is, a functional layer is formed in a channel portion by using a source electrode and a drain electrode for a bank and dropping a functional material having fluidity between the source electrode and the drain electrode. In such a case, the functional material dropped between the source electrode and the drain electrode has a curved shape due to its surface tension. Therefore, when the functional layer is formed in the channel portion using such a functional material, the end of the functional layer located between the source electrode and the drain electrode has a curved shape in the obtained semiconductor element. become. Examples of the curved shape of the end portion of the functional layer include an oval shape protruding in the end direction, an oval shape protruding in the direction opposite to the end portion, and the like. The first semiconductor element of the present invention is therefore
、フォトリソグラフィの回数を削減して素子構造を形成することが可能であり、半導体 素子の製造における環境負荷、材料費、設備投資費用の低減が可能である。 The device structure can be formed by reducing the number of times of photolithography, and the environmental load, material cost, and capital investment cost in the manufacture of semiconductor devices can be reduced.
[0035] 本発明はまた、チャネルを有する半導体素子であって、上記ソース電極及び Z又は ドレイン電極は、チャネル側の端部に切欠部を有する半導体素子 (以下、第 2の半導 体素子ともいう)でもある。本発明の第 2の半導体素子は、チャネル部分の機能層が 流動性を有する材料力も形成されるときに有利な構造を備えるものである。すなわち 、ソース電極及び Z又はドレイン電極力 チャネル側の端部に(チャネルに面して)切 欠部を有することで、チャネル溝に液溜め部を設け、その容積を大きくすることができ る。その結果、チャネル溝に滴下した流動性を有する材料を溝内に留めさせやすく なり、機能膜の形成を精度良く行うことができる。このような本発明の第 2の半導体素 子は、本発明の半導体素子の製造方法により、好適に製造されるものである。上記 切欠部としては、チャネル溝又はレジスト溝を拡大することができるものであれば特に 限定されない。切欠部の形状としては特に限定されず、例えば、三角形状、四角形 状、半円形状が挙げられる。切欠部の数は特に限定されず、 1つの半導体素子につ き、 1つであってもよいし、複数であってもよい。  [0035] The present invention is also a semiconductor device having a channel, wherein the source electrode and the Z or drain electrode have a notch at the end on the channel side (hereinafter also referred to as a second semiconductor device). Also). The second semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is also formed with a fluid material force. That is, by having a notch at the end on the channel side of the source electrode and the Z or drain electrode force channel (facing the channel), it is possible to provide a liquid reservoir in the channel groove and increase its volume. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy. Such a second semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention. The notch is not particularly limited as long as the channel groove or the resist groove can be enlarged. The shape of the notch is not particularly limited, and examples thereof include a triangular shape, a quadrangular shape, and a semicircular shape. The number of notches is not particularly limited, and may be one or plural for one semiconductor element.
[0036] 本発明はまた、チャネルを有する半導体素子であって、上記半導体素子は、チヤネ ル近傍にダミーチャネルを有する半導体素子 (以下、第 3の半導体素子とも ヽぅ)でも ある。本発明の第 3の半導体素子は、チャネル部分の機能層が流動性を有する材料 力も形成されるときに有利な構造を備えるものである。すなわち、半導体素子がチヤ ネル近傍にダミーチャネルを有する場合、チャネル溝の近傍に液溜め部を設けること ができる。その結果、チャネル溝に滴下した流動性を有する材料を液溜め部にも保 持させることで溝内に留めさせやすくなり、機能膜の形成を精度良く行うことができる 。このような本発明の第 3の半導体素子は、本発明の半導体素子の製造方法により、 好適に製造されるものである。 The present invention is also a semiconductor element having a channel, and the semiconductor element is also a semiconductor element having a dummy channel in the vicinity of the channel (hereinafter also referred to as a third semiconductor element). The third semiconductor element of the present invention has a structure advantageous when the functional layer of the channel portion is also formed with a fluid material force. That is, when the semiconductor element has a dummy channel in the vicinity of the channel, a liquid reservoir can be provided in the vicinity of the channel groove. As a result, the fluid material dripped into the channel groove can be easily retained in the groove by holding it in the liquid reservoir, and the functional film can be accurately formed. . Such a third semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
[0037] 上記ダミーチャネルとしては、ソース電極及び Z又はドレイン電極の切欠き部により 半導体層上に設けられた領域であって、液溜め部として機能することができるもので あれば特に限定されないが、より効果的に液溜め部として機能させる観点から、チヤ ネル力ら 20 μ m以内の位置に設けられていることがより好ましい。ダミーチャネルの 形状としては特に限定されない。ダミーチャネルの数は特に限定されず、 1つの半導 体素子につき、 1つであってもよいし、複数であってもよい。 [0037] The dummy channel is not particularly limited as long as it is a region provided on the semiconductor layer by a cutout portion of the source electrode and the Z or drain electrode and can function as a liquid reservoir. From the viewpoint of more effectively functioning as a liquid reservoir, it is more preferable that the channel is provided at a position within 20 μm from the channel force. The shape of the dummy channel is not particularly limited. The number of dummy channels is not particularly limited, and may be one or more than one semiconductor element.
[0038] 本発明はまた、チャネルを有する半導体素子であって、上記半導体素子は、ソース 電極とドレイン電極との間にダミー電極を有する半導体素子(以下、第 4の半導体素 子ともいう)でもある。本発明の第 4の半導体素子は、チャネル部分の機能層が流動 性を有する材料カゝら形成されるときに有利な構造を備えるものである。すなわち、チヤ ネル溝の溝の幅が、溝内に滴下する流動性を有する材料の着弾時における液滴の 大きさに対して大きくなり過ぎるような場合には、ソース電極とドレイン電極との間にダ ミー電極を設けることで、チャネル溝を複数に分割し、溝内に滴下した流動性を有す る材料を分割して保持することができる。その結果、溝内に滴下した流動性を有する 材料を溝内に留めさせやすくなり、機能膜の形成を精度良く行うことができる。このよ うな本発明の第 4の半導体素子は、本発明の半導体素子の製造方法により、好適に 製造されるものである。 The present invention is also a semiconductor element having a channel, and the semiconductor element is also a semiconductor element having a dummy electrode between a source electrode and a drain electrode (hereinafter also referred to as a fourth semiconductor element). is there. The fourth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed from a fluid material. In other words, if the channel width of the channel groove is too large relative to the size of the droplet at the time of landing of the fluid material that drops into the groove, the gap between the source electrode and the drain electrode is reduced. By providing a dummy electrode in the channel, the channel groove can be divided into a plurality of parts, and the fluid material dropped into the groove can be divided and held. As a result, the fluid material dropped into the groove can be easily retained in the groove, and the functional film can be formed with high accuracy. Such a fourth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
[0039] 上記ダミー電極としては、ソース電極とドレイン電極との間に滴下された液滴の形状 を制御するのに有効なものであって、他の電極から独立して設けられた構造物であ れば特に限定されないが、より効果的に液溜めに利用する観点から、ソース電極及 びドレイン電極から 20 μ m以内の位置に設けられていることがより好ましい。ダミー電 極の材質としては特に限定されな 、が、ソース電極及びドレイン電極と同じ材質であ ることが好ましい。この場合、ソース電極及びドレイン電極の形成と同一の工程で作 製することができる。ダミー電極の形状としては特に限定されない。ダミー電極の数は 特に限定されず、 1つの半導体素子につき、 1つであってもよいし、複数であってもよ い。 [0040] 本発明の第 2〜第 4の半導体素子の好ましい形態としては、例えば、チャネルがソー ス電極側及び Z又はドレイン電極側に張出部を有する形態、チャネルがその外側に 張出部を有する形態、ソース電極及び Z又はドレイン電極力 2以上の櫛歯部 (切欠 部)を有し、櫛歯部間にダミーチャネルが形成された形態、ソース電極及び Z又はド レイン電極が、切欠部により 2以上に分割された構造を有し、分割電極間にダミーチ ャネルが形成された形態、及び、半導体素子がダミー電極を有し、ソース Zダミー電 極間、ドレイン Zダミー電極間、及び Z又は、ダミー Zダミー電極間にダミーチャネル が形成された形態等が挙げられる。なかでも、切欠部の線幅が半導体素子 (TFT)の チャネル長と等し ヽ形態が好適に用いられる。 [0039] The dummy electrode is effective in controlling the shape of a droplet dropped between the source electrode and the drain electrode, and is a structure provided independently of the other electrodes. Although there is no particular limitation as long as it is used, it is more preferable that it is provided at a position within 20 μm from the source electrode and the drain electrode from the viewpoint of more effective use for liquid storage. The material of the dummy electrode is not particularly limited, but is preferably the same material as the source electrode and the drain electrode. In this case, it can be manufactured in the same process as the formation of the source electrode and the drain electrode. The shape of the dummy electrode is not particularly limited. The number of dummy electrodes is not particularly limited, and may be one or more per semiconductor element. [0040] Preferred forms of the second to fourth semiconductor elements of the present invention include, for example, a mode in which the channel has a protruding portion on the source electrode side and the Z or drain electrode side, and a channel on the outer side. The source electrode and the Z or drain electrode force have a comb tooth portion (notch portion) of 2 or more, and a dummy channel is formed between the comb tooth portions, the source electrode and the Z or drain electrode are notched. And a structure in which a dummy channel is formed between the divided electrodes, and the semiconductor element has a dummy electrode, between the source Z dummy electrode, between the drain Z dummy electrode, and Z or dummy Z A dummy channel is formed between dummy electrodes. In particular, a shape in which the line width of the notch is equal to the channel length of the semiconductor element (TFT) is preferably used.
[0041] 本発明はまた、チャネルを有する半導体素子であって、上記半導体素子のチャネル は、 2以上に屈曲している半導体素子 (以下、第 5の半導体素子ともいう)でもある。本 発明の第 5の半導体素子は、チャネル部分の機能層が流動性を有する材料力 形 成されるときに有利な構造を備えるものである。すなわち、チャネル全体の長さが同じ であっても、半導体素子のチャネルが 2以上に屈曲していることで、チャネル全体をよ り小さな円内に入れることができるので、機能層を形成しやすい。また、半導体層の 半導体素子を構成する部分におけるチャネルの面積比率を大きくすることが可能で あり、チャネル溝の容積を大きくすることができる。その結果、チャネル溝に滴下した 流動性を有する材料を溝内に留めさせやすくなり、機能膜の形成を精度良く行うこと ができる。このような本発明の第 5の半導体素子は、本発明の半導体素子の製造方 法により、好適に製造されるものである。なお、チャネルの屈曲部分は、直角であって もよいし、曲線状であってもよい。  The present invention is also a semiconductor element having a channel, wherein the channel of the semiconductor element is a semiconductor element bent to 2 or more (hereinafter also referred to as a fifth semiconductor element). The fifth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed into a fluid material force. That is, even if the length of the entire channel is the same, the channel of the semiconductor element is bent to 2 or more, so that the entire channel can be put in a smaller circle, so that the functional layer can be easily formed. . In addition, it is possible to increase the channel area ratio in the portion of the semiconductor layer that constitutes the semiconductor element, and to increase the volume of the channel groove. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy. Such a fifth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention. The bent part of the channel may be a right angle or a curved shape.
[0042] 本発明の第 5の半導体素子のより好ましい形態としては、例えば、チャネルがコの字 形状を有する形態、 U字形状を有する形態、 Z字形状を有する形態等が挙げられる。 なかでも、チャネルは、コの字形状又は U字形状を有することが好ましい。  As a more preferable form of the fifth semiconductor element of the present invention, for example, a form in which the channel has a U-shape, a form having a U-shape, a form having a Z-shape, and the like can be mentioned. Especially, it is preferable that a channel has U shape or U shape.
[0043] 本発明はまた、チャネルを有する半導体素子であって、上記ソース電極及びドレイン 電極は、チャネルの端部の両側に角部を有する半導体素子(以下、第 6の半導体素 子ともいう)でもある。本発明の第 6の半導体素子は、チャネル部分の機能層が流動 性を有する材料カゝら形成されるときに有利な構造を備えるものである。チャネル溝の 端部力 ソース電極の角部とドレイン電極の角部とが向き合って配置された部分に形 成される場合には、チャネル溝の両側に位置するバンク部に沿って流動性を有する 材料がチャネル溝外に濡れ広がることを抑制することができる。その結果、チャネル 溝に滴下した流動性を有する材料を溝内に留めさせやすくなり、機能膜の形成を精 度良く行うことができる。すなわち、ソース電極及びドレイン電極力 チャネルの端部 の両側に角部を有する形態 (ソース電極の角部とドレイン電極の角部とが向き合って 配置された部分にチャネルの端部が位置する形態)を有する半導体素子を作製する 場合、本発明の半導体素子の製造方法により、機能膜の形成を精度良く行うことが できる。このように本発明の第 6の半導体素子は、本発明の半導体素子の製造方法 により、好適に製造されるものである。 The present invention is also a semiconductor element having a channel, wherein the source electrode and the drain electrode have a corner on both sides of the end of the channel (hereinafter also referred to as a sixth semiconductor element). But there is. The sixth semiconductor element of the present invention has a structure that is advantageous when the functional layer of the channel portion is formed from a fluid material. Channel groove Edge force When formed in a portion where the corner of the source electrode and the corner of the drain electrode face each other, the material having fluidity is channeled along the bank portions located on both sides of the channel groove. It is possible to suppress spreading out of the groove. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy. That is, a form having corners on both sides of the end part of the source electrode and drain electrode force channel (a form in which the end part of the channel is located at a part where the corner part of the source electrode and the corner part of the drain electrode face each other) In the case of manufacturing a semiconductor element having a functional film, the functional film can be formed with high accuracy by the method for manufacturing a semiconductor element of the present invention. Thus, the sixth semiconductor element of the present invention is preferably manufactured by the method for manufacturing a semiconductor element of the present invention.
[0044] 本発明の第 6の半導体素子において、上記ソース電極及びドレイン電極の角部の輪 郭形状は、曲線により形成されるものであってもよいが、 2本の直線により形成される ものであることがより好ましい。上記ソース電極及びドレイン電極の角部の角度は、 13 5° 以下であることが好ましぐ 90° 以下であることがより好ましぐ 90° であることが 更に好ましい。 [0044] In the sixth semiconductor element of the present invention, the outline shape of the corners of the source electrode and the drain electrode may be formed by curves, but is formed by two straight lines. It is more preferable that The angle of the corners of the source electrode and the drain electrode is preferably 135 ° or less, more preferably 90 ° or less, and even more preferably 90 °.
また、ダミーチャネルが設けられる場合には、ソース電極及びドレイン電極は、ダミー チャネルの端部の両側にも角部を有することが好ましい。  In the case where a dummy channel is provided, the source electrode and the drain electrode preferably have corner portions on both sides of the end portion of the dummy channel.
[0045] なお、本発明の半導体素子は、第 1〜第 6の半導体素子のいずれかの形態を有する ものであればよく、それらを組み合わせた形態であってもよ!/、。  [0045] The semiconductor element of the present invention may be any element as long as it has any of the first to sixth semiconductor elements, and may be a combination of these! /.
上記チャネル溝の寸法は、主に製品としての利用形態で所定の性能を有するように 決められるが、塗布する機能材料の液滴量や、その他設定する製造条件も考慮して 決定される。その一例として、表示装置に用いる TFTアレイ基板内の TFTであれば 、チャネル溝の寸法は、長さが 5 μ m以上、 100 μ m以下、幅が 1 μ m以上、 10 m 以下、深さが 0. 01 μ m以上、 10 μ m以下であることが好ましい。ここで、上記チヤネ ル溝の長さとは、チャネル溝の延びる方向の長さを意味し、上記チャネル溝の幅とは 、ソース電極とドレイン電極の間の距離に相当する。チャネル溝の数は、 1つの半導 体素子につき、 1つであってもよいし、複数であってもよい。  The dimension of the channel groove is determined so as to have a predetermined performance mainly in the form of use as a product, but is determined in consideration of the amount of droplets of the functional material to be applied and other manufacturing conditions to be set. As an example, for TFTs in TFT array substrates used for display devices, the channel groove dimensions are 5 μm or more and 100 μm or less in length, 1 μm or more and 10 m or less in width, and depth. Is preferably 0.01 μm or more and 10 μm or less. Here, the length of the channel groove means the length in the extending direction of the channel groove, and the width of the channel groove corresponds to the distance between the source electrode and the drain electrode. The number of channel grooves may be one per semiconductor element or plural.
[0046] また、本発明の半導体素子を作製する際に、チャネル溝内から流動性を有する材料 が溢れ出すおそれがある場合には、あら力じめ溢れ出す方向を規定するための処置 が施されることが好ましい。具体的には、ソース電極及びドレイン電極の電極形状、 流動性を有する材料の滴下条件等を制御する方法等が挙げられる。例えば、液晶表 示装置に用いられる TFTアレイ基板内の TFTの場合、ゲート電極 Zドレイン電極間 の容量(Cg - d)がばらつくと、ゲート電極 Zソース電極間の容量(Cg - s)がばらつ いたときよりも、表示品位への影響が大きくなつてしまう。したがって、ソース電極側に 流動性を有する材料が溢れ出しやすくしておくことがより好ましい。 [0046] Further, when manufacturing the semiconductor element of the present invention, a material having fluidity from the inside of the channel groove If there is a risk of overflowing, it is preferable to take measures to define the direction of overflowing. Specific examples include a method of controlling the electrode shape of the source electrode and the drain electrode, the dropping conditions of the fluid material, and the like. For example, in the case of a TFT in a TFT array substrate used in a liquid crystal display device, if the capacitance (Cg-d) between the gate electrode Z and the drain electrode varies, the capacitance (Cg-s) between the gate electrode Z and the source electrode varies. This will have a greater effect on the display quality than when it occurs. Therefore, it is more preferable that the material having fluidity easily overflows to the source electrode side.
[0047] 本発明の半導体素子は、薄膜トランジスタ (TFT)又は薄膜ダイオード (TFD)である ことが好ましい。なお、本発明において、 TFDは、通常、ゲート電極とソース電極、又 は、ゲート電極とドレイン電極とが互いに電気的に接続されて形成される。  [0047] The semiconductor element of the present invention is preferably a thin film transistor (TFT) or a thin film diode (TFD). In the present invention, the TFD is usually formed by electrically connecting a gate electrode and a source electrode, or a gate electrode and a drain electrode.
[0048] 本発明はまた、本発明の半導体素子の製造方法を用いて製造された半導体素子、 又は、本発明の第 1〜第 6の半導体素子を有する回路基板 (以下、第 1の回路基板と もいう)でもある。このような本発明の第 1の回路基板は、製造工程における環境負荷 、材料費及び設備投資費用の低減が可能である。  [0048] The present invention also provides a semiconductor element manufactured using the method for manufacturing a semiconductor element of the present invention, or a circuit board having the first to sixth semiconductor elements of the present invention (hereinafter referred to as the first circuit board). It is also called). Such a first circuit board of the present invention can reduce the environmental load, the material cost and the capital investment cost in the manufacturing process.
[0049] 本発明はまた、ゲート配線、ソース配線及び半導体素子を基板上に有する回路基板 であって、上記回路基板は、表示装置又は撮像装置を構成するものであり、表示領 域又は撮像領域の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に 伸びる平行線群上に配置された構成を含み、かつ、非表示領域又は非撮像領域の 半導体素子が、上記平行線群上に配置された構成を含む回路基板 (以下、第 2の回 路基板ともいう)でもある。このような本発明の第 2の回路基板は、本発明の半導体素 子の製造方法を用いて、吐出ヘッドをゲート配線及び Z又はソース配線の延伸方向 に走査させて機能材料の滴下を行うことより、表示装置を構成する回路基板の製造 では、表示領域の半導体素子と非表示領域の半導体素子とを一括して作製すること ができ、撮像装置を構成する回路基板の製造では、撮像領域の半導体素子と非撮 像領域の半導体素子とを一括して作製することができるので、回路基板の製造にお ける環境負荷、材料費、設備投資費用の低減に加え、処理時間の短縮が可能であ る。上記回路基板は、表示領域又は撮像領域及び非表示領域又は非撮像領域の 半導体素子力 ゲート配線及び Z又はソース配線の延伸方向に伸びる共通の平行 線群上に配置された構成を有するとともに、ゲート配線及び z又はソース配線の延 伸方向に伸びる他の平行線群上に半導体素子が配置された構成を有していてもよ い。また、上記回路基板には、ゲート配線又はソース配線の延伸方向に伸びる平行 線群上に配置された半導体素子以外にも、半導体素子が配置されて 、てもよ 、。 上記回路基板の好ましい形態としては、例えば、能動素子である半導体素子が表示 領域又は撮像領域にマトリクス状に配列されたアクティブマトリクス基板等が挙げられ る。 The present invention is also a circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, and the circuit board constitutes a display device or an imaging device, and the display region or the imaging region Including a configuration in which the semiconductor element is arranged on a group of parallel lines extending in the extending direction of the gate wiring and the Z or source wiring, and the semiconductor element in the non-display area or the non-imaging area is arranged on the parallel line group. It is also a circuit board (hereinafter also referred to as a second circuit board) including the above-described configuration. In such a second circuit board of the present invention, the functional material is dropped by scanning the ejection head in the extending direction of the gate wiring and Z or the source wiring by using the semiconductor element manufacturing method of the present invention. Therefore, in the manufacture of the circuit board constituting the display device, the semiconductor elements in the display region and the semiconductor element in the non-display region can be manufactured at once. Since semiconductor elements and non-imaging area semiconductor elements can be manufactured together, the processing time can be shortened in addition to reducing the environmental burden, material costs, and capital investment costs in circuit board manufacturing. is there. The circuit board has a common parallel extension extending in the extending direction of the gate wiring and Z or source wiring in the display area or imaging area and non-display area or non-imaging area. The semiconductor device may have a configuration in which the semiconductor element is arranged on another group of parallel lines extending in the extending direction of the gate wiring and the z or source wiring. In addition to the semiconductor elements arranged on the parallel lines extending in the extending direction of the gate wiring or the source wiring, semiconductor elements may be arranged on the circuit board. A preferable form of the circuit board includes, for example, an active matrix substrate in which semiconductor elements as active elements are arranged in a matrix in a display area or an imaging area.
[0050] 本発明はまた、ゲート配線、ソース配線及び半導体素子を基板上に有する回路基板 であって、上記回路基板は、表示装置又は撮像装置を構成するものであり、表示領 域又は撮像領域の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に 伸びる平行線群 (第 1の平行線群ともいう)上に配置された構成を含み、かつ、非表 示領域又は非撮像領域の半導体素子が、上記平行線群の間隔の整数分の 1の距離 で定まる直線群 (第2の平行線群とも 、う)上に配置された構成を含む回路基板 (以 下、第 3の回路基板ともいう)でもある。このような本発明の第 3の回路基板によっても 、本発明の第 2の回路基板と同様に、本発明の半導体素子の製造方法を用いて、吐 出ヘッドをゲート配線及び Z又はソース配線の延伸方向に走査させて機能材料の滴 下を行うことより、表示装置を構成する回路基板の製造では、表示領域の半導体素 子と非表示領域の半導体素子とを一括して作製することができ、撮像装置を構成す る回路基板の製造では、撮像領域の半導体素子と非撮像領域の半導体素子とを一 括して作製することができるので、回路基板の製造における環境負荷、材料費、設備 投資費用の低減に加え、処理時間の短縮が可能である。また、上記回路基板には、 ゲート配線又はソース配線の延伸方向に伸びる平行線群上に配置された半導体素 子以外にも、半導体素子が配置されていてもよい。 The present invention is also a circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, and the circuit board constitutes a display device or an imaging device. The semiconductor element includes a configuration in which the semiconductor element is arranged on a parallel line group (also referred to as a first parallel line group) extending in the extending direction of the gate wiring and the Z or source wiring, and the non-display area or the non-imaging area A circuit board (hereinafter referred to as a third circuit) including a configuration in which a semiconductor element is arranged on a straight line group (also referred to as a second parallel line group) determined by a distance of an integer of the interval between the parallel line groups. Also called a substrate). Even with such a third circuit board of the present invention, similarly to the second circuit board of the present invention, the discharge head is formed of the gate wiring and the Z or source wiring by using the semiconductor element manufacturing method of the present invention. By performing functional material dropping by scanning in the stretching direction, semiconductor elements in the display area and semiconductor elements in the non-display area can be manufactured together in the manufacture of the circuit board constituting the display device. In the manufacture of the circuit board that constitutes the imaging device, the semiconductor elements in the imaging region and the semiconductor elements in the non-imaging region can be manufactured together. In addition to reducing investment costs, processing time can be shortened. In addition to the semiconductor elements arranged on the parallel lines extending in the extending direction of the gate wiring or the source wiring, semiconductor elements may be arranged on the circuit board.
上記回路基板の好ましい形態としては、例えば、能動素子である半導体素子が表示 領域又は撮像領域にマトリクス状に配列されたアクティブマトリクス基板等が挙げられ る。  A preferable form of the circuit board includes, for example, an active matrix substrate in which semiconductor elements as active elements are arranged in a matrix in a display area or an imaging area.
[0051] 本発明の第 2及び第 3の回路基板は、表示領域又は撮像領域の半導体素子が、ゲ ート配線の延伸方向に伸びる平行線群上に配置された構成を含むことが好ましい。 これにより、本発明の半導体素子の製造方法を用いる場合に、吐出ヘッドをゲート配 線の延伸方向に走査させて機能材料の滴下を行うことが可能となる。 TFTアレイ基 板等の回路基板には多数のゲート配線とソース配線とが直交する方向に配置される 力 隣り合うゲート配線の間隔 (ゲート配線ピッチ)は、隣り合うソース配線の間隔 (ソ ース配線ピッチ)よりも広い場合が多い。このため、ゲート配線方向に機能材料を順 に塗布して 、くことで、吐出ヘッドに設けるノズル機構の数を少なくすることができる ので、吐出ヘッドの作製が容易になり、設備費用の低減につながる。 [0051] The second and third circuit boards of the present invention preferably include a configuration in which the semiconductor elements in the display region or the imaging region are arranged on a group of parallel lines extending in the extending direction of the gate wiring. As a result, when the semiconductor element manufacturing method of the present invention is used, the functional material can be dropped by scanning the ejection head in the extending direction of the gate wiring. A large number of gate wirings and source wirings are arranged in a direction orthogonal to a circuit board such as a TFT array substrate. The spacing between adjacent gate wirings (gate wiring pitch) is the spacing between adjacent source wirings (source wiring). In many cases, it is wider than the wiring pitch. For this reason, by sequentially applying functional materials in the gate wiring direction, the number of nozzle mechanisms provided in the ejection head can be reduced, which makes it easier to produce the ejection head and reduce equipment costs. Connected.
[0052] 本発明の第 2及び第 3の回路基板において、上記表示領域又は撮像領域に配置さ れた半導体素子は、ゲート配線とソース配線との交点毎に複数配置され、上記交点 に配置された複数の半導体素子は、ゲート配線又はソース配線の延伸方向に伸びる 1つの平行線群上に配置された構成を含むことが好ましい。これ〖こより、 1つの画素に 複数の半導体素子を設ける場合であっても、回路基板上の半導体素子を効率よく作 製することができる。 [0052] In the second and third circuit boards of the present invention, a plurality of semiconductor elements arranged in the display region or imaging region are arranged at each intersection of the gate wiring and the source wiring, and are arranged at the intersection. The plurality of semiconductor elements preferably include a configuration in which the plurality of semiconductor elements are arranged on one parallel line group extending in the extending direction of the gate wiring or the source wiring. Thus, even when a plurality of semiconductor elements are provided in one pixel, the semiconductor elements on the circuit board can be efficiently manufactured.
[0053] 本発明の第 2及び第 3の回路基板において、上記表示領域又は撮像領域に配置さ れた半導体素子は、薄膜トランジスタであることが好ましい。薄膜トランジスタは、本発 明の半導体素子の製造方法を用いて製造するのに好適である。また、薄膜トランジス タを用いて表示領域又は撮像領域に設けられる電極への印加電圧をスイッチングす ることで、優れた表示品位又は撮像品位を得ることが可能となる。  [0053] In the second and third circuit boards of the present invention, the semiconductor element arranged in the display area or the imaging area is preferably a thin film transistor. The thin film transistor is suitable for manufacturing using the method for manufacturing a semiconductor element of the present invention. In addition, it is possible to obtain excellent display quality or imaging quality by switching the voltage applied to the electrodes provided in the display area or imaging area using a thin film transistor.
また、上記非表示領域又は非撮像領域に配置された半導体素子は、薄膜ダイオード であることが好ましい。薄膜ダイオードは、本発明の半導体素子の製造方法を用いて 製造するのに好適である。また、非表示領域に薄膜ダイオードを配置することで、表 示領域に設けられる薄膜トランジスタ等のスイッチング素子における静電破壊を防止 することができ、優れた表示品位又は撮像品位を得ることが可能となる。  The semiconductor element disposed in the non-display area or non-imaging area is preferably a thin film diode. The thin film diode is suitable for manufacturing using the method for manufacturing a semiconductor device of the present invention. In addition, by disposing a thin film diode in the non-display area, electrostatic breakdown in a switching element such as a thin film transistor provided in the display area can be prevented, and an excellent display quality or imaging quality can be obtained. .
[0054] 本発明はまた、本発明の回路基板の製造方法を用いて製造された回路基板、又は、 本発明の回路基板を備えてなる電子装置でもある。このような本発明の電子装置は、 製造工程における環境負荷、材料費及び設備投資費用の低減が可能である。また、 本発明の電子装置としては、撮像装置、表示装置、画像入力装置等が好適である。 撮像装置としては、フラットパネル型 X線イメージセンサー装置等が挙げられる。なお 、フラットパネル型 X線イメージセンサー装置は、例えば、 TFTアレイ基板に X線受光 層と信号読み出し回路とが設けられた構造を有するものであり、医療用途、透視検査 用途等に利用されるものである。また、表示装置としては、液晶表示装置、有機エレ タトロルミネセンス表示装置等が好適である。 The present invention is also a circuit board manufactured using the circuit board manufacturing method of the present invention, or an electronic device comprising the circuit board of the present invention. Such an electronic device of the present invention can reduce the environmental load, material cost, and capital investment cost in the manufacturing process. In addition, an imaging device, a display device, an image input device, and the like are preferable as the electronic device of the present invention. Examples of the imaging device include a flat panel X-ray image sensor device. In addition The flat panel X-ray image sensor device has, for example, a structure in which an TFT array substrate is provided with an X-ray light receiving layer and a signal readout circuit, and is used for medical applications, fluoroscopic inspection applications, and the like. is there. Further, as the display device, a liquid crystal display device, an organic electroluminescence display device, or the like is suitable.
発明の効果  The invention's effect
[0055] 本発明の半導体素子の製造方法によれば、流動性を有する機能材料をチャネル溝 内に滴下することで、機能層を選択的かつ高精度に形成することが可能であり、素子 構造の形成に必要なフォトリソグラフィの回数を削減することができ、回路基板等に形 成される半導体素子の製造に好適に用いられる。  [0055] According to the method for manufacturing a semiconductor element of the present invention, a functional layer can be selectively and accurately formed by dropping a functional material having fluidity into a channel groove. The number of times of photolithography necessary for forming the substrate can be reduced, and the method is suitably used for manufacturing a semiconductor element formed on a circuit board or the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0056] 以下に実施例を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施例 のみに限定されるものではない。 [0056] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0057] (実施例 1) [Example 1]
本発明の一実施例として、実施例 1に係る逆スタガ型アモルファスシリコン TFT (薄膜 トランジスタ)の製造方法について、図 1〜6を参照しながら説明する。  As an embodiment of the present invention, a method of manufacturing an inverted staggered amorphous silicon TFT (thin film transistor) according to Embodiment 1 will be described with reference to FIGS.
本実施例で特徴的なのは保護膜形成工程であり、ソース電極及びドレイン電極を得 た後、ソース Zドレインパターンを利用して、 TFTギャップ部や配線部等の腐食から 保護する必要がある部分にのみ、インクジェット装置を用いることで選択的に絶縁材 料の液滴を着弾させて TFTの保護膜を成膜する。  The characteristic of this embodiment is the protective film formation process. After obtaining the source electrode and drain electrode, the source Z drain pattern is used to protect the TFT gap and wiring parts from corrosion. Only by using an inkjet device, a droplet of insulating material is selectively landed to form a TFT protective film.
[0058] 図 1 (a)は、本実施例の製造方法を用いて作製された TFT及びその近傍の構成を示 す概略平面図であり、(b)は、(a)の A— A線における概略断面図である。 [0058] FIG. 1 (a) is a schematic plan view showing the structure of a TFT fabricated using the manufacturing method of the present embodiment and its vicinity, and (b) is an AA line in (a). FIG.
本実施例で作製された TFT7は、図 1 (a)及び (b)に示すように、ボトムゲート構造を 有し、ガラス基板 (絶縁基板) 8上に、ゲート配線 9から分岐したゲート電極 10と、ゲー ト絶縁膜 11と、アモルファスシリコン層 12と、 n+型アモルファスシリコン層 13と、ソー ス配線 14カゝら分岐したソース電極 15と、ドレイン接続配線 16と接続されたドレイン電 極 17とが積層配置された構成を有する。なお、ドレイン接続配線 16は、例えばデイス プレイ用途では、画素電極(図示せず)とドレイン電極 17とを接続する等の目的で形 成される。 ここで、アモルファスシリコン層 12のうち、ソース電極 15とドレイン電極 17との間に位 置する部分が TFTチャネル部 18であり、保護膜 (機能膜) 35が形成されている。 As shown in FIGS. 1A and 1B, the TFT 7 manufactured in this example has a bottom gate structure, and a gate electrode 10 branched from a gate wiring 9 on a glass substrate (insulating substrate) 8. A gate insulating film 11, an amorphous silicon layer 12, an n + type amorphous silicon layer 13, a source wire 14 branched from a source electrode 15, and a drain electrode 17 connected to a drain connection wire 16. Have a configuration in which the layers are stacked. The drain connection wiring 16 is formed for the purpose of, for example, connecting a pixel electrode (not shown) and the drain electrode 17 in a display application. Here, a portion of the amorphous silicon layer 12 positioned between the source electrode 15 and the drain electrode 17 is the TFT channel portion 18, and a protective film (functional film) 35 is formed.
[0059] 本実施例の TFT7の作製には、基板面上に流動性材料を液滴として選択的に吐出 又は滴下することができるパターン形成装置として、インクジェット装置を用いた。この インクジェット装置は、図 2に示すように、基板 19 (図 1中のガラス基板 8に相当)を載 置する載置台(基板ステージ) 20を備え、この載置台 20上の基板 19上に対して流動 性材料を液滴として吐出又は滴下する液滴吐出手段としてのインクジェットヘッド 21 と、インクジェットヘッド 21を X方向に移動させる X方向駆動部 22及び Y方向に移動 させる Y方向駆動部 23とが設けられている。  In manufacturing the TFT 7 of this example, an ink jet apparatus was used as a pattern forming apparatus capable of selectively ejecting or dropping a fluid material as droplets on a substrate surface. As shown in FIG. 2, the ink jet apparatus includes a mounting table (substrate stage) 20 on which a substrate 19 (corresponding to the glass substrate 8 in FIG. 1) is mounted. An inkjet head 21 as a droplet ejection means for ejecting or dropping a fluid material as droplets, an X-direction drive unit 22 for moving the inkjet head 21 in the X direction, and a Y-direction drive unit 23 for moving in the Y direction. Is provided.
[0060] また、インクジェット装置には、インクジェットヘッド 21に流動性材料を供給するインク 供給システム 24と、インクジェットヘッド 21の吐出制御、並びに、 X方向駆動部 22及 ひ Ύ方向駆動部 23の駆動制御等の各種制御を行うコントロールユニット 25とが設け られている。コントロールユニット 25からは、 X方向駆動部 22及び Y方向駆動部 23に 対して吐出位置情報が出力され、インクジェットヘッド 21のヘッドドライバ(図示せず) に対して吐出情報が出力される。これにより、 X方向駆動部 22及び Y方向駆動部 23 に連動してインクジェットヘッド 21が動作し、基板 19上の目的位置に目的量の液滴 が滴下される。  In addition, the ink jet apparatus includes an ink supply system 24 that supplies a fluid material to the ink jet head 21, ejection control of the ink jet head 21, and drive control of the X direction driving unit 22 and the vertical direction driving unit 23. And a control unit 25 for performing various controls. From the control unit 25, ejection position information is output to the X direction driving unit 22 and the Y direction driving unit 23, and ejection information is output to a head driver (not shown) of the inkjet head 21. As a result, the inkjet head 21 operates in conjunction with the X-direction drive unit 22 and the Y-direction drive unit 23, and a target amount of droplets is dropped at a target position on the substrate 19.
[0061] インクジェットヘッド 21としては、ピエゾァクチユエータを用いるピエゾ方式のもの、へ ッド内にヒータを有するバブル方式のもの等を用いることができる。インクジェットへッ ド 21からの液滴吐出量の制御は、印加電圧の制御等により行われる。  [0061] As the inkjet head 21, a piezo type using a piezoelectric actuator, a bubble type having a heater in the head, or the like can be used. Control of the droplet discharge amount from the inkjet head 21 is performed by controlling applied voltage or the like.
なお、本発明で用いられるパターン形成装置の液滴吐出方式は、インクジェット法に 限定されず、流動性材料を液滴として吐出又は滴下可能な方式であればょ 、。  Note that the droplet discharge method of the pattern forming apparatus used in the present invention is not limited to the ink jet method, and may be any method that can discharge or drop a fluid material as droplets.
[0062] 本実施例では、ゲート電極 Z配線形成工程と、ゲート絶縁膜 Z下層半導体膜 Z上 層半導体膜成膜工程と、下層及び上層半導体膜パター-ング工程と、ソース zドレ インの電極 z配線形成工程と、チャネルエッチング工程とが順に行われた後、保護 膜形成工程が行われる。  In this embodiment, the gate electrode Z wiring forming step, the gate insulating film Z lower layer semiconductor film Z, the upper layer semiconductor film forming step, the lower layer and upper layer semiconductor film patterning step, and the source z drain electrode After the z wiring formation process and the channel etching process are sequentially performed, the protective film formation process is performed.
以下、本実施例の TFT7の製造方法について工程毎に詳しく説明する。  Hereinafter, the manufacturing method of the TFT 7 of this embodiment will be described in detail for each process.
〔ゲート電極 Z配線形成工程〕 この工程では、ガラス基板 8上にゲート電極 10等が形成される。 [Gate electrode Z wiring formation process] In this step, the gate electrode 10 and the like are formed on the glass substrate 8.
この工程では、ガラス基板 8上にスパッタリング法により、成膜温度 100°Cで、チタン( Ti)を 0. 2 mの膜厚で成膜し、チタンカゝらなるゲート金属膜を得た。続いて、このゲ ート金属膜上に、レジスト材料を用いてレジストパターン膜を形成し、このレジストパタ 一ン膜をマスクとしてパターユングを行う一連の方法、すなわちフォトリソグラフィによ り、ゲート配線 9、ゲート電極 10等を得た。このときのゲート金属膜のエッチング方法 には、ドライエッチング法を用いた。エッチング用のガスには、塩素(C1 )ガス及び三  In this step, a titanium (Ti) film having a thickness of 0.2 m was formed on the glass substrate 8 by sputtering at a film forming temperature of 100 ° C. to obtain a gate metal film made of titanium. Subsequently, a resist pattern film is formed on the gate metal film using a resist material, and patterning is performed using the resist pattern film as a mask, that is, gate wiring 9 by photolithography. Thus, a gate electrode 10 and the like were obtained. A dry etching method was used as the gate metal film etching method at this time. Etching gases include chlorine (C1) gas and three
2  2
塩ィ匕ホウ素(BC1 )ガス等を組み合わせて用いた。続いて、有機溶剤等を用いて、フ  A salty boron (BC1) gas or the like was used in combination. Subsequently, using organic solvent, etc.
3  Three
オトレジスト膜を剥離除去した。  The photoresist film was peeled off.
[0063] なお、本発明において、ゲート金属膜を構成する金属は特に限定されず、例えば、 アルミニウム(A1)、銅(Cu)、クロム(Cr)、タンタル (Ta)、モリブデン(Mo)、インジゥ ム錫酸化物 (ITO)、チタン及びモリブデン (Mo)等の金属又は金属化合物を用いる ことができる。ゲート金属膜は、単層で形成されてもよいし、積層構造を有していても よい。ゲート金属膜の成膜方法も特に限定されず、スパッタ法の他、蒸着法等を用い ることができる。ゲート金属膜の膜厚も特に限定されない。また、ゲート金属膜のエツ チング方法も特に限定されず、ウエットエッチング法等を用いることができる。  In the present invention, the metal constituting the gate metal film is not particularly limited. For example, aluminum (A1), copper (Cu), chromium (Cr), tantalum (Ta), molybdenum (Mo), indium Metals or metal compounds such as mu tin oxide (ITO), titanium and molybdenum (Mo) can be used. The gate metal film may be formed as a single layer or may have a stacked structure. A method for forming the gate metal film is not particularly limited, and a vapor deposition method or the like can be used in addition to the sputtering method. The thickness of the gate metal film is not particularly limited. Further, the etching method of the gate metal film is not particularly limited, and a wet etching method or the like can be used.
[0064] 〔ゲート絶縁膜 Z下層半導体膜 Z上層半導体膜成膜工程〕  [Gate Insulating Film Z Lower Semiconductor Film Z Upper Semiconductor Film Formation Process]
この工程では、ゲート電極/配線形成工程を経たガラス基板 8上に、ゲート絶縁膜 1 1、アモルファスシリコン膜 (下層半導体膜)及び n+型アモルファスシリコン膜 (上層半 導体膜)が成膜される。なお、ゲート絶縁膜 11は、窒化シリコン (SiN )からなる。これ らの膜は、プラズマ化学的気相成長 (CVD)法により、成膜温度 300°Cで同一真空 チャンバにて連続成膜した。各膜の膜厚は、それぞれ 0. 4 /z m (ゲート絶縁膜 11)、 0. 2 /z m (アモルファスシリコン膜)及び 0. 1 /ζ πι(η+型アモルファスシリコン膜)とした 。ただし、本発明においては、各膜の成膜方法及び膜厚は特に限定されない。 In this step, a gate insulating film 11, an amorphous silicon film (lower semiconductor film), and an n + type amorphous silicon film (upper semiconductor film) are formed on the glass substrate 8 that has undergone the gate electrode / wiring forming process. The gate insulating film 11 is made of silicon nitride (SiN). These films were continuously formed in the same vacuum chamber by a plasma chemical vapor deposition (CVD) method at a film forming temperature of 300 ° C. The thickness of each film was set to 0.4 / zm (gate insulating film 11), 0.2 / zm (amorphous silicon film) and 0.1 / ζ πι (η + type amorphous silicon film), respectively. However, in the present invention, the film forming method and film thickness of each film are not particularly limited.
[0065] 〔下層及び上層半導体膜パターニング工程〕  [Lower layer and upper layer semiconductor film patterning step]
この工程では、アモルファスシリコン膜及び η+型アモルファスシリコン膜を、フォトリソ グラフィを利用したドライエッチング処理を行って、アイランド(島状)に形成した。ドラ ィエッチング処理には、エッチング用ガスとして、四フッ化炭素(CF )ガス及び酸素( o )ガス等を組み合わせて用 ヽた。 In this step, an amorphous silicon film and an η + type amorphous silicon film were formed into islands (island shapes) by performing a dry etching process using photolithography. For dry etching, carbon tetrafluoride (CF 3) gas and oxygen ( o) Used in combination with gas.
2  2
[0066] 〔ソース Zドレインの電極 Z配線形成工程並びにチャネルエッチング工程〕  [Source Z Drain Electrode Z Wiring Formation Process and Channel Etching Process]
この工程では、ゲート金属膜と同様の成膜方法により、チタン (Ti)を 0. 2 mの膜厚 で成膜してソース金属膜を得た。ソース金属膜は、後にパターユング加工されてソー ス電極 15及びドレイン電極 17等となる。なお、ソース金属膜についても、ゲート金属 膜と同様、本実施例の形態に特に限定されない。  In this step, a source metal film was obtained by depositing titanium (Ti) with a film thickness of 0.2 m by the same film formation method as that for the gate metal film. The source metal film is later subjected to patterning to become the source electrode 15 and the drain electrode 17. Note that the source metal film is not particularly limited to the form of this embodiment as well as the gate metal film.
続いて、フォトリソグラフィの一段階として、感光性を有するレジスト材料を用いてソー ス金属膜上にレジストパターン膜を得た。レジストパターン膜の膜厚は、 2. とし た。  Subsequently, as one stage of photolithography, a resist pattern film was obtained on the source metal film using a photosensitive resist material. The film thickness of the resist pattern film was 2.
[0067] そして、レジストパターン膜をマスクとして、ソース金属膜及び n+型アモルファスシリコ ン膜のエッチング処理を連続して行うことで、ソース電極 15、ドレイン電極 17及び n+ 型アモルファスシリコン層 13を得た後、レジストパターン膜の剥離除去を行った。  Then, using the resist pattern film as a mask, the source metal film and the n + type amorphous silicon film were successively etched to obtain the source electrode 15, the drain electrode 17, and the n + type amorphous silicon layer 13. Thereafter, the resist pattern film was peeled and removed.
[0068] この工程では、ソース電極 15とドレイン電極 17との間に形成された隙間部分 (TFT ギャップ部又はチャネル溝ともいう)のサイズについて、ソース電極 15とドレイン電極 1 7との間隔 Lを L= 3 mとし、ソース電極 15及びドレイン電極 17の幅 Wを W= 60 μ mとした。  In this step, the gap L between the source electrode 15 and the drain electrode 17 is set to the size of the gap formed between the source electrode 15 and the drain electrode 17 (also referred to as a TFT gap portion or a channel groove). L = 3 m, and the width W of the source electrode 15 and the drain electrode 17 was W = 60 μm.
また、この工程では、ソース金属膜及び n+型アモルファスシリコン膜のエッチング処 理方法として、ドライエッチング法を用い、エッチング用のガスとして、塩素(C1 )ガス  In this process, a dry etching method is used as an etching method for the source metal film and the n + type amorphous silicon film, and a chlorine (C1) gas is used as an etching gas.
2 及び三塩化ホウ素(BC1 )ガス等を組み合わせて用いた。なお、上記エッチング処理  2 and boron trichloride (BC1) gas were used in combination. The above etching process
3  Three
方法は特に限定されず、ウエットエッチング法等を用いてもよい。ソース電極 15及び ドレイン電極 17間のリーク電流不良を防ぐためには、上記エッチング処理により、 TF Tギャップ部の n+型アモルファスシリコン膜は充分に除去されなければならな 、。した がって、本実施例では、オーバーエッチング処理を行って、アモルファスシリコン膜の 上層側の一部をエッチングしてもよいが、図 1 (b)中では図示していない。  The method is not particularly limited, and a wet etching method or the like may be used. In order to prevent a leakage current failure between the source electrode 15 and the drain electrode 17, the n + type amorphous silicon film in the TFT gap portion must be sufficiently removed by the etching process. Therefore, in this embodiment, an over-etching process may be performed to etch a part on the upper layer side of the amorphous silicon film, but this is not shown in FIG. 1 (b).
[0069] 更に、レジストパターン膜の剥離除去を行った後、ソース電極 15、ドレイン電極 17、 ゲート絶縁膜 11及びアモルファスシリコン層 12等の表面に、次の工程で用いられる 保護材料に対する親撥液性を付与する処理を行った。ここで、親撥液性とは、液体 が固体表面に接したときに濡れる又は弾く性質のことを指す。本実施例では、四フッ 化炭素(CF )ガスを用いたプラズマ処理法により表面処理を行った。 Further, after removing and removing the resist pattern film, the surface of the source electrode 15, the drain electrode 17, the gate insulating film 11, the amorphous silicon layer 12, and the like is lyophilic and lyophobic for the protective material used in the next step. The process which provides sex was performed. Here, the lyophobic property refers to the property of getting wet or repelling when the liquid comes into contact with the solid surface. In this example, four foot Surface treatment was performed by a plasma treatment method using carbon fluoride (CF 3) gas.
4  Four
[0070] この表面処理後、表面の接触角を測定することによって親撥液性を確認した。接触 角の測定方法としては、一般的によく用いられる方法である、球体の一部として近似 して接触角を算出する方法を用いた。その結果、基板表面に露出するソース電極 15 及びドレイン電極 17の接触角は 40〜50° 、ゲート絶縁膜 11の接触角は 15〜30° 、アモルファスシリコン層 12上の接触角は 20〜30° であった。一方、表面処理を行 わなかった場合には、それぞれの接触角は、ともに 0〜10° であった。このように、表 面処理によって、ソース電極 15、ドレイン電極 17、ゲート絶縁膜 11及びアモルファス シリコン層 12の表面に親撥液性を与えた。  [0070] After this surface treatment, lyophilicity was confirmed by measuring the contact angle of the surface. As a method for measuring the contact angle, a method of calculating the contact angle by approximating it as a part of a sphere, which is a commonly used method, was used. As a result, the contact angle of the source electrode 15 and the drain electrode 17 exposed on the substrate surface is 40 to 50 °, the contact angle of the gate insulating film 11 is 15 to 30 °, and the contact angle on the amorphous silicon layer 12 is 20 to 30 °. Met. On the other hand, when the surface treatment was not performed, each contact angle was 0 to 10 °. Thus, the surface treatment provided the lyophobic property to the surfaces of the source electrode 15, the drain electrode 17, the gate insulating film 11 and the amorphous silicon layer 12.
なお、 TFTギャップ部側に露出する n+型アモルファスシリコン層 13の端面の接触角 は、本実施例と同一条件で処理した同一材料の膜面の測定結果から、 20〜80° 程 度であると推定される。  The contact angle of the end face of the n + type amorphous silicon layer 13 exposed on the TFT gap side is about 20 to 80 ° from the measurement result of the film surface of the same material processed under the same conditions as in this example. Presumed.
また、本発明で用いられる表面処理方法としては、本実施例の方法に特に限定され ず、親撥液性を調整できれば如何なる方法でもよい。上記接触角の値もまた、あくま で一例であり、本発明にお 、ては特に限定されな 、。  Further, the surface treatment method used in the present invention is not particularly limited to the method of this example, and any method may be used as long as the lyophobic property can be adjusted. The value of the contact angle is also just an example, and is not particularly limited in the present invention.
[0071] 〔保護膜形成工程〕 [Protective film forming step]
この工程については、図 3〜5を参照して説明する。  This process will be described with reference to FIGS.
図 3に示すように、本実施例においては、チャネル溝として、対向するソース電極 15 とドレイン電極 17との間の空間部分、及び、 n+型アモルファスシリコン層 13の除去部 分を利用する。  As shown in FIG. 3, in this embodiment, the space between the opposing source electrode 15 and drain electrode 17 and the removed portion of the n + -type amorphous silicon layer 13 are used as channel grooves.
チャネルエッチング工程を経たガラス基板 8上に、 TFTギャップ部 31の中心付近を 目標にしてインクジェット法で SOG (Spin on Glass)材料の液滴(流動性を有する 絶縁材料) 32を 1滴吐出した。図 3 (a)は、液滴が TFTギャップ部 31に着弾した瞬間 の状態を示す概略平面図であり、(b)は、(a)の F—F線における概略断面図である。 なお、 SOG材料としては、金属アルコキシドをジエチレングリコールモノブチルエー テル溶剤に溶解した溶液等を用いることができる。 SOG材料を塗布した後焼成する ことで、ケィ酸ガラス (SiO )を主成分とした膜を形成することができる。  One drop of SOG (Spin on Glass) material droplet (insulating material having fluidity) 32 was ejected onto the glass substrate 8 that had undergone the channel etching process by the inkjet method with the aim of the vicinity of the center of the TFT gap portion 31. FIG. 3 (a) is a schematic plan view showing a state at the moment when a droplet has landed on the TFT gap portion 31, and FIG. 3 (b) is a schematic cross-sectional view taken along line FF in FIG. 3 (a). As the SOG material, a solution in which a metal alkoxide is dissolved in a diethylene glycol monobutyl ether solvent can be used. By baking after applying the SOG material, a film composed mainly of silicate glass (SiO 2) can be formed.
2  2
[0072] この工程では、基板面上に流動性材料の液滴を選択的に吐出又は滴下することが できるパターン形成装置を用いる力 上述したように、本実施例ではインクジェット装 置を用いた。また、このとき吐出する液滴 32の体積は l〜2plとした。 [0072] In this step, a liquid material droplet may be selectively discharged or dropped onto the substrate surface. Force Using a Pattern Forming Apparatus That Can Be Used As described above, an inkjet apparatus was used in this example. In addition, the volume of the droplets 32 discharged at this time was 1 to 2 pl.
図 3 (a)に示すように、液滴 32の平面形状は、着弾した瞬間は円形に近いと思われる 。ただし、この平面形状は、液滴 32がインクジェット装置のインクジェットヘッド 21より 吐出されてから飛行する間の液滴形状に影響されるため、これ以外の形状になること も充分に考えられる。液滴 32は、図 3 (b)に示すように、着弾後、ソース電極 15及び ドレイン電極 17の表面及び端面と、 n+型アモルファスシリコン層 13の端面と、ァモル ファスシリコン層 12の表面とに接する。  As shown in FIG. 3 (a), the planar shape of the droplet 32 seems to be nearly circular at the moment of landing. However, this planar shape is affected by the shape of the droplet during the flight after the droplet 32 is ejected from the inkjet head 21 of the inkjet device, and it is therefore fully conceivable that the shape is other than this. As shown in FIG. 3 (b), after the droplets 32 land, the droplets 32 are applied to the surfaces and end surfaces of the source electrode 15 and the drain electrode 17, the end surface of the n + type amorphous silicon layer 13, and the surface of the amorphous silicon layer 12. Touch.
[0073] なお、本実施例では、パターン形成装置としてインクジェット装置を用いたが、本発明 においては特に限定されない。また、各 TFTギャップ部 31に吐出する液滴は 1滴で ある必要はなぐ 2滴以上吐出されてもよい。そして、液滴の体積も、あくまで一例で あり、本発明においては特に限定されない。ただし、液滴の体積は、目的のパターン の大きさに応じて適切に設定される必要がある。  In this embodiment, an ink jet apparatus is used as the pattern forming apparatus. However, the present invention is not particularly limited. In addition, the number of droplets discharged to each TFT gap portion 31 is not necessarily one, and two or more droplets may be discharged. Further, the volume of the droplet is merely an example, and is not particularly limited in the present invention. However, the volume of the droplet needs to be set appropriately according to the size of the target pattern.
[0074] 図 4 (a)は、図 3 (a)に示した液滴 32が着弾した後、その流動性のために変形した状 態を示す概略平面図であり、(b)は、 (a)の G— G線における概略断面図である。 液滴 32は、着弾後に、図 4に示す液滴 33のような形状に変化した。具体的には、 TF Tギャップ部 31を埋めるように広がるとともに、 TFTギャップ部 31の両端 34付近に界 面を有する形状となった。このような液滴 33の形状は、ソース電極 15、ドレイン電極 1 7及び n+型アモルファスシリコン層 13の端面力も構成されるバンクのパターン形状( バンクパターン)と、前工程での表面処理によって付与された親撥液性とによって制 御され、実現したものである。  [0074] Fig. 4 (a) is a schematic plan view showing a state in which the droplet 32 shown in Fig. 3 (a) has landed and deformed due to its fluidity, and (b) shows ( It is a schematic sectional drawing in the GG line of a). The droplet 32 changed into a shape like the droplet 33 shown in FIG. 4 after landing. Specifically, the TFT gap portion 31 is widened to fill, and the TFT gap portion 31 has a shape having an interface near both ends 34. The shape of the droplet 33 is given by the bank pattern shape (bank pattern) that also includes the edge force of the source electrode 15, the drain electrode 17 and the n + type amorphous silicon layer 13, and the surface treatment in the previous step. It is controlled and realized by the lyophobic property.
[0075] 液滴の着弾後の形状変化について詳細に説明すると、まず、着弾直後の液滴 32は 、ソース電極 15、ドレイン電極 17及びアモルファスシリコン層 12等の接触部分の接 触角が 90° 以下なので、それらの表面に濡れ広がろうとする。このときの濡れ広がり の方向を制御するのが、 TFTギャップ部 31の両側を構成するソース電極 15及びドレ イン電極 17と、 n+型アモルファスシリコン層 13との積層構造が形成する段差、すな わちバンクである。このバンクにより、液滴の濡れ広がりの方向は制限され、液滴は T FTギャップ部 31内で濡れ広がる。また、本実施例の場合、ソース電極 15、ドレイン 電極 17上の接触角力 ゲート絶縁膜 11上よりも高いので、液滴は優先的に TFTギ ヤップ部 31内に入ろうとする。 [0075] The shape change after landing of the droplet will be described in detail. First, the droplet 32 immediately after landing has a contact angle of 90 ° or less at the contact portion of the source electrode 15, the drain electrode 17, the amorphous silicon layer 12, and the like. So they try to get wet on those surfaces. The direction of wetting and spreading at this time is controlled by the step formed by the stacked structure of the source electrode 15 and the drain electrode 17 constituting both sides of the TFT gap portion 31 and the n + type amorphous silicon layer 13. The bank. This bank limits the direction of wetting and spreading of the droplet, and the droplet spreads in the TFT gap 31. In this embodiment, the source electrode 15 and the drain Since the contact angular force on the electrode 17 is higher than that on the gate insulating film 11, the droplet preferentially enters the TFT gap 31.
[0076] このようにして、液滴は TFTギャップ部 31内で延び広がって!/、くのであるが、液滴の 有する表面張力と濡れ広がろうとする力とが釣り合った時点で、液滴の動きが止まる 。ここで、液滴は、毛管現象と液滴の表面張力とにより、なるべく TFTギャップ部 31内 とその近傍に留まろうとする。本実施例では、液滴の量、粘度等を適切に設定するこ とにより、 TFTギャップ部 31の両端 34の付近まで広がる液滴 33を得ることができた。  [0076] In this way, the liquid droplet extends and spreads in the TFT gap portion 31! /, But when the surface tension of the liquid droplet and the force to spread the liquid are balanced, Stops moving. Here, the droplet tends to stay in the TFT gap portion 31 and in the vicinity thereof as much as possible due to the capillary phenomenon and the surface tension of the droplet. In this example, by appropriately setting the amount, viscosity and the like of the droplet, it was possible to obtain the droplet 33 that spreads to the vicinity of both ends 34 of the TFT gap portion 31.
[0077] このように、 TFTギャップ部両端 34の開放部と、 TFTギャップ部 31の両側を構成す るソース電極 15、ドレイン電極 17及び n+型ァモルファスシリコン層 13の積層構造を 有するバンク部とを含むバンクパターンを利用することで、液滴の形状を制御すること ができる。  As described above, the open portion at both ends 34 of the TFT gap portion, and the bank portion having a laminated structure of the source electrode 15, the drain electrode 17 and the n + -type amorphous silicon layer 13 constituting both sides of the TFT gap portion 31, The shape of the droplet can be controlled by using the bank pattern including the.
なお、後述するように、本実施例における液滴 33の形状は一例であり、本発明にお いては特に限定されない。  As will be described later, the shape of the droplet 33 in this embodiment is merely an example, and is not particularly limited in the present invention.
[0078] 図 5— 1 (a)は、 TFTギャップ部 31内に保護膜 35が形成された状態を示す概略平面 図であり、(b)は、(a)の H— H線における概略断面図である。  FIG. 5-1 (a) is a schematic plan view showing a state in which the protective film 35 is formed in the TFT gap portion 31, and (b) is a schematic cross section taken along the line H—H in (a). FIG.
保護膜 35は、基板を 300°Cで加熱処理することで、液滴 33に含まれる有機溶剤を 揮発させるとともに、金属アルコキシドを加水分解 ·重合させることで形成した。このと きの体積収縮により、液滴 33の内部は一時的に負圧になり、 TFTギャップ部 31の両 端 34からはみ出した液滴 33の一部は吸収され、保護膜 35は、図 4 (a)の液滴 33の 形状から、やや形状を変化させて形成された。この作用によって、 TFTギャップ部 31 における保護膜 35の形状は、接触角等の条件のばらつきを吸収して、図 5—1に示 すような形状に一定しやす 、。  The protective film 35 was formed by heat-treating the substrate at 300 ° C. to volatilize the organic solvent contained in the droplet 33 and to hydrolyze and polymerize the metal alkoxide. Due to the volume contraction at this time, the inside of the droplet 33 temporarily becomes a negative pressure, a part of the droplet 33 protruding from both ends 34 of the TFT gap 31 is absorbed, and the protective film 35 is formed as shown in FIG. It was formed by slightly changing the shape from the shape of the droplet 33 in (a). By this action, the shape of the protective film 35 in the TFT gap 31 can easily be made constant as shown in Fig. 5-1, by absorbing variations in conditions such as the contact angle.
[0079] 本実施例の場合、液滴 33における有機溶剤の揮発及び金属アルコキシドの加水分 解 ·重合は、基板を 300°Cで 30分間加熱して行った。ただし、本発明においては、有 機溶剤の揮発及び金属アルコキシドの加水分解 '重合方法は特に限定されない。ま た、本発明においては、基板の加熱方法も特に限定されない。  In this example, the evaporation of the organic solvent and the hydrolysis / polymerization of the metal alkoxide in the droplet 33 were performed by heating the substrate at 300 ° C. for 30 minutes. However, in the present invention, the method for volatilization of the organic solvent and hydrolysis of the metal alkoxide is not particularly limited. In the present invention, the method for heating the substrate is not particularly limited.
[0080] 本実施例においては、インクジェット装置を用いて、図 3 (b)に示すように、絶縁材料 を TFTギャップ部 31のみに成膜させる。これにより、保護膜 35を成膜するための CV D工程、及び、パターユングするためのフォトエッチング工程が不要になり、フォトリソ グラフィの回数を 1回削減することができる。これに伴い、フォトリソグラフィで用いられ るレジスト材料、現像液、レジスト剥離液等の薬液の使用量を削減することができた。 厳密には、インクジェット法でも絶縁材料等の流動性材料を用いるが、選択的に材料 を吐出するので、その使用量は圧倒的に少ない。したがって、 TFTの製造に関し、 材料コストが削減され、薬液使用に伴う周辺環境への影響 (環境負荷)を低減するこ とができると!、う利点を得ることができる。 In the present embodiment, as shown in FIG. 3B, an insulating material is deposited only on the TFT gap portion 31 using an inkjet device. As a result, CV for forming the protective film 35 is formed. The D process and the photoetching process for patterning are not required, and the number of photolithography can be reduced by one. Along with this, the amount of chemicals used in photolithography, such as resist materials, developing solutions, resist stripping solutions, etc., could be reduced. Strictly speaking, a fluid material such as an insulating material is also used in the ink jet method, but since the material is selectively ejected, the amount used is overwhelmingly small. Therefore, with regard to TFT manufacturing, material costs can be reduced, and the impact on the surrounding environment (environmental impact) associated with the use of chemicals can be reduced!
[0081] また、 TFTの製造を大規模に行う場合には、フォトリソグラフィの回数の削減に伴い、 プロキシミティ露光装置やステップ式露光装置 (ステツパ)等に代表される非常に高価 な露光装置の必要台数が削減されるので、生産ライン全体としての設備投資費用を 削減することができるという効果もある。一般的には、設備投資費用を削減しょうとす ると高価な材料を使わざるを得ない等、設備投資費用の削減と材料コストの削減とは 相反することも多いが、本実施例の製造方法によれば、材料コスト及び設備投資費 用の両方を削減することができる。 [0081] In addition, when manufacturing TFTs on a large scale, along with a reduction in the number of times of photolithography, a very expensive exposure apparatus such as a proximity exposure apparatus or a stepped exposure apparatus (stepper) is used. Since the required number is reduced, the capital investment cost of the entire production line can be reduced. In general, there are many conflicts between the reduction in capital investment costs and the reduction in material costs, such as the necessity of using expensive materials to reduce capital investment costs. According to the method, both material cost and capital investment cost can be reduced.
[0082] また、ソース電極 Z配線及びドレイン電極 Z配線について、保護膜エッチング時のェ ツチング耐性が不要になるため、使用することができる材料の選択肢が増える。例え ば、単層構造やエッチング耐性の弱 、インク配線の使用も可能になる。  [0082] In addition, the source electrode Z wiring and the drain electrode Z wiring do not require etching resistance during etching of the protective film, so that the choice of materials that can be used increases. For example, single layer structure, poor etching resistance, and ink wiring can be used.
[0083] 更に、本実施例において、保護膜 35の形成を塗布により行う利点としては、(1)ソー ス Zドレインの段差を利用することで、水分、不純物等力 の保護が必要なァモルフ ァスシリコン層 12のチャネル領域を効率よく完全に覆うことができる点、(2)上記段差 を利用することで、保護膜材料の広がり方が均一になる点 (なお、不均一に広がると 、透過率、容量が隣接絵素間で変わり表示品位が落ちる可能性がある)、(3)上記段 差と表面接触角を利用することで、必要な TFTギャップ部 31にのみ厚く成膜すること 力 Sできる点、(4)インクジェット装置を用いて選択的に成膜することで材料の利用効 率が向上する点が挙げられる。その他、例えば、ソースメタルが MoZAlZMoの 3層 構造カゝらなる場合には、順テーパ形状にすることは困難であるが、(5)塗布材料を使 うことで、ソースメタルが逆テーパ形状の場合でも断切れなく保護することができる点 等が挙げられる。 [0084] なお、本実施例にお!ヽて、上記保護膜材料として遮光性を兼ねるものを用いてもよ い。これにより、対向電極の遮光層(ブラックマトリクス)を不要にできる場合がある。 また、本実施例において、半導体膜 (n+型アモルファスシリコン層 13及びァモルファ スシリコン層 12)のパターンは、図 5—1に示す形態に限定されず、図 5— 2に示すよ うな形態であってもよい。なお、図 5— 2に示す形態では、ソース Zドレインパターンよ りも半導体膜パターンを小さく形成することで、保護膜 35 (SOG材料)により半導体 パターンが完全に覆われている。これにより、半導体膜の端面が露出しなくなるので 、保護性を向上することができる。 [0083] Further, in this embodiment, the advantages of forming the protective film 35 by coating are as follows: (1) Amorphous silicon which needs to protect moisture, impurities, etc. by using the step of the source Z drain. The point that the channel region of the layer 12 can be efficiently and completely covered, and (2) the use of the above step makes the spread of the protective film material uniform (if the spread is uneven, the transmittance, (3) By using the above difference and surface contact angle, it is possible to form a thick film only on the required TFT gap 31. (4) Utilization efficiency of materials can be improved by selectively forming a film using an inkjet apparatus. In addition, for example, when the source metal is a three-layer structure of MoZAlZMo, it is difficult to make a forward taper shape. (5) By using a coating material, the source metal has a reverse taper shape. Even in some cases, it can be protected without interruption. Note that in the present embodiment, a material having a light shielding property may be used as the protective film material. Thereby, the light shielding layer (black matrix) of a counter electrode may be unnecessary. Further, in this example, the pattern of the semiconductor film (n + type amorphous silicon layer 13 and amorphous silicon layer 12) is not limited to the form shown in FIG. 5-1, but is the form shown in FIG. May be. In the form shown in FIG. 5-2, the semiconductor pattern is completely covered with the protective film 35 (SOG material) by forming the semiconductor film pattern smaller than the source Z drain pattern. As a result, the end face of the semiconductor film is not exposed, so that the protection can be improved.
更に、 TFTギャップ部 31に対する滴下精度を向上させる手段としては、表面接触角 の制御、ソース Zドレインパターンの工夫等の手段が挙げられる。  Further, means for improving the dropping accuracy with respect to the TFT gap portion 31 include means such as control of the surface contact angle and device of the source Z drain pattern.
[0085] なお、インクジェット法を用いるに際し、基板上にバンクを設けることは、従来から知ら れている。例えば、インクジェット法を用いて配線等を形成するような場合、上記特許 文献 4に示すように、配線形成領域を囲むようにバンクパターンを形成し、このバンク ノターンの上部を非親液性とし、配線形成領域を親液性とし、インクジェット装置に要 求される着弾精度を緩和するという技術が開示されている。し力しながら、この技術は 、あくまでバンクによって囲まれた領域にインク材料等の液滴を滴下するものである。  [0085] Note that it is conventionally known that a bank is provided on a substrate when using the ink jet method. For example, when forming a wiring or the like using the ink jet method, as shown in Patent Document 4, a bank pattern is formed so as to surround the wiring formation region, and the upper part of the bank pattern is made non-lyophilic. A technique is disclosed in which the wiring formation region is made lyophilic and the landing accuracy required for the ink jet apparatus is eased. However, this technique only drops droplets of ink material or the like in the area surrounded by the bank.
[0086] 一方、実施例 1のバンクパターンでは、先に説明したように TFTギャップ部 31の両端 34に開放部を有する。すなわち、実施例 1で用いられるバンクパターンは、ソース電 極 15及びドレイン電極 17がある位置にバンクを有する力 TFTチャネル部 31の両 端 34にはバンクを有しない。本発明においては、開放部を有するバンクパターンを 用いると、 TFT7のソース電極 15及びドレイン電極 17のように、同一平面に一対の電 極を設け、その隙間部に相当する位置に液滴を滴下して加工するという本実施例の ような加工方法が可能であり、従来の製造方法より少ない工程数で、 TFT等の薄膜 素子を作製することができる。  On the other hand, the bank pattern of the first embodiment has open portions at both ends 34 of the TFT gap portion 31 as described above. That is, the bank pattern used in Example 1 does not have banks at both ends 34 of the force TFT channel portion 31 having banks at positions where the source electrode 15 and the drain electrode 17 are located. In the present invention, when a bank pattern having an open portion is used, a pair of electrodes are provided on the same plane as the source electrode 15 and the drain electrode 17 of the TFT 7, and a droplet is dropped at a position corresponding to the gap portion. Thus, the thin film element such as a TFT can be manufactured with a smaller number of steps than the conventional manufacturing method.
[0087] また、従来技術におけるバンクパターンは、配線等の形成目的のためにフォトリソダラ フィを用いてわざわざ作製されており、フォトリソグラフィの回数の削減には繋がらな い。し力しながら、本実施例では、元々の製造工程で作製される TFTギャップ部 31 の両側のソース電極 15、ドレイン電極 17及び n+型アモルファスシリコン膜 13の積層 構造により形成される段差をバンクパターンとして用いるので、フォトリソグラフィの回 数を増加させることなぐインクジェット装置に要求される着弾精度を緩和することがで きる。 [0087] In addition, the bank pattern in the prior art is purposely produced using photolithography for the purpose of forming wiring and the like, and does not lead to a reduction in the number of times of photolithography. However, in this embodiment, the source electrode 15, the drain electrode 17 and the n + type amorphous silicon film 13 on both sides of the TFT gap portion 31 manufactured in the original manufacturing process are stacked. Since the step formed by the structure is used as the bank pattern, it is possible to reduce the landing accuracy required for the ink jet apparatus without increasing the number of times of photolithography.
[0088] 実施例 1においては、図 5—1 (a)及び (b)に示されるような保護膜 35を得た力 本発 明にお 、て保護膜 35の形状は特に限定されな 、。  [0088] In Example 1, the force for obtaining the protective film 35 as shown in FIGS. 5-1 (a) and (b) In the present invention, the shape of the protective film 35 is not particularly limited. .
また、実施例 1では、表面処理は、四フッ化炭素(CF )ガスを用いたプラズマ処理法  In Example 1, the surface treatment is performed by a plasma treatment method using carbon tetrafluoride (CF 3) gas.
4  Four
で行ったが、例えば、所望の親撥液性を有する膜 (親撥液膜)を表面に形成する方 法等を用いてもよい。親撥液膜としては、分子が三次元的に配列した薄膜であっても よいし、単分子膜であってもよい。親撥液膜を形成するための材料としては、アルキ ルシラン、フッソ化アルキルシラン、アクリル榭脂、ノボラック榭脂、シリコーン榭脂、フ ッ素榭脂等の榭脂材料と、アルコールやフッ素系溶剤等の有機溶剤又は水等とから 構成される流動性材料を用いることができる。また、親撥液膜の形成方法としては、ス プレー法、蒸着法、 CVD法、スパッタ法、スピンコート法、浸漬法等、インクジェット法 等が挙げられ、上記プラズマ処理法と組み合わせてもよい。更に、親撥液膜は、 TF Tの構造内に残されてもよい。例えば、図 6 (a)では、親撥液膜 76が TFTギャップ部 31に残されている。なお、図 6 (b)は、図 6 (a)の O— O線における概略断面図である  However, for example, a method of forming a desired lyophobic film (lyophobic film) on the surface may be used. The lyophobic film may be a thin film in which molecules are arranged three-dimensionally or may be a monomolecular film. Materials for forming the lyophobic film include silane materials such as alkyl silane, fluorinated alkyl silane, acrylic resin, novolac resin, silicone resin, and fluorine resin, and alcohol and fluorine-based solvents. A fluid material composed of an organic solvent such as water or the like can be used. In addition, examples of the method for forming the lyophobic film include a spray method, a vapor deposition method, a CVD method, a sputtering method, a spin coating method, a dipping method, an ink jet method, and the like, and may be combined with the plasma treatment method. Further, the lyophobic film may be left in the structure of TFT. For example, in FIG. 6A, the lyophobic film 76 is left in the TFT gap portion 31. FIG. 6B is a schematic cross-sectional view taken along the line O—O in FIG.
[0089] (実施例 2) [Example 2]
本実施例では、ゲート電極 Z配線形成工程と、ゲート絶縁膜 Z下層半導体膜 Z上 層半導体膜成膜工程と、ソース Zドレインの電極 Z配線形成工程と、チャネルエッチ ング工程 (上層半導体膜パター-ング工程)とが順に行われた後、保護膜形成工程 が行われ、続いて下層半導体膜パター-ング工程が行われる。すなわち、本実施例 においては、図 7に製造工程フローを示すように、下層半導体膜パター-ング工程を 保護膜 35形成後に行うこととし、 TFTギャップ部に塗布形成した SOG材料を用いて 形成された保護膜 35及びソース Zドレインパターンをマスクとして、それ以外の下層 アモルファスシリコン膜 27をエッチング除去すること以外は、実施例 1と同様にして実 施することができる。本実施例によれば、図 8に示す平面パターンを有する TFTを製 造することができる。 なお、図 7の(a)は、実施例 2のチャネルエッチング工程後の TFTとその近傍の構成 を示す概略断面図であり、(b)は、実施例2の保護膜形成工程後の TFTとその近傍 の構成を示す概略断面図であり、(c)は、実施例 2の半導体膜パターニング工程後 の TFTとその近傍の構成を示す概略断面図である。また、図 8は、実施例 2の半導体 膜パターニング工程後の TFTとその近傍の構成を示す概略平面図である。 In this example, the gate electrode Z wiring forming process, the gate insulating film Z lower semiconductor film Z upper semiconductor film forming process, the source Z drain electrode Z wiring forming process, the channel etching process (upper semiconductor film pattern) Are sequentially performed, followed by a protective film forming process, followed by a lower semiconductor film patterning process. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 7, the lower semiconductor film patterning process is performed after the protective film 35 is formed, and is formed using the SOG material applied and formed in the TFT gap portion. The same process as in Example 1 can be performed except that the lower amorphous silicon film 27 is removed by etching using the protective film 35 and the source Z drain pattern as a mask. According to this example, a TFT having the planar pattern shown in FIG. 8 can be manufactured. 7A is a schematic cross-sectional view showing the TFT after the channel etching process of Example 2 and the configuration in the vicinity thereof, and FIG. 7B is a schematic view of the TFT after the protective film forming process of Example 2. FIG. 4C is a schematic cross-sectional view showing the configuration in the vicinity thereof, and FIG. 5C is a schematic cross-sectional view showing the configuration of the TFT after the semiconductor film patterning step of Example 2 and the configuration in the vicinity thereof. FIG. 8 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor film patterning process of the second embodiment.
本実施例によれば、実施例 1と同様の効果を得ることができ、し力もアモルファスシリ コン膜 27をパターユングするためのフォトレジスト形成工程を削減することができる。  According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the photoresist forming process for patterning the amorphous silicon film 27 can be reduced.
[0090] (実施例 3) [Example 3]
本実施例では、ゲート電極 Z配線形成工程と、ゲート絶縁膜成膜工程と、ソース Zド レインの電極 Z配線形成工程とが順に行われた後、半導体層形成工程が行われる。 すなわち、本実施例においては、図 9に製造工程フローを示すように、塗布型の半導 体材料をインクジェット装置にて TFTギャップ部に塗布形成する。これにより、 CVD 装置による半導体層成膜が不要になる。本実施例によれば、図 10に示す平面バタ ーンを有する TFTを製造することができる。  In this embodiment, after the gate electrode Z wiring forming process, the gate insulating film forming process, and the source Z drain electrode Z wiring forming process are sequentially performed, the semiconductor layer forming process is performed. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 9, a coating-type semiconductor material is applied and formed in the TFT gap portion by an inkjet apparatus. This eliminates the need for semiconductor layer deposition by a CVD apparatus. According to the present embodiment, a TFT having the planar pattern shown in FIG. 10 can be manufactured.
なお、図 9の(a)は、実施例 3のソース Zドレインの電極 Z配線形成工程後の TFTと その近傍の構成を示す概略断面図であり、(b)は、実施例 3の半導体層形成工程後 の TFTとその近傍の構成を示す概略断面図である。また、図 10は、実施例 3の半導 体層形成工程後の TFTとその近傍の構成を示す概略平面図である。  9A is a schematic cross-sectional view showing the structure of the TFT after the source Z drain electrode Z wiring formation step and its vicinity in Example 3, and FIG. 9B is a schematic cross-sectional view of the semiconductor layer of Example 3. It is a schematic sectional drawing which shows the structure of TFT after the formation process, and its vicinity. FIG. 10 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor layer forming step of the third embodiment.
[0091] 上記半導体材料の固形分としては、酸化スズ、酸化インジウム、酸化チタン、チタン 酸ストロンチウム、酸化亜鉛、窒化ガリウム、銅インジウム酸ィ匕物等が挙げられる。更 に半導体材料により形成された半導体層 36上には SOG材料等カゝらなる膜を保護膜 として積層してちょい。 [0091] Examples of the solid content of the semiconductor material include tin oxide, indium oxide, titanium oxide, strontium titanate, zinc oxide, gallium nitride, and copper indium oxide. Furthermore, on the semiconductor layer 36 made of a semiconductor material, a film such as an SOG material may be laminated as a protective film.
[0092] 本実施例において、半導体層 36の形成を塗布により行う利点としては、(1)ソース Z ドレイン間の段差を利用することで、 TFTギャップ部(チャネル溝)をシリコン (Si)層に より効率よく完全に埋めることができる点、(2)上記段差を利用することで、半導体層 材料の広がり方が均一になる点(不均一に広がると半導体層の面積が不均一になる ため、容量、 I-V特性が隣接絵素間で変わり表示品位が落ちる可能性がある)、 (3) 上記段差と表面接触角を利用することで、必要な TFTギャップ部にのみ厚く成膜す ることができる点が挙げられる。 In this embodiment, the advantages of forming the semiconductor layer 36 by coating are as follows: (1) By using the step between the source Z and the drain, the TFT gap (channel groove) is made into a silicon (Si) layer. (2) By using the above step, the spread of the semiconductor layer material becomes uniform (because the area of the semiconductor layer becomes nonuniform when spread unevenly, Capacitance and IV characteristics may change between adjacent picture elements and display quality may deteriorate.) (3) By using the above step and surface contact angle, a thick film is formed only in the necessary TFT gap. The point which can be mentioned.
[0093] (実施例 4)  [0093] (Example 4)
本実施例では、正スタガ構造の TFTを製造した。具体的には、ソース Zドレインの電 極 Z配線形成工程と、下層半導体層形成工程とが順に行われた後、遮光層形成ェ 程が行われ、続いて上層半導体層形成工程と、ゲート絶縁膜成膜工程と、ゲート電 極 Z配線形成工程とが順に行われる。すなわち、本実施例においては、図 11に製 造工程フローを示すように、ソース Zドレインパターユング後の TFTギャップ部にイン クジェット装置にて遮光材料を塗布形成する。これにより、遮光層 37を形成するため のレジスト膜形成、露光、エッチング及び剥離工程が不要になる。また、流動性を有 する遮光材料により、下層半導体層(例えば n+型アモルファスシリコン層)、及び、ソ ース Zドレインの電極 Z配線により形成される段差部、すなわちチャネル溝を埋める ので、上層半導体層(例えばアモルファスシリコン層)形成時の断切れを防ぐことがで きる。本実施例によれば、図 12に示す平面パターンを有する TFTを製造することが できる。  In this example, a TFT with a positive stagger structure was manufactured. Specifically, after the electrode Z wiring formation process of the source Z drain and the lower semiconductor layer formation process are sequentially performed, the light shielding layer formation process is performed, followed by the upper semiconductor layer formation process and the gate insulation process. A film forming process and a gate electrode Z wiring forming process are sequentially performed. That is, in this embodiment, as shown in the manufacturing process flow in FIG. 11, a light shielding material is applied and formed by an inkjet device in the TFT gap portion after the source Z drain patterning. This eliminates the need for resist film formation, exposure, etching and stripping steps for forming the light shielding layer 37. In addition, the step portion formed by the lower semiconductor layer (for example, n + type amorphous silicon layer) and the electrode Z wiring of the source Z drain, that is, the channel groove, is filled with a light-shielding material having fluidity. It is possible to prevent breakage when forming a layer (for example, an amorphous silicon layer). According to this embodiment, a TFT having the planar pattern shown in FIG. 12 can be manufactured.
なお、図 11の(a)は、実施例 4の下層半導体層形成工程後の TFTとその近傍の構 成を示す概略断面図であり、(b)は、実施例 4の遮光層形成工程後の TFTとその近 傍の構成を示す概略断面図であり、(c)は、実施例 4のゲート電極 Z配線形成工程 後の TFTとその近傍の構成を示す概略断面図である。また、図 12は、実施例 4のゲ ート電極 Z配線形成工程後の TFTとその近傍の構成を示す概略平面図である。  FIG. 11 (a) is a schematic cross-sectional view showing the TFT and the structure in the vicinity thereof after the lower semiconductor layer forming step of Example 4, and FIG. 11 (b) is after the light shielding layer forming step of Example 4. FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT and its vicinity, and FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT and its vicinity after the gate electrode Z wiring formation process of Example 4. FIG. 12 is a schematic plan view showing the configuration of the TFT and its vicinity after the gate electrode Z wiring forming process of the fourth embodiment.
[0094] 本実施例において、遮光層 37の形成を塗布により行う利点としては、(1)ソース Zド レイン間の段差を利用することで、 TFTギャップ部(チャネル溝)を遮光材料により効 率よく完全に埋めることができる点、(2)上記段差を利用することで、遮光材料の広が り方が均一になる点 (遮光材料が不必要な部分に不均一に広がると、開口率が低下 したり、透過率が隣接絵素間で変わったりして、表示品位が低下する可能性がある) 、(3)上記段差と表面接触角を利用することで、必要な TFTギャップ部にのみ厚く成 膜することができる点が挙げられる。  In this embodiment, the advantages of forming the light shielding layer 37 by coating are as follows: (1) By using the step between the source Z drain, the TFT gap portion (channel groove) is made more efficient by the light shielding material. (2) Use of the above steps makes the spread of the light shielding material uniform (if the light shielding material spreads unevenly in unnecessary parts, the aperture ratio (3) By using the above step and surface contact angle, only the necessary TFT gap area can be obtained. It is possible to form a thick film.
[0095] (その他)  [0095] (Other)
実施例 2及び 4において、ソース配線及びゲート配線上に、腐食防止等の目的で 機能膜 (保護膜又は遮光層)を設けることが好ましい場合には、 TFT部の保護と同時 に配線部にも SOG材料等の機能材料を塗布することで機能膜を形成してもよい。例 えば、図 13に示すように、ソース配線 14上に形成してもよい。これにより、配線の腐 食を防ぐことができるとともに、低誘電率の材料を用いれば、上層との容量を低減す ることがでさる。 In Examples 2 and 4, on the source wiring and gate wiring, for the purpose of preventing corrosion, etc. When it is preferable to provide a functional film (a protective film or a light shielding layer), the functional film may be formed by applying a functional material such as an SOG material to the wiring portion simultaneously with the protection of the TFT portion. For example, it may be formed on the source wiring 14 as shown in FIG. As a result, corrosion of the wiring can be prevented, and if a low dielectric constant material is used, the capacitance with the upper layer can be reduced.
[0096] 上記配線上に機能膜を形成する場合の具体例としては、(1)ゲート上に低誘電率の SOG材料等の機能材料を塗布形成することで、ソース、画素電極、対向電極との容 量を減らすことができる。ただし、この場合は、ゲートパターニングが完了した時点で 、ゲートパターンを利用して機能材料をインクジェット装置にて塗布形成する必要が ある。(2)ソース上に低誘電率の機能材料を塗布形成することで、画素電極、対向電 極との容量を減らすことができる。この場合は、 TFTギャップ部に機能材料を塗布形 成するのと同時に形成可能である。(3)正スタガ構造において、ソース上に低誘電率 の機能材料を塗布形成することで、ゲート、対向電極との容量を減らすことができる。 (4)正スタガ構造において、ゲート上に機能材料を塗布形成したときに、半導体層( 例えば Si層)の側面も覆うことができれば、マスク枚数を増やすことなく半導体層(例 えば Si層)の保護が可能となる。  [0096] As a specific example of forming a functional film on the wiring, (1) by applying a functional material such as a low dielectric constant SOG material on the gate, the source, the pixel electrode, and the counter electrode The capacity of can be reduced. However, in this case, when the gate patterning is completed, it is necessary to apply and form a functional material using an ink jet apparatus using the gate pattern. (2) Capacitance between the pixel electrode and the counter electrode can be reduced by applying and forming a low dielectric constant functional material on the source. In this case, it can be formed at the same time as the functional material is applied to the TFT gap. (3) In the positive stagger structure, the capacitance between the gate and the counter electrode can be reduced by applying and forming a low dielectric constant functional material on the source. (4) In a positive staggered structure, if the functional material is applied and formed on the gate and the side surface of the semiconductor layer (eg, Si layer) can also be covered, the semiconductor layer (eg, Si layer) can be formed without increasing the number of masks. Protection is possible.
[0097] (比較例 1) [0097] (Comparative Example 1)
比較例 1として、従来の逆スタガ型アモルファスシリコン TFTの製造方法について、 図 14〜16を参照しながら説明する。  As Comparative Example 1, a conventional method for manufacturing an inverted staggered amorphous silicon TFT will be described with reference to FIGS.
図 14の(a)は、比較例 1のチャネルエッチング工程後の TFTとその近傍の構成を示 す概略断面図であり、(b)は、比較例 1の保護膜形成工程後の TFTとその近傍の構 成を示す概略断面図であり、(c)は、比較例 1の保護膜パター-ング工程後の TFTと その近傍の構成を示す概略断面図である。また、図 15は、比較例 1の保護膜パター ニング工程後の TFTとその近傍の構成を示す概略平面図である。更に、図 16は、図 14の(a)〜(c)に対応し、比較例 1のチャネルエッチング工程後のソース配線とその 近傍の構成を示す概略断面図であり、(b)は、比較例 1の保護膜形成工程後のソー ス配線とその近傍の構成を示す概略断面図であり、(c)は、比較例 1の保護膜パター ニング工程後のソース配線とその近傍の構成を示す概略断面図である。 [0098] 比較例 1では、ゲート電極 Z配線形成工程と、ゲート絶縁膜 Z下層半導体膜 Z上層 半導体膜成膜工程と、下層及び上層半導体膜パター-ング工程と、ソース Zドレイン の電極 Z配線形成工程と、チャネルエッチング工程とが順に行われた後、 CVD法を 用いた保護膜形成工程が行われ、続いてフォトレジストの形成、エッチング及びレジ スト剥離を行う保護膜パター-ング工程が行われる。すなわち、比較例 1においては 、図 14に製造工程フローを示すように、 CVD法により基板全面に保護膜 35aを形成 した後、保護膜 35aのパターユング力フォトリソグラフィにより行われる。したがって、 比較例 1では、実施例 1と比べてフォトレジスト回数が 1回多くなる。 14A is a schematic cross-sectional view showing the TFT after the channel etching process of Comparative Example 1 and the configuration in the vicinity thereof, and FIG. 14B is the TFT after the protective film forming process of Comparative Example 1 and its TFT. FIG. 4C is a schematic cross-sectional view showing a configuration in the vicinity, and FIG. 5C is a schematic cross-sectional view showing a TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof. FIG. 15 is a schematic plan view showing the configuration of the TFT and its vicinity after the protective film patterning process of Comparative Example 1. FIG. Further, FIG. 16 is a schematic cross-sectional view corresponding to (a) to (c) of FIG. 14 and showing the configuration of the source wiring and its vicinity after the channel etching process of Comparative Example 1, and (b) is a comparison. FIG. 6 is a schematic cross-sectional view showing the source wiring after the protective film formation process of Example 1 and the configuration in the vicinity thereof, and (c) shows the configuration of the source wiring after the protective film patterning process in Comparative Example 1 and the vicinity thereof. It is a schematic sectional drawing. [0098] In Comparative Example 1, the gate electrode Z wiring forming step, the gate insulating film Z the lower semiconductor film Z, the upper semiconductor film forming step, the lower and upper semiconductor film patterning steps, and the source Z drain electrode Z wiring After the formation process and the channel etching process are performed in order, a protective film formation process using a CVD method is performed, followed by a protective film patterning process for forming a photoresist, etching, and resist removal. Is called. That is, in Comparative Example 1, as shown in the manufacturing process flow in FIG. 14, after the protective film 35a is formed on the entire surface of the substrate by the CVD method, the patterning force photolithography of the protective film 35a is performed. Therefore, in Comparative Example 1, the number of photoresists is one more than in Example 1.
[0099] (実施例 5) [0099] (Example 5)
実施例 1〜4では、本発明の TFTの製造方法を示した力 実施例 5では、これらの製 造方法に適する TFTの形状について、図 17—1及び 17— 2を参照しながら説明す る。なお、図中、実質的に実施例 1の場合と同様の機能を有する構成要素を同じ参 照符号で示す。  In Examples 1 to 4, force showing the TFT manufacturing method of the present invention In Example 5, TFT shapes suitable for these manufacturing methods will be described with reference to FIGS. 17-1 and 17-2. . In the figure, components having substantially the same functions as those in the first embodiment are denoted by the same reference numerals.
[0100] 図 17— 1 (a)は、実施例 5の TFTの構成を示す概略平面図であり、 (b)は、(a)の X  [0100] Fig. 17-1 (a) is a schematic plan view showing the structure of the TFT of Example 5, and (b) is an X of (a).
X線における概略断面図である。  It is a schematic sectional drawing in an X-ray.
本実施例の TFT121は、図 17— 1 (a)及び (b)に示すように、ボトムゲート構造を有 し、ガラス基板 8上に、ゲート配線 9から分岐したゲート電極 10と、その上層のゲート 絶縁膜 11と、アモルファスシリコン層 12と、 n+型アモルファスシリコン層 13と、ソース 配線 14力 分岐したソース電極 15と、ドレイン接続配線 16に接続されるドレイン電極 122と力ら構成される。具体的には、 TFT121は、ドレイン電極 122が、チャネル部 側の端部に部分的切欠部を有する。  As shown in FIGS. 17-1 (a) and (b), the TFT 121 of this embodiment has a bottom gate structure, and has a gate electrode 10 branched from the gate wiring 9 on the glass substrate 8 and an upper layer thereof. The gate insulating film 11, the amorphous silicon layer 12, the n + type amorphous silicon layer 13, the source wiring 14, the branched source electrode 15, and the drain electrode 122 connected to the drain connection wiring 16 are configured. Specifically, in the TFT 121, the drain electrode 122 has a partial notch at the end on the channel portion side.
[0101] ここで、アモルファスシリコン層 12のうち、ソース電極 15とドレイン電極 122との間に 形成された隙間部分の下層領域に TFTチャネル部 18が形成され、該隙間部分に T FTチャネル部 18を覆う保護膜 (機能膜) 35が形成されている。なお、ドレイン接続配 線 16は、例えばディスプレイ用途では、画素電極(図示せず)とドレイン電極 122とを 接続する等のために形成される。  Here, in the amorphous silicon layer 12, a TFT channel portion 18 is formed in a lower layer region of a gap portion formed between the source electrode 15 and the drain electrode 122, and the TFT channel portion 18 is formed in the gap portion. A protective film (functional film) 35 is formed to cover the film. The drain connection wiring 16 is formed, for example, for connecting a pixel electrode (not shown) and the drain electrode 122 in a display application.
[0102] 図 17— 1 (&)及び(1))に示す丁?丁121は、ドレイン電極 122の中央部付近に切欠部 122aを有している。ただし、切欠部 122aもまた、ガラス基板 8上にゲート電極 10、ゲ ート絶縁膜 11及びアモルファスシリコン膜 12が積層された構造を有するため、 TFT のチャネルとして機能することができる。 [0102] Figure 17-1 Ding shown in (&) and (1))? Ding 121 has a notch 122a near the center of drain electrode 122. However, the notch 122a is also formed on the glass substrate 8 with the gate electrode 10 and the gate. Since the gate insulating film 11 and the amorphous silicon film 12 are stacked, it can function as a TFT channel.
図 17— 1 (a)に示す切欠部 122aの奥行き Waは、 Wa = 5 iu m,幅 Wbは、 Wb = 10 /z mとした。また、図 17— 1 (a)中、 Lは L= 3 m、 Wは W=60 mとした。 Depth Wa of the notch 122a shown in FIG. 17- 1 (a) is Wa = 5 i um, width Wb is set to Wb = 10 / zm. In Fig. 17-1 (a), L is L = 3 m and W is W = 60 m.
[0103] 以下に、本実施例でこのような切欠部 122aを設けた理由をについて説明する。 [0103] Hereinafter, the reason why such a notch 122a is provided in the present embodiment will be described.
本実施例の TFTの製造方法としては、実施例 1の製造方法を用いることを想定して いる。  It is assumed that the manufacturing method of Example 1 is used as the TFT manufacturing method of this example.
実施例 1の製造方法では、 TFTギャップ部 31に保護膜 35を形成する。このとき、保 護膜 35は、実施例 1で説明したようにインクジェット装置を用いて流動性を有する絶 縁材料の液滴を基板上に着弾させることによって作製されるが、このとき、液滴は TF Tギャップ部 31を埋めるように広がる。  In the manufacturing method of Example 1, the protective film 35 is formed in the TFT gap portion 31. At this time, the protective film 35 is produced by landing droplets of an insulating material having fluidity on the substrate using an ink jet apparatus as described in the first embodiment. Expands to fill the TF T gap 31.
[0104] そこで、まず、実施例 1に記載の設計条件で、 TFTギャップ部 31をちようど埋める液 滴の体積を計算した。すなわち、ソース電極 15とドレイン電極 17の間の隙間領域で 、高さは n+型アモルファスシリコン層 13及びソース電極 15又はドレイン電極 17の積 層がつくる段差を埋める体積を計算した。実施例 1記載の数値を用いて計算した結 果、 TFTギャップ部 31の体積は、 0. 054plであった。 [0104] Therefore, first, under the design conditions described in Example 1, the volume of the liquid droplet filling the TFT gap 31 was calculated. That is, in the gap region between the source electrode 15 and the drain electrode 17, the height was calculated as the volume filling the step formed by the n + -type amorphous silicon layer 13 and the source electrode 15 or drain electrode 17 layer. As a result of calculation using the numerical values described in Example 1, the volume of the TFT gap portion 31 was 0.054 pl.
したがって、実施例 1の製造方法を用いる場合、適切な液滴の体積は、固形分濃度 が 10体積%であれば、 0. 5plを目安として考えればよぐこれよりもあまりにも多すぎ ると、 TFTギャップ部 31の両端 34で表面張力の限界を超え、液滴は TFTギャップ部 31の両端 34から多量に溢れ出てしまう。  Therefore, when the production method of Example 1 is used, an appropriate droplet volume is too much if 0.5 pl is considered as a guide if the solid content concentration is 10% by volume. The surface tension limit is exceeded at both ends 34 of the TFT gap 31, and a large amount of droplets overflows from both ends 34 of the TFT gap 31.
[0105] 一方、インクジェット装置で吐出可能な液滴の最小体積を考えると、約 lpl以上である 場合が多ぐ実施例 1で吐出される液滴の体積は、 l〜2plであった。これは、インクジ エツト装置のヘッドの構造等に起因する。すなわち、液滴が微小になるほど、ノズル( 吐出用の穴)の径もまた微小なサイズとなるので、高い加工精度が必要となったり、ノ ズルが詰まりやすくなつたりするためである。 [0105] On the other hand, considering the minimum volume of droplets that can be ejected by the inkjet apparatus, the volume of droplets ejected in Example 1 that is often about lpl or more was 1 to 2pl. This is due to the structure of the head of the ink jet device. In other words, the smaller the droplet, the smaller the diameter of the nozzle (discharge hole), so that high processing accuracy is required and the nozzle is likely to be clogged.
したがって、インクジェット装置で吐出可能な液滴の最小体積は、先に計算した実施 例 1の TFTギャップ部 31の体積と比べて 2倍以上の大きな値である。  Therefore, the minimum volume of droplets that can be ejected by the ink jet apparatus is a value that is at least twice as large as the volume of the TFT gap portion 31 of Example 1 previously calculated.
[0106] このような両者の隔たりを埋めるには、本実施例のように、ソース電極及び Z又はドレ イン電極に切欠部を設けることが好ましい。これにより、保護膜形成工程において、 切欠部を余剰の液滴を吸収する場所とすることができる。 In order to fill the gap between the two, as in this embodiment, the source electrode and the Z or drain It is preferable to provide a notch in the in-electrode. Thus, in the protective film forming step, the notch can be made a place for absorbing excess droplets.
本実施例の TFT121は、ドレイン電極 122に切欠部 122aを設けたので、 TFTギヤッ プ部の体積は 0. 069plとなり、インクジェット装置で吐出可能な液滴の体積に近づけ ることができる。したがって、保護膜形成工程において、 TFTギャップ部 31の両端 34 力も液滴が多量には溢れ出ることを防ぐことができ、 TFT121の形状をより安定して 作製することができる。  In the TFT 121 of this embodiment, since the notch 122a is provided in the drain electrode 122, the volume of the TFT gear portion is 0.069pl, which can be close to the volume of droplets that can be ejected by the ink jet apparatus. Therefore, in the protective film formation step, the force at both ends 34 of the TFT gap portion 31 can be prevented from overflowing a large amount of droplets, and the shape of the TFT 121 can be manufactured more stably.
[0107] 本発明者らは、切欠部 122a有無のそれぞれのパターンを用意した実験によっても、 上述の作用効果を確かめることができ、ソース電極及び Z又はドレイン電極に切欠 部を設けることが有効であることを見出した。なお、ドレイン電極 122に切欠部 122a を設けることにより、 TFTのオン電流値はやや低くなる力 これは全体のサイズ等を 見直す等の最適化を行うことにより、所望の電気特性を有する TFTを再設計すること ができる。  [0107] The present inventors can confirm the above-described effects by experiments in which respective patterns with or without the notches 122a are prepared, and it is effective to provide notches in the source electrode and the Z or drain electrode. I found out. Note that the notch 122a is provided in the drain electrode 122, so that the on-current value of the TFT is slightly reduced. This is achieved by optimizing the entire size, etc., so that the TFT having the desired electrical characteristics can be restored. Can be designed.
[0108] 以上に示すように、実施例 1の製造方法で TFTを作製する場合、ソース電極及びド レイン電極の少なくとも一方のチャネル部側の端部に部分的切欠部を設けることによ り、 TFTチャネル部の体積とインクジェット装置で吐出可能な液滴の最小体積との間 の隔たりを低減することができ、形状を安定させて TFTを作製することができる。 なお、実施例 1の製造方法に限定されず、実施例 2〜4の製造方法を用いた場合に も同様の作用効果を得ることができる。  [0108] As described above, when a TFT is manufactured by the manufacturing method of Example 1, by providing a partial cutout at the end of at least one of the source electrode and the drain electrode on the channel side, The separation between the volume of the TFT channel portion and the minimum volume of droplets that can be ejected by the inkjet apparatus can be reduced, and the TFT can be manufactured with a stable shape. In addition, it is not limited to the manufacturing method of Example 1, When using the manufacturing method of Examples 2-4, the same effect can be obtained.
[0109] なお、切欠部の形状としては、図 17— 2に示すような形状であってもよい。すなわちド レイン電極 124は切欠部 124aを有し、図 17— 2 (a)に示す切欠部 124aの奥行き W aは、 ϋ μ m、幅 Wbは、 Wb = 3 ;z mとした。幅 Wbは TFTのチャネル長 Lと同じ 値にした。液滴からできた保護膜はお椀形 (断面形状が U字形状)になりやすぐす なわち TFTギャップ部内でソース電極又はドレイン電極カゝら離れた場所ほど膜厚が 薄くなりやすい。このように膜厚が薄くなると、保護膜としての役割を充分に果たさなく なる可能性がある。したがって、本実施例のように、切欠部は、フォトリソグラフィの最 良の解像度を用いて形成される TFTチャネル長と同じ幅で設けることにより、中央部 の膜厚が薄くなることを極力避けることができる。このような切欠部は複数設けてもよ い。 [0109] The shape of the notch may be a shape as shown in Fig. 17-2. That is, the drain electrode 124 has a notch 124a. The depth Wa of the notch 124a shown in FIG. 17-2 (a) is ϋ μm and the width Wb is Wb = 3; zm. The width Wb is the same value as the TFT channel length L. The protective film made of droplets becomes bowl-shaped (the cross-sectional shape is U-shaped), that is, the film thickness tends to decrease as the distance from the source or drain electrode within the TFT gap section increases. If the film thickness is reduced in this way, the role as a protective film may not be sufficiently fulfilled. Therefore, as in this embodiment, the cutout is provided with the same width as the TFT channel length formed using the best resolution of photolithography, so as to avoid a reduction in the thickness of the central portion as much as possible. Can do. A plurality of such notches may be provided. Yes.
[0110] (実施例 6)  [0110] (Example 6)
本発明の TFTは、チャネル部の形状に、コの字又は U字の形状部を含む TFTであ つてもよい。本実施例は、このような形態の TFTについて示すものである。  The TFT of the present invention may be a TFT including a U-shaped or U-shaped portion in the shape of the channel portion. This embodiment shows such a TFT.
上記 TFTとしては、例えば、図 18 (a)及び (b)に示されるような形状を有する TFT12 5が挙げられる。図 18 (a)は、 TFT125を表す概略平面図であり、図 18 (b)は、図 18 (a)中の Y—Y線における概略断面図である。図 18に示される TFT125は、 TFTチ ャネル部 18がコの字形状 (U字形状)を有し、 2箇所で曲げられたような形状である。 ドレイン電極 126も同様にコの字形状形状を有している力 ソース電極 127は直線形 状である。ここで、 TFTチャネル部 18の形状は、コの字形状型としたので、より小さな 円内に収まるようになって!/、る。  An example of the TFT is a TFT 125 having a shape as shown in FIGS. 18 (a) and 18 (b). FIG. 18 (a) is a schematic plan view showing the TFT 125, and FIG. 18 (b) is a schematic cross-sectional view taken along line YY in FIG. 18 (a). The TFT 125 shown in FIG. 18 has a shape in which the TFT channel portion 18 has a U-shape (U-shape) and is bent at two locations. Similarly, the drain electrode 126 has a U-shaped shape. The force source electrode 127 has a linear shape. Here, since the shape of the TFT channel portion 18 is a U-shaped shape, it will fit within a smaller circle!
[0111] このような TFT125の形状は、実施例 1の製造方法に適する。これには、保護膜形成 工程で、基板に着弾させた直後の液滴がほぼ円形の平面形状を有することが関係 する。 TFTチャネル部 18の形状をこのように小さな円内に収まるようにしておくと、液 滴は着弾直後から TFTギャップ部の多くの場所を埋めることができる。したがって、着 弹後の液滴をあまり長 、距離を伸ばさなくても、実質的にチャネル幅の長 、TFTを 作製できるので、特に本発明の方法でチャネル部が長!ヽ TFTを作製する場合に有 効である。また、半導体層の半導体素子を構成する部分におけるチャネルの面積比 率を大きくすることが可能であり、チャネル溝の容積を大きくすることができる。その結 果、チャネル溝に滴下した流動性を有する材料を溝内に留めさせやすくなり、機能膜 の形成を精度良く行うことができる。  Such a shape of the TFT 125 is suitable for the manufacturing method of the first embodiment. This is related to the fact that the droplet immediately after landing on the substrate in the protective film forming step has a substantially circular planar shape. By keeping the shape of the TFT channel portion 18 in such a small circle, the liquid droplet can fill many locations in the TFT gap portion immediately after landing. Therefore, it is possible to produce a TFT having a substantially longer channel width and TFT without extending the distance of the droplet after landing so much, and the channel portion is particularly long in the method of the present invention!で Effective when manufacturing TFTs. In addition, the area ratio of the channel in the portion of the semiconductor layer constituting the semiconductor element can be increased, and the volume of the channel groove can be increased. As a result, the fluid material dropped into the channel groove can be easily retained in the groove, and the functional film can be formed with high accuracy.
[0112] 参考のため、実施例 1に示した製造方法で TFT125を作製する場合、許容できるィ ンクジェット装置の着弾誤差を調べた。  [0112] For reference, when a TFT 125 was manufactured by the manufacturing method shown in Example 1, an allowable landing error of an ink jet apparatus was examined.
まず、図 19を参照して、ソース電極 127及びドレイン電極 126の詳細な形状を説明 する。図 19は、図 18 (a)中のソース電極 127及びドレイン電極 126を拡大して示す 概略平面図である。図中、ソース電極 127とドレイン電極 126との間隔 Lは L = 3 m 、ソース電極 127及びドレイン電極 126の大きさは、 Wl = 30 iu m, W2= l l μ m, W3=40 μ m及び W4=43 μ mとした。 W3と W4の値が近ぐ更にソース電極 127と ドレイン電極 126の隙間である TFTギャップ部 31に TFTチャネル部が形成されるこ とを考えると、 TFT125の形状は全体的にほぼ正方形に近い形といえる。なお、実効 的な TFTのチャネル幅 Wは明らかでないが、ソース電極 127とドレイン電極 126のチ ャネルに接する部分のそれぞれの長さから想像して、 W= 59〜71 μ m相当と思われ る。実施例 1での TFT7は W=60 iu mであったので、これに近い値である。 First, detailed shapes of the source electrode 127 and the drain electrode 126 will be described with reference to FIG. FIG. 19 is an enlarged schematic plan view showing the source electrode 127 and the drain electrode 126 in FIG. 18 (a). In the figure, the distance L between the source electrode 127 and the drain electrode 126 is L = 3 m, and the sizes of the source electrode 127 and the drain electrode 126 are Wl = 30 i um, W2 = ll μm, W3 = 40 μm and W4 = 43 μm. Source electrode 127 and W3 and W4 are close Considering that the TFT channel part is formed in the TFT gap part 31, which is the gap between the drain electrodes 126, it can be said that the shape of the TFT 125 is almost nearly square. The effective TFT channel width W is not clear, but it seems to be equivalent to W = 59 to 71 μm, considering the lengths of the portions of the source electrode 127 and drain electrode 126 that are in contact with the channel. . Since TFT7 in Example 1 was W = 60 i um, it is close to this value.
[0113] 実験方法としては、図 19中の Xで示した TFTギャップ部 31の中心から意図的にずら した位置に液滴を着弾させて形成した保護膜の形状にっ ヽて、光学顕微鏡を用いて 倍率 500倍で観察するという方法を用いた。判定基準は、 TFTギャップ部 31内に保 護膜が収まり、 TFTギャップ部 31の両端 34付近に保護膜の境界がある場合を「良」 、それ以外を「不良」とした。すなわち、形成した保護膜が TFTギャップ部 31の両端 3 4の外側に大きくはみ出した場合等には、「不良」とした。その結果を下記表 1に示し た。 [0113] As an experimental method, an optical microscope was used in accordance with the shape of the protective film formed by landing a droplet at a position intentionally shifted from the center of the TFT gap 31 indicated by X in FIG. The method of observing at 500 times magnification was used. The judgment criteria were “good” when the protective film was within the TFT gap 31 and the boundary of the protective film was near both ends 34 of the TFT gap 31 and “bad” otherwise. In other words, when the formed protective film protrudes greatly outside the both ends 34 of the TFT gap portion 31, it is determined as “defective”. The results are shown in Table 1 below.
[0114] [表 1] [0114] [Table 1]
Figure imgf000039_0001
Figure imgf000039_0001
I^ 0£/900Zdf/ェ:) d 8ε L06LU 900Z OAV [0115] 表中の X座標及び Y座標は、 TFTギャップ部 31の中心からのずらし量を表し、単位 は/ z mである。 X軸及び Y軸の向きは、図 19に示すような向きとした。表 1に示すよう に、本実施例では、 X座標が— 9 m〜 + 9 m、かつ Y座標が— 9 πι〜 + 6 /ζ πι の範囲で全て良である。 I ^ 0 £ / 900Zdf / e :) d 8ε L06LU 900Z OAV [0115] The X coordinate and Y coordinate in the table represent the amount of shift from the center of the TFT gap portion 31, and the unit is / zm. The X and Y axes were oriented as shown in FIG. As shown in Table 1, in this example, the X coordinate is −9 m to +9 m, and the Y coordinate is −9 πι to + 6 / ζ πι, all being good.
[0116] なお、本実施例のようなコの字又は U字の形状と、実施例 5に示した切欠部とを組み 合わせて実施することも可能であり、両方の効果が得られる。一例として、図 20 (a)及 び (b)に、このような TFT128を示す。図 20 (a)は概略平面図であり、図 20 (b)は図 20 (&)の^ー^線概略断面図でぁる。ここでドレイン電極 129は、 U字形状の TF Tチャネル部 18を有し、更に 2箇所の切欠部 129a及び 129bを有する。切欠部 129 a及び 129bの大きさは、いずれも Wa= 5 m, Wb = 3 iu mである。 [0116] It is also possible to combine the U-shape or U-shape as in this embodiment with the notch shown in Embodiment 5, and both effects can be obtained. As an example, FIGS. 20 (a) and (b) show such TFT128. Fig. 20 (a) is a schematic plan view, and Fig. 20 (b) is a schematic cross-sectional view along line ^-^ of Fig. 20 (&). Here, the drain electrode 129 has a U-shaped TFT channel portion 18 and further has two cutout portions 129a and 129b. The sizes of the notches 129a and 129b are both Wa = 5 m and Wb = 3 i um.
[0117] また、同様の例を図 21 (a)及び (b)に示す。図 21 (a)は概略平面図であり、図 21 (b) は図 21 (a)の AB— AB線概略断面図である。これらの図中の TFT131は、ソース電 極 133及び切欠部 132aを有するドレイン電極 132を有する。切欠部 132aの大きさ は、 Wa= 5 iu m、 Wb = l l mである。なお、図 21に示す TFT131では、 TFTのチ ャネル長が部分的に拡大された部分力 切欠部 132aの設けられた部分にあたる。 A similar example is shown in FIGS. 21 (a) and (b). FIG. 21 (a) is a schematic plan view, and FIG. 21 (b) is a schematic cross-sectional view along the line AB-AB in FIG. 21 (a). The TFT 131 in these drawings has a source electrode 133 and a drain electrode 132 having a notch 132a. The size of the notch 132a is Wa = 5 i um and Wb = llm. In the TFT 131 shown in FIG. 21, the channel length of the TFT corresponds to a portion provided with the partial force notch 132a in which the channel length is partially enlarged.
[0118] (実施例 7)  [0118] (Example 7)
本発明の TFTは、 TFTチャネル部の端部付近で、ソース電極及びドレイン電極が角 部(コーナー部)を有する TFTであってもよい。本実施例は、このような形態の TFTに 関するものである。  The TFT of the present invention may be a TFT in which the source electrode and the drain electrode have corner portions (corner portions) near the end portion of the TFT channel portion. The present embodiment relates to such a TFT.
本実施例の TFTは、例えば図 1 (a)及び (b)に示される TFT7と同一の形態であって ちょい。  The TFT of this embodiment has the same form as TFT 7 shown in FIGS. 1 (a) and (b), for example.
図 22 (a)は、図 1 (a)中のソース電極 15等を部分的に抜き出して示した要部拡大図 であり、図中、 TFTチャネル部 18の端部 141、 142付近では、ソース電極 15及びド レイン電極 17は、コーナー部 143、 144、 145及び 146を有している。  Fig. 22 (a) is an enlarged view of the main part of the source electrode 15 etc. shown in Fig. 1 (a), partially extracted. In the figure, near the ends 141 and 142 of the TFT channel 18, the source The electrode 15 and the drain electrode 17 have corner portions 143, 144, 145, and 146.
本発明者らは、鋭意検討の結果、実施例 1〜4に示される方法で TFTを作製する場 合、図 22 (a)のように TFTチャネル部の全ての端部付近で、ソース電極及びドレイン 電極がコーナー部を有している TFTが好ましぐ特にコーナー部の角度が 90° であ れば、 TFTの形状が安定することを見出した。 [0119] このことについては、例えば図 22 (b)に示される TFT147を比較用に実施例 1の方 法で作製し、図 22 (a)の場合と比較することによって確認できた。図 22 (b)は、 TFT のソース電極 149等を部分的に抜き出して示した要部拡大図であり、図中、ソース配 線 148と接続されたソース電極 149、ドレイン接続配線 150と接続されたドレイン電極 151、及び、ソース電極 149とドレイン電極 151との間に形成された、アモルファスシ リコン膜からなる TFTチャネル部 152を有する。ここで、 TFTチャネル部 152の端部1 53付近では、ソース電極 149及びドレイン電極 151は、コーナー部 155及び 156を 有するが、もう一方の端部 154付近では、ソース電極 149のみがコーナー部 157を 有し、他方はドレイン接続配線 150とドレイン電極 151とが一直線の形状でつながつ ていて、すなわちコーナー部を有さない。 As a result of intensive studies, the inventors of the present invention, when manufacturing TFTs by the method shown in Examples 1 to 4, near the ends of the TFT channel part as shown in FIG. It was found that TFTs with a drain electrode having a corner portion are preferable. Especially when the angle of the corner portion is 90 °, the shape of the TFT is stabilized. [0119] This can be confirmed, for example, by fabricating TFT 147 shown in Fig. 22 (b) by the method of Example 1 for comparison and comparing it with the case of Fig. 22 (a). Fig. 22 (b) is an enlarged view of the main part of the TFT source electrode 149, etc. partially extracted. In the figure, the source electrode 149 connected to the source wiring 148 and the drain connection wiring 150 are connected. And a TFT channel portion 152 made of an amorphous silicon film formed between the source electrode 149 and the drain electrode 151. Here, the source electrode 149 and the drain electrode 151 have corner portions 155 and 156 in the vicinity of the end portion 153 of the TFT channel portion 152, but only the source electrode 149 has a corner portion 157 in the vicinity of the other end portion 154. On the other hand, the drain connection wiring 150 and the drain electrode 151 are connected in a straight line shape, that is, have no corner portion.
[0120] このような TFT147を作製した結果、図 22 (b)のように、 TFTチャネル部 152の端部 154においては、保護膜の輪郭線はドレイン接続配線 150側に延びるような形状とな ることが多ぐ複数の TFTの間でばらつく等、端部 153と比べて、不定形になりやす かった。  [0120] As a result of manufacturing such TFT147, as shown in FIG. 22 (b), at the end 154 of the TFT channel portion 152, the contour line of the protective film extends to the drain connection wiring 150 side. Compared to the end 153, it was likely to be indefinite, such as variations among multiple TFTs.
これは、保護膜形成工程での液滴の挙動が関係していて、特に有機溶剤の乾燥に よって、端部 153及び 154から少しはみ出した液滴が後退するときの違いによると思 われる。すなわち、端部 153においてソース電極 149とドレイン電極 151とはコーナ 一部 155及び 156を有するため、これらが作るバンクの形状にもコーナー部があり、 液滴の輪郭線は、この 2つのコーナー部を結ぶ線まで後退する。一方、端部 154の 方は、ドレイン電極 151側にはコーナー部を有さないので、液滴の輪郭線が後退す る点が定まりにくい。 TFTチャネル部 152の形状は、液滴が後退した後の輪郭線で 決まるため、端部 154の方は機能膜の形状が定まりにくいと考えられる。  This is related to the behavior of the droplets in the protective film formation process, and is thought to be due to the difference when the droplets slightly protruding from the end portions 153 and 154 recede due to drying of the organic solvent. That is, since the source electrode 149 and the drain electrode 151 have corner portions 155 and 156 at the end portion 153, the shape of the bank formed by these also has a corner portion, and the outline of the droplet is the two corner portions. Retreat to the line connecting On the other hand, since the end portion 154 does not have a corner portion on the drain electrode 151 side, it is difficult to determine the point at which the outline of the droplet recedes. Since the shape of the TFT channel portion 152 is determined by the contour line after the liquid droplet has receded, it is considered that the shape of the functional film is less likely to be determined at the end portion 154.
[0121] 一方、例えば図 22 (a)に示される TFT7のように、 TFTチャネル部の全ての端部付 近で、ソース電極及びドレイン電極がコーナー部を有している TFTであれば、保護膜 の両端の形状は安定した。  [0121] On the other hand, if the TFT has a source electrode and a drain electrode with corner portions near all ends of the TFT channel portion, such as TFT7 shown in FIG. The shape at both ends of the membrane was stable.
[0122] このように、実施例 1〜4に示される方法で TFTを作製する場合、本実施例のように T FTチャネル部の全ての端部付近で、ソース電極及びドレイン電極がコーナー部を有 している TFTが好ましぐ特にコーナー部の角度が 90° 以下であれば、 TFTの形状 が安定する。 Thus, when a TFT is manufactured by the method shown in Examples 1 to 4, the source electrode and the drain electrode have corner portions near all the ends of the TFT channel portion as in this embodiment. The TFT shape is preferable, especially if the corner angle is 90 ° or less. Is stable.
なお、本実施例においては、実施例 1に記載の TFTの作製方法を例として説明した 力 実施例 2〜4の作製方法についても、同様の結果が得られる。  Note that in this example, the same results were obtained for the manufacturing methods of Examples 2 to 4 described using the TFT manufacturing method described in Example 1 as an example.
[0123] また、実施例 6に示したコの字又は U字の形状のチャネルを有する形態と、本実施例 の形態とを組み合わせて実施することも可能であり、両方の効果が得られるので効果 的である。 [0123] In addition, it is possible to combine the form having the U-shaped or U-shaped channel shown in Example 6 with the form of this example, and both effects can be obtained. It is effective.
一例として、図 23 (a)及び (b)に、このような TFT158を示す。図 23 (a)は概略平面 図であり、図 23 (b)は、図 23 (a)の AC— AC線概略断面図である。ここで、 TFT158 は、 TFTチャネル部 159を有する力 図中の領域 160内において、 U字形状を有す る。  As an example, such a TFT 158 is shown in FIGS. FIG. 23 (a) is a schematic plan view, and FIG. 23 (b) is a schematic cross-sectional view of the AC—AC line of FIG. 23 (a). Here, the TFT 158 has a U-shape in a region 160 in the force diagram having the TFT channel portion 159.
[0124] (実施例 8)  [0124] (Example 8)
実施例 1〜7に示した TFT及びその製造方法は、内部にそれらの TFTと同様の構造 部を有するダイオードに適用することも可能である。本実施例は、そのような形態のダ ィオードに関するものである。  The TFTs and their manufacturing methods shown in Examples 1 to 7 can also be applied to diodes having the same structure as those of the TFTs. The present embodiment relates to such a diode.
上記ダイオードとしては、例えば、図 24 (a)及び (b)に示す構造を有するものが挙げ られる。図 24 (a)は、本実施例のダイオードとその近傍の構成を示す概略平面図で ある。同図における AD—AD線概略断面図を図 24 (b)に示す。  Examples of the diode include those having the structure shown in FIGS. 24 (a) and (b). FIG. 24 (a) is a schematic plan view showing the configuration of the diode of this example and the vicinity thereof. Figure 24 (b) shows a schematic cross-sectional view along the line AD-AD.
[0125] 本実施例のダイオード 171は、逆スタガ型の構造を有し、ガラス基板 172上に、ゲー ト電極 173と、ゲート絶縁膜 174と、アモルファスシリコン層 175と、 n+型アモルファス シリコン層 176と、接続配線 177に接続されるドレイン電極 178、及び、接続配線 17 9に接続されるソース電極 180と、保護膜 (機能膜) 181と、接続用導電膜 182とが積 層配置された構造を有する。ドレイン電極 178とソース電極 180との間には、保護膜 181が形成されている。保護膜 181の下ではアモルファスシリコン層 175の一部がチ ャネル部 183を形成し、これとゲート電極 173等とによって、 TFTと同じ構造を有する TFT部 185が形成されている。一方、接続配線 179の一部には、コンタクト部 184が 形成されている。コンタクト部 184において、ゲート絶縁膜 174は開口され、この開口 部を中心とした上層に接続用導電膜 182が設けられ、ゲート電極 173、接続配線 17 9及びソース電極 180が電気的に導通する。ここで、接続用導電膜 182は、 ITO (ィ ンジゥム錫酸化物)によって構成されるが、他の構成要素は実施例 1と同じように構成 される。 [0125] The diode 171 of this example has an inverted staggered structure, and has a gate electrode 173, a gate insulating film 174, an amorphous silicon layer 175, and an n + type amorphous silicon layer 176 on a glass substrate 172. And a drain electrode 178 connected to the connection wiring 177, a source electrode 180 connected to the connection wiring 179, a protective film (functional film) 181 and a conductive film 182 for connection are stacked. Have A protective film 181 is formed between the drain electrode 178 and the source electrode 180. Under the protective film 181, a part of the amorphous silicon layer 175 forms a channel portion 183, and the TFT portion 185 having the same structure as the TFT is formed by this and the gate electrode 173 and the like. On the other hand, a contact portion 184 is formed in part of the connection wiring 179. In the contact portion 184, the gate insulating film 174 is opened, and a conductive film 182 for connection is provided in the upper layer with the opening as a center, and the gate electrode 173, the connection wiring 179, and the source electrode 180 are electrically connected. Here, the conductive film 182 for connection is made of ITO ( The other constituent elements are the same as in Example 1.
[0126] 本実施例のダイオード 171は、例えばアクティブマトリクス基板内の隣り合うソース配 線間、ゲート配線間等の任意の配線間を接続するように形成される。この目的は、静 電気による基板内の TFT等の素子や配線が焼損することを防ぐためである。例えば 、ある配線上に静電気の蓄積が起こり、周囲よりも充分に高い電位を有することにな つた場合には、それと電気的に接続されているダイオードのソース電極及びゲート電 極も高電位となり、 TFT部がオン状態となって導通するので、この配線上の静電気を 逃がすことができる。したがって、上述した焼損等を防止することができる。一方、静 電気の蓄積がな 、場合にぉ 、ては、 TFT部はオン状態ではな 、ので抵抗が高ぐ 各配線間等を実質的に電気的に分離することができる。  The diode 171 of this embodiment is formed so as to connect between arbitrary wirings such as adjacent source wirings and gate wirings in the active matrix substrate. The purpose of this is to prevent elements such as TFTs and wiring in the substrate from being burned out due to static electricity. For example, when static electricity accumulates on a certain wiring and has a sufficiently higher potential than the surroundings, the source electrode and gate electrode of the diode electrically connected to the potential also become high potential, Since the TFT section is turned on and conducted, static electricity on this wiring can be released. Therefore, the above-described burnout and the like can be prevented. On the other hand, if there is no accumulation of static electricity, the TFT portion is not in an on state, so that the wiring having high resistance can be substantially electrically separated.
[0127] ダイオード 171の作製方法としては、実施例 1の作製方法の後に加えて、接続用導 電膜 182を作製する工程を加えればよぐこれを構成するための膜を基板全面に成 膜して、フォトリソグラフィによってパターユングすることで作製することができる。ここ で、接続用導電膜 182はスパッタ法で作製した。  As a manufacturing method of the diode 171, in addition to the manufacturing method of Example 1, a step of forming the conductive film for connection 182 may be added, and a film for forming this is formed on the entire surface of the substrate. And it can produce by patterning by photolithography. Here, the connection conductive film 182 was formed by a sputtering method.
[0128] このように、保護膜 181は実施例 1の方法で作製されるので、その形状は、インクジェ ット装置を用いて吐出した流動性を有する絶縁材料の液滴の形状を反映して 、る。こ の保護膜 181の形状が円形でな 、のは、ドレイン電極 178及びソース電極 180等力 形成するバンクによって、液滴の流れる方向が制御されたこと、及び、液滴中の有機 溶剤の揮発時において、ドレイン電極 178とソース電極 180との間に液滴^^めるこ とがでさたこと〖こよる。  Thus, since the protective film 181 is manufactured by the method of Example 1, the shape reflects the shape of the droplet of the insulating material having fluidity discharged using the ink jet apparatus. RU The shape of the protective film 181 is not circular because the direction in which the droplets flow is controlled by the banks that form the drain electrode 178 and the source electrode 180 and the volatilization of the organic solvent in the droplets. In some cases, liquid droplets were formed between the drain electrode 178 and the source electrode 180.
[0129] 本実施例に示すように、実施例 1〜7の TFTの作製方法は、内部にそれらの TFTの 構造部を有するダイオードに適用することが可能であり、本実施例も、実施例 1〜7と 同様にフォトリソグラフィ回数の削減に寄与するものである。したがって、同様の製造 上のメリットが得られる。  [0129] As shown in this example, the TFT fabrication methods of Examples 1 to 7 can be applied to a diode having a structure part of those TFTs inside, and this example is also an example. Like 1-7, it contributes to the reduction of the number of photolithography. Therefore, the same manufacturing merit can be obtained.
[0130] (実施例 9)  [0130] (Example 9)
本実施例のアクティブマトリクス基板(回路基板)は、 TFTアレイ基板であり、図 25— 1に示す形態を有する。図 25— 1は、実施例 9のアクティブマトリクス基板の構成を示 す概略平面図である。 The active matrix substrate (circuit substrate) of this example is a TFT array substrate and has the form shown in FIG. 25-1. Figure 25-1 shows the configuration of the active matrix substrate of Example 9. It is a schematic plan view.
本実施例のアクティブマトリクス基板 191は、ソース配線 192と、ゲート配線 193と、そ れらの各交点に対応して、半導体素子の一種である TFT194を有している。ァクティ ブマトリクス基板 191においては、 TFT194が多数形成されて、例えば画像表示用 の領域として用いられる有効領域 195と、その外側に位置する周辺領域 196とに分 けることができる。周辺領域 196は、アクティブマトリクス基板 191を駆動させるための 配線や、外部基板との接続のための端子(図示せず)等が備えられるための領域で ある。アクティブマトリクス基板 191においては、周辺領域 196に半導体素子の一種 であるダイオード 197が設けられている。  The active matrix substrate 191 of this embodiment has a source wiring 192, a gate wiring 193, and a TFT 194, which is a kind of semiconductor element, corresponding to each intersection point thereof. In the active matrix substrate 191, a large number of TFTs 194 are formed, and can be divided into, for example, an effective region 195 used as an image display region and a peripheral region 196 located outside the effective region 196. The peripheral area 196 is an area for providing wiring for driving the active matrix substrate 191, terminals (not shown) for connection to an external substrate, and the like. In the active matrix substrate 191, a diode 197, which is a kind of semiconductor element, is provided in the peripheral region 196.
[0131] ここで、 TFT194は、画像表示等を行うための画素電極(図示せず)と、ソース配線 1 92及びゲート配線 193に接続され、その形状は、実施例 1で示される形状を有する。 また、ダイオード 197は、ここでは隣り合うゲート配線 193同士を接続して、静電気に よる配線や素子の焼損を防ぐ保護素子としての働きを行 ヽ、実施例 8で示される形状 を有する。なお、これらの作製方法は、実施例 1〜4及び 8に記載の方法を用いること ができる。 Here, the TFT 194 is connected to a pixel electrode (not shown) for performing image display and the like, a source wiring 192 and a gate wiring 193, and the shape thereof has the shape shown in the first embodiment. . In addition, the diode 197 has a shape shown in Embodiment 8 by connecting adjacent gate wirings 193 to serve as a protective element for preventing the wiring and elements from being burned by static electricity. In addition, as these production methods, the methods described in Examples 1 to 4 and 8 can be used.
[0132] 本実施例のアクティブマトリクス基板 191において特徴的なのは、図 25— 1に示すよ うに、 TFT194とダイオード 197とがゲート配線方向の等間隔の直線群(平行線群) 1 98上〖こあることである。ここで、 TFT194は、有効領域 195内の半導体素子、ダイォ ード 197は、周辺領域 196内の半導体素子であって、このように異なる領域にあって 異なる目的の半導体素子が一直線上にあることが特徴的である。  [0132] As shown in Fig. 25-1, the active matrix substrate 191 of this embodiment is characterized in that a TFT 194 and a diode 197 are arranged in a straight line group (parallel line group) with an equal interval in the gate wiring direction. That is. Here, the TFT 194 is a semiconductor element in the effective area 195, and the diode 197 is a semiconductor element in the peripheral area 196, and the semiconductor elements for different purposes in such different areas are in a straight line. Is characteristic.
[0133] TFT194及びダイオード 197を作製する際には、基板面上の選択的な場所に、流動 性を有する絶縁材料等を液滴として吐出又は滴下することができるパターン形成装 置として、インクジェット装置を用いた。  [0133] When the TFT 194 and the diode 197 are manufactured, an ink jet apparatus is used as a pattern forming apparatus capable of discharging or dropping a fluid insulating material or the like as droplets at a selective place on a substrate surface. Was used.
インクジェット装置は、インクジェットヘッドを備え、インクジェットヘッドと基板との相対 位置を変化させながら液滴を吐出する。このとき基板側からみたインクジェットヘッド の動きは、平面内において一方向へのスキャンを繰り返し、このスキャンの合間にィ ンクジェットヘッドをスキャン方向と垂直な方向に所定量だけ動かすという動きをする のが一般的である。このとき、効率的に基板の処理を行うためには、スキャンの回数 をなるベく少なくすればょ 、。 The ink jet apparatus includes an ink jet head, and ejects droplets while changing the relative position between the ink jet head and the substrate. At this time, the movement of the inkjet head viewed from the substrate side repeats scanning in one direction in the plane, and moves the ink jet head by a predetermined amount in the direction perpendicular to the scanning direction between the scans. It is common. At this time, in order to efficiently process the substrate, the number of scans If you reduce the amount of
[0134] 一方、インクジェットヘッドには、液滴を吐出するためのノズルが等間隔で並んで配置 されるので、ノズルの間に位置する基板領域には液滴を吐出することはできない。 1 回のスキャンで、液滴を滴下できるのは、各ノズルが通過した等間隔の直線群上の 場所のみである。したがって、スキャン回数を最小にするためには、液滴等を着弾さ せる位置、すなわち半導体素子が形成される場所が可能な限り等間隔の直線群上 にあることがよい。  On the other hand, since the nozzles for ejecting droplets are arranged at equal intervals in the ink jet head, the droplets cannot be ejected to the substrate region located between the nozzles. Drops can be dropped in a single scan only at locations on the straight line group at equal intervals through which each nozzle passes. Therefore, in order to minimize the number of scans, it is preferable that the positions where droplets or the like are landed, that is, the locations where the semiconductor elements are formed are on a group of straight lines as equally spaced as possible.
[0135] このような理由により、本実施例における TFT194及びダイオード 197の配置は、実 施例 1〜4の TFTの作製方法及び実施例 8のダイオードの作製方法に適し、インクジ エツトヘッドのスキャンの回数を減らし、効率的に基板の処理を行うことを可能にする 。ただし、図示していないが、本実施例において、 TFT194とダイオード 197以外の TFT、ダイオード等の半導体素子が、アクティブマトリクス基板 191上の有効領域 19 5及び周辺領域 196のどちらか又は両方に設けられていてもよぐ全ての半導体素子 が等間隔の直線群上に配置されなければならな 、と 、うわけではな 、。  For these reasons, the arrangement of TFT 194 and diode 197 in this example is suitable for the TFT manufacturing method of Examples 1 to 4 and the diode manufacturing method of Example 8, and the number of scans of the ink jet head. This makes it possible to efficiently process the substrate. Although not shown, in this embodiment, semiconductor elements such as TFTs and diodes other than TFT 194 and diode 197 are provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 191. However, all the semiconductor elements that need to be arranged must be arranged on a group of equally spaced lines.
[0136] また、本実施例の変形例として、図 25— 2に示すように、 TFT199及びダイオード 20 0が、ソース配線方向の等間隔の直線群 201上に位置して ヽるアクティブマトリクス基 板 202が用いられてもよい。ここで、図 25— 2は、本実施例の変形例であるアクティブ マトリクス基板 202の構成を示す概略平面図である。ここでも、図示していないが、 T FT199及びダイオード 200以外の TFT、ダイオード等の半導体素子がアクティブマ トリタス基板 202上の有効領域 195及び周辺領域 196のどちらか又は両方に設けら れていてもよい。  As a modification of the present embodiment, as shown in FIG. 25-2, an active matrix substrate in which the TFT 199 and the diode 200 are located on a straight line group 201 at equal intervals in the source wiring direction. 202 may be used. Here, FIG. 25-2 is a schematic plan view showing a configuration of an active matrix substrate 202 which is a modification of the present embodiment. Here, although not shown, TFTs other than TFT 199 and diode 200, semiconductor elements such as diodes, and the like may be provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 202. Good.
[0137] なお、一般的に液晶表示装置等に用いられるアクティブマトリクス基板においては、 ゲート配線の間隔のほうが、ソース配線の間隔よりも広くなつていることが多いので、 インクジェットヘッドを基板側から見て、ゲート配線方向にスキャンすることがよい。こ の理由は、インクジェットヘッド内に設けるノズルの間隔を広くできるために、ノズルの 個数が減り、加工精度及びノズル間の液滴着弾分布の均一性を保ちやす 、ことによ る。  [0137] Note that in an active matrix substrate generally used for a liquid crystal display device or the like, the interval between the gate lines is often wider than the interval between the source lines. Therefore, the inkjet head is viewed from the substrate side. Therefore, it is preferable to scan in the gate wiring direction. This is because the interval between the nozzles provided in the ink jet head can be widened, so that the number of nozzles is reduced, and processing accuracy and uniformity of droplet landing distribution between the nozzles can be easily maintained.
[0138] また、本発明にお 、て、アクティブマトリクス基板は、有効領域にお!、て、ソース配線 とゲート配線との各交点に対応して配置された半導体素子が複数であるアクティブマ トリタス基板であって、これらの半導体素子が 1つの等間隔の直線群上にあるァクティ ブマトリクス基板であってもよ 、。 [0138] In the present invention, the active matrix substrate is provided in the effective area, and the source wiring. An active matrix substrate having a plurality of semiconductor elements arranged corresponding to each intersection of the gate wiring and the gate wiring, and these semiconductor elements are an active matrix substrate on a group of evenly spaced lines. Moyo.
例えば、図 25— 3に示すように、 TFT203及び 204とダイオード 205と力 ソース配 線方向の等間隔の直線群 206上に位置しているアクティブマトリクス基板 207であつ てもよい。ここで、図 25— 3は、本実施例の変形例であるアクティブマトリクス基板 207 の構成を示す概略平面図である。ここでも、図示していないが、 TFT203、 204及び ダイオード 205以外の TFT、ダイオード等の半導体素子が、アクティブマトリクス基板 207上の有効領域 195及び周辺領域 196のどちらか又は両方に設けられていてもよ い。  For example, as shown in FIG. 25-3, the active matrix substrate 207 may be located on the TFTs 203 and 204, the diode 205, and the straight line group 206 at equal intervals in the force source wiring direction. Here, FIG. 25-3 is a schematic plan view showing a configuration of an active matrix substrate 207 which is a modification of the present embodiment. Here, although not shown, even if semiconductor elements such as TFTs and diodes other than TFTs 203 and 204 and diodes 205 are provided in either or both of the effective region 195 and the peripheral region 196 on the active matrix substrate 207. Good.
[0139] また、本発明において、アクティブマトリクス基板は、(ガラス)基板上に、複数のソー ス配線、複数のゲート配線及び半導体素子を有するアクティブマトリクス基板であつ て、上記半導体素子が多数形成される有効領域と、その周辺の周辺領域とを有し、 有効領域に配置される半導体素子力 ゲート配線方向及び Z又はソース配線方向 の 2つの等間隔直線群上に配置されて 、る部分を有し、上記直線群上に周辺領域 の(第 2の)半導体素子が配置されて!、るアクティブマトリクス基板であってもよ!/、。 例えば、図 25— 4に示すように、ソース配線 192とゲート配線 193との交点付近に、 T FT208及び 209を有し、 TFT208とダイオード 210は、互いに等間隔であるゲート 配線方向の第 1の直線群 211上に位置し、 TFT209は、互いに等間隔であるゲート 配線方向の第 2の直線群 212上に位置しているアクティブマトリクス基板 213であつ てもよい。ここで、図 25— 4は、本実施例の変形例であるアクティブマトリクス基板 213 の構成を示す概略平面図である。ここでも、図示していないが、 TFT209、 209及び ダイオード 210以外の TFT、ダイオード等の半導体素子が、アクティブマトリクス基板 213上の有効領域 195及び周辺領域 196のどちらか又は両方に設けられていてもよ い。  [0139] In the present invention, the active matrix substrate is an active matrix substrate having a plurality of source wirings, a plurality of gate wirings, and semiconductor elements on a (glass) substrate, and a large number of the semiconductor elements are formed. The semiconductor element force arranged in the effective region is arranged on two equally-spaced straight line groups in the gate wiring direction and the Z or source wiring direction. However, the active region substrate may be an active matrix substrate in which the (second) semiconductor element in the peripheral region is arranged on the straight line group! For example, as shown in FIG. 25-4, TFTs 208 and 209 are provided in the vicinity of the intersection of the source wiring 192 and the gate wiring 193, and the TFT 208 and the diode 210 are equally spaced from each other in the gate wiring direction. The TFT 209 located on the straight line group 211 may be an active matrix substrate 213 located on the second straight line group 212 in the gate wiring direction that is equally spaced from each other. Here, FIG. 25-4 is a schematic plan view showing a configuration of an active matrix substrate 213 which is a modification of the present embodiment. Here, although not shown in the figure, semiconductor elements such as TFTs and diodes other than TFTs 209 and 209 and diodes 210 may be provided in either or both of the effective region 195 and the peripheral region 196 on the active matrix substrate 213. Good.
[0140] また、本発明において、アクティブマトリクス基板は、(ガラス)基板上に、複数のソー ス配線、複数のゲート配線及び半導体素子を有するアクティブマトリクス基板であつ て、上記半導体素子が多数形成される有効領域と、その周辺の周辺領域とを有し、 有効領域に配置される半導体素子力 ゲート配線方向及び z又はソース配線方向 の少なくとも 1つの等間隔直線群上に配置されている部分を有し、上記直線群から該 直線群の間隔の整数分の 1の距離で定まる直線上に、周辺領域の (第 2の)半導体 素子が配置されて 、るアクティブマトリクス基板であってもよ 、。 [0140] In the present invention, the active matrix substrate is an active matrix substrate having a plurality of source wirings, a plurality of gate wirings, and semiconductor elements on a (glass) substrate, and a large number of the semiconductor elements are formed. Effective area and surrounding area around it, Semiconductor element power disposed in the effective area has a portion disposed on at least one equally spaced line group in the gate wiring direction and z or source wiring direction, and is an integral part of the distance between the straight line group from the straight line group. The active matrix substrate may be an active matrix substrate in which the (second) semiconductor element in the peripheral region is arranged on a straight line determined by a distance of 1.
[0141] 例えば、図 25— 5に示すように、 TFT214を有し、 TFT214の配列に対応する互い に等間隔の第 3の直線群 215から距離 12で定まる第 4の直線群 216上に、周辺領域 のダイオード 217を有するアクティブマトリクス基板 218であってもよい。ここで、 TFT 214が配置された第 3の直線群 215の間隔を IIとしたときに、 12=11/3である。図 2 5— 5は、本実施例の変形例であるアクティブマトリクス基板 218の構成を示す概略平 面図である。ここでも、図示していないが、 TFT214及びダイオード 217以外の TFT 、ダイオード等の半導体素子が、アクティブマトリクス基板 218上の有効領域 195及 び周辺領域 196のどちらか又は両方に設けられていてもよい。  For example, as shown in FIG. 25-5, a TFT 214 is provided, and on a fourth straight line group 216 determined by a distance 12 from a third straight line group 215 equally spaced from each other corresponding to the arrangement of the TFT 214, An active matrix substrate 218 having a diode 217 in the peripheral region may be used. Here, when the interval between the third straight line groups 215 in which the TFTs 214 are arranged is II, 12 = 11/3. FIG. 25-5 is a schematic plan view showing the configuration of an active matrix substrate 218 which is a modification of the present embodiment. Although not shown here, semiconductor elements such as TFTs and diodes other than TFT 214 and diode 217 may be provided in either or both of effective region 195 and peripheral region 196 on active matrix substrate 218. .
[0142] なお、本願は、 2005年 4月 28曰に出願された曰本国特許出願 2005— 132810号 を基礎として、(合衆国法典 35卷第 119条に基づく)優先権を主張するものである。 該出願の内容は、その全体が本願中に参照として組み込まれて 、る。  [0142] This application claims priority (based on 35 USC 119), based on Japanese Patent Application 2005-132810 filed April 28, 2005. The contents of this application are hereby incorporated by reference in their entirety.
[0143] また、本願明細書における「以上」及び「以下」は、当該数値を含むものである。  Further, “above” and “below” in this specification include the numerical values.
図面の簡単な説明  Brief Description of Drawings
[0144] [図 1] (a)は、実施例 1の製造方法を用いて作製された TFT及びその近傍の構成を 示す概略平面図であり、(b)は、(a)の A— A線における概略断面図である。  [0144] [FIG. 1] (a) is a schematic plan view showing a TFT fabricated using the manufacturing method of Example 1 and the configuration in the vicinity thereof, and (b) is an A—A diagram of (a). It is a schematic sectional drawing in a line.
[図 2]インクジェット装置の構成を示す概略斜視図である。  FIG. 2 is a schematic perspective view showing the configuration of the ink jet apparatus.
[図 3] (a)は、液滴が TFTギャップ部 31に着弾した瞬間の状態を示す概略平面図で あり、(b)は、(a)の F— F線における概略断面図である。  [FIG. 3] (a) is a schematic plan view showing a state at the moment when a droplet has landed on the TFT gap portion 31, and (b) is a schematic cross-sectional view taken along the line FF in (a).
[図 4] (a)は、図 3 (a)に示した液滴 32が着弾した後、その流動性のために変形した状 態を示す概略平面図であり、(b)は、(a)の G— G線における概略断面図である。  [FIG. 4] (a) is a schematic plan view showing a state in which the liquid droplet 32 shown in FIG. 3 (a) has landed and then deformed due to its fluidity, and (b) is (a) It is a schematic sectional drawing in the GG line of).
[図 5-1] (a)は、 TFTギャップ部 31内に保護膜 35が形成された状態を示す概略平面 図であり、(b)は、(a)の H— H線における概略断面図である。  [FIG. 5-1] (a) is a schematic plan view showing a state in which a protective film 35 is formed in the TFT gap portion 31, and (b) is a schematic cross-sectional view taken along line H—H in (a). It is.
[図 5-2] (a)は、 TFTギャップ部 31内に保護膜 35が形成された状態の他の例を示す 概略平面図であり、(b)は、(a)の H— H線における概略断面図である。 圆 6] (a)は、親撥液膜 76が TFTギャップ部 18に残された状態を示す概略平面図で あり、(b)は、(a)の O— O線における概略断面図である。 [FIG. 5-2] (a) is a schematic plan view showing another example of a state in which the protective film 35 is formed in the TFT gap portion 31, and (b) is a line H—H in (a). FIG. 圆 6] (a) is a schematic plan view showing a state in which the lyophobic film 76 is left in the TFT gap portion 18, and (b) is a schematic cross-sectional view taken along the line OO in (a). .
[図 7] (a)は、実施例 2のチャネルエッチング工程後の TFTとその近傍の構成を示す 概略断面図であり、(b)は、実施例 2の保護膜形成工程後の TFTとその近傍の構成 を示す概略断面図であり、(c)は、実施例 2の半導体膜パター-ング工程後の TFTと その近傍の構成を示す概略断面図である。  [FIG. 7] (a) is a schematic cross-sectional view showing the TFT after the channel etching process of Example 2 and the configuration in the vicinity thereof, and (b) is the TFT after the protective film forming process of Example 2 and its FIG. 5C is a schematic cross-sectional view showing a configuration in the vicinity, and FIG. 5C is a schematic cross-sectional view showing a configuration of the TFT after the semiconductor film patterning process of Example 2 and the configuration in the vicinity thereof.
圆 8]実施例 2の半導体膜パター-ング工程後の TFTとその近傍の構成を示す概略 平面図である。 FIG. 8 is a schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor film patterning process of Example 2.
[図 9] (a)は、実施例 3のソース Zドレインの電極 Z配線形成工程後の TFTとその近 傍の構成を示す概略断面図であり、(b)は、実施例 3の半導体層形成工程後の TFT とその近傍の構成を示す概略断面図である。  [FIG. 9] (a) is a schematic cross-sectional view showing the configuration of the TFT after the source Z drain electrode Z wiring formation step and its vicinity in Example 3, and (b) is a semiconductor layer of Example 3. It is a schematic sectional drawing which shows the structure of TFT after the formation process, and its vicinity.
圆 10]実施例 3の半導体層形成工程後の TFTとその近傍の構成を示す概略平面図 である。 FIG. 10] A schematic plan view showing the configuration of the TFT and its vicinity after the semiconductor layer formation step of Example 3.
[図 11] (a)は、実施例 4のソース Zドレインの電極 Z配線形成工程後の TFTとその近 傍の構成を示す概略断面図であり、(b)は、実施例 4の遮光層形成工程後の TFTと その近傍の構成を示す概略断面図であり、(c)は、実施例 4のゲート電極 Z配線形 成工程後の TFTとその近傍の構成を示す概略断面図である。  [FIG. 11] (a) is a schematic cross-sectional view showing the configuration of the TFT after the source Z drain electrode Z wiring formation process and its vicinity in Example 4, and (b) is a light shielding layer of Example 4. FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT after the formation process and the vicinity thereof, and FIG. 6C is a schematic cross-sectional view showing the configuration of the TFT after the formation process of the gate electrode Z wiring of Example 4 and the vicinity thereof.
圆 12]実施例 4の遮光層形成工程後の TFTとその近傍の構成を示す概略平面図で ある。 12] A schematic plan view showing the configuration of the TFT and its vicinity after the light shielding layer forming step of Example 4. FIG.
[図 13] (a)は、実施例 2及び 4において、保護膜 35を形成する前のソース配線 14 の配置状態を示す概略断面図であり、(b)は、ソース配線 14上に保護膜 35を形成し た後の構成を示す概略断面図である。  [FIG. 13] (a) is a schematic cross-sectional view showing an arrangement state of the source wiring 14 before forming the protective film 35 in Examples 2 and 4, and (b) is a protective film on the source wiring 14. 6 is a schematic cross-sectional view showing a configuration after forming 35. FIG.
[図 14] (a)は、比較例 1のチャネルエッチング工程後の TFTとその近傍の構成を示す 概略断面図であり、(b)は、比較例 1の保護膜形成工程後の TFTとその近傍の構成 を示す概略断面図であり、(c)は、比較例 1の保護膜パター-ング工程後の TFTとそ の近傍の構成を示す概略断面図である。  [FIG. 14] (a) is a schematic cross-sectional view showing the TFT after the channel etching process of Comparative Example 1 and the configuration in the vicinity thereof, and (b) is the TFT after the protective film forming process of Comparative Example 1 and its TFT FIG. 5C is a schematic cross-sectional view showing a configuration in the vicinity, and FIG. 5C is a schematic cross-sectional view showing a configuration of the TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof.
圆 15]比較例 1の保護膜パター-ング工程後の TFTとその近傍の構成を示す概略 平面図である。 [図 16]図 14の(a)〜(c)に対応し、比較例 1のチャネルエッチング工程後のソース配 線の配置状態を示す概略断面図であり、(b)は、比較例 1の保護膜形成工程後のソ ース配線の配置状態を示す概略断面図であり、(c)は、比較例 1の保護膜パター二 ング工程後のソース配線の配置状態を示す概略断面図である。 15] A schematic plan view showing the structure of the TFT after the protective film patterning process of Comparative Example 1 and the configuration in the vicinity thereof. FIG. 16 is a schematic cross-sectional view corresponding to (a) to (c) of FIG. 14 and showing the arrangement state of the source wiring after the channel etching process of Comparative Example 1, and (b) of FIG. FIG. 7 is a schematic cross-sectional view showing the arrangement state of the source wiring after the protective film forming step, and (c) is a schematic cross-sectional view showing the arrangement state of the source wiring after the protective film patterning step of Comparative Example 1 .
[図 17-1] (a)は、実施例 5の TFTの構成を示す概略平面図であり、(b)は、(a)の X— X線における概略断面図である。 [FIG. 17-1] (a) is a schematic plan view showing the configuration of the TFT of Example 5, and (b) is a schematic cross-sectional view taken along line XX of (a).
[図 17-2]実施例 5の TFTの構成の他の例を示す概略平面図である。  FIG. 17-2 is a schematic plan view showing another example of the structure of the TFT of Example 5.
[図 18] (a)は、 TFT125を表す概略平面図であり、 (b)は、(a)中の Y— Y線における 概略断面図である。  [FIG. 18] (a) is a schematic plan view showing a TFT 125, and (b) is a schematic cross-sectional view taken along line Y—Y in (a).
[図 19]図 18 (a)中のソース電極 127及びドレイン電極 126を拡大して示す概略平面 図である。  FIG. 19 is an enlarged schematic plan view showing the source electrode 127 and the drain electrode 126 in FIG. 18 (a).
[図 20] (a)は、実施例 5に示したドレイン電極が切欠部を有する形態と実施例 6に示し たチャネルがコの字又は U字の形状を有する形態とを組み合わせて実施した TFT1 28の構成を示す概略平面図であり、(b)は、(a)の AA—AA線における概略断面図 である。  FIG. 20 (a) shows a TFT 1 implemented by combining the embodiment in which the drain electrode shown in Example 5 has a notch and the embodiment shown in Example 6 in which the channel has a U-shape or U-shape. 28 is a schematic plan view showing the configuration of 28, and (b) is a schematic sectional view taken along the line AA-AA in (a).
[図 21] (a)は、実施例 5に示したドレイン電極が切欠部を有する形態と実施例 6に示し たチャネルがコの字又は U字の形状を有する形態とを組み合わせて実施した TFT1 31の構成を示す概略平面図であり、(b)は、(a)の AB— AB線における概略断面図 である。  FIG. 21 (a) shows a TFT 1 implemented by combining the embodiment in which the drain electrode shown in Example 5 has a notch and the embodiment shown in Example 6 in which the channel has a U-shape or U-shape. FIG. 32 is a schematic plan view showing the configuration of 31, and (b) is a schematic sectional view taken along line AB-AB of (a).
[図 22] (a)は、図 1 (a)中のソース電極 15等を部分的に抜き出して示した要部拡大図 であり、(b)は、(a)の場合との比較用に実施例 1の方法で作製した TFTのソース電 極 149等を部分的に抜き出して示した要部拡大図である(実施例 7)。  [Fig. 22] (a) is an enlarged view of the main part of the source electrode 15 shown in Fig. 1 (a), partially extracted, and (b) is for comparison with the case of (a). FIG. 9 is an enlarged view of a main part, partially showing a TFT source electrode 149 and the like manufactured by the method of Example 1 (Example 7).
[図 23]実施例 6に示したコの字又は U字の形状のチャネルを有する形態と、実施例 7 に示した TFTチャネル部の全ての端部付近でソース電極及びドレイン電極がコーナ 一部を有する形態とを組み合わせて実施した TFT158の構成を示す概略平面図で あり、(b)は、(a)の AC— AC線における概略断面図である。 [FIG. 23] A form having a U-shaped channel or a U-shaped channel as shown in Example 6, and a portion where the source and drain electrodes are corners near all ends of the TFT channel part shown in Example 7. FIG. 2 is a schematic plan view showing a configuration of a TFT 158 implemented in combination with a configuration having a line (b), and (b) is a schematic cross-sectional view taken along an AC-AC line in (a).
[図 24] (a)は、実施例 8のダイオードとその近傍の構成を示す概略平面図であり、 (b) は、(a)の AD— AD線における概略断面図である。 [図 25-1]実施例 9のアクティブマトリクス基板の構成の一例を示す概略平面図である FIG. 24 (a) is a schematic plan view showing the configuration of the diode of Example 8 and the vicinity thereof, and (b) is a schematic cross-sectional view taken along the line AD-AD in (a). FIG. 25-1 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
[図 25-2]実施例 9のアクティブマトリクス基板の構成の一例を示す概略平面図である [図 25-3]実施例 9のアクティブマトリクス基板の構成の一例を示す概略平面図である [図 25-4]実施例 9のアクティブマトリクス基板の構成の一例を示す概略平面図である [図 25-5]実施例 9のアクティブマトリクス基板の構成の一例を示す概略平面図である 符号の説明 FIG. 25-2 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9. FIG. 25-3 is a schematic plan view showing an example of the configuration of the active matrix substrate of Example 9. 25-4] A schematic plan view showing an example of the configuration of the active matrix substrate of Example 9. [FIG. 25-5] A schematic plan view showing an example of the configuration of the active matrix substrate of Example 9.
7:TFT  7: TFT
8:ガラス基板  8: Glass substrate
9:ゲート配線  9: Gate wiring
10:ゲート電極  10: Gate electrode
11:ゲート絶縁膜  11: Gate insulation film
12:ァモノレファスシリコン層  12: Amonorefus silicon layer
13 :n+型アモルファスシリコン層  13: n + type amorphous silicon layer
14:ソース配線  14: Source wiring
15:ソース電極  15: Source electrode
16:ドレイン接続配線  16: Drain connection wiring
17:ドレイン電極  17: Drain electrode
18:TFTチャネル部  18: TFT channel
19:基板  19: Board
20:載置台  20: Mounting table
21:インクジェットヘッド  21: Inkjet head
22 :X方向駆動部  22: X direction drive
23 :Y方向駆動部 :インク供給システム :コン卜ロールュ-ッ卜 :アモルファスシリコン膜 :n+型アモルファスシリコン膜:TFTギャップ部23: Y direction drive : Ink supply system: Control group: Amorphous silicon film: n + type amorphous silicon film: TFT gap
:機能材料液滴: Functional material droplet
:機能材料液滴 : Functional material droplet
: TFTギャップ部の両端:保護膜: Both ends of TFT gap: Protective film
a:保護膜 (パター-ング前)b:保護膜 (パター-ング後):半導体層a: Protective film (before patterning) b: Protective film (after patterning): Semiconductor layer
:遮光層: Light shielding layer
:親撥液膜: Lipophilic film
1:TFT1: TFT
2:ドレイン電極2: Drain electrode
2a:ドレイン電極の切欠き部3:TFT2a: Drain electrode notch 3: TFT
4:ドレイン電極4: Drain electrode
4a:ドレイン電極の切欠き部5:TFT4a: Drain electrode notch 5: TFT
6:ドレイン電極6: Drain electrode
7:ソース電極7: Source electrode
8:TFT8: TFT
9:ドレイン電極9: Drain electrode
9a:ドレイン電極の切欠き部9b:ドレイン電極の切欠き部0:ソース電極 131:TFT 9a: drain electrode notch 9b: drain electrode notch 0: source electrode 131: TFT
132:ドレイン電極  132: Drain electrode
132a:ドレイン電極の切欠き部 132a: Notch of drain electrode
133: :ソース電極 133: Source electrode
141: : TFTチャネル部 18の端部 141:: TFT channel 18 edge
142: : TFTチャネル部 18の端部142:: End of TFT channel 18
143: :ソース電極 15のコーナー部143:: Source electrode 15 corner
144: :ドレイン電極 17のコーナー部144: : Drain electrode 17 corner
145: :ソース電極 15のコーナー部145:: Corner of source electrode 15
146: :ドレイン電極 17のコーナー部146:: Corner of drain electrode 17
147: : TFT 147:: TFT
148: :ソース配線  148: Source wiring
149: :ソース電極  149:: Source electrode
150: :ドレイン接続配線  150:: Drain connection wiring
151: :ドレイン電極  151:: Drain electrode
152: : TFTチャネル咅  152:: TFT channel
153: : TFTチャネル部 152の端部 153:: End of TFT channel 152
154: : TFTチャネル部 152の端部154:: End of TFT channel 152
155: :ソース電極 149のコーナー部155:: Corner of source electrode 149
156: :ドレイン電極 151のコーナー部156:: Corner of drain electrode 151
157: :ソース電極 149のコーナー部157:: Corner of source electrode 149
158: : TFT 158:: TFT
159: : TFTチャネル咅  159:: TFT channel
160: :領域  160:: Area
171: :ダイオード  171:: Diode
172: :ガラス基板  172: Glass substrate
173: :ゲート電極  173:: Gate electrode
174: :ゲート絶縁膜 175::アモルファスシリコン層174:: Gate insulating film 175 :: Amorphous silicon layer
176: : n+型アモルファスシリコン層176:: n + type amorphous silicon layer
177: :接続配線 177:: Connection wiring
178: :ドレイン電極  178:: Drain electrode
179: :接続配線  179:: Connection wiring
180: :ソース電極  180:: Source electrode
181: :保護膜  181:: Protective film
182: :接続用導電膜  182:: Conductive film for connection
183: :チャネル部  183:: Channel section
184: :コンタク卜咅  184:: Contact
185: : TFT咅  185:: TFT 咅
191: :アクティブマトリクス基板 191: Active matrix substrate
192: :ソース配線 192: Source wiring
193: :ゲート配線  193:: Gate wiring
194: : TFT  194:: TFT
195: :有効領域 (斜線部分) 195:: Effective area (shaded area)
196: :周辺領域 196: Peripheral area
197: :ダイオード  197: Diode
198: : 線群  198:: Line group
199: : TFT  199:: TFT
200: :ダイオード  200:: Diode
201: : 線群  201:: Line group
202: :アクティブマトリクス基板 202:: Active matrix substrate
203: : TFT 203:: TFT
204: : TFT  204:: TFT
205: :ダイオード  205:: Diode
206: : 線群  206:: Line group
207: :アクティブマトリクス基板 208: TFT 207:: Active matrix substrate 208: TFT
209 : TFT  209: TFT
210 :ダイオード  210: Diode
211 :第 1の直線群  211: First line group
212: :第 2の直線群  212:: second line group
213: :アクティブマトリクス基板 213:: Active matrix substrate
214: : TFT 214:: TFT
215: :第 3の直線群  215:: third line group
216: :第 4の直線群  216:: Fourth line group
217: :ダイオード  217:: Diode
218: :アクティブマトリクス基板  218:: Active matrix substrate

Claims

請求の範囲 The scope of the claims
[1] チャネルを有する半導体素子の製造方法であって、  [1] A method of manufacturing a semiconductor device having a channel,
該製造方法は、流動性を有する機能材料をチャネル溝内に滴下して機能層を形成 する工程を含むことを特徴とする半導体素子の製造方法。  The manufacturing method includes a step of forming a functional layer by dropping a functional material having fluidity into a channel groove.
[2] 前記機能材料は、絶縁材料であることを特徴とする請求項 1記載の半導体素子の製 造方法。  2. The method for manufacturing a semiconductor element according to claim 1, wherein the functional material is an insulating material.
[3] 前記半導体素子の製造方法は、ゲート電極、ゲート絶縁膜、半導体層、並びに、ソ ース電極及びドレイン電極を基板上に順次形成する工程と、  [3] The method of manufacturing a semiconductor element includes a step of sequentially forming a gate electrode, a gate insulating film, a semiconductor layer, and a source electrode and a drain electrode on a substrate;
少なくともソース電極及びドレイン電極により形成されるチャネル溝内に、流動性を有 する絶縁材料を滴下して保護層を形成する工程とを含む  Forming a protective layer by dropping an insulating material having fluidity into a channel groove formed by at least the source electrode and the drain electrode.
ことを特徴とする請求項 2記載の半導体素子の製造方法。  The method of manufacturing a semiconductor device according to claim 2, wherein:
[4] 前記半導体層は、下層半導体層及び一対の上層半導体層からなり、 [4] The semiconductor layer includes a lower semiconductor layer and a pair of upper semiconductor layers,
前記チャネル溝は、一対の上層半導体層、ソース電極及びドレイン電極により形成さ れる  The channel groove is formed by a pair of upper semiconductor layers, a source electrode, and a drain electrode.
ことを特徴とする請求項 3記載の半導体素子の製造方法。  The method for manufacturing a semiconductor device according to claim 3, wherein:
[5] 前記半導体素子の製造方法は、ゲート電極、ゲート絶縁膜、半導体膜、並びに、ソ ース電極及びドレイン電極を基板上に順次形成する工程と、 [5] The method for manufacturing the semiconductor element includes a step of sequentially forming a gate electrode, a gate insulating film, a semiconductor film, and a source electrode and a drain electrode on a substrate;
少なくともソース電極及びドレイン電極により形成されるチャネル溝内に、流動性を有 する絶縁材料を滴下して保護層を形成する工程と、  Forming a protective layer by dropping a fluid insulating material into a channel groove formed by at least a source electrode and a drain electrode; and
前記保護層を用いて半導体膜をパターユングし、半導体層を形成する工程とを含む ことを特徴とする請求項 2記載の半導体素子の製造方法。  3. The method of manufacturing a semiconductor element according to claim 2, further comprising: patterning a semiconductor film using the protective layer to form a semiconductor layer.
[6] 前記半導体膜は、下層半導体膜及び一対の上層半導体層からなり、 [6] The semiconductor film comprises a lower semiconductor film and a pair of upper semiconductor layers,
前記チャネル溝は、一対の上層半導体層、ソース電極及びドレイン電極により形成さ れ、  The channel groove is formed by a pair of upper semiconductor layers, a source electrode and a drain electrode,
前記保護層を用いて下層半導体膜をパターユングし、下層半導体層を形成するもの である  The lower semiconductor film is patterned using the protective layer to form the lower semiconductor layer.
ことを特徴とする請求項 5記載の半導体素子の製造方法。  6. The method for manufacturing a semiconductor device according to claim 5, wherein:
[7] 前記絶縁材料からなる機能層は、更に配線上に形成されることを特徴とする請求項 2 記載の半導体素子の製造方法。 7. The functional layer made of the insulating material is further formed on the wiring. The manufacturing method of the semiconductor element of description.
[8] 前記機能材料は、半導体材料であることを特徴とする請求項 1記載の半導体素子の 製造方法。  8. The method for manufacturing a semiconductor element according to claim 1, wherein the functional material is a semiconductor material.
[9] 前記半導体素子の製造方法は、ゲート電極、ゲート絶縁膜、並びに、ソース電極及 びドレイン電極を基板上に順次形成する工程と、  [9] The method for manufacturing the semiconductor element includes a step of sequentially forming a gate electrode, a gate insulating film, and a source electrode and a drain electrode on a substrate;
少なくともソース電極及びドレイン電極により形成されるチャネル溝内に、流動性を有 する半導体材料を滴下して半導体層を形成する工程とを含むことを特徴とする請求 項 8記載の半導体素子の製造方法。  9. The method of manufacturing a semiconductor element according to claim 8, further comprising: forming a semiconductor layer by dropping a semiconductor material having fluidity into a channel groove formed by at least the source electrode and the drain electrode. .
[10] 前記機能材料は、遮光材料であることを特徴とする請求項 1記載の半導体素子の製 造方法。 10. The method for manufacturing a semiconductor element according to claim 1, wherein the functional material is a light shielding material.
[11] 前記半導体素子の製造方法は、ソース電極及びドレイン電極を基板上に順次形成 する工程と、  [11] The method for manufacturing a semiconductor device includes a step of sequentially forming a source electrode and a drain electrode on a substrate;
ソース電極及びドレイン電極により形成されるチャネル溝内に、流動性を有する遮光 材料を滴下して遮光層を形成する工程と、  Forming a light shielding layer by dropping a fluid light shielding material into a channel groove formed by the source electrode and the drain electrode;
遮光層上に、半導体層、ゲート絶縁層及びゲート電極を順次形成する工程とを含む ことを特徴とする請求項 10記載の半導体素子の製造方法。  The method for manufacturing a semiconductor device according to claim 10, further comprising: sequentially forming a semiconductor layer, a gate insulating layer, and a gate electrode on the light shielding layer.
[12] 前記半導体素子の製造方法は、ソース電極及びドレイン電極、並びに、一対の下層 半導体層を基板上に順次形成する工程と、 [12] The method for manufacturing the semiconductor element includes a step of sequentially forming a source electrode and a drain electrode, and a pair of lower semiconductor layers on a substrate;
一対の下層半導体層、ソース電極及びドレイン電極により形成されるチャネル溝内に In a channel groove formed by a pair of lower semiconductor layers, a source electrode and a drain electrode
、流動性を有する遮光材料を滴下して遮光層を形成する工程と、 A step of forming a light-shielding layer by dropping a light-shielding material having fluidity;
下層半導体層及び遮光層上に、上層半導体層、ゲート絶縁層及びゲート電極を順 次形成する工程とを含むことを特徴とする請求項 10記載の半導体素子の製造方法。  11. The method of manufacturing a semiconductor element according to claim 10, further comprising a step of sequentially forming an upper semiconductor layer, a gate insulating layer, and a gate electrode on the lower semiconductor layer and the light shielding layer.
[13] 前記半導体素子の製造方法は、流動性を有する機能材料を滴下する前に、基板表 面にフッ素原子及び Z又はフッ素化合物を結合させる工程を含むことを特徴とする 請求項 1記載の半導体素子の製造方法。 13. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of bonding fluorine atoms and Z or a fluorine compound to the substrate surface before dropping the functional material having fluidity. A method for manufacturing a semiconductor device.
[14] 前記半導体素子の製造方法は、流動性を有する機能材料を滴下する前に、プラズ マを用いた表面処理工程を含むことを特徴とする請求項 1記載の半導体素子の製造 方法。 14. The method for manufacturing a semiconductor element according to claim 1, wherein the method for manufacturing a semiconductor element includes a surface treatment step using a plasma before dropping the functional material having fluidity.
[15] 前記表面処理工程は、フッ素系ガスを含むプラズマ中で行われることを特徴とする請 求項 14記載の半導体素子の製造方法。 [15] The method of manufacturing a semiconductor element according to claim 14, wherein the surface treatment step is performed in a plasma containing a fluorine-based gas.
[16] 前記半導体素子の製造方法は、流動性を有する機能材料を滴下する前に、ドライエ ツチング工程を含むことを特徴とする請求項 1記載の半導体素子の製造方法。 16. The method for manufacturing a semiconductor element according to claim 1, wherein the method for manufacturing a semiconductor element includes a dry etching step before dropping the functional material having fluidity.
[17] 前記流動性を有する機能材料は、マルチノズル型吐出ヘッド及び基板ステージを有 する塗布装置を用いて塗布されることを特徴とする請求項 1記載の半導体素子の製 造方法。 17. The method for manufacturing a semiconductor element according to claim 1, wherein the functional material having fluidity is applied using a coating apparatus having a multi-nozzle type discharge head and a substrate stage.
[18] 前記塗布装置は、インクジェット装置であることを特徴する請求項 17記載の半導体素 子の製造方法。  18. The method for manufacturing a semiconductor element according to claim 17, wherein the coating device is an ink jet device.
[19] 前記流動性を有する機能材料は、 1気圧での沸点が 180°C以上である、エチレング リコール類、ジエチレングリコール類、トリエチレングリコール類、ポリエチレングリコー ル類、プロピレングリコール類、ジプロピレングリコール類、トリプロピレングリコール類 、ポリプロピレングリコール類、及び、ブチレングリコール類力もなる群より選択された 少なくとも 1種のエーテル、エステル、ジエステル及び Z若しくはエーテルエステル、 又は、炭化水素類を含有することを特徴とする請求項 18記載の半導体素子の製造 方法。  [19] The functional material having fluidity includes ethylene glycols, diethylene glycols, triethylene glycols, polyethylene glycols, propylene glycols, dipropylene glycols having a boiling point of 180 ° C or higher at 1 atm. Characterized by containing at least one ether, ester, diester and Z or ether ester selected from the group consisting of tripropylene glycols, polypropylene glycols, and butylene glycols, or hydrocarbons The method for manufacturing a semiconductor device according to claim 18.
[20] 請求項 1記載の半導体素子の製造方法を用いて基板上に半導体素子を形成するこ とを特徴とする回路基板の製造方法。  20. A method for manufacturing a circuit board, comprising forming a semiconductor element on a substrate using the method for manufacturing a semiconductor element according to claim 1.
[21] 前記回路基板は、表示装置又は撮像装置を構成するものであり、表示領域又は撮 像領域及び非表示領域又は非撮像領域の半導体素子が、ゲート配線及び Z又はソ ース配線の延伸方向に伸びる平行線群上に配置されており、  [21] The circuit board constitutes a display device or an imaging device, and a semiconductor element in a display region or an imaging region and a non-display region or a non-imaging region is formed by extending a gate wiring and a Z or source wiring. Are arranged on a group of parallel lines extending in the direction,
前記機能層形成工程は、表示領域又は撮像領域及び非表示領域又は非撮像領域 でゲート配線及び Z又はソース配線の延伸方向に吐出ヘッド又は基板ステージを連 続的に移動させて、流動性を有する機能材料の塗布が行われることを特徴とする請 求項 20記載の回路基板の製造方法。  The functional layer forming step has fluidity by continuously moving the ejection head or the substrate stage in the extending direction of the gate wiring and Z or source wiring in the display area or imaging area and non-display area or non-imaging area. Item 22. The method for manufacturing a circuit board according to Item 20, wherein the functional material is applied.
[22] 請求項 1記載の半導体素子の製造方法を用いて製造されることを特徴とする半導体 素子。  [22] A semiconductor device manufactured using the method for manufacturing a semiconductor device according to [1].
[23] チャネルを有する半導体素子であって、 該半導体素子は、ソース電極とドレイン電極との間に位置する端部が曲線形状を有 する機能層を備えることを特徴とする半導体素子。 [23] A semiconductor device having a channel, The semiconductor element includes a functional layer having an end portion located between the source electrode and the drain electrode having a curved shape.
[24] チャネルを有する半導体素子であって、  [24] a semiconductor device having a channel,
該ソース電極及び Z又はドレイン電極は、チャネル側の端部に切欠部を有することを 特徴とする半導体素子。  The source electrode and the Z or drain electrode have a notch at the end on the channel side.
[25] チャネルを有する半導体素子であって、 [25] A semiconductor device having a channel,
該半導体素子は、チャネル近傍にダミーチャネルを有することを特徴とする半導体素 子。  The semiconductor element has a dummy channel in the vicinity of the channel.
[26] チャネルを有する半導体素子であって、  [26] A semiconductor device having a channel,
該半導体素子は、ソース電極とドレイン電極との間にダミー電極を有することを特徴と する半導体素子。  The semiconductor element has a dummy electrode between a source electrode and a drain electrode.
[27] チャネルを有する半導体素子であって、 [27] A semiconductor device having a channel,
該半導体素子のチャネルは、 2以上に屈曲していることを特徴とする半導体素子。  A semiconductor element, wherein a channel of the semiconductor element is bent to 2 or more.
[28] 前記チャネルは、コの字形状又は U字形状を有することを特徴とする請求項 27記載 の半導体素子。 28. The semiconductor device according to claim 27, wherein the channel has a U shape or a U shape.
[29] チャネルを有する半導体素子であって、 [29] A semiconductor device having a channel,
該ソース電極及びドレイン電極は、チャネルの端部の両側に角部を有することを特徴 とする半導体素子。  The semiconductor element, wherein the source electrode and the drain electrode have corner portions on both sides of an end portion of the channel.
[30] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 22記載の半導体素子。  [30] The semiconductor element according to claim 22, wherein the semiconductor element is a thin film transistor or a thin film diode.
[31] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 23記載の半導体素子。 [31] The semiconductor element according to claim 23, wherein the semiconductor element is a thin film transistor or a thin film diode.
[32] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 24記載の半導体素子。 [32] The semiconductor element according to claim 24, wherein the semiconductor element is a thin film transistor or a thin film diode.
[33] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 25記載の半導体素子。 [33] The semiconductor element according to claim 25, wherein the semiconductor element is a thin film transistor or a thin film diode.
[34] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 26記載の半導体素子。 [34] The semiconductor element according to claim 26, wherein the semiconductor element is a thin film transistor or a thin film diode.
[35] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 27記載の半導体素子。 [35] The semiconductor element according to claim 27, wherein the semiconductor element is a thin film transistor or a thin film diode.
[36] 前記半導体素子は、薄膜トランジスタ又は薄膜ダイオードであることを特徴とする請 求項 29記載の半導体素子。 [36] The semiconductor element according to claim 29, wherein the semiconductor element is a thin film transistor or a thin film diode.
[37] 請求項 22記載の半導体素子を有することを特徴とする回路基板。 [37] A circuit board comprising the semiconductor element according to [22].
[38] 請求項 23記載の半導体素子を有することを特徴とする回路基板。 38. A circuit board comprising the semiconductor element according to claim 23.
[39] 請求項 24記載の半導体素子を有することを特徴とする回路基板。 [39] A circuit board comprising the semiconductor element according to claim 24.
[40] 請求項 25記載の半導体素子を有することを特徴とする回路基板。 40. A circuit board comprising the semiconductor element according to claim 25.
[41] 請求項 26記載の半導体素子を有することを特徴とする回路基板。 41. A circuit board comprising the semiconductor element according to claim 26.
[42] 請求項 27記載の半導体素子を有することを特徴とする回路基板。 [42] A circuit board comprising the semiconductor element according to claim 27.
[43] 請求項 29記載の半導体素子を有することを特徴とする回路基板。 [43] A circuit board comprising the semiconductor element according to [29].
[44] ゲート配線、ソース配線及び半導体素子を基板上に有する回路基板であって、 該回路基板は、表示装置又は撮像装置を構成するものであり、表示領域又は撮像 領域の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に伸びる平行 線群上に配置された構成を含み、かつ、非表示領域又は非撮像領域の半導体素子 力 該平行線群上に配置された構成を含むことを特徴とする回路基板。 [44] A circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, the circuit board constituting a display device or an imaging device, wherein the semiconductor element in the display region or the imaging region is a gate Including a configuration arranged on a parallel line group extending in the extending direction of the wiring and the Z or source wiring, and including a configuration arranged on the semiconductor element force of the non-display region or the non-imaging region. Feature circuit board.
[45] ゲート配線、ソース配線及び半導体素子を基板上に有する回路基板であって、 該回路基板は、表示装置又は撮像装置を構成するものであり、表示領域又は撮像 領域の半導体素子が、ゲート配線及び Z又はソース配線の延伸方向に伸びる平行 線群上に配置された構成を含み、かつ、非表示領域又は非撮像領域の半導体素子 が、該平行線群の間隔の整数分の 1の距離で定まる直線群上に配置された構成を 含むことを特徴とする回路基板。 [45] A circuit board having a gate wiring, a source wiring, and a semiconductor element on a substrate, the circuit board constituting a display device or an imaging device, wherein the semiconductor element in the display region or the imaging region is a gate Including a structure arranged on a group of parallel lines extending in the extending direction of the wiring and Z or source wiring, and the semiconductor element in the non-display area or the non-imaging area is a distance of an integer of the interval between the parallel lines A circuit board comprising a configuration arranged on a straight line group determined by:
[46] 前記回路基板は、表示領域又は撮像領域の半導体素子が、ゲート配線の延伸方向 に伸びる平行線群上に配置された構成を含むことを特徴とする請求項 44記載の回 路基板。 46. The circuit board according to claim 44, wherein the circuit board includes a configuration in which the semiconductor elements in the display area or the imaging area are arranged on a group of parallel lines extending in the extending direction of the gate wiring.
[47] 前記回路基板は、表示領域又は撮像領域の半導体素子が、ゲート配線の延伸方向 に伸びる平行線群上に配置された構成を含むことを特徴とする請求項 45記載の回 路基板。 47. The circuit board according to claim 45, wherein the circuit board includes a configuration in which the semiconductor elements in the display area or the imaging area are arranged on a group of parallel lines extending in the extending direction of the gate wiring.
[48] 前記表示領域又は撮像領域に配置された半導体素子は、ゲート配線とソース配線と の交点毎に複数配置され、 [48] A plurality of semiconductor elements arranged in the display region or the imaging region are arranged at each intersection of the gate wiring and the source wiring,
該交点に配置された複数の半導体素子は、ゲート配線又はソース配線の延伸方向 に伸びる 1つの平行線群上に配置された構成を含む  The plurality of semiconductor elements arranged at the intersection include a configuration arranged on one parallel line group extending in the extending direction of the gate wiring or the source wiring.
ことを特徴とする請求項 44記載の回路基板。  45. The circuit board according to claim 44, wherein:
[49] 前記表示領域又は撮像領域に配置された半導体素子は、ゲート配線とソース配線と の交点毎に複数配置され、 [49] A plurality of semiconductor elements arranged in the display region or the imaging region are arranged at each intersection of the gate wiring and the source wiring,
該交点に配置された複数の半導体素子は、ゲート配線又はソース配線の延伸方向 に伸びる 1つの平行線群上に配置された構成を含む  The plurality of semiconductor elements arranged at the intersection include a configuration arranged on one parallel line group extending in the extending direction of the gate wiring or the source wiring.
ことを特徴とする請求項 45記載の回路基板。  46. The circuit board according to claim 45, wherein:
[50] 前記表示領域に配置された半導体素子は、薄膜トランジスタであることを特徴とする 請求項 44記載の回路基板。 50. The circuit board according to claim 44, wherein the semiconductor element disposed in the display area is a thin film transistor.
[51] 前記表示領域に配置された半導体素子は、薄膜トランジスタであることを特徴とする 請求項 45記載の回路基板。 51. The circuit board according to claim 45, wherein the semiconductor element disposed in the display area is a thin film transistor.
[52] 前記非表示領域に配置された半導体素子は、薄膜ダイオードであることを特徴とす る請求項 44記載の回路基板。 52. The circuit board according to claim 44, wherein the semiconductor element disposed in the non-display area is a thin film diode.
[53] 前記非表示領域に配置された半導体素子は、薄膜ダイオードであることを特徴とす る請求項 45記載の回路基板。 53. The circuit board according to claim 45, wherein the semiconductor element disposed in the non-display area is a thin film diode.
[54] 請求項 20記載の回路基板の製造方法を用いて製造された回路基板を備えてなるこ とを特徴とする電子装置。 54. An electronic device comprising a circuit board manufactured using the circuit board manufacturing method according to claim 20.
[55] 請求項 37記載の回路基板を備えてなることを特徴とする電子装置。 [55] An electronic device comprising the circuit board according to [37].
[56] 請求項 38記載の回路基板を備えてなることを特徴とする電子装置。 56. An electronic device comprising the circuit board according to claim 38.
[57] 請求項 39記載の回路基板を備えてなることを特徴とする電子装置。 [57] An electronic device comprising the circuit board according to [39].
[58] 請求項 40記載の回路基板を備えてなることを特徴とする電子装置。 58. An electronic device comprising the circuit board according to claim 40.
[59] 請求項 41記載の回路基板を備えてなることを特徴とする電子装置。 59. An electronic device comprising the circuit board according to claim 41.
[60] 請求項 42記載の回路基板を備えてなることを特徴とする電子装置。 [60] An electronic device comprising the circuit board according to [42].
[61] 請求項 43記載の回路基板を備えてなることを特徴とする電子装置。 [61] An electronic device comprising the circuit board according to [43].
[62] 請求項 44記載の回路基板を備えてなることを特徴とする電子装置。 [63] 請求項 45記載の回路基板を備えてなることを特徴とする電子装置。 62. An electronic device comprising the circuit board according to claim 44. 63. An electronic device comprising the circuit board according to claim 45.
PCT/JP2006/301444 2005-04-28 2006-01-30 Methods for manufacturing semiconductor element and circuit board, and semiconductor element and circuit board WO2006117907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132810 2005-04-28
JP2005132810 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006117907A1 true WO2006117907A1 (en) 2006-11-09

Family

ID=37307713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301444 WO2006117907A1 (en) 2005-04-28 2006-01-30 Methods for manufacturing semiconductor element and circuit board, and semiconductor element and circuit board

Country Status (1)

Country Link
WO (1) WO2006117907A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057665A1 (en) * 2007-10-31 2009-05-07 Sumitomo Chemical Company, Limited Thin film active element group, thin film active element array, organic light emitting device, display device and method for manufacturing thin film active element group
JP2021511543A (en) * 2018-01-26 2021-05-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Control of diffraction grating out-coupling strength of AR waveguide coupler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437535A (en) * 1987-07-31 1989-02-08 Sumitomo Metal Ind Thin film semiconductor element
JP2001244467A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Coplanar semiconductor device, display device using it, and method for its manufacture
JP2002268235A (en) * 2001-03-07 2002-09-18 Nippon Zeon Co Ltd Method for preparing resist composition
JP2004288880A (en) * 2003-03-24 2004-10-14 Konica Minolta Holdings Inc Thin film transistor and its fabricating process
JP2004349640A (en) * 2003-05-26 2004-12-09 Seiko Epson Corp Method of forming pattern, method of manufacturing device, device, electrooptic device, and electronic equipment
JP2005051216A (en) * 2003-06-30 2005-02-24 Semiconductor Energy Lab Co Ltd Droplet dispenser and method of forming pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437535A (en) * 1987-07-31 1989-02-08 Sumitomo Metal Ind Thin film semiconductor element
JP2001244467A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Coplanar semiconductor device, display device using it, and method for its manufacture
JP2002268235A (en) * 2001-03-07 2002-09-18 Nippon Zeon Co Ltd Method for preparing resist composition
JP2004288880A (en) * 2003-03-24 2004-10-14 Konica Minolta Holdings Inc Thin film transistor and its fabricating process
JP2004349640A (en) * 2003-05-26 2004-12-09 Seiko Epson Corp Method of forming pattern, method of manufacturing device, device, electrooptic device, and electronic equipment
JP2005051216A (en) * 2003-06-30 2005-02-24 Semiconductor Energy Lab Co Ltd Droplet dispenser and method of forming pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057665A1 (en) * 2007-10-31 2009-05-07 Sumitomo Chemical Company, Limited Thin film active element group, thin film active element array, organic light emitting device, display device and method for manufacturing thin film active element group
US8344390B2 (en) 2007-10-31 2013-01-01 Sumitomo Chemical Company, Limited Thin film active element group, thin film active element array, organic light emitting device, display apparatus, and thin film active element manufacturing method
JP2021511543A (en) * 2018-01-26 2021-05-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Control of diffraction grating out-coupling strength of AR waveguide coupler

Similar Documents

Publication Publication Date Title
WO2006117909A1 (en) Pattern thin film, method for manufacturing semiconductor element and circuit board, resist material, semiconductor element and circuit board
US10332946B2 (en) Organic light emitting display panel and manufacturing method thereof, display device
CN107248523B (en) Pixel defining layer and manufacturing method thereof
KR100726272B1 (en) Pattern formed structure, method of forming pattern, device, electrooptical device and electronic equipment
US7547567B2 (en) Method of forming film pattern, device, method of manufacturing device, electro-optical device, and electronic apparatus
KR100753954B1 (en) Method for forming wiring pattern, method for manufacturing device, and device
US7767504B2 (en) Methods for forming film patterns by disposing a liquid within a plural-level partition structure
US20070264814A1 (en) Method for forming metal wiring line, method for manufacturing active matrix substrate, device, electro-optical device, and electronic apparatus
JP4222390B2 (en) PATTERN FORMATION METHOD AND LIQUID CRYSTAL DISPLAY DEVICE MANUFACTURING METHOD
JP4345710B2 (en) Method for forming a film pattern
JP2007150258A (en) Pattern forming method, film structure, electro-optic device, and electronic apparatus
US20060188661A1 (en) Method of forming film pattern, method of manufacturing device, electro-optical device, and electronic apparatus
JP4380552B2 (en) Active matrix substrate manufacturing method, active matrix substrate, electro-optical device, and electronic apparatus
KR100782493B1 (en) Method for forming film pattern, device, electro-optical device, electronic apparatus, and method for manufacturing active matrix substrate
KR100737307B1 (en) Method of forming film pattern, device, method of manufacturing the same, electro-optical apparatus, and electronic apparatus
US20060257797A1 (en) Bank structure, wiring pattern forming method, device, electro-optical device, and electronic apparatus
WO2006117907A1 (en) Methods for manufacturing semiconductor element and circuit board, and semiconductor element and circuit board
JP4675730B2 (en) Film pattern forming substrate, film pattern forming substrate, thin film transistor forming substrate, liquid crystal display element and manufacturing method thereof
JP2006065021A (en) Method for manufacturing active matrix substrate, active matrix substrate, electro-optical device and electronic equipment
JP2007140323A (en) Method for forforming film pattern, method for manufacturing electrooptical device, electrooptical device, and electronic apparatus
JP5887881B2 (en) Wiring formation method
JP2008098550A (en) Method for forming film pattern
JP2008262979A (en) Thin-film transistor element, and manufacturing method thereof
JP2008058455A (en) Method for manufacturing active matrix substrate and method for manufacturing liquid crystal display device
JP2008058456A (en) Method for manufacturing active matrix substrate and method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712587

Country of ref document: EP

Kind code of ref document: A1