WO2006116085A2 - Systeme et procede permettant de combiner une memoire d'etiquette rfid - Google Patents

Systeme et procede permettant de combiner une memoire d'etiquette rfid Download PDF

Info

Publication number
WO2006116085A2
WO2006116085A2 PCT/US2006/015093 US2006015093W WO2006116085A2 WO 2006116085 A2 WO2006116085 A2 WO 2006116085A2 US 2006015093 W US2006015093 W US 2006015093W WO 2006116085 A2 WO2006116085 A2 WO 2006116085A2
Authority
WO
WIPO (PCT)
Prior art keywords
tag
rfid
data
tags
memory
Prior art date
Application number
PCT/US2006/015093
Other languages
English (en)
Other versions
WO2006116085A3 (fr
Inventor
Sean T. Loving
Sayan Chakraborty
Original Assignee
Skyetek, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/301,770 external-priority patent/US20060238305A1/en
Priority claimed from US11/301,396 external-priority patent/US20060238302A1/en
Priority claimed from US11/301,423 external-priority patent/US20060238303A1/en
Priority claimed from US11/301,587 external-priority patent/US20060238304A1/en
Priority claimed from US11/323,214 external-priority patent/US7570164B2/en
Priority claimed from US11/328,209 external-priority patent/US20060253415A1/en
Priority claimed from US11/387,421 external-priority patent/US7659819B2/en
Priority claimed from US11/387,422 external-priority patent/US20070046431A1/en
Application filed by Skyetek, Inc. filed Critical Skyetek, Inc.
Priority to EP06750967A priority Critical patent/EP1872308A2/fr
Publication of WO2006116085A2 publication Critical patent/WO2006116085A2/fr
Publication of WO2006116085A3 publication Critical patent/WO2006116085A3/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • RFID Radio Frequency Identification
  • active RFID tags which are battery powered devices that transmit a signal to a reader, and are typically readable over distances greater than one hundred feet
  • passive RFID tags which are not battery powered but draw energy from electromagnetic waves from an RFK) reader, and typically are readable over a distance of less than ten feet
  • semi-passive RFID tags which employ a battery to run the circuitry of a chip but rely on electromagnetic waves from a reader to power the transmitted signal.
  • an RFID tag typically includes an RFID tag chip
  • the RFBD tag chip will include non- volatile memory that stores a unique identification number (UID).
  • the RFED tag chip also includes non-volatile re-writable memory that may be utilized to store information.
  • RFID tags have many physical formats, such as a microchip from 30 to 100 microns thick and from 0.1 to 1 mm across, joined to a minute metal antenna, or they can be in the form of deposited alloys 0.5 to 5 microns thick on a 20 micron polyester ribbon 1 mm across as used in some banknote security ribbons.
  • Another form is the 'Coil-on-Chip' system, which is a 2.5 mm square integrated circuit with a coil mounted directly on the chip.
  • the chip is a read-write chip with 108 bytes of re- writable memory.
  • RFID tags are interrogated and read using an RFID reader.
  • the RFID reader supplies power to the RFID tag while reading the RFE) tag.
  • FIG. 1 shows one exemplary prior art system 100 for reading RFID tag data.
  • System 100 is shown with an RFID reader 102, an RFID tag 108 and an application 104.
  • Application 104 interacts with RFE) reader 102, via connection 106, to read from, and write to, RFE) tag 108.
  • RFE) tag 108 has a finite memory capacity, which may not be increased without redesign or RFE) tag 108.
  • FIG. 2 shows an exemplary memory map 200 of prior art RFE ) tag 108, FIG. 1.
  • Memory map 200 is shown with a UE) section 202, an application family identifier (AFI) section 204, a data storage format identifier (DSFE)) section 206, security section 208 and a plurality of sections containing user blocks 210.
  • AFI section 204 contains a plurality of bits that identify the application family to which RFE) tag 108 belongs.
  • DSFE) 206 contains a plurality of bits that specifies the memory format (e.g., number of sections, type of memory, etc) of RFE) tag 108.
  • Security section 208 has a plurality of bits, each relating to a section of memory map 200, indicating which sections, if any, are write-protected. For example, a first bits within security section 208 may indicates if user block 210(1) is write-protected, a second bit of security section 208 may indicate if user block 210(2) is write protected, and so on.
  • Each section of memory map 200 may be read by RFE) reader 102, and each section of memory map 200 that is not write protected may be written to by RFE) reader 102.
  • RFE tags are available with many different memory sizes, they are typically limited to 2048 bits. It has not been previously possible to increase memory capacity of RFE) tag 108 without developing and manufacturing a special RFE) tag with a specific amount of additional memory and deploying it to the location of use. Therefore, the cost of increasing the memory capacity of RFE) tag 108 is significant. A solution for increasing the size of usable memory corresponding to a particular RFE) tag without developing and deploying a new RFE ) tag is therefore desired.
  • a method generates an extended memory RFE) tag.
  • Data is read from a memory of a plurality of RFE) tags, each including tag identification information stored thereon.
  • the data is combined, in accordance with the tag identification information stored on at least one of the RFID tags, to generate the extended memory RFID tag.
  • a method generates an extended memory RFID tag. Sequencing indicia is stored in memory in each of a plurality of RFID tags. Data is read from the memory of a plurality of the RFID tags and combined, in accordance with the sequencing indicia stored on at least two of the RFID tags, to generate the extended memory RFID tag.
  • a method generates an extended memory RFID tag by storing sequence numbers in memory in each of a plurality of RFID tags, reading data from the memory of a plurality of the RFID tags and combining, in sequence number order, the data stored on at least two of the RFID tags, to generate the extended memory RFID tag.
  • an RFID tag data structure has a plurality of data segments, wherein the contents of each of the data segments are derived from a separate one of a plurality of RFID tags, at least one of which tags includes information for combining the data segments stored on the tags.
  • an extended memory RFID tag has a plurality of data segments, each of which has been read from a corresponding RFID tag, wherein each of the data segments has been stored in a relative order in accordance with sequencing indicia associated therewith on a corresponding RFID tag.
  • FIG. 1 shows one prior art RFID system including an RFID tag reader, an RFID tag and an application.
  • FIG. 2 shows a memory map for the prior art RFID tag of FIG. 1.
  • FIG. 3 shows one exemplary Radio Frequency Identification (RFID) system illustrating a combiner for combining data from the memory of a plurality of RFID tags as a data structure.
  • RFID Radio Frequency Identification
  • FIG. 4 shows one exemplary embodiment of a combiner including a plurality of RFID readers and an application.
  • FIG. 5 shows a memory map, from which a data structure is constructed in one exemplary embodiment of the present system.
  • FIG. 6 shows one exemplary data structure assembled from the memory map of FIG. 5.
  • FIG. 7 shows a memory map of one exemplary embodiment of the data structure of FIG. 3, where N, the number of different RFID tags from which data will be combined, is four
  • FIG. 8 shows a memory map illustrating one exemplary embodiment of the data structure of FIG. 3, where N has a value of 4.
  • FIG. 9 shows a memory map of one exemplary embodiment of the data structure of FIG. 3 where N is four
  • FIG. 10 shows a memory map of one exemplary embodiment of the data structure of FIG. 3, where N is four, with four corresponding off -tag memory locations.
  • FIG. 11 shows one exemplary networked RFID reader system for combining RFID tag memory.
  • FIG. 12 shows one exemplary system for extending the memory of an RFID mega-tag.
  • FIG. 13 is a flowchart showing an exemplary method for combining RFID tag memory.
  • FIG. 3 shows one exemplary Radio Frequency Identification (RFID) system 300 illustrating a combiner 302 for combining data from the memory of RFID tags 304(1-N).
  • Combiner 302 reads and combines certain data from memory of a plurality of RFID tags 304 to generate a data structure 306.
  • Data structure 306 and RFID tags 304 may be considered in combination to form an RFID 'mega-tag' 308.
  • Each of RFID tags 304 is a 'standard' component; that is, each of the tags 304 are RFID tags which are available from various manufacturers.
  • the RFID tags 304 used by the system 300 are not required to have identical memory capacities, nor does each tag 304 need to be of the same type or model number.
  • Each RFID tag 304 may thus represent arbitrary RFID tag 108 of FIG. 1.
  • FIG. 4 shows one exemplary embodiment of a combiner 302 including a plurality of RFID readers 404(1-N) and an application 406.
  • RFID readers 404 and application 406 cooperate to combine data stored in a plurality of RFID tags (e.g., RFID tags 304, FIG. 3) to generate data structure 306.
  • Data structure 306 may, for example, be located in any one or RFID readers 404 and/or application 406.
  • Application 406 may be any type of RFID software or firmware application.
  • Application 406 may run (i.e., may be executed) in one or more of the readers 404(1- N), and/or in a host computer physically separate from readers 404. It is envisioned that application 406 may be executed in a distributed manner by cooperation between programs running in different readers 404(1-N), and, optionally, with the aid or supervision of a program running on a host computer 405.
  • FIG. 5 shows a memory map 500, from which data structure 306 is constructed in one exemplary embodiment of the present system.
  • data from four RFID tags 304(1-4) is combined to generate data structure 306.
  • RFID tag 304(1) is shown with a unique identification number (UID) section 502(1), a protocol section 504(1) and three user blocks 510(1), 512(1) and 514(1)
  • RFID tag chip 304(2) is shown with a UID section 502(2), a protocol section 504(2) and three user blocks 510(2), 512(2) and 514(2)
  • RFID tag chip 304(3) is shown with a UID section 502(3), a protocol section 504(3) and three user blocks 510(3), 512(3) and 514(3)
  • RFID tag chip 304(4) is shown with a UID section 502(4), a protocol section 504(4) and three user blocks 510(4), 512(4) and 514(4).
  • Protocol sections 504 may each contain an application family identifier (AFI) section, a data storage format identifier (DS)
  • the first user block 510 of each RFID tag 304 memory is utilized to indicate a sequence or order for the RFID tags of RFID mega-tag 308.
  • section 510(1) of RFID tag 304(1) indicates that RFID tag 304(1) contains the first set of data to be stored within data structure 306.
  • sections 510 of RFID tags 304(2), 304(3) and 304(4) have sequence numbers 2, 3 and 4, respectively.
  • the second user block 512(1) of the first RFID tag 304(1) contains a count (e.g., N) of the number of RFID tags 304 having (at least some of ) the data contained therein to be stored within data structure 306.
  • user block 512(1) contains the value "4", indicating that and data is to be read from four different RFID tags 304(1-N).
  • data is read from user block 514(1) of RFID tag 304(1), as well as from user blocks 512 and 514 of RFID tags 304(2), 304(3) and 304(4) in sequence number order.
  • combiner 302 may, for example, assemble data structure 306 such as shown in FIG. 6.
  • Data structure 306 is generated by sequentially combining a plurality of segments 602, each formed of at least part of the data in each of RFID tags 304(1), 304(2), 304(3) and 304(4), based upon sequence numbers of user blocks 510 of each RFID tag 304.
  • Data structure 306 may also be referred to as an RFID tag data structure.
  • FIG. 7 shows a memory map 700 of one exemplary embodiment of data structure 306, where N, the number of different RFID tags from which data will be combined, is four.
  • RFID tag 304(1) is a 'master' tag containing UIDs of other grouped RFID tags 304(2-4).
  • RFID tag 304(1) stores the UID of other RFID tags belonging to RFID mega-tag 308, and may imply ordering where ordering is required.
  • user block 710(1) of RFID tag 304(1) contains UID(B) of RFID tag 304(2)
  • user block 712(1) contains UID(C) of RFID tag 304(3)
  • user block 714(1) contains UID(D) of RFID tag 304(4).
  • RFID tag 304(1) thus indicates that RFID tags identified as UE)(B), UE)(C) and UE)(D) form at least part of memory of RFE) mega-tag 308, and if necessary, should be processed (e.g., combined) in the given order, such as where the data stored within each RFE) tag 304(2-4) is sequential in nature, shown as DATA(0-8). Where data stored within RFE) mega-tag 308 is not sequential (e.g., where each RFE) tag 304(2- 4) contains individual data items), the ordering of RFE) tags 304(2-4) may be unnecessary, or determined by a different sequencing mechanism.
  • FIG. 8 shows a memory map 800 illustrating one exemplary embodiment of data structure 306, where N has a value of 4, and thus data from four tags is to be combined.
  • RFE As shown in memory map 800, RFE) tag 304(1) is a first
  • RFE tag in a tag chain 818 that includes RFE) tags 304(1-4).
  • each user block 810 form a link pointer 816 to identify a next RFE) tag of tag chain 818.
  • User block 810(1) of RFE) tag 304(1) identifies RFE) tag 304(2) as the next RFE) tag in tag chain 818.
  • Remaining user blocks 812(1) and 814(1) of RFID tag 304(1) may be used to store data, shown as data(O) and data(l), respectively.
  • User block 810(2) of RFID tag 304(2) identifies RFID tag 304(3) as the next RFID tag in tag chain 818.
  • User block 810(3) of RFID tag 304(3) identifies RFID tag 304(4) as the next RFID tag in tag chain 818.
  • Remaining user blocks 812(3) and 814(3) of RFID tag 304(3) may be used to store data, shown as data(4) and data(5), respectively.
  • user block 810(4) of RFID tag 304(4) has an end-of-link value that indicates that RFID tag 304(4) is the last RFID tag in tag chain 818.
  • Remaining user blocks 812(4) and 814(4) of RFID tag 304(4) may be used to store data, shown as data(6) and data(7), respectively.
  • An additional link pointer, or link pointer 816 may be utilized to provide a reverse ordering of RFID tags within tag chain 818 without departing from the scope hereof.
  • RFID mega-tag 308 includes a fixed number of RFID tags (e.g., RFID tags 304(1-4)) that have sequential UIDs.
  • memory capacity of the RFID mega-tag is predetermined, and combiner 302 may determine RFID tag ordering (i.e., the ordering of the data read from each RFID tag comprising mega-tag 308) without additional information.
  • FIG. 12 shows a memory map 900 of one exemplary embodiment of data structure 306 where N (the number of different RFID tags from which data will be combined) is four.
  • Off-tag reference 916 indicates the location of off -tag information store 918, and may take the form of an index number, a pointer, an Internet address, or other indicia.
  • Off -tag information store 918 may, for example, be located within an RFDD reader or within a remotely located database.
  • information store 918 is shown storing UIDs (B, C and D) of RFID tags 304(2-4), which define the location and order of data(0-8).
  • user blocks 910(2), 912(2) and 914(2) of BFTD tag 304(2) store data(O), data(l) and data(2), respectively;
  • user blocks 910(3), 912(3) and 914(3) of RFID tag 304(3) store data(3), data(4) and data(5), respectively;
  • user blocks 910(4), 912(4) and 914(4) of RFID tag 304(4) store data(6), data(7) and data(8), respectively.
  • Sequence section 510, FIG. 5, UID list 710, FIG. 7, link pointer 816, FIG. 8, and off-tag reference 916, FIG. 9, may each be referred to as sequencing indicia.
  • FIG. 10 shows a memory map 1000 of one exemplary embodiment of data structure 306, where N is four, with four corresponding off -tag memory locations 1016, 1018, 1020 and 1022.
  • memory locations 1016, 1018, 1020 and 1022 are shown as web pages on the Internet identified by Uniform Resource Locators (URLs).
  • URLs Uniform Resource Locators
  • user blocks 1010(1), 1012(1) and 1014(1) of RFID tag 304(1) are used to store a URL (“www.RFID.DATA.COM/123") that identifies 'off-tag' memory location 1016, which stores information, shown as data(O), relating to RFID tag 304(1).
  • User blocks 1010(2), 1012(2) and 1014(2) of RFID tag 304(2) are shown storing a URL ("www.RFID.DATA.COM/124") that identifies off-tag memory location 1018, which stores information, shown as data(l), relating to RFID tag 304(2).
  • User blocks 1010(3), 1012(3) and 1014(3) of RFID tag 304(3) are shown storing a URL ("www.RFID.DATA.COM/125") that identifies off-tag memory location 1020, which stores information, shown as data(2), relating to RFID tag 304(3).
  • Tag 304(4) User blocks 1010(4), 1012(4) and 1014(4) of RFID tag 304(4) are shown storing a URL ("www.RFID.DATA.COM/126") that identifies off-tag memory location 1022, which stores information, shown as data(3), relating to RFID tag 304(4).
  • a URL www.RFID.DATA.COM/126
  • all of the data of interest for a number of tags may be stored on one web page and specific blocks of data on that web page may be referenced by using a URL and a delimiter.
  • two different blocks of data on web page "www.rfid.data.com/100" could be identified by the URLs "www.rfid.data.com/100#123" and "www.rfid.data.com/100#124" (where the delimiter is "#").
  • each off -tag information storage locations 1016, 1018, 1020 and 1022 identified by RFID tags 304 provide different types of information for RFID mega-tag 308. Additional or fewer RFID tags may be included within RFID mega-tag 308 without departing from the scope hereof.
  • the potential amount of information that may be stored 'off-tag' e.g., within locations 918, 1016, 1018, 1020 and 1022 in a computer database system
  • RFDD tag memory capacity is not only relatively limited, but also relatively expensive, in comparison to disk drive storage.
  • FIG. 11 shows one exemplary networked RFID reader system 1100 for combining RFID tag memory in accordance with the present method.
  • System 1100 is shown with two RFID readers 1102(1) and 1102(2) and an application 1104 that communicate over network 1112.
  • Network 1112 may be, for example, an Ethernet network, a wireless network, a multi-drop serial network, or any other networking mechanism for allowing multiple RFED readers 1102 to communicate with one another.
  • Application 1104 may run, for example, on a server or host that is remote from RFID readers 1102.
  • RFID reader 1102 and application 1104 operate as a combiner 302.
  • FIG. 11 also shows two RFID tags 1106 and 1108 that are located outside the range of a single RFID reader.
  • RFID tag 1106 is within reading range of ('in-field' relative to) RFID reader 1102(1), but not in-field relative to RFID reader 1102(2)
  • RFED tag 1108 is in-field relative to RFED reader 1102(2) but not in-field relative to RFED reader 1102(1).
  • RFED reader 1102(1) reads RFED tag 1106 and RFED reader 1102(2) reads RFED tag 1108.
  • RFED tag 1106 represents a first RFED tag of RFED mega-tag 308
  • RFED reader 1102(1) reads RFED tag 1106 to create a data structure 30O 1 in which to store data for RFED mega-tag 308.
  • RFED reader 1102(2) upon reading certain data of RFED tag 1108, RFED reader 1102(2) sends the data to RFED reader 1102(1), which combines the data into data structure 30O 1 .
  • RFED reader 1102(1) interacts with RFED reader 1102(2) to obtain data from RFED tag 1108.
  • RFED tag 1108 is a first RFED tag of RFID mega-tag 308
  • RFED reader 1102(2) creates a data structure 306 2 by combining at least part of data read from RFED tag 1108 and at least part of data read from RFED tag 1106 that is sent to RFED reader 1102(2) by RFED reader 1102(1).
  • RFDD reader 1002(1) reads RFEO tag 1004(1) and RFED reader 1002(2) reads RFED tag 1004(2).
  • RFED reader 1102(1) sends data read from RFED tag 1106 to application 1104 and RFED reader 1102(2) sends data read from RFID tag 1108 to application 1104.
  • Application 1104 then creates data structure 3O6 3 in which is stored data for RFID mega-tag 308 by combining at least part of data read from RFID tag 1106 and at least part of data read from RFDD tag 1108.
  • FIG. 12 shows one exemplary system 1200 for extending the memory of an RFID mega-tag 308.
  • RFID mega-tag 308 has 'N' RFID tags 1204(1) - 1204(N) associated therewith, each including data blocks 1210(1) - 1210(N), respectively.
  • Combiner 302 operates to combine memory of RFBD tags 1204(1) - 1204(N) and generate data structure 306, shown with data segments 1210(1)* - 1210(N)*, each of which represents at least part of combined data 1210(1) - 1210(N).
  • RFID tag 1204(N+l) includes data block 1210(N+l) and combiner 302 may increase the size of data structure 306 to include data segment 1210(N+l)* which represents at least part of combined data 1210(N+l).
  • RFED tags 1204 of RFID mega-tag 308 may be applied to a vessel containing a substance for processing. At each processing stage, an additional RFID tag (e.g., RFID tag 1204(N+l)) is affixed to the vessel, thereby increasing memory of RFID mega-tag 308 to accommodate processing information.
  • RFID tags 1204 of RFID mega-tag 308 may be applied to a machine (e.g., a tool within a workshop) that requires periodic maintenance.
  • At least one additional RFLD tag (e.g., RFID tag 1204(N+l)) may be applied to the machine to increase memory of RFID mega-tag 308 to allow detail of the maintenance process to be stored within RFID mega-tag 308.
  • FIG. 13 is a flowchart showing an exemplary method 1300 for combining RFID tag memory.
  • data is stored, including sequencing indicia, in the memory of a plurality of RFID tags 304.
  • data is read from the memory of at least two RFID tags 304.
  • the first RFID tag of an RFID mega-tag is read.
  • step 1308,-data is decoded from the first RFID tag 304(1) to identify one or more additional RFID tags that are to be included in the RFID mega-tag.
  • the ordering of the RFID tags comprising mega-tag 308 is determined from sequencing indicia stored on the tags.
  • a data structure is generated by including data from the appropriate RFID tags in the determined order to create the RFID mega-tag 308.
  • Steps 1302-1312 may be reordered and certain ones of steps 1302- 1312 may be omitted without departing from the scope of the present method. For example, where ordering of data stored within the RFDD tags of the RFID mega-tag is not important, step 1310 may be omitted; where identification and ordering of the RFID tags of the RFID mega-tag is based upon their UIDs, steps 1308 and 1310 may be omitted.
  • an RFID mega-tag 308 includes a plurality of RFID tags 304 that operate to improve reliability of writing and reading data from and to the RFID mega-tag.
  • Memory in the plurality of RFID tags may be organized to provide error recovery and redundancy such that if any one (or more, depending upon the redundancy scheme) RFID tag fails, the data on that tag can be recovered.
  • the RFID mega-tag may be employed to provide increased data security relative to single RFID tags.
  • part of the memory in each of a plurality of RFID tags 304(1), 304(2), 304(3) and 304(4) of RFID mega-tag 308, FIG. 3, is utilized to provide redundancy and error correction for RFID mega-tag 308.
  • Combiner 302 then performs error correction and recovery of data read from RFID mega-tag 308.
  • RFID mega-tag 308 may appear to application 406, FIG. 4, as a conventional RFID tag with high reliability. Writing of error correction information and redundant data is also handled by combiner 302.
  • keying data may be distributed across a plurality of RFID tags of an RF]D mega-tag, thereby requiring that each RFID tag be present (and readable) for the key to be operable.
  • a variant of this method stores identity data on each tag (e.g. time of day) during encryption and then utilizes this identity data when decrypting as part of an Identity Based Encryption system (IBE).
  • IBE Identity Based Encryption system

Landscapes

  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Near-Field Transmission Systems (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Storage Device Security (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Cette invention concerne un système et un procédé permettant de générer une étiquette RFID à mémoire étendue par lecture de données à partir d'une mémoire qui contient une pluralité d'étiquettes RFID sur chacune desquelles des informations d'identification d'étiquette sont stockées. Il convient de combiner les données, conformément aux informations d'identification d'étiquette stockées sur au moins une des étiquettes RFID, pour générer l'étiquette RFID à mémoire étendue. Les marques de séquencement peuvent être stockées en mémoire dans chacune des étiquettes RFID pour permettre aux données d'être combinées conformément aux marques de séquencement.
PCT/US2006/015093 2005-04-21 2006-04-21 Systeme et procede permettant de combiner une memoire d'etiquette rfid WO2006116085A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06750967A EP1872308A2 (fr) 2005-04-21 2006-04-21 Systeme et procede permettant de combiner une memoire d'etiquette rfid

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US67369205P 2005-04-21 2005-04-21
US60/673,692 2005-04-21
US71295705P 2005-08-31 2005-08-31
US60/712,957 2005-08-31
US11/301,770 2005-12-13
US11/301,770 US20060238305A1 (en) 2005-04-21 2005-12-13 Configurable RFID reader
US11/301,396 US20060238302A1 (en) 2005-04-21 2005-12-13 System and method for configuring an RFID reader
US11/301,396 2005-12-13
US11/301,587 2005-12-13
US11/301,423 US20060238303A1 (en) 2005-04-21 2005-12-13 Adaptable RFID reader
US11/301,423 2005-12-13
US11/301,587 US20060238304A1 (en) 2005-04-21 2005-12-13 System and method for adapting an FRID tag reader to its environment
US11/323,214 2005-12-30
US11/323,214 US7570164B2 (en) 2005-12-30 2005-12-30 System and method for implementing virtual RFID tags
US11/328,209 US20060253415A1 (en) 2005-04-21 2006-01-09 Data-defined communication device
US11/328,209 2006-01-09
US11/387,421 US7659819B2 (en) 2005-04-21 2006-03-23 RFID reader operating system and associated architecture
US11/387,422 US20070046431A1 (en) 2005-08-31 2006-03-23 System and method for combining RFID tag memory
US11/387,421 2006-03-23
US11/387,422 2006-03-23

Publications (2)

Publication Number Publication Date
WO2006116085A2 true WO2006116085A2 (fr) 2006-11-02
WO2006116085A3 WO2006116085A3 (fr) 2007-04-26

Family

ID=37215302

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/US2006/015343 WO2006116236A2 (fr) 2005-04-21 2006-04-21 Procede et systeme de configuration d'un lecteur rfid
PCT/US2006/015344 WO2006116237A2 (fr) 2005-04-21 2006-04-21 Lecteur rfid configurable
PCT/US2006/015342 WO2006116235A2 (fr) 2005-04-21 2006-04-21 Lecteur rfid adaptatif
PCT/US2006/015347 WO2006116238A2 (fr) 2005-04-21 2006-04-21 Systeme et procede permettant d'adapter un lecteur de marqueurs rfid a son environnement
PCT/US2006/015092 WO2006116084A2 (fr) 2005-04-21 2006-04-21 Systeme et procede pour la mise en oeuvre d'etiquettes rfid virtuelles
PCT/US2006/015093 WO2006116085A2 (fr) 2005-04-21 2006-04-21 Systeme et procede permettant de combiner une memoire d'etiquette rfid

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/US2006/015343 WO2006116236A2 (fr) 2005-04-21 2006-04-21 Procede et systeme de configuration d'un lecteur rfid
PCT/US2006/015344 WO2006116237A2 (fr) 2005-04-21 2006-04-21 Lecteur rfid configurable
PCT/US2006/015342 WO2006116235A2 (fr) 2005-04-21 2006-04-21 Lecteur rfid adaptatif
PCT/US2006/015347 WO2006116238A2 (fr) 2005-04-21 2006-04-21 Systeme et procede permettant d'adapter un lecteur de marqueurs rfid a son environnement
PCT/US2006/015092 WO2006116084A2 (fr) 2005-04-21 2006-04-21 Systeme et procede pour la mise en oeuvre d'etiquettes rfid virtuelles

Country Status (2)

Country Link
EP (6) EP1872600A4 (fr)
WO (6) WO2006116236A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213773B2 (en) 2017-03-06 2022-01-04 Cummins Filtration Ip, Inc. Genuine filter recognition with filter monitoring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110148570A1 (en) * 2009-12-21 2011-06-23 Christian Weidinger Configuration RFID Circuit
FR2999840B1 (fr) * 2012-12-14 2018-08-10 Schneider Electric Industries Sas Systeme pour echanger des donnees a distance avec une radio-etiquette nfc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288598A (ja) * 2001-03-23 2002-10-04 Omron Corp 非接触id装置
US20030055667A1 (en) * 2000-02-23 2003-03-20 Flavio Sgambaro Information system and method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2197107B (en) * 1986-11-03 1990-12-12 Mars Inc Data-storing devices
US4924210A (en) * 1987-03-17 1990-05-08 Omron Tateisi Electronics Company Method of controlling communication in an ID system
MY109809A (en) * 1992-11-18 1997-07-31 British Tech Group Ltd Detection of multiple articles
US5777561A (en) * 1996-09-30 1998-07-07 International Business Machines Corporation Method of grouping RF transponders
WO1998052168A2 (fr) * 1997-05-14 1998-11-19 Avid Identification Systems, Inc. Lecteur pour systeme d'identification de radio-frequences
US6420961B1 (en) * 1998-05-14 2002-07-16 Micron Technology, Inc. Wireless communication systems, interfacing devices, communication methods, methods of interfacing with an interrogator, and methods of operating an interrogator
US6509828B2 (en) * 1998-07-30 2003-01-21 Prc Inc. Interrogating tags on multiple frequencies and synchronizing databases using transferable agents
DE29814988U1 (de) * 1998-08-20 1998-10-22 Moba Mobile Automation Gmbh Vorrichtung zum Auslesen und Beschreiben von mindestens zwei Transpondertypen
US6192222B1 (en) * 1998-09-03 2001-02-20 Micron Technology, Inc. Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods
US6317027B1 (en) * 1999-01-12 2001-11-13 Randy Watkins Auto-tunning scanning proximity reader
US6677852B1 (en) * 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6259367B1 (en) * 1999-09-28 2001-07-10 Elliot S. Klein Lost and found system and method
US6617962B1 (en) * 2000-01-06 2003-09-09 Samsys Technologies Inc. System for multi-standard RFID tags
EP1277163B1 (fr) * 2000-04-26 2010-11-24 Sensormatic Electronics, LLC Dispositif et procede de controle de sortie d'un lecteur rfid
US6307517B1 (en) * 2000-06-13 2001-10-23 Applied Wireless Identifications Group, Inc. Metal compensated radio frequency identification reader
US7565108B2 (en) * 2002-03-26 2009-07-21 Nokia Corporation Radio frequency identification (RF-ID) based discovery for short range radio communication with reader device having transponder functionality
US7009496B2 (en) * 2002-04-01 2006-03-07 Symbol Technologies, Inc. Method and system for optimizing an interrogation of a tag population
US7274909B2 (en) * 2002-10-31 2007-09-25 Nokia Corporation Method and system for selecting data items for service requests
US7066388B2 (en) * 2002-12-18 2006-06-27 Symbol Technologies, Inc. System and method for verifying RFID reads
US7023341B2 (en) * 2003-02-03 2006-04-04 Ingrid, Inc. RFID reader for a security network
US20060066443A1 (en) * 2004-09-15 2006-03-30 Tagsys Sa Self-adjusting RF assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030055667A1 (en) * 2000-02-23 2003-03-20 Flavio Sgambaro Information system and method
JP2002288598A (ja) * 2001-03-23 2002-10-04 Omron Corp 非接触id装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213773B2 (en) 2017-03-06 2022-01-04 Cummins Filtration Ip, Inc. Genuine filter recognition with filter monitoring system

Also Published As

Publication number Publication date
WO2006116237A2 (fr) 2006-11-02
WO2006116235A3 (fr) 2007-08-23
EP1872600A4 (fr) 2009-02-25
EP1872599A2 (fr) 2008-01-02
EP1872599A4 (fr) 2009-01-14
WO2006116236A2 (fr) 2006-11-02
WO2006116236A3 (fr) 2007-01-18
WO2006116084A3 (fr) 2007-10-18
EP1872602A2 (fr) 2008-01-02
EP1872594A2 (fr) 2008-01-02
WO2006116084A2 (fr) 2006-11-02
WO2006116085A3 (fr) 2007-04-26
WO2006116238A2 (fr) 2006-11-02
WO2006116238A3 (fr) 2007-03-22
EP1872600A2 (fr) 2008-01-02
EP1872601A2 (fr) 2008-01-02
WO2006116237A3 (fr) 2007-03-22
EP1872601A4 (fr) 2009-03-04
EP1872594A4 (fr) 2009-03-04
WO2006116235A2 (fr) 2006-11-02
EP1872308A2 (fr) 2008-01-02

Similar Documents

Publication Publication Date Title
US20070046431A1 (en) System and method for combining RFID tag memory
US7520424B2 (en) Identification storage medium arrangement, a read apparatus and an identification system
EP2097838B1 (fr) Procédé de stockage de données dans un transpondeur rfid
US7872582B1 (en) RFID tag chips and tags with alternative memory lock bits and methods
US8362881B2 (en) Method for storing data as well as a transponder, a read/write-device, a computer readable medium including a program element and such a program element adapted to perform this method
US20060279412A1 (en) System for using RFID tags as data storage devices
US20040257203A1 (en) Data encoding in radio frequency identification transponders
US20070222596A1 (en) Radio Frequency Identification System and Tag
CN100407229C (zh) 非接触集成电路标签系统
KR20050066965A (ko) Rom형 rfid 칩에 있어서의 제품 번호 설정 방법 및제품 실장 관리 방법, 장치 및 시스템
CN101159025B (zh) 射频标签读取器和方法
TW393630B (en) Protocol for storage and retrieval of data in an RFID tag which uses objects
EP1872308A2 (fr) Systeme et procede permettant de combiner une memoire d'etiquette rfid
JP2007213115A (ja) 無線タグ回路素子、無線タグ情報読み取り装置、タグラベル作成装置
JP2008234537A (ja) 偽造商品検知システムおよび偽造商品検知方法
Harmon The necessity for a uniform organisation of user memory in RFID
JP4451667B2 (ja) デバイス及びリード装置
JP2009187270A (ja) タグid制御システム、タグid制御方法およびプログラム
Tseng et al. Toward a consistent expression of things on epcglobal architecture framework
JP2009064150A (ja) 無線タグリーダライタ装置、無線タグ脱落検知方法及び無線タグ
CN106446989A (zh) 一种rfid票纸的识别方法、系统及设备
JP4317182B2 (ja) 物品管理方法及び物品管理装置
US20090094276A1 (en) System for the unique identification of physical and virtual objects
Hamlin Beyond Identification–High Memory RFID in Aviation
JP2009032249A (ja) 携帯可能電子装置、携帯可能電子装置のファイル管理方法及びicカード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006750967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU