WO2006115053A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2006115053A1
WO2006115053A1 PCT/JP2006/307712 JP2006307712W WO2006115053A1 WO 2006115053 A1 WO2006115053 A1 WO 2006115053A1 JP 2006307712 W JP2006307712 W JP 2006307712W WO 2006115053 A1 WO2006115053 A1 WO 2006115053A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
operation control
expansion valve
air conditioner
compressor
Prior art date
Application number
PCT/JP2006/307712
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Sangenya
Takeshi Kitagawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006115053A1 publication Critical patent/WO2006115053A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions

Definitions

  • the present invention relates to an air conditioner.
  • an air conditioner that can switch between a cooling cycle and a heating cycle by switching the flow direction of refrigerant can be switched from a state to an operation based on the heating cycle.
  • a so-called defrost operation in which the expansion valve is opened and the outdoor heat exchange functions as a condenser in a cooling cycle may be performed.
  • the heating cycle is switched to the heating operation (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-22306
  • the subject of this invention is providing the air conditioner which can suppress the refrigerant
  • An air conditioner is an air conditioner including a refrigerant circuit including a compressor, an outdoor heat exchanger, a first expansion valve, and a first indoor heat exchanger. Department.
  • the mechanism switches between the cooling cycle and the heating cycle by switching the refrigerant circulation direction.
  • the control unit performs the second operation by the heating cycle from the first operation control by the cooling cycle.
  • the first expansion valve is closed, and after the pump down operation control is performed to drive the compressor while the mechanism is on the cooling cycle side, the first expansion valve is opened and the second operation control is started. To do.
  • the first operation control force by the cooling cycle is switched to the second operation control by the heating cycle, and the pump down operation control is performed.
  • the refrigerant it is possible to prevent the refrigerant from being collected on the outdoor heat exchange side and the liquid refrigerant from accumulating on the first indoor heat exchange side. For this reason, the refrigerant
  • An air conditioner according to a second invention is the air conditioner according to the first invention, wherein a discharge-side pressure sensor for detecting a pressure on a discharge side of the compressor and a pressure on a suction side of the compressor are detected. And a suction side pressure sensor.
  • the mechanism is a four-way selector valve. Then, after performing the pump down operation control, the control unit determines that the difference between the discharge side pressure detected by the discharge side pressure sensor and the suction side pressure detected by the suction side pressure sensor reaches the minimum operating pressure of the four-way switching valve. After that, open the first expansion valve.
  • the first expansion valve is opened after the difference between the discharge-side pressure and the suction-side pressure reaches the minimum operating pressure of the four-way switching valve, so the first expansion until the four-way switching valve switches reliably.
  • the valve does not open. For this reason, it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened, and it is possible to suppress the refrigerant noise due to the refrigerant backward flow.
  • An air conditioner according to a third aspect of the present invention is the air conditioner of the first aspect or the second aspect, further comprising an outdoor fan that generates an air flow through the outdoor heat exchanger.
  • the first operation control is defrost operation control in which the outdoor blower is stopped or driven with a low air volume, and the cooling medium is circulated in the cooling cycle.
  • pump down operation control is performed when switching from defrost operation control, which is an operation by a cooling cycle, to second operation control by a heating cycle.
  • defrost operation control which is an operation by a cooling cycle
  • second operation control by a heating cycle
  • An air conditioner according to a fourth invention is the air conditioner of the first invention or the second invention, and further comprises an oil separator, an oil recovery circuit, and an oil recovery circuit opening / closing part.
  • the oil separator is provided on the discharge side of the compressor and separates oil in the refrigerant.
  • the oil recovery circuit consists of an oil separator and a compressor. Connect the suction side.
  • the oil recovery circuit opening / closing part is provided on the oil recovery circuit and opens and closes the oil recovery circuit.
  • the first operation control is oil recovery operation control in which the oil recovery circuit opening / closing part is opened and the refrigerant is circulated in the cooling cycle.
  • pump down operation control is performed when switching to the second operation control by the oil recovery operation control force heating heating that is the operation by the cooling cycle.
  • the oil recovery operation control force It is possible to suppress the refrigerant noise that is likely to occur when the refrigerant circulation direction is switched.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, further comprising a receiver, a degas circuit, and a degas circuit opening / closing section.
  • the receiver 1 is located upstream of the first expansion valve and downstream of the outdoor heat exchanger in the cooling cycle, and can store liquid refrigerant.
  • the degassing circuit is connected from the receiver to the suction side of the compressor, and sends the refrigerant in the gaseous state in the receiver to the suction side of the compressor.
  • the degassing circuit opening / closing part is provided on the degassing circuit and opens and closes the degassing circuit. Then, after the pump down operation control, the control unit performs the refrigerant recovery control for opening the gas vent circuit opening / closing unit, and then opens the first expansion valve and starts the second operation control.
  • the refrigerant circuit If the refrigerant is in an excessive state, the refrigerant is stored between the receiver and the first expansion valve, and the pressure of the refrigerant is likely to be higher than the other parts. For this reason, if the first expansion valve is opened when the second operation control is displayed, the refrigerant may flow backward and a refrigerant noise may be generated.
  • this air conditioner even if a refrigerant with a relatively high pressure is stored between the receiver and the first expansion valve, the receiver and the first expansion valve are opened by opening the venting circuit. The refrigerant between the valves can be collected in the receiver. For this reason, it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened, and to suppress the generation of refrigerant noise.
  • An air conditioner according to a sixth invention is the air conditioner according to the first invention and the fifth invention, wherein the refrigerant circuit is arranged in parallel with the first expansion valve and the first indoor heat exchanger. It further includes a second indoor heat exchanger and a second expansion valve.
  • This air conditioner is equipped with a plurality of indoor heat exchangers, so-called multi-type air conditioners.
  • the refrigerant tends to be excessive. Therefore, an environment in which the liquid refrigerant is likely to stay as soon as the above-mentioned liquid refrigerant stays is obtained. Therefore, the present invention that can suppress refrigerant noise is more effective.
  • An air conditioner includes a compressor, an outdoor heat exchanger, a first expansion valve, a first indoor heat exchanger, and a cooling cycle and a heating by switching a refrigerant circulation direction.
  • the first operation control execution step the first operation control by the cooling cycle is executed.
  • pump down operation step after the first operation control execution step, pump down operation control is performed in which the first expansion valve is closed and the compressor is driven in a state where the mechanism is on the cooling cycle side.
  • the second operation control start step after the pump down operation step, the first expansion valve is closed and the second operation control by the heating cycle is started.
  • pump down operation control is performed when switching from the first operation control by the cooling cycle to the second operation control by the heating cycle.
  • the refrigerant when the first operation control by the cooling cycle is switched to the second operation control by the heating cycle, the refrigerant is recovered to the outdoor heat exchange side, and the first indoor heat exchange is performed. It can suppress that a liquid refrigerant accumulates on the side. For this reason, the refrigerant
  • the first expansion valve is not opened until the four-way switching valve is reliably switched, so that it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened.
  • the defrosting operation control force is easily generated when the refrigerant circulation direction is switched, and the refrigerant noise can be suppressed.
  • the refrigerant circulation direction is switched from the oil recovery operation control. It is easy to generate the refrigerant noise when it is obtained.
  • the air conditioner pertaining to the fifth aspect of the invention even when refrigerant having a relatively high pressure is stored between the receiver and the first expansion valve, the refrigerant when the first expansion valve is opened. Can be prevented from flowing backward, and the generation of refrigerant noise can be suppressed.
  • the air conditioner pertaining to the sixth aspect of the invention is a multi-type air conditioner, and the present invention that can suppress refrigerant noise is more effective.
  • the refrigerant when the first operation control based on the cooling cycle is switched to the second operation control based on the heating cycle, the refrigerant is collected on the outdoor heat exchange side and the liquid is transferred to the first indoor heat exchange side. It can suppress that a refrigerant
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner.
  • FIG. 2 is a control block diagram of the air conditioner.
  • FIG. 3 is a diagram showing a control flow at the start of heating operation.
  • FIG. 4 is a diagram showing a control flow at the time of transition from defrost operation control to normal heating operation control.
  • FIG. 5 is a diagram showing a control flow at the time of shifting to normal heating operation control. Explanation of symbols
  • Hot gas bypass circuit switching part oil recovery circuit switching part
  • FIG. 1 shows a refrigerant circuit diagram showing a configuration of an air conditioner 100 that is effective in one embodiment of the present invention.
  • This air conditioner 100 is an air conditioner that heats and cools a house, and a plurality of indoor units 2a-2c are connected to one outdoor unit 1.
  • V a so-called multi-type air conditioner. It is.
  • the indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1.
  • a total of three indoor units 2a-2c including the first indoor unit 2a, the second indoor unit 2b, and the third indoor unit 2c are connected to one outdoor unit 1 via the branch unit BP1. ing.
  • the refrigerant circuit on the outdoor unit 1 side includes the compressor 10, the switching mechanism 11, the oil separator 12, the hot gas bypass circuit 13, the outdoor heat exchanger 14, the outdoor expansion valve 15, the receiver 16, the bridge circuit 17, and the cooler 18
  • a supercooling bypass circuit 19 a gas vent circuit 20, a pressure equalizing circuit 21 and the like are included.
  • the compressor 10 is an electric motor driven scroll compressor, and is a device for compressing the sucked gas refrigerant.
  • the compressor 10 can variably control the operation frequency by an inverter.
  • the mechanism 11 is a mechanism that switches the direction of the refrigerant flow when switching between the cooling cycle operation and the heating cycle operation.
  • the gas side of the discharge pipe 22, the suction pipe 23, and the outdoor heat exchanger 14 of the compressor 10 is used. And a four-way switching valve connected to the gas side of the indoor heat exchanger 3 & — 3c.
  • the mechanism 11 connects the discharge side of the compressor 10 and the gas side of the outdoor heat exchange 14 and operates the suction of the compressor 10 during operation by the cooling cycle.
  • the gas shut-off valve 24 are connected (see the solid line of the shelf structure 11 in FIG. 1; this state is hereinafter referred to as “cooling cycle side state”).
  • the switching mechanism 11 can connect the discharge side of the compressor 10 and the gas shut-off valve 24 and can connect the suction side of the compressor 10 and the gas side of the outdoor heat exchanger 14 during operation by the heating cycle. Yes (Refer to the broken line in Structure 11 in Fig. 1. This state is referred to as the “heating cycle side state”.)
  • the oil separator 12 is a mechanism for separating the lubricating oil contained in the refrigerant on the discharge side of the compressor 10 and returning it to the suction side of the compressor 10, and is provided in the middle of the discharge pipe 22. Yes.
  • the hot gas bypass circuit 13 is a circuit that connects the discharge pipe 22 and the suction pipe 23 of the compressor 10, and connects the suction side and the discharge side of the compressor 10.
  • the hot gas bypass circuit 13 has one end connected to the oil separator 12 and the other end connected to the suction pipe 23. Therefore, the hot gas bypass circuit 13 also serves as an oil recovery circuit for returning the refrigerant discharged from the compressor 10 to the suction side and returning the oil separated by the oil separator 12 to the suction side of the compressor 10. Can function.
  • a hot gas bypass circuit opening / closing part 25 oil recovery circuit opening / closing part
  • a firefly 26 for reducing the pressure of the refrigerant passing therethrough are provided.
  • the hot gas bypass circuit opening / closing unit 25 is an electromagnetic valve that opens and closes the hot gas bypass circuit 13, and can close and open the flow of refrigerant flowing through the hot gas bypass circuit 13.
  • the outdoor heat exchanger 14 is a cross-fin tube type heat exchanger, and is a device for exchanging heat with a refrigerant using air as a heat source.
  • the outdoor unit 1 includes an outdoor blower 27 that generates an air flow through the outdoor heat exchanger 14 in order to take outdoor air into the outdoor unit 1 and send it out.
  • the outdoor fan 27 exchanges heat between outdoor air and the refrigerant flowing through the outdoor heat exchanger 14 by passing air through the outdoor heat exchanger 14.
  • the outdoor expansion valve 15 is connected to the liquid side of the outdoor heat exchanger 14 and is positioned between a bridge circuit 17 and an outdoor heat exchanger 14 described later.
  • the outdoor expansion valve 15 is a motor-operated valve that can depressurize the refrigerant passing therethrough, and the flow rate of the refrigerant passing therethrough can be adjusted by controlling the opening degree of the valve.
  • Receiver 16 the outdoor heat exchange with the indoor heat exchange 3 a - a container for storing the refrigerant flowing between the 3c temporarily, it is capable of storing a refrigerant in a liquid state.
  • receiver 16 has an inlet at the top of the container and an outlet at the bottom of the container.
  • the inlet of the receiver 16 is connected to the outdoor expansion valve 15 and the liquid closing valve 28 via the bridge circuit 17.
  • the outlet of the receiver 16 is connected to an outdoor expansion valve 15 and a liquid closing valve 28 via a cooler 18 and a bridge circuit 17.
  • the receiver 16 is located between the outdoor heat exchanger ⁇ 14 and the indoor heat exchanger 3 a — 3c, on the opposite side of the compressor 10, and is connected to the indoor expansion valve 5 a — 5 c and the outdoor heat exchanger 14. Located between.
  • the receiver 16 is located upstream of the indoor expansion valves 5a-5c and downstream of the outdoor heat exchanger 14 in the refrigerant flow direction in the cooling cycle.
  • the bridge circuit 17 is composed of four check valves 17a_17d connected between the outdoor expansion valve 15 and the receiver 16, and includes an outdoor heat exchange 14 and an indoor heat exchange 3 & — 3c-3c side force when the refrigerant flowing between 3c flows into the receiver 16 from the outdoor heat exchange side and when flowing into the receiver 16, the inlet of the receiver 16 force also allowed to flow into the refrigerant in the receiver 16, and the outlet force is also the outdoor heat exchange with the indoor heat exchange 3 a receiver 16 - has the function of returning the refrigerant between 3c.
  • the check valve 17a is connected to guide the refrigerant flowing from the indoor heat exchangers 3a-3c toward the outdoor heat exchanger 14 to the inlet of the receiver 16.
  • the check valve 17b is connected to guide the refrigerant flowing from the outdoor heat exchanger 14 toward the indoor heat exchanger 3a-3c to the inlet of the receiver 16.
  • Check valve 17c is connected to the outlet of receiver 16.
  • the check valve 17d is connected so that the outlet force of the receiver 16 can also flow the refrigerant flowing through the cooler 18 to the outdoor heat exchange side.
  • the refrigerant flowing between the outdoor heat exchanger ⁇ 14 and the indoor heat exchanger 3 a -3c always flows in the inlet force of the receiver 16 and also flows out of the outlet force of the receiver 16 ⁇ 14
  • the cooler 18 is a double-pipe heat exchanger and is provided to cool the refrigerant condensed in the outdoor heat exchanger 14 and sent to the indoor heat exchanger-3c.
  • the cooler 18 is connected between the receiver 16 and the bridge circuit 17.
  • Subcooling Bruno Ipasu circuit 19 from the outdoor heat exchange indoor heat exchange 3 a - is sent to 3c A part of the refrigerant is branched and returned to the suction side of the compressor 10.
  • the supercooling bypass circuit 19 is branched from the circuit portion connecting the outlet of the receiver 16 and the check valve 17d of the bridge circuit 17 and passes through the cooler 18 to the suction pipe 23 of the compressor 10. Connected to join.
  • the supercooling bypass circuit 19 is provided with a supercooling bypass expansion valve 29 for adjusting the flow rate of the refrigerant flowing through the supercooling bypass circuit 19.
  • the supercooling bypass expansion valve 29 is an electric valve for adjusting the flow rate of the refrigerant flowing through the cooler 18.
  • the refrigerant flowing through the refrigerant circuit 10 is cooled in the cooler 18 by the refrigerant returned to the suction pipe 23 of the compressor 10 by the outlet force of the expansion valve 29 for the supercooling no-pass! /,
  • the degassing circuit 20 has one end connected to the upper end of the receiver 16 and the other end connected to the supercooling bypass circuit 19 and joined to the suction pipe 23 of the compressor 10.
  • the degassing circuit 20 is a circuit for sending the gaseous refrigerant in the receiver 16 to the suction side of the compressor 10.
  • a degas circuit opening / closing section 30 is provided on the degas circuit 20.
  • the degassing circuit opening / closing unit 30 is an electromagnetic valve that opens and closes the degassing circuit 20 and can close and open the flow of refrigerant flowing through the degassing circuit 20.
  • One end of the pressure equalizing circuit 21 is connected between the degassing circuit opening / closing portion 30 and the receiver 16 in the degassing circuit 20, and the other end is connected to the discharge pipe 22.
  • the pressure equalizing circuit 21 is provided with a pressure equalizing check valve 31 that allows only one refrigerant to flow toward the other end. This pressure equalization circuit 21 prevents the receiver 16 from bursting by allowing the gas refrigerant to escape if the outside air temperature rises abnormally while the air conditioner 100 is stopped and the pressure in the receiver 16 becomes too high. Is.
  • the plurality of indoor units 2a-2c are arranged on the indoor wall and the ceiling, respectively, and blow out conditioned air into the room.
  • the indoor units 2a-2c may be arranged in different rooms or at different positions in the same room.
  • Each of the indoor units 2a-2c can be independently thermo-on / off and start / stop operation, and the operation state can be switched for each of the indoor units 2a-2c.
  • the plurality of indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1, and the refrigerant sent from the outdoor unit 1 branches. It is branched at unit BP1 and sent to the indoor heat exchangers ⁇ 3a-3c. In addition, the refrigerant that has flowed through each of the indoor heat exchangers 3a to 3c merges again in the branch unit BP1, and is sent to the outdoor unit 1.
  • the first indoor unit 2a includes a first indoor heat exchange 3 & and a first indoor blower 4a.
  • the first indoor heat exchange heat is exchanged between the refrigerant flowing inside and the air.
  • the first indoor fan 4a generates a flow of air blown from the first indoor unit 2a, and sends the air that has exchanged heat with the refrigerant flowing through the first indoor heat exchanger 3a to the room.
  • the second indoor unit 2b includes a second indoor heat exchanger 3b and a second indoor blower 4b.
  • the second indoor fan 4b generates an air flow that also blows the internal force of the second indoor unit 2b, and sends the air that has exchanged heat with the refrigerant flowing through the second indoor heat exchanger 3b to the room.
  • the third indoor unit 2c includes a third indoor heat exchanger 3c and a third indoor fan 4c.
  • the third indoor heat exchange exchanges heat between the refrigerant flowing inside and the air.
  • the third indoor fan 4c generates a flow of air blown out from the third indoor unit 2c, and sends the air that has exchanged heat with the refrigerant flowing through the third indoor heat exchanger 3c to the room.
  • the first indoor heat exchanger 3a, the second indoor heat exchanger 3b, and the third indoor heat exchanger 3c are provided in parallel with the refrigerant circuit, and are connected to the branch unit BP1. .
  • the branch unit BP1 branches the refrigerant sent from one outdoor unit 1 and distributes it to the plurality of indoor units 2a 2c, and also merges the refrigerant sent from the plurality of indoor units 2a-2c into one outdoor unit. Unit to send to 1.
  • this air conditioner 100 three indoor units 2a-2c are connected to one branch unit BP1! However, even if more indoor units or fewer indoor units are connected to one branch unit BP1 Good. Also, multiple branch units may be connected to one outdoor unit 1.
  • the branch unit BP1 has a liquid branch pipe 32 branched into three and a gas branch pipe 33 branched into three.
  • the liquid branch pipe 32 is connected to the liquid shut-off valve 28 of the outdoor unit 1 and the first indoor heat exchange 3 &
  • the gas branch pipe 33 includes the gas shut-off valve 24 of the outdoor unit 1, the first indoor heat exchanger 3a, and the second indoor heat exchanger 3 It is connected to b and the gas side of the third indoor heat exchanger.
  • the first indoor expansion valve 5a first indoor expansion valve
  • the second indoor expansion valve 5b second indoor expansion valve
  • a third indoor expansion valve 5c is provided, and the indoor expansion valves 5a-5c are provided in parallel in the refrigerant circuit. Therefore, a refrigerant circuit on the first indoor unit 2a side composed of the first indoor heat exchanger 3a and the first indoor expansion valve 5a, and a second room composed of the second indoor heat exchanger 3b and the second indoor expansion valve 5b.
  • the refrigerant circuit on the side of the unit 2b and the refrigerant circuit on the side of the third indoor unit 2c consisting of the third indoor heat exchanger 3c and the third indoor expansion valve 5c are connected in parallel to each other via the branch unit BP1. Connected to the refrigerant circuit.
  • the first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c are motor-operated valves that can depressurize the refrigerant that passes through them, respectively. The amount can be controlled.
  • the first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c can be independently controlled.
  • an electric valve 6 for pressure adjustment is provided between the liquid branch pipe 32 and the first gas-liquid branch pipe.
  • the air conditioner 100 includes various sensors 40-51 such as a pressure sensor and a temperature sensor provided in each part.
  • various sensors 40-51 will be described with reference to FIG.
  • the suction pipe 23 of the compressor 10 is provided with a suction side pressure sensor 40 for detecting the pressure of the low-pressure gas refrigerant flowing on the suction side of the compressor 10 (hereinafter referred to as “suction side pressure Pe”).
  • suction side pressure Pe the pressure of the low-pressure gas refrigerant flowing on the suction side of the compressor 10
  • discharge side pressure Pe for detecting the pressure of the high-pressure gas refrigerant flowing on the discharge side of the compressor 10
  • discharge side pressure Pc discharge side pressure
  • the discharge pipe 22 of the compressor 10 is provided with a high-pressure switch 42 for detecting an excessive increase in the pressure of the high-pressure gas refrigerant.
  • the discharge pipe 22 of the compressor 10 is provided with a discharge temperature sensor 43 for detecting the discharge temperature Td of the refrigerant on the discharge side of the compressor 10, and the suction pipe 23 of the compressor 10 is provided with the compressor 10
  • An intake temperature sensor 44 is provided for detecting the intake temperature Ts of the refrigerant on the intake side.
  • an outdoor air temperature sensor 45 for detecting the temperature Ta of the outdoor air is provided at the air inlet of the outdoor fan 27 of the outdoor unit 1.
  • the outdoor heat exchanger 14 is used for cooling operation.
  • the temperature Tsh of the refrigerant flowing through the supercooling bypass circuit 19 on the outlet side of the cooler 18 is detected to detect the degree of superheat.
  • a supercooling no-pass circuit temperature sensor 47 is provided.
  • the supercooling bypass circuit temperature sensor 47 can detect the degree of superheat on the suction side of the compressor 10.
  • the air blower of the indoor unit 2a-2c indoor fan 4a-4c has the indoor air temperature Tr
  • Each room temperature sensor 48 is provided for detection.
  • the indoor temperature sensor 48 can detect the temperature of the room subject to air conditioning by the indoor units 2a-2c.
  • Each of the indoor heat exchangers 3a to 3c is provided with an indoor heat exchanger temperature sensor 49 for detecting a refrigerant temperature Tn corresponding to the evaporation temperature during the cooling operation and corresponding to the condensation temperature during the heating operation. Speak.
  • Each branch of the gas branch pipe 33 in the branch unit BP1 is provided with a gas pipe temperature sensor 50 for detecting the temperature of the refrigerant passing through the inside.
  • Gas pipe temperature sensor 50, the chamber expansion valve 5a-5c and the indoor heat exchange 3 a - is provided between the 3c.
  • Each branch of the liquid branch pipe 32 is provided with a liquid pipe temperature sensor 51 for detecting the temperature of the refrigerant passing through the inside.
  • the liquid pipe temperature sensor 51 is provided between the indoor heat exchangers 3a-3c and the branch point of the liquid branch pipe.
  • the air conditioner 100 controls each device such as the compressor 10 and the switching mechanism 11 based on the signals detected by the various sensors 40-51, and performs cooling operation and heating.
  • a control unit 60 for performing air conditioning operation such as operation is provided.
  • the control unit 60 mainly includes a microcomputer and a memory, and is connected so that it can receive input signals of the various sensors 40-51 described above, as well as commands input to the operation terminal 61. Can receive a signal. The control unit 60 receives these input signals and commands. Various devices 4a-4c, 10, 11, 27, valves 5a-5c, 15, 29, and various opening / closing sections 25, 30 are connected so as to be controlled based on the signal. The control unit 60 controls the various devices 4a-4c, 10, 11, 27, the valves 5a-5c, 15, 29, and the various opening / closing units 25, 30 to perform air conditioning operations such as cooling operation and heating operation. It can be carried out. In FIG. 2, a plurality of components such as valves 5a-5c, various opening / closing sections 25, 30, indoor blowers 4a-4c, and indoor expansion valves 5a-5c are displayed together in one block. However, each component can be controlled individually.
  • control unit 60 various controls performed by the control unit 60 will be described.
  • the control unit 60 can switch between the operation by the cooling cycle and the operation by the heating cycle.
  • the cooling cycle operation includes cooling operation, defrost operation, and oil recovery operation.
  • the Kiriura structure 11 maintains the previous operation state! /.
  • the state is the cooling cycle side state.
  • the compressor 10, the outdoor blower 27, and the indoor blowers 4a-4c are stopped, and the outdoor expansion valve 15, the indoor expansion valves 5a-5c, and the supercooling bypass expansion valve 29 are fully closed. Further, the hot gas bypass circuit opening / closing section 25 and the gas vent circuit opening / closing section 30 are closed.
  • step S3 after the refrigerant recovery control is started in the first step S1, 2Normal heating operation control is started in step S2.
  • the pump down operation control is performed in the third step S3, and then the air conditioner 100 stops the operation.
  • Refrigerant recovery control is performed at the start of activation of the heating operation.
  • the gas vent circuit opening / closing part 30 is opened with the indoor expansion valves 5a-5c closed.
  • the gas refrigerant in the receiver 16 is sent to the suction side of the compressor 10 through the gas vent circuit 20.
  • the liquid refrigerant staying between the receiver 16 and the indoor expansion valves 5a-5c is recovered by the receiver 16.
  • the degassing circuit opening / closing part 30 is closed when the time T1 has elapsed since being opened, and when the condition of Tsh-Teg is satisfied.
  • Teg is the saturated gas temperature corresponding to the pressure of the suction side gas refrigerant, and a is a predetermined constant. That is, when the degree of superheat of the refrigerant sent from the gas vent circuit 20 to the suction side of the compressor 10 becomes smaller than a predetermined value, the gas vent circuit opening / closing part 30 is closed.
  • refrigerant recovery control is performed, and an ON signal is input to the mechanism 11 so that the switching mechanism 11 is switched to the heating cycle side state.
  • the compressor 10 starts to be driven at a low frequency, for example, the lowest operating frequency, and the outdoor blower 27 is driven at a predetermined number of rotations.
  • the outdoor expansion valve 15, the subcooling bypass expansion valve 29, and the indoor expansion valves 5a to 5c are in a fully closed state.
  • the compressor 10 is controlled so that the frequency increases stepwise after startup, and the outdoor expansion valve 15 is opened to a predetermined opening.
  • the normal heating operation start condition is a condition that allows the switching mechanism 11 to be considered to have reliably switched from the cooling cycle side state to the heating cycle side state, and the start control of the heating operation is started. This is the case when either the force time T2 has passed or the condition Pc—Pe> b is satisfied. Where b is the minimum operating pressure of mechanism 11.
  • the switching mechanism 11 does not immediately switch due to the effect of the high / low pressure differential pressure, so the switching mechanism when the high / low pressure differential pressure exceeds the minimum operating pressure of the switching mechanism 11 Assuming that 11 has changed, the indoor expansion valves 5a to 5c are opened. Therefore, in the normal heating operation control, the switching mechanism 11 is switched to the state indicated by the wavy line in FIG.
  • the hot gas bypass circuit opening / closing part 25 is closed, and the supercooling bypass expansion valve 29 is fully closed.
  • the outdoor expansion valve 15, the outdoor blower 27, the indoor expansion valve 5a-5c of the indoor unit 2a-2c in operation, and the indoor blower 4a-4c are used for operating conditions of the indoor unit 2a-2c.
  • the refrigerant circulates through the refrigerant circuit, so that the indoor heat exchangers 3a-3c of the indoor units 2a-2c in the operating state function as a condenser and the outdoor heat exchanger 14 functions as an evaporator. As a result, the heated air is blown into the room, and the normal heating operation is performed.
  • the refrigerant circulates in the refrigerant circuit as follows. Note that. Here, it is assumed that the first indoor unit 2a is in the thermo-on state, and the second indoor unit 2b and the third indoor unit 2c are in the thermo-off state or the operation stopped state.
  • the refrigerant discharged from the compressor 10 is sent from the mechanism 11 to the first indoor heat exchanger 3a through the gas shut-off valve 24 and the branch unit BP1.
  • the refrigerant dissipates heat to the room air and condenses.
  • the refrigerant condensed in the first indoor heat exchanger 3a flows into the receiver 16 through the first indoor expansion valve 5a, the liquid closing valve 28, and the bridge circuit 17.
  • the refrigerant flowing out from the receiver 16 is decompressed by the outdoor expansion valve 15 and sent to the outdoor heat exchanger 14 through the bridge circuit 17.
  • the outdoor heat exchanger 14 the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger 14 is sucked into the compressor 10 through the switching mechanism 11.
  • the compressor 10 compresses the sucked refrigerant and discharges it again.
  • the corresponding second indoor expansion valve 5b and third indoor expansion valve 5c have a slight opening degree. Open and restricted inflow of refrigerant.
  • the control unit 60 controls the frequency of the compressor 10, the opening degree of the outdoor expansion valve 15, and the like according to the change in the operating state of each indoor unit 2a-2c.
  • the indoor fans 4a-4c are stopped, the indoor expansion valves 5a-5c are fully closed, and the operations of the indoor units 2a-2c are stopped. Then, after the operation of the indoor units 2a-2c is stopped, the pump-down operation control for recovering the refrigerant to the high pressure side is performed in order to prevent the liquid back at the next start-up.
  • the compressor 10 In the pump down operation control, the compressor 10 is driven while the switching mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are fully closed.
  • the outdoor expansion valve 15 The supercooling bypass expansion valve 29 is fully closed and the hot gas bypass circuit opening / closing part 25 is closed.
  • the outdoor blower 27 is stopped or driven at a predetermined rotational speed. Thereafter, the compressor 10 and the outdoor blower 27 are stopped, the outdoor expansion valve 15 is fully closed, and the operation of the outdoor unit 1 is stopped.
  • the outdoor heat exchanger 14 of the outdoor unit 1 may freeze.
  • the outdoor heat exchanger 14 can be defrosted by performing a defrost operation (first operation control) according to the refrigerant operation.
  • the twelfth step S12 (pump down) is performed.
  • pump down operation control is performed.
  • refrigerant recovery control is performed in the thirteenth step S13, and then normal heating operation control (second operation control) is performed in the fourteenth step S14 (second operation control start step).
  • second operation control normal heating operation control
  • the pump down operation control is performed before switching to the normal heating operation control.
  • the refrigerant recovery control is performed before switching to the normal heating operation.
  • the compressor 11 In the defrost operation control, the compressor 11 is driven in a state where the switch 11 is switched to the cooling cycle side state and the outdoor blower 27 and the indoor blowers 4a-4c are stopped. At this time, the outdoor expansion valve 15 is opened at a predetermined opening, and the supercooling bypass expansion valve 29 is fully closed.
  • the hot gas bypass circuit opening / closing section 25 is opened, and the indoor expansion valves 5a-5c of the indoor units 2a-2c in the operating state are opened to a predetermined opening.
  • the degassing circuit opening / closing part 30 is also opened after a predetermined time T4 has elapsed, and then closed again.
  • Such defrost operation control is performed under the condition that either the defrost operation control start force predetermined time T5 has passed, Tb> c is satisfied, or Pc> d is satisfied. Is finished, and then pump down operation control is performed.
  • c and d are predetermined constants and are determined so that the defrosting is sufficiently performed in the outdoor heat exchanger 14.
  • pump down operation control is performed. In the pump down operation control, the compressor 10 is driven while the switching mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are closed. Further, the hot gas no-pass circuit opening / closing part 25 is closed.
  • the pump-down operation control is performed when the pump-down operation start time T3 has elapsed, Pe ⁇ e is satisfied, Td> f is satisfied, or Pc> g is satisfied.
  • the process is terminated when the condition is satisfied, and then the refrigerant recovery control is performed.
  • e, f, and g are predetermined constants.
  • the refrigerant recovery control is completed, the normal heating operation control is started.
  • the refrigerant recovery control and the normal heating operation control are the same controls as described above, but different conditions are used for the judgment at the end of each power control.
  • oil recovery operation control (first operation control) is performed, and the oil content in the refrigerant is collected in the compressor 10. can do.
  • first operation control is performed in the 21st step S21 (first operation control execution step), and then pump down operation is performed in the 22nd step S22 (pump down operation step). Control is performed. Thereafter, refrigerant recovery control is performed in the 23rd step S23, and then normal heating operation control (second operation control) is performed in the 24th step S24 (second operation control start step).
  • second operation control normal heating operation control
  • normal heating operation control is performed after pump down operation control is performed. Further, after the pump down operation control is performed, the refrigerant recovery control is performed before the normal heating operation control is performed.
  • the mechanism 11 is switched to the cooling cycle side state, the outdoor fan 27 is driven at a predetermined rotational speed, and the compressor 10 is driven with the indoor fans 4a-4c stopped.
  • the At this time the outdoor expansion valve 15 is opened at a predetermined opening, and the subcooling bypass expansion valve 29 is fully closed.
  • the hot gas bypass circuit opening / closing section 25 is opened, and the indoor expansion valves 5a-5c of the indoor units 2a-2c in the operating state are opened to a predetermined opening.
  • the degassing circuit opening / closing part 30 is also opened after a predetermined time has elapsed and then closed again.
  • Such oil recovery operation control is continued until either a predetermined time elapses when the oil recovery operation control start force is satisfied or Th-Teg ⁇ h is satisfied, and then Pump down operation control is performed.
  • h is a predetermined constant and is determined so that oil recovery can be performed sufficiently.
  • pump down operation control is performed.
  • the compressor 10 is driven while the mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are closed. Further, the hot gas bypass circuit opening / closing part 25 is closed.
  • the pump down operation control is performed when the pump down operation is started and the force has exceeded the specified time T3, when Pe e is satisfied, when Td> f is satisfied, or when Pc> g is satisfied. Is finished, and then refrigerant recovery control is performed. When the refrigerant recovery control is finished, the normal heating operation control is started.
  • the pump-down operation control, the refrigerant recovery control, and the normal heating operation control may be different conditions with respect to the determination of the end of each power control, which is the same control as described above.
  • a pump-down operation for recovering the refrigerant to the high pressure side is performed in order to prevent generation of a liquid back at the next start-up. If the pump-down operation is performed when the indoor units 2a-2c are stopped, a refrigerant with a relatively high pressure may remain between the receiver 16 and the indoor expansion valves 5a-5c in a situation where the refrigerant is excessive.
  • the indoor expansion valve 5a-5c When the heating operation is restarted, the indoor expansion valve 5a-5c is opened with a predetermined opening, so that the refrigerant is accumulated as described above, and if the indoor expansion valve 5a-5c is opened with the refrigerant accumulated, the receiver 16 and the indoor High-pressure refrigerant between the expansion valves 5a-5c may flow backward to the indoor units 2a-2c, generating refrigerant noise.
  • air conditioners used for homes may be uncomfortable for residents.
  • the air conditioner 100 in the refrigerant recovery control, when the difference between the discharge side pressure Pc and the suction side pressure Pe exceeds the minimum operating pressure of the switching mechanism 11, or when the refrigerant recovery control is started and the force is sufficient. When a long time elapses, the operation shifts to normal heating operation. For this reason, the indoor expansion valves 5a to 5c are not opened until the mechanism 11 is reliably switched to the cooling cycle side power heating cycle side. For this reason, the reverse flow of the refrigerant can be suppressed more reliably, and the generation of refrigerant noise can be suppressed.
  • the defrost operation and the oil recovery operation during heating are performed by circulating the refrigerant in the cooling cycle.
  • the pressure on the receiver 16 side becomes high. Therefore, when the heating operation is restarted in this state, the indoor expansion valves 5a-5c are opened. As a result, the refrigerant flows back to the suction side and the amount of refrigerant on the suction side tends to increase.
  • the refrigerant circulates in the cooling cycle, so the temperature on the indoor unit 2a-2c side decreases, and the ratio of liquid refrigerant on the indoor unit 2a-2c side increases. .
  • the inlets of the indoor expansion valves 5a-5c are liquid-sealed, and if a differential pressure exceeding a certain pressure is applied, There is a risk that the sound from the air will propagate to the indoor units 2a-2c in the liquid.
  • the air conditioner used for residential use may be uncomfortable for residents.
  • the pump down operation control is performed after completion of the defrost operation control and the oil recovery operation control during heating, and the refrigerant in the refrigerant circuit is recovered by the receiver 16. For this reason, the amount of refrigerant on the suction side at the time of startup is reduced, and the generation of refrigerant noise can be suppressed.
  • mechanism 11 is The indoor expansion valves 5a-5c are not opened until the switching to the heating cycle side is ensured, and the refrigerant backflow can be more reliably suppressed. Thereby, generation
  • this air conditioner 100 it is possible to temporarily store the refrigerant in the receiver 16, and it is easy to occur when the refrigerant is excessive as described above, and the generation of refrigerant noise can be suppressed. For this reason, an accumulator generally used for storing the refrigerant can be omitted. Therefore, the manufacturing cost can be reduced by reducing the number of parts.
  • the number of indoor units 2a-2c connected to one outdoor unit 1 is not limited to the above, but one or more indoor units may be connected.
  • the problem of refrigerant noise is that the refrigerant is excessive in the refrigerant circuit. Therefore, the present invention is particularly effective for a multi-type air conditioner including a plurality of indoor units 2a-2c as described above. .
  • the refrigerant circuit is provided with the supercooling bypass circuit 19, the pressure equalization circuit 21, and the hot gas binos circuit 13, but this is not always necessary from the viewpoint of performing the above control to suppress the refrigerant noise. It is not a thing.
  • the indoor units 2a-2c each including the indoor expansion valves 5a-5c without the branch unit BP1 may be directly connected to the outdoor unit 1.
  • outlet of the gas vent circuit 20 may be connected to the suction pipe 23 of the compressor 10 instead of being connected to the supercooling bypass circuit 19.
  • the condition for shifting from the refrigerant recovery control to the normal heating operation control is determined by the minimum operating pressure b of the mechanism 11, but the mechanism 11 is changed from the cooling cycle side state to the heating cycle side state. Even if the conditions can be considered to have switched reliably For example, it may be determined based on a pressure value other than the minimum operating pressure b of the Kiriura structure 11. For example, a pressure value above the minimum operating pressure b of the switching mechanism 11 may be considered.
  • the refrigerant recovery control described above is performed after the pump-down operation control is performed. Although it may be performed only at the start of operation, it may always be performed at the start of heating operation.
  • the pump down operation is performed at the time of transition from the defrost operation control to the normal heating operation control and at the time of transition to the oil recovery operation control force normal heating operation control. From the standpoint of reducing the occurrence of heat generation, it may be performed at the time of transition to operating power normal heating operation control by a cooling cycle other than defrost operation control and oil recovery operation. Further, the pump-down operation may be performed at the time of shifting to the operation by the heating cycle other than the normal heating operation control.
  • the normal heating operation control, the defrost operation control, the pump down operation control, the refrigerant recovery control, and the normal heating operation control may be sequentially performed in order.
  • the normal heating operation control, the oil recovery operation control, the pump down operation control, the refrigerant recovery control, and the normal heating operation control may be performed successively in this order.
  • the present invention is effective as an air conditioner because it has the effect of suppressing refrigerant noise when switching from operation by a cooling cycle to operation by a heating cycle.

Abstract

There is provided an air conditioner capable of suppressing a coolant sound when the operation of cooling cycle is switched to operation of warming cycle. The air conditioner (100) includes a coolant circuit having a compressor (10), an outdoor heat exchanger (14), a first indoor expansion valve (5a), and a first indoor heat exchanger (3a). The air conditioner (100) further includes a switching mechanism (11) and a control unit (60). The switching mechanism (11) switches between the cooling cycle and the warming cycle by switching the coolant circulation direction. When a defrost operation control by cooling cycle or oil collection operation control is switched to normal warming/cooling operation control, the control unit (60) closes the first indoor expansion valve (5a) and performs pump down operation control for driving the compressor (10) while the switching mechanism (11) in the cooling cycle side. After this, the control unit (60) opens the first indoor expansion valve (5a) to start normal warming/cooling operation control.

Description

明 細 書  Specification
空気調和機  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和機に関する。  [0001] The present invention relates to an air conditioner.
背景技術  Background art
[0002] 従来、冷媒の流れ方向を切り換えることによって冷房サイクルと暖房サイクルとを切 換可能な空気調和機にぉ 、て、冷房サイクルによる運転を行って 、る状態から暖房 サイクルによる運転に切り換えられる場合がある。例えば、暖房運転時に室外交 の除霜を行うために、冷房サイクルにおいて膨張弁を開状態にして室外熱交翻を 凝縮器として機能させる、いわゆるデフロスト運転が行われることがある。室外熱交換 器の除霜が終了すると、暖房サイクルに切換えられて暖房運転が行われる (特許文 献 1参照)。  [0002] Conventionally, an air conditioner that can switch between a cooling cycle and a heating cycle by switching the flow direction of refrigerant can be switched from a state to an operation based on the heating cycle. There is a case. For example, in order to perform defrosting of outdoor diplomacy during heating operation, a so-called defrost operation in which the expansion valve is opened and the outdoor heat exchange functions as a condenser in a cooling cycle may be performed. When the defrosting of the outdoor heat exchanger is completed, the heating cycle is switched to the heating operation (see Patent Document 1).
特許文献 1:特開 2002— 22306号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-22306
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、上記のデフロスト運転のように冷房サイクルで運転が行われると室内熱交換 器側の温度が低下するため、室内熱交 側に液冷媒が溜まり易くなる。室内熱交 側に液冷媒が溜まった状態で暖房サイクルによる運転が開始されると、膨張弁 が開かれたときに冷媒が吐出される音が液中伝搬し、使用者に不快感を与える恐れ がある。 [0003] However, when the operation is performed in the cooling cycle as in the above-described defrost operation, the temperature on the indoor heat exchanger side is lowered, so that the liquid refrigerant is easily accumulated on the indoor heat exchange side. If operation with a heating cycle is started in a state where liquid refrigerant has accumulated on the indoor heat exchange side, the sound of the refrigerant being discharged when the expansion valve is opened may propagate in the liquid, causing discomfort to the user. There is.
本発明の課題は、冷房サイクルによる運転から暖房サイクルによる運転に切り換え られる際の冷媒音を抑えることができる空気調和機を提供することにある。  The subject of this invention is providing the air conditioner which can suppress the refrigerant | coolant sound at the time of switching from the driving | operation by a cooling cycle to the driving | operation by a heating cycle.
課題を解決するための手段  Means for solving the problem
[0004] 第 1発明にかかる空気調和機は、圧縮機と室外熱交換器と第 1膨張弁と第 1室内熱 交 とを含む冷媒回路を備える空気調和機であって、切 構と、制御部とを備 える。切 構は、冷媒の循環方向を切り換えて冷房サイクルと暖房サイクルとを切 り換える。制御部は、冷房サイクルによる第 1運転制御から暖房サイクルによる第 2運 転制御へと切り替わる場合に、第 1膨張弁を閉じ且つ切 構が冷房サイクル側の 状態で圧縮機を駆動させるポンプダウン運転制御を行った後に第 1膨張弁を開いて 第 2運転制御を開始する。 [0004] An air conditioner according to a first aspect of the present invention is an air conditioner including a refrigerant circuit including a compressor, an outdoor heat exchanger, a first expansion valve, and a first indoor heat exchanger. Department. The mechanism switches between the cooling cycle and the heating cycle by switching the refrigerant circulation direction. The control unit performs the second operation by the heating cycle from the first operation control by the cooling cycle. When switching to rotation control, the first expansion valve is closed, and after the pump down operation control is performed to drive the compressor while the mechanism is on the cooling cycle side, the first expansion valve is opened and the second operation control is started. To do.
この空気調和機では、冷房サイクルによる第 1運転制御力 暖房サイクルによる第 2 運転制御へと切り替わる場合に、ポンプダウン運転制御が行われる。これにより、冷 媒が室外熱交 側に回収され、第 1室内熱交 側に液冷媒が溜まることを抑え ることができる。このため、第 1膨張弁が開かれる際の冷媒音を抑えることができる。  In this air conditioner, the first operation control force by the cooling cycle is switched to the second operation control by the heating cycle, and the pump down operation control is performed. As a result, it is possible to prevent the refrigerant from being collected on the outdoor heat exchange side and the liquid refrigerant from accumulating on the first indoor heat exchange side. For this reason, the refrigerant | coolant sound at the time of a 1st expansion valve being opened can be suppressed.
[0005] 第 2発明にかかる空気調和機は、第 1発明の空気調和機であって、圧縮機の吐出 側の圧力を検知する吐出側圧力センサと、圧縮機の吸入側の圧力を検知する吸入 側圧力センサとをさらに備える。また、切 構は四路切換弁である。そして、制御 部は、ポンプダウン運転制御を行った後に、吐出側圧力センサが検知した吐出側圧 力と吸入側圧力センサが検知した吸入側圧力との差が四路切換弁の最低作動圧力 に達した後に第 1膨張弁を開く。  [0005] An air conditioner according to a second invention is the air conditioner according to the first invention, wherein a discharge-side pressure sensor for detecting a pressure on a discharge side of the compressor and a pressure on a suction side of the compressor are detected. And a suction side pressure sensor. The mechanism is a four-way selector valve. Then, after performing the pump down operation control, the control unit determines that the difference between the discharge side pressure detected by the discharge side pressure sensor and the suction side pressure detected by the suction side pressure sensor reaches the minimum operating pressure of the four-way switching valve. After that, open the first expansion valve.
この空気調和機では、吐出側圧力と吸入側圧力との差が四路切換弁の最低作動 圧力に達した後に第 1膨張弁が開かれるため、四路切換弁が確実に切り替わるまで 第 1膨張弁が開かれない。このため、第 1膨張弁が開かれた際に冷媒が逆流すること を防止することができ、冷媒の逆流による冷媒音を抑えることができる。  In this air conditioner, the first expansion valve is opened after the difference between the discharge-side pressure and the suction-side pressure reaches the minimum operating pressure of the four-way switching valve, so the first expansion until the four-way switching valve switches reliably. The valve does not open. For this reason, it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened, and it is possible to suppress the refrigerant noise due to the refrigerant backward flow.
[0006] 第 3発明にかかる空気調和機は、第 1発明または第 2発明の空気調和機であって、 室外熱交換器を通る空気流を生成する室外送風機をさらに備える。そして、第 1運転 制御は、室外送風機を停止させ又は低風量で駆動させ、且つ、冷房サイクルにて冷 媒を循環させるデフロスト運転制御である。  [0006] An air conditioner according to a third aspect of the present invention is the air conditioner of the first aspect or the second aspect, further comprising an outdoor fan that generates an air flow through the outdoor heat exchanger. The first operation control is defrost operation control in which the outdoor blower is stopped or driven with a low air volume, and the cooling medium is circulated in the cooling cycle.
この空気調和機では、冷房サイクルによる運転であるデフロスト運転制御から暖房 サイクルによる第 2運転制御へと切り替わる場合に、ポンプダウン運転制御が行われ る。これにより、デフロスト運転制御力も冷媒の循環方向が切り換えられる場合に生じ 易 、冷媒音を抑えることができる。  In this air conditioner, pump down operation control is performed when switching from defrost operation control, which is an operation by a cooling cycle, to second operation control by a heating cycle. As a result, the defrost operation control force is easily generated when the refrigerant circulation direction is switched, and the refrigerant noise can be suppressed.
[0007] 第 4発明にかかる空気調和機は、第 1発明または第 2発明の空気調和機であって、 油分離器と油回収回路と油回収回路開閉部とをさらに備える。油分離器は、圧縮機 の吐出側に設けられ、冷媒中の油を分離する。油回収回路は、油分離器と圧縮機の 吸入側とを接続する。油回収回路開閉部は、油回収回路上に設けられ、油回収回路 を開閉する。そして、第 1運転制御は、油回収回路開閉部を開状態とし且つ冷房サイ クルにて冷媒を循環させる油回収運転制御である。 [0007] An air conditioner according to a fourth invention is the air conditioner of the first invention or the second invention, and further comprises an oil separator, an oil recovery circuit, and an oil recovery circuit opening / closing part. The oil separator is provided on the discharge side of the compressor and separates oil in the refrigerant. The oil recovery circuit consists of an oil separator and a compressor. Connect the suction side. The oil recovery circuit opening / closing part is provided on the oil recovery circuit and opens and closes the oil recovery circuit. The first operation control is oil recovery operation control in which the oil recovery circuit opening / closing part is opened and the refrigerant is circulated in the cooling cycle.
この空気調和機では、冷房サイクルによる運転である油回収運転制御力 暖房サ イタルによる第 2運転制御へと切り替わる場合に、ポンプダウン運転制御が行われる 。これにより、油回収運転制御力 冷媒の循環方向が切り換えられる場合に生じ易い 冷媒音を抑えることができる。  In this air conditioner, pump down operation control is performed when switching to the second operation control by the oil recovery operation control force heating heating that is the operation by the cooling cycle. Thereby, the oil recovery operation control force It is possible to suppress the refrigerant noise that is likely to occur when the refrigerant circulation direction is switched.
[0008] 第 5発明にかかる空気調和機は、第 1発明力も第 4発明の空気調和機であって、レ シーバーとガス抜き回路とガス抜き回路開閉部とをさらに備える。レシーバ一は、冷 房サイクルにおける第 1膨張弁の上流側であって室外熱交換器の下流側に位置し、 液体状態の冷媒を貯留可能である。ガス抜き回路は、レシーバーから圧縮機の吸入 側に接続され、レシーバー内の気体状態の冷媒を圧縮機の吸入側へと送る。ガス抜 き回路開閉部は、ガス抜き回路上に設けられ、ガス抜き回路を開閉する。そして、制 御部は、ポンプダウン運転制御後に、ガス抜き回路開閉部を開く冷媒回収制御を行 つた後に第 1膨張弁を開いて第 2運転制御を開始する。 [0008] An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, further comprising a receiver, a degas circuit, and a degas circuit opening / closing section. The receiver 1 is located upstream of the first expansion valve and downstream of the outdoor heat exchanger in the cooling cycle, and can store liquid refrigerant. The degassing circuit is connected from the receiver to the suction side of the compressor, and sends the refrigerant in the gaseous state in the receiver to the suction side of the compressor. The degassing circuit opening / closing part is provided on the degassing circuit and opens and closes the degassing circuit. Then, after the pump down operation control, the control unit performs the refrigerant recovery control for opening the gas vent circuit opening / closing unit, and then opens the first expansion valve and starts the second operation control.
冷房サイクルにお 、てポンプダウン運転が行われる場合、冷媒回路にお!ヽて冷媒 が過剰な状態であると、レシーバーと第 1膨張弁との間に冷媒が蓄えられ、しかも、こ の冷媒の圧力が他の部分よりも高い状態が生じやすい。このため、第 2運転制御開 示時に第 1膨張弁が開かれると、冷媒が逆流して冷媒音が発生する恐れがある。 しかし、この空気調和機では、レシーバーと第 1膨張弁との間に比較的圧力の高い 冷媒が蓄えられている状態であっても、ガス抜き回路が開かれることによってレシ一 バーと第 1膨張弁との間の冷媒がレシーバーに回収することができる。このため、第 1 膨張弁が開いたときに冷媒が逆流することを抑えることができ、冷媒音の発生を抑え ることがでさる。  When the pump down operation is performed in the cooling cycle, the refrigerant circuit! If the refrigerant is in an excessive state, the refrigerant is stored between the receiver and the first expansion valve, and the pressure of the refrigerant is likely to be higher than the other parts. For this reason, if the first expansion valve is opened when the second operation control is displayed, the refrigerant may flow backward and a refrigerant noise may be generated. However, with this air conditioner, even if a refrigerant with a relatively high pressure is stored between the receiver and the first expansion valve, the receiver and the first expansion valve are opened by opening the venting circuit. The refrigerant between the valves can be collected in the receiver. For this reason, it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened, and to suppress the generation of refrigerant noise.
[0009] 第 6発明にかかる空気調和機は、第 1発明力も第 5発明の空気調和機であって、冷 媒回路は、第 1膨張弁および第 1室内熱交換器に並列に配置される第 2室内熱交換 器および第 2膨張弁をさらに含む。  [0009] An air conditioner according to a sixth invention is the air conditioner according to the first invention and the fifth invention, wherein the refrigerant circuit is arranged in parallel with the first expansion valve and the first indoor heat exchanger. It further includes a second indoor heat exchanger and a second expansion valve.
この空気調和機は、複数の室内熱交換器が備えられる、いわゆるマルチ型空気調 和機であり、このようなマルチ型空気調和機では、冷媒が過剰となり易い。従って、上 記のような液冷媒が滞留しやすぐ冷媒音が発生しやすい環境となる。従って、冷媒 音を抑えることができる本発明がより有効である。 This air conditioner is equipped with a plurality of indoor heat exchangers, so-called multi-type air conditioners. In such a multi-type air conditioner, the refrigerant tends to be excessive. Therefore, an environment in which the liquid refrigerant is likely to stay as soon as the above-mentioned liquid refrigerant stays is obtained. Therefore, the present invention that can suppress refrigerant noise is more effective.
[0010] 第 7発明にかかる空気調和機は、圧縮機と、室外熱交換器と、第 1膨張弁と、第 1室 内熱交^^と、冷媒の循環方向を切り換えて冷房サイクルと暖房サイクルとを切り換 える切換機構とを含む冷媒回路を備える空気調和機の制御方法であって、第 1運転 制御実行ステップと、ポンプダウン運転ステップと、第 2運転制御開始ステップとを備 える。第 1運転制御実行ステップでは、冷房サイクルによる第 1運転制御が実行され る。ポンプダウン運転ステップでは、第 1運転制御実行ステップ後に、第 1膨張弁を閉 じ且つ切 構が冷房サイクル側の状態で圧縮機を駆動させるポンプダウン運転制 御が行われる。第 2運転制御開始ステップでは、ポンプダウン運転ステップ後に、第 1 膨張弁を閉いて暖房サイクルによる第 2運転制御が開始される。  [0010] An air conditioner according to a seventh aspect of the present invention includes a compressor, an outdoor heat exchanger, a first expansion valve, a first indoor heat exchanger, and a cooling cycle and a heating by switching a refrigerant circulation direction. A control method for an air conditioner including a refrigerant circuit including a switching mechanism for switching between cycles, comprising a first operation control execution step, a pump down operation step, and a second operation control start step. In the first operation control execution step, the first operation control by the cooling cycle is executed. In the pump down operation step, after the first operation control execution step, pump down operation control is performed in which the first expansion valve is closed and the compressor is driven in a state where the mechanism is on the cooling cycle side. In the second operation control start step, after the pump down operation step, the first expansion valve is closed and the second operation control by the heating cycle is started.
この空気調和機の制御方法では、冷房サイクルによる第 1運転制御から暖房サイク ルによる第 2運転制御へと切り替わる場合に、ポンプダウン運転制御が行われる。こ れにより、冷媒が室外熱交換器側に回収され、第 1室内熱交換器側に液冷媒が溜ま ることを抑えることができる。このため、第 1膨張弁が開かれる際の冷媒音を抑えること ができる。  In this air conditioner control method, pump down operation control is performed when switching from the first operation control by the cooling cycle to the second operation control by the heating cycle. As a result, it is possible to prevent the refrigerant from being collected on the outdoor heat exchanger side and the liquid refrigerant from accumulating on the first indoor heat exchanger side. For this reason, it is possible to suppress refrigerant noise when the first expansion valve is opened.
発明の効果  The invention's effect
[0011] 第 1発明にかかる空気調和機では、冷房サイクルによる第 1運転制御から暖房サイ クルによる第 2運転制御へと切り替わる場合に、冷媒が室外熱交 側に回収され、 第 1室内熱交 側に液冷媒が溜まることを抑えることができる。このため、第 1膨張 弁が開かれる際の冷媒音を抑えることができる。  [0011] In the air conditioner according to the first invention, when the first operation control by the cooling cycle is switched to the second operation control by the heating cycle, the refrigerant is recovered to the outdoor heat exchange side, and the first indoor heat exchange is performed. It can suppress that a liquid refrigerant accumulates on the side. For this reason, the refrigerant | coolant sound at the time of a 1st expansion valve being opened can be suppressed.
第 2発明にかかる空気調和機では、四路切換弁が確実に切り替わるまで第 1膨張 弁が開かれないため、第 1膨張弁が開かれた際に冷媒が逆流することを防止すること ができる。  In the air conditioner according to the second aspect of the invention, the first expansion valve is not opened until the four-way switching valve is reliably switched, so that it is possible to prevent the refrigerant from flowing backward when the first expansion valve is opened. .
第 3発明にかかる空気調和機では、デフロスト運転制御力も冷媒の循環方向が切り 換えられる場合に生じ易 、冷媒音を抑えることができる。  In the air conditioner according to the third aspect of the invention, the defrosting operation control force is easily generated when the refrigerant circulation direction is switched, and the refrigerant noise can be suppressed.
第 4発明にかかる空気調和機では、油回収運転制御から冷媒の循環方向が切り換 えられる場合に生じ易 ヽ冷媒音を抑えることができる。 In the air conditioner according to the fourth aspect of the invention, the refrigerant circulation direction is switched from the oil recovery operation control. It is easy to generate the refrigerant noise when it is obtained.
[0012] 第 5発明にかかる空気調和機では、レシーバーと第 1膨張弁との間に比較的圧力 の高い冷媒が蓄えられている状態であっても、第 1膨張弁が開いたときに冷媒が逆 流することを抑えることができ、冷媒音の発生を抑えることができる。  [0012] In the air conditioner pertaining to the fifth aspect of the invention, even when refrigerant having a relatively high pressure is stored between the receiver and the first expansion valve, the refrigerant when the first expansion valve is opened. Can be prevented from flowing backward, and the generation of refrigerant noise can be suppressed.
第 6発明にかかる空気調和機は、マルチ型空気調和機であり、冷媒音を抑えること ができる本発明がより有効である。  The air conditioner pertaining to the sixth aspect of the invention is a multi-type air conditioner, and the present invention that can suppress refrigerant noise is more effective.
第 7発明にかかる空気調和機では、冷房サイクルによる第 1運転制御から暖房サイ クルによる第 2運転制御へと切り替わる場合に、冷媒が室外熱交 側に回収され、 第 1室内熱交 側に液冷媒が溜まることを抑えることができる。このため、第 1膨張 弁が開かれる際の冷媒音を抑えることができる。  In the air conditioner pertaining to the seventh aspect of the invention, when the first operation control based on the cooling cycle is switched to the second operation control based on the heating cycle, the refrigerant is collected on the outdoor heat exchange side and the liquid is transferred to the first indoor heat exchange side. It can suppress that a refrigerant | coolant accumulates. For this reason, the refrigerant | coolant sound at the time of a 1st expansion valve being opened can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]空気調和機の構成を示す冷媒回路図。 FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner.
[図 2]空気調和機の制御ブロック図。  FIG. 2 is a control block diagram of the air conditioner.
[図 3]暖房運転起動時の制御フローを示す図。  FIG. 3 is a diagram showing a control flow at the start of heating operation.
[図 4]デフロスト運転制御から通常暖房運転制御への移行時の制御フローを示す図。  FIG. 4 is a diagram showing a control flow at the time of transition from defrost operation control to normal heating operation control.
[図 5]油回収運転制御力 通常暖房運転制御への移行時の制御フローを示す図。 符号の説明  FIG. 5 is a diagram showing a control flow at the time of shifting to normal heating operation control. Explanation of symbols
[0014] 3a 第 1室内熱交換器  [0014] 3a First indoor heat exchanger
3b 第 2室内熱交換器  3b Second indoor heat exchanger
5a 第 1膨張弁 (第 1室内膨張弁)  5a 1st expansion valve (1st indoor expansion valve)
5b 第 2膨張弁 (第 2室内膨張弁)  5b Second expansion valve (second indoor expansion valve)
10 圧縮機  10 Compressor
11 切換機構  11 Switching mechanism
12 油分離器  12 Oil separator
13 ホットガスバイパス回路(油回収回路)  13 Hot gas bypass circuit (oil recovery circuit)
14 室外熱交  14 Outdoor heat exchange
16 レシーバー  16 receiver
20 ガス抜き回路 25 ホットガスバイパス回路開閉部(油回収回路開閉部) 20 Degassing circuit 25 Hot gas bypass circuit switching part (oil recovery circuit switching part)
27 室外送風機  27 Outdoor blower
30 ガス抜き回路開閉部  30 Degassing circuit opening / closing part
40 吸入側圧力センサ  40 Suction pressure sensor
41 吐出側圧力センサ  41 Discharge pressure sensor
60 制御部  60 Control unit
100 空気調和機  100 air conditioner
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] <構成 > [0015] <Configuration>
本発明の一実施形態に力かる空気調和機 100の構成を示す冷媒回路図を図 1に 示す。この空気調和機 100は、住宅内の冷暖房を行う空気調和機であって、一台の 室外機 1に対して複数の室内機 2a— 2cが接続される、 V、わゆるマルチ型空気調和 機である。室内機 2a— 2cは、分岐ユニット BP1を介して室外機 1に接続されている。 本実施形態では、 1つの室外機 1に対して、第 1室内機 2a、第 2室内機 2bおよび第 3 室内機 2cの合計 3台の室内機 2a— 2cが分岐ユニット BP1を介して接続されている。 FIG. 1 shows a refrigerant circuit diagram showing a configuration of an air conditioner 100 that is effective in one embodiment of the present invention. This air conditioner 100 is an air conditioner that heats and cools a house, and a plurality of indoor units 2a-2c are connected to one outdoor unit 1. V, a so-called multi-type air conditioner. It is. The indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1. In this embodiment, a total of three indoor units 2a-2c including the first indoor unit 2a, the second indoor unit 2b, and the third indoor unit 2c are connected to one outdoor unit 1 via the branch unit BP1. ing.
〈室外機の構成〉 <Configuration of outdoor unit>
室外機 1側の冷媒回路は、圧縮機 10、切換機構 11、油分離器 12、ホットガスバイ パス回路 13、室外熱交換器 14、室外膨張弁 15、レシーバー 16、ブリッジ回路 17、 冷却器 18、過冷却バイパス回路 19、ガス抜き回路 20、均圧回路 21などを含んでい る。  The refrigerant circuit on the outdoor unit 1 side includes the compressor 10, the switching mechanism 11, the oil separator 12, the hot gas bypass circuit 13, the outdoor heat exchanger 14, the outdoor expansion valve 15, the receiver 16, the bridge circuit 17, and the cooler 18 In addition, a supercooling bypass circuit 19, a gas vent circuit 20, a pressure equalizing circuit 21 and the like are included.
[0016] 圧縮機 10は、電動機駆動のスクロール式の圧縮機であり、吸入したガス冷媒を圧 縮するための機器である。圧縮機 10は、インバーターにより運転周波数を可変制御 可能となっている。  [0016] The compressor 10 is an electric motor driven scroll compressor, and is a device for compressing the sucked gas refrigerant. The compressor 10 can variably control the operation frequency by an inverter.
切 構 11は、冷房サイクルによる運転と暖房サイクルによる運転との切り換え時 に、冷媒の流れの方向を切り換える機構であり、圧縮機 10の吐出管 22、吸入管 23、 室外熱交 14のガス側および室内熱交 3&— 3cのガス側と接続された四路 切換弁によって構成されている。切 構 11は、冷房サイクルによる運転時には圧 縮機 10の吐出側と室外熱交翻14のガス側とを接続するとともに圧縮機 10の吸入 側とガス閉鎖弁 24とを接続する(図 1の切棚構 11の実線を参照。以下、この状態 を「冷房サイクル側状態」と呼ぶ。;)。また、切換機構 11は、暖房サイクルによる運転 時には圧縮機 10の吐出側とガス閉鎖弁 24とを接続するとともに圧縮機 10の吸入側 と室外熱交 14のガス側とを接続することが可能である(図 1の切 構 11の破 線を参照。以下、この状態を「暖房サイクル側状態」と呼ぶ。 ) ο The mechanism 11 is a mechanism that switches the direction of the refrigerant flow when switching between the cooling cycle operation and the heating cycle operation. The gas side of the discharge pipe 22, the suction pipe 23, and the outdoor heat exchanger 14 of the compressor 10 is used. And a four-way switching valve connected to the gas side of the indoor heat exchanger 3 & — 3c. The mechanism 11 connects the discharge side of the compressor 10 and the gas side of the outdoor heat exchange 14 and operates the suction of the compressor 10 during operation by the cooling cycle. And the gas shut-off valve 24 are connected (see the solid line of the shelf structure 11 in FIG. 1; this state is hereinafter referred to as “cooling cycle side state”). In addition, the switching mechanism 11 can connect the discharge side of the compressor 10 and the gas shut-off valve 24 and can connect the suction side of the compressor 10 and the gas side of the outdoor heat exchanger 14 during operation by the heating cycle. Yes (Refer to the broken line in Structure 11 in Fig. 1. This state is referred to as the “heating cycle side state”.)
[0017] 油分離器 12は、圧縮機 10の吐出側の冷媒中に含まれる潤滑油を分離して圧縮機 10の吸入側に返すための機構であり、吐出管 22の途中に設けられている。 The oil separator 12 is a mechanism for separating the lubricating oil contained in the refrigerant on the discharge side of the compressor 10 and returning it to the suction side of the compressor 10, and is provided in the middle of the discharge pipe 22. Yes.
ホットガスバイパス回路 13は、圧縮機 10の吐出管 22と吸入管 23とを連通する回路 であり、圧縮機 10の吸入側と吐出側とを接続している。ホットガスバイパス回路 13は 、一端が油分離器 12に接続され、他端が吸入管 23に接続されている。従って、ホッ トガスバイパス回路 13は、圧縮機 10から吐出された冷媒を吸入側に戻すと共に、油 分離器 12で分離された油分を圧縮機 10の吸入側に戻すための油回収回路としても 機能することができる。また、ホットガスバイパス回路 13上には、ホットガスバイパス回 路開閉部 25 (油回収回路開閉部)と、通過する冷媒を減圧するキヤビラリ 26とが設け られている。ホットガスバイパス回路開閉部 25は、ホットガスバイパス回路 13を開閉 する電磁弁であり、ホットガスバイパス回路 13を流れる冷媒の流れを閉鎖および開放 することができる。  The hot gas bypass circuit 13 is a circuit that connects the discharge pipe 22 and the suction pipe 23 of the compressor 10, and connects the suction side and the discharge side of the compressor 10. The hot gas bypass circuit 13 has one end connected to the oil separator 12 and the other end connected to the suction pipe 23. Therefore, the hot gas bypass circuit 13 also serves as an oil recovery circuit for returning the refrigerant discharged from the compressor 10 to the suction side and returning the oil separated by the oil separator 12 to the suction side of the compressor 10. Can function. On the hot gas bypass circuit 13, a hot gas bypass circuit opening / closing part 25 (oil recovery circuit opening / closing part) and a firefly 26 for reducing the pressure of the refrigerant passing therethrough are provided. The hot gas bypass circuit opening / closing unit 25 is an electromagnetic valve that opens and closes the hot gas bypass circuit 13, and can close and open the flow of refrigerant flowing through the hot gas bypass circuit 13.
[0018] 室外熱交換器 14は、クロスフィンチューブ式の熱交換器であり、空気を熱源として 冷媒と熱交換するための機器である。室外機 1は、室外機 1内に屋外の空気を取り込 み、送り出すために室外熱交換器 14を通る空気流を生成する室外送風機 27を備え ている。室外送風機 27は、室外熱交^^ 14に空気を通すことによって屋外の空気と 室外熱交換器 14を流れる冷媒との熱交換を行わせる。  [0018] The outdoor heat exchanger 14 is a cross-fin tube type heat exchanger, and is a device for exchanging heat with a refrigerant using air as a heat source. The outdoor unit 1 includes an outdoor blower 27 that generates an air flow through the outdoor heat exchanger 14 in order to take outdoor air into the outdoor unit 1 and send it out. The outdoor fan 27 exchanges heat between outdoor air and the refrigerant flowing through the outdoor heat exchanger 14 by passing air through the outdoor heat exchanger 14.
室外膨張弁 15は、室外熱交翻14の液側と接続され、後述するブリッジ回路 17と 室外熱交換器 14との間に位置している。室外膨張弁 15は、通過する冷媒を減圧可 能な電動弁であり、弁の開度が制御されることによって通過する冷媒の流量を調整 することができる。  The outdoor expansion valve 15 is connected to the liquid side of the outdoor heat exchanger 14 and is positioned between a bridge circuit 17 and an outdoor heat exchanger 14 described later. The outdoor expansion valve 15 is a motor-operated valve that can depressurize the refrigerant passing therethrough, and the flow rate of the refrigerant passing therethrough can be adjusted by controlling the opening degree of the valve.
レシーバー 16は、室外熱交 と室内熱交 3a— 3cとの間を流れる冷媒を 一時的に溜めるための容器であり、液体状態の冷媒を貯留可能である。レシーバー 16は、容器上部に入口を有しており、容器下部に出口を有している。レシーバー 16 の入口は、ブリッジ回路 17を介して室外膨張弁 15及び液閉鎖弁 28に接続されてい る。また、レシーバー 16の出口は、冷却器 18及びブリッジ回路 17を介して室外膨張 弁 15及び液閉鎖弁 28に接続されている。レシーバー 16は、室外熱交^^ 14と室 内熱交 3a— 3cとの間であって圧縮機 10とは反対側に位置しており、室内膨張 弁 5a— 5cと室外熱交 14との間に位置している。レシーバー 16は、冷房サイク ルにおける冷媒の流れ方向においては、室内膨張弁 5a— 5cの上流側であって室外 熱交^^ 14の下流側に位置している。 Receiver 16, the outdoor heat exchange with the indoor heat exchange 3 a - a container for storing the refrigerant flowing between the 3c temporarily, it is capable of storing a refrigerant in a liquid state. receiver 16 has an inlet at the top of the container and an outlet at the bottom of the container. The inlet of the receiver 16 is connected to the outdoor expansion valve 15 and the liquid closing valve 28 via the bridge circuit 17. The outlet of the receiver 16 is connected to an outdoor expansion valve 15 and a liquid closing valve 28 via a cooler 18 and a bridge circuit 17. The receiver 16 is located between the outdoor heat exchanger ^^ 14 and the indoor heat exchanger 3 a — 3c, on the opposite side of the compressor 10, and is connected to the indoor expansion valve 5 a — 5 c and the outdoor heat exchanger 14. Located between. The receiver 16 is located upstream of the indoor expansion valves 5a-5c and downstream of the outdoor heat exchanger 14 in the refrigerant flow direction in the cooling cycle.
[0019] ブリッジ回路 17は、室外膨張弁 15とレシーバー 16との間に接続された 4つの逆止 弁 17a_ 17dから構成された回路であり、室外熱交翻14と室内熱交翻3&— 3c との間を流れる冷媒が室外熱交 側からレシーバー 16に流入する場合及び室 内熱交 3a - 3c側力 レシーバー 16に流入する場合の 、ずれの場合にぉ 、て も、レシーバー 16の入口力もレシーバー 16内に冷媒を流入させ、かつ、レシーバー 16の出口力も室外熱交 と室内熱交 3a— 3cとの間に冷媒を戻す機能を 有している。具体的には、逆止弁 17aは、室内熱交換器 3a— 3cから室外熱交換器 1 4へ向かって流れる冷媒をレシーバー 16の入口に導くように接続されている。逆止弁 17bは、室外熱交^^ 14から室内熱交^^ 3a— 3cへ向力つて流れる冷媒をレシ一 バー 16の入口に導くように接続されている。逆止弁 17cは、レシーバー 16の出口か
Figure imgf000010_0001
[0019] The bridge circuit 17 is composed of four check valves 17a_17d connected between the outdoor expansion valve 15 and the receiver 16, and includes an outdoor heat exchange 14 and an indoor heat exchange 3 & — 3c-3c side force when the refrigerant flowing between 3c flows into the receiver 16 from the outdoor heat exchange side and when flowing into the receiver 16, the inlet of the receiver 16 force also allowed to flow into the refrigerant in the receiver 16, and the outlet force is also the outdoor heat exchange with the indoor heat exchange 3 a receiver 16 - has the function of returning the refrigerant between 3c. Specifically, the check valve 17a is connected to guide the refrigerant flowing from the indoor heat exchangers 3a-3c toward the outdoor heat exchanger 14 to the inlet of the receiver 16. The check valve 17b is connected to guide the refrigerant flowing from the outdoor heat exchanger 14 toward the indoor heat exchanger 3a-3c to the inlet of the receiver 16. Check valve 17c is connected to the outlet of receiver 16.
Figure imgf000010_0001
接続されている。逆止弁 17dは、レシーバー 16の出口力も冷却器 18を介して流れる 冷媒を室外熱交 側に流すことができるように接続されている。これにより、室 外熱交^^ 14と室内熱交 3a— 3cとの間を流れる冷媒は、常に、レシーバー 16 の入口力も流入し、レシーバー 16の出口力も流出して室外熱交^^ 14と室内熱交
Figure imgf000010_0002
It is connected. The check valve 17d is connected so that the outlet force of the receiver 16 can also flow the refrigerant flowing through the cooler 18 to the outdoor heat exchange side. As a result, the refrigerant flowing between the outdoor heat exchanger ^^ 14 and the indoor heat exchanger 3 a -3c always flows in the inlet force of the receiver 16 and also flows out of the outlet force of the receiver 16 ^^ 14 And indoor heat exchange
Figure imgf000010_0002
[0020] 冷却器 18は、 2重管式の熱交^^であり、室外熱交翻14において凝縮されて室 内熱交 - 3cに送られる冷媒を冷却するために設けられて 、る。冷却器 18は 、レシーバー 16とブリッジ回路 17との間に接続されている。  [0020] The cooler 18 is a double-pipe heat exchanger and is provided to cool the refrigerant condensed in the outdoor heat exchanger 14 and sent to the indoor heat exchanger-3c. The cooler 18 is connected between the receiver 16 and the bridge circuit 17.
過冷却ノ ィパス回路 19は、室外熱交 から室内熱交 3a— 3cへ送られる 冷媒の一部を分岐させて圧縮機 10の吸入側に戻すように設けられている。具体的に は、過冷却バイパス回路 19は、レシーバー 16の出口とブリッジ回路 17の逆止弁 17d とを接続する回路部分カゝら分岐されて冷却器 18を通り圧縮機 10の吸入管 23に合流 するように接続されている。そして、過冷却バイパス回路 19には、過冷却バイパス回 路 19を流れる冷媒の流量を調節するための過冷却バイパス用膨張弁 29が設けられ ている。過冷却バイパス用膨張弁 29は、冷却器 18に流す冷媒の流量の調節を行う ための電動弁である。これにより、冷媒回路 10を流れる冷媒は、冷却器 18において 、過冷却ノィパス用膨張弁 29の出口力も圧縮機 10の吸入管 23に戻される冷媒によ つて冷却されるようになって!/、る。 Subcooling Bruno Ipasu circuit 19 from the outdoor heat exchange indoor heat exchange 3 a - is sent to 3c A part of the refrigerant is branched and returned to the suction side of the compressor 10. Specifically, the supercooling bypass circuit 19 is branched from the circuit portion connecting the outlet of the receiver 16 and the check valve 17d of the bridge circuit 17 and passes through the cooler 18 to the suction pipe 23 of the compressor 10. Connected to join. The supercooling bypass circuit 19 is provided with a supercooling bypass expansion valve 29 for adjusting the flow rate of the refrigerant flowing through the supercooling bypass circuit 19. The supercooling bypass expansion valve 29 is an electric valve for adjusting the flow rate of the refrigerant flowing through the cooler 18. As a result, the refrigerant flowing through the refrigerant circuit 10 is cooled in the cooler 18 by the refrigerant returned to the suction pipe 23 of the compressor 10 by the outlet force of the expansion valve 29 for the supercooling no-pass! /, The
[0021] ガス抜き回路 20は、その一端がレシーバー 16の上端部に接続され、その他端が 過冷却バイパス回路 19に接続され圧縮機 10の吸入管 23に合流している。ガス抜き 回路 20は、レシーバー 16内の気体状態の冷媒を圧縮機 10の吸入側へと送るため の回路である。また、ガス抜き回路 20上には、ガス抜き回路開閉部 30が設けられて いる。ガス抜き回路開閉部 30は、ガス抜き回路 20を開閉する電磁弁であり、ガス抜き 回路 20を流れる冷媒の流れを閉鎖および開放することができる。  The degassing circuit 20 has one end connected to the upper end of the receiver 16 and the other end connected to the supercooling bypass circuit 19 and joined to the suction pipe 23 of the compressor 10. The degassing circuit 20 is a circuit for sending the gaseous refrigerant in the receiver 16 to the suction side of the compressor 10. Further, a degas circuit opening / closing section 30 is provided on the degas circuit 20. The degassing circuit opening / closing unit 30 is an electromagnetic valve that opens and closes the degassing circuit 20 and can close and open the flow of refrigerant flowing through the degassing circuit 20.
均圧回路 21は、その一端がガス抜き回路 20におけるガス抜き回路開閉部 30とレ シーバー 16との間に接続され、その他端が吐出管 22に接続されている。また、均圧 回路 21には、その一端力 他端に向力う冷媒の流通のみを許容する均圧用逆止弁 31が設けられている。この均圧回路 21は、空気調和機 100の停止中に外気温が異 常に上昇してレシーバー 16の圧力が高くなりすぎた場合に、ガス冷媒を逃がすこと でレシーバー 16の破裂を防止するためのものである。  One end of the pressure equalizing circuit 21 is connected between the degassing circuit opening / closing portion 30 and the receiver 16 in the degassing circuit 20, and the other end is connected to the discharge pipe 22. In addition, the pressure equalizing circuit 21 is provided with a pressure equalizing check valve 31 that allows only one refrigerant to flow toward the other end. This pressure equalization circuit 21 prevents the receiver 16 from bursting by allowing the gas refrigerant to escape if the outside air temperature rises abnormally while the air conditioner 100 is stopped and the pressure in the receiver 16 becomes too high. Is.
[0022] 〈室内機の構成〉  <Configuration of indoor unit>
複数の室内機 2a— 2cは、室内の壁面や天井裏などにそれぞれ配置され、室内へ 調和された空気を吹き出す。室内機 2a— 2cは、異なる室内にそれぞれ配置されても よぐ同一室内の異なる位置にそれぞれ配置されてもよい。室内機 2a— 2cは、それ ぞれ独立してサーモオン'オフおよび運転の起動 '停止が可能となっており、室内機 2a— 2cごとに運転状態を切り換えることができる。複数の室内機 2a— 2cは、分岐ュ ニット BP1を介して室外機 1に接続されており、室外機 1から送られてきた冷媒が分岐 ユニット BP1において分岐され各室内熱交^^ 3a— 3cに送られる。また、各室内熱 交換器 3a— 3cを流れた冷媒は、分岐ユニット BP 1にお 、て再び合流して室外機 1 へと送られる。 The plurality of indoor units 2a-2c are arranged on the indoor wall and the ceiling, respectively, and blow out conditioned air into the room. The indoor units 2a-2c may be arranged in different rooms or at different positions in the same room. Each of the indoor units 2a-2c can be independently thermo-on / off and start / stop operation, and the operation state can be switched for each of the indoor units 2a-2c. The plurality of indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1, and the refrigerant sent from the outdoor unit 1 branches. It is branched at unit BP1 and sent to the indoor heat exchangers ^^ 3a-3c. In addition, the refrigerant that has flowed through each of the indoor heat exchangers 3a to 3c merges again in the branch unit BP1, and is sent to the outdoor unit 1.
[0023] 第 1室内機 2aは、第 1室内熱交翻3&および第 1室内送風機 4aを備えている。第 1室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 1室内送 風機 4aは、第 1室内機 2a内から吹き出される空気の流れを生成し、第 1室内熱交換 器 3aを流れる冷媒と熱交換を行った空気を室内へと送る。 [0023] The first indoor unit 2a includes a first indoor heat exchange 3 & and a first indoor blower 4a. In the first indoor heat exchange, heat is exchanged between the refrigerant flowing inside and the air. The first indoor fan 4a generates a flow of air blown from the first indoor unit 2a, and sends the air that has exchanged heat with the refrigerant flowing through the first indoor heat exchanger 3a to the room.
第 2室内機 2bは、第 2室内熱交換器 3bおよび第 2室内送風機 4bを備えている。第 2室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 2室内送 風機 4bは、第 2室内機 2b内力も吹き出される空気の流れを生成し、第 2室内熱交換 器 3bを流れる冷媒と熱交換を行った空気を室内へと送る。  The second indoor unit 2b includes a second indoor heat exchanger 3b and a second indoor blower 4b. In the second indoor heat exchange, heat is exchanged between the refrigerant flowing inside and the air. The second indoor fan 4b generates an air flow that also blows the internal force of the second indoor unit 2b, and sends the air that has exchanged heat with the refrigerant flowing through the second indoor heat exchanger 3b to the room.
第 3室内機 2cは、第 3室内熱交換器 3cおよび第 3室内送風機 4cを備えている。第 3室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 3室内送 風機 4cは、第 3室内機 2c内から吹き出される空気の流れを生成し、第 3室内熱交換 器 3cを流れる冷媒と熱交換を行った空気を室内へと送る。  The third indoor unit 2c includes a third indoor heat exchanger 3c and a third indoor fan 4c. The third indoor heat exchange exchanges heat between the refrigerant flowing inside and the air. The third indoor fan 4c generates a flow of air blown out from the third indoor unit 2c, and sends the air that has exchanged heat with the refrigerant flowing through the third indoor heat exchanger 3c to the room.
[0024] 第 1室内熱交換器 3a、第 2室内熱交換器 3bおよび第 3室内熱交換器 3cは、冷媒 回路にぉ 、て並列に設けられており、分岐ユニット BP1に接続されて 、る。  [0024] The first indoor heat exchanger 3a, the second indoor heat exchanger 3b, and the third indoor heat exchanger 3c are provided in parallel with the refrigerant circuit, and are connected to the branch unit BP1. .
〈分岐ユニットの構成〉  <Branch unit configuration>
分岐ユニット BP1は、 1つの室外機 1から送られる冷媒を分岐して複数の室内機 2a 2cに分配し、また、複数の室内機 2a— 2cから送られる冷媒を合流させて 1つの室 外機 1に送るユニットである。この空気調和機 100では、 1つの分岐ユニット BP1には 3つの室内機 2a— 2cが接続されて!、るが、 1つの分岐ユニット BP1により多くの室内 機またはより少ない室内機が接続されてもよい。また、 1つの室外機 1に複数の分岐 ユニットが接続されてもょ 、。  The branch unit BP1 branches the refrigerant sent from one outdoor unit 1 and distributes it to the plurality of indoor units 2a 2c, and also merges the refrigerant sent from the plurality of indoor units 2a-2c into one outdoor unit. Unit to send to 1. In this air conditioner 100, three indoor units 2a-2c are connected to one branch unit BP1! However, even if more indoor units or fewer indoor units are connected to one branch unit BP1 Good. Also, multiple branch units may be connected to one outdoor unit 1.
分岐ユニット BP1は、 3つに分岐した液分岐管 32と、 3つに分岐したガス分岐管 33 とを有している。液分岐管 32は、室外機 1の液閉鎖弁 28と第 1室内熱交翻3&、第
Figure imgf000012_0001
る。また、ガス 分岐管 33は、室外機 1のガス閉鎖弁 24と第 1室内熱交換器 3a、第 2室内熱交換器 3 bおよび第 3室内熱交 のガス側とを連結している。液分岐管 32の分岐点と各 室内熱交換器 3a— 3cとの間には、第 1室内膨張弁 5a (第 1室内膨張弁)、第 2室内 膨張弁 5b (第 2室内膨張弁)および第 3室内膨張弁 5cが設けられており、各室内膨 張弁 5a— 5cは冷媒回路において並列に設けられている。従って、第 1室内熱交換 器 3aと第 1室内膨張弁 5aとからなる第 1室内機 2a側の冷媒回路と、第 2室内熱交換 器 3bと第 2室内膨張弁 5bとからなる第 2室内機 2b側の冷媒回路と、第 3室内熱交換 器 3cと第 3室内膨張弁 5cとからなる第 3室内機 2c側の冷媒回路とが互いに並列に分 岐ユニット BP1を介して室外機 1側の冷媒回路に接続されている。第 1室内膨張弁 5 a、第 2室内膨張弁 5bおよび第 3室内膨張弁 5cはそれぞれ通過する冷媒を減圧可 能な電動弁であり、弁の開度が制御されることによって通過する冷媒の量を制御する ことができる。第 1室内膨張弁 5a、第 2室内膨張弁 5bおよび第 3室内膨張弁 5cはそ れぞれ独立して制御可能となって 、る。
The branch unit BP1 has a liquid branch pipe 32 branched into three and a gas branch pipe 33 branched into three. The liquid branch pipe 32 is connected to the liquid shut-off valve 28 of the outdoor unit 1 and the first indoor heat exchange 3 &
Figure imgf000012_0001
The In addition, the gas branch pipe 33 includes the gas shut-off valve 24 of the outdoor unit 1, the first indoor heat exchanger 3a, and the second indoor heat exchanger 3 It is connected to b and the gas side of the third indoor heat exchanger. Between the branch point of the liquid branch pipe 32 and each indoor heat exchanger 3a-3c, the first indoor expansion valve 5a (first indoor expansion valve), the second indoor expansion valve 5b (second indoor expansion valve) and A third indoor expansion valve 5c is provided, and the indoor expansion valves 5a-5c are provided in parallel in the refrigerant circuit. Therefore, a refrigerant circuit on the first indoor unit 2a side composed of the first indoor heat exchanger 3a and the first indoor expansion valve 5a, and a second room composed of the second indoor heat exchanger 3b and the second indoor expansion valve 5b. The refrigerant circuit on the side of the unit 2b and the refrigerant circuit on the side of the third indoor unit 2c consisting of the third indoor heat exchanger 3c and the third indoor expansion valve 5c are connected in parallel to each other via the branch unit BP1. Connected to the refrigerant circuit. The first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c are motor-operated valves that can depressurize the refrigerant that passes through them, respectively. The amount can be controlled. The first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c can be independently controlled.
[0025] なお、液分岐管 32と第ガス液分岐管との間には、圧力調整用の電動弁 6が設けら れている。 [0025] Note that an electric valve 6 for pressure adjustment is provided between the liquid branch pipe 32 and the first gas-liquid branch pipe.
〈各種センサ〉  <Various sensors>
空気調和機 100は、各部に設けられた圧力センサや温度センサ等の各種センサ 4 0— 51を備えている。以下、図 1を用いて、各種センサ 40— 51について説明する。 圧縮機 10の吸入管 23には、圧縮機 10の吸入側を流れる低圧のガス冷媒の圧力( 以下、「吸入側圧力 Pe」と呼ぶ。)を検出するための吸入側圧力センサ 40が設けられ ている。圧縮機 10の吐出管 22には、圧縮機 10の吐出側を流れる高圧のガス冷媒の 圧力(以下、「吐出側圧力 Pc」と呼ぶ。)を検出するための吐出側圧力センサ 41が設 けられている。また、圧縮機 10の吐出管 22には、高圧のガス冷媒の圧力の過上昇を 検出するための高圧圧力スィッチ 42が設けられている。そして、圧縮機 10の吐出管 22には、圧縮機 10の吐出側の冷媒の吐出温度 Tdを検出するための吐出温度セン サ 43が設けられ、圧縮機 10の吸入管 23には圧縮機 10の吸入側の冷媒の吸入温度 Tsを検出するための吸入温度センサ 44が設けられている。  The air conditioner 100 includes various sensors 40-51 such as a pressure sensor and a temperature sensor provided in each part. Hereinafter, various sensors 40-51 will be described with reference to FIG. The suction pipe 23 of the compressor 10 is provided with a suction side pressure sensor 40 for detecting the pressure of the low-pressure gas refrigerant flowing on the suction side of the compressor 10 (hereinafter referred to as “suction side pressure Pe”). ing. The discharge pipe 22 of the compressor 10 is provided with a discharge side pressure sensor 41 for detecting the pressure of the high-pressure gas refrigerant flowing on the discharge side of the compressor 10 (hereinafter referred to as “discharge side pressure Pc”). It has been. Further, the discharge pipe 22 of the compressor 10 is provided with a high-pressure switch 42 for detecting an excessive increase in the pressure of the high-pressure gas refrigerant. The discharge pipe 22 of the compressor 10 is provided with a discharge temperature sensor 43 for detecting the discharge temperature Td of the refrigerant on the discharge side of the compressor 10, and the suction pipe 23 of the compressor 10 is provided with the compressor 10 An intake temperature sensor 44 is provided for detecting the intake temperature Ts of the refrigerant on the intake side.
[0026] また、室外機 1の室外送風機 27の空気吸入口には、室外空気の温度 Taを検出す るための外気温度センサ 45が設けられている。室外熱交換器 14には、冷房運転時 には冷媒の凝縮温度に相当し、かつ、暖房運転時には冷媒の蒸発温度に相当する 冷媒の温度 Tbを検出するための室外熱交温度センサ 46が設けられている。 [0026] In addition, an outdoor air temperature sensor 45 for detecting the temperature Ta of the outdoor air is provided at the air inlet of the outdoor fan 27 of the outdoor unit 1. The outdoor heat exchanger 14 is used for cooling operation. Is provided with an outdoor heat exchange temperature sensor 46 for detecting a refrigerant temperature Tb corresponding to the refrigerant condensation temperature and corresponding to the refrigerant evaporation temperature during heating operation.
また、過冷却バイパス回路 19の圧縮機 10の吸入側との合流部には、冷却器 18の 出口側の過冷却バイパス回路 19を流れる冷媒の温度 Tshを検出して過熱度を検出 するための過冷却ノ ィパス回路温度センサ 47が設けられて 、る。この過冷却バイパ ス回路温度センサ 47によって、圧縮機 10の吸入側の過熱度を検知することができる 室内機 2a— 2cの室内送風機 4a— 4cの空気吸込口には、室内空気の温度 Trを検 出するための室内温度センサ 48がそれぞれ設けられている。この室内温度センサ 4 8によって、各室内機 2a— 2cによる空気調和を受ける室内の温度を検知することが できる。また、室内熱交換器 3a— 3cには、冷房運転時には蒸発温度に相当し、かつ 、暖房運転時には凝縮温度に相当する冷媒の温度 Tnを検出するための室内熱交 温度センサ 49がそれぞれ設けられて ヽる。  Further, at the junction of the supercooling bypass circuit 19 with the suction side of the compressor 10, the temperature Tsh of the refrigerant flowing through the supercooling bypass circuit 19 on the outlet side of the cooler 18 is detected to detect the degree of superheat. A supercooling no-pass circuit temperature sensor 47 is provided. The supercooling bypass circuit temperature sensor 47 can detect the degree of superheat on the suction side of the compressor 10. The air blower of the indoor unit 2a-2c indoor fan 4a-4c has the indoor air temperature Tr Each room temperature sensor 48 is provided for detection. The indoor temperature sensor 48 can detect the temperature of the room subject to air conditioning by the indoor units 2a-2c. Each of the indoor heat exchangers 3a to 3c is provided with an indoor heat exchanger temperature sensor 49 for detecting a refrigerant temperature Tn corresponding to the evaporation temperature during the cooling operation and corresponding to the condensation temperature during the heating operation. Speak.
[0027] 分岐ユニット BP1中のガス分岐管 33の各分岐には、内部を通過する冷媒温度を検 出するガス管温度センサ 50がそれぞれ設けられている。ガス管温度センサ 50は、室 内膨張弁 5a— 5cと室内熱交 3a— 3cとの間に設けられている。また、液分岐管 3 2の各分岐には、内部を通過する冷媒温度を検出する液管温度センサ 51がそれぞ れ設けられている。液管温度センサ 51は、室内熱交換器 3a— 3cと液分岐管の分岐 点との間に設けられている。 [0027] Each branch of the gas branch pipe 33 in the branch unit BP1 is provided with a gas pipe temperature sensor 50 for detecting the temperature of the refrigerant passing through the inside. Gas pipe temperature sensor 50, the chamber expansion valve 5a-5c and the indoor heat exchange 3 a - is provided between the 3c. Each branch of the liquid branch pipe 32 is provided with a liquid pipe temperature sensor 51 for detecting the temperature of the refrigerant passing through the inside. The liquid pipe temperature sensor 51 is provided between the indoor heat exchangers 3a-3c and the branch point of the liquid branch pipe.
なお、各室内機 2a - 2cおよび分岐ユニット BP1に備えられた各種センサ 48 - 51 につ 、ては、簡略化のため同一機能のセンサには同一の符号を付して!/、る。  In addition, for the various sensors 48-51 provided in each indoor unit 2a-2c and branch unit BP1, sensors having the same function are denoted by the same reference numerals for simplicity.
〈制御部〉  <Control part>
空気調和機 100は、図 2に示すように、上記の各種センサ 40— 51が検出する信号 に基づ!/、て圧縮機 10や切換機構 11などの各機器を制御して冷房運転や暖房運転 等の空調運転を行うための制御部 60を備える。  As shown in FIG. 2, the air conditioner 100 controls each device such as the compressor 10 and the switching mechanism 11 based on the signals detected by the various sensors 40-51, and performs cooling operation and heating. A control unit 60 for performing air conditioning operation such as operation is provided.
[0028] 制御部 60は、主に、マイクロコンピュータやメモリー力もなり、上述した各種センサ 4 0 - 51の入力信号を受けることができるように接続されるとともに、操作端末 61に入 力された指令信号を受けることができる。制御部 60は、これらの入力信号および指令 信号に基づいて各種機器 4a—4c, 10, 11 , 27、弁類 5a— 5c、 15, 29、各種開閉 部 25, 30を制御することができるように接続されている。そして、この制御部 60は、 各種機器 4a— 4c, 10, 11, 27、弁類 5a— 5c、 15, 29、各種開閉部 25, 30を制御 して冷房運転や暖房運転などの空調運転を行うことができる。なお、図 2では、弁類 5 a— 5c、各種開閉部 25, 30、室内送風機 4a— 4c、室内膨張弁 5a— 5cなどの複数 の構成部品をそれぞれまとめて 1つのブロックで表示して ヽるが、各構成部品を個別 に制御することが可能である。 [0028] The control unit 60 mainly includes a microcomputer and a memory, and is connected so that it can receive input signals of the various sensors 40-51 described above, as well as commands input to the operation terminal 61. Can receive a signal. The control unit 60 receives these input signals and commands. Various devices 4a-4c, 10, 11, 27, valves 5a-5c, 15, 29, and various opening / closing sections 25, 30 are connected so as to be controlled based on the signal. The control unit 60 controls the various devices 4a-4c, 10, 11, 27, the valves 5a-5c, 15, 29, and the various opening / closing units 25, 30 to perform air conditioning operations such as cooling operation and heating operation. It can be carried out. In FIG. 2, a plurality of components such as valves 5a-5c, various opening / closing sections 25, 30, indoor blowers 4a-4c, and indoor expansion valves 5a-5c are displayed together in one block. However, each component can be controlled individually.
[0029] 以下、制御部 60が行う各種の制御について説明する。 Hereinafter, various controls performed by the control unit 60 will be described.
<制御部が行う制御 >  <Control performed by the control unit>
制御部 60は、冷房サイクルによる運転と暖房サイクルによる運転とを切り換えて行う ことができる。冷房サイクルによる運転としては、冷房運転、デフロスト運転、油回収運 転などがある。暖房サイクルによる運転としては、暖房運転がある。  The control unit 60 can switch between the operation by the cooling cycle and the operation by the heating cycle. The cooling cycle operation includes cooling operation, defrost operation, and oil recovery operation. There is a heating operation as an operation by the heating cycle.
〈暖房運転時の制御〉  <Control during heating operation>
空気調和機 100が停止した状態では、切浦構 11は前回運転状態を保持して!/、 る。例えば、前回運転時に冷房サイクルによる運転が行われた場合は冷房サイクル 側状態となっている。圧縮機 10、室外送風機 27、室内送風機 4a— 4cは停止してお り、室外膨張弁 15、室内膨張弁 5a— 5c、過冷却バイパス用膨張弁 29は全閉状態で ある。また、ホットガスバイパス回路開閉部 25、ガス抜き回路開閉部 30は閉状態であ る。このような空気調和機 100の停止状態において、操作端末 61等から暖房運転の 開始が指示されると、図 3に示すように、まず第 1ステップ S1において冷媒回収制御 が開始された後に、第 2ステップ S2において通常暖房運転制御が開始される。また、 通常暖房運転制御を行って 、た空気調和機 100が停止する場合、第 3ステップ S3 においてポンプダウン運転制御が行われ、空気調和機 100はその後に運転を停止 する。  In the state where the air conditioner 100 is stopped, the Kiriura structure 11 maintains the previous operation state! /. For example, if the operation by the cooling cycle was performed during the previous operation, the state is the cooling cycle side state. The compressor 10, the outdoor blower 27, and the indoor blowers 4a-4c are stopped, and the outdoor expansion valve 15, the indoor expansion valves 5a-5c, and the supercooling bypass expansion valve 29 are fully closed. Further, the hot gas bypass circuit opening / closing section 25 and the gas vent circuit opening / closing section 30 are closed. When the start of the heating operation is instructed from the operation terminal 61 or the like in such a stopped state of the air conditioner 100, first, as shown in FIG. 3, after the refrigerant recovery control is started in the first step S1, 2Normal heating operation control is started in step S2. In addition, when the normal heating operation control is performed and the air conditioner 100 stops, the pump down operation control is performed in the third step S3, and then the air conditioner 100 stops the operation.
[0030] (冷媒回収制御)  [0030] (Refrigerant recovery control)
暖房運転の起動開始時に、冷媒回収制御が行われる。冷媒回収制御では、室内 膨張弁 5a— 5cが閉じられた状態でガス抜き回路開閉部 30が開かれる。これにより、 レシーバー 16のガス冷媒がガス抜き回路 20を介して圧縮機 10の吸入側へと送られ 、レシーバー 16と室内膨張弁 5a—5cとの間に滞留していた液冷媒がレシーバー 16 に回収される。ガス抜き回路開閉部 30は、開状態とされてから時間 T1が経過し、且 つ、 Tsh— Tegく aの条件が成立したときに閉じられる。なお、 Tegは、吸入側ガス冷 媒の圧力相当飽和ガス温度であり、 aは所定の定数である。すなわち、ガス抜き回路 20から圧縮機 10の吸入側に送られる冷媒の過熱度が所定値より小さくなつたときに ガス抜き回路開閉部 30が閉じられる。 Refrigerant recovery control is performed at the start of activation of the heating operation. In the refrigerant recovery control, the gas vent circuit opening / closing part 30 is opened with the indoor expansion valves 5a-5c closed. As a result, the gas refrigerant in the receiver 16 is sent to the suction side of the compressor 10 through the gas vent circuit 20. The liquid refrigerant staying between the receiver 16 and the indoor expansion valves 5a-5c is recovered by the receiver 16. The degassing circuit opening / closing part 30 is closed when the time T1 has elapsed since being opened, and when the condition of Tsh-Teg is satisfied. Teg is the saturated gas temperature corresponding to the pressure of the suction side gas refrigerant, and a is a predetermined constant. That is, when the degree of superheat of the refrigerant sent from the gas vent circuit 20 to the suction side of the compressor 10 becomes smaller than a predetermined value, the gas vent circuit opening / closing part 30 is closed.
また、暖房運転の起動開始時には、冷媒回収制御が行われると共に、切換機構 11 が暖房サイクル側状態に切り替わるように切 構 11にオン信号が入力される。また 、圧縮機 10が低周波数、例えば最低運転周波数で駆動を開始し、室外送風機 27が 所定回転数で駆動される。このとき、室外膨張弁 15、過冷却バイパス用膨張弁 29、 室内膨張弁 5a— 5cは、それぞれ全閉状態である。  At the start of heating operation start, refrigerant recovery control is performed, and an ON signal is input to the mechanism 11 so that the switching mechanism 11 is switched to the heating cycle side state. Further, the compressor 10 starts to be driven at a low frequency, for example, the lowest operating frequency, and the outdoor blower 27 is driven at a predetermined number of rotations. At this time, the outdoor expansion valve 15, the subcooling bypass expansion valve 29, and the indoor expansion valves 5a to 5c are in a fully closed state.
なお、圧縮機 10は、起動後、段階的に周波数が増大するように制御され、室外膨 張弁 15は、所定開度に開かれる。  The compressor 10 is controlled so that the frequency increases stepwise after startup, and the outdoor expansion valve 15 is opened to a predetermined opening.
(通常暖房運転制御)  (Normal heating operation control)
上記のように暖房運転の起動制御が行われた後、通常暖房運転開始条件が満た されると、サーモオン指令が出された室内機 2a— 2cの室内膨張弁 5a— 5cが所定開 度で開かれて、通常暖房運転制御が開始される。なお、通常暖房運転開始条件とは 、切換機構 11が冷房サイクル側状態カゝら暖房サイクル側状態に確実に切り替わった と見なすことができるための条件であり、暖房運転の起動制御が開始されて力 時間 T2が経過したこと、又は、 Pc— Pe >bを満たしたことのいずれかの条件が成立した 場合である。ここで bは切 構 11の最低作動圧力である。すなわち、切 構 11 はオン信号が入力されたとしても高低圧の差圧の影響によって即時に切り替わるの ではないため、高低圧の差圧が切換機構 11の最低作動圧力を越えた場合に切換 機構 11が切り替わつたと見なして室内膨張弁 5a— 5cが開かれる。従って、通常暖房 運転制御においては、切換機構 11が図 1の波線で示す状態に切り換えられた状態 となる。ホットガスバイパス回路開閉部 25は閉状態、過冷却バイパス用膨張弁 29は 全閉となる。また、室外膨張弁 15、室外送風機 27、運転状態の室内機 2a— 2cの室 内膨張弁 5a— 5cおよび室内送風機 4a— 4cは、室内機 2a— 2cの運転状況などに 応じて制御される。この状態で冷媒が冷媒回路を循環することにより、運転状態の室 内機 2a— 2cの室内熱交換器 3a— 3cが凝縮器として機能し且つ室外熱交換器 14が 蒸発器として機能する。これにより、加熱された空気が室内へと吹き出され、通常暖 房運転が行われる。 After the start control of the heating operation is performed as described above, when the normal heating operation start condition is satisfied, the indoor expansion valves 5a-5c of the indoor units 2a-2c to which the thermo-on command is issued are opened at a predetermined opening degree. As a result, the normal heating operation control is started. Note that the normal heating operation start condition is a condition that allows the switching mechanism 11 to be considered to have reliably switched from the cooling cycle side state to the heating cycle side state, and the start control of the heating operation is started. This is the case when either the force time T2 has passed or the condition Pc—Pe> b is satisfied. Where b is the minimum operating pressure of mechanism 11. In other words, even if the ON signal is input, the switching mechanism 11 does not immediately switch due to the effect of the high / low pressure differential pressure, so the switching mechanism when the high / low pressure differential pressure exceeds the minimum operating pressure of the switching mechanism 11 Assuming that 11 has changed, the indoor expansion valves 5a to 5c are opened. Therefore, in the normal heating operation control, the switching mechanism 11 is switched to the state indicated by the wavy line in FIG. The hot gas bypass circuit opening / closing part 25 is closed, and the supercooling bypass expansion valve 29 is fully closed. In addition, the outdoor expansion valve 15, the outdoor blower 27, the indoor expansion valve 5a-5c of the indoor unit 2a-2c in operation, and the indoor blower 4a-4c are used for operating conditions of the indoor unit 2a-2c. Is controlled accordingly. In this state, the refrigerant circulates through the refrigerant circuit, so that the indoor heat exchangers 3a-3c of the indoor units 2a-2c in the operating state function as a condenser and the outdoor heat exchanger 14 functions as an evaporator. As a result, the heated air is blown into the room, and the normal heating operation is performed.
[0032] なお、上記のような通常暖房運転を含む暖房サイクルによる運転では、冷媒が以下 ように冷媒回路を循環する。なお。ここでは、第 1室内機 2aがサーモオン状態にあり、 第 2室内機 2bおよび第 3室内機 2cがサーモオフまたは運転停止状態にあるとして説 明する。  [0032] In the operation by the heating cycle including the normal heating operation as described above, the refrigerant circulates in the refrigerant circuit as follows. Note that. Here, it is assumed that the first indoor unit 2a is in the thermo-on state, and the second indoor unit 2b and the third indoor unit 2c are in the thermo-off state or the operation stopped state.
まず、圧縮機 10から吐出された冷媒は、切 構 11からガス閉鎖弁 24および分 岐ユニット BP1を通って第 1室内熱交換器 3aへ送られる。第 1室内熱交換器 3aでは 、冷媒が室内空気に対して放熱して凝縮する。第 1室内熱交換器 3aで凝縮した冷媒 は、第 1室内膨張弁 5a、液閉鎖弁 28、ブリッジ回路 17を通ってレシーバー 16に流入 する。レシーバー 16から流出した冷媒は、室外膨張弁 15で減圧され、ブリッジ回路 1 7を通って室外熱交換器 14へ送られる。室外熱交換器 14では、冷媒が室外空気か ら吸熱して蒸発する。室外熱交換器 14で蒸発した冷媒は、切換機構 11を通って圧 縮機 10に吸入される。圧縮機 10は吸入した冷媒を圧縮して再び吐出する。  First, the refrigerant discharged from the compressor 10 is sent from the mechanism 11 to the first indoor heat exchanger 3a through the gas shut-off valve 24 and the branch unit BP1. In the first indoor heat exchanger 3a, the refrigerant dissipates heat to the room air and condenses. The refrigerant condensed in the first indoor heat exchanger 3a flows into the receiver 16 through the first indoor expansion valve 5a, the liquid closing valve 28, and the bridge circuit 17. The refrigerant flowing out from the receiver 16 is decompressed by the outdoor expansion valve 15 and sent to the outdoor heat exchanger 14 through the bridge circuit 17. In the outdoor heat exchanger 14, the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger 14 is sucked into the compressor 10 through the switching mechanism 11. The compressor 10 compresses the sucked refrigerant and discharges it again.
[0033] なお、室内機 2a— 2cのうち停止している第 2室内機 2bおよび第 3室内機 2cでは、 対応する第 2室内膨張弁 5bと第 3室内膨張弁 5cとが微少開度で開かれており、冷媒 の流入が制限されている。 [0033] In the second indoor unit 2b and the third indoor unit 2c that are stopped among the indoor units 2a-2c, the corresponding second indoor expansion valve 5b and third indoor expansion valve 5c have a slight opening degree. Open and restricted inflow of refrigerant.
制御部 60は、各室内機 2a— 2cの運転状態の変更に応じて圧縮機 10の周波数お よび室外膨張弁 15の開度等を制御する。  The control unit 60 controls the frequency of the compressor 10, the opening degree of the outdoor expansion valve 15, and the like according to the change in the operating state of each indoor unit 2a-2c.
(ポンプダウン運転制御)  (Pump down operation control)
上記の通常暖房運転が停止される場合、室内送風機 4a— 4cが停止されると共に、 室内膨張弁 5a— 5cが全閉とされて、室内機 2a— 2cの運転が停止される。そして、室 内機 2a— 2cの運転停止後、次回起動時の液バックを防止するために冷媒を高圧側 へ回収するポンプダウン運転制御が行われる。  When the normal heating operation is stopped, the indoor fans 4a-4c are stopped, the indoor expansion valves 5a-5c are fully closed, and the operations of the indoor units 2a-2c are stopped. Then, after the operation of the indoor units 2a-2c is stopped, the pump-down operation control for recovering the refrigerant to the high pressure side is performed in order to prevent the liquid back at the next start-up.
[0034] ポンプダウン運転制御では、切換機構 11が冷房サイクル側状態であり且つ室内膨 張弁 5a— 5cが全閉とされた状態で圧縮機 10が駆動される。また、室外膨張弁 15は 所定開度で開かれ、過冷却バイパス用膨張弁 29は全閉とされ、ホットガスバイパス回 路開閉部 25は閉じられる。室外送風機 27は、停止又は所定回転数で駆動される。 その後、圧縮機 10および室外送風機 27が停止され、室外膨張弁 15が全閉とされ て、室外機 1の運転が停止する。 [0034] In the pump down operation control, the compressor 10 is driven while the switching mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are fully closed. The outdoor expansion valve 15 The supercooling bypass expansion valve 29 is fully closed and the hot gas bypass circuit opening / closing part 25 is closed. The outdoor blower 27 is stopped or driven at a predetermined rotational speed. Thereafter, the compressor 10 and the outdoor blower 27 are stopped, the outdoor expansion valve 15 is fully closed, and the operation of the outdoor unit 1 is stopped.
(デフロスト運転制御)  (Defrost operation control)
冬季のように外気温が低いときには、室外機 1の室外熱交 14が凍結する場合 がある。この場合、冷媒運転に準じたデフロスト運転 (第 1運転制御)を行って室外熱 交 14の凍結解除を行うことができる。  When the outdoor temperature is low, such as in winter, the outdoor heat exchanger 14 of the outdoor unit 1 may freeze. In this case, the outdoor heat exchanger 14 can be defrosted by performing a defrost operation (first operation control) according to the refrigerant operation.
[0035] この空気調和機 100では、図 4に示すように、第 11ステップ S 11 (第 1運転制御実 行ステップ)においてデフロスト運転制御が行われた後、第 12ステップ S 12 (ポンプダ ゥン運転ステップ)においてポンプダウン運転制御が行われる。次に、第 13ステップ S 13において冷媒回収制御が行われ、その後、第 14ステップ S 14 (第 2運転制御開始 ステップ)において通常暖房運転制御(第 2運転制御)が行われる。すなわち、デフ口 スト運転制御が行われた後、通常暖房運転制御に切り替わる前にポンプダウン運転 制御が行われる。また、ポンプダウン運転制御が行われた後、通常暖房運転に切り 替わる前に冷媒回収制御が行われる。 In this air conditioner 100, as shown in FIG. 4, after defrost operation control is performed in the eleventh step S11 (first operation control execution step), the twelfth step S12 (pump down) is performed. In the operation step), pump down operation control is performed. Next, refrigerant recovery control is performed in the thirteenth step S13, and then normal heating operation control (second operation control) is performed in the fourteenth step S14 (second operation control start step). In other words, after the differential opening operation control is performed, the pump down operation control is performed before switching to the normal heating operation control. Further, after the pump down operation control is performed, the refrigerant recovery control is performed before switching to the normal heating operation.
デフロスト運転制御では、切 «構 11が冷房サイクル側状態に切り換えられ、室外 送風機 27および室内送風機 4a— 4cが停止された状態で圧縮機 10が駆動される。 このとき、室外膨張弁 15は所定開度で開かれており、過冷却バイパス用膨張弁 29は 全閉状態である。また、ホットガスバイパス回路開閉部 25は開かれており、運転状態 にある室内機 2a— 2cの室内膨張弁 5a— 5cは所定開度に開かれている。なお、ガス 抜き回路開閉部 30は、閉状態力も所定時間 T4経過後に開かれ、その後、再び閉じ られる。  In the defrost operation control, the compressor 11 is driven in a state where the switch 11 is switched to the cooling cycle side state and the outdoor blower 27 and the indoor blowers 4a-4c are stopped. At this time, the outdoor expansion valve 15 is opened at a predetermined opening, and the supercooling bypass expansion valve 29 is fully closed. The hot gas bypass circuit opening / closing section 25 is opened, and the indoor expansion valves 5a-5c of the indoor units 2a-2c in the operating state are opened to a predetermined opening. The degassing circuit opening / closing part 30 is also opened after a predetermined time T4 has elapsed, and then closed again.
[0036] このようなデフロスト運転制御は、デフロスト運転制御開始時力 所定時間 T5が経 過したこと、 Tb >cが満たされたこと、または、 Pc >dが満たされたことのいずれかの 条件が成立したときに終了し、その後、ポンプダウン運転制御が行われる。ここで、 c 、 dは所定の定数であり、室外熱交換器 14において除霜が十分行われるように定め られる。 デフロスト運転制御の終了に続 、てポンプダウン運転制御が行われる。ポンプダウ ン運転制御では、切換機構 11が冷房サイクル側状態であり且つ室内膨張弁 5a— 5c が閉じられた状態で、圧縮機 10が駆動される。また、ホットガスノ ィパス回路開閉部 2 5は閉じられる。ポンプダウン運転制御は、ポンプダウン運転開始時力 所定時間 T3 が経過したこと、 Pe< eが満たされたこと、 Td>fが満たされたこと、 Pc >gが満たされ たことのいずれかの条件が成立したときに終了し、その後、冷媒回収制御が行われる 。なお、 e, f, gは所定の定数である。冷媒回収制御が終了すると、通常暖房運転制 御が開始される。なお、冷媒回収制御および通常暖房運転制御は前述したものと同 様の制御である力 各制御の終了時の判断に関して上記と異なる条件が用いられて ちょい。 [0036] Such defrost operation control is performed under the condition that either the defrost operation control start force predetermined time T5 has passed, Tb> c is satisfied, or Pc> d is satisfied. Is finished, and then pump down operation control is performed. Here, c and d are predetermined constants and are determined so that the defrosting is sufficiently performed in the outdoor heat exchanger 14. Following the completion of defrost operation control, pump down operation control is performed. In the pump down operation control, the compressor 10 is driven while the switching mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are closed. Further, the hot gas no-pass circuit opening / closing part 25 is closed. The pump-down operation control is performed when the pump-down operation start time T3 has elapsed, Pe <e is satisfied, Td> f is satisfied, or Pc> g is satisfied. The process is terminated when the condition is satisfied, and then the refrigerant recovery control is performed. Note that e, f, and g are predetermined constants. When the refrigerant recovery control is completed, the normal heating operation control is started. The refrigerant recovery control and the normal heating operation control are the same controls as described above, but different conditions are used for the judgment at the end of each power control.
[0037] (油回収運転制御)  [0037] (Oil recovery operation control)
この空気調和機 100では、通常暖房運転制御中に所定の条件が満たされた場合 には、油回収運転制御 (第 1運転制御)が行われて、冷媒中の油分を圧縮機 10に回 収することができる。この場合、図 5に示すように、まず、第 21ステップ S21 (第 1運転 制御実行ステップ)において油回収運転制御が行われ、次に、第 22ステップ S22 (ポ ンプダウン運転ステップ)においてポンプダウン運転制御が行われる。その後、第 23 ステップ S23において、冷媒回収制御が行われ、次に、第 24ステップ S24 (第 2運転 制御開始ステップ)において通常暖房運転制御(第 2運転制御)が行われる。すなわ ち、油回収運転制御力 通常暖房運転制御に切り替わる場合、ポンプダウン運転制 御が行われた後に、通常暖房運転制御が行われる。また、ポンプダウン運転制御が 行われた後に、通常暖房運転制御が行われる前に、冷媒回収制御が行われる。  In the air conditioner 100, when a predetermined condition is satisfied during normal heating operation control, oil recovery operation control (first operation control) is performed, and the oil content in the refrigerant is collected in the compressor 10. can do. In this case, as shown in FIG. 5, first, oil recovery operation control is performed in the 21st step S21 (first operation control execution step), and then pump down operation is performed in the 22nd step S22 (pump down operation step). Control is performed. Thereafter, refrigerant recovery control is performed in the 23rd step S23, and then normal heating operation control (second operation control) is performed in the 24th step S24 (second operation control start step). In other words, when switching to oil recovery operation control force normal heating operation control, normal heating operation control is performed after pump down operation control is performed. Further, after the pump down operation control is performed, the refrigerant recovery control is performed before the normal heating operation control is performed.
[0038] 油回収運転制御では、切 構 11が冷房サイクル側状態に切り換えられ、室外送 風機 27が所定回転数で駆動され且つ室内送風機 4a— 4cが停止された状態で圧縮 機 10が駆動される。このとき、室外膨張弁 15は所定開度で開かれており、過冷却バ ィパス用膨張弁 29は全閉状態である。また、ホットガスバイパス回路開閉部 25は開 かれており、運転状態にある室内機 2a— 2cの室内膨張弁 5a— 5cは所定開度に開 かれている。なお、ガス抜き回路開閉部 30は、閉状態力も所定時間経過後に開かれ 、その後、再び閉じられる。 このような油回収運転制御は、油回収運転制御開始時力 所定時間経過したこと、 又は、 Th— Teg< hが満たされたことのいずれかの条件が成立するまで続けられ、そ の後、ポンプダウン運転制御が行われる。なお、 hは所定の定数であり、油回収が十 分に行われるように定められる。 [0038] In the oil recovery operation control, the mechanism 11 is switched to the cooling cycle side state, the outdoor fan 27 is driven at a predetermined rotational speed, and the compressor 10 is driven with the indoor fans 4a-4c stopped. The At this time, the outdoor expansion valve 15 is opened at a predetermined opening, and the subcooling bypass expansion valve 29 is fully closed. The hot gas bypass circuit opening / closing section 25 is opened, and the indoor expansion valves 5a-5c of the indoor units 2a-2c in the operating state are opened to a predetermined opening. The degassing circuit opening / closing part 30 is also opened after a predetermined time has elapsed and then closed again. Such oil recovery operation control is continued until either a predetermined time elapses when the oil recovery operation control start force is satisfied or Th-Teg <h is satisfied, and then Pump down operation control is performed. Note that h is a predetermined constant and is determined so that oil recovery can be performed sufficiently.
[0039] 油回収運転制御に続 、てポンプダウン運転制御が行われる。ポンプダウン運転制 御では、切 構 11が冷房サイクル側状態であり且つ室内膨張弁 5a— 5cが閉じら れた状態で圧縮機 10が駆動される。また、ホットガスバイパス回路開閉部 25は閉じら れる。ポンプダウン運転制御は、ポンプダウン運転が開始されて力も所定時間 T3が 経過した場合、 Peく eが満たされた場合、 Td>fが満たされた場合、 Pc >gが満たさ れた場合のいずれかが成立したときに終了し、その後、冷媒回収制御が行われる。 冷媒回収制御が終了すると、通常暖房運転制御が開始される。なお、ポンプダウン 運転制御、冷媒回収制御および通常暖房運転制御は前述したものと同様の制御で ある力 各制御の終了判断時に関して異なる条件が用いられてもよい。 [0039] Following the oil recovery operation control, pump down operation control is performed. In the pump down operation control, the compressor 10 is driven while the mechanism 11 is in the cooling cycle side state and the indoor expansion valves 5a-5c are closed. Further, the hot gas bypass circuit opening / closing part 25 is closed. The pump down operation control is performed when the pump down operation is started and the force has exceeded the specified time T3, when Pe e is satisfied, when Td> f is satisfied, or when Pc> g is satisfied. Is finished, and then refrigerant recovery control is performed. When the refrigerant recovery control is finished, the normal heating operation control is started. The pump-down operation control, the refrigerant recovery control, and the normal heating operation control may be different conditions with respect to the determination of the end of each power control, which is the same control as described above.
<効果 >  <Effect>
(1)  (1)
空気調和機 100においては、室内機 2a— 2cの運転停止後に、次回起動時の液バ ックの発生を防止するために、冷媒を高圧側に回収するポンプダウン運転が行われ る。室内機 2a— 2c停止時にポンプダウン運転が行われた場合、冷媒過多の状況で はレシーバー 16と室内膨張弁 5a— 5cとの間に圧力が比較的高い冷媒が滞留する 可能性がある。そして、暖房運転の再起動時には室内膨張弁 5a— 5cを所定開度開 いて起動するため、もし上記のように冷媒が滞留した状態で室内膨張弁 5a— 5cが開 かれると、レシーバー 16と室内膨張弁 5a— 5cとの間の高圧の冷媒が室内機 2a— 2c 側へと逆流して冷媒音が発生する恐れがある。特に、住宅用に用いられる空気調和 機においては居住者に不快感を与える恐れがある。  In the air conditioner 100, after the operation of the indoor units 2a-2c is stopped, a pump-down operation for recovering the refrigerant to the high pressure side is performed in order to prevent generation of a liquid back at the next start-up. If the pump-down operation is performed when the indoor units 2a-2c are stopped, a refrigerant with a relatively high pressure may remain between the receiver 16 and the indoor expansion valves 5a-5c in a situation where the refrigerant is excessive. When the heating operation is restarted, the indoor expansion valve 5a-5c is opened with a predetermined opening, so that the refrigerant is accumulated as described above, and if the indoor expansion valve 5a-5c is opened with the refrigerant accumulated, the receiver 16 and the indoor High-pressure refrigerant between the expansion valves 5a-5c may flow backward to the indoor units 2a-2c, generating refrigerant noise. In particular, air conditioners used for homes may be uncomfortable for residents.
[0040] しかし、空気調和機 100では、暖房運転の起動時に室内膨張弁 5a— 5cを開いて レシーバー 16と室内膨張弁 5a— 5cとの間に滞留した冷媒をレシーバー 16に回収 する冷媒回収制御が開始され、その後に室内膨張弁 5a— 5cが開かれて通常暖房 運転が開始される。このため、室内膨張弁 5a— 5cが開かれたときに、冷媒が逆流す ることを抑えることができ、冷媒音の発生を抑えることができる。 [0040] However, in the air conditioner 100, the refrigerant recovery control for opening the indoor expansion valves 5a-5c when starting the heating operation and recovering the refrigerant remaining between the receiver 16 and the indoor expansion valves 5a-5c to the receiver 16 After that, the indoor expansion valves 5a-5c are opened and the normal heating operation is started. Therefore, when the indoor expansion valves 5a-5c are opened, the refrigerant flows backward. It is possible to suppress the occurrence of refrigerant noise.
また、この空気調和機 100では、冷媒回収制御において、吐出側圧力 Pcと吸入側 圧力 Peとの差が切換機構 11の最低作動圧力を超えた場合、または、冷媒回収制御 が開始されて力も十分な時間が経過した場合に、通常暖房運転に移行する。このた め、切 構 11が冷房サイクル側力 暖房サイクル側へ確実に切り替わるまで室内 膨張弁 5a— 5cが開かれない。このため、冷媒の逆流をより確実に抑えることができ、 冷媒音の発生を抑えることができる。  Further, in the air conditioner 100, in the refrigerant recovery control, when the difference between the discharge side pressure Pc and the suction side pressure Pe exceeds the minimum operating pressure of the switching mechanism 11, or when the refrigerant recovery control is started and the force is sufficient. When a long time elapses, the operation shifts to normal heating operation. For this reason, the indoor expansion valves 5a to 5c are not opened until the mechanism 11 is reliably switched to the cooling cycle side power heating cycle side. For this reason, the reverse flow of the refrigerant can be suppressed more reliably, and the generation of refrigerant noise can be suppressed.
[0041] さらに、暖房運転起動時に冷媒の逆流を抑えることができることにより、暖房運転起 動時の立ち上がり性能を向上させることができる。 [0041] Further, since the back flow of the refrigerant can be suppressed when the heating operation is started, it is possible to improve the start-up performance when the heating operation is started.
(2)  (2)
空気調和機 100では、デフロスト運転および暖房時の油回収運転は冷房サイクル で冷媒を循環させることによって行われる。このようなデフロスト運転又は暖房時の油 回収運転が行われるとレシーバー 16側の圧力が高くなつているため、この状態で暖 房運転の再起動時にぉ 、て室内膨張弁 5a— 5cが開かれると吸入側に冷媒が逆流 して吸入側の冷媒量が多くなり易い。或いは、デフロスト運転および暖房時の油回収 運転では、冷房サイクルで冷媒が循環するため、室内機 2a— 2c側の温度が低下し ており、室内機 2a— 2c側の液冷媒の比率が高くなる。このため、上記のような状態で 切 構 11が冷房サイクル側状態力 暖房サイクル側状態に切り替わると、室内膨 張弁 5a— 5cの入口が液シールし、一定圧力以上の差圧が付くと冷媒が吐き出され る音が室内機 2a— 2cに液中伝搬する恐れがある。この場合、住宅用に用いられる空 気調和機においては居住者に不快感を与える恐れがある。  In the air conditioner 100, the defrost operation and the oil recovery operation during heating are performed by circulating the refrigerant in the cooling cycle. When such a defrosting operation or an oil recovery operation during heating is performed, the pressure on the receiver 16 side becomes high. Therefore, when the heating operation is restarted in this state, the indoor expansion valves 5a-5c are opened. As a result, the refrigerant flows back to the suction side and the amount of refrigerant on the suction side tends to increase. Alternatively, in the defrosting operation and the oil recovery operation during heating, the refrigerant circulates in the cooling cycle, so the temperature on the indoor unit 2a-2c side decreases, and the ratio of liquid refrigerant on the indoor unit 2a-2c side increases. . Therefore, when the mechanism 11 is switched to the cooling cycle side state force heating cycle side state in the above state, the inlets of the indoor expansion valves 5a-5c are liquid-sealed, and if a differential pressure exceeding a certain pressure is applied, There is a risk that the sound from the air will propagate to the indoor units 2a-2c in the liquid. In this case, the air conditioner used for residential use may be uncomfortable for residents.
[0042] しかし、この空気調和機 100では、デフロスト運転制御および暖房時の油回収運転 制御の終了後にポンプダウン運転制御が行われ、冷媒回路の冷媒がレシーバー 16 に回収される。このため、起動時の吸入側の冷媒量が低減され、冷媒音の発生を抑 えることができる。 However, in this air conditioner 100, the pump down operation control is performed after completion of the defrost operation control and the oil recovery operation control during heating, and the refrigerant in the refrigerant circuit is recovered by the receiver 16. For this reason, the amount of refrigerant on the suction side at the time of startup is reduced, and the generation of refrigerant noise can be suppressed.
また、この空気調和機 100では、デフロスト運転制御および暖房時の油回収運転 制御の終了後のポンプダウン運転制御が行われた場合も、通常暖房運転制御に移 行する前に冷媒回収制御が行われる。このため、切 構 11が冷房サイクル側から 暖房サイクル側へ確実に切り替わるまで室内膨張弁 5a— 5cが開かれず、冷媒の逆 流をより確実に抑えることができる。これにより、冷媒音の発生を抑えることができる。 さらに、低温の液冷媒量が少なくなるため、暖房運転起動時の冷媒温度上昇をより 早く行うことができる。 Also, in this air conditioner 100, when the pump down operation control is performed after the defrost operation control and the oil recovery operation control during heating are performed, the refrigerant recovery control is performed before the transition to the normal heating operation control. Is called. Therefore, mechanism 11 is The indoor expansion valves 5a-5c are not opened until the switching to the heating cycle side is ensured, and the refrigerant backflow can be more reliably suppressed. Thereby, generation | occurrence | production of a refrigerant | coolant sound can be suppressed. Furthermore, since the amount of low-temperature liquid refrigerant is reduced, the refrigerant temperature can be increased more quickly when the heating operation is started.
[0043] (3) [0043] (3)
この空気調和機 100では、レシーバー 16にお 、て冷媒を一時的に溜めることが可 能であると共に、上記のような冷媒過多の場合に生じ易 、冷媒音の発生を抑えること ができる。このため、冷媒を溜めるものとして一般的に用いられているアキュムレータ 一を省略することができる。従って、部品点数が削減されることにより製造コストを低 減することができる。  In this air conditioner 100, it is possible to temporarily store the refrigerant in the receiver 16, and it is easy to occur when the refrigerant is excessive as described above, and the generation of refrigerant noise can be suppressed. For this reason, an accumulator generally used for storing the refrigerant can be omitted. Therefore, the manufacturing cost can be reduced by reducing the number of parts.
<他の実施形態 >  <Other embodiments>
(1)  (1)
1つの室外機 1に接続される室内機 2a— 2cの数は上記のものに限られず 1つ以上 の室内機が接続されればよいが、冷媒音の問題は、冷媒が冷媒回路において過剰 となって!/、る状態にぉ 、て生じ易!、ものであるため、本発明は上記のように複数の室 内機 2a— 2cを備えるマルチ型空気調和機にぉ 、て特に有効である。  The number of indoor units 2a-2c connected to one outdoor unit 1 is not limited to the above, but one or more indoor units may be connected. However, the problem of refrigerant noise is that the refrigerant is excessive in the refrigerant circuit. Therefore, the present invention is particularly effective for a multi-type air conditioner including a plurality of indoor units 2a-2c as described above. .
[0044] (2) [0044] (2)
上記の実施形態では、冷媒回路に過冷却バイパス回路 19、均圧回路 21およびホ ットガスバイノ ス回路 13が設けられているが、冷媒音抑制のために上記制御を行う観 点からは、必ずしも必要なものではない。  In the above embodiment, the refrigerant circuit is provided with the supercooling bypass circuit 19, the pressure equalization circuit 21, and the hot gas binos circuit 13, but this is not always necessary from the viewpoint of performing the above control to suppress the refrigerant noise. It is not a thing.
また、分岐ユニット BP1が備えられず室内膨張弁 5a— 5cをそれぞれ内蔵した室内 機 2a— 2cが直接的に室外機 1に接続されてもよい。  Further, the indoor units 2a-2c each including the indoor expansion valves 5a-5c without the branch unit BP1 may be directly connected to the outdoor unit 1.
さらに、ガス抜き回路 20の出口は過冷却バイパス回路 19に接続されるのではなぐ 圧縮機 10の吸入管 23に接続されてもよい。  Further, the outlet of the gas vent circuit 20 may be connected to the suction pipe 23 of the compressor 10 instead of being connected to the supercooling bypass circuit 19.
(3)  (3)
上記の実施形態では、冷媒回収制御から通常暖房運転制御に移行する条件が、 切 構 11の最低動作圧力 bによって判断されているが、切 構 11が冷房サイク ル側状態から暖房サイクル側状態に確実に切り替わっていると見なせる条件であれ ば、切浦構 11の最低動作圧力 b以外の圧力値によって判断されてもよい。例えば 、切換機構 11の最低動作圧力 b以上の圧力値が考慮されてもょ 、。 In the above embodiment, the condition for shifting from the refrigerant recovery control to the normal heating operation control is determined by the minimum operating pressure b of the mechanism 11, but the mechanism 11 is changed from the cooling cycle side state to the heating cycle side state. Even if the conditions can be considered to have switched reliably For example, it may be determined based on a pressure value other than the minimum operating pressure b of the Kiriura structure 11. For example, a pressure value above the minimum operating pressure b of the switching mechanism 11 may be considered.
[0045] (4) [0045] (4)
上記の冷媒回収制御は、ポンプダウン運転制御によってレシーバー 16と室内膨張 弁 5a— 5cとの間に滞留した冷媒をレシーバー 16に回収するという観点からは、ボン プダウン運転制御が行われた後の暖房運転開始時のみに行われればよ 、が、暖房 運転開始時に常に行われてもよい。  From the viewpoint of collecting the refrigerant that has accumulated between the receiver 16 and the indoor expansion valves 5a to 5c in the receiver 16 by the pump-down operation control, the refrigerant recovery control described above is performed after the pump-down operation control is performed. Although it may be performed only at the start of operation, it may always be performed at the start of heating operation.
(5)  (Five)
上記の実施形態では、デフロスト運転制御から通常暖房運転制御への移行時、お よび、油回収運転制御力 通常暖房運転制御への移行時にポンプダウン運転が行 われている力 冷媒の逆流による冷媒音の発生を抑える観点からは、デフロスト運転 制御および油回収運転以外の冷房サイクルによる運転力 通常暖房運転制御への 移行時に行われてもよい。また、通常暖房運転制御以外の暖房サイクルによる運転 への移行時にポンプダウン運転が行われてもよい。  In the above-described embodiment, the pump down operation is performed at the time of transition from the defrost operation control to the normal heating operation control and at the time of transition to the oil recovery operation control force normal heating operation control. From the standpoint of reducing the occurrence of heat generation, it may be performed at the time of transition to operating power normal heating operation control by a cooling cycle other than defrost operation control and oil recovery operation. Further, the pump-down operation may be performed at the time of shifting to the operation by the heating cycle other than the normal heating operation control.
[0046] (6) [0046] (6)
上記のデフロスト運転制御では、室外送風機 27および室内送風機 4a— 4cは完全 に停止するのではなく、低風量で作動して!/、てもよ!/、。  In the above defrost operation control, the outdoor blower 27 and the indoor blowers 4a to 4c do not stop completely, but operate with a low air flow!
(7)  (7)
上記のデフロスト運転制御に関して、通常暖房運転制御、デフロスト運転制御、ポ ンプダウン運転制御、冷媒回収制御、通常暖房運転制御が順に連続的に行われて ちょい。  Regarding the above defrost operation control, the normal heating operation control, the defrost operation control, the pump down operation control, the refrigerant recovery control, and the normal heating operation control may be sequentially performed in order.
また、上記の油回収運転制御に関しても同様に、通常暖房運転制御、油回収運転 制御、ポンプダウン運転制御、冷媒回収制御、通常暖房運転制御が順に連続的に 行われてもよい。  Similarly for the oil recovery operation control described above, the normal heating operation control, the oil recovery operation control, the pump down operation control, the refrigerant recovery control, and the normal heating operation control may be performed successively in this order.
産業上の利用可能性  Industrial applicability
[0047] 本発明は、冷房サイクルによる運転から暖房サイクルによる運転に切り換えられる 際の冷媒音を抑えることができる効果を有し、空気調和機として有用である。 [0047] The present invention is effective as an air conditioner because it has the effect of suppressing refrigerant noise when switching from operation by a cooling cycle to operation by a heating cycle.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機(10)と室外熱交 (14)と第 1膨張弁 (5a)と第 1室内熱交 (3a)とを 含む冷媒回路を備える空気調和機(100)であって、  [1] An air conditioner (100) including a refrigerant circuit including a compressor (10), an outdoor heat exchanger (14), a first expansion valve (5a), and a first indoor heat exchanger (3a),
冷媒の循環方向を切り換えて冷房サイクルと暖房サイクルとを切り換える切 «構( 11)と、  A switch (11) that switches between the cooling cycle and the heating cycle by switching the refrigerant circulation direction;
前記冷房サイクルによる第 1運転制御力 前記暖房サイクルによる第 2運転制御へ と切り替わる場合に、前記第 1膨張弁 (5a)を閉じ且つ前記切換機構 (11)が前記冷 房サイクル側の状態で前記圧縮機(10)を駆動させるポンプダウン運転制御を行った 後に前記第 1膨張弁 (5a)を開 、て前記第 2運転制御を開始する制御部 (60)と、 を備える空気調和機(100)。  When the first operation control force by the cooling cycle is switched to the second operation control by the heating cycle, the first expansion valve (5a) is closed and the switching mechanism (11) is in the state on the cooling cycle side. A control unit (60) that opens the first expansion valve (5a) after the pump down operation control for driving the compressor (10) and starts the second operation control, and an air conditioner (100 ).
[2] 前記圧縮機(10)の吐出側の圧力を検知する吐出側圧力センサ (41)と、 [2] A discharge-side pressure sensor (41) for detecting a pressure on the discharge side of the compressor (10),
前記圧縮機(10)の吸入側の圧力を検知する吸入側圧力センサ (40)と、 をさらに備え、  A suction side pressure sensor (40) for detecting the pressure on the suction side of the compressor (10), and
前記切換機構(11)は四路切換弁であり、  The switching mechanism (11) is a four-way switching valve,
前記制御部(60)は、前記ポンプダウン運転制御を行った後に、前記吐出側圧力 センサ (41)が検知した吐出側圧力と前記吸入側圧力センサ (40)が検知した吸入側 圧力との差が前記四路切換弁の最低作動圧力に達した後に前記第 1膨張弁 (5a)を 開ぐ  The control unit (60), after performing the pump down operation control, difference between the discharge side pressure detected by the discharge side pressure sensor (41) and the suction side pressure detected by the suction side pressure sensor (40). Opens the first expansion valve (5a) after reaching the minimum operating pressure of the four-way selector valve
請求項 1に記載の空気調和機( 100)。  The air conditioner (100) according to claim 1.
[3] 前記室外熱交 (14)を通る空気流を生成する室外送風機 (27)をさらに備え、 前記第 1運転制御は、前記室外送風機 (27)を停止させ又は低風量で駆動させ、 且つ、前記冷房サイクルにて前記冷媒を循環させるデフロスト運転制御である、 請求項 1または 2の記載の空気調和機(100)。 [3] The outdoor fan (27) that generates an air flow passing through the outdoor heat exchanger (14) is further provided, and the first operation control stops the outdoor fan (27) or drives it with a low air volume, and The air conditioner (100) according to claim 1 or 2, wherein the air conditioner (100) is defrost operation control for circulating the refrigerant in the cooling cycle.
[4] 前記圧縮機(10)の吐出側に設けられ前記冷媒中の油を分離する油分離器 (12) と、 [4] An oil separator (12) provided on the discharge side of the compressor (10) for separating oil in the refrigerant;
前記油分離器(12)と前記圧縮機(10)の吸入側とを接続する油回収回路(13)と、 前記油回収回路(13)上に設けられ前記油回収回路(13)を開閉する油回収回路 開閉部(25)と、 をさらに備え、 An oil recovery circuit (13) connecting the oil separator (12) and the suction side of the compressor (10), and provided on the oil recovery circuit (13) to open and close the oil recovery circuit (13) Oil recovery circuit opening and closing part (25), Further comprising
前記第 1運転制御は、前記油回収回路開閉部 (25)を開状態とし且つ前記冷房サ イタルにて前記冷媒を循環させる油回収運転制御である、  The first operation control is oil recovery operation control in which the oil recovery circuit opening / closing part (25) is opened and the refrigerant is circulated in the cooling unit.
請求項 1または 2に記載の空気調和機(100)。  The air conditioner (100) according to claim 1 or 2.
[5] 前記冷房サイクルにおける前記第 1膨張弁(5a)の上流側であって前記室外熱交 換器(14)の下流側に位置し、液体状態の前記冷媒を貯留可能なレシーバー(16)と 前記レシーバー(16)から前記圧縮機(10)の吸入側に接続され前記レシーバー( 16)内の気体状態の前記冷媒を前記圧縮機(10)の吸入側へと送るガス抜き回路 (2 0)と、 [5] A receiver (16) located upstream of the first expansion valve (5a) in the cooling cycle and downstream of the outdoor heat exchanger (14) and capable of storing the liquid refrigerant. And a gas vent circuit (20) connected from the receiver (16) to the suction side of the compressor (10) and sending the refrigerant in the gas state in the receiver (16) to the suction side of the compressor (10). )When,
前記ガス抜き回路 (20)上に設けられ前記ガス抜き回路 (20)を開閉するガス抜き 回路開閉部 (30)と、  A degassing circuit opening / closing section (30) provided on the degassing circuit (20) for opening and closing the degassing circuit (20);
をさらに備え、  Further comprising
前記制御部(60)は、前記ポンプダウン運転制御後に、前記ガス抜き回路開閉部( 30)を開く冷媒回収制御を行った後に前記第 1膨張弁 (5a)を開いて前記第 2運転制 御を開始する、  After the pump down operation control, the control unit (60) performs refrigerant recovery control for opening the gas vent circuit opening / closing unit (30), and then opens the first expansion valve (5a) to perform the second operation control. To start the
請求項 1から 4の 、ずれかに記載の空気調和機(100)。  The air conditioner (100) according to any one of claims 1 to 4.
[6] 前記冷媒回路は、前記第 1膨張弁 (5a)および前記第 1室内熱交換器 (3a)に並列 に配置される第 2室内熱交 (3b)および第 2膨張弁 (5b)をさらに含む、 請求項 1から 5の 、ずれかに記載の空気調和機(100)。 [6] The refrigerant circuit includes a second indoor heat exchanger (3b) and a second expansion valve (5b) arranged in parallel with the first expansion valve (5a) and the first indoor heat exchanger (3a). The air conditioner (100) according to any one of claims 1 to 5, further comprising:
[7] 圧縮機(10)と、室外熱交換器 (14)と、第 1膨張弁 (5a)と、第 1室内熱交換器 (3a) と、冷媒の循環方向を切り換えて冷房サイクルと暖房サイクルとを切り換える切 構(11)とを含む冷媒回路を備える空気調和機(100)の制御方法であって、 前記冷房サイクルによる第 1運転制御が実行される第 1運転制御実行ステップ (S1[7] Compressor (10), outdoor heat exchanger (14), first expansion valve (5a), first indoor heat exchanger (3a), cooling cycle and heating by switching refrigerant circulation direction A control method of an air conditioner (100) including a refrigerant circuit including a mechanism (11) for switching between cycles, wherein a first operation control execution step (S1) in which the first operation control by the cooling cycle is executed
1, S21)と、 1, S21)
前記第 1運転制御実行ステップ (Sl l, S21)後に、前記第 1膨張弁 (5a)を閉じ且 つ前記切換機構(11)が前記冷房サイクル側の状態で前記圧縮機 (10)を駆動させ るポンプダウン運転制御が行われるポンプダウン運転ステップ(S 12, S22)と、 前記ポンプダウン運転ステップ (SI 2, S22)後に、前記第 1膨張弁(5a)を閉いて 前記暖房サイクルによる第 2運転制御が開始される第 2運転制御開始ステップ (S14 , S24)と、 After the first operation control execution step (Sll, S21), the first expansion valve (5a) is closed, and the switching mechanism (11) drives the compressor (10) in a state of the cooling cycle side. Pump down operation step (S 12, S22) in which pump down operation control is performed, A second operation control start step (S14, S24) in which, after the pump down operation step (SI 2, S22), the first expansion valve (5a) is closed and the second operation control by the heating cycle is started;
を備える空気調和機(100)の制御方法。 A method for controlling an air conditioner (100) comprising:
PCT/JP2006/307712 2005-04-18 2006-04-12 Air conditioner WO2006115053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005119544A JP4001149B2 (en) 2005-04-18 2005-04-18 Air conditioner
JP2005-119544 2005-04-18

Publications (1)

Publication Number Publication Date
WO2006115053A1 true WO2006115053A1 (en) 2006-11-02

Family

ID=37214677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307712 WO2006115053A1 (en) 2005-04-18 2006-04-12 Air conditioner

Country Status (2)

Country Link
JP (1) JP4001149B2 (en)
WO (1) WO2006115053A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103469A3 (en) * 2008-02-22 2010-03-18 Carrier Corporation Refrigerating system and method for operating the same
EP2314954A1 (en) * 2008-06-09 2011-04-27 Daikin Industries, Ltd. Freezer device
JP2013155964A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Air conditionning apparatus
EP2679933A1 (en) * 2011-02-22 2014-01-01 Hitachi, Ltd. Air conditioning and hot-water supplying system
EP2363654A3 (en) * 2010-02-24 2014-12-03 Mitsubishi Heavy Industries Air conditioner
EP2792959A4 (en) * 2011-12-12 2016-01-27 Mitsubishi Electric Corp Outdoor unit and air-conditioning device
CN107178932A (en) * 2016-03-09 2017-09-19 宁波奈兰环境系统有限公司 A kind of overlength distance conveys the high energy efficiency VRF Air Conditioning System of refrigerant
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN115038917A (en) * 2020-02-06 2022-09-09 Lg电子株式会社 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264134A (en) * 1992-03-23 1993-10-12 Daikin Ind Ltd Operation controller for refrigerating machine
JPH05322389A (en) * 1992-05-27 1993-12-07 Daikin Ind Ltd Air conditioner
JP2555779B2 (en) * 1990-12-28 1996-11-20 ダイキン工業株式会社 Operation control device for air conditioner
JPH11337234A (en) * 1998-05-29 1999-12-10 Matsushita Refrig Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555779B2 (en) * 1990-12-28 1996-11-20 ダイキン工業株式会社 Operation control device for air conditioner
JPH05264134A (en) * 1992-03-23 1993-10-12 Daikin Ind Ltd Operation controller for refrigerating machine
JPH05322389A (en) * 1992-05-27 1993-12-07 Daikin Ind Ltd Air conditioner
JPH11337234A (en) * 1998-05-29 1999-12-10 Matsushita Refrig Co Ltd Air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103469A3 (en) * 2008-02-22 2010-03-18 Carrier Corporation Refrigerating system and method for operating the same
EP2314954A1 (en) * 2008-06-09 2011-04-27 Daikin Industries, Ltd. Freezer device
EP2314954A4 (en) * 2008-06-09 2017-03-29 Daikin Industries, Ltd. Freezer device
EP2363654A3 (en) * 2010-02-24 2014-12-03 Mitsubishi Heavy Industries Air conditioner
EP2679933A1 (en) * 2011-02-22 2014-01-01 Hitachi, Ltd. Air conditioning and hot-water supplying system
EP2679933A4 (en) * 2011-02-22 2014-07-30 Hitachi Ltd Air conditioning and hot-water supplying system
EP2792959A4 (en) * 2011-12-12 2016-01-27 Mitsubishi Electric Corp Outdoor unit and air-conditioning device
US9759475B2 (en) 2011-12-12 2017-09-12 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus
EP2623899A3 (en) * 2012-01-31 2013-12-04 Fujitsu General Limited Air conditioning apparatus
AU2013200309B2 (en) * 2012-01-31 2015-11-12 Fujitsu General Limited Air conditioning apparatus
JP2013155964A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Air conditionning apparatus
US9739521B2 (en) 2012-01-31 2017-08-22 Fujitsu General Limited Air conditioning apparatus
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN107178932A (en) * 2016-03-09 2017-09-19 宁波奈兰环境系统有限公司 A kind of overlength distance conveys the high energy efficiency VRF Air Conditioning System of refrigerant
CN115038917A (en) * 2020-02-06 2022-09-09 Lg电子株式会社 Air conditioner

Also Published As

Publication number Publication date
JP4001149B2 (en) 2007-10-31
JP2006300374A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3864980B2 (en) Air conditioner
JP3925545B2 (en) Refrigeration equipment
JP4001149B2 (en) Air conditioner
WO2018185841A1 (en) Refrigeration cycle device
JP3941817B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
WO2006112322A1 (en) Air conditioner
WO2006112321A1 (en) Air conditioner
JP4966601B2 (en) Air conditioner
JP3750520B2 (en) Refrigeration equipment
JP2007232265A (en) Refrigeration unit
JP5458717B2 (en) Refrigeration equipment
JP5111142B2 (en) Air conditioner
JP2006194526A (en) Air conditioner
KR20120122704A (en) An air conditioner and a control method the same
JP5517891B2 (en) Air conditioner
JP5601890B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JP3835478B1 (en) Air conditioner
JP2013108729A (en) Air conditioner
JP2009264612A (en) Refrigerating device
JP2009204304A (en) Refrigeration air conditioner
JP5313467B2 (en) Air conditioning system and control method thereof
JP6339036B2 (en) heat pump
JP6105271B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731659

Country of ref document: EP

Kind code of ref document: A1