JPH05322389A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05322389A
JPH05322389A JP4134783A JP13478392A JPH05322389A JP H05322389 A JPH05322389 A JP H05322389A JP 4134783 A JP4134783 A JP 4134783A JP 13478392 A JP13478392 A JP 13478392A JP H05322389 A JPH05322389 A JP H05322389A
Authority
JP
Japan
Prior art keywords
pressure
heat exchanger
valve
heat source
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4134783A
Other languages
Japanese (ja)
Inventor
Takeo Ueno
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4134783A priority Critical patent/JPH05322389A/en
Publication of JPH05322389A publication Critical patent/JPH05322389A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the shortage of a defrosting capacity upon the reverse-cycle defrosting operation of an air conditioner under a condition that an outdoor temperature is low and shorten a time necessary for the defrosting operation. CONSTITUTION:A refrigerant circuit 9, capable of switching a cooling cycle into a heating cycle, is constituted by connecting a compressor 1, a heat source side heat exchanger 3, a motor expansion valve 5 and an utilizing side heat exchanger, 6. sequentially. A high pressure control valve HV, opened when a high-pressure side pressure is higher than a predetermined value only, is interposed in a liquid pipe 8b1 between the heat source side heat exchanger 3 and the motor expansion valve 5 and, further, a bypass passage 8c2, bypassing the high-pressure control valve HV upon the heating cycle through a check valve D4, is provided. According to this method, the high- pressure side pressure is increased during the reverse-cycle defrosting operation to secure defrosting capacity and shorten a time necessary for the defrosting operation. Further, the deterioration of the high pressure during cooling operation in a low outdoor temperature can also be prevented by the high-pressure control valve HV. The opening and/or closing can be controlled in accordance with the high-pressure side pressure by providing a solenoid opening and closing valve KV instead of the high- pressure control valve HV.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、逆サイクルによる除霜
運転をするように構成された空気調和装置に係り、特に
低外気条件下における除霜能力の確保対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner configured to perform defrosting operation in a reverse cycle, and more particularly to measures for ensuring defrosting ability under low outside air conditions.

【0002】[0002]

【従来の技術】従来より、例えば特開昭63−1543
4号公報に開示されるように、圧縮機、熱源側熱交換
器、減圧弁及び利用側熱交換器を順次接続し、冷凍サイ
クルを正逆切換え可能に構成された冷媒回路を備えた空
気調和装置において、暖房運転中に熱源側熱交換器の着
霜が生じ、除霜指令を受けると、冷凍サイクルを冷房サ
イクル側に切換えて、所定時間の間或いは熱源側熱交換
器温度が所定値以上に上昇するまでの間、吐出ガス冷媒
(ホットガス)を熱源側熱交換器に流通させることによ
り、熱源側熱交換器の着霜を融解し、その能力を回復さ
せるようにしたいわゆる逆サイクル除霜運転を行うもの
は公知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 63-1543.
As disclosed in Japanese Patent Publication No. 4, an air conditioner equipped with a refrigerant circuit configured such that a compressor, a heat source side heat exchanger, a pressure reducing valve and a utilization side heat exchanger are sequentially connected, and a refrigeration cycle can be switched between forward and reverse directions. In the device, when the heat source side heat exchanger is frosted during heating operation and receives a defrosting command, the refrigeration cycle is switched to the cooling cycle side, and the heat source side heat exchanger temperature is equal to or higher than a predetermined value for a predetermined time. The discharge gas refrigerant (hot gas) is circulated to the heat source side heat exchanger until the temperature rises to so that the frost on the heat source side heat exchanger is melted and its capacity is restored. The frost operation is a known technique.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記逆
サイクル除霜運転において、ホットガスを直接熱源側熱
交換器に導入する場合、下記のような問題があった。
However, in the above reverse cycle defrosting operation, when hot gas is directly introduced into the heat source side heat exchanger, there are the following problems.

【0004】すなわち、着霜を融解するための熱源とし
て使用できるのは、利用側熱交換器の熱容量(比熱に重
量と温度差とを乗じたもの)と、冷媒配管の熱容量と、
利用側熱交換器等に滞溜する液冷媒と、圧縮機の入力と
であって、室内に強い冷風を吹き出すことはできないの
で、利用側熱交換器の蒸発能力はほとんど除霜能力とし
て使用できない。しかるに、利用側熱交換器の熱容量、
冷媒配管の熱容量及び液冷媒の熱量は除霜運転の初期に
すぐに使い果たされてしまうので、結局、もっぱら圧縮
機の入力によってのみ除霜が行われることになる。
That is, what can be used as a heat source for melting frost is the heat capacity of the utilization side heat exchanger (specific heat multiplied by weight and temperature difference) and the heat capacity of the refrigerant pipe.
The liquid refrigerant that accumulates in the heat exchanger on the use side and the input of the compressor cannot blow strong cold air into the room, so the evaporation capacity of the heat exchanger on the use side can hardly be used as defrosting capacity. .. However, the heat capacity of the heat exchanger on the use side,
Since the heat capacity of the refrigerant pipes and the heat quantity of the liquid refrigerant are exhausted immediately in the initial stage of the defrosting operation, the defrosting is ultimately performed exclusively by the input of the compressor.

【0005】そのとき、図3のモリエル線図に示すよう
に、圧縮機の入力による除霜能力Qは、式 Q=Δi×
G(ただし、Δiはエンタルピ差であって冷凍効果(kg
/kg)、Gは冷媒循環量(kg/Hr )である)で表わされ
るが、寒冷地等の低外気条件下では、高圧側圧力が低下
するので、エンタルピ差が図中のΔi′まで低下し(図
中の破線部分参照)、その結果、除霜能力Qが低下する
ことになる。
At this time, as shown in the Mollier diagram of FIG. 3, the defrosting capacity Q by the input of the compressor is expressed by the following equation: Q = Δi ×
G (however, Δi is the difference in enthalpy and the refrigerating effect (kg
/ kg), G is the refrigerant circulation rate (kg / Hr)), but under low outside air conditions such as in cold regions, the high-pressure side pressure decreases, so the enthalpy difference decreases to Δi 'in the figure. However, as a result, the defrosting capability Q is reduced.

【0006】一方、このような除霜能力Qの低下を補う
ため、容量可変形のものでは圧縮機の容量を最大容量ま
で高め、冷媒循環量Gを最大限多くするようになされて
いるが、寒冷地で庫外に設置された熱源側熱交換器に積
雪があった場合などには、高圧側圧力の低下を打ち消す
には不十分となることが多く、また、利用側熱交換器側
の蒸発量がほとんどない状態で圧縮機の能力をあまりに
大きくすると、低圧が真空近くまで低下する虞れもあ
る。
On the other hand, in order to compensate for such a decrease in the defrosting capacity Q, the variable capacity type is designed to increase the capacity of the compressor to the maximum capacity and maximize the refrigerant circulation amount G. When there is snow on the heat source side heat exchanger installed outside the cold area, it is often insufficient to cancel the drop in the high pressure side pressure. If the capacity of the compressor is increased too much with almost no evaporation, the low pressure may drop to near vacuum.

【0007】そのため、除霜運転時間が長くなると空調
の快適性が損なわれる一方、一定時間で除霜を終了させ
るガードタイマを設けると残留デフロストを生じて暖房
復帰後の能力が確保できないという問題があった。
Therefore, if the defrosting operation time is long, the comfort of the air conditioning is impaired, while if a guard timer is provided for ending the defrosting in a certain time, residual defrost will occur and the capacity after heating recovery cannot be secured. there were.

【0008】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、利用側熱交換器の蒸発能力や圧縮機
の能力とは別に、逆サイクル除霜運転中における高圧側
圧力を高く維持する手段を講ずることにより、低外気条
件下でも、空調の快適性の悪化や残留デフロストの発生
を招くことなく、除霜運転時間の短縮を図ることにあ
る。
The present invention has been made in view of the above problems, and an object thereof is to control the pressure on the high pressure side during the reverse cycle defrosting operation independently of the evaporation capacity of the heat exchanger on the use side and the capacity of the compressor. By taking measures to maintain high defrosting time, the defrosting operation time can be shortened without deteriorating the comfort of air conditioning and causing residual defrost even under low outside air conditions.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、圧縮機(1)、熱源側熱交換器(3)、減圧弁
(5)及び利用側熱交換器(6)を順次接続し、かつ冷
凍サイクルが正逆切換え可能に構成された冷媒回路
(9)を備えた空気調和装置を前提とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the means taken by the invention of claim 1 is, as shown in FIG. 1, a compressor (1), a heat source side heat exchanger (3), and a decompressor. It is premised on an air conditioner including a refrigerant circuit (9) in which a valve (5) and a use side heat exchanger (6) are sequentially connected and a refrigeration cycle is configured to be switchable between forward and reverse directions.

【0010】そして、空気調和装置に、上記熱源側熱交
換器(3)と減圧弁(5)との間の液管に介設され、冷
房サイクルにおける高圧側圧力が所定値以上になると開
作動する高圧制御弁(HV)と、上記熱源側熱交換器
(3)と減圧弁(5)との間において上記高圧制御弁
(HV)をバイパスするバイパス路(8c2)と、該バイ
パス路(8c2)に介設され、上記熱源側熱交換器(3)
側からの冷媒の流通を阻止する逆止機構(D4)とを設
ける構成としたものである。
In the air conditioner, a liquid pipe is provided between the heat source side heat exchanger (3) and the pressure reducing valve (5), and opens when the high pressure side pressure in the cooling cycle exceeds a predetermined value. High pressure control valve (HV), a bypass passage (8c2) bypassing the high pressure control valve (HV) between the heat source side heat exchanger (3) and the pressure reducing valve (5), and the bypass passage (8c2). ), The heat source side heat exchanger (3)
The non-return mechanism (D4) for blocking the flow of the refrigerant from the side is provided.

【0011】請求項2の発明の講じた手段は、上記請求
項1の発明と同様の空気調和装置を前提とし、図2に示
すように、上記熱源側熱交換器(3)と減圧弁(5)と
の間の液管(8b1)に介設され、通路を開閉する電磁開
閉弁(KV)と、冷媒回路(9)の高圧側圧力を検出す
る高圧検出手段(HP)と、空気調和装置の暖房運転中
に熱源側熱交換器(3)の除霜指令を受けたとき、冷媒
回路(9)を冷房サイクルに切換え、上記電磁開閉弁
(KV)を閉じた後、上記高圧検出手段(HP)で検出
される高圧側圧力が所定値以上になると上記電磁開閉弁
(KV)を開くよう制御する除霜運転制御手段(10)
とを設ける構成としたものである。
The means of the invention of claim 2 is based on the air conditioner similar to that of the invention of claim 1, and as shown in FIG. 2, the heat source side heat exchanger (3) and the pressure reducing valve ( 5) An electromagnetic opening / closing valve (KV) provided in a liquid pipe (8b1) between the opening and the bottom, a high pressure detecting means (HP) for detecting the high pressure side pressure of the refrigerant circuit (9), and an air conditioner. When a defrosting command of the heat source side heat exchanger (3) is received during the heating operation of the device, the refrigerant circuit (9) is switched to a cooling cycle, the electromagnetic opening / closing valve (KV) is closed, and then the high pressure detecting means is provided. Defrosting operation control means (10) for controlling the electromagnetic on-off valve (KV) to open when the high-pressure side pressure detected by (HP) exceeds a predetermined value.
And is provided.

【0012】請求項3の発明の講じた手段は、上記請求
項1又は2の発明において、圧縮機(1)をスクロール
型圧縮機又はスクリュー形圧縮機で構成したものであ
る。
According to a third aspect of the present invention, in the first or second aspect of the invention, the compressor (1) is a scroll type compressor or a screw type compressor.

【0013】[0013]

【作用】以上の構成により、請求項1の発明では、暖房
運転中の逆サイクル除霜運転時、高圧側圧力が所定値以
上になるまでは、高圧制御弁(HV)が閉じられている
ので、液冷媒の流通が阻止され、熱源側熱交換器(3)
に凝縮された液冷媒が貯溜される。そして、液冷媒の貯
溜によって熱源側熱交換器(3)の凝縮可能面積が減小
していくので、その分冷媒の外気温度との温度差が上昇
し、冷媒の凝縮温度つまり高圧側圧力が上昇する。一
方、高圧制御弁(HV)をバイパスするバイパス路(8
c2)が逆止機構(D4)とともに設けられているので、
暖房運転において、高圧制御弁(HV)により冷媒の流
れが阻害されることはない。
With the above construction, in the invention of claim 1, during the reverse cycle defrosting operation during the heating operation, the high pressure control valve (HV) is closed until the high pressure side pressure becomes equal to or higher than a predetermined value. The flow of the liquid refrigerant is blocked, and the heat source side heat exchanger (3)
The liquid refrigerant condensed in is stored. Then, since the condensable area of the heat source side heat exchanger (3) is reduced by the storage of the liquid refrigerant, the temperature difference from the outside air temperature of the refrigerant is increased accordingly, and the condensation temperature of the refrigerant, that is, the high pressure side pressure is increased. To rise. On the other hand, a bypass line (8) that bypasses the high pressure control valve (HV)
c2) is provided with the non-return mechanism (D4),
In the heating operation, the flow of the refrigerant is not obstructed by the high pressure control valve (HV).

【0014】したがって、この高圧側圧力の上昇によ
り、除霜能力が十分高く確保され、逆サイクル除霜運転
における除霜時間が短縮されるとともに、冷房運転時に
おいても、高圧制御弁(HV)の高圧維持作用により、
低外気条件下における高圧低下防止のための高圧制御が
行われる。
Therefore, due to the increase in the pressure on the high pressure side, the defrosting ability is ensured to be sufficiently high, the defrosting time in the reverse cycle defrosting operation is shortened, and the high pressure control valve (HV) is also operated during the cooling operation. By maintaining high pressure,
High pressure control is performed to prevent a high pressure drop under low outside air conditions.

【0015】請求項2の発明では、暖房運転中の除霜運
転時に、除霜運転制御手段(10)により、逆サイクル
除霜運転中に、高圧側圧力が所定値以上になるまで電磁
開閉弁(KV)が閉じられるので、熱源側熱交換器
(3)に液冷媒が貯溜され、凝縮可能面積の減小で高圧
側圧力が所定値以上になると電磁開閉弁(KV)が開か
れるので、上記請求項1の発明と同様の作用となり、特
に、電磁開閉弁(KV)の開閉により高圧制御弁(H
V)に比べ確実な高圧上昇作用が得られる。
According to the second aspect of the present invention, during the defrosting operation during the heating operation, the defrosting operation control means (10) causes the solenoid opening / closing valve until the high pressure side pressure becomes equal to or higher than a predetermined value during the reverse cycle defrosting operation. Since (KV) is closed, the liquid refrigerant is stored in the heat source side heat exchanger (3), and when the high pressure side pressure becomes equal to or higher than a predetermined value due to the reduction of the condensable area, the electromagnetic on-off valve (KV) is opened. The same operation as the invention of claim 1 is provided, and in particular, the high-pressure control valve (H
As compared with V), a reliable high pressure increasing action can be obtained.

【0016】請求項3の発明では、スクロール形圧縮機
又はスクリュー形圧縮機の場合、往復形圧縮機等に比
べ、体積効率が大幅に改善されているので、高圧側圧力
が上昇した分だけ、そのまま入力として融解熱となる。
したがって、高圧制御弁(HV)の高圧制御又は電磁開
閉弁(KV)の開閉制御による高圧側圧力上昇作用が顕
著となる。
According to the third aspect of the present invention, in the case of the scroll type compressor or the screw type compressor, the volumetric efficiency is greatly improved as compared with the reciprocating type compressor and the like. It becomes heat of fusion as it is as input.
Therefore, the high pressure side pressure increasing action by the high pressure control of the high pressure control valve (HV) or the opening / closing control of the electromagnetic on-off valve (KV) becomes remarkable.

【0017】[0017]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は請求項1の発明に係る第1実施例の
空気調和装置の冷媒配管系統を示し、スクロール形圧縮
機(1)と、冷房運転時には図中実線のごとく、暖房運
転時には図中破線のごとく切換わる四路切換弁(2)
と、冷房運転時には凝縮器として、暖房運転時には蒸発
器として機能する熱源側熱交換器である室外熱交換器
(3)と、液冷媒を貯溜するためのレシーバ(4)と、
冷媒を減圧するための電動膨張弁(5)と、冷房運転時
には蒸発器として、暖房運転時には凝縮器として機能す
る利用側熱交換器である室内熱交換器(6)とが配置さ
れていて、上記各機器は冷媒配管(8)により順次接続
され、冷媒の循環により熱移動を生ぜしめるようにした
冷媒回路(9)が構成されている。
FIG. 1 shows a refrigerant piping system of an air conditioner of a first embodiment according to the invention of claim 1, which is a scroll type compressor (1) and a solid line in the figure during cooling operation, and a diagram in heating operation. Four-way switching valve (2) that switches as indicated by the middle broken line
An outdoor heat exchanger (3) which is a heat source side heat exchanger functioning as a condenser during cooling operation and as an evaporator during heating operation, and a receiver (4) for storing liquid refrigerant,
An electric expansion valve (5) for reducing the pressure of the refrigerant and an indoor heat exchanger (6), which is a use-side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation, are arranged. The above-mentioned devices are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) is configured so that heat is transferred by circulating the refrigerant.

【0019】また、上記冷媒回路(9)の液ラインに
は、レシーバ(4)上流側の点(P)及び電動膨張弁
(5)下流側の点(Q)と、室内熱交換器(6)に連通
する点(R)及び室外熱交換器(3)に連通する点
(S)との間を逆止弁等を介しブリッジ状に接続してな
る整流機構(20)が設けられている。該整流機構(2
0)において、上記点(P)と(S)との間は、室外熱
交換器(3)側からレシ―バ(4)への冷媒の流通のみ
を許容する逆止機能を有し、かつ室外熱交換器(3)側
の圧力が所定値(例えば10kg/cm2 程度の圧力値)以
上のときに開く高圧制御弁(HV)を介して第1流入管
(8b1)により、上記点(P)と(R)との間は、室内
熱交換器(6)側からレシ―バ(4)への冷媒の流通の
みを許容する第2逆止弁(D2)を介して第2流入管
(8b2)により、それぞれ接続されている一方、上記点
(Q)と(R)との間は電動膨張弁(5)側から室内熱
交換器(6)側への冷媒の流通のみを許容する第3逆止
弁(D3)を介して第1流出管(8c1)により、上記点
(Q)と上記点(S)との間は電動膨張弁(5)側から
室外熱交換器(3)側への冷媒の流通のみを許容する第
4逆止弁(D4)を介して第2流出管(8c2)により、
それぞれ接続されている。すなわち、冷暖房サイクルい
ずれにおいても、冷媒が凝縮器(3又は6)−レシーバ
(4)−電動膨張弁(5)−蒸発器(6又は3)の順に
流れるよう整流している。
In the liquid line of the refrigerant circuit (9), the receiver (4) upstream point (P), the electric expansion valve (5) downstream point (Q), and the indoor heat exchanger (6). ) And a point (S) communicating with the outdoor heat exchanger (3) are connected in a bridge shape via a check valve or the like to provide a rectifying mechanism (20). .. The rectifying mechanism (2
In 0), between the points (P) and (S), there is a check function that allows only the flow of the refrigerant from the outdoor heat exchanger (3) side to the receiver (4), and By the first inflow pipe (8b1) through the high pressure control valve (HV) opened when the pressure on the outdoor heat exchanger (3) side is a predetermined value (for example, a pressure value of about 10 kg / cm 2 ) or more, The second inflow pipe is provided between P) and (R) via the second check valve (D2) that allows only the refrigerant to flow from the indoor heat exchanger (6) side to the receiver (4). While connected by (8b2), only the refrigerant is allowed to flow from the electric expansion valve (5) side to the indoor heat exchanger (6) side between the points (Q) and (R). By the first outflow pipe (8c1) through the third check valve (D3), between the point (Q) and the point (S), from the electric expansion valve (5) side to the outdoor heat exchanger (3). To the side The second outlet pipe via a fourth check valve (D4) that allows only the flow of refrigerant (8c2),
Each is connected. That is, in any of the cooling and heating cycles, the refrigerant is rectified so that the refrigerant flows in the order of the condenser (3 or 6) -receiver (4) -electric expansion valve (5) -evaporator (6 or 3).

【0020】また、レシーバ(4)の上部から電動膨張
弁(5)−点(Q)間の液管にガス冷媒をバイパスする
ためのガス抜き通路(4a)が開閉弁(SV)を介して
設けられていて、レシーバ(4)に液冷媒を溜め込む必
要のあるときなど、開閉弁(SV)を開くことにより、
レシーバ(4)内の冷媒圧力を低下させて、レシーバ
(4)の冷媒貯溜能力を維持するようになされている。
Further, a gas vent passage (4a) for bypassing the gas refrigerant from the upper portion of the receiver (4) to the liquid pipe between the electric expansion valve (5) and the point (Q) is provided via an on-off valve (SV). By opening the open / close valve (SV) when it is necessary to store liquid refrigerant in the receiver (4),
The refrigerant pressure in the receiver (4) is reduced to maintain the refrigerant storage capacity of the receiver (4).

【0021】さらに、空気調和装置にはセンサ類が設け
られていて、(Th2)は吐出管に配置され、吐出管温度
を検出する吐出管センサ、(Tha)は室外熱交換器
(3)の空気吸込口に配置され、外気温度を検出する室
外吸込センサ、(Thc)は室外熱交換器(3)に配置さ
れ、冷房運転時には凝縮温度となり暖房運転時には蒸発
温度となる外熱交温度Tcを検出する外熱交センサ、
(Thr)は室内熱交換器(6)の空気吸込口に配置さ
れ、室内温度を検出する室内吸込センサ、(The)は室
内熱交換器(6)に配置され、冷房運転時には蒸発温度
となり暖房運転時には凝縮温度となる内熱交温度を検出
する内熱交センサ、(HPS)は高圧側圧力の過上昇によ
りオンとなって保護装置を作動させる高圧圧力スイッ
チ、(LPS)は低圧側圧力の過低下によりオンとなって
保護装置を作動させる低圧圧力スイッチである。上記各
センサ類の信号は、空気調和装置の運転を制御するコン
トローラ(図示せず)に入力可能に接続されており、該
コントローラにより、上記各センサ類の信号に応じて、
空気調和装置の運転を制御するようになされている。
Further, the air conditioner is provided with sensors, (Th2) is disposed in the discharge pipe, a discharge pipe sensor for detecting the temperature of the discharge pipe, and (Tha) of the outdoor heat exchanger (3). The outdoor suction sensor (Thc), which is arranged at the air inlet and detects the outside air temperature, (Thc) is arranged in the outdoor heat exchanger (3). The outside heat exchange temperature Tc becomes the condensation temperature during the cooling operation and the evaporation temperature during the heating operation. External heat exchange sensor to detect,
(Thr) is arranged at the air inlet of the indoor heat exchanger (6), an indoor suction sensor for detecting the indoor temperature, (The) is arranged at the indoor heat exchanger (6), and the temperature becomes the evaporation temperature during cooling operation and heating is performed. An internal heat exchange sensor that detects the internal heat exchange temperature that is the condensation temperature during operation, (HPS) is a high pressure switch that activates the protective device by turning on the high pressure side excessively, and (LPS) is a low pressure side pressure switch. It is a low pressure switch that activates the protective device when it is turned on by excessive pressure. The signals from the sensors are connected to a controller (not shown) that controls the operation of the air conditioner so that the signals can be input by the controller according to the signals from the sensors.
It is designed to control the operation of the air conditioner.

【0022】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流入管(8b1)から流入し、高圧制御弁(HV)で冷
媒の流通が阻止されるが、液ラインの高圧側圧力が所定
値以上になると、高圧制御弁(HV)が開いて液冷媒が
流通し、レシ―バ(4)に貯溜され、電動膨張弁(5)
で減圧された後、第1流出管(8c1)を経て室内熱交換
器(6)で蒸発して圧縮機(1)に戻る循環となる一方
(図中の実線矢印参照)、暖房運転時には、室内熱交換
器(6)で凝縮液化された液冷媒が第2流入管(8b2)
から流入し、第2逆止弁(D2)を経てレシ―バ(4)
に貯溜され、電動膨張弁(5)で減圧された後、第2流
出管(8c2)を経て室外熱交換器(3)で蒸発して圧縮
機(1)に戻る循環となる(図中の破線矢印参照)。
In the refrigerant circuit (9), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow pipe (8b1), and the high pressure control valve (HV) converts the refrigerant. Although the flow is blocked, when the pressure on the high-pressure side of the liquid line exceeds a predetermined value, the high-pressure control valve (HV) opens and the liquid refrigerant flows, is stored in the receiver (4) and is stored in the electric expansion valve (5). )
After being decompressed by, the circulation is returned to the compressor (1) by evaporating in the indoor heat exchanger (6) via the first outflow pipe (8c1) (see the solid line arrow in the figure), while at the time of heating operation, The liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) is the second inflow pipe (8b2).
Flows in through the second check valve (D2) and the receiver (4).
After being decompressed by the electric expansion valve (5), it is circulated through the second outflow pipe (8c2) to be evaporated in the outdoor heat exchanger (3) and returned to the compressor (1) (in the figure, (See dashed arrow).

【0023】ここで、暖房運転中における除霜運転につ
いて説明する。
Here, the defrosting operation during the heating operation will be described.

【0024】暖房運転中、蒸発器として機能する室外熱
交換器(3)が着霜すると、外熱交センサ(Thc)によ
りその着霜状態が検知され、除霜指令が出力される。そ
して、四路切換弁(2)が冷房サイクルに切換えられ、
吐出ガスが熱源側熱交換器(3)に導入される。そのと
き、熱源側熱交換器(3)−レシーバ(4)間に介設さ
れた高圧制御弁(HV)は、高圧側圧力が低いときは閉
じており、液冷媒のレシーバ(4)側への流通が阻止さ
れる。そして、その間熱源側熱交換器(3)の伝熱管内
がほとんど液冷媒で満たされ、凝縮可能面積の減小によ
り高圧側圧力が所定値(例えば10kg/cm2 )以上に上
昇すると、高圧制御弁(HV)が開き、液冷媒がレシー
バ(4)側に流通する。この高圧側圧力の保持作用によ
り、後述のごとく、熱源側熱交換器(3)の着霜の融解
熱を確保し、除霜運転時間を短縮するようになされてい
る。
When the outdoor heat exchanger (3) functioning as an evaporator is frosted during the heating operation, the frosted state is detected by the outside heat exchange sensor (Thc), and the defrosting command is output. Then, the four-way switching valve (2) is switched to the cooling cycle,
The discharged gas is introduced into the heat source side heat exchanger (3). At that time, the high pressure control valve (HV) provided between the heat source side heat exchanger (3) and the receiver (4) is closed when the high pressure side pressure is low, and is directed to the liquid refrigerant receiver (4) side. Distribution is blocked. During that time, when the heat transfer tube of the heat source side heat exchanger (3) is almost filled with the liquid refrigerant and the high pressure side pressure rises to a predetermined value (for example, 10 kg / cm 2 ) or more due to the reduction of the condensable area, the high pressure control is performed. The valve (HV) opens and the liquid refrigerant flows to the receiver (4) side. Due to the action of holding the high-pressure side pressure, as will be described later, heat of fusion for frost formation of the heat source side heat exchanger (3) is secured, and the defrosting operation time is shortened.

【0025】なお、上記第1実施例において、第2流出
管(8c2)は請求項1の発明にいうバイパス路として機
能し、第4逆止弁(D4)は請求項1の発明にいう逆止
機構として機能するものである。
In the first embodiment, the second outflow pipe (8c2) functions as the bypass passage according to the invention of claim 1, and the fourth check valve (D4) is the reverse passage according to the invention of claim 1. It functions as a stop mechanism.

【0026】すなわち、上記第1実施例では、暖房運転
中の逆サイクル除霜運転時、高圧側圧力が所定値(上記
実施例では10kg/cm2 )以上になるまでは、高圧制御
弁(HV)が閉じられているので、液冷媒のレシーバ
(4)側への流通が阻止され、熱源側熱交換器(3)に
凝縮された液冷媒が貯溜される。そのとき、熱貫流率を
K(kcal/m2 ・℃・Hr)、熱源側熱交換器(3)の伝
熱管の凝縮可能面積をF(m2 )、冷媒の凝縮温度と外
気温度との温度差をΔtm とすると、圧縮機(1)の入
力Qは下記式Q=Δi・G=K・F・Δtmで表わされ
る値となるが、冷媒の流通の阻止により熱源側熱交換器
(3)に液冷媒が貯溜されていくことで、凝縮可能面積
Fが減小していくので、圧縮機(1)の入力Qが一定で
あるとすると、その分冷媒の温度差Δtが上昇し、冷媒
の凝縮温度つまり高圧側圧力が上昇することになる。
That is, in the first embodiment, during the reverse cycle defrosting operation during the heating operation, the high pressure control valve (HV) is maintained until the high pressure side pressure becomes equal to or higher than the predetermined value (10 kg / cm 2 in the above embodiment). ) Is closed, the flow of the liquid refrigerant to the receiver (4) side is blocked, and the condensed liquid refrigerant is stored in the heat source side heat exchanger (3). At that time, the heat transmission coefficient is K (kcal / m 2 · ° C · Hr), the condensable area of the heat transfer tube of the heat source side heat exchanger (3) is F (m 2 ), and the condensing temperature of the refrigerant and the outside air temperature are Assuming that the temperature difference is Δtm, the input Q of the compressor (1) becomes a value represented by the following formula Q = Δi · G = K · F · Δtm, but the heat source side heat exchanger (3 )), The condensable area F decreases as the liquid refrigerant is stored, so if the input Q of the compressor (1) is constant, the temperature difference Δt of the refrigerant increases accordingly, The condensing temperature of the refrigerant, that is, the high-pressure side pressure will increase.

【0027】したがって、この高圧側圧力の上昇によ
り、図4に示すモリエル線図において、冷凍サイクルが
破線部分から実線部分まで回復し、除霜能力Qを十分高
く確保することができる。
Therefore, in the Mollier diagram shown in FIG. 4, the refrigeration cycle recovers from the broken line portion to the solid line portion due to the increase in the high-pressure side pressure, and the defrosting capacity Q can be secured sufficiently high.

【0028】また、冷房運転時にも、高圧制御弁(H
V)の作用により、低外気条件下における高圧低下防止
のための高圧制御が行われる利点を有する。
Further, even during the cooling operation, the high pressure control valve (H
The action V) has the advantage that high pressure control is performed to prevent a high pressure drop under low outside air conditions.

【0029】なお、高圧制御弁(HV)をバイパスする
バイパス路(第2流出管(8c2))が設けられているの
で、暖房運転において、高圧制御弁(HV)により冷媒
の流れが阻害されることはない。ただし、上記第1実施
例では、整流機構(20)の中に第1,第2流入管(8
b1),(8b2)及び第1,第2流出管(8c1),(8c
2)を設け、さらに、3つの逆止弁(D2)〜(D4)
を配置したが、本発明はかかる実施例に限定されるもの
ではなく、例えば室内外に電動膨張弁を配置した場合に
は、レシーバと室外電動膨張弁との間に、1組の高圧制
御弁とそのバイパス路及び逆止弁とを設けることで、上
記第1実施例と同様の効果を得ることができる。
Since the bypass passage (second outflow pipe (8c2)) that bypasses the high pressure control valve (HV) is provided, the refrigerant flow is blocked by the high pressure control valve (HV) in the heating operation. There is no such thing. However, in the first embodiment, the first and second inflow pipes (8) are provided in the rectifying mechanism (20).
b1), (8b2) and the first and second outflow pipes (8c1), (8c
2) is provided, and three check valves (D2) to (D4) are further provided.
However, the present invention is not limited to such an embodiment. For example, when an electric expansion valve is arranged indoors or outdoors, a pair of high pressure control valves is provided between the receiver and the outdoor electric expansion valve. By providing the bypass passage and the check valve therefor, the same effect as that of the first embodiment can be obtained.

【0030】次に、請求項2の発明に係る第2実施例に
ついて説明する。
Next, a second embodiment according to the invention of claim 2 will be described.

【0031】図3は第2実施例に係る空気調和装置の冷
媒配管系統を示し、本実施例では、整流機構(20)に
おいて、上記第1実施例における高圧制御弁(HV)の
代りに、第1流入管(8b1)には電磁開閉弁(KV)が
介設され、さらに、吐出管には、高圧側圧力を検出する
高圧検出手段としての高圧センサ(HP)が配設されて
いる。そして、コントローラ(10)により、冷房運転
時又は暖房運転中における逆サイクル除霜運転時に、高
圧側圧力が所定値(例えば10kg/cm2 )以上になった
ときのみ電磁開閉弁(KV)を開くようになされてい
る。すなわち、コントローラ(10)は、請求項2の発
明にいう除霜運転制御手段としての機能を有するもので
ある。その他の構成は上記第1実施例と同様である。
FIG. 3 shows a refrigerant piping system of the air conditioner according to the second embodiment. In this embodiment, in the rectifying mechanism (20), instead of the high pressure control valve (HV) in the first embodiment, The first inflow pipe (8b1) is provided with an electromagnetic on-off valve (KV), and the discharge pipe is provided with a high pressure sensor (HP) as high pressure detecting means for detecting the high pressure side pressure. Then, the controller (10) opens the electromagnetic opening / closing valve (KV) only when the high-pressure side pressure becomes equal to or higher than a predetermined value (for example, 10 kg / cm 2 ) during the reverse cycle defrosting operation during the cooling operation or the heating operation. It is done like this. That is, the controller (10) has a function as a defrosting operation control means according to the invention of claim 2. The other structure is similar to that of the first embodiment.

【0032】したがって、上記第2実施例では、暖房運
転中の除霜運転時に、電磁開閉弁(KV)を閉じ、高圧
側圧力が所定値以上になると電磁開閉弁(KV)を開く
ように制御されるので、上記第1実施例と同様の除霜時
間短縮作用と冷房運転時における高圧制御作用とを得る
ことができ、特に、高圧制御弁(HV)に比べ確実な作
動を確保しうる利点がある。
Therefore, in the second embodiment, the electromagnetic on-off valve (KV) is closed during the defrosting operation during the heating operation, and the electromagnetic on-off valve (KV) is controlled to open when the high-pressure side pressure exceeds a predetermined value. Therefore, it is possible to obtain the same defrosting time shortening action and the high-pressure control action during the cooling operation as in the first embodiment, and in particular, an advantage that a reliable operation can be secured as compared with the high-pressure control valve (HV). There is.

【0033】なお、上記各実施例では、圧縮機(1)を
スクロール形圧縮機としたが、本発明はかかる実施例に
限定されるものではなく、往復形圧縮機、ロータリー形
圧縮機或いはスクリュー形圧縮機であってもよい。ただ
し、スクロール形圧縮機又はスクリュー形圧縮機の場
合、往復形圧縮機等に比べ、体積効率が大幅に改善され
ているので、高圧側圧力が上昇した分だけ、そのまま入
力として融解熱となる。したがって、高圧制御弁(H
V)の高圧制御又は電磁開閉弁(KV)の開閉制御によ
る高圧側圧力上昇作用を利用して、除霜時間の短縮を大
幅に図りうるという利点がある。
In each of the above embodiments, the compressor (1) is a scroll compressor, but the present invention is not limited to such an embodiment, and a reciprocating compressor, a rotary compressor or a screw. Type compressor may be used. However, in the case of the scroll type compressor or the screw type compressor, the volumetric efficiency is greatly improved as compared with the reciprocating type compressor or the like, and therefore the amount of increase in the high-pressure side pressure directly becomes the heat of fusion as an input. Therefore, the high pressure control valve (H
There is an advantage that the defrosting time can be significantly shortened by utilizing the high pressure side pressure increasing action by the high pressure control of V) or the open / close control of the electromagnetic on-off valve (KV).

【0034】[0034]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷暖房サイクルの切換え可能に構成された空気
調和装置において、熱源側熱交換器と減圧弁との間に冷
房サイクルにおける高圧側圧力が所定値以上になると開
作動する高圧制御弁を介設し、さらに逆止機構を介して
高圧制御弁のバイパス路を設けたので、暖房運転中の逆
サイクル除霜運転時、高圧制御弁により高圧側圧力が所
定値以上になるまで液冷媒の流通が阻止され、熱源側熱
交換器への液冷媒の貯溜による凝縮可能面積の減小を利
用して、高圧側圧力を上昇させることができ、よって、
除霜能力の向上により、空調感の悪化や残留デフロスト
の発生を招くことなく逆サイクル除霜運転における除霜
時間の短縮を図ることができるとともに、低外気冷房運
転における高圧の低下の防止を図ることができる。
As described above, according to the invention of claim 1, in the air conditioner configured to be able to switch the heating / cooling cycle, the high pressure in the cooling cycle is provided between the heat source side heat exchanger and the pressure reducing valve. Since a high-pressure control valve that opens when the side pressure exceeds a predetermined value is installed, and a bypass path for the high-pressure control valve is also provided via a check mechanism, high-pressure control is performed during the reverse cycle defrosting operation during heating operation. The valve blocks the flow of liquid refrigerant until the high-pressure side pressure exceeds a predetermined value, and the high-pressure side pressure is increased by utilizing the reduction of the condensable area by the liquid refrigerant storage in the heat source side heat exchanger. Can be done, so
By improving the defrosting ability, it is possible to shorten the defrosting time in the reverse cycle defrosting operation without inviting the feeling of air conditioning and the occurrence of residual defrost, and also to prevent the decrease in high pressure in the low outside air cooling operation. be able to.

【0035】請求項2の発明によれば、冷暖房サイクル
の切換え可能に構成された空気調和装置において、熱源
側熱交換器と減圧弁との間に電磁開閉弁を介設し、暖房
運転中の逆サイクル除霜運転時に、高圧側圧力が所定値
以上になるまで電磁開閉弁を閉じ、高圧側圧力が所定値
以上になると電磁開閉弁を開くようにしたので、上記請
求項1の発明と同様に、熱源側熱交換器の液冷媒貯溜作
用により高圧側圧力を上昇させることができ、よって、
より確実に除霜運転時間の短縮を図ることができる。
According to the second aspect of the present invention, in the air conditioner configured to be able to switch the heating / cooling cycle, an electromagnetic opening / closing valve is provided between the heat source side heat exchanger and the pressure reducing valve to perform the heating operation. In the reverse cycle defrosting operation, the electromagnetic on-off valve is closed until the high-pressure side pressure becomes equal to or higher than the predetermined value, and the electromagnetic on-off valve is opened when the high-pressure side pressure becomes equal to or higher than the predetermined value. In addition, the high pressure side pressure can be increased by the liquid refrigerant reservoir action of the heat source side heat exchanger,
The defrosting operation time can be shortened more reliably.

【0036】請求項3の発明では、上記請求項1又は2
の発明において、圧縮機をスクロール形圧縮機又はスク
リュー形圧縮機としたので、往復形圧縮機等に比べて体
積効率が大幅に改善された圧縮機の構造により、高圧側
圧力の上昇分をそのまま入力として融解熱とでき、よっ
て、上記各発明の著効を発揮することができる。
In the invention of claim 3, the above-mentioned claim 1 or 2
In the invention of (1), since the compressor is a scroll type compressor or a screw type compressor, the increase in pressure on the high-pressure side remains unchanged due to the structure of the compressor whose volumetric efficiency is greatly improved compared to a reciprocating compressor etc. The heat of fusion can be used as an input, so that the remarkable effects of each of the above inventions can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 1 is a refrigerant piping system diagram of an air conditioner according to a first embodiment.

【図2】第2実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 2 is a refrigerant piping system diagram of an air conditioner according to a second embodiment.

【図3】除霜能力に対する高圧側圧力の影響を示すモリ
エル線図である。
FIG. 3 is a Mollier diagram showing the influence of the high-pressure side pressure on the defrosting ability.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(熱源側熱交換器) 5 電動膨張弁(減圧弁) 6 室内熱交換器(利用側熱交換器) 9 冷媒回路 HV 高圧制御弁 8b1 第1流入管(液管) 8c2 第2流出管(バイパス路) D4 第4逆止弁(逆止機構) KV 電磁開閉弁 HP 高圧センサ(高圧検出手段) 10 コントローラ(除霜運転制御手段) 1 compressor 3 outdoor heat exchanger (heat source side heat exchanger) 5 electric expansion valve (pressure reducing valve) 6 indoor heat exchanger (use side heat exchanger) 9 refrigerant circuit HV high pressure control valve 8b1 first inflow pipe (liquid pipe) ) 8c2 2nd outflow pipe (bypass path) D4 4th check valve (check mechanism) KV electromagnetic on-off valve HP high pressure sensor (high pressure detection means) 10 controller (defrosting operation control means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、熱源側熱交換器(3)、
減圧弁(5)及び利用側熱交換器(6)を順次接続し、
かつ冷凍サイクルが正逆切換え可能に構成された冷媒回
路(9)を備えた空気調和装置において、 上記熱源側熱交換器(3)と減圧弁(5)との間の液管
(8b1)に介設され、冷房サイクルにおける高圧側圧力
が所定値以上になると開作動する高圧制御弁(HV)
と、 上記熱源側熱交換器(3)と減圧弁(5)との間におい
て上記高圧制御弁(HV)をバイパスするバイパス路
(8c2)と、 該バイパス路(8c2)に介設され、上記熱源側熱交換器
(3)側からの冷媒の流通を阻止する逆止機構(D4)
とを備えたことを特徴とする空気調和装置。
1. A compressor (1), a heat source side heat exchanger (3),
Connect the pressure reducing valve (5) and the use side heat exchanger (6) in sequence,
In an air conditioner provided with a refrigerant circuit (9) configured such that the refrigeration cycle can be switched between forward and reverse, in a liquid pipe (8b1) between the heat source side heat exchanger (3) and the pressure reducing valve (5). A high-pressure control valve (HV) that is installed and opens when the high-pressure side pressure in the cooling cycle exceeds a specified value.
A bypass path (8c2) for bypassing the high pressure control valve (HV) between the heat source side heat exchanger (3) and the pressure reducing valve (5), and the bypass path (8c2) interposed between Non-return mechanism (D4) that blocks the flow of the refrigerant from the heat source side heat exchanger (3) side
An air conditioner comprising:
【請求項2】 圧縮機(1)、熱源側熱交換器(3)、
減圧弁(5)及び利用側熱交換器(6)を順次接続し、
かつ冷凍サイクルが正逆切換え可能に構成された冷媒回
路(9)を備えた空気調和装置において、 上記熱源側熱交換器(3)と減圧弁(5)との間の液管
(8b1)に介設され、通路を開閉する電磁開閉弁(K
V)と、 冷媒回路(9)の高圧側圧力を検出する高圧検出手段
(HP)と、 空気調和装置の暖房運転中に熱源側熱交換器(3)の除
霜指令を受けたとき、冷媒回路(9)を冷房サイクルに
切換え、上記電磁開閉弁(KV)を閉じた後、上記高圧
検出手段(HP)で検出される高圧側圧力が所定値以上
になると上記電磁開閉弁(KV)を開くよう制御する除
霜運転制御手段(10)とを備えたことを特徴とする空
気調和装置。
2. A compressor (1), a heat source side heat exchanger (3),
Connect the pressure reducing valve (5) and the use side heat exchanger (6) in sequence,
In an air conditioner provided with a refrigerant circuit (9) configured such that the refrigeration cycle can be switched between forward and reverse, in a liquid pipe (8b1) between the heat source side heat exchanger (3) and the pressure reducing valve (5). An electromagnetic on-off valve (K
V), a high pressure detecting means (HP) for detecting the high pressure side pressure of the refrigerant circuit (9), and a refrigerant when the defrosting command of the heat source side heat exchanger (3) is received during the heating operation of the air conditioner. After switching the circuit (9) to the cooling cycle and closing the electromagnetic on-off valve (KV), the electromagnetic on-off valve (KV) is turned on when the high-pressure side pressure detected by the high-pressure detecting means (HP) becomes a predetermined value or more. An air conditioner comprising: a defrosting operation control means (10) for controlling to open.
【請求項3】 請求項1又は2記載の空気調和装置にお
いて、 圧縮機(1)はスクロール型圧縮機又はスクリュー形圧
縮機であることを特徴とする空気調和装置。
3. The air conditioner according to claim 1 or 2, wherein the compressor (1) is a scroll type compressor or a screw type compressor.
JP4134783A 1992-05-27 1992-05-27 Air conditioner Withdrawn JPH05322389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134783A JPH05322389A (en) 1992-05-27 1992-05-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134783A JPH05322389A (en) 1992-05-27 1992-05-27 Air conditioner

Publications (1)

Publication Number Publication Date
JPH05322389A true JPH05322389A (en) 1993-12-07

Family

ID=15136453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134783A Withdrawn JPH05322389A (en) 1992-05-27 1992-05-27 Air conditioner

Country Status (1)

Country Link
JP (1) JPH05322389A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115053A1 (en) * 2005-04-18 2006-11-02 Daikin Industries, Ltd. Air conditioner
KR100698373B1 (en) * 2006-09-02 2007-03-23 (주)경진티알엠 System for heat pump with four check valve for defrosting
JP2011257098A (en) * 2010-06-11 2011-12-22 Fujitsu General Ltd Heat pump cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115053A1 (en) * 2005-04-18 2006-11-02 Daikin Industries, Ltd. Air conditioner
KR100698373B1 (en) * 2006-09-02 2007-03-23 (주)경진티알엠 System for heat pump with four check valve for defrosting
JP2011257098A (en) * 2010-06-11 2011-12-22 Fujitsu General Ltd Heat pump cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device

Similar Documents

Publication Publication Date Title
JP3816860B2 (en) Heat pump air conditioner
WO1995012098A1 (en) Operation control device for air conditioning equipment
WO2006128264A1 (en) Refrigerant system with water heating
WO2006013834A1 (en) Freezing apparatus
JP3341404B2 (en) Operation control device for air conditioner
US4869074A (en) Regenerative refrigeration cycle apparatus and control method therefor
JP2004347272A (en) Refrigerating plant
JPH05322389A (en) Air conditioner
JP3698132B2 (en) Air conditioner
JP2526716B2 (en) Air conditioner
JP4823131B2 (en) Air conditioner
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JP2903862B2 (en) Operation control device for refrigeration equipment
JPH05264113A (en) Operation control device of air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2634267B2 (en) Anti-freezing device for air conditioners
JP4284823B2 (en) Refrigeration equipment
JP2555779B2 (en) Operation control device for air conditioner
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JPH07122534B2 (en) Defrost operation controller for air conditioner
JP2002277066A (en) Air conditioning equipment for vehicle
JP6052316B2 (en) Refrigeration equipment
JP2842471B2 (en) Thermal storage type air conditioner
JP2000274858A (en) Method for controlling operation of air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803