WO2006109831A1 - Processes for production of adhesives - Google Patents

Processes for production of adhesives Download PDF

Info

Publication number
WO2006109831A1
WO2006109831A1 PCT/JP2006/307749 JP2006307749W WO2006109831A1 WO 2006109831 A1 WO2006109831 A1 WO 2006109831A1 JP 2006307749 W JP2006307749 W JP 2006307749W WO 2006109831 A1 WO2006109831 A1 WO 2006109831A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
curing agent
temperature
producing
resin
Prior art date
Application number
PCT/JP2006/307749
Other languages
French (fr)
Japanese (ja)
Inventor
Shigenobu Sano
Original Assignee
Sony Chemical & Information Device Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical & Information Device Corporation filed Critical Sony Chemical & Information Device Corporation
Publication of WO2006109831A1 publication Critical patent/WO2006109831A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a technical field of manufacturing an adhesive.
  • thermosetting adhesives that are cured by heating have been widely used.
  • Such adhesives include thermosetting resins such as epoxy resin and curing that cures the resin.
  • a method of producing a composition containing an agent is included.
  • voids are generated in the adhesive at the time of thermal curing. If voids occur, the mechanical strength of the adhesive cured product will be weakened, and the connection reliability of electrical devices that can be obtained will also be lowered.
  • Patent Document 1 JP 2002-212537
  • Patent Document 2 JP 2002-363255 A
  • the present invention was created to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide an adhesive that hardly causes voids when thermally cured.
  • the inventors have investigated the cause of the generation of voids, and in particular, in a reaction system in which a silane coupling agent and an aluminum chelate are reacted to cure a thermosetting resin, in a short time. High! When heat-cured at a temperature (eg 150 ° C), a large amount of alcohol, which is a by-product of the heat-curing reaction, is generated in a short time, and when the alcohol evaporates, voids are formed in the adhesive. I was able to do it.
  • a temperature eg 150 ° C
  • the present invention based on such knowledge is an adhesive manufacturing method for manufacturing an adhesive that cures when heated to a thermocompression bonding temperature, and generates a first product and a second product by hydrolysis. Reacts with the first product at the thermocompression bonding temperature with the silane coupling agent A curing agent that generates seeds and a first resin raw material that is polymerized by the reactive species are mixed to create a composition, and the composition is lower than the thermocompression bonding temperature! This is a method for producing an adhesive in which the hydrolysis proceeds by raising the temperature.
  • the present invention is a method for producing an adhesive, wherein after the composition is heated to the first heating temperature, a diluent is added to the composition to create a mixture, and the mixture It is a manufacturing method of the adhesive which heats to the 2nd heating temperature exceeding one heating temperature and less than the said thermocompression bonding temperature, and evaporates a said 2nd product.
  • the present invention is a method for producing an adhesive, wherein the first product is silanol.
  • the present invention is a method for producing an adhesive, wherein the second product is an alcohol.
  • the present invention is a method for producing an adhesive, wherein the first heating temperature is 60 ° C. or more and less than 70 ° C.
  • the present invention is a method for producing an adhesive, wherein the first resin material is an epoxy resin.
  • the present invention is a method for producing an adhesive, wherein the heating of the mixture is a method for producing an adhesive in which the mixture is formed into a film.
  • the present invention is a method for producing an adhesive, wherein the diluent is a method for producing an adhesive containing an organic solvent.
  • the present invention is a method for producing an adhesive, wherein the second heating temperature is 70 ° C or higher and 80 ° C or lower.
  • the present invention is a method for producing an adhesive, wherein the conductive agent is added to the diluent.
  • This invention is a manufacturing method of an adhesive agent, Comprising:
  • the said diluent is a manufacturing method of the adhesive agent containing a 2nd resin material.
  • the present invention is a method for producing an adhesive, wherein the second resin material is a thermoplastic resin.
  • the present invention is a method for producing an adhesive, wherein the curing agent comprises a porous resin and the porous It is a manufacturing method of the adhesive agent which has the metal chelate hold
  • the present invention is a method for producing an adhesive, wherein the curing agent is a method for producing an adhesive formed by interfacial polymerization of the metal chelate and a multifunctional isocyanate compound.
  • the silane coupling agent is, for example, a compound represented by XSiOR, wherein R is an alkyl group, X is 1 to 3 substituents that can be bonded to Si, and these substituents Is not particularly limited, but specific examples include an epoxy group, a vinyl group, an alkyl group, and an alkoxy group.
  • composition (first composition) is heated in advance before thermosetting to generate alcohol in advance, a large amount of alcohol is not generated when the adhesive is thermoset. Also, the adhesive is heated between the process of generating alcohol and the process of thermosetting the adhesive.
  • FIG. 1 is a diagram for explaining the difference in methanol generation amount depending on heating temperature and heating time.
  • FIG. 11 Particle size distribution chart of the latent curing agent prepared in Experimental Example 11c
  • a first composition is prepared by mixing a first resin material, which is a thermosetting resin, a liquid silane coupling agent, and a curing agent to be described later. Heat to a first heating temperature of less than 70 ° C and maintain that temperature (first heating step).
  • a first resin material which is a thermosetting resin, a liquid silane coupling agent, and a curing agent to be described later.
  • the silane coupling agent has a chemical structure represented by XSiOR.
  • the silane coupling agent is hydrolyzed as shown in the reaction formula (1).
  • the first product, silanol (XSiOH), and the second product, alcohol (ROH) are produced.
  • the microcapsule includes a porous resin described later in addition to a simple structure such as a resin film covering the periphery of the metal chelate which is a core material.
  • the released metal chelate (here, the aluminum chelate) reacts with the silanol produced in the reaction formula (1), and the silanol coordinates to the metal chelate as shown in the following reaction formula (2).
  • the silanol is reduced.
  • a second composition (diluent) is prepared by dispersing conductive particles in an organic solvent in which the second raw material of the resin, which is thermoplastic resin, is dissolved. Mix with the first composition after heating for a predetermined time at one heating temperature.
  • the mixture contains an organic solvent and has fluidity
  • the mixture is applied to the surface of a peeling film (not shown) and the surface of the applied mixture is exposed to the first heating temperature.
  • a higher second heating temperature for example, 70 ° C or higher and 80 ° C or lower
  • the alcohol generated in the first heating step evaporates and is released from the inside of the mixture (second heating Process).
  • the organic solvent is also released by the heating, and the mixture loses fluidity to form a film, whereby a film-like adhesive (adhesive film) is obtained.
  • a film-like adhesive adheresive film
  • thermocompression bonding step When using the adhesive film manufactured by the manufacturing method of the present invention, an adhesive film is disposed between two objects to be adhered, and one object to be adhered is brought into contact with the surface of the adhesive film, and the other The adhesive film is heated to a thermocompression bonding temperature higher than the first and second heating temperatures while pressing the whole with the object to be adhered in contact with the back surface of the adhesive film (thermocompression bonding step).
  • epoxy resin is used as the first resin material, and when active protons (reactive species) are donated from the Bronsted acid point, the epoxy resin is expressed as shown in the following reaction formula (4).
  • the ring is polymerized (cation polymerization), and the adhesive film is cured in a state of being in close contact with the object to be adhered.
  • FIG. 25 shows a state in which the two adhesive objects 21 and 22 are fixed with the cured adhesive 20, and since no voids are present in the adhesive 20, the adhesive objects 21 and 22 are firmly attached. It is fixed.
  • the silane coupling agent of the present invention not only contributes to the reaction of the first resin raw material, but also serves to improve the affinity with the adhesive by adsorbing to the inorganic material.
  • the adhesive when the adhesive contains conductive particles whose surface is exposed to an inorganic material such as a metal, the silane coupling agent is adsorbed on the surface of the conductive particles, and the conductive particles are contained in the adhesive. It will be dispersed without settling. Further, when the adhesive contains an inorganic filler, the coupling agent is adsorbed on the surface of the inorganic filler, and the inorganic filler is dispersed in the adhesive as in the case of the conductive particles.
  • the silane coupling agent is adsorbed on the surface of the object to be adhered, and the adhesive is adhered to the object to be adhered. Adhesiveness is improved.
  • the type of silane coupling agent is not particularly limited, and X can use a silicate having three alkoxy (OR) forces.
  • X is a substituent that is incorporated into the polymerization reaction of the first resin material. If at least one is present, a silane coupling agent is incorporated into the curing reaction of the first resin material, increasing the strength of the cured adhesive.
  • the type of metal chelate used for the curing agent is not particularly limited. In addition to aluminum chelate, the ability to use zirconium chelate, titanium chelate, etc. Among these, the reactivity with silanol is high, and aluminum chelate is used. Most preferred. One of these metal chelates may be used alone as a curing agent, or two or more thereof may be used as a curing agent.
  • the second resin material is not particularly limited as long as it is a different type of resin than the first resin material, but if thermoplastic resin is used as the second resin material, For sticking objects The adhesion is improved. Further, when the second resin material is incorporated into the curing reaction with the first resin material, the mechanical strength of the adhesive after thermocompression bonding is improved.
  • the resin used as the second resin raw material include rubbers such as phenoxy resin, polyester resin, polyurethane resin, polybutacetal, ethylene butyl acetate, and polybutadiene rubber. These resins can be used alone for the second resin, or two or more can be mixed and used for the second resin.
  • the solvent for dissolving the second resin material is not particularly limited, and for example, PGMAC (propylene glycol monomethyl ether acetate), toluene, ethyl acetate, MEK (methyl ethyl ketone) and the like can be used. These solvents can be used alone.
  • Two or more types may be mixed and used.
  • the adhesive may be an anti-aging agent as long as it does not hinder the reactions of the above reaction formulas (1) to (4).
  • additives such as coloring agents and fillers can also be added.
  • the first heating step may be performed after mixing the first and second compositions, but the higher the silane coupling concentration in the composition, the faster the reaction to produce alcohol. Therefore, in order not to lower the concentration of the silane coupling agent, it is preferable that the first heating step is performed only with the first composition.
  • the curing agent, the silane coupling agent, and the first resin material are present in a high concentration, so that the first composition is added without adding the second composition.
  • the second heating step is performed by heating to the second heating temperature, the reactions of the above reaction formulas (3) and (4) proceed, and the first composition is cured.
  • the second composition is added to the first composition, and the concentrations of the curing agent, the silane coupling agent, and the first greave material are determined at the time of the first heating step. It is desirable that the force be applied at a lower level.
  • the second composition is not particularly limited as long as the concentration of the curing agent, the silane coupling agent, and the first resin material can be diluted, and the second composition may be composed of only a solvent. However, it may be composed of only the second raw material of rosin.
  • the adhesive may be defoamed to remove alcohol, and both the vacuum defoaming and the second heating step may be performed.
  • the adhesive may be diluted with an organic solvent before defoaming to increase defoaming efficiency.
  • the latent curing agent in which the metal chelate is microencapsulated as described above is used so that part of the metal chelate remains in a microencapsulated state after the first and second heating steps,
  • the reaction of the above reaction formulas (3) and (4) does not proceed during the second heating step or during storage of the adhesive, and the adhesive is not cured, so that the storage of the adhesive is improved.
  • Epoxy resin (trade name “2021P” manufactured by Hitachi Chemical Co., Ltd.) A first composition was prepared by mixing 8 parts by weight and 15 parts by weight of a latent curing agent in which an aluminum chelate was microencapsulated. Here, a latent curing agent in which an aluminum chelate was held in a porous resin described later was used.
  • the heated sample and the unheated sample were heated at 80 ° C for 10 minutes, and from the components captured by the purge and trap method, the amount of alcohol (here, the amount of methanol) was determined by gas chromatography mass spectrometry. Was quantified.
  • FIG. 1 shows the relationship between the detected amount of methanol detected (ppm) and the heating time (minutes).
  • the unheated sample has a detected methanol level of 620 ppm
  • the heated sample has a detected methanol level higher than that of the unheated sample. It can be seen that the detected amount of methanol is greater for 10 minutes than for the same heating temperature.
  • the first composition was heated to 70 ° C and heated for 10 minutes to prepare a heated sample. As the heated sample had cured the first resin material, the heating temperature of the adhesive was 70 Less than ° C is suitable for the present invention.
  • the first composition containing no curing agent is heated under the same conditions, and then cured.
  • An agent was added to prepare a heated sample of a comparative example.
  • the amount of methanol in these heated samples was quantified under the same conditions as in Heating Test 1 above.
  • FIG. 2 shows the relationship between the detected amount of methanol (ppm) and the heating time (minutes).
  • the composition of the comparative example containing no curing agent showed little increase in the detected amount of methanol even when the heating time was prolonged.
  • the composition of the silane coupling agent was used at a low temperature of 60 ° C. It can be seen that the hydrolysis of the glue is very slow.
  • the first composition containing the curing agent has a lower heating temperature if the first composition contains a curing agent having a higher methanol detection amount. Even if it exists, it turns out that hydrolysis of a silane coupling agent advances.
  • the amount of methanol detected increased as the heating time increased, and the detected amount reached its maximum at a heating time of 10 minutes. However, when the heating time reached 15 minutes, the detected amount increased. Maximum value [This is reduced to 2000ppmi!
  • the decrease in the detected amount is presumed to be due to the release of the first composition force of methanol during heating. For example, under the condition where the first heating temperature is 60 ° C, if the heating is performed for 10 minutes, the alcohol is sufficiently absorbed. It can be seen that a rule is generated.
  • a second resin material consisting of 65 parts by weight of a phenoxy resin solution and 10 parts by weight of epoxidized polybutadiene (trade name “PB3600” manufactured by Daicel Chemical Industries, Ltd.), and gold-coated nickel particles (trade name “ 6GNM5—Ni ”)) was mixed with 19.57 parts by weight of conductive particles to prepare a second composition.
  • the phenoxy resin solution used here is a product name “YP70” manufactured by Toto Kasei Co., Ltd. ⁇ 40 weight of phenoxy resin in an organic solvent mixed with equal weight (weight) of BMAC and toluene. % Dissolved.
  • the first composition used in the heating test 1 was heated at a heating temperature of 60 ° C for 5 minutes, 10 minutes, and 15 minutes, respectively.
  • the above-mentioned second composition was mixed with the product, and the coating layer of the mixture was heated at 70 ° C. for 5 minutes to produce the adhesive film of the example.
  • a 0.2 mm thick silicon rubber was placed on each adhesive film, and an MCM (Multi-chip module) bonder was pressed on the silicon rubber and heated at 150 ° C for 10 seconds to heat the adhesive film. Cured to obtain a sample piece.
  • MCM Multi-chip module
  • Hardening agent is less than the amount of hardening agent during heating.
  • thermosetting The amount of methanol detected before thermosetting was larger than that of the adhesive film, but the amount of methanol detected in the adhesive film of the example decreased after thermosetting.
  • the total amount of methanol should be the same, and there is a difference in the detected amount of methanol before and after thermal curing. This is because the progress of the reactions in the above reaction formulas (1) to (4) is different.
  • thermosetting agent in the adhesive film of the example in which the curing agent was present at the time of the first heating step, a reaction in which methanol was generated before the thermal curing progressed, and therefore, methanol was detected more than the comparative adhesive film. Although the amount is large, the methanol has been removed to some extent before thermosetting, and no new methanol is produced at the time of thermosetting! Therefore, the amount of methanol detected after thermosetting becomes small.
  • the latent curing agent used in the present invention is obtained by holding an aluminum chelating agent in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound. Since this latent curing agent uses an aluminum chelating agent capable of realizing low-temperature rapid curing, it is possible to impart good low-temperature rapid curing to an adhesive containing this latent curing agent. Since the aluminum chelating agent is retained in the porous resin obtained by interfacial polymerization, even if this latent curing agent is added to the adhesive (even when it is in one solution), the storage stability of the adhesive Can be greatly improved.
  • latent curing agent an electron microscopic photograph of latent curing agent 1 is used instead of a microcapsule having a simple structure in which the periphery of the aluminum chelating agent core is covered with a porous resin shell (Fig. 5). ) And an enlarged electron micrograph near the center (FIG. 6), the aluminum chelating agent is held in a large number of fine pores 3 present in the porous resin matrix 2.
  • this latent curing agent 1 is produced using an interfacial polymerization method, its shape is spherical, and its particle diameter is preferably 0 from the viewpoint of curability and dispersibility. 5 111 or more and 100 m or less, and the size of the hole 3 is preferably 5 m or more and 150 nm or less from the viewpoint of curability and potential.
  • the latent curing agent 1 has a tendency to reduce its latency when the degree of cross-linking of the porous resin used is too small, and to decrease its thermal response when it is too large. Accordingly, it is preferable to use a porous resin whose degree of crosslinking is adjusted.
  • the degree of crosslinking of the porous resin can be measured by a micro compression test.
  • the latent curing agent 1 preferably contains substantially no organic solvent used during the interfacial polymerization, specifically, 1 ppm or less from the viewpoint of curing stability.
  • the content of the porous rosin and the aluminum chelating agent in the latent curing agent 1 is such that if the aluminum chelating agent content is too small, the thermal responsiveness is lowered, and if it is too much, the latency is lowered.
  • Aluminum chelating agent for 100 parts by mass of porous resin preferably 1 0 parts by mass or more and 200 parts by mass or less, more preferably 10 parts by mass or more and 150 parts by mass or less
  • examples of the aluminum chelating agent include a complex compound in which three
  • R 2 and R 3 are each independently an alkyl group or an alkoxyl group.
  • alkyl group include a methyl group and an ethyl group.
  • alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
  • aluminum chelating agent represented by the chemical formula (1) examples include aluminum tris (acetyl acetonate), aluminum tris (ethyl acetoacetate), and aluminum mono-acetyl acetonate bis (e Tylacetoacetate), aluminum monoacetylacetoate bisoleylacetoacetate, ethylacetoacetate aluminum diisopropylate, alkylacetoacetate aluminum diisopropylate and the like.
  • the polyfunctional isocyanate compound is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule.
  • a TMP adduct having the following chemical formula (2) which is obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane (TMP), a diisocyanate compound: Isocyanurate of formula (3), diisocyanate obtained by self-condensation of 3 moles of compound
  • TMP trimethylolpropane
  • Isocyanurate of formula (3) diisocyanate obtained by self-condensation of 3 moles of compound
  • the biuret form of the chemical formula (4) in which the remaining 1 mol of diisocyanate is condensed to the diisocyanate urea obtained from 2 mols of the 3 molate compounds.
  • the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
  • diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydrohydrate. Examples include m-xylylene diisocyanate, isophorone diisocyanate, and methylene diphenyl 4,4′-diisocyanate.
  • the porous resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound is a part of the isocyanate group that undergoes hydrolysis during the interfacial polymerization to become an amino group. It is a porous polyurea that reacts with an isocyanate group to form a urea bond and polymerize it.
  • a latent curing agent composed of such porous resin and an aluminum chelating agent retained in the pores is not retained for a clear reason when heated for curing.
  • the aluminum chelating agent coexists in the latent curing agent and the adhesive, and can come into contact with the silane coupling agent and the first resin raw material, thereby allowing the curing reaction to proceed.
  • an aluminum chelating agent is considered to be present on the outermost surface.
  • the aluminum chelating agent present on the outermost surface is water present in the system during interfacial polymerization. As a result, only the aluminum chelating agent retained inside the porous resin retains its activity, and the resulting curing agent has acquired potential. it is conceivable that.
  • the latent curing agent described above is obtained by dissolving an aluminum chelating agent and a polyfunctional isocyanate compound in a volatile organic solvent, and charging the obtained solution into an aqueous phase containing a dispersant, followed by heating and stirring.
  • a production method characterized by interfacial polymerization is characterized by interfacial polymerization.
  • an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent to prepare a solution that becomes an oil phase in the interfacial polymerization.
  • the reason for using is as follows. That is, when a high-boiling solvent having a boiling point exceeding 300 ° C as used in the ordinary interfacial polymerization method is used, the organic solvent does not volatilize during interfacial polymerization, and the probability of contact with isocyanate-water increases. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
  • Such a volatile organic solvent is a good solvent of an aluminum chelating agent and a polyfunctional isocyanate compound (the respective solubility is preferably not less than 0.1 lg / ml (organic solvent)), In particular, it is preferable that the solvent does not substantially dissolve (the solubility of water is 0.5 gZml (organic solvent) or less) and the boiling point at atmospheric pressure is 100 ° C or less.
  • volatile organic solvents include alcohols, acetate esters, ketones and the like. Of these, ethyl acetate is preferred because of its high polarity, low boiling point, and poor water solubility.
  • the amount of the volatile organic solvent used is too small relative to 100 parts by mass of the total amount of the aluminum chelating agent and the polyfunctional isocyanate compound, the potential decreases, and if too large, the thermal responsiveness decreases.
  • the amount is preferably 100 parts by mass or more and 500 parts by mass or less.
  • the viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the range of the amount of the volatile organic solvent used. Lowering the stirring efficiency improves the oil phase droplets in the reaction system, making it possible to make the oil phase droplets finer and more uniform.
  • the resulting latent hardener particle size is submicron to several microns (0.1). It is possible to make the particle size distribution monodisperse while controlling the size to about 10 ⁇ m or more.
  • the viscosity of the oil phase solution is preferably set to ImPa's or more and 2.5 mPa's or less.
  • the blending amount (weight) of the aluminum chelate agent is preferably 1Z2 or less, more preferably the weight of the polyfunctional isocyanate compound. Is 1Z3 or less. This increases the probability that the polyfunctional isocyanate compound and water are in contact with each other, and the polyfunctional isocyanate compound and water are likely to react before the PVA contacts the oil droplet surface.
  • the amount of the aluminum chelating agent in the oil phase is increased.
  • the amount of the aluminum chelating agent is preferably equal to (1.0 times) or more, more preferably 1.0 to 2.0 times by weight of the polyfunctional isocyanate compound. This reduces the isocyanate concentration on the oil phase droplet surface.
  • polyfunctional isocyanate compounds are amines formed by hydrolysis rather than hydroxyl groups.
  • the reaction rate between the polyfunctional isocyanate compound and the PVA is reduced by adding ammine to the oil phase solution together with the polyfunctional isocyanate compound because be able to.
  • the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in the volatile organic solvent, they may be mixed and stirred at room temperature under atmospheric pressure, but if necessary, they may be heated.
  • an oil phase solution in which an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent is added to an aqueous phase containing a dispersant, and heated and stirred.
  • a dispersant those used in a usual interfacial polymerization method such as polyvinyl alcohol, carboxymethyl cellulose, gelatin and the like can be used.
  • the amount of the dispersant used is usually 0.1% by mass or more and 10.0% by mass or less of the aqueous phase.
  • the blending amount of the oil phase solution with respect to the aqueous phase is polydispersed when the amount of the oil phase solution is too small, and agglomeration occurs when the amount is too large. Therefore, the amount is preferably 5 parts by mass with respect to 100 parts by mass of the aqueous phase. More than 50 parts by mass.
  • stirring conditions (stirring device homogenizer; stirring speed of 8000 rpm or more) are usually large, preferably such that the size of the oil phase is 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the conditions of heating and stirring under atmospheric pressure, temperature of 30 ° C to 80 ° C, stirring time of 2 hours to 12 hours, and the like can be mentioned.
  • the resulting polymer fine particles are filtered off and air-dried to obtain a latent curing agent.
  • the latent curing agent can be obtained.
  • the curing characteristics of the curing agent can be controlled. For example, if the polymerization temperature is lowered, the curing temperature of the adhesive can be lowered. Conversely, if the polymerization temperature is raised, the curing temperature of the adhesive can be raised.
  • the latent curing agent can be used in the same application as the conventional imidazole-based latent curing agent.
  • the latent curing agent includes the silane coupling agent and the thermosetting first resin raw material. Combined use By doing so, a low-temperature fast-curing adhesive can be provided.
  • the first resin material is 1 part by mass or more and 70 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass.
  • the silane coupling agent works together with an aluminum chelating agent to produce a thermosetting resin (for example, a thermosetting epoxy resin). It has a function of initiating cationic polymerization of fat.
  • Such silane coupling agents have one or more and three or less lower alkoxy groups in the molecule, and are reactive to the functional groups of thermosetting resin in the molecule.
  • it may have a butyl group, a styryl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, an amino group, a mercapto group, and the like.
  • a coupling agent having an amino group or mercapto group should be used when the latent curing agent is a cationic curing agent, and the amino group or mercapto group does not substantially trap the generated cationic species. Can do.
  • silane coupling agents include butururis (13-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -styryltrimethoxysilane, ⁇ -methacryloxypropyltri Methoxysilane, ⁇ -Ataryloxypropyltrimethoxysilane, j8 — (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -Glyci
  • the content of the silane coupling agent in the adhesive is too small, the curability will be low, and if it is too large, the resin properties (eg, storage stability) of the cured product will decrease. It is 50 to 1500 parts by mass, preferably 300 to 1200 parts by mass with respect to 100 parts by mass of the curing agent.
  • a thermosetting epoxy resin a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like can be used. Of these, thermosetting epoxy resin can be preferably used in consideration of good adhesive strength after curing.
  • thermosetting epoxy resin preferably has an epoxy equivalent of 100 or more and 4000 or less, which may be liquid or solid, and has two or more epoxy groups in the molecule.
  • a bisphenol A type epoxy compound, a phenol novolak type epoxy compound, a cresol novolak type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, etc. can be preferably used. These compounds include monomers and oligomers.
  • the adhesive may contain silica, a filler such as My strength, a pigment, an antistatic agent, and the like, if necessary.
  • Adhesives include conductive particles with a particle size on the order of several zm, metal particles, those in which the surface of the resin core is coated with a metal plating layer, and those surfaces that are further coated with an insulating thin film. It is preferable to blend in an amount of 1 to 10% by weight. This makes it possible to use the adhesive produced by the production method of the present invention as an anisotropic conductive adhesive paste or an anisotropic conductive film.
  • the adhesive obtained as described above has excellent storage stability even though it is a one-component type because the curing agent becomes latent.
  • the latent curing agent can cooperate with the silane coupling agent to cationically polymerize the thermosetting resin by low-temperature rapid curing.
  • the polymerization reaction solution is allowed to cool to room temperature, and the interfacially polymerized particles are filtered off and dried naturally to obtain 20 parts by weight of a spherical latent curing agent having a particle size of about 10 ⁇ m. It was.
  • Adhesive (D-110N, Mitsui Takeda Chemical Co., Ltd.) is used except that a spherical latent curing agent with a particle size of about 10 m is added in accordance with the operation of the latent curing agent in the first example. 0 parts by weight were obtained.
  • Isocyanurate form of isophorone diisocyanate (Z-4470, Sumitomo Bayer Urethane Co., Ltd.) 20) parts by weight of a spherical latent curing agent having a particle size of about 10 m was obtained in accordance with the operation of the latent curing agent in the first example except that (1) was used.
  • thermosetting adhesive having a first composition strength was prepared by uniformly mixing 8 parts by weight of Nycar Co., Ltd.
  • the obtained adhesive was subjected to differential thermal analysis (DSC) (DSC6200, Seiko Instruments Inc.
  • the exothermic start temperature means the curing start temperature of the adhesive
  • the exothermic peak temperature means the temperature at which the curing of the adhesive is most active, and the end of the exotherm.
  • the temperature means the curing end temperature of the adhesive
  • the peak area means the calorific value.
  • the latent curing agent in the first example has a curing start temperature of 10
  • a latent curing agent was prepared according to the operation of the latent curing agent in the first example (Experimental Examples 9a to 9e).
  • the obtained adhesive was subjected to thermal analysis using a differential thermal analyzer (DSC6200, Seiko Instruments Inc.). The obtained results are shown in FIG. From Fig. 9, it can be seen that the curing characteristics of the latent curing agent can be controlled by changing the type of silane coupling agent.
  • Trimethylolpropane (1 mole) of aluminum monoacetylethylacetonate bis (ethylacetoacetate), an aluminum chelator, and methylene diphenol 4,4, -diisocyanate (3 mole), a polyfunctional isocyanate compound.
  • the latent hardeners of Experimental Examples 12a to 12f were obtained by repeating the same operation as in the case of the latent hardener of the first example except that
  • FIGS. 16 to 21 show electron micrographs of the obtained latent curing agents of Experimental Examples 12a to 12f.
  • the particle size of the obtained latent curing agent particles could be reduced to a maximum particle size of 5 ⁇ m or less because the polymerization proceeds after the oil phase droplets were refined.

Abstract

A process for the production of adhesives curable at a thermocompression temperature which comprises preparing a composition by mixing a silane coupling agent capable of giving the first and second products through hydrolysis with a curing agent capable of reacting with the first product at the thermocompression temperature to give a reactive species and the first raw material for resin capable of polymerizing by the action of the reactive pieces and heating the composition to the first elevated temperature lower than the thermocompression temperature to make the hydrolysis proceed. A process for the production of adhesives curable at a thermocompression temperature which comprises heating the above composition to the first elevated temperature, adding a diluent to the resulting composition, and heating the obtained mixture to the second elevated temperature which exceeds the first elevated temperature but is lower than the thermocompression temperature to evaporate the second product. The curing agent can be prepared by subjecting a metal chelate and a polyfunctional isocyanate to interfacial polymerization and comprises a porous resin and a metal chelate supported on the porous resin.

Description

明 細 書  Specification
接着剤の製造方法  Manufacturing method of adhesive
技術分野  Technical field
[0001] 本発明は接着剤を製造する技術分野に関する。  [0001] The present invention relates to a technical field of manufacturing an adhesive.
背景技術  Background art
[0002] 従来より、加熱により硬化する熱硬化性の接着剤は広く用いられており、そのような 接着剤は、エポキシ榭脂のような熱硬化性の樹脂と、その榭脂を硬化させる硬化剤と を含有させて製造する方法が一般的である。  [0002] Conventionally, thermosetting adhesives that are cured by heating have been widely used. Such adhesives include thermosetting resins such as epoxy resin and curing that cures the resin. In general, a method of producing a composition containing an agent is included.
[0003] しかしながら、配線板や電気部品のような貼着対象物に接着剤を挟みこんで接着 剤を熱硬化すると、熱硬化時に接着剤中にボイド (空隙)が生じる。ボイドが生じると、 接着剤の硬化物の機械的強度が弱ぐ得られる電気装置の接続信頼性も低くなつて しまう。  However, when an adhesive is sandwiched between objects to be adhered such as a wiring board or an electrical component and the adhesive is thermally cured, voids (voids) are generated in the adhesive at the time of thermal curing. If voids occur, the mechanical strength of the adhesive cured product will be weakened, and the connection reliability of electrical devices that can be obtained will also be lowered.
特許文献 1 :特開 2002— 212537号公報  Patent Document 1: JP 2002-212537
特許文献 2:特開 2002— 363255号公報  Patent Document 2: JP 2002-363255 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目 的は、熱硬化させる時にボイドが発生し難い接着剤を提供することである。 [0004] The present invention was created to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide an adhesive that hardly causes voids when thermally cured.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者等がボイドを発生する原因を追究したところ、特にシランカップリング剤と アルミニウムキレートとを反応させて、熱硬化性榭脂を硬化させる反応系にお 、て、 短時間で高!、温度 (例えば 150°C)で熱硬化させると、熱硬化反応の副生成物であ るアルコールが短時間に大量に発生し、そのアルコールが蒸発するときに接着剤中 にボイドを形成することがわ力つた。 [0005] The inventors have investigated the cause of the generation of voids, and in particular, in a reaction system in which a silane coupling agent and an aluminum chelate are reacted to cure a thermosetting resin, in a short time. High! When heat-cured at a temperature (eg 150 ° C), a large amount of alcohol, which is a by-product of the heat-curing reaction, is generated in a short time, and when the alcohol evaporates, voids are formed in the adhesive. I was able to do it.
係る知見に基づいて成された本発明は、熱圧着温度に加熱すると硬化する接着剤 を製造する接着剤の製造方法であって、加水分解で第一の生成物と第二の生成物 を生成するシランカップリング剤と、熱圧着温度で前記第一の生成物と反応して反応 種を生成する硬化剤と、前記反応種によって重合する第一の榭脂原料とを混合して 組成物を作成し、前記組成物を前記熱圧着温度よりも低!ヽ第一の加熱温度に昇温さ せ、前記加水分解を進行させる接着剤の製造方法である。 The present invention based on such knowledge is an adhesive manufacturing method for manufacturing an adhesive that cures when heated to a thermocompression bonding temperature, and generates a first product and a second product by hydrolysis. Reacts with the first product at the thermocompression bonding temperature with the silane coupling agent A curing agent that generates seeds and a first resin raw material that is polymerized by the reactive species are mixed to create a composition, and the composition is lower than the thermocompression bonding temperature! This is a method for producing an adhesive in which the hydrolysis proceeds by raising the temperature.
本発明は接着剤の製造方法であって、前記組成物を前記第一の加熱温度に昇温 させた後、前記組成物に希釈剤を添加して混合物を作成し、前記混合物を、前記第 一の加熱温度超え、かつ、前記熱圧着温度未満の第二の加熱温度に加熱し、前記 第二の生成物を蒸発させる接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein after the composition is heated to the first heating temperature, a diluent is added to the composition to create a mixture, and the mixture It is a manufacturing method of the adhesive which heats to the 2nd heating temperature exceeding one heating temperature and less than the said thermocompression bonding temperature, and evaporates a said 2nd product.
本発明は接着剤の製造方法であって、前記第一の生成物はシラノールである接着 剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the first product is silanol.
本発明は接着剤の製造方法であって、前記第二の生成物はアルコールである接 着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the second product is an alcohol.
本発明は接着剤の製造方法であって、前記第一の加熱温度は 60°C以上 70°C未 満である接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the first heating temperature is 60 ° C. or more and less than 70 ° C.
本発明は接着剤の製造方法であって、前記第一の榭脂原料はエポキシ榭脂であ る接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the first resin material is an epoxy resin.
本発明は接着剤の製造方法であって、前記混合物の加熱は前記混合物をフィルム 状に成形する接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the heating of the mixture is a method for producing an adhesive in which the mixture is formed into a film.
本発明は接着剤の製造方法であって、前記希釈剤は有機溶剤を含有する接着剤 の製造方法である。  The present invention is a method for producing an adhesive, wherein the diluent is a method for producing an adhesive containing an organic solvent.
本発明は接着剤の製造方法であって、前記第二の加熱温度は 70°C以上 80°C以 下である接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the second heating temperature is 70 ° C or higher and 80 ° C or lower.
本発明は接着剤の製造方法であって、前記希釈剤に導電性粒子を添加する接着 剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the conductive agent is added to the diluent.
本発明は接着剤の製造方法であって、前記希釈剤は第二の榭脂原料を含有する 接着剤の製造方法である。  This invention is a manufacturing method of an adhesive agent, Comprising: The said diluent is a manufacturing method of the adhesive agent containing a 2nd resin material.
本発明は接着剤の製造方法であって、前記第二の榭脂原料は熱可塑性榭脂であ る接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the second resin material is a thermoplastic resin.
本発明は接着剤の製造方法であって、前記硬化剤は、多孔性榭脂と、前記多孔性 榭脂に保持された金属キレートとを有する接着剤の製造方法である。 The present invention is a method for producing an adhesive, wherein the curing agent comprises a porous resin and the porous It is a manufacturing method of the adhesive agent which has the metal chelate hold | maintained at the coffin.
本発明は接着剤の製造方法であって、前記硬化剤は、前記金属キレートと、多官 能イソシァネートイ匕合物とが界面重合して形成された接着剤の製造方法である。  The present invention is a method for producing an adhesive, wherein the curing agent is a method for producing an adhesive formed by interfacial polymerization of the metal chelate and a multifunctional isocyanate compound.
[0006] 尚、シランカップリング剤は、例えば XSiORで示される化合物であって、 Rはアルキ ル基であり、 Xは Siに結合可能な 1以上 3以下の置換基であり、それらの置換基は特 に限定されないが、具体的には、エポキシ基、ビニル基、アルキル基、アルコキシ基 である。  [0006] The silane coupling agent is, for example, a compound represented by XSiOR, wherein R is an alkyl group, X is 1 to 3 substituents that can be bonded to Si, and these substituents Is not particularly limited, but specific examples include an epoxy group, a vinyl group, an alkyl group, and an alkoxy group.
発明の効果  The invention's effect
[0007] 本発明は、熱硬化の前に組成物(第一の組成物)を加熱して予めアルコールを生 成させるので、接着剤を熱硬化させるときにアルコールが大量に発生しない。また、 アルコールを発生させる工程と、接着剤を熱硬化させる工程の間に接着剤を加熱し [0007] In the present invention, since the composition (first composition) is heated in advance before thermosetting to generate alcohol in advance, a large amount of alcohol is not generated when the adhesive is thermoset. Also, the adhesive is heated between the process of generating alcohol and the process of thermosetting the adhesive.
、生成されたアルコールを予め除去するので、接着剤を熱硬化させるときに大量のァ ルコールが放出されず、硬化後の接着剤にボイドが生じない。 図面の簡単な説明 Since the generated alcohol is removed in advance, a large amount of alcohol is not released when the adhesive is thermally cured, and no void is formed in the cured adhesive. Brief Description of Drawings
[0008] [図 1]加熱温度と加熱時間によるメタノール発生量の違いを説明するための図 [0008] FIG. 1 is a diagram for explaining the difference in methanol generation amount depending on heating temperature and heating time.
[図 2]硬化剤の有無によるメタノール発生量の違いを説明するための図  [Figure 2] Diagram for explaining the difference in the amount of methanol generated with and without a curing agent
[図 3]熱硬化前のメタノール検出量の違いを説明するための図  [Figure 3] Diagram for explaining the difference in the amount of methanol detected before thermosetting
[図 4]熱硬化後のメタノール検出量の違いを説明するための図  [Figure 4] Diagram for explaining the difference in the amount of methanol detected after thermosetting
[図 5]潜在性硬化剤粒子の電子顕微鏡写真  [Figure 5] Electron micrograph of latent hardener particles
[図 6]図 1Aの潜在性硬化剤粒子の中心付近の拡大電子顕微鏡写真  [Figure 6] Magnified electron micrograph near the center of the latent hardener particle in Figure 1A
[図 7]接着剤の一例の DSC測定図  [Figure 7] DSC measurement diagram of an example of adhesive
[図 8]第九例の潜在性硬化剤を用いた接着剤の DSC測定図  [Figure 8] DSC measurement diagram of the adhesive using the latent curing agent of the ninth example
[図 9]接着剤の他の例の DSC測定図  [Figure 9] DSC measurement diagram of another example of adhesive
[図 10]実験例 l ibで調製した潜在性硬化剤の粒度分布チャート  [Fig. 10] Experimental example l Particle size distribution chart of latent curing agent prepared by ib
[図 11]実験例 11cで調製した潜在性硬化剤の粒度分布チャート  [FIG. 11] Particle size distribution chart of the latent curing agent prepared in Experimental Example 11c
[図 12]実験例 l idで調製した潜在性硬化剤の粒度分布チャート  [Fig. 12] Experimental example l Particle size distribution chart of latent curing agent prepared by id
[図 13]実験例 l ieで調製した潜在性硬化剤の粒度分布チャート  [Fig. 13] Experimental example l Size distribution chart of latent curing agent prepared in ie
[図 14]実験例 l ibの潜在性硬化剤の電子顕微鏡写真 [図 15]実験例 l ieの潜在性硬化剤の電子顕微鏡写真 [Fig.14] Experimental example l Electron micrograph of ib latent curing agent [Figure 15] Experimental example l An electron micrograph of the latent curing agent of ie
[図 16]実験例 12aの潜在性硬化剤の電子顕微鏡写真  [Fig.16] Electron micrograph of the latent curing agent of Experimental Example 12a
[図 17]実験例 12bの潜在性硬化剤の電子顕微鏡写真  [FIG. 17] Electron micrograph of the latent curing agent of Experimental Example 12b
[図 18]実験例 12cの潜在性硬化剤の電子顕微鏡写真  [Figure 18] Electron micrograph of the latent curing agent of Experimental Example 12c
[図 19]実験例 12dの潜在性硬化剤の電子顕微鏡写真  [FIG. 19] Electron micrograph of the latent curing agent of Experimental Example 12d
[図 20]実験例 12eの潜在性硬化剤の電子顕微鏡写真  [Fig. 20] Electron micrograph of the latent curing agent of Experimental Example 12e.
[図 21]実験例 12fの潜在性硬化剤の電子顕微鏡写真  [Fig.21] Electron micrograph of latent curing agent in Experimental Example 12f
[図 22]部分ケン化 PVAを使用した場合の従来の潜在性硬化剤粒子の電子顕微鏡 写真  [Figure 22] Electron micrograph of conventional latent hardener particles using partially saponified PVA
[図 23]完全ケン化 PVAを使用した場合の従来の潜在性硬化剤粒子の電子顕微鏡 写真  [Fig. 23] Electron micrograph of conventional latent hardener particles using fully saponified PVA
[図 24]接着フィルムの製造工程を示す図  [Fig.24] Diagram showing manufacturing process of adhesive film
[図 25]接着剤で固定された貼着対象物を示す図  [Fig.25] Diagram showing the object to be attached fixed with adhesive
符号の説明  Explanation of symbols
[0009] 1…潜在性硬化剤 2…多孔性榭脂マトリックス 3…孔 20……接着剤 21、 22……貼着対象物  [0009] 1 ... Latent curing agent 2 ... Porous resin matrix 3 ... Hole 20 ... Adhesive 21, 22 ... Object to be adhered
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の接着剤の製造方法について以下に詳細に説明する。  [0010] The method for producing the adhesive of the present invention will be described in detail below.
熱硬化性榭脂である第一の榭脂原料と、液状のシランカップリング剤と、後述する 硬化剤とを混合して第一の組成物を製造し、第一の組成物が 60°C以上 70°C未満の 第一の加熱温度になるよう加熱し、その温度を維持する (第一の加熱工程)。  A first composition is prepared by mixing a first resin material, which is a thermosetting resin, a liquid silane coupling agent, and a curing agent to be described later. Heat to a first heating temperature of less than 70 ° C and maintain that temperature (first heating step).
[0011] シランカップリング剤は XSiORで表される化学構造を有しており、第一の組成物が 加熱されると、反応式(1)に示すようにシランカップリング剤が加水分解し、第一の生 成物であるシラノール (XSiOH)と、第二の生成物であるアルコール (ROH)が生成 される。  [0011] The silane coupling agent has a chemical structure represented by XSiOR. When the first composition is heated, the silane coupling agent is hydrolyzed as shown in the reaction formula (1). The first product, silanol (XSiOH), and the second product, alcohol (ROH) are produced.
[0012] [化 1]  [0012] [Chemical 1]
XS i OR + H20 —— ^ XS i OH + R0H ……反応式 (1 ) [0013] 硬化剤として金属キレートがマイクロカプセルィ匕された潜在性硬化剤を用いる場合 、第一の組成物が第一の加熱温度で加熱されると、マイクロカプセルの一部が溶解、 又は破壊され、金属キレートが第一の組成物中に放出される。 XS i OR + H 2 0 —— ^ XS i OH + R0H …… Reaction formula (1) [0013] When a latent curing agent in which a metal chelate is microcapsulated is used as the curing agent, when the first composition is heated at the first heating temperature, a part of the microcapsule is dissolved or broken. And the metal chelate is released into the first composition.
尚、マイクロカプセルは、芯材である金属キレートの周囲を覆う榭脂膜のような単純 な構造の物の他に、後述する多孔性榭脂がある。  The microcapsule includes a porous resin described later in addition to a simple structure such as a resin film covering the periphery of the metal chelate which is a core material.
[0014] 放出された金属キレート (ここではアルミニウムキレート)は、反応式(1)で生成され たシラノールと反応し、下記反応式(2)に示すようにシラノールが金属キレートに配位 し、遊離のシラノールが減少する。  [0014] The released metal chelate (here, the aluminum chelate) reacts with the silanol produced in the reaction formula (1), and the silanol coordinates to the metal chelate as shown in the following reaction formula (2). The silanol is reduced.
[0015] [化 2]  [0015] [Chemical 2]
I \ I \
A l + XS i OH —— ^ A l—OS i X + RH ……反応式 (2 ) / \ /  A l + XS i OH —— ^ A l—OS i X + RH …… Reaction formula (2) / \ /
R  R
[0016] 遊離のシラノールが減少すると、上記反応式(1)の化学平衡が崩れるために、加水 分解反応が進行してシランカップリング剤が消費され、反応式(1)によるアルコール の発生量は、加水分解反応が進行しな!ヽ場合よりも増加する。  [0016] When free silanol is reduced, the chemical equilibrium of the above reaction formula (1) is lost, so that the hydrolysis reaction proceeds and the silane coupling agent is consumed, and the amount of alcohol generated by the reaction formula (1) is The hydrolysis reaction does not proceed!
[0017] 熱可塑性榭脂である第二の榭脂原料が溶解した有機溶媒に、導電性粒子を分散 させて第二の組成物 (希釈剤)を作成し、第二の組成物を、第一の加熱温度で所定 時間加熱終了後の第一の組成物と混合する。  [0017] A second composition (diluent) is prepared by dispersing conductive particles in an organic solvent in which the second raw material of the resin, which is thermoplastic resin, is dissolved. Mix with the first composition after heating for a predetermined time at one heating temperature.
[0018] その混合物は有機溶媒を含有するため流動性を有しており、不図示の剥離フィル ム表面にその混合物を塗布し、塗布した混合物の表面を露出させた状態で第一の 加熱温度よりも高い第二の加熱温度 (例えば 70°C以上 80°C以下)に加熱すると、上 記第一の加熱工程で発生したアルコールが蒸発し、混合物の内部から放出される ( 第二の加熱工程)。  [0018] Since the mixture contains an organic solvent and has fluidity, the mixture is applied to the surface of a peeling film (not shown) and the surface of the applied mixture is exposed to the first heating temperature. When heated to a higher second heating temperature (for example, 70 ° C or higher and 80 ° C or lower), the alcohol generated in the first heating step evaporates and is released from the inside of the mixture (second heating Process).
[0019] その加熱により有機溶剤も放出され、混合物が流動性を失ってフィルム化し、フィル ム状の接着剤 (接着フィルム)が得られる。以上詳述した接着フィルムの製造工程を 図 24に示す。  The organic solvent is also released by the heating, and the mixture loses fluidity to form a film, whereby a film-like adhesive (adhesive film) is obtained. The manufacturing process of the adhesive film detailed above is shown in FIG.
接着剤をフィルム状に成形しな 、場合であっても、表面を露出させた状態で混合物 を第二の加熱温度に加熱すれば、混合物からアルコールが放出される。 また、第二の加熱温度に加熱する混合物の粘度を第一の組成物の粘度よりも低く すれば、アルコールが一層放出されやすくなる。 Even if the adhesive is not formed into a film, if the mixture is heated to the second heating temperature with the surface exposed, alcohol is released from the mixture. Further, if the viscosity of the mixture heated to the second heating temperature is lower than the viscosity of the first composition, the alcohol is more easily released.
[0020] 本発明の製造方法で製造された接着フィルムを使用する時には、 2つの貼着対象 物間に接着フィルムを配置し、一方の貼着対象物を接着フィルムの表面に接触させ 、他方の貼着対象物を接着フィルムの裏面に接触させた状態で、全体を押圧しなが ら、第一、第二の加熱温度よりも高い熱圧着温度に接着フィルムを加熱する (熱圧着 工程)。  [0020] When using the adhesive film manufactured by the manufacturing method of the present invention, an adhesive film is disposed between two objects to be adhered, and one object to be adhered is brought into contact with the surface of the adhesive film, and the other The adhesive film is heated to a thermocompression bonding temperature higher than the first and second heating temperatures while pressing the whole with the object to be adhered in contact with the back surface of the adhesive film (thermocompression bonding step).
[0021] 接着フィルムが熱圧着温度に加熱されると、下記反応式 (3)に示すように、シラノー ルが配位した金属キレートに、他のシラノールが更に配位してブレンステッド酸点を 生じる。  [0021] When the adhesive film is heated to the thermocompression bonding temperature, as shown in the following reaction formula (3), other silanols further coordinate to the metal chelate coordinated with silanol, and the Bronsted acid point is increased. Arise.
[0022] [化 3]  [0022] [Chemical 3]
+  +
XSiO -H  XSiO -H
\  \
Al -OSiX + XSiOH  Al -OSiX + XSiOH
/ \个  / \
I Al-OSiX  I Al-OSiX
/  /
反応式 (3)  Reaction formula (3)
[0023] ここでは、第一の榭脂原料はエポキシ榭脂が用いられており、ブレンステッド酸点 より活性プロトン (反応種)が供与されると、下記反応式 (4)に示すようにエポキシ環 が重合し (カチオン重合)、接着フィルムが貼着対象物に密着した状態で硬化する。 Here, epoxy resin is used as the first resin material, and when active protons (reactive species) are donated from the Bronsted acid point, the epoxy resin is expressed as shown in the following reaction formula (4). The ring is polymerized (cation polymerization), and the adhesive film is cured in a state of being in close contact with the object to be adhered.
[0024] [化 4]  [0024] [Chemical 4]
+ +
R-CH— CH2 一 CH2
Figure imgf000008_0001
R-CH—CH 2 CH 1 CH 2
Figure imgf000008_0001
R-CH-CH2 OH— 反応式 (4) [0025] 上述したように、本発明の接着剤は熱硬化の前に第一の加熱工程でアルコールが 生成されており、そのアルコールは第一の加熱工程と熱圧着工程の間に除去される ので、熱圧着時に接着フィルム内でアルコールの生成、放出が起こらず、接着剤に はアルコールの放出に起因するボイド (空隙)が形成されな 、。 R-CH-CH 2 OH— Reaction formula (4) [0025] As described above, in the adhesive of the present invention, alcohol is generated in the first heating process before thermosetting, and the alcohol is removed between the first heating process and the thermocompression bonding process. Therefore, no alcohol is generated or released in the adhesive film during thermocompression bonding, and no voids are formed in the adhesive due to alcohol release.
図 25は硬化した接着剤 20で 2つの貼着対象物 21、 22が固定された状態を示して おり、接着剤 20中にはボイドが存在しないので、貼着対象物 21、 22は強固に固定さ れている。  FIG. 25 shows a state in which the two adhesive objects 21 and 22 are fixed with the cured adhesive 20, and since no voids are present in the adhesive 20, the adhesive objects 21 and 22 are firmly attached. It is fixed.
[0026] 本発明のシランカップリング剤は、第一の榭脂原料の反応に寄与するだけではなく 、無機材料に吸着して接着剤との親和性を向上させる役割も果たす。  [0026] The silane coupling agent of the present invention not only contributes to the reaction of the first resin raw material, but also serves to improve the affinity with the adhesive by adsorbing to the inorganic material.
[0027] 例えば、表面に金属等の無機材料が露出する導電性粒子が接着剤に含有される 場合には、シランカップリング剤が導電性粒子の表面に吸着し、導電性粒子が接着 剤中で沈降せずに分散されるようになる。また、接着剤に無機フィラーが含有される 場合には、カップリング剤が無機フィラーの表面に吸着し、導電性粒子の場合と同様 に、無機フィラーが接着剤に分散されるようになる。  [0027] For example, when the adhesive contains conductive particles whose surface is exposed to an inorganic material such as a metal, the silane coupling agent is adsorbed on the surface of the conductive particles, and the conductive particles are contained in the adhesive. It will be dispersed without settling. Further, when the adhesive contains an inorganic filler, the coupling agent is adsorbed on the surface of the inorganic filler, and the inorganic filler is dispersed in the adhesive as in the case of the conductive particles.
[0028] 更に、ガラス基板やセラミック板等、貼着対象物の表面に無機材料が露出する場合 は、シランカップリング剤が貼着対象物の表面に吸着し、接着剤の貼着対象物に対 する接着性が向上する。  [0028] Furthermore, when an inorganic material is exposed on the surface of the object to be adhered, such as a glass substrate or a ceramic plate, the silane coupling agent is adsorbed on the surface of the object to be adhered, and the adhesive is adhered to the object to be adhered. Adhesiveness is improved.
[0029] シランカップリング剤の種類は特に限定されず、 Xが 3つのアルコキシ(OR)力もな るシリケートを用いることもできる力 Xが第一の榭脂材料の重合反応に組み込まれる 置換基を少なくとも 1つ有すれば、シランカップリング剤が第一の榭脂材料の硬化反 応に組み込まれ、硬化後の接着剤の強度が増す。  [0029] The type of silane coupling agent is not particularly limited, and X can use a silicate having three alkoxy (OR) forces. X is a substituent that is incorporated into the polymerization reaction of the first resin material. If at least one is present, a silane coupling agent is incorporated into the curing reaction of the first resin material, increasing the strength of the cured adhesive.
[0030] 硬化剤に用いる金属キレートの種類は特に限定されず、アルミニウムキレート以外 にも、ジルコニウムキレート、チタニウムキレート等を用いることができる力 これらの中 でもシラノールとの反応性が高 、アルミニウムキレートが最も好まし 、。これらの金属 キレートは 1種類を単独で硬化剤に用いてもよいし、 2種類以上を硬化剤に用いても よい。  [0030] The type of metal chelate used for the curing agent is not particularly limited. In addition to aluminum chelate, the ability to use zirconium chelate, titanium chelate, etc. Among these, the reactivity with silanol is high, and aluminum chelate is used. Most preferred. One of these metal chelates may be used alone as a curing agent, or two or more thereof may be used as a curing agent.
[0031] 第二の榭脂原料は第一の榭脂原料と異なる種類の榭脂であれば特に限定されな いが、第二の榭脂原料として熱可塑性榭脂を用いると、接着剤の貼着対象物に対す る接着性が向上する。また、第二の榭脂原料に第一の榭脂原料との硬化反応に組 み込まれるものを用いると、熱圧着後の接着剤の機械的強度が向上する。 [0031] The second resin material is not particularly limited as long as it is a different type of resin than the first resin material, but if thermoplastic resin is used as the second resin material, For sticking objects The adhesion is improved. Further, when the second resin material is incorporated into the curing reaction with the first resin material, the mechanical strength of the adhesive after thermocompression bonding is improved.
[0032] 第二の榭脂原料に用いられる榭脂は、具体的にはフエノキシ榭脂、ポリエステル榭 脂、ポリウレタン榭脂、ポリビュルァセタール、エチレンビュルアセテート、ポリブタジ ェンゴム等のゴム類を用いることが可能であり、これらの榭脂は単独で第二の榭脂原 料に用いてもよ ヽし、 2種類以上を混合して第二の榭脂原料に用いてもょ ヽ。  [0032] Specific examples of the resin used as the second resin raw material include rubbers such as phenoxy resin, polyester resin, polyurethane resin, polybutacetal, ethylene butyl acetate, and polybutadiene rubber. These resins can be used alone for the second resin, or two or more can be mixed and used for the second resin.
[0033] 第二の榭脂材料を溶解する溶媒は特に限定されず、例えば PGMAC (プロピレン グリコールモノメチルエーテルアセテート)と、トルエンと、酢酸ェチルと、 MEK (メチ ルェチルケトン)等を用いることが可能であり、それらの溶媒は単独で用いてもょ 、し[0033] The solvent for dissolving the second resin material is not particularly limited, and for example, PGMAC (propylene glycol monomethyl ether acetate), toluene, ethyl acetate, MEK (methyl ethyl ketone) and the like can be used. These solvents can be used alone.
、 2種類以上を混合させて用いてもよい。 Two or more types may be mixed and used.
[0034] 接着剤には、上記反応式(1)〜 (4)の反応を妨げな 、ものであれば、老化防止剤[0034] The adhesive may be an anti-aging agent as long as it does not hinder the reactions of the above reaction formulas (1) to (4).
、着色剤、充填剤等他の添加剤を添加することもできる。 Other additives such as coloring agents and fillers can also be added.
[0035] 第一の加熱工程は、第一、第二の組成物を混合させた後に行ってもよいが、組成 物中のシランカップリング濃度が高い程、アルコールが生成される反応が早く進行す るので、シランカップリング剤の濃度を下げないために、第一の加熱工程は第一の組 成物だけで行うことが好ま 、。 [0035] The first heating step may be performed after mixing the first and second compositions, but the higher the silane coupling concentration in the composition, the faster the reaction to produce alcohol. Therefore, in order not to lower the concentration of the silane coupling agent, it is preferable that the first heating step is performed only with the first composition.
[0036] 第一の組成物中には硬化剤とシランカップリング剤と第一の榭脂材料が高濃度で 存在するため、第二の組成物を添加せずに、第一の組成物を第二の加熱温度にカロ 熱して第二の加熱工程を行うと、上記反応式 (3)、(4)の反応が進行し、第一の組成 物が硬化する。 [0036] In the first composition, the curing agent, the silane coupling agent, and the first resin material are present in a high concentration, so that the first composition is added without adding the second composition. When the second heating step is performed by heating to the second heating temperature, the reactions of the above reaction formulas (3) and (4) proceed, and the first composition is cured.
従って、第二の加熱工程は、第一の組成物に第二の組成物を添加し、硬化剤とシ ランカップリング剤と第一の榭脂材料の濃度を、第一の加熱工程の時よりも低くして 力も行うことが望ましい。第二の組成物は、硬化剤とシランカップリング剤と第一の榭 脂材料の濃度を希釈可能であれば特に限定されず、第二の組成物を溶剤だけで構 成してもょ 、し、第二の榭脂原料だけで構成してもよ 、。  Accordingly, in the second heating step, the second composition is added to the first composition, and the concentrations of the curing agent, the silane coupling agent, and the first greave material are determined at the time of the first heating step. It is desirable that the force be applied at a lower level. The second composition is not particularly limited as long as the concentration of the curing agent, the silane coupling agent, and the first resin material can be diluted, and the second composition may be composed of only a solvent. However, it may be composed of only the second raw material of rosin.
第二の加熱工程の代わりに、接着剤を真空脱泡してアルコールを除去してもよぐ また、真空脱泡と第二の加熱工程の両方を行ってもよい。真空脱泡を行う時には、脱 泡効率を上げるために、脱泡前に接着剤を有機溶剤で希釈してもよ ヽ。 [0037] 硬化剤としてマイクロカプセル化されて ヽな 、金属キレートをそのまま用いてもよ!ヽ 。しかし、接着剤の硬化性を高めるために金属キレートの濃度を高くすると、第一、第 二の加熱工程や、得られた接着剤を貯蔵している間に上記反応式 (3)、 (4)の反応 が進行してしまう。 Instead of the second heating step, the adhesive may be defoamed to remove alcohol, and both the vacuum defoaming and the second heating step may be performed. When performing vacuum defoaming, the adhesive may be diluted with an organic solvent before defoaming to increase defoaming efficiency. [0037] It is possible to use a metal chelate as it is, which is microencapsulated as a curing agent!ヽ. However, if the concentration of the metal chelate is increased in order to enhance the curability of the adhesive, the above reaction formulas (3) and (4) can be used during the first and second heating steps and during storage of the obtained adhesive. ) Progresses.
その場合は、金属キレートが上述したようにマイクロカプセルィ匕した潜在性硬化剤 を用い、第一、第二の加熱工程後に一部がマイクロカプセル化された状態で残るよう にすれば、第一、第二の加熱工程や接着剤の貯蔵中に上記反応式 (3)、 (4)の反 応が進行せず、接着剤が硬化しないので、接着剤の貯蔵性が向上する。  In that case, if the latent curing agent in which the metal chelate is microencapsulated as described above is used so that part of the metal chelate remains in a microencapsulated state after the first and second heating steps, In addition, the reaction of the above reaction formulas (3) and (4) does not proceed during the second heating step or during storage of the adhesive, and the adhesive is not cured, so that the storage of the adhesive is improved.
尚、後述する多孔性榭脂は、上記熱圧着温度では溶融又は破壊されるので、熱圧 着工程の時には金属キレートが接着剤中に放出されて反応式(3)、(4)の反応が急 速に進み、接着剤が硬化する。  Since the porous resin described later is melted or broken at the above-mentioned thermocompression bonding temperature, the metal chelate is released into the adhesive during the hot-pressing step, and the reactions of the reaction formulas (3) and (4) occur. It progresses rapidly and the adhesive hardens.
実施例  Example
[0038] <加熱試験 1 >  [0038] <Heating test 1>
エポキシ榭脂 (日立化成工業 (株)社製の商品名「2021P」 )力もなる第一の榭脂原 料 33重量部と、信越シリコーン (株)製の商品名「KBM303」力もなるシランカツプリ ング剤 8重量部と、アルミニウムキレートがマイクロカプセルィ匕された潜在性硬化剤 15 重量部とを混合して第一の組成物を作成した。ここでは、潜在性硬化剤として後述す る多孔性榭脂にアルミニウムキレートが保持された物を用いた。  Epoxy resin (trade name “2021P” manufactured by Hitachi Chemical Co., Ltd.) A first composition was prepared by mixing 8 parts by weight and 15 parts by weight of a latent curing agent in which an aluminum chelate was microencapsulated. Here, a latent curing agent in which an aluminum chelate was held in a porous resin described later was used.
[0039] 第一の糸且成物 0. 05gをサンプル管に入れて、 50°C、 60°Cの加熱温度で 5分間の 加熱、又は 40°C、 50°C、 60°C、 70°Cの加熱温度で 10分間の加熱を行い、加熱済 試料を作成した。これとは別に、第一の組成物を加熱せずに室温 (25°C)でそれぞ れ 5分間、 10分間放置して未加熱試料を作成した。尚、加熱の時には、サンプル管 の蓋を外したまま加熱を行った。  [0039] Put 0.05 g of the first yarn and composite into a sample tube and heat at 50 ° C, 60 ° C for 5 minutes, or 40 ° C, 50 ° C, 60 ° C, 70 A heated sample was prepared by heating for 10 minutes at a heating temperature of ° C. Separately, the first composition was left unheated at room temperature (25 ° C) for 5 minutes and 10 minutes to prepare an unheated sample. During heating, the sample tube was heated with the lid removed.
[0040] 上記加熱済試料と、未加熱試料を、 80°Cで 10分間加熱し、パージ &トラップ法で 捕捉した成分から、ガスクロマトグラフィー質量分析法でアルコール量 (ここではメタノ ール量)を定量した。  [0040] The heated sample and the unheated sample were heated at 80 ° C for 10 minutes, and from the components captured by the purge and trap method, the amount of alcohol (here, the amount of methanol) was determined by gas chromatography mass spectrometry. Was quantified.
[0041] 10分間加熱した時のメタノール検出量を下記表 1に記載し、 5分間加熱した時のメ タノール検出量を下記表 2に記載する。 [0042] [表 1][0041] The amount of methanol detected when heated for 10 minutes is shown in Table 1 below, and the amount of methanol detected when heated for 5 minutes is shown in Table 2 below. [0042] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0043] [表 2] [0043] [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
[0044] 上記表 1、 2と、下記表 3、 4中、「加熱条件、無し」は室温で放置した場合を示して いる。 [0044] In Tables 1 and 2 and Tables 3 and 4 below, “heating condition, none” indicates the case where the sample is left at room temperature.
[0045] 更に、検出されたメタノール検出量 (ppm)と加熱時間(分)との関係を図 1に示す。  Furthermore, FIG. 1 shows the relationship between the detected amount of methanol detected (ppm) and the heating time (minutes).
[0046] 図 1と表 1、 2を見ると、未加熱試料は共にメタノール検出量が 620ppmであるのに 対し、加熱済試料は未加熱試料よりもメタノール検出量が多ぐ加熱時間は 5分よりも 10分の方が加熱温度が同じであってもメタノール検出量が多いことがわかる。  [0046] As can be seen from FIG. 1 and Tables 1 and 2, the unheated sample has a detected methanol level of 620 ppm, whereas the heated sample has a detected methanol level higher than that of the unheated sample. It can be seen that the detected amount of methanol is greater for 10 minutes than for the same heating temperature.
[0047] 加熱温度が高くなるほどメタノール検出量が多くなる傾向があり、 10分の加熱時間 では、加熱温度が 60°Cでその検出量が最大値 (4540ppm)になったが、更に加熱 温度を 70°Cに上げて第一の組成物を 10分間加熱して加熱済試料を作成したところ 、加熱済試料は第一の榭脂原料が硬化してしまったので、接着剤の加熱温度は 70 °C未満が本発明に適して!/ヽることがゎカゝる。  [0047] The higher the heating temperature, the more the detected amount of methanol tends to increase. With a heating time of 10 minutes, the detected temperature reached its maximum value (4540ppm) at a heating temperature of 60 ° C. The first composition was heated to 70 ° C and heated for 10 minutes to prepare a heated sample. As the heated sample had cured the first resin material, the heating temperature of the adhesive was 70 Less than ° C is suitable for the present invention.
[0048] <加熱試験 2>  [0048] <Heating test 2>
加熱試験 1と同じ第一の組成物を、加熱温度が 60°C、加熱時間が 5分、 10分、 15 分とした以外は、上記加熱試験 1と同じ条件で第一の組成物を加熱して加熱済試料 を作成した。  Heat the first composition under the same conditions as in Heat Test 1 above, except that the first composition is the same as Heat Test 1 except that the heating temperature is 60 ° C and the heating time is 5 minutes, 10 minutes, and 15 minutes. Thus, a heated sample was prepared.
[0049] これとは別に、硬化剤を含有しない第一の組成物を同じ条件で加熱した後、硬化 剤を添加し、比較例の加熱済試料を作成した。これらの加熱済試料のメタノール量を 上記加熱試験 1と同じ条件で定量した。 [0049] Separately, the first composition containing no curing agent is heated under the same conditions, and then cured. An agent was added to prepare a heated sample of a comparative example. The amount of methanol in these heated samples was quantified under the same conditions as in Heating Test 1 above.
[0050] 硬化剤を添加した後に加熱した加熱済試料のメタノール量を下記表 3に記載し、硬 ィ匕剤を添加せずに加熱した加熱済試料のメタノール量を下記表 4に記載する。 [0050] The amount of methanol of the heated sample heated after the addition of the curing agent is shown in Table 3 below, and the amount of methanol of the heated sample heated without adding the hardener is shown in Table 4 below.
[0051] [表 3] [0051] [Table 3]
Figure imgf000013_0001
Figure imgf000013_0001
[0052] [表 4] [0052] [Table 4]
Figure imgf000013_0002
Figure imgf000013_0002
[0053] 更に、検出されたメタノール量 (ppm)加熱時間(分)との関係を図 2に示す。硬化剤 を含有しな 、比較例の組成物は、加熱時間を長くしてもメタノール検出量が殆ど増え ておらず、硬化剤を含有しない場合には、 60°Cという低温条件ではシランカップリン グ剤の加水分解の進行が非常に遅いことがわかる。 [0053] Further, FIG. 2 shows the relationship between the detected amount of methanol (ppm) and the heating time (minutes). The composition of the comparative example containing no curing agent showed little increase in the detected amount of methanol even when the heating time was prolonged. When no curing agent was contained, the composition of the silane coupling agent was used at a low temperature of 60 ° C. It can be seen that the hydrolysis of the glue is very slow.
[0054] 比較例の組成物に比べて、硬化剤を含有させた第一の組成物はメタノール検出量 が多ぐ硬化剤が第一の組成物に含有されていれば、加熱温度が低温であっても、 シランカップリング剤の加水分解が進行することがわかる。 [0054] Compared to the composition of the comparative example, the first composition containing the curing agent has a lower heating temperature if the first composition contains a curing agent having a higher methanol detection amount. Even if it exists, it turns out that hydrolysis of a silane coupling agent advances.
[0055] また、第一の組成物は、加熱時間が長くなるほどメタノール検出量が増加し、加熱 時間が 10分で検出量が最大となっているが、加熱時間が 15分になると検出量が最 大値【こ itベて 2000ppmiまど減少して!/ヽる。 [0055] In the first composition, the amount of methanol detected increased as the heating time increased, and the detected amount reached its maximum at a heating time of 10 minutes. However, when the heating time reached 15 minutes, the detected amount increased. Maximum value [This is reduced to 2000ppmi!
[0056] 検出量の減少は加熱中にメタノールが第一の組成物力 放出されたためと推測さ れ、例えば第一の加熱温度が 60°Cの条件では、 10分間加熱すれば、十分にアルコ ールが生成されることがわかる。 [0056] The decrease in the detected amount is presumed to be due to the release of the first composition force of methanol during heating. For example, under the condition where the first heating temperature is 60 ° C, if the heating is performed for 10 minutes, the alcohol is sufficiently absorbed. It can be seen that a rule is generated.
[0057] <加熱試験 3 > [0057] <Heating test 3>
フエノキシ榭脂溶液 65重量部と、エポキシ化ポリブタジエン (ダイセル化学 (株)社 製の商品名「PB3600」) 10重量部とからなる第二の榭脂原料と、金被覆ニッケル粒 子(商品名「6GNM5— Ni」)からなる導電性粒子 19. 57重量部とを混合して第二の 組成物を作成した。  A second resin material consisting of 65 parts by weight of a phenoxy resin solution and 10 parts by weight of epoxidized polybutadiene (trade name “PB3600” manufactured by Daicel Chemical Industries, Ltd.), and gold-coated nickel particles (trade name “ 6GNM5—Ni ”)) was mixed with 19.57 parts by weight of conductive particles to prepare a second composition.
[0058] ここで用いたフエノキシ榭脂溶液は東都化成 (株)社製の商品名「YP70」であり、 Ρ BMACとトルエンが等量 (重量)混合された有機溶剤にフエノキシ榭脂が 40重量% 溶解されている。  [0058] The phenoxy resin solution used here is a product name “YP70” manufactured by Toto Kasei Co., Ltd. Ρ 40 weight of phenoxy resin in an organic solvent mixed with equal weight (weight) of BMAC and toluene. % Dissolved.
[0059] 加熱試験 1に用いた第一の組成物を、 60°Cの加熱温度でそれぞれ 5分、 10分、 1 5分間加熱して第一の加熱工程を行った後、第一の組成物に上述した第二の組成 物を混合し、その混合物の塗布層を 70°Cで 5分間加熱して実施例の接着フィルムを 作成した。  [0059] The first composition used in the heating test 1 was heated at a heating temperature of 60 ° C for 5 minutes, 10 minutes, and 15 minutes, respectively. The above-mentioned second composition was mixed with the product, and the coating layer of the mixture was heated at 70 ° C. for 5 minutes to produce the adhesive film of the example.
[0060] これとは別に、硬化剤を添加せずに第一の加熱工程を行い、第一の加熱工程の後 に硬化剤を添加した以外は、上記実施例の接着フィルムと同じ条件で比較例の接着 フィルムを作成した。  [0060] Apart from this, a comparison was made under the same conditions as those of the adhesive film of the above example except that the first heating step was performed without adding the curing agent, and the curing agent was added after the first heating step. An example adhesive film was made.
[0061] 各接着フィルムに、厚さ 0. 2mmのシリコンラバーを重ね合わせ、シリコンラバー上 に MCM (Multi-chip module)ボンダ一を押し当てて 150°Cで 10秒間加熱して接着 フィルムを熱硬化させ、試料片を得た。  [0061] A 0.2 mm thick silicon rubber was placed on each adhesive film, and an MCM (Multi-chip module) bonder was pressed on the silicon rubber and heated at 150 ° C for 10 seconds to heat the adhesive film. Cured to obtain a sample piece.
[0062] 熱硬化前の接着フィルムと、熱硬化後の試料片について、上記加熱試験 1と同じ条 件でアルコ一ル量を測定した。 [0062] For the adhesive film before thermosetting and the sample piece after thermosetting, the amount of alcohol was measured under the same conditions as in the heat test 1.
[0063] 熱硬化前の接着フィルムと、熱硬化後の試料片の、アルコール (メタノール)検出量 を下記表 5、 6に示し、そのアルコール検出量と加熱時間との関係を図 3、図 4に示す [0063] The detected amounts of alcohol (methanol) in the adhesive film before thermosetting and the sample piece after thermosetting are shown in Tables 5 and 6 below, and the relationship between the detected alcohol amount and the heating time is shown in Figs. Shown in
[0064] [表 5] メ夕ノール濃度 [ p p m ] 圧着前 60°C/加熱時間 [rain] 硬化剤有 硬化剤無 なし 0 101. 14 101. 1 [0064] [Table 5] Methanol concentration [ppm] 60 ° C before heating / heating time [rain] With curing agent Without curing agent None 0 101. 14 101. 1
60°C/5mi n 5 151. 48 103. 32 60 ° C / 5min 5 151. 48 103. 32
60°C/10min 10 155. 96 117. 3860 ° C / 10min 10 155. 96 117. 38
60°C/15min 丄 5 205. 86 60 ° C / 15min 丄 5 205. 86
ud&'V 「硬化剤^」. r硬化剤無_ は、 -の加熱 ι:ί¾時における硬化剤の^無を小-す。  ud & 'V “Hardening agent”. r Hardening agent is less than the amount of hardening agent during heating.
[0065] [表 6] [0065] [Table 6]
表 6 :熱硬化後の接着フィルムのメタノール量  Table 6: Methanol content of adhesive film after heat curing
Figure imgf000015_0001
Figure imgf000015_0001
上記表中 「硬化剤有」、 「硬化剤無」 は、 第一の加熱工程時における硬化剤の有無を示す。  In the table above, “with curing agent” and “without curing agent” indicate the presence or absence of a curing agent during the first heating step.
[0066] 表 5、 6と、図 3、 4を比較すると明らかなように、実施例の接着フィルムは、比較例の [0066] As is clear from comparison between Tables 5 and 6 and Figs. 3 and 4, the adhesive films of the examples are of the comparative example.
L  L
接着フィルムに比べて熱硬化前のメタノール検出量は多いが、熱硬化後は逆に実施 例の接着フィルムのメタノール検出量が少なくなつた。  The amount of methanol detected before thermosetting was larger than that of the adhesive film, but the amount of methanol detected in the adhesive film of the example decreased after thermosetting.
[0067] 実施例の接着フィルムと比較例の接着フィルムは、出来上がり物の組成が同じなの でメタノールの総発生量は同じになるはずであり、熱硬化前と熱硬化後でメタノール 検出量に差が生じる原因は、上記反応式(1)〜 (4)の反応の進行が異なるためであ る。  [0067] Since the adhesive film of the example and the adhesive film of the comparative example have the same composition of the finished product, the total amount of methanol should be the same, and there is a difference in the detected amount of methanol before and after thermal curing. This is because the progress of the reactions in the above reaction formulas (1) to (4) is different.
[0068] 即ち、第一の加熱工程の時に硬化剤が存在した実施例の接着フィルムは、熱硬化 前にメタノールが生成する反応が進行しているため、比較例の接着フィルムよりもメタ ノール検出量が多いが、そのメタノールは熱硬化前にある程度除去されており、熱硬 化の時には新たなメタノールが生成されな!、ので、熱硬化後のメタノール検出量が少 なくなる。  [0068] That is, in the adhesive film of the example in which the curing agent was present at the time of the first heating step, a reaction in which methanol was generated before the thermal curing progressed, and therefore, methanol was detected more than the comparative adhesive film. Although the amount is large, the methanol has been removed to some extent before thermosetting, and no new methanol is produced at the time of thermosetting! Therefore, the amount of methanol detected after thermosetting becomes small.
[0069] これに対し、比較例の接着フィルムは第一の加熱工程よりも高い温度の加熱条件 で一度に加熱されるため、一度に大量のメタノールが生成され、熱硬化後のメタノー ル検出量が多くなつたと推測される。 [0069] In contrast, since the adhesive film of the comparative example is heated at a time under higher heating conditions than in the first heating step, a large amount of methanol is generated at one time, and the methanol after the thermosetting is formed. It is estimated that the amount of detected light has increased.
[0070] 次に、本発明に用いる硬化剤の一例について詳細に説明する。  [0070] Next, an example of the curing agent used in the present invention will be described in detail.
本発明に用いる潜在性硬化剤は、アルミニウムキレート剤が、多官能イソシァネート 化合物を界面重合させて得た多孔性榭脂に保持されてなるものである。この潜在性 硬化剤は、低温速硬化性を実現可能なアルミニウムキレート剤を使用して 、るので、 この潜在性硬化剤を配合した接着剤に良好な低温速硬化性を付与することができる また、アルミニウムキレート剤が界面重合させて得た多孔性榭脂に保持されている ので、この潜在性硬化剤を接着剤に配合しても (一液化した状態でも)、接着剤の貯 蔵安定性を大きく向上させることができる。  The latent curing agent used in the present invention is obtained by holding an aluminum chelating agent in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound. Since this latent curing agent uses an aluminum chelating agent capable of realizing low-temperature rapid curing, it is possible to impart good low-temperature rapid curing to an adhesive containing this latent curing agent. Since the aluminum chelating agent is retained in the porous resin obtained by interfacial polymerization, even if this latent curing agent is added to the adhesive (even when it is in one solution), the storage stability of the adhesive Can be greatly improved.
[0071] この潜在性硬化剤においては、アルミニウムキレート剤コアの周囲を多孔性榭脂の シェルで被覆した単純な構造のマイクロカプセルではなく、潜在性硬化剤 1の電子顕 微鏡写真(図 5)とその中心付近の拡大電子顕微鏡写真(図 6)に示すように、多孔性 榭脂マトリックス 2中に存在する微細な多数の孔 3にアルミニウムキレート剤が保持さ れた構造となっている。 [0071] In this latent curing agent, an electron microscopic photograph of latent curing agent 1 is used instead of a microcapsule having a simple structure in which the periphery of the aluminum chelating agent core is covered with a porous resin shell (Fig. 5). ) And an enlarged electron micrograph near the center (FIG. 6), the aluminum chelating agent is held in a large number of fine pores 3 present in the porous resin matrix 2.
[0072] ここで、この潜在性硬化剤 1は、界面重合法を利用して製造されるため、その形状 は球状であり、その粒子径は硬化性及び分散性の点から、好ましくは 0. 5 111以上1 00 m以下であり、また、孔 3の大きさは硬化性及び潜在性の点から、好ましくは 5 m以上 150nm以下である。  [0072] Here, since this latent curing agent 1 is produced using an interfacial polymerization method, its shape is spherical, and its particle diameter is preferably 0 from the viewpoint of curability and dispersibility. 5 111 or more and 100 m or less, and the size of the hole 3 is preferably 5 m or more and 150 nm or less from the viewpoint of curability and potential.
[0073] また、潜在性硬化剤 1は、使用する多孔性榭脂の架橋度が小さすぎるとその潜在 性が低下し、大きすぎるとその熱応答性が低下する傾向があるので、使用目的に応 じて、架橋度が調整された多孔性榭脂を使用することが好ましい。ここで、多孔性榭 脂の架橋度は、微少圧縮試験により計測することができる。  [0073] In addition, the latent curing agent 1 has a tendency to reduce its latency when the degree of cross-linking of the porous resin used is too small, and to decrease its thermal response when it is too large. Accordingly, it is preferable to use a porous resin whose degree of crosslinking is adjusted. Here, the degree of crosslinking of the porous resin can be measured by a micro compression test.
[0074] 潜在性硬化剤 1は、その界面重合時に使用する有機溶剤を実質的に含有していな いこと、具体的には、 lppm以下であることが、硬化安定性の点で好ましい。  The latent curing agent 1 preferably contains substantially no organic solvent used during the interfacial polymerization, specifically, 1 ppm or less from the viewpoint of curing stability.
[0075] また、潜在性硬化剤 1における多孔性榭脂とアルミニウムキレート剤との含有量は、 アルミニウムキレート剤含量が少なすぎると熱応答性が低下し、多すぎると潜在性が 低下するので、多孔性榭脂 100質量部に対しアルミニウムキレート剤を、好ましくは 1 0質量部以上 200質量部以下、より好ましくは 10質量部以上 150質量部以下である [0075] Further, the content of the porous rosin and the aluminum chelating agent in the latent curing agent 1 is such that if the aluminum chelating agent content is too small, the thermal responsiveness is lowered, and if it is too much, the latency is lowered. Aluminum chelating agent for 100 parts by mass of porous resin, preferably 1 0 parts by mass or more and 200 parts by mass or less, more preferably 10 parts by mass or more and 150 parts by mass or less
[0076] その潜在性硬化剤において、アルミニウムキレート剤としては、化学式(1)に表され る、 3つの |8—ケトエノラート陰イオンがアルミニウムに配位した錯体ィ匕合物が挙げら れる。 [0076] In the latent curing agent, examples of the aluminum chelating agent include a complex compound in which three | 8-ketoenolate anions are coordinated to aluminum represented by the chemical formula (1).
[0077] [化 5]  [0077] [Chemical 5]
Figure imgf000017_0001
Figure imgf000017_0001
[0078] ここで、
Figure imgf000017_0002
R2及び R3は、それぞれ独立的にアルキル基又はアルコキシル基である 。アルキル基としては、メチル基、ェチル基等が挙げられる。アルコキシル基としては 、メトキシ基、エトキシ基、ォレイルォキシ基が挙げられる。
[0078] where
Figure imgf000017_0002
R 2 and R 3 are each independently an alkyl group or an alkoxyl group. Examples of the alkyl group include a methyl group and an ethyl group. Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
[0079] 化学式(1)で表されるアルミニウムキレート剤の具体例としては、アルミニウムトリス( ァセチルァセトネート)、アルミニウムトリス(ェチルァセトアセテート)、アルミニウムモノ ァセチルァセトネートビス(ェチルァセトアセテート)、アルミニウムモノァセチルァセト ネートビスォレイルァセトアセテート、ェチルァセトアセテートアルミニウムジイソプロピ レート、アルキルァセトアセテートアルミニウムジイソプロピレート等が挙げられる。  [0079] Specific examples of the aluminum chelating agent represented by the chemical formula (1) include aluminum tris (acetyl acetonate), aluminum tris (ethyl acetoacetate), and aluminum mono-acetyl acetonate bis (e Tylacetoacetate), aluminum monoacetylacetoate bisoleylacetoacetate, ethylacetoacetate aluminum diisopropylate, alkylacetoacetate aluminum diisopropylate and the like.
[0080] 多官能イソシァネートイ匕合物は、好ましくは一分子中に 2個以上のイソシァネート基 、好ましくは 3個のイソシァネート基を有する化合物である。このような 3官能イソシァ ネートイ匕合物の更に好ましい例としては、トリメチロールプロパン (TMP) 1モルにジィ ソシァネートイ匕合物 3モルを反応させた下記化学式(2)の TMPァダクト体、ジィソシ ァネートイ匕合物 3モルを自己縮合させた化学式(3)のイソシァヌレート体、ジイソシァ ネート化合物 3モルのうちの 2モルから得られるジイソシァネートウレアに残りの 1モル のジイソシァネートが縮合したィ匕学式 (4)のビユウレット体が挙げられる。 [0080] The polyfunctional isocyanate compound is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule. As a more preferred example of such a trifunctional isocyanate compound, a TMP adduct having the following chemical formula (2), which is obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane (TMP), a diisocyanate compound: Isocyanurate of formula (3), diisocyanate obtained by self-condensation of 3 moles of compound The biuret form of the chemical formula (4) in which the remaining 1 mol of diisocyanate is condensed to the diisocyanate urea obtained from 2 mols of the 3 molate compounds.
[0081] [化 6] [0081] [Chemical 6]
0 0
II II
OCNH-R-NCO OCNH-R-NCO
CH2 0  CH2 0
I II  I II
C2H5 -C - CHaOCNH-R-NCO ( 2 )  C2H5 -C-CHaOCNH-R-NCO (2)
CH2  CH2
OCNH-R-NCO  OCNH-R-NCO
II  II
0  0
OCNOCN
Figure imgf000018_0001
Figure imgf000018_0001
[0082] 上記化学式(2)〜(4)にお 、て、置換基 Rは、ジイソシァネートイ匕合物のイソシァネ 一ト基を除いた部分である。このようなジイソシァネートイ匕合物の具体例としては、トル ェン 2, 4—ジイソシァネート、トルエン 2, 6—ジイソシァネート、 m—キシリレンジイソ シァネート、へキサメチレンジイソシァネート、へキサヒドロー m—キシリレンジイソシァ ネート、イソホロンジイソシァネート、メチレンジフエ-ルー 4, 4'ージイソシァネートが 挙げられる。 [0082] In the above chemical formulas (2) to (4), the substituent R is a portion excluding the isocyanate group of the diisocyanate compound. Specific examples of such diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydrohydrate. Examples include m-xylylene diisocyanate, isophorone diisocyanate, and methylene diphenyl 4,4′-diisocyanate.
[0083] このような多官能イソシァネートイ匕合物を界面重合させて得られる多孔性榭脂は、 界面重合の間にイソシァネート基の一部が加水分解を受けてアミノ基となり、そのアミ ノ基とイソシァネート基とが反応して尿素結合を生成してポリマー化するものであり、 多孔性ポリウレアである。  [0083] The porous resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound is a part of the isocyanate group that undergoes hydrolysis during the interfacial polymerization to become an amino group. It is a porous polyurea that reacts with an isocyanate group to form a urea bond and polymerize it.
このような多孔性榭脂とその孔に保持されたアルミニウムキレート剤とからなる潜在 性硬化剤は、硬化のために加熱されると、明確な理由は不明であるが、保持されて V、るアルミニウムキレート剤が、潜在性硬化剤と接着剤中で併存して 、るシランカップ リング剤や第一の榭脂原料と接触できるようになり、硬化反応を進行させることができ る。 A latent curing agent composed of such porous resin and an aluminum chelating agent retained in the pores is not retained for a clear reason when heated for curing. The aluminum chelating agent coexists in the latent curing agent and the adhesive, and can come into contact with the silane coupling agent and the first resin raw material, thereby allowing the curing reaction to proceed. The
[0084] なお、潜在性硬化剤の構造上、その最表面にもアルミニウムキレート剤が存在する ことになると思われる力 最表面に存在するアルミニウムキレート剤は界面重合の際 に系内に存在する水により不活性ィ匕し、アルミニウムキレート剤は多孔性榭脂の内部 で保持されたものだけが活性を保持して ヽることになり、結果的に得られる硬化剤は 潜在性を獲得できたものと考えられる。  [0084] It should be noted that due to the structure of the latent curing agent, an aluminum chelating agent is considered to be present on the outermost surface. The aluminum chelating agent present on the outermost surface is water present in the system during interfacial polymerization. As a result, only the aluminum chelating agent retained inside the porous resin retains its activity, and the resulting curing agent has acquired potential. it is conceivable that.
[0085] 上述した潜在性硬化剤は、アルミニウムキレート剤と多官能イソシァネートイ匕合物と を揮発性有機溶剤に溶解させ、得られた溶液を、分散剤を含有する水相に投入し、 加熱撹拌することにより界面重合させることを特徴とする製造方法により製造すること ができる。  [0085] The latent curing agent described above is obtained by dissolving an aluminum chelating agent and a polyfunctional isocyanate compound in a volatile organic solvent, and charging the obtained solution into an aqueous phase containing a dispersant, followed by heating and stirring. Thus, it can be produced by a production method characterized by interfacial polymerization.
[0086] この製造方法においては、まず、アルミニウムキレート剤と多官能イソシァネートイ匕 合物とを揮発性有機溶剤に溶解させ、界面重合における油相となる溶液を調製する ここで、揮発性有機溶剤を使用する理由は以下の通りである。即ち、通常の界面重 合法で使用するような沸点が 300°Cを超える高沸点溶剤を用いた場合、界面重合の 間に有機溶剤が揮発しないために、イソシァネート—水との接触確率が増大せず、 それらの間での界面重合の進行度合いが不十分となるからである。  [0086] In this production method, first, an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent to prepare a solution that becomes an oil phase in the interfacial polymerization. The reason for using is as follows. That is, when a high-boiling solvent having a boiling point exceeding 300 ° C as used in the ordinary interfacial polymerization method is used, the organic solvent does not volatilize during interfacial polymerization, and the probability of contact with isocyanate-water increases. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
そのため、界面重合させても良好な保形性の重合物が得られ難ぐまた、得られた 場合でも重合物に高沸点溶剤が取り込まれたままとなり、接着剤に配合した場合に、 高沸点溶剤が接着剤の硬化物の物性に悪影響を与えるからである。このため、この 製造方法においては、油相を調製する際に使用する有機溶剤として、揮発性のもの を使用する。  For this reason, it is difficult to obtain a polymer having good shape retention even when interfacial polymerization is performed, and even when it is obtained, a high boiling point solvent remains incorporated in the polymer, and when blended in an adhesive, This is because the solvent adversely affects the physical properties of the cured product of the adhesive. For this reason, in this production method, a volatile organic solvent is used as the organic solvent used in preparing the oil phase.
[0087] このような揮発性有機溶剤としては、アルミニウムキレート剤と多官能イソシァネート 化合物との良溶媒 (それぞれの溶解度が好ましくは 0. lg/ml (有機溶剤)以上)で あって、水に対しては実質的に溶解せず (水の溶解度が 0. 5gZml (有機溶剤)以下 )、大気圧下での沸点が 100°C以下のものが好ましい。このような揮発性有機溶剤の 具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、 高極性、低沸点、貧水溶性の点で酢酸ェチルが好ましい。 [0088] 揮発性有機溶剤の使用量は、アルミニウムキレート剤と多官能イソシァネートイ匕合 物の合計量 100質量部に対し、少なすぎると潜在性が低下し、多すぎると熱応答性 が低下するので、好ましくは 100質量部以上 500質量部以下である。 [0087] Such a volatile organic solvent is a good solvent of an aluminum chelating agent and a polyfunctional isocyanate compound (the respective solubility is preferably not less than 0.1 lg / ml (organic solvent)), In particular, it is preferable that the solvent does not substantially dissolve (the solubility of water is 0.5 gZml (organic solvent) or less) and the boiling point at atmospheric pressure is 100 ° C or less. Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Of these, ethyl acetate is preferred because of its high polarity, low boiling point, and poor water solubility. [0088] If the amount of the volatile organic solvent used is too small relative to 100 parts by mass of the total amount of the aluminum chelating agent and the polyfunctional isocyanate compound, the potential decreases, and if too large, the thermal responsiveness decreases. The amount is preferably 100 parts by mass or more and 500 parts by mass or less.
[0089] なお、揮発性有機溶剤の使用量範囲内において、揮発性有機溶剤の使用量を比 較的多く使用すること等により、油相となる溶液の粘度を下げることができるが、粘度 を下げると撹拌効率が向上するため、反応系における油相滴をより微細化かつ均一 化することが可能になり、結果的に得られる潜在性硬化剤粒子径をサブミクロン〜数 ミクロン (0. 1 μ m以上 10 μ m以下)程度の大きさに制御しつつ、粒度分布を単分散 とすることが可能となる。油相となる溶液の粘度は ImPa' s以上 2. 5mPa' s以下に設 定することが好ましい。  [0089] The viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the range of the amount of the volatile organic solvent used. Lowering the stirring efficiency improves the oil phase droplets in the reaction system, making it possible to make the oil phase droplets finer and more uniform. The resulting latent hardener particle size is submicron to several microns (0.1). It is possible to make the particle size distribution monodisperse while controlling the size to about 10 μm or more. The viscosity of the oil phase solution is preferably set to ImPa's or more and 2.5 mPa's or less.
[0090] また、多官能イソシァネート化合物を乳化分散する際に、後述する分散剤として PV A (ポリビュルアルコール)を用いた場合、 PVAの水酸基と多官能イソシァネートイ匕合 物が反応してしまうため、副生成物が異物として潜在性硬化剤粒子の周囲を付着し てしまったり(図 22 :部分ケンィ匕 PVA使用時)、および粒子形状そのものが異形ィ匕し てしまったりする(図 23 :完全ケンィ匕 PVA使用時)。この現象を防ぐためには、多官能 イソシァネート化合物と水との反応性を促進すること、あるいは多官能イソシァネート 化合物と PVAとの反応性を抑制することが挙げられる。  [0090] Further, when emulsifying and dispersing the polyfunctional isocyanate compound, when PV A (polybulal alcohol) is used as a dispersant described later, the hydroxyl group of PVA reacts with the polyfunctional isocyanate compound, By-products may adhere around the latent curing agent particles as foreign substances (Fig. 22: When using partial ken PVA), and the particle shape itself may be deformed (Fig. 23: Complete ken-yi). (When using PVA). In order to prevent this phenomenon, the reactivity between the polyfunctional isocyanate compound and water can be promoted, or the reactivity between the polyfunctional isocyanate compound and PVA can be suppressed.
[0091] 多官能イソシァネートイ匕合物と水との反応性を促進するためには、アルミニウムキレ ート剤の配合量 (重量)を多官能イソシァネートイ匕合物の重量の好ましくは 1Z2以下 、より好ましくは 1Z3以下とする。これにより、多官能イソシァネートイ匕合物と水とが接 触する確率が高くなり、 PVAが油相滴表面に接触する前に多官能イソシァネートイ匕 合物と水とが反応し易くなる。  [0091] In order to promote the reactivity between the polyfunctional isocyanate compound and water, the blending amount (weight) of the aluminum chelate agent is preferably 1Z2 or less, more preferably the weight of the polyfunctional isocyanate compound. Is 1Z3 or less. This increases the probability that the polyfunctional isocyanate compound and water are in contact with each other, and the polyfunctional isocyanate compound and water are likely to react before the PVA contacts the oil droplet surface.
[0092] また、多官能イソシァネートイ匕合物と PVAとの反応性を抑制するためには、油相中 のアルミニウムキレート剤の配合量を増大させることが挙げられる。具体的には、アル ミニゥムキレート剤の配合量を多官能イソシァネートイ匕合物の重量で好ましくは等倍( 1. 0倍)以上、より好ましくは 1. 0倍以上 2. 0倍以下とする。これにより、油相滴表面 におけるイソシァネート濃度が低下する。  [0092] In order to suppress the reactivity between the polyfunctional isocyanate compound and PVA, the amount of the aluminum chelating agent in the oil phase is increased. Specifically, the amount of the aluminum chelating agent is preferably equal to (1.0 times) or more, more preferably 1.0 to 2.0 times by weight of the polyfunctional isocyanate compound. This reduces the isocyanate concentration on the oil phase droplet surface.
さらに多官能イソシァネートイ匕合物は水酸基よりも加水分解により形成されるァミン との反応 (界面重合)速度が大きいため、多官能イソシァネートイ匕合物と一緒にァミン を油相となる溶液に添加することで、多官能イソシァネートイ匕合物と PVAとの反応確 率を低下させることができる。 Furthermore, polyfunctional isocyanate compounds are amines formed by hydrolysis rather than hydroxyl groups. The reaction rate between the polyfunctional isocyanate compound and the PVA is reduced by adding ammine to the oil phase solution together with the polyfunctional isocyanate compound because be able to.
[0093] アルミニウムキレート剤と多官能イソシァネートイ匕合物とを揮発性有機溶剤に溶解さ せる際には、大気圧下、室温で混合撹拌するだけでもよいが、必要に応じ、加熱して ちょい。 [0093] When the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in the volatile organic solvent, they may be mixed and stirred at room temperature under atmospheric pressure, but if necessary, they may be heated.
[0094] 次に、この製造方法においては、アルミニウムキレート剤と多官能イソシァネートイ匕 合物が揮発性有機溶剤に溶解した油相溶液を、分散剤を含有する水相に投入し、 加熱撹拌することにより界面重合させる。ここで、分散剤としては、ポリビニルアルコー ル、カルボキシメチルセルロース、ゼラチン等の通常の界面重合法において使用さ れるものを使用することができる。分散剤の使用量は、通常、水相の 0. 1質量%以上 10. 0質量%以下である。  [0094] Next, in this production method, an oil phase solution in which an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent is added to an aqueous phase containing a dispersant, and heated and stirred. Is interfacially polymerized. Here, as the dispersing agent, those used in a usual interfacial polymerization method such as polyvinyl alcohol, carboxymethyl cellulose, gelatin and the like can be used. The amount of the dispersant used is usually 0.1% by mass or more and 10.0% by mass or less of the aqueous phase.
[0095] 油相溶液の水相に対する配合量は、油相溶液が少なすぎると多分散化し、多すぎ ると微細化により凝集が生ずるので、水相 100質量部に対し、好ましくは 5質量部以 上 50質量部以下である。  [0095] The blending amount of the oil phase solution with respect to the aqueous phase is polydispersed when the amount of the oil phase solution is too small, and agglomeration occurs when the amount is too large. Therefore, the amount is preferably 5 parts by mass with respect to 100 parts by mass of the aqueous phase. More than 50 parts by mass.
[0096] 界面重合における乳化条件としては、油相の大きさが好ましくは 0. 5 μ m以上 100 μ m以下となるような撹拌条件 (撹拌装置ホモジナイザー;撹拌速度 8000rpm以上) で、通常、大気圧下、温度 30°C以上 80°C以下、撹拌時間 2時間以上 12時間以下、 加熱撹拌する条件を挙げることができる。  [0096] As the emulsification conditions in the interfacial polymerization, stirring conditions (stirring device homogenizer; stirring speed of 8000 rpm or more) are usually large, preferably such that the size of the oil phase is 0.5 μm or more and 100 μm or less. The conditions of heating and stirring under atmospheric pressure, temperature of 30 ° C to 80 ° C, stirring time of 2 hours to 12 hours, and the like can be mentioned.
[0097] 界面重合終了後に、得られた重合体微粒子を濾別し、自然乾燥することにより潜在 性硬化剤を得ることができる。  [0097] After the completion of the interfacial polymerization, the resulting polymer fine particles are filtered off and air-dried to obtain a latent curing agent.
[0098] 以上説明した潜在性硬化剤の製造方法によれば、多官能イソシァネートイ匕合物の 種類や使用量、アルミニウムキレート剤の種類や使用量、界面重合条件を変化させ ることにより、潜在性硬化剤の硬化特性をコントロールすることができる。例えば、重 合温度を低くすると接着剤の硬化温度を低下させることができ、反対に、重合温度を 高くすると接着剤の硬化温度を上昇させることができる。  [0098] According to the method for producing a latent curing agent described above, by changing the type and amount of the polyfunctional isocyanate compound, the type and amount of the aluminum chelating agent, and the interfacial polymerization conditions, the latent curing agent can be obtained. The curing characteristics of the curing agent can be controlled. For example, if the polymerization temperature is lowered, the curing temperature of the adhesive can be lowered. Conversely, if the polymerization temperature is raised, the curing temperature of the adhesive can be raised.
[0099] 潜在性硬化剤は、従来のイミダゾール系潜在性硬化剤と同様の用途に使用するこ とができ、上述したように、シランカップリング剤と熱硬化型の第一の榭脂原料と併用 することにより、低温速硬化性の接着剤を与えることができる。 [0099] The latent curing agent can be used in the same application as the conventional imidazole-based latent curing agent. As described above, the latent curing agent includes the silane coupling agent and the thermosetting first resin raw material. Combined use By doing so, a low-temperature fast-curing adhesive can be provided.
[0100] 接着剤における潜在性硬化剤の含有量は、少なすぎると十分に硬化せず、多すぎ るとその組成物の硬化物の榭脂特性 (例えば、可撓性)が低下するので、第一の榭 脂原料 (熱硬化型榭脂) 100質量部に対し 1質量部以上 70質量部以下、好ましくは 1 質量部以上 50質量部以下である。  [0100] If the content of the latent curing agent in the adhesive is too small, it will not be cured sufficiently, and if it is too large, the resin properties (for example, flexibility) of the cured product will decrease. The first resin material (thermosetting resin) is 1 part by mass or more and 70 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass.
[0101] シランカップリング剤は、特開 2002— 212537号公報の段落0007〜0010に記載 されているように、アルミニウムキレート剤と共働して熱硬化性榭脂(例えば、熱硬化 性エポキシ榭脂)のカチオン重合を開始させる機能を有する。 [0101] As described in paragraphs 0007 to 0010 of JP-A-2002-212537, the silane coupling agent works together with an aluminum chelating agent to produce a thermosetting resin (for example, a thermosetting epoxy resin). It has a function of initiating cationic polymerization of fat.
[0102] このような、シランカップリング剤としては、分子中に 1つ以上 3つ以下の低級アルコ キシ基を有するものであり、分子中に熱硬化性榭脂の官能基に対して反応性を有す る基、例えば、ビュル基、スチリル基、アタリロイルォキシ基、メタクリロイルォキシ基、 エポキシ基、アミノ基、メルカプト基等を有していてもよい。  [0102] Such silane coupling agents have one or more and three or less lower alkoxy groups in the molecule, and are reactive to the functional groups of thermosetting resin in the molecule. For example, it may have a butyl group, a styryl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, an amino group, a mercapto group, and the like.
なお、アミノ基ゃメルカプト基を有するカップリング剤は、上記潜在性硬化剤がカチ オン型硬化剤であるため、そのアミノ基ゃメルカプト基が発生カチオン種を実質的に 捕捉しない場合に使用することができる。  A coupling agent having an amino group or mercapto group should be used when the latent curing agent is a cationic curing agent, and the amino group or mercapto group does not substantially trap the generated cationic species. Can do.
[0103] このようなシランカップリング剤の具体例としては、ビュルトリス( 13—メトキシェトキシ )シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、 γ—スチリルトリメトキシシ ラン、 γ—メタクリロキシプロピルトリメトキシシラン、 γ—アタリロキシプロピルトリメトキ シシラン、 j8 — (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 γ—グリシ  [0103] Specific examples of such silane coupling agents include butururis (13-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-styryltrimethoxysilane, γ-methacryloxypropyltri Methoxysilane, γ-Ataryloxypropyltrimethoxysilane, j8 — (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, γ-Glyci
- β - (アミノエチル) - γ—ァミノプロピルトリメトキシシラン、 Ν - β - (アミノエチル ) - y—ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 Ν—フエニル一 γ—ァミノプロピルトリメトキシシラン、 γ—メルカプトプロピルトリメトキ シシラン、 γ—クロ口プロピルトリメトキシシラン等を挙げることができる。 -β- (aminoethyl) -γ-aminopropyltrimethoxysilane, Ν-β- (aminoethyl) -y-aminominomethyldimethoxysilane, γ-aminopropyltriethoxysilane, Ν-phenyl γ- Examples include aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane.
[0104] 接着剤におけるシランカップリング剤の含有量は、少なすぎると低硬化性となり、多 すぎるとその組成物の硬化物の榭脂特性 (例えば、保存安定性)が低下するので、 潜在性硬化剤 100質量部に対し 50質量部以上 1500質量部以下、好ましくは 300 質量部以上 1200質量部以下である。 [0105] 第一の榭脂原料としては、熱硬化型エポキシ榭脂、熱硬化型尿素樹脂、熱硬化型 メラミン榭脂、熱硬化型フ ノール榭脂等を使用することができる。中でも、硬化後の 接着強度が良好な点を考慮すると、熱硬化型エポキシ榭脂を好ましく使用することが できる。 [0104] If the content of the silane coupling agent in the adhesive is too small, the curability will be low, and if it is too large, the resin properties (eg, storage stability) of the cured product will decrease. It is 50 to 1500 parts by mass, preferably 300 to 1200 parts by mass with respect to 100 parts by mass of the curing agent. [0105] As the first resin raw material, a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like can be used. Of these, thermosetting epoxy resin can be preferably used in consideration of good adhesive strength after curing.
[0106] このような熱硬化型エポキシ榭脂としては、液状でも固体状でもよぐエポキシ当量 が通常 100以上 4000以下であって、分子中に 2以上のエポキシ基を有するものが 好ましい。例えば、ビスフエノール A型エポキシ化合物、フエノールノボラック型ェポキ シ化合物、クレゾ一ルノボラック型エポキシィ匕合物、エステル型エポキシィ匕合物、脂 環型エポキシィ匕合物等を好ましく使用することができる。また、これらの化合物にはモ ノマーやオリゴマーが含まれる。  [0106] Such a thermosetting epoxy resin preferably has an epoxy equivalent of 100 or more and 4000 or less, which may be liquid or solid, and has two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolak type epoxy compound, a cresol novolak type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, etc. can be preferably used. These compounds include monomers and oligomers.
[0107] 接着剤には、必要に応じてシリカ、マイ力などの充填剤、顔料、帯電防止剤などを 含有させることができる。また、接着剤には、数/ z mオーダーの粒径の導電性粒子、 金属粒子、榭脂コア表面を金属メツキ層で被覆したもの、それらの表面を絶縁薄膜で 更に被覆したもの等を、全体の 1質量%以上 10質量%以下の配合量で配合すること が好ましい。これにより、本発明の製造方法で製造された接着剤を異方導電性接着 ペースト、異方導電性フィルムとして使用することが可能となる。  [0107] The adhesive may contain silica, a filler such as My strength, a pigment, an antistatic agent, and the like, if necessary. Adhesives include conductive particles with a particle size on the order of several zm, metal particles, those in which the surface of the resin core is coated with a metal plating layer, and those surfaces that are further coated with an insulating thin film. It is preferable to blend in an amount of 1 to 10% by weight. This makes it possible to use the adhesive produced by the production method of the present invention as an anisotropic conductive adhesive paste or an anisotropic conductive film.
[0108] このようにして得られた接着剤は、硬化剤が潜在化して ヽるので、一剤型であるにも 拘わらず、保存安定性に優れている。また、潜在性硬化剤がシランカップリング剤と 共働して、熱硬化型榭脂を低温速硬化でカチオン重合させることができる。  [0108] The adhesive obtained as described above has excellent storage stability even though it is a one-component type because the curing agent becomes latent. In addition, the latent curing agent can cooperate with the silane coupling agent to cationically polymerize the thermosetting resin by low-temperature rapid curing.
[0109] 以下に本発明に用いられる潜在性硬化剤をより具体的に説明する。  [0109] The latent curing agent used in the present invention will be described more specifically below.
<潜在性硬化剤の第一例 >  <First example of latent curing agent>
蒸留水 800重量部と、界面活性剤 (ニューレックス R—T、 日本油脂 (株)社) 0. 05 重量部と、分散剤としてポリビュルアルコール (PVA— 205、(株)クラレ社) 4重量部 とを、温度計を備えた容量 3リットルの界面重合容器に入れ、均一に混合した。  800 parts by weight of distilled water and surfactant (Newlex RT, Nippon Oil & Fats Co., Ltd.) 0.05 part by weight and polybulu alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant 4 parts by weight Were placed in a 3 liter interfacial polymerization vessel equipped with a thermometer and mixed uniformly.
この混合液に、更に、アルミニウムモノァセチルァセトネートビス(ェチルァセトァセ テート)の 24%イソプロパノール溶液 (アルミキレート D、川研ファインケミカル (株)社) 11重量部と、メチレンジフエ-ル— 4, 4,—ジイソシァネート(3モル)のトリメチロール プロパン(1モル)付加物(D— 109、三井武田ケミカル (株)社) 11重量部とを、酢酸 ェチル 30重量部に溶解した油相溶液を投入し、ホモジナイザー(11000rpm/10 分)で乳化混合後、 60°Cで一晩界面重合させた。 In addition to this mixed solution, 11 parts by weight of a 24% isopropanol solution (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.) of aluminum monoacetylacetonate bis (ethylacetoacetate) and methylene diphenyl-4, 4, -Diisocyanate (3 mol) trimethylolpropane (1 mol) adduct (D-109, Mitsui Takeda Chemical Co., Ltd.) 11 parts by weight acetic acid An oil phase solution dissolved in 30 parts by weight of ethyl was added, emulsified and mixed with a homogenizer (11000 rpm / 10 minutes), and then subjected to interfacial polymerization at 60 ° C. overnight.
[0110] 反応終了後、重合反応液を室温まで放冷し、界面重合粒子を濾過により濾別し、 自然乾燥することにより粒径 10 μ m程度の球状の潜在性硬化剤を 20重量部得た。  [0110] After completion of the reaction, the polymerization reaction solution is allowed to cool to room temperature, and the interfacially polymerized particles are filtered off and dried naturally to obtain 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm. It was.
[0111] <潜在性硬化剤の第二例 >  [0111] <Second example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、トルエンジイソシァネート(3モル)及びメチレンジフエ-ルー 4 , 4,—ジイソシァネート(3モル)のトリメチロールプロパン(1モル)付カ卩物(D—103M —2、三井武田ケミカル (株)社)を使用する以外は、上記第一例の潜在性硬化剤の 操作に準じて、粒径 10 m程度の球状の潜在性硬化剤を 20重量部得た。  Instead of methylene diphenyl 4,4, -diisocyanate (3 mol) with trimethylolpropane (1 mol), toluene diisocyanate (3 mol) and methylene diphenyl 4,4,- Except for using diisocyanate (3 mol) with trimethylolpropane (1 mol) (D-103M-2, Mitsui Takeda Chemical Co., Ltd.) Accordingly, 20 parts by weight of a spherical latent curing agent having a particle size of about 10 m was obtained.
[0112] <潜在性硬化剤の第三例 >  [0112] <Third example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、トルエンジイソシァネート(3モル)のトリメチロールプロパン(1 モル)付加物(D— 103、三井武田ケミカル (株))を使用する以外は、上記第一例の 潜在性硬化剤の操作に準じて、粒径 10 m程度の球状の潜在性硬化剤を 20重量 部得た。  Add methylene diphenol- 4,4, -diisocyanate (3 mol) with trimethylolpropane (1 mol) in addition to toluene diisocyanate (3 mol) trimethylolpropane (1 mol) 20 parts by weight of a spherical latent curing agent having a particle size of about 10 m is used in accordance with the operation of the latent curing agent in the first example except that the product (D-103, Mitsui Takeda Chemical Co., Ltd.) is used. Obtained.
[0113] く潜在性硬化剤の第四例〉  [0113] Fourth example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、 m—キシリレンジイソシァネート(3モル)のトリメチロールプロ パン(1モル)付加物(D— 110N、三井武田ケミカル (株)社)を使用する以外は、第 一例の潜在性硬化剤の操作に準じて、粒径 10 m程度の球状の潜在性硬化剤を 2 0重量部得た。  Instead of a methylene diphenol- 4,4, -diisocyanate (3 mol) with trimethylolpropane (1 mol), m-xylylene diisocyanate (3 mol) trimethylol propan (1 mol) Mole) Adhesive (D-110N, Mitsui Takeda Chemical Co., Ltd.) is used except that a spherical latent curing agent with a particle size of about 10 m is added in accordance with the operation of the latent curing agent in the first example. 0 parts by weight were obtained.
[0114] <潜在性硬化剤の第五例 >  [0114] <Fifth example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、へキサヒドロ一 m—キシリレンジイソシァネート(3モル)のトリメ チロールプロパン(1モル)付加物(D— 120N、三井武田ケミカル (株)社)を使用す る以外は、第一例の潜在性硬化剤の操作に準じて、粒径 10 m程度の球状の潜在 性硬化剤を 20重量部得た。 [0115] <潜在性硬化剤の第六例 > Instead of a methylene diphenol- 4,4, -diisocyanate (3 mol) with trimethylolpropane (1 mol), hexahydro-m-xylylenediisocyanate (3 mol) trimethylolpropane (1 mol) Except for using an adduct (D-120N, Mitsui Takeda Chemical Co., Ltd.) 20 parts by weight of curing agent was obtained. [0115] <Sixth example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、イソホロンジイソシァネート(3モル)のトリメチロールプロパン( 1モル)付加物(D— 140N、三井武田ケミカル (株)社)を使用する以外は、第一例の 潜在性硬化剤の操作に準じて、粒径 10 m程度の球状の潜在性硬化剤を 20重量 部得た。  Addition of trimethylolpropane (1 mol) of isophorone diisocyanate (3 mol) in place of the product with methylene diphenyl-4,4-diisocyanate (3 mol) with trimethylolpropane (1 mol) 20 parts by weight of a spherical latent curing agent with a particle size of about 10 m, according to the operation of the latent curing agent in the first example, except that the product (D-140N, Mitsui Takeda Chemical Co., Ltd.) is used. Obtained.
[0116] <潜在性硬化剤の第七例 >  [0116] <Seventh example of latent curing agent>
メチレンジフエ-ルー 4, 4,ージイソシァネート(3モル)のトリメチロールプロパン(1 モル)付カ卩物に代えて、イソホロンジイソシァネートのイソシァヌレート体(Z— 4470、 住友バイエルウレタン (株)社)を使用する以外は、第一例の潜在性硬化剤の操作に 準じて、粒径 10 m程度の球状の潜在性硬化剤を 20重量部得た。  Isocyanurate form of isophorone diisocyanate (Z-4470, Sumitomo Bayer Urethane Co., Ltd.) 20) parts by weight of a spherical latent curing agent having a particle size of about 10 m was obtained in accordance with the operation of the latent curing agent in the first example except that (1) was used.
[0117] <接着剤の一例 >  [0117] <Example of adhesive>
第一例〜第七例の潜在性硬化剤 2重量部、脂環式エポキシ榭脂 (CEL— 2021P 、ダイセル化学工業 (株)社) 90重量部、及びシランカップリング剤 (A— 187、日本ュ 二カー (株)社) 8重量部を、均一に混合することにより第一の組成物力 なる熱硬化 型の接着剤を調整した。  1st to 7th examples of latent curing agent 2 parts by weight, alicyclic epoxy resin (CEL-2021P, Daicel Chemical Industries, Ltd.) 90 parts by weight, and silane coupling agent (A-187, Japan A thermosetting adhesive having a first composition strength was prepared by uniformly mixing 8 parts by weight of Nycar Co., Ltd.
[0118] 得られた接着剤を、示差熱分析装置 (DSC) (DSC6200、セイコーインスツルメント  [0118] The obtained adhesive was subjected to differential thermal analysis (DSC) (DSC6200, Seiko Instruments Inc.
(株)社)を用いて熱分析した。得られた結果を表 7及び図 7に示す。ここで、潜在性 硬化剤の硬化特性に関し、発熱開始温度は接着剤の硬化開始温度を意味しており 、発熱ピーク温度は接着剤の硬化が最も活性となる温度を意味しており、発熱終了 温度は接着剤の硬化終了温度を意味しており、そしてピーク面積は発熱量を意味し ている。  Was subjected to thermal analysis. The obtained results are shown in Table 7 and FIG. Here, regarding the curing characteristics of the latent curing agent, the exothermic start temperature means the curing start temperature of the adhesive, and the exothermic peak temperature means the temperature at which the curing of the adhesive is most active, and the end of the exotherm. The temperature means the curing end temperature of the adhesive, and the peak area means the calorific value.
[0119] [表 7] 潜在性硬化剤 発熱開始 ガラス 発熱ピ -ク 発熱終了 ピ -ク面積 [0119] [Table 7] Latent curing agent Heat generation start Glass Heat generation peak Heat generation end Peak area
温度(°c ) 転移点(°C ) (°C ) 温度(°c ) (mj/mg 硬化剂 1 75 測定省略 106 203 - 478. 425 ftlH匕剤 2 103 測定省略 131 2 14 -368. 224 硬化剤 3 136 206 160 206  Temperature (° c) Transition point (° C) (° C) Temperature (° c) (mj / mg Curing agent 1 75 Measurement omitted 106 203-478. 425 ftlH glaze 2 103 Measurement omitted 131 2 14 -368. 224 Hardener 3 136 206 160 206
硬化齐 11 4 124 122 148 232 - 100. 666  Curing 11 4 124 122 148 232-100.666
5 101 147 131 239 -220. 929 嫩剂 6 131 203 158 228 - 204. 317  5 101 147 131 239 -220. 929 嫩 dispenser 6 131 203 158 228-204. 317
1 18 測定省略 149 2 18 -2 1 1. 21  1 18 Measurement omitted 149 2 18 -2 1 1. 21
[0120] 表 7及び図 7に示すように、第一例〜第七例の潜在性硬化剤の実験結果から、多 官能イソシァネート化合物の種類を変えることにより、潜在性硬化剤の硬化特性をコ ントロール可能であることがわかる。第一例の潜在性硬化剤は、硬化開始温度が 10[0120] As shown in Table 7 and FIG. 7, from the experimental results of the latent curing agents of the first to seventh examples, the curing characteristics of the latent curing agent were changed by changing the type of the polyfunctional isocyanate compound. It can be seen that control is possible. The latent curing agent in the first example has a curing start temperature of 10
0°C以下であった。 0 ° C or less.
[0121] また、ポリウレァ構造のガラス転移温度が高くなると、発熱開始温度、発熱ピーク温 度、発熱終了温度がいずれも高温側にシフトする傾向(硬化温度が高くなる傾向)が あることがわ力る(第三例〜第六例の潜在性硬化剤)。  [0121] In addition, as the glass transition temperature of the polyurea structure increases, the exothermic start temperature, exothermic peak temperature, and exothermic end temperature tend to shift to higher temperatures (the curing temperature tends to increase). (Latent curing agents in the third to sixth examples).
[0122] <潜在性硬化剤の第九例 >  [0122] <Ninth example of latent curing agent>
アルミニウムキレート剤であるアルミニウムモノァセチルァセトネートビス(ェチルァセ トアセテート)の 24%イソプロパノール溶液(アルミキレート D、川研ファインケミカル( 株)社)の配合量を表 8に示すように代えること以外は、第一例の潜在性硬化 o剤の操 作に準じて、潜在性硬化剤を調製した (実験例 9a〜9e)。  Except that the compounding amount of 24% isopropanol solution (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.) of aluminum monoacetyl acetonate bis (ethyl acetate acetate), which is an aluminum chelating agent, is changed as shown in Table 8. A latent curing agent was prepared according to the operation of the latent curing agent in the first example (Experimental Examples 9a to 9e).
表 8に示すように、アルミニウムキレート剤の配合量が増加するにつれて、重合粒子 が凝集しやすくなり、更に増加すると粒子状の界面重合体が得られなくなる傾向があ ることがわ力る。また、それに伴い発熱ピーク温度が低下する傾向があることもわかる (図 8参照)。  As shown in Table 8, as the amount of the aluminum chelating agent increases, the polymer particles tend to aggregate, and further increase tends to make it impossible to obtain a particulate interfacial polymer. In addition, the exothermic peak temperature tends to decrease accordingly (see Fig. 8).
[0123] [表 8] アルミニウムキレ-ト剤 粒子状界面 発熱ヒ' -ク [0123] [Table 8] Aluminum chelating agent Particulate interface Exothermic heat
実験例 配合量(重量部 重合体 温度 (°c)  Experimental example Compounding amount (part by weight Polymer temperature (° c)
)  )
9 a 2. 78 取得 134  9 a 2. 78 Acquired 134
9 b 5. 55 取得 1 1 1  9 b 5. 55 Acquired 1 1 1
9 c 1 1. 10 取得 103  9 c 1 1.10 Acquisition 103
9 d 16. 65 ¾集 97  9 d 16. 65 ¾ collection 97
9 e o 粒子化せず  9 e o No particles
[0124] <接着剤の他の例 > [0124] <Other examples of adhesives>
第一例の潜在性硬化剤で得られた潜在性硬化剤 2重量部、脂環式エポキシ榭脂 ( CEL- 2021P,ダイセルィ匕学工業 (株)社) 90重量部、及び表 9に示すシランカップ リング剤 8重量部を均一に混合することにより接着剤(実験例 10a〜: LOh)を調製した  2 parts by weight of the latent curing agent obtained from the latent curing agent of the first example, 90 parts by weight of alicyclic epoxy resin (CEL-2021P, Daicel Engineering Co., Ltd.), and the silanes shown in Table 9 An adhesive (Experimental Example 10a-: LOh) was prepared by uniformly mixing 8 parts by weight of the coupling agent.
[0125] 得られた接着剤を、示差熱分析装置 (DSC6200、セイコーインスツルメント (株)社 )を用いて熱分析した。得られた結果を図 9に示す。図 9から、シランカップリング剤の 種類を変えることにより、潜在性硬化剤の硬化特性をコントロール可能であることがわ かる。 [0125] The obtained adhesive was subjected to thermal analysis using a differential thermal analyzer (DSC6200, Seiko Instruments Inc.). The obtained results are shown in FIG. From Fig. 9, it can be seen that the curing characteristics of the latent curing agent can be controlled by changing the type of silane coupling agent.
[0126] [表 9]  [0126] [Table 9]
Figure imgf000027_0001
Figure imgf000027_0001
[0127] <参考例>  [0127] <Reference example>
潜在性硬化剤粒子の粒度分布に対する、油相溶液の粘度の影響を調べるために 、第一例の潜在性硬化剤における、アルミニウムモノァセチルァセトネートビス (ェチ ルァセトアセテート)と、メチレンジフエ-ル一 4, 4'—ジイソシァネート(3モル)のトリメ チロールプロパン(1モル)付加物とを酢酸ェチルに溶解した油相溶液につ 、て、酢 酸ェチルの添加量を増やし油相溶液の粘度を表 10に示す値に代えること以外は、 第一例の潜在性硬化剤と同様の操作を繰り返すことにより実験例 11a〜: L ieの潜在 性硬化剤を得た。なお、実験例 l ibは第一例の潜在性硬化剤の製造工程を繰り返し たものである。 In order to investigate the influence of the viscosity of the oil phase solution on the particle size distribution of the latent hardener particles, aluminum monoacetyl cetate bis (ethylacetoacetate) and methylene diphenol in the latent hardener of the first example were used. -An oil phase solution of 1,4'-diisocyanate (3 mol) adducted with trimethylolpropane (1 mol) in ethyl acetate, Example 11a ~: Potential of Lie by repeating the same procedure as the latent curing agent of the first example, except that the amount of ethyl added was increased and the viscosity of the oil phase solution was changed to the value shown in Table 10. A curing agent was obtained. Experimental example l ib is a repetition of the manufacturing process of the latent curing agent of the first example.
[0128] 油相溶液の粘度については、 HAAKE社製のレオメータ PK100を使用して測定し た。その結果を表 10に示す。  [0128] The viscosity of the oil phase solution was measured using a rheometer PK100 manufactured by HAAKE. The results are shown in Table 10.
[0129] [表 10] [0129] [Table 10]
Figure imgf000028_0001
Figure imgf000028_0001
[0130] 実験例 l ib〜: L ieの潜在性硬化剤の粒度分布を、電気抵抗式粒度分布測定装置  [0130] Experimental example l ib-: Particle size distribution measuring device for electric resistance type particle size distribution
(SD— 2000、 Sysmex製)を用いて測定し、それぞれの粒度分布チャート (体積換 算)を図 10〜13に示す。これらの粒度分布チャートから分力るように、油相粘度が約 2. 5mPa. sであるときに、粒度分布が正規分布となった。更に、油相粘度が約 2. 0 mPa. sであるときに、単分散ミクロンサイズの乳化粒子(中心径 3 /z m)を得ることが できた。  (SD-2000, manufactured by Sysmex), and each particle size distribution chart (volume conversion) is shown in Figs. As can be seen from these particle size distribution charts, the particle size distribution became a normal distribution when the oil phase viscosity was about 2.5 mPa.s. Furthermore, when the oil phase viscosity was about 2.0 mPa.s, it was possible to obtain monodispersed micron-sized emulsified particles (center diameter 3 / z m).
[0131] また、油相粘度が約 1. 3mPa. sであるときに、単分散ミクロンサイズの乳化粒子(中 心径 2 m)を得ることができた。以上の結果から、単分散乳化粒子を得るためには、 油相粘度を ImPa. s以上 2. 5mPa. s以下とすることが有効であることがわかる。 また、実験例 l ibおよび l ieの潜在性硬化剤粒子の電子顕微鏡写真を図 14およ び図 15にそれぞれ示すが、実験例 l ieの潜在性硬化剤粒子の粒度分布が、実験例 11 aの潜在性硬化剤に比べて、良好な単分散であることがこれらの写真からもわかる  [0131] Further, when the oil phase viscosity was about 1.3 mPa.s, it was possible to obtain monodispersed micron-sized emulsified particles (center diameter 2 m). From the above results, it can be seen that it is effective to set the oil phase viscosity to ImPa · s or more and 2.5 mPa · s or less in order to obtain monodisperse emulsified particles. Electron micrographs of latent curing agent particles in Experimental Examples l ib and l ie are shown in FIGS. 14 and 15, respectively. The particle size distribution of the latent curing agent particles in Experimental Example l ie is shown in Experimental Example 11 It can be seen from these photos that the monodispersion is better than the latent curing agent a.
[0132] <参考例> [0132] <Reference example>
良好な単分散性を示し、かつ表面状態の良好な潜在性硬化剤粒子を製造するた めに、多官能イソシァネートイ匕合物とアルミニウムキレート剤の配合割合の検討を行 つた。なお、単分散性の粒子を得るため、酢酸ェチルの配合量は実験例 l ieと同等 にした。 In order to produce latent hardener particles with good monodispersity and good surface condition, the mixing ratio of polyfunctional isocyanate compound and aluminum chelating agent was investigated. I got it. In order to obtain monodisperse particles, the blending amount of ethyl acetate was set to be the same as in Experimental Example l ie.
アルミニウムキレート剤であるアルミニウムモノァセチルァセトネートビス(ェチルァセ トアセテート)と、多官能イソシァネートイ匕合物であるメチレンジフエ-ルー 4, 4,ージ イソシァネート(3モル)のトリメチロールプロパン(1モル)付カ卩物とを、実験例 l ieと同 量の酢酸ェチルで溶解した油相溶液にっ 、て、アルミニウムキレート剤と多官能イソ シァネートイ匕合物の添加量を以下の表 11に示す量に代えること以外は、第一例の潜 在性硬化剤の場合と同様の操作を繰り返すことにより実験例 12a〜 12fの潜在性硬 化剤を得た。  Trimethylolpropane (1 mole) of aluminum monoacetylethylacetonate bis (ethylacetoacetate), an aluminum chelator, and methylene diphenol 4,4, -diisocyanate (3 mole), a polyfunctional isocyanate compound. The amount of addition of the aluminum chelating agent and polyfunctional isocyanate compound in the oil phase solution in which the adduct was dissolved in the same amount of ethyl acetate as in Experimental Example l, is shown in Table 11 below. The latent hardeners of Experimental Examples 12a to 12f were obtained by repeating the same operation as in the case of the latent hardener of the first example except that
[0133] [表 11] [0133] [Table 11]
Figure imgf000029_0001
Figure imgf000029_0001
[0134] 得られた実験例 12a〜12fの潜在性硬化剤の電子顕微鏡写真を図 16〜21に示す 。得られた潜在性硬化剤の粒子の粒子径は、油相滴が微細化した後に重合が進行 するので最大粒子径 5 μ m以下とすることができた。  [0134] FIGS. 16 to 21 show electron micrographs of the obtained latent curing agents of Experimental Examples 12a to 12f. The particle size of the obtained latent curing agent particles could be reduced to a maximum particle size of 5 μm or less because the polymerization proceeds after the oil phase droplets were refined.
また、これらの結果から、アルミニウムキレート剤の配合量を多官能イソシァネート化 合物の重量で 1Z2以下とすると、粒子に異物の付着がないことがわかる。また、アル ミニゥムキレート剤の配合量を多官能イソシァネートィヒ合物の重量で同量以上とする ことによつても、粒子に異物の付着がないことがわかる。従って、良好な単分散性を 示し、かつ表面状態の良好な潜在性硬化剤粒子を製造する場合には、アルミニウム キレート剤の配合量を多官能イソシァネートイ匕合物の重量で 1Z2以下もしくは同量 以上とすることが好まし 、ことがわかる。  In addition, these results show that no foreign matter adheres to the particles when the amount of the aluminum chelating agent is 1Z2 or less in terms of the weight of the polyfunctional isocyanate compound. It can also be seen that no foreign matter adheres to the particles even when the amount of the aluminum chelating agent is equal to or more than the weight of the polyfunctional isocyanate compound. Therefore, when producing latent hardener particles with good monodispersity and good surface condition, the amount of aluminum chelating agent is 1Z2 or less by weight of polyfunctional isocyanate compound or more. It is preferable to understand that.

Claims

請求の範囲  The scope of the claims
[I] 熱圧着温度に加熱すると硬化する接着剤を製造する接着剤の製造方法であって、 加水分解で第一の生成物と第二の生成物を生成するシランカップリング剤と、 熱圧着温度で前記第一の生成物と反応して反応種を生成する硬化剤と、 前記反応種によって重合する第一の榭脂原料とを混合して組成物を作成し、 前記組成物を前記熱圧着温度よりも低!ヽ第一の加熱温度に昇温させ、前記加水 分解を進行させる接着剤の製造方法。  [I] An adhesive manufacturing method for manufacturing an adhesive that cures when heated to a thermocompression bonding temperature, wherein the silane coupling agent generates a first product and a second product by hydrolysis, and thermocompression bonding. A composition is prepared by mixing a curing agent that reacts with the first product at a temperature to generate a reactive species, and a first resin raw material that is polymerized by the reactive species, and the composition is heated with the heat. A method for producing an adhesive in which the temperature is lowered to the first heating temperature and the hydrolysis proceeds.
[2] 前記組成物を前記第一の加熱温度に昇温させた後、前記組成物に希釈剤を添加 して混合物を作成し、  [2] After raising the temperature of the composition to the first heating temperature, a diluent is added to the composition to create a mixture,
前記混合物を、前記第一の加熱温度超え、かつ、前記熱圧着温度未満の第二の 加熱温度に加熱し、前記第二の生成物を蒸発させる請求項 1記載の接着剤の製造 方法。  The method for producing an adhesive according to claim 1, wherein the mixture is heated to a second heating temperature that is higher than the first heating temperature and lower than the thermocompression bonding temperature to evaporate the second product.
[3] 前記第一の生成物はシラノールである請求項 1又は請求項 2の 、ずれか 1項記載 の接着剤の製造方法。  [3] The method for producing an adhesive according to claim 1 or 2, wherein the first product is silanol.
[4] 前記第二の生成物はアルコールである請求項 1又は請求項 2の 、ずれか 1項記載 の接着剤の製造方法。  [4] The method for producing an adhesive according to claim 1 or 2, wherein the second product is alcohol.
[5] 前記第一の加熱温度は 60°C以上 70°C未満である請求項 1又は請求項 2の 、ずれ 力 1項記載の接着剤の製造方法。  [5] The method for producing an adhesive according to claim 1 or 2, wherein the first heating temperature is 60 ° C or higher and lower than 70 ° C.
[6] 前記第一の榭脂原料はエポキシ榭脂である請求項 1又は請求項 2の 、ずれか 1項 記載の接着剤の製造方法。 [6] The method for producing an adhesive according to claim 1 or 2, wherein the first resin material is epoxy resin.
[7] 前記混合物の加熱は前記混合物をフィルム状に成形する請求項 2記載の接着剤 の製造方法。 7. The method for producing an adhesive according to claim 2, wherein the heating of the mixture forms the mixture into a film.
[8] 前記希釈剤は有機溶剤を含有する請求項 2記載の接着剤の製造方法。  8. The method for producing an adhesive according to claim 2, wherein the diluent contains an organic solvent.
[9] 前記第二の加熱温度は 70°C以上 80°C以下である請求項 2記載の接着剤の製造 方法。 [9] The method for producing an adhesive according to [2], wherein the second heating temperature is 70 ° C or higher and 80 ° C or lower.
[10] 前記希釈剤に導電性粒子を添加する請求項 2記載の接着剤の製造方法。  10. The method for producing an adhesive according to claim 2, wherein conductive particles are added to the diluent.
[II] 前記希釈剤は第二の榭脂原料を含有する請求項 2記載の接着剤の製造方法。  [II] The method for producing an adhesive according to claim 2, wherein the diluent contains a second resin material.
[12] 前記第二の榭脂原料は熱可塑性榭脂である請求項 11記載の接着剤の製造方法 前記硬化剤は、多孔性榭脂と、前記多孔性榭脂に保持された金属キレートとを有 する請求項 1又は請求項 2のいずれか 1項記載の接着剤の製造方法。 12. The method for producing an adhesive according to claim 11, wherein the second raw material of the resin is a thermoplastic resin. The method for producing an adhesive according to claim 1, wherein the curing agent includes a porous resin and a metal chelate held by the porous resin.
前記硬化剤は、前記金属キレートと、多官能イソシァネート化合物とが界面重合し て形成された請求項 13記載の接着剤の製造方法。  14. The method for producing an adhesive according to claim 13, wherein the curing agent is formed by interfacial polymerization of the metal chelate and a polyfunctional isocyanate compound.
PCT/JP2006/307749 2005-04-12 2006-04-12 Processes for production of adhesives WO2006109831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-114319 2005-04-12
JP2005114319 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006109831A1 true WO2006109831A1 (en) 2006-10-19

Family

ID=37087097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307749 WO2006109831A1 (en) 2005-04-12 2006-04-12 Processes for production of adhesives

Country Status (1)

Country Link
WO (1) WO2006109831A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403695B2 (en) 2019-02-15 2023-12-22 デクセリアルズ株式会社 Latent curing agent film forming composition and latent curing agent film forming method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343332A (en) * 1998-06-02 1999-12-14 Nitto Denko Corp Microcapsular curing agent, microcapsular cure accelerator, their preparation, epoxy resin composition, and epoxy resin composition for semiconductor sealing
JP2000230039A (en) * 1998-12-08 2000-08-22 Nitto Denko Corp Semiconductor sealing epoxy resin composition and semiconductor device using same
JP2000315696A (en) * 1999-04-28 2000-11-14 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device, adhesive sheet, and reinforcing member using the same
JP2000345010A (en) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2002212537A (en) * 2001-01-24 2002-07-31 Sony Chem Corp Adhesive and electric device
JP2002363255A (en) * 2001-06-06 2002-12-18 Sony Chem Corp Latent curing agent, method for producing latent curing agent and adhesive
JP2002368047A (en) * 2001-06-06 2002-12-20 Sony Chem Corp Latent hardener, its producing method and adhesive
JP2003013036A (en) * 2001-06-27 2003-01-15 Sony Chem Corp Curing agent particle, method for producing curing agent particle and adhesive
JP2003238937A (en) * 2002-02-21 2003-08-27 Sony Chem Corp Two-component adhesive
JP2003238656A (en) * 2002-02-18 2003-08-27 Sony Chem Corp Latent curing agent, method for producing the same and adhesive
JP2003238906A (en) * 2002-02-21 2003-08-27 Sony Chem Corp Manufacturing method of electrical equipment
WO2005033173A1 (en) * 2003-09-08 2005-04-14 Sony Chemicals Corporation Latent hardener

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343332A (en) * 1998-06-02 1999-12-14 Nitto Denko Corp Microcapsular curing agent, microcapsular cure accelerator, their preparation, epoxy resin composition, and epoxy resin composition for semiconductor sealing
JP2000230039A (en) * 1998-12-08 2000-08-22 Nitto Denko Corp Semiconductor sealing epoxy resin composition and semiconductor device using same
JP2000345010A (en) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2000315696A (en) * 1999-04-28 2000-11-14 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device, adhesive sheet, and reinforcing member using the same
JP2002212537A (en) * 2001-01-24 2002-07-31 Sony Chem Corp Adhesive and electric device
JP2002363255A (en) * 2001-06-06 2002-12-18 Sony Chem Corp Latent curing agent, method for producing latent curing agent and adhesive
JP2002368047A (en) * 2001-06-06 2002-12-20 Sony Chem Corp Latent hardener, its producing method and adhesive
JP2003013036A (en) * 2001-06-27 2003-01-15 Sony Chem Corp Curing agent particle, method for producing curing agent particle and adhesive
JP2003238656A (en) * 2002-02-18 2003-08-27 Sony Chem Corp Latent curing agent, method for producing the same and adhesive
JP2003238937A (en) * 2002-02-21 2003-08-27 Sony Chem Corp Two-component adhesive
JP2003238906A (en) * 2002-02-21 2003-08-27 Sony Chem Corp Manufacturing method of electrical equipment
WO2005033173A1 (en) * 2003-09-08 2005-04-14 Sony Chemicals Corporation Latent hardener

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403695B2 (en) 2019-02-15 2023-12-22 デクセリアルズ株式会社 Latent curing agent film forming composition and latent curing agent film forming method

Similar Documents

Publication Publication Date Title
JP4381255B2 (en) Latent curing agent
JP5365811B2 (en) Aluminum chelate latent curing agent
JP5481995B2 (en) Aluminum chelate-based latent curing agent and method for producing the same
JP5429337B2 (en) Thermosetting epoxy resin composition
TWI288169B (en) Latent curing agent
KR100831153B1 (en) Bonding film composition for semiconductor assembly, bonding film therefrom, and dicing die bond film comprising the same
JP2009197206A (en) Thermosetting epoxy resin composition
JPWO2008090719A1 (en) Latent curing agent
JP2008133354A (en) Adhesive sheet for semiconductor, and assembly of electronic components by using the same
JP5045896B2 (en) Latent curing agent for epoxy resin and method for producing the same
JP2013100559A (en) Latent curing agent
JP4711721B2 (en) Method for producing latent curing agent
JP5285841B2 (en) Method for producing film adhesive
JP2011026383A (en) Heat curing type thermally conductive adhesive composition
TWI425023B (en) Latent hardener for epoxy compositions
JP5417715B2 (en) Microencapsulated silane coupling agent
JP5476988B2 (en) Electrical device and epoxy resin composition used therefor
JP2010280914A (en) Method for producing latent curing agent
TW201829527A (en) Latent curing agent, method for producing the same, and thermosetting epoxy resin composition
JP2003168323A (en) Anisotropic conductive paste and its using method
WO2006109831A1 (en) Processes for production of adhesives
JP5354192B2 (en) Thermosetting conductive paste composition
WO2019150446A1 (en) Adhesive composition, filmy adhesive, adhesive sheet, and production method for semiconductor device
JP5360378B2 (en) Method for producing latent curing agent and method for producing adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745402

Country of ref document: EP

Kind code of ref document: A1