JP4711721B2 - Method for producing latent curing agent - Google Patents

Method for producing latent curing agent Download PDF

Info

Publication number
JP4711721B2
JP4711721B2 JP2005114325A JP2005114325A JP4711721B2 JP 4711721 B2 JP4711721 B2 JP 4711721B2 JP 2005114325 A JP2005114325 A JP 2005114325A JP 2005114325 A JP2005114325 A JP 2005114325A JP 4711721 B2 JP4711721 B2 JP 4711721B2
Authority
JP
Japan
Prior art keywords
curing agent
resin
component
raw material
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005114325A
Other languages
Japanese (ja)
Other versions
JP2006291053A (en
Inventor
和伸 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2005114325A priority Critical patent/JP4711721B2/en
Publication of JP2006291053A publication Critical patent/JP2006291053A/en
Application granted granted Critical
Publication of JP4711721B2 publication Critical patent/JP4711721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は接着剤の技術分野に関し、特に、接着剤に用いられる潜在性硬化剤の技術分野に関する。   The present invention relates to the technical field of adhesives, and more particularly to the technical field of latent curing agents used in adhesives.

従来より、硬化剤がマイクロカプセル内部に含有された潜在性硬化剤は接着剤の保存性を向上させるために広く用いられている。潜在性硬化剤のマイクロカプセルは室温では固体であって、硬化剤はマイクロカプセルに保護されるので、室温では接着剤は硬化しないが、接着剤が加熱されるとマイクロカプセルが溶解又は破壊されて硬化剤が接着剤中に放出され、接着剤中の熱硬化性樹脂が硬化剤によって重合し、接着剤が硬化する。   Conventionally, a latent curing agent in which a curing agent is contained in a microcapsule has been widely used to improve the storage stability of an adhesive. Since the latent hardener microcapsules are solid at room temperature and the hardener is protected by the microcapsules, the adhesive does not harden at room temperature, but when the adhesive is heated, the microcapsules dissolve or break. The curing agent is released into the adhesive, the thermosetting resin in the adhesive is polymerized by the curing agent, and the adhesive is cured.

マイクロカプセルは一般に樹脂で構成されており、潜在性硬化剤の製造方法は、マイクロカプセルの樹脂原料に硬化剤を混合して硬化剤の液滴を形成した後、加熱すると、液滴の表面に付着した樹脂原料が重合し、樹脂原料の重合物で液滴を覆うマイクロカプセルが形成される。   Microcapsules are generally made of resin, and the latent curing agent is produced by mixing the curing agent with the microcapsule resin raw material to form a curing agent droplet, and then heating it to the surface of the droplet. The adhering resin material is polymerized to form microcapsules that cover the droplets with a polymer of the resin material.

しかしながら、硬化剤として樹脂原料と化学的に反応するものを用いると、硬化剤と樹脂原料とを混合した時点で硬化剤と樹脂原料との反応が始まり、硬化剤が化学的に変性してしまう。硬化剤が化学的に変性してしまうと、硬化剤をマイクロカプセル化できたとしても、接着剤の熱硬化性樹脂に対する反応性が低下してしまう。従って、硬化剤と樹脂原料の種類は、互いに反応しないものに限られる。   However, if a curing agent that reacts chemically with the resin material is used, the reaction between the curing agent and the resin material starts when the curing agent and the resin material are mixed, and the curing agent is chemically modified. . If the curing agent is chemically modified, even if the curing agent can be microencapsulated, the reactivity of the adhesive to the thermosetting resin is reduced. Accordingly, the types of the curing agent and the resin raw material are limited to those that do not react with each other.

例えば、マイクロカプセルの樹脂原料としてはイソシアネートが広く用いられており、イソシアネートの重合物(ポリウレア樹脂、ポリウレタン樹脂)は室温では固体であるが加熱によって容易に溶解又は破壊されるため、マイクロカプセルに適した樹脂原料ではあるが、イソシアネートは熱硬化性樹脂(エポキシ樹脂)の優れた硬化剤であるイミダゾールや、アミン類や、フェノール類に対して反応性が高いので、イソシアネートを用いてこれらの硬化剤をマイクロカプセル化することはできなかった。   For example, isocyanate is widely used as a resin material for microcapsules. Polymers of isocyanate (polyurea resin, polyurethane resin) are solid at room temperature, but are easily dissolved or destroyed by heating, so they are suitable for microcapsules. Isocyanate is an excellent curing agent for thermosetting resins (epoxy resins), but is highly reactive with imidazoles, amines, and phenols. Could not be microencapsulated.

イミダゾールを化学的に変性させてから、その変性体(例えばエポキシアダクト体)を樹脂原料と混合し、マイクロカプセル化する方法も知られているが、変性体は、変性させる前のイミダゾールに比べて、接着剤の熱硬化性樹脂に対する反応性が低く、接着剤を硬化させるときの硬化速度が低下してしまう。
特開2000−230039号公報 特開2004−142174号公報 特開2004−246231号公報
There is also known a method in which imidazole is chemically modified, and then the modified product (for example, epoxy adduct product) is mixed with a resin raw material and microencapsulated, but the modified product is compared with imidazole before modification. The reactivity of the adhesive to the thermosetting resin is low, and the curing rate when the adhesive is cured is reduced.
Japanese Unexamined Patent Publication No. 2000-230039 JP 2004-142174 A JP 2004-246231 A

本発明は上記課題を解決するために成されたものであり、その目的は樹脂原料が硬化剤に反応するものであっても、硬化剤の反応性を低下させずに潜在性硬化剤を作成可能な製造方法を提供するものである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to create a latent curing agent without reducing the reactivity of the curing agent even if the resin raw material reacts with the curing agent. A possible manufacturing method is provided.

本発明者等が鋭意検討を行った結果、硬化剤として金属キレートを用い、金属キレートとイソシアネートとが含有された液滴を硬化させれば、内部に金属キレートが含有された多孔質粒子が形成されることがわかった。   As a result of intensive studies by the present inventors, if a metal chelate is used as a curing agent and a droplet containing the metal chelate and isocyanate is cured, porous particles containing the metal chelate are formed inside. I found out that

金属キレートはイソシアネートと反応しないので、接着剤の熱硬化性樹脂に対する反応性は低下しないが、金属キレートを硬化剤として用いるためには、接着剤に多量にシランカップリング剤を添加する必要があり、また、熱硬化性樹脂との反応性もイミダゾールに比べれば劣る。   Since the metal chelate does not react with the isocyanate, the reactivity of the adhesive to the thermosetting resin does not decrease. However, in order to use the metal chelate as a curing agent, it is necessary to add a large amount of a silane coupling agent to the adhesive. Moreover, the reactivity with a thermosetting resin is also inferior compared with imidazole.

本発明者等が更に検討を行った結果、アルミニウムキレートを添加させずに樹脂粒子を形成した後、その樹脂粒子と硬化剤と混合しても、樹脂粒子の内部に硬化剤が含有されることがわかった。   As a result of further studies by the present inventors, the resin particles are formed without adding the aluminum chelate, and even if the resin particles and the curing agent are mixed, the curing agent is contained inside the resin particles. I understood.

係る知見に基づいて成された請求項1記載の発明は、第一の樹脂成分を反応させ、反応生成物である第二の樹脂成分からなる樹脂粒子を形成し、前記樹脂粒子に、前記第一の樹脂成分と反応し、前記第二の樹脂成分と反応しない硬化剤成分の溶液を接触させ、前記樹脂粒子内部に前記硬化剤成分を含浸させる潜在性硬化剤の製造方法であって、前記第一の樹脂成分としてイソシアネートを用い、前記硬化剤成分として、イミダゾール、ポリアミン、三級アミン、又はフェノールのうち、いずれか一種又は二種以上の化合物を用い、前記イソシアネートの一部を加水分解してアミンを生成し、前記アミンと他の前記イソシアネートとを反応させて前記第二の樹脂成分であるポリウレア樹脂を生成する潜在性硬化剤の製造方法である。
請求項2記載の発明は、請求項1記載の潜在性硬化剤の製造方法であって、前記樹脂粒子の形成は、前記第一の樹脂成分が原料溶媒に溶解された原料液を、分散溶媒中に分散せて前記原料液の液滴を形成し、前記液滴が形成された分散溶媒を加熱して、前記第一の樹脂成分を反応させる潜在性硬化剤の製造方法である。
請求項記載の発明は、請求項又は請求項のいずれか1項記載の潜在性硬化剤の製造方法であって、前記原料溶媒は酢酸エチルである潜在性硬化剤の製造方法である。
請求項記載の発明は、請求項乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法であって、前記第一の樹脂成分11重量部に対し、前記原料溶媒の40重量部以上有する前記原料液を用いる潜在性硬化剤の製造方法である。
請求項記載の発明は、請求項1乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法であって、前記樹脂粒子に接触させる前記溶液にアルコールを添加する潜在性硬化剤の製造方法である。
請求項記載の発明は、請求項記載の潜在性硬化剤の製造方法であって、前記樹脂粒子に接触させる前記硬化剤成分の濃度を、30重量%以上40重量%以下にする潜在性硬化剤の製造方法である。
請求項記載の発明は、請求項1乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法であって、前記樹脂粒子の形成は、前記樹脂粒子の平均粒子径を2μm以上にする潜在性硬化剤の製造方法である。
The invention according to claim 1 made based on such knowledge forms a resin particle composed of a second resin component which is a reaction product by reacting a first resin component, and the resin particle includes the second resin component. A method for producing a latent curing agent that reacts with one resin component, contacts a solution of a curing agent component that does not react with the second resin component, and impregnates the curing agent component inside the resin particle , Isocyanate is used as the first resin component, and one or more compounds of imidazole, polyamine, tertiary amine, or phenol are used as the curing agent component, and a part of the isocyanate is hydrolyzed. The latent curing agent is produced by producing an amine and reacting the amine with another isocyanate to produce a polyurea resin as the second resin component .
Invention of Claim 2 is a manufacturing method of the latent hardening | curing agent of Claim 1, Comprising: Formation of the said resin particle is a dispersion | distribution solvent using the raw material liquid by which said 1st resin component was melt | dissolved in the raw material solvent. This is a method for producing a latent curing agent, in which liquid droplets of the raw material liquid are formed and dispersed, and the dispersion solvent in which the droplets are formed is heated to react the first resin component.
According to a third aspect of the invention, a method for producing a latent curing agent according to any one of claims 1 or claim 2, wherein the raw material solvent is a method for producing a latent curing agent is ethyl acetate .
Invention of Claim 4 is a manufacturing method of the latent hardening | curing agent of any one of Claim 1 thru | or 3 , Comprising: It is 40 of the said raw material solvent with respect to 11 weight part of said 1st resin components. It is a manufacturing method of the latent hardener using the said raw material liquid which has a weight part or more.
Invention of Claim 5 is a manufacturing method of the latent hardener of any one of Claim 1 thru | or 4 , Comprising: The latent hardener which adds alcohol to the said solution made to contact with the said resin particle It is a manufacturing method.
Invention of Claim 6 is a manufacturing method of the latent hardening | curing agent of Claim 5, Comprising: The latency which makes the density | concentration of the said hardening | curing agent component contacted with the said resin particle 30 to 40 weight% It is a manufacturing method of a hardening | curing agent.
The invention of claim 7, wherein, there is provided a method for producing a latent curing agent according to any one of claims 1 to 6, formation of the resin particles, the average particle diameter of the resin particles or higher 2μm This is a method for producing a latent curing agent.

本発明は上記のように構成されており、第一の樹脂成分に硬化剤成分を添加せずに樹脂粒子を形成してから、その樹脂粒子に硬化剤成分を接触しているので、硬化剤成分は化学的に変化せずに樹脂粒子の内部に含浸される。   The present invention is configured as described above, and after forming the resin particles without adding the curing agent component to the first resin component, the curing agent component is in contact with the resin particles. The components are impregnated inside the resin particles without being chemically changed.

樹脂粒子には第二の樹脂成分以外の有機又は無機の他の物質を含有させてもよい。また、第二の樹脂成分は、第一の樹脂成分が単独重合して生成された単独重合体であってもよいし、第一の樹脂成分と他の樹脂成分とが共重合して生成された共重合体であってもよい。   The resin particles may contain other organic or inorganic substances other than the second resin component. The second resin component may be a homopolymer produced by homopolymerizing the first resin component, or may be produced by copolymerization of the first resin component and another resin component. Copolymers may also be used.

分散溶媒として、第一の樹脂成分や、第一の樹脂成分を溶解させる原料溶媒と溶解しないものを用い、原料液を、該原料液よりも多量(体積比)の分散溶媒中に分散させれば、分散溶媒中に原料液の液滴が形成される。   As the dispersion solvent, the first resin component or a raw material solvent that dissolves the first resin component is used, and the raw material liquid can be dispersed in a larger amount (volume ratio) of the dispersion solvent than the raw material liquid. For example, droplets of the raw material liquid are formed in the dispersion solvent.

硬化剤成分の溶液に溶媒を添加する場合には、第二の樹脂成分を溶解しない溶媒を用いれば、硬化剤成分の溶液を樹脂粒子に接触させるときに、樹脂粒子が溶解せず、樹脂粒子の形状や内部の多孔質構造が維持される。第二の樹脂溶媒を溶解しない溶媒としては、第二の樹脂成分がポリウレア樹脂の場合には、例えばアルコールがある。   When a solvent is added to the solution of the curing agent component, if a solvent that does not dissolve the second resin component is used, the resin particles are not dissolved when the solution of the curing agent component is brought into contact with the resin particles. The shape and internal porous structure are maintained. Examples of the solvent that does not dissolve the second resin solvent include alcohol when the second resin component is a polyurea resin.

本発明は、硬化剤成分が第一の樹脂成分と反応するものであっても、第一の樹脂成分が重合してから、樹脂粒子の内部に硬化剤成分が含浸されるので、硬化剤としての活性が低下しない。従って、硬化剤成分を化学的に変性せずに潜在性硬化剤を作成しても、接着剤の熱硬化性樹脂に対する反応性が低下しない。本発明によれば、第一の樹脂成分や硬化剤の種類や反応性にかかわらず潜在性硬化剤を作成できるので、硬化剤の種類や第一の樹脂成分の種類が限定されず、硬化条件、熱硬化性樹脂、接着目的に応じて自由に潜在性硬化剤を設計することができる。イミダゾールは熱硬化性樹脂であるエポキシ樹脂と反応性が高く、イソシアネートの重合物は室温では固体であるが加熱によって容易に溶解するので、硬化剤としてイミダゾールを用い、第一の樹脂成分としてイソシアネートを用いて潜在性硬化剤を作成すれば、接着剤に添加した時に低い加熱温度で硬化開始し、かつ硬化速度も早くなる。   Even if the curing agent component reacts with the first resin component, since the curing agent component is impregnated inside the resin particles after the first resin component is polymerized, Activity does not decrease. Therefore, even if the latent curing agent is prepared without chemically modifying the curing agent component, the reactivity of the adhesive to the thermosetting resin does not decrease. According to the present invention, since the latent curing agent can be created regardless of the type and reactivity of the first resin component and curing agent, the type of curing agent and the type of first resin component are not limited, and curing conditions The latent curing agent can be freely designed according to the thermosetting resin and the bonding purpose. Imidazole is highly reactive with an epoxy resin, which is a thermosetting resin, and the polymer of isocyanate is solid at room temperature but dissolves easily by heating. Therefore, imidazole is used as the curing agent, and isocyanate is used as the first resin component. If a latent curing agent is prepared by using it, it will be cured at a low heating temperature when added to the adhesive, and the curing rate will be faster.

以下に本発明の潜在性硬化剤の製造方法を詳細に説明する。後述する樹脂粒子の樹脂原料である第一の樹脂成分を、第一の樹脂成分が溶解可能な原料溶媒に溶解し、原料液を作成する。   Below, the manufacturing method of the latent hardening | curing agent of this invention is demonstrated in detail. A first resin component, which is a resin raw material for resin particles described later, is dissolved in a raw material solvent in which the first resin component can be dissolved to prepare a raw material liquid.

原料液中の第一の樹脂成分と原料溶媒の両方が溶解しない分散溶媒を用い、分散溶媒に上記原料液を入れて攪拌しながら加熱すると、攪拌によって分散溶媒中に原料液の液滴が形成され、加熱によって液滴中の第一の樹脂成分が反応して液滴が硬化し、第一の樹脂成分の反応生成物である第二の樹脂成分の樹脂粒子が形成される。   Using a dispersion solvent that does not dissolve both the first resin component and the raw material solvent in the raw material liquid, when the raw material liquid is placed in the dispersion solvent and heated with stirring, droplets of the raw material liquid are formed in the dispersing solvent by stirring. By heating, the first resin component in the droplets reacts to cure the droplets, and resin particles of the second resin component, which is a reaction product of the first resin component, are formed.

例えば、第一の樹脂成分がイソシアネートであり、分散溶媒が水である場合には、下記反応式(1)、(2)に示すように、イソシアネートの一部が加水分解されて中間生成物であるアミンが生成され、反応式(3)に示すようにアミンが他のイソシアネートと反応しポリウレア樹脂が生成される。   For example, when the first resin component is an isocyanate and the dispersion solvent is water, as shown in the following reaction formulas (1) and (2), a part of the isocyanate is hydrolyzed to form an intermediate product. A certain amine is produced, and the amine reacts with other isocyanate as shown in the reaction formula (3) to produce a polyurea resin.

液滴中の原料溶媒は第一、第二の樹脂成分と反応しないので、原料溶媒は液滴が硬化する際に樹脂粒子に取り込まれる。樹脂粒子を分散溶媒からろ別、洗浄後、乾燥すると、乾燥のときに樹脂粒子に取り込まれた原料溶媒が蒸発し、原料溶媒が蒸発した後が細孔となって残り、内部に細孔が多数形成された多孔質性の樹脂粒子が得られる。   Since the raw material solvent in the droplet does not react with the first and second resin components, the raw material solvent is taken into the resin particles when the droplet is cured. When the resin particles are filtered off from the dispersion solvent, washed and dried, the raw material solvent taken into the resin particles at the time of drying evaporates, and after the raw material solvent evaporates, it remains as pores, with pores inside. A large number of formed porous resin particles can be obtained.

硬化剤成分の溶液に樹脂粒子を浸漬し、樹脂粒子に硬化剤成分の溶液を接触させると、樹脂粒子の細孔を通って硬化剤成分の溶液が浸透し、硬化剤成分が樹脂粒子の内部に含浸される。   When the resin particles are immersed in the solution of the curing agent component and the solution of the curing agent component is brought into contact with the resin particles, the solution of the curing agent component penetrates through the pores of the resin particles, and the curing agent component is inside the resin particles. Impregnated into.

ここでは、硬化剤成分はイミダゾールであり、イミダゾールは第一の樹脂成分であるイソシアネートとは化学的に反応するが、第二の樹脂成分であるポリウレア樹脂とは反応しないので、樹脂粒子の内部に含浸されたイミダゾールは化学的に変化しない。従って、イミダゾールは後述する熱硬化性樹脂に対する反応性が失活せずに樹脂粒子に保持される。   Here, the curing agent component is imidazole, and imidazole chemically reacts with the first resin component isocyanate, but does not react with the second resin component polyurea resin. The impregnated imidazole does not change chemically. Therefore, the imidazole is retained by the resin particles without deactivating the reactivity to the thermosetting resin described later.

所定時間硬化剤溶液を攪拌し、樹脂粒子の内部に十分量の硬化性成分を含浸させた後、樹脂粒子を微量の極性溶媒で洗浄し、ろ別、回収後、乾燥すると、樹脂粒子の内部に硬化剤成分が含有された潜在性硬化剤が得られる。   After the curing agent solution is stirred for a predetermined time and the resin particles are impregnated with a sufficient amount of the curable component, the resin particles are washed with a small amount of polar solvent, filtered, collected, and dried. A latent curing agent containing a curing agent component is obtained.

次に、この潜在性硬化剤を用いた接着剤の一例について説明する。エポキシ樹脂である熱硬化性樹脂と、上記潜在性硬化剤と、導電性粒子とを混合して接着剤を作成する。この接着剤に更に有機溶媒のような希釈剤を添加し、ペースト状の接着剤としても良いし、ペースト状の接着剤を塗布、乾燥してフィルム状の接着剤(接着フィルム)としてもよい。   Next, an example of an adhesive using this latent curing agent will be described. An adhesive is prepared by mixing a thermosetting resin that is an epoxy resin, the latent curing agent, and conductive particles. A diluent such as an organic solvent may be further added to the adhesive to form a paste adhesive, or a paste adhesive may be applied and dried to form a film adhesive (adhesive film).

樹脂粒子を構成する第二の樹脂成分は室温(35℃以下)では溶解せず、接着剤を室温で保存している間は接着剤が硬化しないが、接着剤を室温を超える温度に加熱すると、第二の樹脂成分が溶解し、樹脂粒子の内部の硬化剤成分が接着剤中に放出される。   The second resin component constituting the resin particles does not dissolve at room temperature (35 ° C. or lower), and the adhesive does not cure while the adhesive is stored at room temperature, but when the adhesive is heated to a temperature exceeding room temperature. The second resin component is dissolved, and the curing agent component inside the resin particles is released into the adhesive.

接着剤中に硬化剤成分が放出されると、熱硬化性樹脂が重合する。硬化剤成分がイミダゾールであり、熱硬化性樹脂がエポキシ樹脂の場合には、イミダゾールが硬化触媒として機能し、エポキシ樹脂が重合して接着剤が硬化する。   When the curing agent component is released into the adhesive, the thermosetting resin is polymerized. When the curing agent component is imidazole and the thermosetting resin is an epoxy resin, imidazole functions as a curing catalyst, and the epoxy resin is polymerized to cure the adhesive.

<樹脂粒子>
第一の樹脂成分であるイソシアネート11重量部を、原料溶媒である酢酸エチル60重量部に溶解して原料液を作成した。
尚、ここで用いたイソシアネートは、三井武田ケミカル(株)社製の商品名「D−109」であり、これはトリメチロールプロパン(1モル)にメチレンジフェニル−4,4−ジイソシアネート(3モル)が付加した付加物である。
<Resin particles>
11 parts by weight of isocyanate as the first resin component was dissolved in 60 parts by weight of ethyl acetate as the raw material solvent to prepare a raw material liquid.
The isocyanate used here is a trade name “D-109” manufactured by Mitsui Takeda Chemical Co., Ltd., which is trimethylolpropane (1 mol) and methylenediphenyl-4,4-diisocyanate (3 mol). Is an adduct added.

蒸留水800重量部に界面活性剤(日本油脂(株)社製の商品名「ニューレックスR−T」)0.05重量部と、分散剤(ポリビニルアルコール)4重量部とが添加された分散溶媒に上記原料液を添加し、80℃に加熱しながらホモジナイザーで攪拌して樹脂粒子を製造した。   Dispersion in which 0.05 part by weight of a surfactant (trade name “Newlex RT” manufactured by Nippon Oil & Fats Co., Ltd.) and 4 parts by weight of a dispersant (polyvinyl alcohol) are added to 800 parts by weight of distilled water. The raw material liquid was added to the solvent, and the mixture was stirred with a homogenizer while heating at 80 ° C. to produce resin particles.

その樹脂粒子の電子顕微鏡写真を図1に示す。更に樹脂粒子の粒度分布を体積換算で求めた。その測定結果を図2に示す。図2の横軸は粒子径(粒度、単位μm)を示し、一方の縦軸は折れ線グラフの頻度(単位%)を示し、他方の縦軸は棒グラフの積算量(単位%)示している。上記条件で製造された樹脂粒子は5μmが最大粒子径であり、粒子径2.29μmの分布が最大であった。   An electron micrograph of the resin particles is shown in FIG. Furthermore, the particle size distribution of the resin particles was determined in terms of volume. The measurement results are shown in FIG. The horizontal axis of FIG. 2 indicates the particle diameter (particle size, unit μm), one vertical axis indicates the frequency (unit%) of the line graph, and the other vertical axis indicates the integrated amount (unit%) of the bar graph. The resin particles produced under the above conditions had a maximum particle size of 5 μm and a distribution with a particle size of 2.29 μm was the maximum.

<実施例>
硬化剤成分であるイミダゾール(四国化成工業(株)社製の商品名「キュアゾール2MZ」)を硬化剤溶媒であるエタノールに溶解して、イミダゾールを30重量%含有する硬化剤溶液を作成した。
<Example>
A curing agent solution containing 30% by weight of imidazole was prepared by dissolving imidazole (trade name “Cureazole 2MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing agent component in ethanol as a curing agent solvent.

この硬化剤溶液に、含有量が2重量%になるように上記樹脂粒子を添加し、40℃で6時間攪拌した後、室温で一晩攪拌した。硬化剤成分が含浸された樹脂粒子は微量の極性溶媒で洗浄し、ろ過した後、自然乾燥して潜在性硬化剤を得た。その潜在性硬化剤の電子顕微鏡写真を図3に示す。
エポキシ樹脂(ジャパンエポキシレジン(株)社製の商品名「EP807」と上記潜在性硬化剤を100:30の重量比で混合して実施例の接着剤を作成した。
The resin particles were added to the curing agent solution so as to have a content of 2% by weight, stirred at 40 ° C. for 6 hours, and then stirred overnight at room temperature. The resin particles impregnated with the curing agent component were washed with a small amount of polar solvent, filtered, and then naturally dried to obtain a latent curing agent. An electron micrograph of the latent curing agent is shown in FIG.
Epoxy resin (trade name “EP807” manufactured by Japan Epoxy Resin Co., Ltd.) and the above-mentioned latent curing agent were mixed at a weight ratio of 100: 30 to prepare adhesives of Examples.

<比較例>
上記潜在性硬化剤に換え、上記イミダゾールをマイクロカプセル化せずに用いた以外は、実施例と同じ条件で比較例の接着剤を作成した。
<Comparative example>
A comparative adhesive was prepared under the same conditions as in the Examples except that the imidazole was used without microencapsulation instead of the latent curing agent.

上記実施例と比較例の接着剤について、示差走査熱分析を行い、その結果を図4に示す。図4と、後述する図5〜8の横軸は温度(℃)を、縦軸は熱流(mW)を示す。図4の符号Lは実施例のDSC(Differential Scanning Calorimetry)曲線を示し、符号Mは比較例のDSC曲線を示している。   The differential scanning calorimetry was performed on the adhesives of the above Examples and Comparative Examples, and the results are shown in FIG. 4 and FIGS. 5 to 8 described later, the horizontal axis indicates temperature (° C.), and the vertical axis indicates heat flow (mW). 4 indicates a DSC (Differential Scanning Calibration) curve of the example, and symbol M indicates a DSC curve of the comparative example.

比較例は85℃という低温で発熱ピークとなっており、その発熱ピーク幅が広く、最大発熱量(熱流mWの最大値)が低かった。これに対し、実施例は103℃で発熱ピークとなり、発熱ピークは比較例よりも高温側へ移ったが、その分発熱ピークの幅が狭くなり、最大発熱量が26.42mWとが大きかった。   The comparative example had an exothermic peak at a low temperature of 85 ° C., the exothermic peak width was wide, and the maximum calorific value (maximum value of the heat flow mW) was low. On the other hand, the Example had an exothermic peak at 103 ° C., and the exothermic peak shifted to a higher temperature side than the comparative example, but the width of the exothermic peak was narrowed accordingly, and the maximum calorific value was as large as 26.42 mW.

DSC曲線が発熱方向に立ち上がった時には接着剤の硬化反応が開始し、その発熱量が大きいほど接着剤の硬化反応が速く進行することを示すので、実施例の接着剤は比較例の接着剤に比べて硬化速度が早いと推測される。   When the DSC curve rises in the direction of heat generation, the curing reaction of the adhesive starts, and the larger the amount of heat generated, the faster the curing reaction of the adhesive proceeds. It is estimated that the curing rate is faster than that.

<硬化剤成分の濃度>
イミダゾールの濃度を20重量%、30重量%、40重量%、50重量%に変えた硬化剤溶液を作成したところ、イミダゾール濃度が50重量%では、イミダゾールがエタノールに溶解しきらず、析出してしまった。従って、硬化剤成分がイミダゾールの場合には、硬化剤溶液中の硬化剤成分の濃度は50重量%未満で最大となる。硬化剤溶液を、イミダゾール濃度が20重量%〜40重量%の硬化剤溶液に変えた以外は上記実施例と同じ条件で3種類の潜在性硬化剤を作成した。
<Concentration of curing agent component>
When a curing agent solution was prepared in which the imidazole concentration was changed to 20%, 30%, 40%, and 50% by weight, when the imidazole concentration was 50% by weight, the imidazole was not completely dissolved in ethanol and precipitated. It was. Therefore, when the curing agent component is imidazole, the concentration of the curing agent component in the curing agent solution is maximum at less than 50% by weight. Three types of latent curing agents were prepared under the same conditions as in the above examples except that the curing agent solution was changed to a curing agent solution having an imidazole concentration of 20 wt% to 40 wt%.

更に、実施例1のエポキシ樹脂に換え、ジャパンエポキシレジン(株)社製の商品名「EP807」と、ジャパンエポキシレジン(株)社製の商品名「EP828EL」を75:25(重量比)の混合物を用い、その混合物100重量部に対し、上記3種類の潜在性硬化剤をそれぞれ30重量部添加して3種類の接着剤を作成した。   Furthermore, in place of the epoxy resin of Example 1, the trade name “EP807” manufactured by Japan Epoxy Resin Co., Ltd. and the trade name “EP828EL” manufactured by Japan Epoxy Resin Co., Ltd. are 75:25 (weight ratio). Using the mixture, 30 parts by weight of the above-mentioned three kinds of latent curing agents were added to 100 parts by weight of the mixture to prepare three kinds of adhesives.

3種類の接着剤について示差走査熱分析を行い、その結果を図5に示すと共に、測定された最大発熱量と、最大発熱量となったときの温度(発熱ピーク温度)とを下記表1に示す。   The differential scanning calorimetry was performed on the three types of adhesives. The results are shown in FIG. 5 and the measured maximum heat generation amount and the temperature when the maximum heat generation amount is reached (exothermic peak temperature) are shown in Table 1 below. Show.

図5の符号Laと、符号Lbと、符号Lcは、硬化剤溶液中のイミダゾール濃度がそれぞれ20重量%、30重量%、40重量%だった時のDSC曲線を示しており、イミダゾール濃度が30重量%と、40重量%の時は、20重量%の時に比べて最大発熱量も大きく、硬化開始温度も低い。従って、硬化剤成分にイミダゾールを用いた場合に、接着剤の硬化開始温度をより低くし、硬化速度をより早めたいのであれば、イミダゾール濃度を30重量%以上にすればよいことがわかる。   Symbols La, Lb, and Lc in FIG. 5 indicate DSC curves when the imidazole concentrations in the curing agent solution were 20 wt%, 30 wt%, and 40 wt%, respectively, and the imidazole concentration was 30 When the weight percentage is 40% by weight, the maximum heat generation amount is larger and the curing start temperature is lower than when the weight percentage is 20% by weight. Therefore, when imidazole is used as the curing agent component, it is understood that the imidazole concentration should be 30% by weight or more if it is desired to lower the curing start temperature of the adhesive and increase the curing rate.

また、イミダゾール濃度が40重量%と高くなると、30重量%の時よりも最大発熱量が逆に小さくなっており、イミダゾール濃度が40重量%よりも更に高くなると、最大発熱量が更に小さくなると推測されるので、硬化剤成分がイミダゾールの場合は、硬化剤成分の濃度の上限を40重量%にすれば、硬化速度の速い接着剤が得られる。   Also, when the imidazole concentration is as high as 40% by weight, the maximum calorific value is conversely smaller than when it is 30% by weight, and when the imidazole concentration is further higher than 40% by weight, it is estimated that the maximum calorific value is further reduced. Therefore, when the curing agent component is imidazole, an adhesive having a high curing rate can be obtained by setting the upper limit of the concentration of the curing agent component to 40% by weight.

<樹脂粒子の平均粒子径>
平均粒子径が異なる3種類の樹脂粒子を作成した。それらの樹脂粒子の平均粒子径を測定したところ、体積換算値でそれぞれ3.05μm、2.29μm、1.88μmであった。
<Average particle diameter of resin particles>
Three types of resin particles having different average particle diameters were prepared. When the average particle diameter of these resin particles was measured, they were 3.05 μm, 2.29 μm, and 1.88 μm, respectively, in terms of volume.

次に、上記3種類の樹脂粒子を用い、上記「硬化剤成分の濃度」試験と同じエポキシ樹脂を用いた以外は、上記実施例と同じ条件で3種類の接着剤を作成し、3種類の接着剤について示差走査熱分析を行った。その結果を図6に示すと共に、測定された最大発熱量と、最大発熱量となったときの温度とを、樹脂粒子の平均粒子径と一緒に下記表2に示す。   Next, using the above three types of resin particles, three types of adhesives were prepared under the same conditions as in the above examples except that the same epoxy resin as in the above-mentioned “curing agent component concentration” test was used. Differential scanning calorimetry was performed on the adhesive. The results are shown in FIG. 6, and the measured maximum calorific value and the temperature at which the maximum calorific value is reached are shown in Table 2 below together with the average particle diameter of the resin particles.

図6の符号Ldと、符号Leと、符号Lfは、樹脂粒子の平均粒子径がそれぞれ3.05μm、2.29μm、1.88μmであった時のDSC曲線を示しており、3種類の接着剤は共に硬化開始温度が低く、最大発熱量も十分に大きかったが、特に平均粒子径が2.29μmと、3.05μmでは、最大発熱量が特に大きかった。従って、接着剤の硬化速度をより速くしたい場合には、平均粒子径を2μm以上にすればよいことがわかる。   The code | symbol Ld of FIG. 6, the code | symbol Le, and the code | symbol Lf have shown the DSC curve when the average particle diameters of the resin particle were 3.05 micrometer, 2.29 micrometer, and 1.88 micrometer, respectively, 3 types of adhesion | attachment Both of the agents had a low curing start temperature and a sufficiently large maximum calorific value, but the maximum calorific value was particularly large when the average particle size was 2.29 μm and 3.05 μm. Therefore, it is understood that the average particle diameter should be 2 μm or more when it is desired to increase the curing rate of the adhesive.

<第一の樹脂成分と原料溶媒の配合割合>
第一の樹脂成分11重量部に対する原料溶媒の配合量を30重量部、40重量部、60重量部に変えて3種類の樹脂粒子を製造し、この3種類の樹脂粒子を用い、上記「硬化剤成分の濃度」試験と同じエポキシ樹脂を用いた以外は上記実施例と同じ条件で3種類の接着剤を作成し、3種類の接着剤について示差走査熱分析を行った。その結果を図7に示すと共に、測定された最大発熱量と最大発熱量となったときの温度を、原料溶媒の配合量と共に下記表3に記載する。
<Combination ratio of first resin component and raw material solvent>
Three kinds of resin particles are produced by changing the blending amount of the raw material solvent with respect to 11 parts by weight of the first resin component to 30 parts by weight, 40 parts by weight, and 60 parts by weight. Three types of adhesives were prepared under the same conditions as in the above example except that the same epoxy resin as in the “Concentration of agent component” test was used, and differential scanning calorimetry was performed on the three types of adhesives. The results are shown in FIG. 7, and the measured maximum calorific value and the temperature when the maximum calorific value is reached are shown in Table 3 below together with the blending amount of the raw material solvent.

図7の符号Lgと、Lhと、Liは、原料溶媒の配合量がそれぞれ30重量部、40重量部、60重量部であったときのDSC曲線を示しており、3種類の接着剤共に硬化開始温度が低く、また最大発熱量も十分に高かった。   Symbols Lg, Lh, and Li in FIG. 7 show DSC curves when the amounts of the raw material solvent are 30 parts by weight, 40 parts by weight, and 60 parts by weight, respectively, and both types of adhesives are cured. The starting temperature was low and the maximum heat generation was sufficiently high.

しかし、原料溶媒の配合量が30重量部の場合は、原料溶媒の配合量が40重量部、60重量部だった場合に比べて、やや最大発熱量が小さかった。これは、原料溶媒の配合量が少なくなりすぎると、樹脂粒子を構成する第二の樹脂成分の架橋密度が高くなり、加熱時に硬化剤成分が樹脂粒子から放出され難くなるためと思われる。これらのことから、接着剤の硬化速度をより速くしたいのであれば、第一の樹脂成分11重量部を、40重量部以上の原料溶媒に溶解させればよいことがわかる。   However, when the blending amount of the raw material solvent was 30 parts by weight, the maximum calorific value was slightly smaller than when the blending amount of the raw material solvent was 40 parts by weight and 60 parts by weight. This is presumably because if the blending amount of the raw material solvent is too small, the crosslinking density of the second resin component constituting the resin particles becomes high, and the curing agent component is hardly released from the resin particles during heating. From these, it is understood that if it is desired to increase the curing rate of the adhesive, 11 parts by weight of the first resin component may be dissolved in 40 parts by weight or more of the raw material solvent.

<含浸温度>
樹脂粒子を硬化剤溶液に浸漬、攪拌し、硬化剤成分と樹脂粒子内部に含浸させるときの温度を30℃、40℃、50℃の温度で行った以外は、上記実施例と同じ条件で3種類の潜在性硬化剤を作成し、これら3種類の潜在性硬化剤と、上記「硬化剤成分の濃度」試験と同じエポキシ樹脂を用いた以外は上記実施例と同じ条件で3種類の接着剤を作成した。
<Impregnation temperature>
3 under the same conditions as in the above example except that the resin particles were immersed and stirred in the curing agent solution, and the curing agent component and the resin particles were impregnated at 30 ° C., 40 ° C., and 50 ° C. Three types of latent hardeners were prepared, and these three types of latent hardeners and three types of adhesives were used under the same conditions as in the above examples except that the same epoxy resin as in the above-mentioned “Concentration of hardener component” test was used. It was created.

これら3種類の接着剤について示差走査熱分析を行った。その結果を図8に示す。図8の符号Ljと、Lkと、Llは、攪拌時の温度がそれぞれ30℃、40℃、50℃であったときのDSC曲線を示しており、各DSC曲線は最大発熱量が大きく、3種類の接着剤は硬化速度が早いと推測される。従って、硬化剤成分を樹脂粒子の内部に含浸させるときの温度が、少なくとも30℃以上50℃以下に範囲にあるのであれば、硬化速度が速い接着剤が得られることがわかる。   Differential scanning calorimetry was performed on these three types of adhesives. The result is shown in FIG. Symbols Lj, Lk, and Ll in FIG. 8 indicate DSC curves when the stirring temperature is 30 ° C., 40 ° C., and 50 ° C., respectively, and each DSC curve has a large maximum heat generation amount. It is estimated that the type of adhesive has a fast curing rate. Therefore, it can be seen that an adhesive having a high curing rate can be obtained if the temperature at which the curing agent component is impregnated into the resin particles is in the range of at least 30 ° C. and 50 ° C. or less.

次に、本発明の他の実施形態について詳細に説明する。
硬化剤溶液に樹脂粒子を浸漬し、攪拌る時間は特に限定されず、浸漬させる時の温度や、樹脂粒子の添加量や、攪拌条件を変えることで、浸漬時間を3時間程度に短縮することも可能である。
Next, another embodiment of the present invention will be described in detail.
The time for dipping and stirring the resin particles in the curing agent solution is not particularly limited, and the dipping time can be shortened to about 3 hours by changing the temperature at the time of dipping, the amount of resin particles added, and the stirring conditions. Is also possible.

硬化剤溶液を樹脂粒子に接触させる方法は特に限定されず、硬化剤溶液に樹脂粒子を入れてもよいし、逆に、樹脂粒子に硬化剤溶液を入れてもよいし、更に、硬化剤溶液を樹脂粒子にスプレーしてもよい。   The method for bringing the curing agent solution into contact with the resin particles is not particularly limited, and the resin particles may be put into the curing agent solution, or conversely, the curing agent solution may be put into the resin particles. May be sprayed onto the resin particles.

硬化剤成分は、第一の樹脂成分と反応するものであっても、第二の樹脂成分と反応しないものであれば特に限定されず、例えば第一の樹脂成分がイソシアネートの場合は、イミダゾールの他にも、ポリアミンや三級アミン等のアミン類や、フェノールのように化学構造中に水酸基を1個以上有する化合物を用いることができる。これらの化合物は1種類を単独で硬化剤成分に用いてもよいし、2種類以上を一緒に硬化剤成分に用いてもよい。   The curing agent component is not particularly limited as long as it does not react with the second resin component even if it reacts with the first resin component. For example, when the first resin component is an isocyanate, In addition, amines such as polyamines and tertiary amines, and compounds having one or more hydroxyl groups in the chemical structure such as phenol can be used. One of these compounds may be used alone for the curing agent component, or two or more of these compounds may be used together for the curing agent component.

また、硬化剤が第一、第二の樹脂成分に反応しない場合であっても、第一の樹脂成分から第二の樹脂成分が生成されるまでの間に生じる中間生成物に反応する場合にも、本発明の潜在性硬化剤の製造方法を適用することができる。   In addition, even when the curing agent does not react with the first and second resin components, it reacts with an intermediate product that is produced until the second resin component is produced from the first resin component. Moreover, the manufacturing method of the latent hardening | curing agent of this invention is applicable.

例えば、第一の樹脂成分がイソシアネート、第二の樹脂成分がポリウレア樹脂の場合は、上述したように中間生成物としてアミンが発生するが、第二の樹脂成分の樹脂粒子には中間生成物が残留しないので、アミンと反応する硬化剤を用いることもできる。   For example, when the first resin component is an isocyanate and the second resin component is a polyurea resin, an amine is generated as an intermediate product as described above, but the intermediate product is present in the resin particles of the second resin component. Since it does not remain, a curing agent that reacts with an amine can also be used.

硬化剤溶媒は、硬化剤成分が溶解可能であって、硬化剤成分と反応しないものであれば特に限定されないが、硬化剤成分の溶解性に優れていること、低沸点であること、極性を有し、樹脂粒子を膨潤可能であることの条件を満たすものが好ましい。このような条件を満たすものとしては、硬化剤成分がイミダゾールの場合はアルコールがあり、アルコールの中でも、作業環境の安全性を考慮するとエタノールが特に適している。   The curing agent solvent is not particularly limited as long as it can dissolve the curing agent component and does not react with the curing agent component, but it has excellent solubility in the curing agent component, low boiling point, polarity. It is preferable that the resin particles satisfy the condition that the resin particles can swell. As a material satisfying such conditions, there is an alcohol when the curing agent component is imidazole, and ethanol is particularly suitable among the alcohols in consideration of the safety of the working environment.

樹脂粒子は、いわゆる界面重合法を利用して製造されるため、その形状は球状であり、その粒子径(直径)は硬化性及び分散性の点から、好ましくは0.5μm以上100μm以下であるが、樹脂粒子に含浸される硬化剤成分の量を多くし、接着剤の硬化速度をあげるためには、粒子径は2μm以上であることが望ましい。また、樹脂粒子内部の細孔の大きさは硬化性及び潜在性の点から、好ましくは5nm以上150nm以下である。   Since the resin particles are produced using a so-called interfacial polymerization method, the shape thereof is spherical, and the particle diameter (diameter) is preferably 0.5 μm or more and 100 μm or less from the viewpoint of curability and dispersibility. However, in order to increase the amount of the curing agent component impregnated in the resin particles and increase the curing rate of the adhesive, the particle diameter is desirably 2 μm or more. In addition, the size of the pores inside the resin particles is preferably 5 nm or more and 150 nm or less from the viewpoint of curability and latency.

また、潜在性硬化剤は第二の樹脂成分の架橋度が小さすぎるとその潜在性が低下し、大きすぎるとその熱応答性が低下する傾向があるので、使用目的に応じて、架橋度が調整された多孔性樹脂を使用することが好ましい。ここで、多孔性樹脂の架橋度は、微少圧縮試験により計測することができる。   In addition, the latent curing agent has a tendency that if the degree of cross-linking of the second resin component is too small, the potential is lowered, and if it is too large, the thermal responsiveness tends to be lowered. It is preferable to use an adjusted porous resin. Here, the degree of crosslinking of the porous resin can be measured by a micro compression test.

本発明の潜在性硬化剤は、その界面重合時に使用する有機溶媒(原料溶媒、分散溶媒)を実質的に含有していないこと、具体的には1ppm以下であることが、硬化安定性の点で好ましい。   The latent curing agent of the present invention contains substantially no organic solvent (raw material solvent, dispersion solvent) used during the interfacial polymerization, specifically 1 ppm or less, in terms of curing stability. Is preferable.

第一の樹脂成分に持ちるイソシアネートの種類を変えても、多孔質構造を有する樹脂粒子が得られると推測される。
第一の樹脂成分に用いられるイソシアネートは、好ましくは一分子中に2個以上のイソシアネート基、より好ましくは一分子中に3個のイソシアネート基を有する化合物である。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた下記式(1)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた下記式(2)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した下記式(3)のビュウレット体が挙げられる。
It is presumed that resin particles having a porous structure can be obtained even if the type of isocyanate contained in the first resin component is changed.
The isocyanate used for the first resin component is preferably a compound having two or more isocyanate groups in one molecule, more preferably three isocyanate groups in one molecule. As a more preferred example of such a trifunctional isocyanate compound, a TMP adduct of the following formula (1) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and the following formula (3) The isocyanurate body of 2) and the burette body of following formula (3) which the remaining 1 mol diisocyanate condensed with the diisocyanate urea obtained from 2 mol of 3 mol of diisocyanate compounds are mentioned.

上記式(1)〜(3)において、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4−ジイソシアネート、トルエン2,6−ジイソシアネート、m−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ−m−キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル−4,4’−ジイソシアネートが挙げられる。   In the above formulas (1) to (3), the substituent R is a portion excluding the isocyanate group of the diisocyanate compound. Specific examples of such diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate.

このように、イソシアネートの種類は特に限定されるものではないが、イソシアネートの種類が変わると、樹脂粒子の多孔質構造も変化し、潜在性硬化剤としての特性に影響があるから、上記「硬化剤成分の濃度」、「樹脂粒子の平均粒子径」、「第一の樹脂成分と原料溶媒の配合割合」、「含浸温度」の各評価試験で求めた最適条件を基に潜在性硬化剤を作成する場合には、メチレンジフェニル−4,4−ジイソシアネート(3モル)と、トリメチロールプロパン(1モル)の付加物を用いることが好ましい。   As described above, the type of isocyanate is not particularly limited. However, if the type of isocyanate is changed, the porous structure of the resin particles is also changed, which affects the properties as a latent curing agent. Potential curing agent based on the optimum conditions determined in each evaluation test of “concentration of agent component”, “average particle diameter of resin particles”, “mixing ratio of first resin component and raw material solvent”, and “impregnation temperature” In the case of preparation, it is preferable to use an adduct of methylenediphenyl-4,4-diisocyanate (3 mol) and trimethylolpropane (1 mol).

このような多官能イソシアネート化合物を界面重合させて得られる多孔性樹脂は、界面重合の間にイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基とイソシアネート基とが反応して尿素結合を生成してポリマー化するものであり、内部に細孔を多数有する多孔性ポリウレアである。このような多孔性樹脂とその孔に保持された硬化剤成分とからなる潜在性硬化剤は、硬化のために加熱されると、明確な理由は不明であるが、保持されている硬化剤成分が接着剤中に放出されて熱硬化性樹脂と接触できるようになり、熱硬化性樹脂の重合反応を進行させることができる。   In the porous resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound, part of the isocyanate group undergoes hydrolysis during the interfacial polymerization to become an amino group, and the amino group reacts with the isocyanate group. It is a polyurea that is polymerized by generating urea bonds and has many pores inside. When the latent curing agent composed of such a porous resin and the curing agent component held in the pores is heated for curing, the clear reason is unknown, but the retained curing agent component Is released into the adhesive so that it can come into contact with the thermosetting resin, and the polymerization reaction of the thermosetting resin can proceed.

第一の樹脂成分を溶解させる原料溶媒は、大気圧下での沸点が100℃以下である揮発性有機溶媒を用いることが好ましい。ここで、揮発性有機溶媒を使用する理由は以下の通りである。即ち、通常の界面重合法で使用するような沸点が300℃を超える高沸点溶媒を用いた場合、界面重合の間に有機溶媒が揮発しないために、イソシアネート−水との接触確率が増大せず、それらの間での界面重合の進行度合いが不十分となるからである。   The raw material solvent for dissolving the first resin component is preferably a volatile organic solvent having a boiling point of 100 ° C. or lower under atmospheric pressure. Here, the reason for using the volatile organic solvent is as follows. That is, when a high boiling point solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability with isocyanate-water does not increase. This is because the degree of progress of interfacial polymerization between them becomes insufficient.

そのため、界面重合させても良好な保形性の重合物が得られ難く、また、得られた場合でも重合物に高沸点溶媒が取り込まれたままとなり、接着剤に配合した場合に、高沸点溶媒が接着剤の硬化物の物性に悪影響を与えるからである。   Therefore, it is difficult to obtain a polymer having good shape retention even when interfacial polymerization is performed, and even when it is obtained, a high boiling point solvent is still taken into the polymer, and when blended in an adhesive, it has a high boiling point. This is because the solvent adversely affects the physical properties of the cured product of the adhesive.

このような揮発性有機溶媒としては、多官能イソシアネート化合物との良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶媒)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶媒)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶媒の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。   As such a volatile organic solvent, it is a good solvent with a polyfunctional isocyanate compound (the solubility of each is preferably 0.1 g / ml (organic solvent) or more), and it is substantially soluble in water. (The solubility of water is 0.5 g / ml (organic solvent) or less) and the boiling point at atmospheric pressure is 100 ° C. or less. Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.

原料溶媒の使用量範囲内において、原料溶媒の使用量を比較的多く使用すること等により、油相となる溶液の粘度を下げることができるが、粘度を下げると撹拌効率が向上するため、反応系における油相滴をより微細化かつ均一化することが可能になり、結果的に得られる潜在性硬化剤粒子径をサブミクロン〜数ミクロン程度の大きさに制御しつつ、粒度分布を単分散とすることが可能となる。油相となる溶液の粘度は1mPa・s以上2.5mPa・s以下に設定することが好ましい。   The viscosity of the solution that becomes the oil phase can be lowered by using a relatively large amount of the raw material solvent within the range of the raw material solvent used. The oil phase droplets in the system can be made finer and uniform, and the particle size distribution is monodispersed while the resulting latent curing agent particle size is controlled to a size of submicron to several microns. It becomes possible. The viscosity of the oil phase solution is preferably set to 1 mPa · s or more and 2.5 mPa · s or less.

第一の樹脂成分を原料溶媒に溶解し、原料液を作成する際には、大気圧下、室温で混合撹拌するだけでもよいが、必要に応じ、加熱してもよい。
原料液を分散剤を含有する水相(分散溶媒)に投入し、加熱撹拌することにより界面重合させる。このとき、分散溶媒に界面活性剤や分散剤を添加すれば、液滴の分散性が向上するので、液滴の粒径が均一になり、その結果粒径が均一な樹脂粒子が得られる。
When the first resin component is dissolved in the raw material solvent to prepare the raw material solution, it may be simply mixed and stirred at room temperature under atmospheric pressure, but may be heated as necessary.
The raw material liquid is put into an aqueous phase (dispersing solvent) containing a dispersing agent and subjected to interfacial polymerization by heating and stirring. At this time, if a surfactant or a dispersant is added to the dispersion solvent, the dispersibility of the droplets is improved, so that the droplets have a uniform particle size, and as a result, resin particles having a uniform particle size can be obtained.

ここで、分散剤としては、ポリビニルアルコール、カルボキシメチルセルロース、ゼラチン等の通常の界面重合法において使用されるものを使用することができる。分散剤の使用量は、通常、水相の0.1重量%以上10.0重量%以下である。   Here, as a dispersing agent, what is used in normal interfacial polymerization methods, such as polyvinyl alcohol, carboxymethylcellulose, gelatin, can be used. The amount of the dispersant used is usually 0.1% by weight or more and 10.0% by weight or less of the aqueous phase.

分散剤としてPVA(ポリビニルアルコール)を用いた場合、PVAの水酸基と多官能イソシアネート化合物が反応してしまうため、副生成物が異物として樹脂粒子の周囲を付着してしまったり、および粒子形状そのものが異形化してしまったりする。多官能イソシアネート化合物は、PVAの水酸基と反応する速度よりも、加水分解により形成されるアミンとの反応(界面重合)速度が大きいため、分散溶媒に水を用いればPVAとの反応確率を低下させることができる。   When PVA (polyvinyl alcohol) is used as the dispersant, the hydroxyl group of PVA reacts with the polyfunctional isocyanate compound, so that by-products adhere around the resin particles as foreign substances, and the particle shape itself is It may be deformed. Since the polyfunctional isocyanate compound has a higher reaction rate (interfacial polymerization) with the amine formed by hydrolysis than the reaction rate with the hydroxyl group of PVA, if water is used as the dispersion solvent, the reaction probability with PVA is lowered. be able to.

原料液の分散溶媒に対する配合量は、原料液が少なすぎると多分散化し、多すぎると微細化により凝集が生ずるので、分散溶媒100重量部に対し、好ましくは5重量部以上50重量部以下である。   The blending amount of the raw material liquid with respect to the dispersion solvent is polydispersed if the raw material liquid is too small, and if it is too large, aggregation occurs due to miniaturization. is there.

界面重合における乳化条件としては、油相である液滴の大きさが好ましくは0.5μm以上100μm以下となるような撹拌条件(撹拌装置ホモジナイザー;撹拌速度8000rpm以上)で、通常、大気圧下、油相が分散された分散溶媒の温度が30℃以上80℃以下で、2時間以上12時間加熱撹拌する条件を挙げることができる。界面重合終了後に、重合体微粒子を第二の分散液からろ別し、自然乾燥することにより本発明の潜在性硬化剤を得ることができる。   As the emulsification conditions in the interfacial polymerization, stirring conditions (stirring apparatus homogenizer; stirring speed of 8000 rpm or more) such that the size of the droplets that are the oil phase is preferably 0.5 μm or more and 100 μm or less are usually obtained under atmospheric pressure. The temperature of the dispersion | distribution solvent in which the oil phase was disperse | distributed can be 30 degreeC or more and 80 degrees C or less, and the conditions which heat-stir for 2 hours or more and 12 hours can be mentioned. After the completion of interfacial polymerization, the polymer fine particles are filtered off from the second dispersion and naturally dried to obtain the latent curing agent of the present invention.

以上説明した本発明の製造方法によれば、第一の樹脂成分の種類や使用量、界面重合条件を変化させることにより、潜在性硬化剤の硬化特性をコントロールすることができる。例えば、重合温度を低くすると硬化温度を低下させることができ、反対に、重合温度を高くすると硬化温度を上昇させることができる。   According to the production method of the present invention described above, the curing characteristics of the latent curing agent can be controlled by changing the type and amount of the first resin component and the interfacial polymerization conditions. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.

本発明の潜在性硬化剤は、従来のイミダゾール系潜在性硬化剤と同様の用途に使用することができ、好ましくは、熱硬化性樹脂と併用することにより、低温速硬化性の熱硬化性接着剤を与えることができる。   The latent curing agent of the present invention can be used in the same applications as conventional imidazole-based latent curing agents, and preferably, when used in combination with a thermosetting resin, a low-temperature fast-curing thermosetting adhesive Agent can be given.

熱硬化性接着剤における潜在性硬化剤の含有量は、少なすぎると十分に硬化せず、多すぎるとその接着剤の硬化物の樹脂特性(例えば、可撓性)が低下するので、熱硬化性樹脂100重量部に対し1重量部以上70重量部以下、好ましくは1重量部以上50重量部以下である。   If the content of the latent curing agent in the thermosetting adhesive is too small, it will not be cured sufficiently, and if it is too large, the resin properties (for example, flexibility) of the cured product of the adhesive will decrease. 1 part by weight or more and 70 parts by weight or less, preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the conductive resin.

熱硬化性樹脂としては、硬化剤成分と反応して熱硬化するものであれば、熱硬化性エポキシ樹脂以外にも、熱硬化性尿素樹脂、熱硬化性メラミン樹脂、熱硬化性フェノール樹脂等を使用することができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化性エポキシ樹脂を好ましく使用することができる。   As the thermosetting resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, etc. can be used in addition to the thermosetting epoxy resin, as long as it can be cured by reacting with the curing agent component. Can be used. Among these, a thermosetting epoxy resin can be preferably used in consideration of a good adhesive strength after curing.

このような熱硬化性エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100以上4000以下であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。   Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually 100 or more and 4000 or less and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.

熱硬化性の接着剤には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤、カップリング剤、着色剤、老化防止剤などを含有させることができる。また、本発明の熱硬化性の接着剤を、配線板や半導体素子等の電気部品の接続に用いる場合には、数μmオーダーの粒径の導電性粒子を分散させることが好ましく、導電性粒子としては、金属粒子、樹脂コア表面を金属メッキ層で被覆したもの、それらの表面を絶縁薄膜で更に被覆したもの等を、接着剤全体の1重量%以上10重量%以下の配合量で配合することが好ましい。これにより接着剤を異方導電性接着ペースト、異方導電性フィルムとして使用することが可能となる。   The thermosetting adhesive may contain a filler such as silica and mica, a pigment, an antistatic agent, a coupling agent, a coloring agent, an anti-aging agent, and the like as necessary. In addition, when the thermosetting adhesive of the present invention is used for connection of electrical parts such as a wiring board and a semiconductor element, it is preferable to disperse conductive particles having a particle size on the order of several μm. As for metal particles, those in which the surface of the resin core is coated with a metal plating layer, those whose surfaces are further coated with an insulating thin film, and the like are blended in an amount of 1 wt% to 10 wt% of the entire adhesive. It is preferable. As a result, the adhesive can be used as an anisotropic conductive adhesive paste or an anisotropic conductive film.

接着剤は、本発明により製造された潜在性硬化剤と、熱硬化性樹脂と、必要に応じて添加される他の添加剤とを、常法に従って均一に混合撹拌することにより製造することができる。   The adhesive can be produced by uniformly mixing and stirring the latent curing agent produced according to the present invention, the thermosetting resin, and other additives added as necessary according to a conventional method. it can.

このようにして得られた接着剤は、硬化剤が潜在化しているので、一剤型であるにも拘わらず、保存安定性に優れている。また、潜在性硬化剤は室温では溶解しないが、加熱されると低温で溶解するので、接着剤は低温条件で短時間で硬化する。   Since the adhesive obtained in this manner has a latent hardener, it is excellent in storage stability despite being a one-component type. In addition, the latent curing agent does not dissolve at room temperature, but dissolves at a low temperature when heated, so that the adhesive cures in a short time under low temperature conditions.

樹脂粒子の電子顕微鏡写真(5000倍)Electron micrograph of resin particles (5000 times) 樹脂粒子の粒度分布を示すグラフGraph showing particle size distribution of resin particles 潜在性硬化剤の電子顕微鏡写真(5000倍)Electron micrograph of the latent curing agent (5000 times) 潜在性硬化剤を添加した接着剤と、硬化剤成分をそのまま添加した接着剤のDSC曲線DSC curve of adhesive to which latent curing agent is added and adhesive to which curing agent component is added as it is イミダゾールの濃度を変えた接着剤のDSC曲線DSC curve of adhesive with varying imidazole concentration 樹脂粒子の粒子径を変えた接着剤のDSC曲線DSC curve of adhesive with different resin particle size 原料溶媒の配合量を変えた接着剤のDSC曲線DSC curve of adhesives with varying amounts of raw material solvent 硬化剤成分を含浸させる時の温度を変えた接着剤のDSC曲線DSC curve of adhesive with different temperature when impregnating hardener component

Claims (7)

第一の樹脂成分を反応させ、反応生成物である第二の樹脂成分からなる樹脂粒子を形成し、
前記樹脂粒子に、前記第一の樹脂成分と反応し、前記第二の樹脂成分と反応しない硬化剤成分の溶液を接触させ、前記樹脂粒子内部に前記硬化剤成分を含浸させる潜在性硬化剤の製造方法であって、
前記第一の樹脂成分としてイソシアネートを用い、
前記硬化剤成分として、イミダゾール、ポリアミン、三級アミン、又はフェノールのうち、いずれか一種又は二種以上の化合物を用い、
前記イソシアネートの一部を加水分解してアミンを生成し、前記アミンと他の前記イソシアネートとを反応させて前記第二の樹脂成分であるポリウレア樹脂を生成する潜在性硬化剤の製造方法。
Reacting the first resin component to form resin particles composed of the second resin component as a reaction product;
A latent curing agent for contacting the resin particles with a solution of a curing agent component that reacts with the first resin component and does not react with the second resin component, and impregnates the curing agent component inside the resin particles. A manufacturing method comprising :
Using isocyanate as the first resin component,
As the curing agent component, one or more compounds of imidazole, polyamine, tertiary amine, or phenol are used,
A method for producing a latent curing agent, wherein a part of the isocyanate is hydrolyzed to produce an amine, and the amine is reacted with another isocyanate to produce a polyurea resin that is the second resin component .
前記樹脂粒子の形成は、前記第一の樹脂成分が原料溶媒に溶解された原料液を、分散溶媒中に分散せて前記原料液の液滴を形成し、前記液滴が形成された分散溶媒を加熱して、前記第一の樹脂成分を反応させる請求項1記載の潜在性硬化剤の製造方法。   The resin particles are formed by dispersing a raw material liquid in which the first resin component is dissolved in a raw material solvent in a dispersion solvent to form droplets of the raw material liquid, and the dispersion solvent in which the droplets are formed The manufacturing method of the latent hardening | curing agent of Claim 1 with which said 1st resin component is made to react by heating. 前記原料溶媒は酢酸エチルである請求項又は請求項のいずれか1項記載の潜在性硬化剤の製造方法。 The raw material solvent method for producing the latent curing agent according to any one of claims 1 or claim 2 which is ethyl acetate. 前記第一の樹脂成分11重量部に対し、前記原料溶媒の40重量部以上有する前記原料液を用いる請求項乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法。 The manufacturing method of the latent hardening | curing agent of any one of Claim 1 thru | or 3 which uses the said raw material liquid which has 40 weight part or more of the said raw material solvent with respect to 11 weight part of said 1st resin components. 前記樹脂粒子に接触させる前記溶液にアルコールを添加する請求項1乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法。 Method for producing a latent curing agent according to any one of claims 1 to 4, adding an alcohol to the solution of contacting the resin particles. 前記樹脂粒子に接触させる前記硬化剤成分の濃度を、30重量%以上40重量%以下にする請求項記載の潜在性硬化剤の製造方法。 The manufacturing method of the latent hardening | curing agent of Claim 5 which makes the density | concentration of the said hardening | curing agent component contacted with the said resin particle 30 to 40 weight%. 前記樹脂粒子の形成は、前記樹脂粒子の平均粒子径を2μm以上にする請求項1乃至請求項のいずれか1項記載の潜在性硬化剤の製造方法。 The formation of the resin particles, method for producing a latent curing agent according to any one of claims 1 to 6 to an average particle diameter of the resin particles than 2 [mu] m.
JP2005114325A 2005-04-12 2005-04-12 Method for producing latent curing agent Active JP4711721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114325A JP4711721B2 (en) 2005-04-12 2005-04-12 Method for producing latent curing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114325A JP4711721B2 (en) 2005-04-12 2005-04-12 Method for producing latent curing agent

Publications (2)

Publication Number Publication Date
JP2006291053A JP2006291053A (en) 2006-10-26
JP4711721B2 true JP4711721B2 (en) 2011-06-29

Family

ID=37411969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114325A Active JP4711721B2 (en) 2005-04-12 2005-04-12 Method for producing latent curing agent

Country Status (1)

Country Link
JP (1) JP4711721B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381255B2 (en) 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent
JP5146645B2 (en) * 2007-08-28 2013-02-20 デクセリアルズ株式会社 Microcapsule type latent curing agent
JP2012052074A (en) * 2010-09-03 2012-03-15 Sekisui Chem Co Ltd Curing composition for inkjet and method of manufacturing printed wiring board
JP5601115B2 (en) 2010-09-17 2014-10-08 デクセリアルズ株式会社 Method for producing latent curing agent
JP5488362B2 (en) * 2010-09-17 2014-05-14 デクセリアルズ株式会社 Method for producing latent curing agent
KR20170097152A (en) * 2014-12-23 2017-08-25 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Curable and cured epoxy resin compositions
JP7454108B2 (en) * 2022-01-18 2024-03-21 松本油脂製薬株式会社 Particles and their uses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173399A (en) * 1993-12-13 1995-07-11 Noritoshi Mise Long-term storage in one pack of multicomponent reactive resin and its curing method
JPH08337633A (en) * 1995-06-14 1996-12-24 Nitto Denko Corp Microcapsular curing agent or cure accelerator, epoxy resin composition containing the same, method for curing and cured epoxy resin product
JPH10139860A (en) * 1996-11-11 1998-05-26 Mitsubishi Paper Mills Ltd Epoxy resin hardner
JPH11343332A (en) * 1998-06-02 1999-12-14 Nitto Denko Corp Microcapsular curing agent, microcapsular cure accelerator, their preparation, epoxy resin composition, and epoxy resin composition for semiconductor sealing
JP2003268118A (en) * 2002-03-13 2003-09-25 Nisshinbo Ind Inc Carbodiimide-containing curable reactive particle, production method and usage thereof
JP2004075710A (en) * 2002-08-09 2004-03-11 Nisshinbo Ind Inc Composite particle having carbodiimide resin layer and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173399A (en) * 1993-12-13 1995-07-11 Noritoshi Mise Long-term storage in one pack of multicomponent reactive resin and its curing method
JPH08337633A (en) * 1995-06-14 1996-12-24 Nitto Denko Corp Microcapsular curing agent or cure accelerator, epoxy resin composition containing the same, method for curing and cured epoxy resin product
JPH10139860A (en) * 1996-11-11 1998-05-26 Mitsubishi Paper Mills Ltd Epoxy resin hardner
JPH11343332A (en) * 1998-06-02 1999-12-14 Nitto Denko Corp Microcapsular curing agent, microcapsular cure accelerator, their preparation, epoxy resin composition, and epoxy resin composition for semiconductor sealing
JP2003268118A (en) * 2002-03-13 2003-09-25 Nisshinbo Ind Inc Carbodiimide-containing curable reactive particle, production method and usage thereof
JP2004075710A (en) * 2002-08-09 2004-03-11 Nisshinbo Ind Inc Composite particle having carbodiimide resin layer and its manufacturing method

Also Published As

Publication number Publication date
JP2006291053A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4381255B2 (en) Latent curing agent
JP4711721B2 (en) Method for producing latent curing agent
JP5146645B2 (en) Microcapsule type latent curing agent
JP5707662B2 (en) Thermosetting epoxy resin composition
JP5429337B2 (en) Thermosetting epoxy resin composition
WO2006075415A1 (en) Latent curing agent
JP5417982B2 (en) Latent curing agent
TWI494354B (en) Preparation of latent hardening agents
JP5481013B2 (en) Method for producing latent curing agent particle, method for producing adhesive
JP5285841B2 (en) Method for producing film adhesive
JP5212597B2 (en) Latent curing agent
JP5476988B2 (en) Electrical device and epoxy resin composition used therefor
JP5360378B2 (en) Method for producing latent curing agent and method for producing adhesive
JP5354192B2 (en) Thermosetting conductive paste composition
JP5488362B2 (en) Method for producing latent curing agent
JP5074982B2 (en) Epoxy resin curing acceleration microcapsule and method for producing epoxy resin curing acceleration microcapsule
WO2006109831A1 (en) Processes for production of adhesives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4711721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250