JPH07173399A - Long-term storage in one pack of multicomponent reactive resin and its curing method - Google Patents

Long-term storage in one pack of multicomponent reactive resin and its curing method

Info

Publication number
JPH07173399A
JPH07173399A JP34831893A JP34831893A JPH07173399A JP H07173399 A JPH07173399 A JP H07173399A JP 34831893 A JP34831893 A JP 34831893A JP 34831893 A JP34831893 A JP 34831893A JP H07173399 A JPH07173399 A JP H07173399A
Authority
JP
Japan
Prior art keywords
curing
mixed
components
component
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34831893A
Other languages
Japanese (ja)
Inventor
Noritoshi Mise
教利 三瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34831893A priority Critical patent/JPH07173399A/en
Publication of JPH07173399A publication Critical patent/JPH07173399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the operability by storing the individuals of multiple high-reactive components for a curing resin in one vessel, so-cold in one pack, to save the labor work for weighing and mixing a plurality of the components, and also to realize the rapid curing by heating for a shortened tide whereby the labor and time can be saved without remains of unused resins. CONSTITUTION:For example, the high reactive components for a curing resin such as a diisocyanate and a diamine cannot be stored in one can and they are separately stored in different vessels and mixed immediately before use. Such components are substantially made in the form of fine phases, respectively and the fine phases are mutually dispersed and mixed to enable them to be storable in a single vessel. When used, the dispersion is irradiated with high-frequency electromagnetic waves or laser beams whereby a needed amount of the fine-phase mix is dissolved with heat to effect homogenization, diffusion and curing in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多成分反応硬化性組成物
を実質上分離分散混在させ、一成分として保存し、使用
に際しては、これを高周波電磁場やレーザービームによ
り処理して拡散混合・硬化させる新たな保存・硬化方法
に関する。単一容器保存により取り扱いを容易にし、尚
且つ、配合の組合わせが豊富であること、従って硬、
軟、高強度、高弾性、強靭、耐薬品性、等幅広い物性の
ものが得られること等、多成分樹脂の長所を保持した、
塗料、接着剤、各種成形品等、広く適用可能な反応硬化
型樹脂のワンパック保存方法、及びその硬化方法に関す
る。
The present invention relates to a multi-component reaction-curable composition which is substantially separated and dispersed and mixed and stored as one component. When used, it is treated with a high frequency electromagnetic field or a laser beam to diffuse-mix and cure. The present invention relates to a new storage / curing method. Storage in a single container makes it easy to handle, and there are a wide variety of compounding combinations.
Maintains the advantages of multi-component resins, such as softness, high strength, high elasticity, toughness, chemical resistance, and a wide range of other physical properties.
The present invention relates to a one-pack storage method of a widely applicable reaction-curable resin such as paints, adhesives, various molded products, and the curing method thereof.

【0002】[0002]

【従来の技術】エポキシ樹脂、ウレタン樹脂、不飽和ポ
リエステル樹脂等の主剤、硬化剤から成る、いわゆる多
成分反応性樹脂は、接着剤、塗料、及び各種成形品分野
に広く利用されている。これらいわゆる反応硬化型樹脂
は、多成分を別個の容器に入れて保存され、使用時に各
成分を配合混合して適用し、常温或いは加熱下にて硬化
される。通常、両液体成分を計量して一つの容器に入
れ、手動又は電動攪拌機を使用して良く混ぜ均一に溶解
し、配合液が硬化しないうちに、いわゆるポットライフ
の間に適用する。
2. Description of the Related Art So-called multi-component reactive resins comprising a main agent such as epoxy resin, urethane resin, unsaturated polyester resin, etc. and a curing agent are widely used in the fields of adhesives, paints and various molded articles. These so-called reaction-curable resins are prepared by storing multiple components in separate containers, mixing and mixing the components at the time of use, and curing at room temperature or under heating. Usually, both liquid components are weighed and put in one container, well mixed by using a manual or electric stirrer to dissolve uniformly, and applied during so-called pot life before the compounded liquid is cured.

【0003】特別な混合方法として、二液を二頭ガンに
よりスプレーして混合する方法や例えば、ら旋状の邪魔
板の入ったパイプ中を液状の各成分を合流通過させて混
合するスタチックミキサーによる混合方法がある。しか
し、これらはいずれも別の容器に分離保存されたものを
使用直前に混合して使用するものであり、二液型、多成
分型と呼ばれ、いずれも液状にて適用される。
As a special mixing method, a method of spraying and mixing two liquids with a two-headed gun, or, for example, a static method, in which liquid components are mixed and passed through a pipe containing a spiral baffle plate, is mixed. There is a mixing method with a mixer. However, these are used separately after being stored separately in different containers and mixed, and are called two-component type and multi-component type, and both are applied in liquid form.

【0004】又、常温では反応しない多成分をあらかじ
め混合しておき、使用時に加熱溶融して反応硬化させる
方法も公知である。更に、いわゆるBステージと呼ばれ
る、反応休止状態、ないしは触媒等一定温度以上で働く
成分の反応開始温度以下にて混合保存し、成形時に加熱
反応させるものも公知である。不飽和ポリエステル樹脂
のプリプレグマットと呼ばれるものはこのタイプの代表
的なものである。これらはいずれも、低温〜常温下にて
反応を抑制し保存性を持たせているものであり、加熱さ
れた金型等により加熱して反応再開、ないし開始する。
この場合、反応成分は均一に溶解しており、活性温度に
加熱すればただちに反応は開始する。すなわち、これら
は反応性多成分樹脂とはいえ、本質的に反応しない温度
下にて保存されるもので、言い換えれば保存温度下では
不活性樹脂である。
Further, a method is also known in which multi-components which do not react at room temperature are mixed in advance and heated and melted during use to react and cure. Further, there is also known a so-called B stage which is mixed and stored at a reaction quiescent state or below the reaction start temperature of components such as a catalyst that work at a certain temperature or higher, and heated at the time of molding. An unsaturated polyester resin called a prepreg mat is typical of this type. All of these are those which suppress the reaction at low temperature to normal temperature and have a preservative property, and are restarted or started by heating with a heated mold or the like.
In this case, the reaction components are uniformly dissolved, and the reaction starts immediately when heated to the activation temperature. That is, even though they are reactive multi-component resins, they are stored at a temperature at which they do not essentially react, that is, they are inactive resins at the storage temperature.

【0005】ところで、一部成分を固体分散させておく
こともでき、本発明と類似した印象を与えるが、従来技
術においては、これを硬化する場合、一定量をまとめて
例えば金型に入れ、或いは必要量を熱プレスにて加圧し
ながら一定時間加熱して硬化させるものであり、方法論
的な言い方をすればバッチ加熱法である。
By the way, a part of the components may be solid-dispersed, which gives an impression similar to that of the present invention. However, in the prior art, when the components are cured, a fixed amount is put together in a mold, for example. Alternatively, a required amount is heated by a hot press and heated for a certain period of time to be cured, which is a batch heating method in a methodological term.

【0006】[0006]

【発明が解決しようとする問題】前述のような多成分液
状反応硬化性樹脂は混合した後、ただちに反応が始ま
り、適用途上においても反応が進行し、混合したものは
全部使いきらないと残部は硬化してしまい無駄となる。
また、硬化を速くするため触媒等を添加すると、硬化時
開の短縮以上に可使時間が急速に短くなり、ますます残
部の無駄が多くなる。多成分反応硬化型樹脂において
は、前述のように、分離保存された各成分を使用直前に
計量配合するが、配合比間違い、配合忘れ等の事故が多
く、使用時毎に計量混合を必要としない単一容器、一成
分化の要望は根強い。
[Problems to be Solved by the Invention] The above-mentioned multi-component liquid reaction curable resin starts to react immediately after being mixed, and the reaction proceeds even in an appropriate application. It hardens and becomes useless.
In addition, if a catalyst or the like is added to accelerate the curing, the pot life will be shortened more rapidly than the shortening of the opening time during curing, and the remainder will be wasted more and more. As described above, in multi-component reaction curable resins, the separated and stored components are weighed and compounded immediately before use, but there are many accidents such as a mistake in the compounding ratio and forgetting of the compound, and it is necessary to meter and mix each time. There is a strong demand for a single container that does not have one component.

【0007】この要望を満たすべく一液ウレタン樹脂が
開発され利用されているが、これは末端イソシアネート
基を持ったプレポリマーとし、これを塗装、接着等に適
用して大気中、或いは適用物中の水分により重合硬化さ
せるもので、一液湿気硬化タイプと呼ばれるが、水分が
硬化剤として働くもので、実質上は二液タイプで適用前
は湿気と完全に隔離して保存される。硬化を湿気との反
応に委ねるため硬化速度は遅く、これを促進するのは困
難で、いわゆる熟成期間をとる必要がある。また、分子
設計上からも、プレポリマーの粘度、硬化物の物性等か
ら制限が多く、その用途は自ずと限られたものとならざ
るを得ない。
To meet this demand, a one-component urethane resin has been developed and used, but this is a prepolymer having a terminal isocyanate group, which is applied to painting, adhesion, etc. in the air or in an applied product. Although it is polymerized and cured by the water content of the one-component type, it is called a one-part moisture curing type, but the water content acts as a curing agent, and it is effectively a two-part type and is stored completely isolated from the moisture before application. Since the curing is left to the reaction with moisture, the curing rate is slow, and it is difficult to accelerate this, and it is necessary to take a so-called aging period. Also, from the viewpoint of molecular design, there are many restrictions due to the viscosity of the prepolymer, the physical properties of the cured product, and the like, and the application is naturally limited.

【0008】又、常温では反応しないか反応が非常に遅
いので、これをあらかじめ混合しておき必要に応じて加
熱硬化させるタイプのものも前述したが、これは成形に
必要な分量全部を金型や熱プレスにセツトし、一定時間
加熱下に置いて反応をすすめ成形するものである。もと
もと反応性の低いものであるために、硬化時間は比較的
長くかかる。例えば、接着剤とし使う場合、硬化固定す
るまでかなりの時間固定具で固定し、流動してずれたり
剥がれ落ちたりしないようにしなければならない。高温
下で固定保持することは作業上好ましくないし、次の工
程に移るまで時間を要し、固定具などを取付けたり取り
外したりする手間等、作業性を大きく損なうものであ
る。またこのような反応性成分を常温下であらかじめ配
合混合しておけるものは反応性が低く、その組合わせ、
配合割合等も限られ、多成分反応型の樹脂の特長である
配合物の種類、配合割合等、バラエティに富み、広範囲
なものが得られるという長所を失うものである。
Also, since the reaction does not occur at room temperature or the reaction is very slow, the type in which this is mixed in advance and heat-cured if necessary is described above, but this is the whole amount required for molding in the mold. It is then set in a hot press or hot press and put under heating for a certain period of time to promote the reaction and molding. The curing time is relatively long due to its inherently low reactivity. For example, when it is used as an adhesive, it must be fixed with a fixture for a considerable period of time until it is cured and fixed so that it will not flow and slip or fall off. Fixing and holding at high temperature is not preferable in terms of work, it takes time to move to the next step, and workability is greatly impaired, such as the time and effort to attach and detach the fixtures. In addition, those that can be premixed and mixed at room temperature with such reactive components have low reactivity.
The compounding ratio is also limited, and there is a wide variety of compounding types and compounding ratios, which are characteristics of multi-component reaction type resins, and the advantage that a wide range can be obtained is lost.

【0009】これら欠点からの開放を目論み反応性の高
い組合わせ、例えばイソシアネート成分と水酸基成分の
よなものを選び、あらかじめ配合保存すると、反応は保
存中にも進行し、粘度変化したり固化したりする。又、
例えばイソシアネート成分と脂肪族系一級アミノ基を含
有する成分の組合わせのごときものでは反応は殆ど瞬間
的で、均一に二液を混合することさえ難しい。このよう
な場合、アミノ基の隣接位置に塩素の付いた芳香族アミ
ン等、反応性を低くした化合物を使わねばならず、組合
わせが非常に限定されたものとなる。たとえ一方が固体
成分、片方が液体と異相の組合わせであっても、一方が
固体中に浸透拡散し、活性の高い組合わせの場合反応は
保存中に進行する。すなわちあらかじめ均一溶解、ない
し分散して保存することは出来ない。いずれにしても従
来の通常の加熱方法による硬化では反応性の高い組合わ
せでは一成分として混合保存出来ず、保存性を確保する
と硬化が遅くなる。
[0009] A combination of highly reactive compounds, such as those having an isocyanate component and a hydroxyl component, is selected in view of release from these drawbacks, and if the mixture is stored in advance, the reaction proceeds even during storage, and the viscosity changes or solidifies. Or or,
For example, in the case of a combination of an isocyanate component and a component containing an aliphatic primary amino group, the reaction is almost instantaneous and it is difficult to evenly mix the two liquids. In such a case, it is necessary to use a compound having a low reactivity such as an aromatic amine having chlorine attached to the position adjacent to the amino group, resulting in a very limited combination. Even if one is a solid component and one is a liquid and a different phase combination, one is permeated and diffused into the solid, and in the case of a highly active combination, the reaction proceeds during storage. That is, it cannot be uniformly dissolved or dispersed in advance for storage. In any case, in the conventional curing by the ordinary heating method, the combination having high reactivity cannot be mixed and stored as one component, and if the storage property is secured, the curing becomes slow.

【0010】[0010]

【課題を解決するための手段】本願発明は、前述のよう
な問題を解決し、多成分型の長所、すなわち、配合の組
合わせが豊富である、容器を分けて保存するので安定で
ある等の特性はそのままに、硬化速度の速い組合わせを
選んでも一成分型として単一容器に保存することがで
き、樹脂の取り扱いが単純・容易であり、尚且つ、速硬
化による作業の効率アップを達成することができる方法
を提供するものである。すなわち、本願発明は、各反応
成分が実質的に隔離され、かつ微小分散混在する硬化性
樹脂配合物を、高周波電磁場、レーザー等、透過性の高
い、或いはエネルギー集中付加の容易な高速加熱方法に
より、加熱・拡散・反応させることにより硬化させる新
規な樹脂のワンパック保存、硬化方法である。。
The invention of the present application solves the above-mentioned problems and has advantages of multi-component type, that is, abundant combinations of blends, stable storage in separate containers, etc. Even if you choose a combination with a fast curing rate, you can store it as a one-component type in a single container, the resin handling is simple and easy, and the work efficiency is improved by the rapid curing. It provides a method that can be achieved. That is, the invention of the present application is a method in which a curable resin composition in which each reaction component is substantially isolated and which is finely dispersed and mixed is subjected to a high-speed electromagnetic field, a laser, or the like having a high transparency or a high-speed heating method capable of easily adding energy concentration. It is a one-pack storage and curing method of a new resin that is cured by heating, diffusion and reaction. .

【0011】超音波加熱方法も点・線状のアプリケーシ
ョンにおいては有効であり、反応成分の一方がマイクロ
カプセル化されているものである場合これの破壊、一体
化に有効であり、かつ、高速加熱されるので、本願発明
に応用可能である。この場合はフィルムシート状に樹脂
配合物をあらかじめ成形しておき、作業性をあげること
ができる。
The ultrasonic heating method is also effective in point and line applications, and when one of the reaction components is microencapsulated, it is effective for destruction and integration, and high-speed heating. Therefore, the present invention can be applied to the present invention. In this case, the resin composition may be preliminarily molded into a film sheet to improve workability.

【0012】本願発明では必要量を短時間に加熱溶融す
るのであり、かつ瞬間的に加熱ストップもできるので、
無駄を少なくすることができる。すなわちエネルギー付
加は樹脂に直接的にかかるものであり、従来の熱風、電
熱、金型等外からの熱伝導によるものとは基本的に異な
り、スイッチ一つでエネルギー付加をオン・オフするこ
とができる。高周波電磁場、レーザ、等は、従来一般に
使われる、熱風、電熱、赤外線ランプ等の加熱方法のよ
うに、熱が表面から徐々に内部に伝わっていくという伝
導による方法と異なり、いずれも組成物の内部、外部区
別なく急速に加熱される方法で、昇温は均等・短時間に
行なわれる。高周波電磁場のもとに置かれた物質は、そ
の物質の持つ極性のゆえに高周波電磁場により分子振動
が激しくなり、結果物質の内部から温度が上昇する。す
なわち表層、内部同時に同様に加熱される。いわゆる高
周波誘電加熱と呼ばれ、身近な例として家庭の電子レン
ジがある。
In the present invention, the necessary amount is heated and melted in a short time, and the heating can be stopped instantaneously.
Waste can be reduced. In other words, the energy addition is directly applied to the resin, and unlike the conventional method that uses heat from the outside, such as hot air, electric heat, or a mold, it is possible to turn the energy addition on and off with a single switch. it can. The high-frequency electromagnetic field, laser, etc. are different from the method by conduction in which heat is gradually transferred from the surface to the inside, such as the heating method of hot air, electric heat, infrared lamp, etc., which is generally used in the past. It is a method of rapidly heating without distinction between the inside and the outside, and the temperature is raised uniformly and in a short time. A substance placed under a high-frequency electromagnetic field undergoes intense molecular vibration due to the high-frequency electromagnetic field due to the polarity of the substance, and as a result, the temperature rises from the inside of the substance. That is, the surface layer and the inside are simultaneously heated at the same time. So-called high frequency induction heating is a familiar example of a household microwave oven.

【0013】超音波加熱はこれも物質の内部摩擦による
加熱方法でプラスチックの加工分野においてはフィルム
の溶着シールや金属鋲の溶着等、点線状の加熱方法とし
て知られている。レーザーは、すでに金属の切断等に応
用されている新しいエネルギー集中付加方法であり、瞬
時、微小領域へのエネルギー集中は特異である。レーザ
ーとしては、ルビーレーザー、ネオジミウムYAGレー
ザー、アルゴンレーザー、炭酸ガスレーザー、エキシマ
レーザー、フッカ水素レーザー、等が利用できる。これ
らレーザーの出力はパルスビーム、連続ビームどちらで
もよく適用条件に合わせて選択すればよい。出力につい
ていえば、これは溶融対象組成物の量や種類、ビーム収
束密度、或いは点照射、線照射等、応用・施工の条件に
より左右されるが、一般には数ワットから100キロワ
ツトと目的、作業スピードに合わせて設定する。出力数
〜数100ワトの炭酸ガスレーザーは適当なものの一つ
である。照射時間はこれも出力、適用状況、強度波長分
布等により大きく左右されるが、一般には1/1000
0〜数10sec.である。
Ultrasonic heating is also a heating method by internal friction of a substance, and is known in the field of plastic processing as a dotted-line heating method such as film welding sealing and metal tack welding. The laser is a new energy concentration adding method that has already been applied to metal cutting and the like, and energy concentration to a minute area is unique. As the laser, a ruby laser, neodymium YAG laser, argon laser, carbon dioxide laser, excimer laser, Hooker hydrogen laser, or the like can be used. The output of these lasers may be either a pulsed beam or a continuous beam and may be selected according to the application conditions. In terms of output, this depends on the amount and type of the composition to be melted, the beam convergence density, or the conditions of application and construction such as point irradiation, line irradiation, etc., but generally, several watts to 100 kilowatts and the purpose and work. Set according to the speed. A carbon dioxide laser with an output of several hundreds of Watts is one of the suitable ones. The irradiation time also depends largely on the output, the application situation, the intensity wavelength distribution, etc., but is generally 1/1000.
0 to several tens of seconds. Is.

【0014】本願発明はこれら短時間、急速エネルギー
付加方法を利用して、実質上相分離され微小分散混在す
る多成分反応組成物を瞬時に溶融し、一体化、拡散混合
による配合を行なうことにより、従来の多成分型樹脂の
持つ応用上の束縛・欠点を解決、改良するものである。
実質上相分離、微小分散混在する多成分としては、それ
ぞれの成分が固体粉末で混合されているもの、少なくと
も一成分が液体で、その液中に他の粉末状成分が分散さ
れているもの、固体粉末状の一成分に、他の固体粉末状
成分が第三の成分により接着付着されて新たな粉末を形
成したもの、すなわち金平糖状の粉末、一成分が他成分
ののまわりに層をなして重なった構造の粉状粒子、一成
分の粉末多数個の周りを他の成分が包みこんでいるもの
等、多くの形態がありうるが、ようは実質的に分離され
微小分散混在している状態であれば形態は問題ではな
い。例えば多層針状の形状でもいいし、蜘蛛の巣状でも
差し支えない。
The present invention utilizes these rapid energy addition methods for a short time to instantaneously melt a multi-component reaction composition which is substantially phase-separated and finely mixed and mixed, and is blended by integration and diffusion mixing. , Solving and improving the application constraints and drawbacks of conventional multi-component resins.
Substantially phase separation, as a multi-component mixed finely dispersed, each component is mixed in a solid powder, at least one component is a liquid, other powdery components are dispersed in the liquid, A solid powder-like component with another solid powder-like component adhered and adhered by the third component to form a new powder, that is, a sugar-like powder, one component forming a layer around the other component There may be many forms such as powder particles with overlapping structure, one component powder surrounded by many other components, etc., but it is substantially separated and mixed with minute dispersion If it is a state, the form does not matter. For example, the shape may be a multi-layered needle shape or a spider web shape.

【0015】微小分散を寸法で表現すれば、成分樹脂、
あるいわ化合物の溶融粘度や分子量、その成分樹脂の分
子運動の激しさ緩やかさ等多くのファクターがあり、厳
格に決まるものではないが、一成分の粒子の大きさ、或
いは相手成分との距離は1000ミクロン以下、好まし
くは100ミクロン以下である。さらに好ましくは50
ミクロン以下である。
If the fine dispersion is expressed in terms of dimensions, the component resin,
There are many factors such as the melt viscosity and molecular weight of a compound, the violence and graduality of the molecular motion of its component resin, and these are not strictly determined, but the particle size of one component or the distance from the other component is It is 1000 microns or less, preferably 100 microns or less. More preferably 50
It is less than micron.

【0016】次に、使用方法、硬化方法であるが、前述
のように、微小分散混在した組成物をスプレー等のよう
に空気流により施工対象物に送りながら流動途上におい
て、高周波電磁場を付加する。高周波誘電方法では、二
枚の相対する電極の間を通過させて樹脂を発熱させ温度
を瞬時にあげ、対象物に到着した時は、溶融しているよ
うにする。レーザーを使用する場合は、その焦点を一点
に集めたり焦点を走査する等うまくコントロールするこ
とにより色々な適用方法が採れる例えば糸状に連続供給
される組成物を紐状ハンダを端から順に溶かす要領でし
かも高速で溶解反応させることができる。
Next, regarding the method of use and the method of curing, as described above, a high-frequency electromagnetic field is added while the composition in which minute dispersions are mixed is being sent to an object to be processed by an air flow such as a spray while flowing. . In the high frequency dielectric method, the resin is heated by passing it between two electrodes facing each other, and the temperature is instantly raised so that the resin is melted when it reaches an object. When a laser is used, various application methods can be adopted by controlling the focus to one point or scanning the focus, for example, by melting the string-shaped solder in sequence from the thread-like composition that is continuously supplied in the form of a thread. Moreover, the dissolution reaction can be performed at a high speed.

【0017】本願発明に使用可能な樹脂としては、エポ
キシ樹脂、ウレタン樹脂、ユリア樹脂、メラミン樹脂、
グアナミン樹脂、ダップ樹脂、ビニルエステル樹脂、フ
ェノール樹脂、フラン樹脂、不飽和ポリエステル樹脂、
シリコーン樹脂、ポリイミド樹脂、キシレン・ホルムア
ルデヒド樹脂、ロジン変性マレイン酸樹脂等相互に反応
する活性基を複数有する反応硬化型のものであればすべ
て応用でき HCO−,−CO−O−CO−,−Si(R)Cl,
−Si−(OR),−CO−,−CO−NH−CO
−,エポキシ環、イミン環、ラクタム環、ラクトン環、
オキサゾリン環、等、同一基同志あるいは異種基間で、
重合、縮合、付加、開環重付加、開環縮合、等、反応・
硬化する組合わせのものであればいずれも適用できる。
反応基を含有するものの、その組合わせは、同じ基を持
つが骨格の異なるもの、相互に反応する異種活性基を持
つもの、HO、O、各種触媒等が作用して反応する
等、多くの組合わせがあり、低温〜高温まで広い範囲
で、反応基自身、或いは分子内の他の部分で分解が起こ
らない範囲で、反応性を有するものであれば、なんで
も、どんな組合わせでもよい。特に本法が有利な組合わ
せは、反応成分を均一単一相として混合した場合、数時
間以下、好ましくは30分以下、更に好ましくは5分以
下でゲル化するような反応性の高い組合わせの場合であ
る。イソシアネート基、酸クロライド基とアミンは活性
が高く本法の有利に適用できる例である。
Resins usable in the present invention include epoxy resin, urethane resin, urea resin, melamine resin,
Guanamine resin, dup resin, vinyl ester resin, phenol resin, furan resin, unsaturated polyester resin,
Any reaction-curable type can be applied, such as silicone resin, polyimide resin, xylene / formaldehyde resin, rosin-modified maleic acid resin, etc., as long as they have multiple reactive groups that react with each other. HCO -, - CO-O- CO -, - Si (R) 2 Cl,
-Si- (OR) 3 , -CO-, -CO-NH-CO
-, Epoxy ring, imine ring, lactam ring, lactone ring,
Between the same or different groups, such as oxazoline ring,
Polymerization, condensation, addition, ring-opening polyaddition, ring-opening condensation, etc.
Any combination that cures can be applied.
Although they contain reactive groups, the combination of them has the same groups but different skeletons, different active groups that react with each other, H 2 O, O 2 , various catalysts, etc. react to react. , There are many combinations, and any combination can be used as long as it has reactivity within a wide range from low temperature to high temperature and within a range where decomposition does not occur in the reactive group itself or other parts in the molecule. Good. The particularly advantageous combination is a highly reactive combination in which, when the reaction components are mixed as a uniform single phase, gelation occurs in several hours or less, preferably 30 minutes or less, more preferably 5 minutes or less. Is the case. Isocyanate groups, acid chloride groups and amines have high activity and are examples to which the present method can be advantageously applied.

【0018】これら相互に反応する活性基を複数有する
樹脂の、例えば固体状原料を微細な粉体とし、第三の非
反応性成分の存在下、又は非存在下両反応成分を混合し
て保存・使用する。固体状とはここでは固体状態の第三
成分による含浸、被包等により本来液体状の反応成分が
固体状に形成された粉状体をも包含するものである。例
えば固体成分に硬化促進触媒を均一に混合溶解させたの
ち固化粉砕された粉体や、多孔性シリカに一方の成分を
含浸させたものなどがあげられるA,B 二つの成分の
他、触媒や直接反応に係わる第三成分C を包含しても
よい。AとCを一成分とし、Bを他の反応相手とする場
合や、A,B,C,三成分が反応するもので三種の成分
をそれぞれ分離、分散混在させた組成物でもよい。
For example, a solid raw material of a resin having a plurality of active groups that react with each other is made into a fine powder, and both reaction components are stored in the presence or absence of the third non-reactive component. ·use. Here, the solid state also includes a powdery body in which a reaction component originally in a liquid state is formed in a solid state by impregnation with a third component in a solid state, encapsulation and the like. For example, a powder obtained by uniformly mixing and dissolving a curing-accelerating catalyst in a solid component and then solidifying and pulverizing it, or one in which one component is impregnated in porous silica is used. A third component C 3, which is involved in the direct reaction, may be included. When A and C are used as one component and B is used as another reaction partner, or a composition in which three components A, B, C, and three components react with each other may be a composition in which three types of components are separated and mixed.

【0019】重合硬化する様子を模式的に表わしたもの
が図1 である。AとBは反応性の基を示し、両者が反
応して二つの分子を結合し高分子となる。この両成分を
実質的に分離微小分散混在させておき、使用時に必要量
を適用場所に運搬しつつ、或いは設置し、前述のような
エネルギーを付加する。
FIG. 1 is a schematic representation of the state of polymerization and curing. A and B represent a reactive group, and both react to bond two molecules to form a polymer. The two components are substantially separated and mixed in a finely dispersed manner, and a necessary amount is transported to an application site or installed at the time of use to add energy as described above.

【0020】[0020]

【作用】本願発明になる方法においては、実質上分離さ
れ、かつ分散混在する状態の反応組成物が、例えば各成
分の粉体の混合物として貯蔵されるので、貯蔵中におい
ては反応は起こらず、長期の保存においても、粘度上
昇、硬化等の変化を起こすことはなく、いつでも使用に
供せる状態を維持することができる。使用に際しては、
例えば自然流下や空気輸送のような手段により、例えば
混合粉体の必要量を必要ケ所に送ればよい。加熱はその
途上において前述の加熱方法により被適用物適用直前、
あるいは被適用物上到達後にエネルギーを付加して溶
融、一体化、反応させる。加熱溶融は連続的かつ瞬時に
行なえるので、余分が出ることもなく、必要量だけを溶
融することができ、無駄がなくなる。
In the method of the present invention, since the reaction composition which is substantially separated and mixed in a dispersed state is stored, for example, as a mixture of powders of the respective components, no reaction occurs during storage, Even when stored for a long period of time, there is no increase in viscosity, no change in curing, etc., and the state ready for use can be maintained at any time. When using,
For example, a required amount of the mixed powder may be sent to a required place by means such as gravity flow or pneumatic transportation. On the way to the heating, immediately before the application of the object by the above-mentioned heating method,
Alternatively, after reaching the object to be applied, energy is added to melt, integrate, and react. Since heating and melting can be performed continuously and instantly, no excess is produced and only a necessary amount can be melted, thus eliminating waste.

【0021】多成分が一体をなす組成物なので、湿気硬
化型のように一成分を自然の湿気に委ねる場合のよう
な、相手まかせになることもなく、配合成分の種類、反
応性の組合わせの自由度が大きい。したがって、硬化物
の物性の選択幅も大変広く、用途の制限も受けにくい。
すなわち多液硬化型の長所を保持しながら作業性を大幅
に改善できる。
Since the composition is a combination of multiple components, it does not leave it to the other party as in the case of leaving one component to natural moisture as in the moisture-curing type, and it is a combination of the types of components and reactivity. The degree of freedom of is large. Therefore, the selection range of the physical properties of the cured product is very wide, and the application is unlikely to be restricted.
That is, the workability can be greatly improved while maintaining the advantages of the multi-liquid curing type.

【0022】溶融、拡散、混合が微小領域で短時間に行
なわれるので、従来法では混合作業さえ難しかった高反
応性の組合わせも容易に取入られ、硬化時間を大幅に短
縮できる。又、例えばガラスや樹脂板等の向こう側に供
給された組成物のように隔たれた場所での溶解・反応・
硬化もこれら隔離素材を痛めず行なえる。
Since melting, diffusion and mixing are carried out in a minute area in a short time, a highly reactive combination, which was difficult even in the conventional method, can be easily incorporated, and the curing time can be greatly shortened. In addition, for example, dissolution / reaction at a separated place like a composition supplied to the other side of glass or a resin plate,
Curing can also be done without damaging these isolation materials.

【実施例】以下、本発明の実施例をあげる。EXAMPLES Examples of the present invention will be given below.

【0023】[0023]

【実施例1】アミノ基を含有するウレタン樹脂粉末をつ
ぎのように調整した。ポリウレタンプレポリマー(武田
薬品工業株式会社製、タケネートL−1031、固形分
100%,イソシアネート基含量2.15%)20g、
ポリイソシアネート溶液(旭化成工業株式会社製、デュ
ラネートE405−80T、固形分80%,イソシアネ
ート含量7.0%)12g、及びトルエン15ccを混
合し、これを0.4gの界面活性剤(日本油脂株式会社
製、プロノン204)を溶解した脱イオン水300cc
に50゜C下で高速攪拌しながら注入分散させた。そこ
えヘキサメチレンジアミン2.25gを水10ccにと
かして高速攪拌下徐々に添加、約2時間攪拌を続けた
後、プレポリマー粒子を濾過分離・乾燥した。得られた
粉末は末端アミノ基を含有する。一方タケネートD−1
03(武田薬品工業製)をN−ヘキサンで洗浄析出、濾
過乾燥して、イソシアネート基を有する粉体を調整し、
これと粉末状にしたシリカゲルを1:1の割合で混合し
たものを調整した。上記の両粉体を2:1の割合で混合
して本願組成物Aを得た。Aをゴムパッキング付きガラ
ス瓶に保存し、その保存性を確認した。保存3ヵ月後も
粉の凝集や固化は全くなくさらっとした粉体状態を確認
することが出来た。
Example 1 A urethane resin powder containing an amino group was prepared as follows. 20 g of polyurethane prepolymer (Takenate L-1031 manufactured by Takeda Pharmaceutical Co., Ltd., solid content 100%, isocyanate group content 2.15%)
12 g of polyisocyanate solution (Duranate E405-80T manufactured by Asahi Kasei Kogyo Co., Ltd., solid content 80%, isocyanate content 7.0%) and 15 cc of toluene were mixed, and 0.4 g of a surfactant (NOF Corporation) Manufactured by Pronone 204), 300 cc of deionized water
The mixture was injected and dispersed at 50 ° C under high speed stirring. Dissolve 2.25 g of hexamethylenediamine in 10 cc of water and gradually add it under high-speed stirring, and continue stirring for about 2 hours, and then the prepolymer particles were separated by filtration and dried. The powder obtained contains terminal amino groups. On the other hand, Takenate D-1
03 (manufactured by Takeda Pharmaceutical Co., Ltd.) was washed and precipitated with N-hexane, filtered and dried to prepare a powder having an isocyanate group,
A mixture of this and powdered silica gel at a ratio of 1: 1 was prepared. The above powders were mixed at a ratio of 2: 1 to obtain the composition A of the present invention. A was stored in a glass bottle with a rubber packing, and its storability was confirmed. Even after storage for 3 months, there was no aggregation or solidification of the powder, and a dry powder state could be confirmed.

【0024】上記組成物AをFRP板(ガラス繊維補強
ポリエステル樹脂板、厚み2mm)2枚の間に挟み、さ
らに2枚の板の外側に銅板電極を張り、高周波誘電過熱
をを行なった。高周波発振器の最大出力3KW、発振周
波数40MHz,印加時間50秒、陽極電流0.9Am
pで組成物Aの溶融を確認した。なお溶融は電極間の間
隔のわずかな縮みと、溶融による組成物Aの流動はみ出
しでかんたんには確認できる。得られたFRP板間の接
着強度を測定し20Kg/cmの結果を得た。また試
験片を70゜Cの乾燥機に10分間入れ、取出し後すぐ
剪断引っ張りを行なったところ強度15Kg/cm
低い低下に納まっており、反応硬化の効果を確認でき
た。
The above composition A was sandwiched between two FRP plates (glass fiber reinforced polyester resin plate, thickness 2 mm), and a copper plate electrode was placed on the outside of the two plates for high frequency dielectric heating. Maximum output of high frequency oscillator 3kW, oscillation frequency 40MHz, application time 50 seconds, anode current 0.9Am
The melting of the composition A was confirmed by p. The melting can be easily confirmed by a slight shrinkage of the gap between the electrodes and the flow of the composition A due to the melting. The adhesive strength between the obtained FRP plates was measured and a result of 20 Kg / cm 2 was obtained. Further, when the test piece was put in a dryer at 70 ° C. for 10 minutes and sheared and pulled immediately after being taken out, the strength was 15 Kg / cm 2, which was a low decrease, and the effect of reaction curing could be confirmed.

【0025】[0025]

【実施例2】粉末状の2,2’(1,3−フェニレン)
ビス(2−オキサゾリン)10gとメチレンビスP,
P’ジアニリン8gの粉末をよく混合した。この混合物
に臭化オクチル0.5gとシリカゲルを粉砕した粉末2
gを加え混合保存した。2カ月後に混合粉末の状態は観
察したが凝集固化等の変化なく、粉体の流動性は調整時
と殆ど変わらなかった。前記、混合粉体の調整一週間後
に一部を取出し硬化性を調べた。混合粉体1gを0.5
mm厚のポリエチレンシートに挟み、高周波電磁場に置
き溶融硬化させた高周波発振器は最大出力10KW,周
波数6.7MHzを使い、陽極電流2.0Amp.で3
0秒印加した。溶融硬化した試料はポリエチレンに密着
していた。
Example 2 Powdery 2,2 ′ (1,3-phenylene)
10 g of bis (2-oxazoline) and methylenebisP,
A powder of 8 g of P'dianiline was mixed well. Powder 2 obtained by grinding 0.5 g of octyl bromide and silica gel into this mixture.
g was added and mixed and stored. After 2 months, the state of the mixed powder was observed, but there was no change such as aggregation and solidification, and the fluidity of the powder was almost the same as that at the time of adjustment. One week after the preparation of the mixed powder, a part thereof was taken out and the curability was examined. 0.5 g of mixed powder
A high-frequency oscillator sandwiched between polyethylene sheets with a thickness of mm, placed in a high-frequency electromagnetic field and melted and cured had a maximum output of 10 kW and a frequency of 6.7 MHz, and an anode current of 2.0 Amp. In 3
It was applied for 0 seconds. The melt-cured sample was in close contact with polyethylene.

【0026】[0026]

【実施例3】実施例1,2で硬化した試料と同じ粉体
を、10mmの間隔で並行に向い合わせた二枚の電極間
を2mmの穴から流下させた。電極には最大出力5KW
発信周波数13.56MHzをつなぎ高周波電磁場をか
けた。最大電流0.5Amp.であった。流下した粉は
溶解して流動一体化して硬化皮膜層を形成することがで
きた。硬化物1(実施例1)はショアA硬度50、硬化
物2(実施例2)はロックウェル硬度M100であっ
た。
Example 3 The same powder as the sample cured in Examples 1 and 2 was made to flow through a 2 mm hole between two electrodes facing each other in parallel at an interval of 10 mm. Maximum output of 5 kW for electrodes
A high frequency electromagnetic field was applied by connecting an oscillation frequency of 13.56 MHz. Maximum current 0.5 Amp. Met. The powder that had flowed down could be melted and fluidized to form a cured coating layer. The cured product 1 (Example 1) had a Shore A hardness of 50, and the cured product 2 (Example 2) had a Rockwell hardness M100.

【0027】[0027]

【実施例4】実施例1,2と同じ試料を2mmの穴から
流下しながら炭酸ガスレーザー光(5W,0.01se
c.光束径5mm)を当てた。落下線に対し10度の傾
き角度で上から流下方向に放射した。粉体の流下垂線と
光線は10度の傾斜で流下到達点で合流する。落下粉体
は溶解して一体化し皮膜を形成することができた。照射
部分以外の周囲の非照射部は全く変化なく容易に硬化部
分と分離できた。
[Embodiment 4] Carbon dioxide laser light (5 W, 0.01 sec) was applied while flowing the same sample as in Embodiments 1 and 2 through a 2 mm hole.
c. The luminous flux diameter was 5 mm). It radiated downward from the top at a tilt angle of 10 degrees with respect to the falling line. The down-flowing line of the powder and the light beam meet at the down-flow reaching point with an inclination of 10 degrees. The falling powder could be melted and integrated to form a film. The surrounding non-irradiated part other than the irradiated part could be easily separated from the cured part without any change.

【0028】[0028]

【実施例5】実施例1で得たNH末端プレポリマー粉
末と、フタル酸−(2,3−エポキシプロパン)ジエス
テル粉末(デナコールEX−711、ナガセ化成工業株
製)当モルを混合し、ガラス瓶中6ヵ月保存した。凝
集、固化等の変化は見られず、安定であった。この混合
物を研いた鉄板上に置き、エキシマレーザーを当てたと
ころ、混合物は瞬時に溶解一体化して鉄板に固着した。
ビーム照射は、エネルギー密度約0.03J/cm
照射径1mm、1sec.x 2ショット照射で十分で
あった。
Example 5 The NH 2 -terminated prepolymer powder obtained in Example 1 was mixed with phthalic acid- (2,3-epoxypropane) diester powder (Denacol EX-711, manufactured by Nagase Kasei Kogyo Co., Ltd.). Stored in glass bottles for 6 months. No change such as aggregation or solidification was observed, and it was stable. When this mixture was placed on a ground iron plate and exposed to an excimer laser, the mixture was instantly melted and integrated and fixed to the iron plate.
Beam irradiation is performed at an energy density of about 0.03 J / cm 2 ,
Irradiation diameter 1 mm, 1 sec. Irradiation with x 2 shots was sufficient.

【0029】[0029]

【実施例6】例1で得たアミン末端プレポリマー粉末と
酸化カルシウム粉末を重量比1/3で混合した。この粉
末を10倍量のトルオールに溶解したエポキシ樹脂(エ
ピコート828)溶液にアミノ基対エポキシ基、当モル
比の割合で分散した。これを連続式流動造粒乾燥装置ミ
クスグラード(大川原製作所製)によりスプレー造粒し
た。得られた粒子は平均粒子径約200ミクロン、顕微
鏡観察により、ウレタンプレポリマーの周りに微粒子の
酸化カルシュウム粒子が取り囲んでいる構造で、エポキ
シがその粒子間及び両粒子表面にコートされている様子
も観察された。この粒子粉末は3ヵ月後も状態変化はな
く、流動性を保っていた。また造粒直後、及び一ヵ月後
に実施例4と同じ条件の炭酸ガスレーザーを照射しその
造膜性を調べたところ、どちらもやや弾性のある膜が得
られた。
Example 6 The amine-terminated prepolymer powder obtained in Example 1 and calcium oxide powder were mixed in a weight ratio of 1/3. This powder was dispersed in a solution of an epoxy resin (Epicoat 828) dissolved in 10 times the volume of toluene at a ratio of amino groups to epoxy groups in an equimolar ratio. This was spray-granulated by a continuous fluidized granulation dryer Mixgrad (manufactured by Okawara Seisakusho). The obtained particles have an average particle size of about 200 microns, and have a structure in which fine particles of calcium oxide particles are surrounded by a urethane prepolymer by microscopic observation. It is also seen that epoxy is coated between the particles and on both particle surfaces. Was observed. The particle powder did not change its state even after 3 months, and maintained its fluidity. Immediately after the granulation and one month later, a carbon dioxide laser under the same conditions as in Example 4 was irradiated to examine the film-forming property, and a slightly elastic film was obtained in both cases.

【0030】[0030]

【実施例7】粉末状にしたイソフタル酸8gとシリカゲ
ル粉末20gを混合したものを流動層造粒機に入れ、流
動させながらオキサゾリン基保持ポリマーK−1020
E(株日本触媒製、固形分40%エマルジョン)110
gをスプレーし、造粒した。得られた粒子は平均粒径約
30ミクロンであった。イソフタル酸及びシリカゲルが
ポリマーにより被覆された複合粒子状となっていた。得
られた粒子を、例1と同じ条件により高周波電磁場にお
き溶解、硬化を確認することができた。得ら硬化物はシ
ョアー硬度Aで90であった。
Example 7 A mixture of 8 g of powdered isophthalic acid and 20 g of silica gel powder was placed in a fluidized bed granulator, and while being fluidized, oxazoline group-holding polymer K-1020.
E (manufactured by Nippon Shokubai Co., Ltd., solid content 40% emulsion) 110
g was sprayed and granulated. The particles obtained had an average particle size of about 30 microns. It was in the form of composite particles in which isophthalic acid and silica gel were coated with a polymer. The obtained particles were placed in a high-frequency electromagnetic field under the same conditions as in Example 1, and dissolution and curing could be confirmed. The obtained cured product had a Shore hardness A of 90.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月27日[Submission date] June 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の多成分反応性樹脂の硬化機構の例を、一
方の成分と分散混在している他の成分の反応前後の分子
構造を、活性基を一般化してA,Bとし表記して示した
模式図
FIG. 1 shows an example of the curing mechanism of a multi-component reactive resin of the present application, in which the molecular structures before and after the reaction of one component and the other component dispersed and mixed are expressed as A and B by generalizing the active groups. Schematic diagram shown

【符号の説明】 は樹脂分子中の反応性を有する例えば水酸基、アミノ
基、カルボキシル基等の活性基。 BはAと反応する例えばイソシアネート基、エポキシ
基、オキサゾリン環等の活性基。 の活性基部分を除いた、例えば−(CH−CH
O)n−CHCH−(nは整数で同じ化学構造が繰
り返し反復して大きい分子を構成することを示す)、−
CH−CHOCO−CCO(OCH−CH
−OCO−CCO)n−OCH−CH−、
−CH(OCCC(H−C−O−
CH−CH(OH)−CH)n−O−C−C
(CH−C−O−CH−、−C
C(CH−C−、−C−等のポリマ
ー鎖または分子残基。 −AB−および−BA−は活性基AとBが反応し結合
したことを表す。 −ジするために付したもので反応前の分離分散混在の様
子のを示す。
[Explanation of symbols] is an active group having reactivity in the resin molecule, such as a hydroxyl group, an amino group and a carboxyl group. B is an active group that reacts with A, such as an isocyanate group, an epoxy group, or an oxazoline ring. Excluding the active moiety, such as - (CH 2 -CH 2 -
O) n-CH 2 CH 2- (n is an integer and indicates that the same chemical structure is repeated to form a large molecule),-
CH 2 -CH 2 OCO-C 6 H 4 CO (OCH 2 -CH
2 -OCO-C 6 H 4 CO ) n-OCH 2 -CH 2 -,
-CH 2 (OC 6 H 4 CC (H 3) 2 -C 6 H 4 -O-
CH 2 -CH (OH) -CH 2 ) n-O-C 6 H 4 -C
(CH 3) 2 -C 6 H 4 -O-CH 2 -, - C 6 H 4 -
C (CH 3) 2 -C 6 H 4 -, - C 6 H 4 - polymer chain or molecule residues, and the like. -AB- and -BA- represent that the active groups A and B have reacted and bonded. -This is added for the purpose of showing the state of separation, dispersion and mixing before the reaction.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08G 59/18 NKK ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C08G 59/18 NKK

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】相互に反応する成分が、実質上分離された
状態で分散混在する反応性樹脂組成物を、高周波電磁場
あるいは各種レーザービーム等、のエネルギー付加方法
により加熱して、反応硬化させることを特長とする反応
性樹脂組成物のワンパック保存、硬化方法
1. A reactive resin composition in which components that react with each other are dispersed and mixed in a substantially separated state by heating by an energy addition method such as a high frequency electromagnetic field or various laser beams to carry out reaction curing. One-pack storage and curing method of reactive resin composition characterized by
【請求項2】反応性成分が実質上分離されて分散混在し
ている組成物が、それぞれの成分の粉体混合体である請
求項1記載の保存、硬化方法。
2. The storage and curing method according to claim 1, wherein the composition in which the reactive components are substantially separated and dispersed and mixed is a powder mixture of the respective components.
【請求項3】実質上隔離された相が、反応成分の少なく
とも一方がマイクロカプセル化されているものであり、
エネルギー付加が超音波による請求項1記載の保存、硬
化方法。
3. The substantially isolated phase is one in which at least one of the reaction components is microencapsulated.
The storage and curing method according to claim 1, wherein the energy is applied by ultrasonic waves.
【請求項4】高周波電磁場、レーザー等を、分散混在す
る反応性樹脂組成物を輸送途上、例えば輸送パイプ中や
スプレーガンから離れて適用物に到達するまでの飛行中
等、所定適用或いは成形場所へ適用直前、ないしは対象
物に到達と同時に集中付加させることを特長とする請求
項1記載の保存、硬化方法。
4. A high-frequency electromagnetic field, a laser, etc., is applied to a predetermined application or molding place during the transportation of a reactive resin composition in which it is dispersed and mixed, for example, in a transportation pipe or in a flight away from a spray gun to reach an application. The method for preserving and curing according to claim 1, wherein concentrated addition is performed immediately before application or when the object is reached.
JP34831893A 1993-12-13 1993-12-13 Long-term storage in one pack of multicomponent reactive resin and its curing method Pending JPH07173399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34831893A JPH07173399A (en) 1993-12-13 1993-12-13 Long-term storage in one pack of multicomponent reactive resin and its curing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34831893A JPH07173399A (en) 1993-12-13 1993-12-13 Long-term storage in one pack of multicomponent reactive resin and its curing method

Publications (1)

Publication Number Publication Date
JPH07173399A true JPH07173399A (en) 1995-07-11

Family

ID=18396229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34831893A Pending JPH07173399A (en) 1993-12-13 1993-12-13 Long-term storage in one pack of multicomponent reactive resin and its curing method

Country Status (1)

Country Link
JP (1) JPH07173399A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330315A (en) * 2004-05-18 2005-12-02 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006291053A (en) * 2005-04-12 2006-10-26 Sony Chemical & Information Device Corp Method for producing latent curing agent
WO2007032051A1 (en) * 2005-09-12 2007-03-22 Tadahiro Ohmi Process for producing polymer and polymer material
JP2015129302A (en) * 1998-10-30 2015-07-16 アルディヴィア・エス・ア Polymerization method for unsaturated fatty acid, unsaturated fatty acid ester, unsaturated hydrocarbon, or unsaturated derivative of product thereof, by dielectric heating
WO2021140962A1 (en) * 2020-01-08 2021-07-15 三菱電機株式会社 Manufacturing method for semiconductor device, resin sealing member, semiconductor device, and power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129302A (en) * 1998-10-30 2015-07-16 アルディヴィア・エス・ア Polymerization method for unsaturated fatty acid, unsaturated fatty acid ester, unsaturated hydrocarbon, or unsaturated derivative of product thereof, by dielectric heating
JP2005330315A (en) * 2004-05-18 2005-12-02 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006291053A (en) * 2005-04-12 2006-10-26 Sony Chemical & Information Device Corp Method for producing latent curing agent
JP4711721B2 (en) * 2005-04-12 2011-06-29 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing latent curing agent
WO2007032051A1 (en) * 2005-09-12 2007-03-22 Tadahiro Ohmi Process for producing polymer and polymer material
WO2021140962A1 (en) * 2020-01-08 2021-07-15 三菱電機株式会社 Manufacturing method for semiconductor device, resin sealing member, semiconductor device, and power converter
JPWO2021140962A1 (en) * 2020-01-08 2021-07-15

Similar Documents

Publication Publication Date Title
EP0861277B1 (en) Powderable reactive resin compositions
JPH02158618A (en) Curable epoxy resin composition
ES2199303T3 (en) MANUFACTURE OF REACTIVE RESIN.
JPH07173399A (en) Long-term storage in one pack of multicomponent reactive resin and its curing method
EP3124517A1 (en) Encapsulated catalyst for aerospace grade resin systems
JPH051152A (en) Production of powdery epoxy resin composition
US5747615A (en) Slurry-mixed heat-curable resin systems having superior tack and drape
JPH03122113A (en) Imidazole compound-containing curing agent composition, production thereof and thermosetting epoxy resin composition
JPH042637B2 (en)
JP2017019977A (en) Method for producing epoxy resin composition
JPH08274221A (en) Capsule enclosure method for electronic part,electronic partfilled in capsule by its method and capsule enclosure material for capsule enclosure
JPH09316302A (en) Epoxy resin composition and production thereof
EP1274796B1 (en) Coherent insert
WO2005059001A1 (en) Curable composition
SK12496A3 (en) Epoxide compositions
JPH0616788A (en) Fine particulate curing agent or fine particulate curing accelerator, and epoxy resin composition containing the same, and curing method
JPH06256728A (en) Method for breaking microcapsule
JPS59170114A (en) Epoxy fine particles and their preparation
AU2001254804A1 (en) Coherent insert
WO2024030184A1 (en) Adhesive composition
JPS648674B2 (en)
KR20240021722A (en) Curing agent for epoxy resin and epoxy resin composition
JPH11147935A (en) Adhesive composition
WO2024030183A1 (en) Adhesive composition
JPH08217854A (en) Epoxy resin composition