JP5417982B2 - Latent curing agent - Google Patents

Latent curing agent Download PDF

Info

Publication number
JP5417982B2
JP5417982B2 JP2009118207A JP2009118207A JP5417982B2 JP 5417982 B2 JP5417982 B2 JP 5417982B2 JP 2009118207 A JP2009118207 A JP 2009118207A JP 2009118207 A JP2009118207 A JP 2009118207A JP 5417982 B2 JP5417982 B2 JP 5417982B2
Authority
JP
Japan
Prior art keywords
curing agent
latent curing
agent
latent
chelating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009118207A
Other languages
Japanese (ja)
Other versions
JP2009203477A (en
Inventor
和伸 神谷
誠 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2009118207A priority Critical patent/JP5417982B2/en
Publication of JP2009203477A publication Critical patent/JP2009203477A/en
Application granted granted Critical
Publication of JP5417982B2 publication Critical patent/JP5417982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、熱硬化型のエポキシ樹脂組成物を、比較的低温でその硬化を開始させることができる潜在性硬化剤、その製造方法、それを含有する良好な貯蔵安定性を有する熱硬化型エポキシ樹脂組成物に関する。   The present invention relates to a latent curing agent capable of initiating curing of a thermosetting epoxy resin composition at a relatively low temperature, a method for producing the same, and a thermosetting epoxy having good storage stability containing the latent curing agent. The present invention relates to a resin composition.

熱硬化性エポキシ樹脂組成物は、各接着材料、成形材料等として汎用されているが、その硬化剤の一つとして、潜在性イミダゾール系硬化剤が用いられている。この潜在性イミダゾール系硬化剤は、通常の保存状態では硬化能を示さないので、熱硬化性エポキシ樹脂組成物を良好な取り扱い性と良好な保存安定性を有する一液型硬化組成物とするために広く用いられている。このような潜在性イミダゾール硬化剤の代表的な例としては、エポキシ樹脂を硬化させる能力を有するイミダゾール化合物粒子の表面をエポキシ樹脂硬化物で被覆したマイクロカプセル型のものが知られている。   Thermosetting epoxy resin compositions are widely used as adhesive materials, molding materials, and the like, and latent imidazole curing agents are used as one of the curing agents. Since this latent imidazole-based curing agent does not exhibit curing ability under normal storage conditions, the thermosetting epoxy resin composition is made into a one-pack type curing composition having good handleability and good storage stability. Widely used in As a typical example of such a latent imidazole curing agent, a microcapsule type in which the surface of an imidazole compound particle having the ability to cure an epoxy resin is coated with a cured epoxy resin is known.

しかし、このようなマイクロカプセル型の潜在性イミダゾール硬化剤は、その被覆が機械的にも熱的にも比較的安定であるので、硬化反応を開始させるためには180℃以上に加熱加圧する必要があった。このため、近年の低温硬化型のエポキシ樹脂組成物には対応できないという問題があった。   However, since such a microcapsule-type latent imidazole curing agent has a relatively stable coating both mechanically and thermally, it needs to be heated and pressurized to 180 ° C. or higher in order to initiate the curing reaction. was there. For this reason, there has been a problem that it cannot cope with recent low-temperature curing type epoxy resin compositions.

そこで、低温速硬化活性を示す潜在性硬化剤として、シランカップリング剤と共働してエポキシ樹脂をカチオン重合させることのできるアルミニウムキレート剤粒子(母粒子)の表面に、ハイブリダイゼーション法により、ポリビニルアルコール微粒子(子粒子)を付着させてなるマイクロカプセル型のアルミニウムキレート剤系潜在性硬化剤(特許文献1)やフッ素樹脂系微粒子(子粒子)を付着させてなるマイクロカプセル型のアルミニウムキレート剤系潜在性硬化剤(特許文献2)が提案されている。   Therefore, as a latent curing agent exhibiting low-temperature rapid curing activity, the surface of aluminum chelating agent particles (mother particles) capable of cationic polymerization of an epoxy resin in cooperation with a silane coupling agent is coated with polyvinyl by a hybridization method. Microcapsule-type aluminum chelating agent latent curing agent (Patent Document 1) to which alcohol fine particles (child particles) are attached and microcapsule-type aluminum chelating agent systems to which fluorine resin-based fine particles (child particles) are attached A latent curing agent (Patent Document 2) has been proposed.

なお、アルミニウムキレート剤系潜在性硬化剤の硬化工程の詳細は、前述の特許文献1の段落0007〜0010に記載されている。
特開2002−212537号公報 特開2002−363255号公報
The details of the curing step of the aluminum chelating agent-based latent curing agent are described in paragraphs 0007 to 0010 of Patent Document 1 described above.
JP 2002-212537 A JP 2002-363255 A

しかしながら、ハイブリダイゼーション法を利用してマイクロカプセル化したアルミニウムキレート剤系潜在性硬化剤の場合、母粒子に子粒子を衝突させてマイクロカプセル壁を形成しているため、表面に凹凸やムラが生じやすく、安定した硬化特性が得られないという問題があり、硬化条件をコントロールすることが困難であった。   However, in the case of an aluminum chelating agent-based latent curing agent microencapsulated using a hybridization method, since the microcapsule wall is formed by colliding the child particle with the mother particle, unevenness and unevenness occur on the surface. It is easy and stable curing characteristics cannot be obtained, and it is difficult to control the curing conditions.

本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、比較的低温で短時間の条件で熱硬化性エポキシ樹脂を硬化させることが可能なアルミニウムキレート剤系潜在性硬化剤を提供すること、また、硬化条件を比較的容易にコントロール可能な、アルミニウムキレート剤系潜在性硬化剤の製造方法を提供すること、及びその潜在性硬化剤を含有する熱硬化型樹脂組成物を提供することである。   An object of the present invention is to solve the above-mentioned problems of the prior art, and an aluminum chelator-based latent curing capable of curing a thermosetting epoxy resin at a relatively low temperature in a short time. Providing a curing agent, providing a method for producing an aluminum chelate-based latent curing agent capable of relatively easily controlling curing conditions, and a thermosetting resin composition containing the latent curing agent Is to provide.

本発明者らは、界面重合法を利用して、アルミニウムキレート剤の存在下で多官能イソシアネート化合物を界面重合させて得られるポリマーが、上述の目的を達成できることを見出し、本発明を完成させた。   The present inventors have found that a polymer obtained by interfacial polymerization of a polyfunctional isocyanate compound in the presence of an aluminum chelating agent using an interfacial polymerization method can achieve the above-mentioned object, and completed the present invention. .

即ち、本発明は、アルミニウムキレート剤が、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂に保持されてなることを特徴とする潜在性硬化剤を提供する。   That is, the present invention provides a latent curing agent characterized in that an aluminum chelating agent is held by a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound.

また、本発明は、上述の潜在性硬化剤の製造方法であって、アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、得られた溶液を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合させることを特徴とする製造方法を提供する。   Further, the present invention is a method for producing the above-described latent curing agent, wherein an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent, and the resulting solution is dissolved in an aqueous phase containing a dispersant. The production method is characterized in that it is subjected to interfacial polymerization by heating and stirring.

更に、本発明は、上述の潜在性硬化剤とシランカップリング剤と熱硬化型樹脂とを含有することを特徴とする熱硬化型樹脂組成物を提供する。   Furthermore, the present invention provides a thermosetting resin composition comprising the above-described latent curing agent, silane coupling agent, and thermosetting resin.

本発明の潜在性硬化剤は、アルミニウムキレート剤が多官能イソシアネート化合物を界面重合させて得た多孔性樹脂に保持されているので、比較的低温で短時間の条件で熱硬化性エポキシ樹脂を硬化させることが可能である。また、本発明の潜在性硬化剤の製造方法によれば、アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、得られた溶液を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合させているので、潜在性硬化剤の硬化条件を比較的容易にコントロール可能である。   Since the latent curing agent of the present invention is held in a porous resin obtained by interfacial polymerization of an aluminum chelating agent with a polyfunctional isocyanate compound, the thermosetting epoxy resin is cured at a relatively low temperature in a short time. It is possible to make it. Further, according to the method for producing a latent curing agent of the present invention, the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in a volatile organic solvent, and the obtained solution is put into an aqueous phase containing a dispersant. Since the interfacial polymerization is performed by heating and stirring, the curing conditions of the latent curing agent can be controlled relatively easily.

本発明の潜在性硬化剤は、アルミニウムキレート剤が、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂に保持されてなるものである。この潜在性硬化剤は、低温速硬化性を実現可能なアルミニウムキレート剤を使用しているので、この潜在性硬化剤を配合した熱硬化型樹脂組成物に良好な低温速硬化性を付与することができる。また、アルミニウムキレート剤が界面重合させて得た多孔性樹脂に保持されているので、この潜在硬化剤を熱硬化型樹脂組成物に配合しても(一液化した状態でも)、熱硬化型樹脂組成物の貯蔵安定性を大きく向上させることができる。   The latent curing agent of the present invention is obtained by holding an aluminum chelating agent in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound. Since this latent curing agent uses an aluminum chelating agent capable of realizing a low temperature rapid curability, a good low temperature rapid curability is imparted to a thermosetting resin composition containing this latent curing agent. Can do. In addition, since the aluminum chelating agent is held in the porous resin obtained by interfacial polymerization, even if this latent curing agent is blended into the thermosetting resin composition (even in a one-component state), the thermosetting resin The storage stability of the composition can be greatly improved.

本発明の潜在性硬化剤においては、アルミニウムキレート剤コアの周囲を多孔性樹脂のシェルで被覆した単純な構造のマイクロカプセルではなく、潜在性硬化剤1の電子顕微鏡写真(図1A)とその中心付近の拡大電子顕微鏡写真(図1B)に示すように、多孔性樹脂マトリックス2中に存在する微細な多数の孔3にアルミニウムキレート剤が保持された構造となっている。   The latent curing agent of the present invention is not a microcapsule having a simple structure in which an aluminum chelating agent core is covered with a porous resin shell, but an electron micrograph (FIG. 1A) of the latent curing agent 1 and its center. As shown in a magnified electron micrograph in the vicinity (FIG. 1B), an aluminum chelating agent is held in a large number of fine holes 3 existing in the porous resin matrix 2.

ここで、本発明の潜在性硬化剤1は、界面重合法を利用して製造されるため、その形状は球状であり、その粒子径は硬化性及び分散性の点から、好ましくは0.5〜100μmであり、また、孔3の大きさは硬化性及び潜在性の点から、好ましくは5〜150nmである。   Here, since the latent curing agent 1 of the present invention is produced using an interfacial polymerization method, the shape thereof is spherical, and the particle diameter thereof is preferably 0.5 from the viewpoint of curability and dispersibility. In addition, the size of the hole 3 is preferably 5 to 150 nm from the viewpoint of curability and potential.

また、潜在性硬化剤1は、使用する多孔性樹脂の架橋度が小さすぎるとその潜在性が低下し、大きすぎるとその熱応答性が低下する傾向があるので、使用目的に応じて、架橋度が調整された多孔性樹脂を使用することが好ましい。ここで、多孔性樹脂の架橋度は、微少圧縮試験により計測することができる。   In addition, the latent curing agent 1 has a tendency that if the degree of cross-linking of the porous resin to be used is too small, its potential is lowered, and if it is too large, its thermal responsiveness tends to be lowered. It is preferable to use a porous resin whose degree is adjusted. Here, the degree of crosslinking of the porous resin can be measured by a micro compression test.

本発明の潜在性硬化剤1は、その界面重合時に使用する有機溶剤を実質的に含有していないこと、具体的には、1ppm以下であることが、硬化安定性の点で好ましい。   The latent curing agent 1 of the present invention preferably contains substantially no organic solvent used during the interfacial polymerization, specifically, 1 ppm or less from the viewpoint of curing stability.

また、本発明の潜在性硬化剤1における多孔性樹脂とアルミニウムキレート剤との含有量は、アルミニウムキレート剤含量が少なすぎると熱応答性が低下し、多すぎると潜在性が低下するので、多孔性樹脂100質量部に対しアルミニウムキレート剤を、好ましくは10〜200質量部、より好ましくは10〜150質量部である。   In addition, the content of the porous resin and the aluminum chelating agent in the latent curing agent 1 of the present invention is such that if the aluminum chelating agent content is too small, the thermal responsiveness is lowered, and if it is too much, the latency is lowered. The aluminum chelating agent is preferably 10 to 200 parts by mass, more preferably 10 to 150 parts by mass with respect to 100 parts by mass of the conductive resin.

本発明の潜在性硬化剤において、アルミニウムキレート剤としては、式(1)に表される、3つのβ−ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。   In the latent curing agent of the present invention, examples of the aluminum chelating agent include complex compounds in which three β-keto enolate anions represented by the formula (1) are coordinated to aluminum.

ここで、R1、R2及びR3は、それぞれ独立的にアルキル基又はアルコキシル基である。アルキル基としては、メチル基、エチル基等が挙げられる。アルコキシル基としては、メトキシ基、エトキシ基、オレイルオキシ基が挙げられる。 Here, R 1 , R 2 and R 3 are each independently an alkyl group or an alkoxyl group. Examples of the alkyl group include a methyl group and an ethyl group. Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.

式(1)で表されるアルミニウムキレート剤の具体例としては、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビスオレイルアセトアセテート、エチルアセトアセテートアルミニウムジイソプロピレート、アルキルアセトアセテートアルミニウムジイソプロピレート等が挙げられる。   Specific examples of the aluminum chelating agent represented by the formula (1) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum monoacetylacetonate Examples thereof include bisoleyl acetoacetate, ethyl acetoacetate aluminum diisopropylate, and alkyl acetoacetate aluminum diisopropylate.

多官能イソシアネート化合物は、好ましくは一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する化合物である。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した式(4)のビュウレット体が挙げられる。









The polyfunctional isocyanate compound is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule. As a more preferred example of such a trifunctional isocyanate compound, a TMP adduct of formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and a formula (3) obtained by self-condensing 3 mol of a diisocyanate compound. An isocyanurate of formula (4) and a biuret of formula (4) obtained by condensing the remaining 1 mol of diisocyanate with diisocyanate urea obtained from 2 mol of 3 mol of diisocyanate compound.









上記(2)〜(4)において、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4−ジイソシアネート、トルエン2,6−ジイソシアネート、m−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ−m−キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル−4,4’−ジイソシアネートが挙げられる。   In said (2)-(4), the substituent R is the part except the isocyanate group of the diisocyanate compound. Specific examples of such diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate.

このような多官能イソシアネート化合物を界面重合させて得られる多孔性樹脂は、界面重合の間にイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基とイソシアネート基とが反応して尿素結合を生成してポリマー化するものであり、多孔性ポリウレアである。このような多孔性樹脂とその孔に保持されたアルミニウムキレート剤とからなる潜在性硬化剤は、硬化のために加熱されると、明確な理由は不明であるが、保持されているアルミニウムキレート剤が、潜在性硬化剤と併存しているシランカップリング剤や熱硬化型樹脂と接触できるようになり、硬化反応を進行させることができる。   In the porous resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound, part of the isocyanate group undergoes hydrolysis during the interfacial polymerization to become an amino group, and the amino group reacts with the isocyanate group. It is a porous polyurea that forms a urea bond to polymerize. The latent curing agent composed of such a porous resin and the aluminum chelating agent held in the pores is heated for curing, but the clear reason is unknown, but the retained aluminum chelating agent However, it becomes possible to come into contact with a silane coupling agent and a thermosetting resin coexisting with the latent curing agent, and the curing reaction can proceed.

なお、本発明の潜在性硬化剤の構造上、その最表面にもアルミニウムキレート剤が存在することになると思われるが、界面重合の際に系内に存在する水により不活性化し、アルミニウムキレート剤は多孔性樹脂の内部で保持されたものだけが活性を保持していることになり、結果的に得られる硬化剤は潜在性を獲得できたものと考えられる。   In addition, on the structure of the latent curing agent of the present invention, it is considered that an aluminum chelating agent is also present on the outermost surface. However, the aluminum chelating agent is inactivated by water present in the system during the interfacial polymerization. It is considered that only those retained inside the porous resin retain activity, and the resulting curing agent has acquired the potential.

本発明の潜在性硬化剤は、アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、得られた溶液を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合させることを特徴とする製造方法により製造することができる。   The latent curing agent of the present invention is obtained by dissolving an aluminum chelating agent and a polyfunctional isocyanate compound in a volatile organic solvent, and charging the obtained solution into an aqueous phase containing a dispersant, and heating and stirring the interface. It can manufacture by the manufacturing method characterized by making it superpose | polymerize.

この製造方法においては、まず、アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、界面重合における油相となる溶液を調製する。ここで、揮発性有機溶剤を使用する理由は以下の通りである。即ち、通常の界面重合法で使用するような沸点が300℃を超える高沸点溶剤を用いた場合、界面重合の間に有機溶剤が揮発しないために、イソシアネート−水との接触確率が増大せず、それらの間での界面重合の進行度合いが不十分となるからである。そのため、界面重合させても良好な保形性の重合物が得られ難く、また、得られた場合でも重合物に高沸点溶剤が取り込まれたままとなり、熱硬化型樹脂組成物に配合した場合に、高沸点溶剤が熱硬化型樹脂組成物の硬化物の物性に悪影響を与えるからである。このため、この製造方法においては、油相を調製する際に使用する有機溶剤として、揮発性のものを使用する。   In this production method, first, an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent to prepare a solution that becomes an oil phase in interfacial polymerization. Here, the reason for using the volatile organic solvent is as follows. That is, when a high boiling point solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability with isocyanate-water does not increase. This is because the degree of progress of interfacial polymerization between them becomes insufficient. Therefore, it is difficult to obtain a polymer having good shape retention even when interfacial polymerization is performed, and even when it is obtained, when the high boiling point solvent is still taken into the polymer and it is blended in a thermosetting resin composition In addition, the high boiling point solvent adversely affects the physical properties of the cured product of the thermosetting resin composition. For this reason, in this manufacturing method, a volatile thing is used as an organic solvent used when preparing an oil phase.

このような揮発性有機溶剤としては、アルミニウムキレート剤と多官能イソシアネート化合物との良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶剤)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。   Such a volatile organic solvent is a good solvent of an aluminum chelating agent and a polyfunctional isocyanate compound (the solubility of each is preferably at least 0.1 g / ml (organic solvent)), and is substantially free from water. In particular, those having a water solubility of 0.5 g / ml (organic solvent) or less and a boiling point of 100 ° C. or less under atmospheric pressure are preferable. Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.

揮発性有機溶剤の使用量は、アルミニウムキレート剤と多官能イソシアネート化合物の合計量100質量部に対し、少なすぎると潜在性が低下し、多すぎると熱応答性が低下するので、好ましくは100〜500質量部である。   The amount of the volatile organic solvent used is preferably from 100 to 100 parts by mass because the latent amount is lowered if the amount is too small and the thermal responsiveness is lowered if the amount is too large relative to 100 parts by mass of the total amount of the aluminum chelating agent and the polyfunctional isocyanate compound. 500 parts by mass.

なお、揮発性有機溶剤の使用量範囲内において、揮発性有機溶剤の使用量を比較的多く使用すること等により、油相となる溶液の粘度を下げることができるが、粘度を下げると撹拌効率が向上するため、反応系における油相滴をより微細化かつ均一化することが可能になり、結果的に得られる潜在性硬化剤粒子径をサブミクロン〜数ミクロン程度の大きさに制御しつつ、粒度分布を単分散とすることが可能となる。油相となる溶液の粘度は1〜2.5mPa・sに設定することが好ましい。   Note that the viscosity of the oil phase solution can be lowered by using a relatively large amount of the volatile organic solvent within the range of the volatile organic solvent used. As a result, the oil phase droplets in the reaction system can be made finer and more uniform, and the resulting latent hardener particle size can be controlled to submicron to several microns. The particle size distribution can be monodispersed. The viscosity of the oil phase solution is preferably set to 1 to 2.5 mPa · s.

また、多官能イソシアネート化合物を乳化分散する際にPVAを用いた場合、PVAの水酸基と多官能イソシアネート化合物が反応してしまうため、副生成物が異物として潜在性硬化剤粒子の周囲を付着してしまったり(図8A:部分ケン化PVA使用時)、および粒子形状そのものが異形化してしまったりする(図8B:完全ケン化PVA使用時)。この現象を防ぐためには、多官能イソシアネート化合物と水との反応性を促進すること、あるいは多官能イソシアネート化合物とPVAとの反応性を抑制することが挙げられる。   In addition, when PVA is used when emulsifying and dispersing the polyfunctional isocyanate compound, the hydroxyl group of PVA reacts with the polyfunctional isocyanate compound, so that by-products adhere around the latent curing agent particles as foreign substances. (FIG. 8A: when partially saponified PVA is used) and the particle shape itself is deformed (FIG. 8B: when fully saponified PVA is used). In order to prevent this phenomenon, the reactivity between the polyfunctional isocyanate compound and water is promoted, or the reactivity between the polyfunctional isocyanate compound and PVA is suppressed.

多官能イソシアネート化合物と水との反応性を促進するためには、アルミニウムキレート剤の配合量を多官能イソシアネート化合物の重量で好ましくは1/2以下、より好ましくは1/3以下とする。これにより、多官能イソシアネート化合物と水とが接触する確率が高くなり、PVAが油相滴表面に接触する前に多官能イソシアネート化合物と水とが反応し易くなる。   In order to promote the reactivity between the polyfunctional isocyanate compound and water, the blending amount of the aluminum chelating agent is preferably ½ or less, more preferably 3 or less by weight of the polyfunctional isocyanate compound. Thereby, the probability that a polyfunctional isocyanate compound and water will contact increases, and it becomes easy for a polyfunctional isocyanate compound and water to react before PVA contacts an oil phase droplet surface.

また、多官能イソシアネート化合物とPVAとの反応性を抑制するためには、油相中のアルミニウムキレート剤の配合量を増大させることが挙げられる。具体的には、アルミニウムキレート剤の配合量を多官能イソシアネート化合物の重量で好ましくは等倍以上、より好ましくは1.0〜2.0倍とする。これにより、油相滴表面におけるイソシアネート濃度が低下する。さらに多官能イソシアネート化合物は水酸基よりも加水分解により形成されるアミンとの反応(界面重合)速度が大きいため、多官能イソシアネート化合物とPVAとの反応確率を低下させることができる。   Moreover, in order to suppress the reactivity of a polyfunctional isocyanate compound and PVA, increasing the compounding quantity of the aluminum chelating agent in an oil phase is mentioned. Specifically, the blending amount of the aluminum chelating agent is preferably equal to or greater than the weight of the polyfunctional isocyanate compound, more preferably 1.0 to 2.0 times. Thereby, the isocyanate density | concentration in the oil phase droplet surface falls. Furthermore, since the polyfunctional isocyanate compound has a higher reaction rate (interfacial polymerization) with the amine formed by hydrolysis than the hydroxyl group, the reaction probability between the polyfunctional isocyanate compound and PVA can be lowered.

アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させる際には、大気圧下、室温で混合撹拌するだけでもよいが、必要に応じ、加熱してもよい。   When the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in the volatile organic solvent, the aluminum chelating agent and the polyfunctional isocyanate compound may be mixed and stirred at room temperature under atmospheric pressure, but may be heated as necessary.

次に、この製造方法においては、アルミニウムキレート剤と多官能イソシアネート化合物が揮発性有機溶剤に溶解した油相溶液を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合させる。ここで、分散剤としては、ポリビニルアルコール、カルボキシメチルセルロース、ゼラチン等の通常の界面重合法において使用されるものを使用することができる。分散剤の使用量は、通常、水相の0.1〜10.0質量%である。   Next, in this production method, an oil phase solution in which an aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent is put into an aqueous phase containing a dispersant, and subjected to interfacial polymerization by heating and stirring. Here, as a dispersing agent, what is used in normal interfacial polymerization methods, such as polyvinyl alcohol, carboxymethylcellulose, gelatin, can be used. The usage-amount of a dispersing agent is 0.1-10.0 mass% of an aqueous phase normally.

油相溶液の水相に対する配合量は、油相溶液が少なすぎると多分散化し、多すぎると微細化により凝集が生ずるので、水相100質量部に対し、好ましくは5〜50質量部である。   The blending amount of the oil phase solution with respect to the aqueous phase is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the aqueous phase because polydispersion occurs when the amount of the oil phase solution is too small, and aggregation occurs due to refinement when the amount is too large. .

界面重合における乳化条件としては、油相の大きさが好ましくは0.5〜100μmとなるような撹拌条件(撹拌装置ホモジナイザー;撹拌速度8000rpm以上)で、通常、大気圧下、温度30〜80℃、撹拌時間2〜12時間、加熱撹拌する条件を挙げることができる。   As the emulsification conditions in the interfacial polymerization, stirring conditions (stirring apparatus homogenizer; stirring speed of 8000 rpm or more) such that the size of the oil phase is preferably 0.5 to 100 μm are usually obtained at a temperature of 30 to 80 ° C. under atmospheric pressure. The conditions of stirring with heating for 2 to 12 hours can be mentioned.

界面重合終了後に、重合体微粒子を濾別し、自然乾燥することにより本発明の潜在性硬化剤を得ることができる。   After the completion of the interfacial polymerization, the polymer fine particles are filtered off and naturally dried to obtain the latent curing agent of the present invention.

以上説明した本発明の製造方法によれば、多官能イソシアネート化合物の種類や使用量、アルミニウムキレート剤の種類や使用量、界面重合条件を変化させることにより、潜在性硬化剤の硬化特性をコントロールすることができる。例えば、重合温度を低くすると硬化温度を低下させることができ、反対に、重合温度を高くすると硬化温度を上昇させることができる。   According to the production method of the present invention described above, the curing characteristics of the latent curing agent are controlled by changing the type and usage of the polyfunctional isocyanate compound, the type and usage of the aluminum chelating agent, and the interfacial polymerization conditions. be able to. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.

本発明の潜在性硬化剤は、従来のイミダゾール系潜在性硬化剤と同様の用途に使用することができ、好ましくは、シランカップリング剤と熱硬化型樹脂と併用することにより、低温速硬化性の熱硬化型樹脂組成物を与えることができる。   The latent curing agent of the present invention can be used in the same applications as conventional imidazole-based latent curing agents, and preferably, by using a silane coupling agent in combination with a thermosetting resin, low temperature fast curing The thermosetting resin composition can be provided.

熱硬化型樹脂組成物における潜在性硬化剤の含有量は、少なすぎると十分に硬化せず、多すぎるとその組成物の硬化物の樹脂特性(例えば、可撓性)が低下するので、熱硬化型樹脂100質量部に対し1〜70質量部、好ましくは1〜50質量部である。   If the content of the latent curing agent in the thermosetting resin composition is too small, it will not be cured sufficiently, and if it is too large, the resin properties (for example, flexibility) of the cured product will decrease. It is 1-70 mass parts with respect to 100 mass parts of curable resin, Preferably it is 1-50 mass parts.

シランカップリング剤は、特開2002−212537号公報の段落0007〜0010に記載されているように、アルミニウムキレート剤と共働して熱硬化性樹脂(例えば、熱硬化性エポキシ樹脂)のカチオン重合を開始させる機能を有する。このような、シランカップリング剤としては、分子中に1〜3の低級アルコキシ基を有するものであり、分子中に熱硬化性樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよい。なお、アミノ基やメルカプト基を有するカップリング剤は、本発明の潜在性硬化剤がカチオン型硬化剤であるため、アミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。   As described in paragraphs 0007 to 0010 of JP-A No. 2002-212537, the silane coupling agent is a cationic polymerization of a thermosetting resin (for example, a thermosetting epoxy resin) in cooperation with an aluminum chelating agent. Has the function of starting. As such a silane coupling agent, one having 1 to 3 lower alkoxy groups in the molecule, a group having reactivity to the functional group of the thermosetting resin in the molecule, for example, vinyl group , Styryl group, acryloyloxy group, methacryloyloxy group, epoxy group, amino group, mercapto group and the like. A coupling agent having an amino group or a mercapto group should be used when the latent curing agent of the present invention is a cationic curing agent, so that the amino group or mercapto group does not substantially trap the generated cationic species. Can do.

このようなシランカップリング剤の具体例としては、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−スチリルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン等を挙げることができる。   Specific examples of such silane coupling agents include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-styryltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Acryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β- (aminoethyl) ) -Γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercapto Propyltrimethoxy Examples include silane and γ-chloropropyltrimethoxysilane.

熱硬化型樹脂組成物におけるシランカップリング剤の含有量は、少なすぎると低硬化性となり、多すぎるとその組成物の硬化物の樹脂特性(例えば、保存安定性)が低下するので、潜在性硬化剤100質量部に対し50〜1500質量部、好ましくは300〜1200質量部である。   If the content of the silane coupling agent in the thermosetting resin composition is too small, it becomes low curability, and if it is too large, the resin properties (eg, storage stability) of the cured product of the composition will decrease, so there is potential. It is 50-1500 mass parts with respect to 100 mass parts of hardening | curing agents, Preferably it is 300-1200 mass parts.

熱硬化型樹脂としては、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等を使用することができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂を好ましく使用することができる。   As the thermosetting resin, a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like can be used. Among these, a thermosetting epoxy resin can be preferably used in consideration of a good adhesive strength after curing.

このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100〜4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。   Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.

本発明の熱硬化型樹脂組成物には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。また、本発明の熱硬化型樹脂組成物には、数μmオーダーの粒径の導電性粒子、金属粒子、樹脂コア表面を金属メッキ層で被覆したもの、それらの表面を絶縁薄膜で更に被覆したもの等を、全体の1〜10質量%の配合量で配合することが好ましい。これにより、本発明の熱硬化型樹脂組成物を異方導電性接着ペースト、異方導電性フィルムとして使用することが可能となる。   The thermosetting resin composition of the present invention can contain a filler such as silica and mica, a pigment, an antistatic agent, and the like, if necessary. In addition, the thermosetting resin composition of the present invention is a conductive particle having a particle size on the order of several μm, a metal particle, a resin core surface coated with a metal plating layer, and the surface thereof is further coated with an insulating thin film. It is preferable to mix things etc. with the compounding quantity of 1-10 mass% of the whole. Thereby, the thermosetting resin composition of the present invention can be used as an anisotropic conductive adhesive paste and an anisotropic conductive film.

本発明の熱硬化型樹脂組成物は、潜在性硬化剤、シランカップリング剤、熱硬化型樹脂及び必要に応じて添加される他の添加剤とを、常法に従って均一に混合撹拌することにより製造することができる。   The thermosetting resin composition of the present invention is obtained by uniformly mixing and stirring a latent curing agent, a silane coupling agent, a thermosetting resin, and other additives added as necessary according to a conventional method. Can be manufactured.

このようにして得られた本発明の熱硬化型樹脂組成物は、硬化剤が潜在化しているので、一剤型であるにも拘わらず、保存安定性に優れている。また、潜在性硬化剤がシランカップリング剤と共働して、熱硬化型樹脂を低温速硬化でカチオン重合させることができる。   The thermosetting resin composition of the present invention thus obtained is excellent in storage stability even though it is a one-component type because the curing agent is latent. Further, the latent curing agent can cooperate with the silane coupling agent, and the thermosetting resin can be cationically polymerized by low temperature rapid curing.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

蒸留水800重量部と、界面活性剤(ニューレックスR−T、日本油脂(株)社)0.05重量部と、分散剤としてポリビニルアルコール(PVA−205、(株)クラレ社)4重量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合した。この混合液に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株)社)11重量部と、メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−109、三井武田ケミカル(株)社)11重量部とを、酢酸エチル30重量部に溶解した油相溶液を投入し、ホモジナイザー(11000rpm/10分)で乳化混合後、60℃で一晩界面重合させた。   800 parts by weight of distilled water, 0.05 part by weight of a surfactant (Newlex RT, Nippon Oil & Fats Co., Ltd.), and 4 parts by weight of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) as a dispersant Were placed in a 3 liter interfacial polymerization vessel equipped with a thermometer and mixed uniformly. In addition to this mixed solution, 11 parts by weight of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethylacetoacetate) (Aluminum Chelate D, Kawaken Fine Chemicals Co., Ltd.) and methylenediphenyl-4,4′-diisocyanate An oil phase solution in which 11 parts by weight of (3 mol) of trimethylolpropane (1 mol) adduct (D-109, Mitsui Takeda Chemical Co., Ltd.) was dissolved in 30 parts by weight of ethyl acetate was added, and a homogenizer ( The mixture was emulsified and mixed at 11000 rpm / 10 minutes) and then interfacially polymerized at 60 ° C. overnight.

反応終了後、重合反応液を室温まで放冷し、界面重合粒子を濾過により濾別し、自然乾燥することにより粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   After completion of the reaction, the polymerization reaction solution was allowed to cool to room temperature, and the interfacially polymerized particles were separated by filtration and air dried to obtain 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、トルエンジイソシアネート(3モル)及びメチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−103M−2、三井武田ケミカル(株)社)を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Instead of trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol), trimethylol of toluene diisocyanate (3 mol) and methylenediphenyl-4,4′-diisocyanate (3 mol) Except for using a propane (1 mol) adduct (D-103M-2, Mitsui Takeda Chemical Co., Ltd.), a spherical latent curing agent having a particle size of about 10 μm was added according to the procedure of Example 1. Part by weight was obtained.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、トルエンジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−103、三井武田ケミカル(株))を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Instead of a trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol), a trimethylolpropane (1 mol) adduct of toluene diisocyanate (3 mol) (D-103, Takeda Mitsui) 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm was obtained in the same manner as in Example 1 except that Chemical Co.) was used.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、m−キシリレンジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−110N、三井武田ケミカル(株)社)を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Instead of a trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol), a trimethylolpropane (1 mol) adduct of m-xylylene diisocyanate (3 mol) (D-110N) Except for using Mitsui Takeda Chemical Co., Ltd.), 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm was obtained according to the procedure of Example 1.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、ヘキサヒドロ−m−キシリレンジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−120N、三井武田ケミカル(株)社)を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Instead of a trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol), a trimethylolpropane (1 mol) adduct of hexahydro-m-xylylene diisocyanate (3 mol) (D -120N, Mitsui Takeda Chemical Co., Ltd.) According to the procedure of Example 1, 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm was obtained.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、イソホロンジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D−140N、三井武田ケミカル(株)社)を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Instead of the trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol), the trimethylolpropane (1 mol) adduct of isophorone diisocyanate (3 mol) (D-140N, Takeshi Mitsui) 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm was obtained in the same manner as in Example 1 except that Chemical Co.) was used.

メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物に代えて、イソホロンジイソシアネートのイソシアヌレート体(Z−4470、住友バイエルウレタン(株)社)を使用する以外は、実施例1の操作に準じて、粒径10μm程度の球状の潜在性硬化剤を20重量部得た。   Other than using an isocyanurate form of isophorone diisocyanate (Z-4470, Sumitomo Bayer Urethane Co., Ltd.) instead of the trimethylolpropane (1 mol) adduct of methylenediphenyl-4,4′-diisocyanate (3 mol). Obtained 20 parts by weight of a spherical latent curing agent having a particle size of about 10 μm in accordance with the operation of Example 1.

実施例1〜7で得られた潜在性硬化剤2重量部、脂環式エポキシ樹脂(CEL−2021P、ダイセル化学工業(株)社)90重量部、及びシランカップリング剤(A−187、日本ユニカー(株)社)8重量部を、均一に混合することにより熱硬化型エポキシ樹脂組成物を調製した。   2 parts by weight of the latent curing agent obtained in Examples 1 to 7, 90 parts by weight of an alicyclic epoxy resin (CEL-2021P, Daicel Chemical Industries, Ltd.), and a silane coupling agent (A-187, Japan) A thermosetting epoxy resin composition was prepared by uniformly mixing 8 parts by weight of Unicar Co., Ltd.).

得られた熱硬化型エポキシ樹脂組成物を、示差熱分析装置(DSC)(DSC6200、セイコーインスツルメント(株)社)を用いて熱分析した。得られた結果を表1及び図2に示す。ここで、潜在性硬化剤の硬化特性に関し、発熱開始温度は硬化開始温度を意味しており、発熱ピーク温度は最も硬化が活性となる温度を意味しており、発熱終了温度は硬化終了温度を意味しており、そしてピーク面積は発熱量を意味している。

The obtained thermosetting epoxy resin composition was subjected to thermal analysis using a differential thermal analyzer (DSC) (DSC6200, Seiko Instruments Inc.). The obtained results are shown in Table 1 and FIG. Here, regarding the curing characteristics of the latent curing agent, the exothermic start temperature means the curing start temperature, the exothermic peak temperature means the temperature at which curing is most active, and the exothermic end temperature means the curing end temperature. Meaning, and the peak area means calorific value.

表1及び図2に示すように、実施例1〜6の潜在性硬化剤結果から、多官能イソシアネート化合物の種類を変えることにより、潜在性硬化剤の硬化特性をコントロール可能であることがわかる。実施例1では、潜在性硬化剤の硬化開始温度が100℃以下であった。   As shown in Table 1 and FIG. 2, it can be seen from the results of the latent curing agents of Examples 1 to 6 that the curing characteristics of the latent curing agent can be controlled by changing the type of the polyfunctional isocyanate compound. In Example 1, the curing start temperature of the latent curing agent was 100 ° C. or lower.

また、ポリウレア構造のガラス転移温度が高くなると、発熱開始温度、発熱ピーク温度、発熱終了温度がいずれも高温側にシフトする傾向(硬化温度が高くなる傾向)があることがわかる(実施例3〜6)。   Moreover, when the glass transition temperature of a polyurea structure becomes high, it turns out that all of the heat generation start temperature, the heat generation peak temperature, and the heat generation end temperature tend to shift to a high temperature side (a tendency for the curing temperature to increase) (Example 3). 6).

アルミニウムキレート剤であるアルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株)社)の配合量を表2に示すように代えること以外は、実施例1の操作に準じて、潜在性硬化剤を調製した(実験例9a〜9e)。表2に示すように、アルミニウムキレート剤の配合量が増加するにつれて、重合粒子が凝集しやすくなり、更に増加すると粒子状の界面重合体が得られなくなる傾向があることがわかる。また、それに伴い発熱ピーク温度が低下する傾向があることもわかる(図3参照)。   Except for changing the blending amount of aluminum monoacetylacetonate bis (ethylacetoacetate) 24% isopropanol solution (aluminum chelate D, Kawaken Fine Chemical Co., Ltd.), which is an aluminum chelating agent, as shown in Table 2. In accordance with the operation of Example 1, latent curing agents were prepared (Experimental Examples 9a to 9e). As shown in Table 2, it can be seen that as the blending amount of the aluminum chelating agent increases, the polymer particles tend to aggregate, and when it further increases, there is a tendency that a particulate interfacial polymer cannot be obtained. In addition, it can be seen that the exothermic peak temperature tends to decrease accordingly (see FIG. 3).

実施例1で得られた潜在性硬化剤2重量部、脂環式エポキシ樹脂(CEL−2021P、ダイセル化学工業(株)社)90重量部、及び表3に示すシランカップリング剤8重量部を均一に混合することにより熱硬化型エポキシ樹脂組成物(実験例10a〜10h)を調製した。   2 parts by weight of the latent curing agent obtained in Example 1, 90 parts by weight of an alicyclic epoxy resin (CEL-2021P, Daicel Chemical Industries, Ltd.), and 8 parts by weight of the silane coupling agent shown in Table 3 A thermosetting epoxy resin composition (Experimental Examples 10a to 10h) was prepared by mixing uniformly.

得られた熱硬化型エポキシ樹脂組成物を、示差熱分析装置(DSC6200、セイコーインスツルメント(株)社)を用いて熱分析した。得られた結果を図4に示す。図4から、シランカップリング剤の種類を変えることにより、潜在性硬化剤の硬化特性をコントロール可能であることがわかる。   The obtained thermosetting epoxy resin composition was subjected to thermal analysis using a differential thermal analyzer (DSC6200, Seiko Instruments Inc.). The obtained results are shown in FIG. FIG. 4 shows that the curing characteristics of the latent curing agent can be controlled by changing the type of the silane coupling agent.

潜在性硬化剤粒子の粒度分布に対する、油相溶液の粘度の影響を調べるために、実施例1における、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)と、メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物とを酢酸エチルに溶解した油相溶液について、酢酸エチルの添加量を増やし油相溶液の粘度を表4に示す値に代えること以外は、実施例1と同様の操作を繰り返すことにより実験例11a〜11eの潜在性硬化剤を得た。なお、実験例11bは実施例1を繰り返したものである。   In order to investigate the influence of the viscosity of the oil phase solution on the particle size distribution of the latent curing agent particles, aluminum monoacetylacetonate bis (ethylacetoacetate) and methylenediphenyl-4,4′-diisocyanate (Example 1) 3 moles) of trimethylolpropane (1 mole) adduct was dissolved in ethyl acetate, except that the addition amount of ethyl acetate was increased and the viscosity of the oil phase solution was changed to the values shown in Table 4. By repeating the same operation as in Example 1, the latent curing agents of Experimental Examples 11a to 11e were obtained. In addition, Experimental example 11b repeats Example 1. FIG.

油相溶液の粘度については、HAAK社製のレオメータPK100を使用して測定した。その結果を表4に示す。   The viscosity of the oil phase solution was measured using a rheometer PK100 manufactured by HAAK. The results are shown in Table 4.

実験例11b〜11eの潜在性硬化剤の粒度分布を、電気抵抗式粒度分布測定装置(SD−2000、Sysmex製)を用いて測定し、それぞれの粒度分布チャート(体積換算)を図5A〜5Dに示す。これらの粒度分布チャートから分かるように、油相粘度が約2.5mPa.sであるときに、粒度分布が正規分布となった。更に、油相粘度が約2.0mPa.sであるときに、単分散ミクロンサイズの乳化粒子(中心径3μm)を得ることができた。また、油相粘度が約1.3mPa.sであるときに、単分散ミクロンサイズの乳化粒子(中心径2μm)を得ることができた。以上の結果から、単分散乳化粒子を得るためには、油相粘度を1〜2.5mPa.sとすることが有効であることがわかる。また、実験例11bおよび11eの潜在性硬化剤粒子の電子顕微鏡写真を図6Aおよび6Bにそれぞれ示すが、実験例11eの潜在性硬化剤粒子の粒度分布が、実験例11aの潜在性硬化剤に比べて、良好な単分散であることがこれらの写真からもわかる。   The particle size distributions of the latent curing agents of Experimental Examples 11b to 11e were measured using an electric resistance type particle size distribution measuring apparatus (SD-2000, manufactured by Sysmex), and the respective particle size distribution charts (volume conversion) are shown in FIGS. Shown in As can be seen from these particle size distribution charts, the oil phase viscosity is about 2.5 mPa.s. When s, the particle size distribution became a normal distribution. Furthermore, the oil phase viscosity is about 2.0 mPa.s. When s, monodispersed micron-sized emulsified particles (center diameter 3 μm) could be obtained. The oil phase viscosity is about 1.3 mPa.s. When s, monodispersed micron-sized emulsified particles (center diameter 2 μm) could be obtained. From the above results, in order to obtain monodisperse emulsified particles, the oil phase viscosity is 1 to 2.5 mPa.s. It can be seen that s is effective. Moreover, although the electron micrograph of the latent hardener particle | grains of Experimental example 11b and 11e is shown to FIG. 6A and 6B, respectively, the particle size distribution of the latent hardener particle | grains of Experimental example 11e is a latent hardener of Experimental example 11a. It can be seen from these photographs that the monodispersion is good.

良好な単分散性を示し、かつ表面状態の良好な潜在性硬化剤粒子を製造するために、多官能イソシアネート化合物とアルミニウムキレート剤の配合割合の検討を行った。なお、単分散性の粒子を得るため、酢酸エチルの配合量は実施例11eと同等にした。アルミニウムキレート剤であるアルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)と多官能イソシアネート化合物であるメチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物とを、実施例11eと同量の酢酸エチルで溶解した油相溶液について、アルミニウムキレート剤と多官能イソシアネート化合物の添加量を以下の表5に示す量に代えること以外は、実施例1と同様の操作を繰り返すことにより実験例12a〜12fの潜在性硬化剤を得た。   In order to produce latent curing agent particles having good monodispersibility and good surface condition, the blending ratio of the polyfunctional isocyanate compound and the aluminum chelating agent was examined. In order to obtain monodisperse particles, the blending amount of ethyl acetate was the same as in Example 11e. An aluminum chelating agent, aluminum monoacetylacetonate bis (ethyl acetoacetate), and a polyfunctional isocyanate compound, methylenediphenyl-4,4′-diisocyanate (3 mol) adducted with trimethylolpropane (1 mol) For the oil phase solution dissolved in the same amount of ethyl acetate as in Example 11e, the same operation as in Example 1 is repeated except that the addition amounts of the aluminum chelating agent and the polyfunctional isocyanate compound are changed to the amounts shown in Table 5 below. Thus, the latent curing agents of Experimental Examples 12a to 12f were obtained.

得られた実験例12a〜12fの潜在性硬化剤の電子顕微鏡写真を図7A〜7Fに示す。得られた潜在性硬化剤の粒子の粒子径は、油滴が微細化した後に重合が進行するので最大粒子径5μm以下とすることができた。また、これらの結果から、アルミニウムキレート剤の配合量を多官能イソシアネート化合物の重量で1/2以下とすると、粒子に異物の付着がないことがわかる。また、アルミニウムキレート剤の配合量を多官能イソシアネート化合物の重量で同量以上とすることによっても、粒子に異物の付着がないことがわかる。従って、良好な単分散性を示し、かつ表面状態の良好な潜在性硬化剤粒子を製造する場合には、アルミニウムキレート剤の配合量を多官能イソシアネート化合物の重量で1/2以下もしくは同量以上とすることが好ましいことがわかる。   Electron micrographs of the obtained latent curing agents of Experimental Examples 12a to 12f are shown in FIGS. The particle diameter of the obtained latent curing agent particles could be reduced to a maximum particle diameter of 5 μm or less because the polymerization proceeds after the oil droplets are refined. Further, from these results, it can be seen that when the blending amount of the aluminum chelating agent is ½ or less by weight of the polyfunctional isocyanate compound, no foreign matter adheres to the particles. Moreover, it turns out that there is no adhesion of a foreign material to particle | grains also by making the compounding quantity of an aluminum chelating agent into the same quantity or more by the weight of a polyfunctional isocyanate compound. Therefore, when producing latent hardener particles having good monodispersity and good surface condition, the blending amount of the aluminum chelating agent is ½ or less by weight of the polyfunctional isocyanate compound or the same amount or more. It turns out that it is preferable.

本発明のアルミニウムキレート剤系潜在性硬化剤は、比較的低温で短時間の条件で熱硬化性エポキシ樹脂を硬化させることができるので、低温で短時間で異方導電性接続が可能な異方導電性接着剤の硬化剤として有用である。   The aluminum chelating agent-based latent curing agent of the present invention can cure a thermosetting epoxy resin at a relatively low temperature and in a short time, so that an anisotropic conductive connection is possible at a low temperature in a short time. It is useful as a curing agent for conductive adhesives.

潜在性硬化剤粒子の電子顕微鏡写真である。2 is an electron micrograph of latent curing agent particles. 図1Aの潜在性硬化剤粒子の中心付近の拡大電子顕微鏡写真である。1B is an enlarged electron micrograph near the center of the latent curing agent particle in FIG. 1A. 実施例8で調製した熱硬化型エポキシ樹脂のDSC測定図である。It is a DSC measurement figure of the thermosetting type epoxy resin prepared in Example 8. 実施例9で調製した熱硬化型エポキシ樹脂のDSC測定図である。6 is a DSC measurement diagram of the thermosetting epoxy resin prepared in Example 9. FIG. 実施例10で調製した熱硬化型エポキシ樹脂のDSC測定図である。2 is a DSC measurement diagram of a thermosetting epoxy resin prepared in Example 10. FIG. 実施例11の実験例11bで調製した潜在性硬化剤の粒度分布チャートである。4 is a particle size distribution chart of the latent curing agent prepared in Experimental Example 11b of Example 11. 実施例11の実験例11cで調製した潜在性硬化剤の粒度分布チャートである。6 is a particle size distribution chart of the latent curing agent prepared in Experimental Example 11c of Example 11. 実施例11の実験例11dで調製した潜在性硬化剤の粒度分布チャートである。6 is a particle size distribution chart of the latent curing agent prepared in Experimental Example 11d of Example 11. 実施例11の実験例11eで調製した潜在性硬化剤の粒度分布チャートである。4 is a particle size distribution chart of the latent curing agent prepared in Experimental Example 11e of Example 11. 実施例11の実験例11bの潜在性硬化剤の電子顕微鏡写真である。4 is an electron micrograph of the latent curing agent of Experimental Example 11b of Example 11. 実施例11の実験例11eの潜在性硬化剤の電子顕微鏡写真である。4 is an electron micrograph of the latent curing agent of Experimental Example 11e of Example 11. 実験例12aの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardening agent of Experimental Example 12a. 実験例12bの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardener of Experimental example 12b. 実験例12cの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardening agent of Experimental example 12c. 実験例12dの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardener of Experimental example 12d. 実験例12eの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardener of Experimental example 12e. 実験例12fの潜在性硬化剤の電子顕微鏡写真である。It is an electron micrograph of the latent hardener of Experimental example 12f. 部分ケン化PVA使用した場合の従来の潜在性硬化剤粒子の電子顕微鏡写真である。It is an electron micrograph of the conventional latent hardener particle | grains at the time of using partially saponified PVA. 完全ケン化PVA使用を使用した従来の潜在性硬化剤粒子の電子顕微鏡写真である。2 is an electron micrograph of conventional latent hardener particles using fully saponified PVA.

1…潜在性硬化剤
2…多孔性樹脂マトリックス
3…孔
DESCRIPTION OF SYMBOLS 1 ... Latent hardening agent 2 ... Porous resin matrix 3 ... Hole

Claims (8)

アルミニウムキレート剤が、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂マトリックス中に存在する微細な多数の孔に保持されてなることを特徴とする、熱硬化型エポキシ樹脂を硬化させるための潜在性硬化剤。 Since the aluminum chelating agent, a polyfunctional isocyanate compound characterized by comprising stored in a multiplicity of fine pores present in the porous resin matrix obtained by interfacial polymerization to cure the thermosetting epoxy resins Latent curing agent. アルミニウムキレート剤が、配位子であるβ−ケトエノラート陰イオンがアルミニウムに配位した錯体化合物である請求項1記載の潜在性硬化剤。   The latent curing agent according to claim 1, wherein the aluminum chelating agent is a complex compound in which a β-ketoenolate anion which is a ligand is coordinated to aluminum. アルミニウムキレート剤が、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)である請求項1記載の潜在性硬化剤。   The latent curing agent according to claim 1, wherein the aluminum chelating agent is aluminum monoacetylacetonate bis (ethylacetoacetate). 請求項1記載の潜在性硬化剤の製造方法であって、アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、得られた溶液を、分散剤を含有する水相に投入し、加熱撹拌することにより界面重合させることを特徴とする製造方法。   It is a manufacturing method of the latent hardening | curing agent of Claim 1, Comprising: An aluminum chelating agent and a polyfunctional isocyanate compound are dissolved in a volatile organic solvent, and the obtained solution is thrown into the aqueous phase containing a dispersing agent. A production method characterized by interfacial polymerization by heating and stirring. 揮発性有機溶剤が、低級アルキル酢酸エステルである請求項4記載の製造方法。   The process according to claim 4, wherein the volatile organic solvent is a lower alkyl acetate. アルミニウムキレート剤と多官能イソシアネート化合物とを揮発性有機溶剤に溶解させ、得られた溶液の粘度を、1〜2.5mPa・sに調整する請求項4又は5記載の製造方法。   The production method according to claim 4 or 5, wherein the aluminum chelating agent and the polyfunctional isocyanate compound are dissolved in a volatile organic solvent, and the viscosity of the obtained solution is adjusted to 1 to 2.5 mPa · s. 請求項1〜3のいずれかに記載の潜在性硬化剤とシランカップリング剤と熱硬化型樹脂とを含有することを特徴とする熱硬化型樹脂組成物。   A thermosetting resin composition comprising the latent curing agent according to claim 1, a silane coupling agent, and a thermosetting resin. 熱硬化型樹脂が、熱硬化型エポキシ樹脂である請求項記載の熱硬化型樹脂組成物。 The thermosetting resin composition according to claim 7 , wherein the thermosetting resin is a thermosetting epoxy resin.
JP2009118207A 2003-09-08 2009-05-15 Latent curing agent Expired - Lifetime JP5417982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118207A JP5417982B2 (en) 2003-09-08 2009-05-15 Latent curing agent

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003315984 2003-09-08
JP2003315984 2003-09-08
JP2004228771 2004-08-05
JP2004228771 2004-08-05
JP2009118207A JP5417982B2 (en) 2003-09-08 2009-05-15 Latent curing agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004246231A Division JP4381255B2 (en) 2003-09-08 2004-08-26 Latent curing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013042937A Division JP2013100559A (en) 2003-09-08 2013-03-05 Latent curing agent

Publications (2)

Publication Number Publication Date
JP2009203477A JP2009203477A (en) 2009-09-10
JP5417982B2 true JP5417982B2 (en) 2014-02-19

Family

ID=41146045

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009118207A Expired - Lifetime JP5417982B2 (en) 2003-09-08 2009-05-15 Latent curing agent
JP2013042937A Pending JP2013100559A (en) 2003-09-08 2013-03-05 Latent curing agent

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013042937A Pending JP2013100559A (en) 2003-09-08 2013-03-05 Latent curing agent

Country Status (1)

Country Link
JP (2) JP5417982B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100559A (en) * 2003-09-08 2013-05-23 Dexerials Corp Latent curing agent
KR20210114486A (en) 2019-02-15 2021-09-23 데쿠세리아루즈 가부시키가이샤 Latent curing agent and manufacturing method thereof, film-forming composition, and cationic curable composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811555B2 (en) 2005-01-12 2011-11-09 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent
JP7257736B2 (en) 2017-07-06 2023-04-14 デクセリアルズ株式会社 Cationic curable composition
WO2021039480A1 (en) 2019-08-26 2021-03-04 デクセリアルズ株式会社 Cationic curing agent, method for producing same and cationically curable composition
JP2022127332A (en) 2021-02-19 2022-08-31 デクセリアルズ株式会社 Cationic curing agent, method for producing the same, and cationically curable composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957239B2 (en) * 1998-06-02 2007-08-15 日東電工株式会社 Microcapsule type curing agent for epoxy resin, microcapsule type curing accelerator for epoxy resin and production method thereof, epoxy resin composition, epoxy resin composition for semiconductor encapsulation
JP3802373B2 (en) * 2001-06-06 2006-07-26 ソニーケミカル株式会社 Latent curing agent, method for producing latent curing agent, and adhesive
JP3565797B2 (en) * 2001-06-06 2004-09-15 ソニーケミカル株式会社 Latent curing agent, method for producing latent curing agent, and adhesive
JP4381255B2 (en) * 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent
JP5417982B2 (en) * 2003-09-08 2014-02-19 デクセリアルズ株式会社 Latent curing agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100559A (en) * 2003-09-08 2013-05-23 Dexerials Corp Latent curing agent
KR20210114486A (en) 2019-02-15 2021-09-23 데쿠세리아루즈 가부시키가이샤 Latent curing agent and manufacturing method thereof, film-forming composition, and cationic curable composition
US11795264B2 (en) 2019-02-15 2023-10-24 Dexerials Corporation Latent curing agent and method for manufacturing same, composition for forming coating film, and cation-curable composition

Also Published As

Publication number Publication date
JP2013100559A (en) 2013-05-23
JP2009203477A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4381255B2 (en) Latent curing agent
JP4811555B2 (en) Latent curing agent
JP5146645B2 (en) Microcapsule type latent curing agent
JP5707662B2 (en) Thermosetting epoxy resin composition
JP5429337B2 (en) Thermosetting epoxy resin composition
JP5417982B2 (en) Latent curing agent
JP5365811B2 (en) Aluminum chelate latent curing agent
JP5481995B2 (en) Aluminum chelate-based latent curing agent and method for producing the same
WO2010084804A1 (en) Aluminum chelate type latent hardener and process for producing same
JP5664366B2 (en) Thermal latent curing agent, method for producing the same, and thermosetting epoxy resin composition
JP2014015631A (en) Aluminum chelate-based latent curing agent, production method thereof, and thermo-curing epoxy resin composition
JP4711721B2 (en) Method for producing latent curing agent
JP5212597B2 (en) Latent curing agent
JP5285841B2 (en) Method for producing film adhesive
JP5354192B2 (en) Thermosetting conductive paste composition
JP5360378B2 (en) Method for producing latent curing agent and method for producing adhesive
JP5074982B2 (en) Epoxy resin curing acceleration microcapsule and method for producing epoxy resin curing acceleration microcapsule
WO2006109831A1 (en) Processes for production of adhesives

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5417982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250