WO2006109648A1 - 情報表示用パネル - Google Patents

情報表示用パネル Download PDF

Info

Publication number
WO2006109648A1
WO2006109648A1 PCT/JP2006/307222 JP2006307222W WO2006109648A1 WO 2006109648 A1 WO2006109648 A1 WO 2006109648A1 JP 2006307222 W JP2006307222 W JP 2006307222W WO 2006109648 A1 WO2006109648 A1 WO 2006109648A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
display medium
resin
display
particle
Prior art date
Application number
PCT/JP2006/307222
Other languages
English (en)
French (fr)
Inventor
Kazuya Murata
Gaku Yakushiji
Norihiko Kaga
Hajime Kitano
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2006109648A1 publication Critical patent/WO2006109648A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present invention displays information by moving a display medium by enclosing at least two types of display media between two substrates, at least one of which is transparent, and applying an electric field to the display medium.
  • the present invention relates to an information display panel.
  • the electrophoretic method has a problem that the response speed becomes slow due to the viscous resistance of the liquid because the particles migrate in the liquid. Furthermore, since particles with high specific gravity such as titanium oxide are dispersed in a solution with low specific gravity, they tend to settle, and it is difficult to maintain the stability of the dispersed state. I have a problem. Even with microencapsulation, the cell size is reduced to the microcapsule level, and the above-mentioned drawbacks are only manifested, and the essential problems are solved. No.
  • a display medium is sealed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium to move the display medium.
  • An information display panel for displaying information is known.
  • the particle size is preferably about 0.5 to 50 m. If it is too small, the physical adhesion between the particles and between the particles and the substrate increases, and a large electric field is required for movement. If it is too large, the distance between the substrates must be large. An electric field is required. However, even when the particle diameter is within the above range, if smooth surface particles are used in the information display panel described above, the voltage applied to apply the electric field necessary to move (drive) the particles is low. There was a problem of becoming expensive. If the surface is smooth, the physical adhesion between the particles and between the particles and the substrate increases, and a large amount of energy is required to separate them and move them within the substrate. This is because it ends.
  • the most simple method is a method in which metal oxide fine particles or the like (external additive) are attached to the particle surface to make the particle surface uneven and reduce the adhesion.
  • the external additive is transferred between particles or between the electrodes and the external additive is applied to the particle surface or substrate surface.
  • display failure occurs due to the influence of the sticking of the film.
  • the surface of the particles is made uneven by adding a reaction-inert solvent to the particle raw material to be polymerized and then removing the solvent by heating or extraction to produce porous particles. A process and equipment for removing strong solvents and the like were required, which was not efficient.
  • the object of the present invention is to eliminate the above-mentioned problems and control the display medium particles to be used, thereby eliminating display defects, contrast reduction, drive voltage deterioration, durability deterioration, and the like.
  • the information display panel of the present invention includes at least two kinds of display media enclosed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium, thereby providing a display medium.
  • (1) particles for display medium constituting at least one type of display medium are roughly spherical particles formed by polymerizing a particle raw material containing a monomer.
  • the particle diameter of all particles constituting the display medium is 500 nm or more.
  • a fine concave-convex shape of the particles for display medium is a convex portion or a concave portion having a diameter equivalent to a diameter of 10 to 500 nm, and (acrylic of the particles for display medium) -Based and methacrylic) -resin-hydrocarbon-based copolymer, the hydrocarbon resin is styrene resin, the particle diameter of the display medium particles is 0.5-50 / ⁇ ⁇ , display medium
  • the color of the particles for display may be white, and the color of the particles for display medium may be black.
  • the particle diameter of all particles constituting the display medium is 500 nm or more, and there are no particles with a particle diameter less than 500 nm.
  • the information display panel of the present invention For example, it is possible to obtain a highly durable information display panel that does not decrease display contrast or response speed even when display rewriting is repeated.
  • FIG. L (a) and (b) are diagrams each showing an example of an information display panel of the present invention.
  • FIG. 2 (a) and (b) are views showing other examples of the information display panel of the present invention, respectively.
  • FIG. 3 (a) and (b) are diagrams showing still other examples of the information display panel of the present invention.
  • FIG. 4 is a diagram showing an example in which particles for display medium used in the information display panel of the present invention are imaged with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 5 is a diagram showing an example of the shape of a partition wall in the information display panel of the present invention.
  • the basic configuration of the information display panel of the present invention will be described.
  • an electric field is applied to the display medium sealed between two opposing substrates.
  • the charged display medium is attracted by the force of the electric field or the Coulomb force, and the display medium is switched in the moving direction by the change of the electric field direction, thereby displaying information such as an image. Therefore, it is necessary to design an information display panel so that the display medium can move uniformly and maintain stability when the displayed information is rewritten or when the displayed information is continuously displayed.
  • the force acting on the particles that make up the display medium is considered to be the electromirror force with the electrode and the substrate, intermolecular force, liquid crosslinking force, gravity, etc. It is done.
  • FIGS. 1 (a) and (b) An example of an information display panel that is an object of the present invention will be described based on FIGS. 1 (a) and (b) to FIGS. 3 (a) and 3 (b).
  • a white display medium 3W composed of particles for white display medium
  • a black display medium 3B composed of particles composed of particles for black display medium
  • a white display is given to the user.
  • a partition 4 is provided between the substrate 2 and a cell, for example, to form a cell.
  • the front partition is omitted.
  • FIGS. 2 (a) and 2 (b) each of which is also composed of at least one kind of particle force.
  • At least two kinds of display media 3 (here, each having different optical reflectance and charging characteristics)
  • a white display medium 3W composed of particles for white display medium
  • a black display medium 3B composed of particles composed of particles for black display medium are shown.
  • the black display medium 3B is visually recognized by the observer in accordance with the electric field generated by applying a voltage between the electrode 2 and the electrode 6 provided on the substrate 2 to perform black display.
  • the white display medium 3W is visually recognized by an observer to display white.
  • a partition 4 is provided between the substrates 1 and 2, for example, in the form of a lattice to form a cell.
  • the front partition is omitted.
  • a kind of display medium 3 (here, white display) having at least optical reflectance and chargeability, which also includes at least one kind of particle force.
  • the white display medium 3W composed of particles composed of particles for the medium is shown), and the substrate 2 is subjected to the electric field generated by applying a voltage between the electrode 5 and the electrode 6 provided on the substrate 1.
  • the white display medium 3W is visually recognized by the observer to display white, or the color of the electrode 6 or the substrate 1 is visually recognized by the observer and the color of the electrode 6 or the substrate 1 is displayed. Is displayed.
  • a lattice-shaped partition wall 4 is provided between the substrate 2 and a cell is formed.
  • the partition in front is omitted.
  • the present invention is characterized by (1) roughly spherical particles obtained by polymerizing a particle raw material containing a monomer as display medium particles, and (acrylic and methacrylic) resin in the particle raw material.
  • the configuration of the particles for display medium to be used is configured as described in the above (1), so that the fixed irregularities that do not fall off are volatilized or extracted from a solvent or the like. Without this step, it is possible to stably produce particles that are formed at the time of polymerization, and that are low in voltage required for driving the display medium and hardly cause display defects.
  • the size of the surface irregularities it is preferable that the convex portion or the concave portion has a diameter corresponding to a diameter of 10 to 500 nm. If the size of the surface irregularities is too small, a sufficient effect of reducing the adhesion force cannot be obtained. If the size is too large, the surface of the concave / convex portions adheres, and the effect of making the irregularities is lost.
  • the amount of the polyfunctional monomer having a plurality of polymerization reactive groups in one molecule is less than 15 mol%, unevenness on the particle surface does not appear, or the unevenness becomes small. There is little effect. Further, when the total amount is a polyfunctional monomer, the structure of the resin constituting the particles becomes strong, and particles having excellent heat resistance and excellent display durability can be obtained.
  • the polyfunctional monomer having a plurality of polymerization reactive groups in one molecule is preferably an acrylic or methacrylic monomer, which makes it easier to produce irregularities on the particle surface.
  • a non-ionic surfactant having a polyoxyethylene chain is preferred as a material to be used as a suspension stabilizer during suspension polymerization. Yes. It has a relatively good suspension stability and has little influence on the charging performance of particles produced with little residue on the particle surface. Furthermore, it is more desirable to use a surfactant having a surfactant effect of both the polyoxyethylene chain and the sulfonate salt, the non-one and the arion, as suspension stability. Suspension stability is higher than that of polyoxyethylene chains alone.
  • a method using a water-soluble coagulant such as PVA or cellulose coagulant can be used as a suspension stabilizer. In this case, the suspension stability is very high, but there is also a problem that it remains on the particle surface and affects the chargeability of the particle.
  • a suspension stabilizer there is also a method of using a powder consisting of inorganic fine particles of 10 ⁇ : LOOOnm.
  • This method is a method in which an inorganic acid dissolved in an acidic state is returned to neutral and precipitated as fine particles, used as a stabilizer, and dissolved again as an acidic solution after polymerization and removed from the particle surface.
  • This method also exhibits very good suspension stability.
  • acidic waste liquid There is also a drawback that a system such as a processing is required.
  • the polymerization initiator it is optimal to use a substance having a 10-hour half-life temperature of 40 to 75 ° C. If the temperature is too low, polymerization proceeds at room temperature, making it difficult to produce a good suspension.
  • the viscosity of the particle raw material is excessively increased by polymerization, droplets due to surface tension do not spheroidize, and almost spherical particles cannot be obtained.
  • the temperature is too high, the polymerization takes too much time and is not efficient.
  • a polymerization initiator if it dissolves in a suspension such as water, emulsion polymerization will proceed, and a large amount of fine particles that are not colored will be produced and mixed in the display medium, reducing the display quality. In order to prevent this, it is desirable to use oil-soluble substances.
  • the initiators there may be mentioned an acyl peracid compound, or an azo initiator having 10 or more carbon atoms in the molecule is applicable.
  • (Acrylic and methacrylic) resin-hydrocarbon resin block copolymers are more desirable. This is because each resin has a block shape, which makes it easier to express the characteristics than the random structure, and the unevenness of the particle surface can be efficiently performed.
  • the difference in compatibility with (acrylic and methacrylic) resin is due to the fact that the hydrocarbon resin of (resin-based and methacrylic) resin-hydrocarbon-based resin is styrene resin.
  • the surface of the particles can be made uneven easily and easily.
  • the colorant needs to be hydrophobized by surface treatment in order to prevent the coloring efficiency from deteriorating due to the transfer to the suspension medium during suspension.
  • the coating of a colorant by a masterbatch is similarly effective.
  • any of inorganic pigments, organic pigments, and organic dyes can be used, and they can be used in combination.
  • the display medium particles contain a charge control agent in order to obtain chargeability, a clear charge performance can be obtained and the desired performance can be easily obtained.
  • the target charging performance includes charge amount, charging uniformity, reverse charging prevention and the like.
  • a charge control agent there is a method in which a hardly soluble substance is dispersed and contained in a monomer as a particle raw material. This method positively creates a non-uniform charge distribution and is easy to drive even in a small electric field. It is effective as a method for producing trigger particles simultaneously.
  • the information display quality such as a good image can be easily obtained.
  • a copolymerizable monomer having a chargeable functional group in the molecule is blended in the particle raw material, and used as a charge control agent that is copolymerized during polymerization and chemically fixed in the resin.
  • This method can localize the chargeable parts, such as by orienting the chargeable functional groups on the surface of the particles, and has the advantage that the effect can be obtained in a small amount, and the bleedout of the charge control agent is removed. This is effective in ensuring the durability of the charging property.
  • the display medium particles preferably have a heat resistance of 60 ° C or higher in terms of the usage environment in the information display panel, but are necessary to ensure physical heat resistance and a sufficient amount of charge.
  • the Tg of the resin is preferably 60 ° C or higher.
  • particles are obtained by polymerizing a particle raw material having a larger proportion of monomers having a plurality of polymerizable functional groups in the molecule, good heat resistance can be obtained, but Tg is not observed in this case.
  • FIG. 4 shows a scanning electron microscope using particles for a display medium used in the information display panel of the present invention.
  • the particle diameter of the display medium particles constituting all the display media is configured to be 500 nm or more.
  • the particles are preferably spherical.
  • the particles can contain a charge control agent, a colorant, an inorganic additive, etc., as necessary, in addition to the main component of the resin.
  • a charge control agent e.g., a colorant, an inorganic additive, etc.
  • the following are examples of resin, charge control agents, colorants, and other additives.
  • the main component of the particle raw material of the present invention is (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin (hydrocarbon or fluorocarbon in the side chain).
  • Acrylic and methacrylic) copolymers with activated hydrocarbons In addition, urethane resin, urethane resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluorine resin, acrylic fluorine resin, silicone resin, acrylic silicone resin Resin, epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, petital resin, salt vinylidene resin, melamine resin, phenol resin, fluorine resin, polycarbonate resin, polysulfone resin Examples thereof include fat, polyether resin, polyamide resin and the like. In particular, from the viewpoint of controlling the adhesion to the substrate and the ease of suspension polymerization, it contains resin components such as acrylic resin, acrylic fluorine
  • the charge control agent is not particularly limited, but examples of the negative charge control agent include salicylic acid metal complexes, metal-containing azo dyes, and oil-soluble dyes containing metals (including metal ions and metal atoms). Materials, quaternary ammonia salt compounds, force-rich allenic compounds, boron-containing compounds (benzilate boron complex), nitroimidazole derivatives, styrene acryl resin having a negatively charged functional group, etc. .
  • Examples of the positive charge control agent include niggacin dyes, triphenylmethane compounds, quaternary ammonium salt compounds, polyamine resins, imidazole derivatives, and styrene acrylic resins having positively charged functional groups. Can be mentioned.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide, ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, resin containing fluorine, chlorine, nitrogen, etc. Can also be used as a charge control agent.
  • colorant various organic and inorganic pigments and dyes as exemplified below can be used.
  • black colorant examples include carbon black, copper oxide, manganese dioxide, errin black, activated carbon, and the like.
  • Blue pigments include CI pigment blue 15: 3, CI pigment blue 15, dark blue, cobalt blue, alkaline blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partially chlorinated, There are First Sky Blue and Indanthrene Blue BC.
  • Red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, linole red, pyrazolone red, watching red, calcium salt , Lake Red D, Brilliant Carmine 6B, Yeosin Lake, Rhodamine Lake B, Aliza Lin Lake, Brilliant Carmine 3B, CI Pigment Red 2, etc.
  • Yellow colorants include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, Nikkenore Titanium yellow, Neve Nore Yellow, Naft Nore Yello S, Nounzaero G, Hansa Yellow 10G, Benzidine There are Yellow G, Benzine Yellow GR, Quinoline Yellow Lake, Permanente Yellow NCG, Tartragin Lake, CI Pigment Yellow 12.
  • Green colorants include chrome green, acid chrome, pigment green B, C.I. Pigment Green 7, Malachite Green Lake, and Huay Nanolayer Green G.
  • Orange colorants include red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone range, nonlecan range, indren brilliant range RK: benzidine range G, indren brilliant range GK, CI Pigment age range 3 1 etc.
  • Purple colorants include manganese purple, first violet B, and methyl violet lake.
  • white colorants include zinc white, titanium oxide, antimony white, zinc sulfate zinc, and the like.
  • extender pigments include nolite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • basic dyes such as basic, acidic, disperse, and direct dyes include Nigguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow, and Ultramarine Blue.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium.
  • examples include orange, titanium yellow, bitumen, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.
  • These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as a black pigment, and titanium oxide is preferred as a white pigment.
  • the particles used in the present invention have a particle diameter of 0.5 to 50 ⁇ m, and are preferably uniform and aligned. If the particle diameter is larger than this range, the display is not clear, and if it is smaller than this range, the cohesive force between the particles becomes too large, which hinders movement as a display medium.
  • the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
  • d (0.5) is a numerical value expressed in m that the particle size is 50% larger than this and 50% smaller than this
  • d (0.1) is a particle whose ratio is 10% or less.
  • the diameter is expressed as / zm
  • d (0.9) is the numerical value when the particle diameter is 90% or less, and is expressed as / zm.
  • the ratio of d (0.5) of the particles having the minimum diameter to d (0.5) of the particles having the maximum diameter among the used particles is preferably 50 or less, preferably It is important to set the value to 10 or less. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that particles with close particle sizes can easily move in the opposite direction by the equivalent amount. Is preferred, and this is the range.
  • the particle size distribution and particle size described above can be obtained from a laser diffraction Z scattering method or the like.
  • laser light is irradiated onto the particles to be measured, a light intensity distribution pattern of diffracted Z-scattered light is generated spatially, and this light intensity pattern has a corresponding relationship with the particle diameter, so the particle size and particle size distribution are measured. it can.
  • the particle size and particle size distribution in the particles of the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, particles were introduced into a nitrogen stream and the attached analysis software (software based on volume reference distribution using Mie theory) The particle size and particle size distribution can be measured.
  • Mastersizer2000 Malvern Instruments Ltd.
  • the charge amount of the particles for display medium naturally depends on the measurement conditions, the information display panel The charge amount of the display medium particles in the sample is almost dependent on the initial charge amount, the contact with the partition walls, the contact with the substrate, and the charge decay with the elapsed time. Then, I found out.
  • the present inventors evaluated the range of the appropriate charging characteristic value of the display medium by measuring the charge amount of the particles used for the display medium using the same carrier particles in the blow-off method. I found out that I can do it.
  • the relative humidity at 25 ° C is 60% RH or less, preferably 50% RH or less for the gas humidity in the voids.
  • This gap is defined by the electrodes 5 and 6 (electrodes inside the substrate) from the portion sandwiched between the opposing substrate 1 and substrate 2 in Figs. L (a) and (b) to Fig. 3 (a) and (b). Except for the occupied part of the display medium 3, the occupied part of the partition 4 (if the partition is provided), and the seal part of the information display panel, the V, the gas part in contact with the so-called display medium Shall point to.
  • the gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are suitable.
  • This gas must be sealed in the information display panel so that the humidity is maintained. For example, filling of the display medium and assembly of the information display panel are performed in a predetermined humidity environment. It is important to use sealing materials and sealing methods that prevent external forces from entering the humidity.
  • the distance between the substrates in the information display panel that is the subject of the present invention is not limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 111, preferably 10 to 200 ⁇ m. Adjusted.
  • the volume occupation ratio of the display medium in the space between the opposing substrates is preferably 5 to 70%, and more preferably 5 to 60%. If it exceeds 70%, the movement of the display medium is hindered, and if it is less than 5%, the contrast tends to be unclear.
  • At least one of the substrates is a transparent substrate 2 on which the color of the display medium 3 can be confirmed from the outside panel panel, and a material having high visible light transmittance and good heat resistance is preferable.
  • Substrate 1 can be transparent or opaque. Examples of substrate materials include polymer sheets such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, acrylic, etc., flexible materials such as metal sheets, glass, quartz And non-flexible inorganic sheets.
  • the thickness of the substrate is preferably 2 to 5000 m force S, and more preferably 5 to 2000 m force S. If it is too thin, the strength and the uniform spacing between the substrates will be maintained, and if it is thicker than 5000 / zm, This is inconvenient for a thin information display panel.
  • Electrodes for forming electrodes on the information display panel include metals such as aluminum, silver, nickel, copper, and gold, indium tin oxide (ITO), indium oxide, conductive tin oxide, and antimony tin.
  • ITO indium tin oxide
  • Examples include conductive metal oxides such as oxide (ATO) and conductive zinc oxide, and conductive polymers such as poly-phosphorus, polypyrrole, and polythiophene, which are appropriately selected and used.
  • the electrode can be formed by, for example, forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a synthetic resin binder. Then, a method of coating is used.
  • the electrode provided on the viewing side (display side) substrate needs to be transparent, but the electrode provided on the back side substrate needs to be transparent.
  • the above-mentioned material that is conductive and can be patterned can be suitably used.
  • the electrode thickness is good if it is possible to ensure conductivity and does not interfere with light transmission. 3 to: LOOOnm, preferably 5 to 400 nm.
  • the material and thickness of the electrode provided on the back side substrate are the same as those of the electrode provided on the display side substrate described above, and need not be transparent. In this case, the external voltage input may be superimposed with direct current or alternating current.
  • the shape of the partition wall 4 provided on the substrate as necessary is appropriately set according to the type of display medium involved in the display, and is not limited in general, but the partition wall width is 2 to: LOO ⁇ m, Preferably, the height of the partition wall is adjusted to 3 to 50 ⁇ m, and the height of the partition wall is adjusted to 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • the cells formed by these ribs are as shown in Fig. 5. Examples of the arrangement are a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the plane of the substrate. Examples of the arrangement include a lattice shape, a honeycomb shape, and a mesh shape. It is better to make the part corresponding to the partition wall section visible from the display side (the area of the cell frame) as small as possible.
  • the information display panels of the examples and comparative examples were prepared by sealing the particles produced by the following method together with dry air with a humidity of 50% RH or less in the space between the panel substrates, according to the following criteria: evaluated.
  • methyl methacrylate monomer (Kanto Chemicals) as positively charged particles
  • 40 parts by weight of ethylene glycol dimethacrylate (Wako Pure Chemicals) as a multifunctional monomer having multiple polymerization reactive groups in one molecule 3 parts by weight (about 25 mol%) as a positively charged charge control agent (bontron N07: manufactured by Orient Chemical Co.) and carbon black (special black 5: manufactured by Degussa) as a black pigment (Acrylic and methacrylic) resin (acrylic and methacrylic having a hydrocarbon or fluorocarbon in the side chain) and a copolymer of resin (Modiper F600: Nippon Oil & Fats Co., Ltd.) After dissolving 5 wt. Of carbon fluoride component (CF), add another 2 wt.
  • carbon fluoride component (CF)
  • the particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential
  • the positively charged particles are negatively connected to the low potential electrode side.
  • the charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • Positively charged particles in particle 1 (acrylic and methacrylic) resin-(acrylic and methacrylic having hydrocarbons or fluorinated hydrocarbons in the side chain) and copolymers (Modifier F600: manufactured by NOF Corporation)
  • the amount to dissolve the fluorocarbon component (CF) from 5 parts by weight Particle 5 was obtained in exactly the same manner except that the amount was changed to 0.5 parts by weight. Particles below 500nm were not confirmed. In addition, when the surface of the particles was observed with an SEM, irregularities of about lOnm were confirmed.
  • the negatively charged particles include particles 2 (acrylic and methacrylic) resin (acrylic and methacrylic having hydrocarbon or fluorinated hydrocarbon in the side chain) and a copolymer (Modiper F600: 5 parts by weight to dissolve the fluorinated carbon component (CF) made by NOF
  • Particle 6 was obtained in exactly the same manner except that the amount was changed to 0.5 parts by weight. Particles below 500nm were not confirmed. Further, when the surface of the particle was observed with an SEM, irregularities of about 12 nm were confirmed f * i.
  • the particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential
  • the positively charged particles are negatively connected to the low potential electrode side.
  • the charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • Positively charged particles in particle 1 (acrylic and methacrylic) resin-(acrylic and methacrylic having hydrocarbons or fluorinated hydrocarbons in the side chain) and copolymers (Modifier F600: manufactured by NOF Corporation)
  • the amount to dissolve the fluorocarbon component (CF) from 5 parts by weight
  • Particles 7 were obtained in exactly the same manner except that the amount was changed to 10 parts by weight. Particles below 500nm It was not confirmed. Further, when the surface of the particle was observed with an SEM, an unevenness of about 480 nm was confirmed f * i.
  • particles 2 (acrylic and methacrylic) resin (acrylic and methacrylic having hydrocarbon or fluorinated hydrocarbon in the side chain) and a copolymer of resin (Modiper F600: 5 parts by weight to dissolve the fluorinated carbon component (CF) made by NOF
  • Particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential
  • the positively charged particles are negatively connected to the low potential electrode side.
  • the charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • the voltage was gradually increased, the reflectance in each display state was measured, and the voltage at which the ratio of the reflectance during white display to the reflectance during black display was 8 times was obtained as the drive voltage.
  • the voltage was 135V.
  • the driving voltage after rewriting the display 300,000 times was almost unchanged at 140V.
  • particles 1 described in Example 1 were added to (acrylic and methacrylic) resin-hydrocarbon-based resin block copolymer (Modiper F600: manufactured by NOF Corporation, fluorocarbon component: C
  • Particles 3 were obtained in exactly the same manner as in Example 1, except that F) was not dissolved. Particles obtained
  • the particles 2 described in Example 1 were used.
  • Particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential
  • the positively charged particles are on the low potential electrode side.
  • the negatively charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • the particles 1 described in Example 1 were used.
  • the particles 2 described in Example 1 were added to (acrylic and methacrylic) resin-hydrocarbon-based resin block copolymer (Modiper F600: manufactured by NOF Corporation, carbon fluoride component: C
  • Particles 4 were obtained in exactly the same manner as in Example 1, except that F) was not dissolved. Particles obtained
  • the particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and copper substrate.
  • a DC voltage of 250 V was applied so that the copper substrate was at a high potential, positively charged particles moved to the low potential electrode side, and negatively charged particles moved to the high potential electrode side, and displayed black through the glass substrate. The condition was observed.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • the particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are on the low potential electrode side.
  • the negatively charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • silica fine particles As positively charged particles, particles 3 described in Comparative Example 1 were used, and silica fine particles (A EROSIL RX20D: made by Nippon Aerosil Co., Ltd., Z average particle diameter of 12 nm) was uniformly attached to the surface of the particle 3 by a coffee mill.
  • the particles 4 described in Comparative Example 2 were used, and silica fine particles (A EROSIL RX20D: Nippon Aerosil Z average particle size 12 nm) were uniformly attached to the surface of the particles 4 by a coffee mill as an external additive. .
  • silica fine particles A EROSIL RX20D: Nippon Aerosil Z average particle size 12 nm
  • the particles were charged by friction charging by mixing and agitating equal amounts of both particles having an external additive attached thereto.
  • the above mixed particles are filled through a 100-m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate at a volume occupation rate of 30%.
  • a display panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are on the low potential electrode side.
  • the negatively charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • Positively charged particles in particle 1 (acrylic and methacrylic) resin-(acrylic and methacrylic having hydrocarbons or fluorinated hydrocarbons in the side chain) and copolymers (Modifier F600: manufactured by NOF Corporation)
  • the amount to dissolve the fluorocarbon component (CF) from 5 parts by weight
  • Particles 9 were obtained in exactly the same manner except that the amount was changed to 12 parts by weight. Particles below 500nm were not confirmed. Further, when the surface of the particle was observed with an SEM, an unevenness of about 560 nm was confirmed f * i.
  • particles 2 include (acrylic and methacrylic) resin- (acrylic and methacrylic resin having a hydrocarbon or fluorinated hydrocarbon in the side chain) and a copolymer of resin.
  • Particle 10 was obtained in exactly the same way except that the force was also changed to 12 parts by weight. Particles of 500 nm or less were not confirmed. In addition, when the surface of the particles was observed by SEM, irregularities of about 520 nm were confirmed.
  • the particles were charged by friction charging by mixing and stirring the same amount of both particles.
  • the above mixed particles are placed through a 100 m spacer, one of which is an inner ITO-treated glass substrate and the other is a copper substrate. Panel was obtained.
  • a power supply is connected to each of the ITO glass substrate and the copper substrate, and a 250 V DC voltage is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential
  • the positively charged particles are negatively connected to the low potential electrode side.
  • the charged particles moved to the high potential electrode side, and a black display state was observed through the glass substrate.
  • the potential of the applied voltage was reversed, the particles moved in the opposite direction, and a white display state was observed.
  • the voltage was gradually increased, the reflectance in each display state was measured, and the voltage at which the ratio of the reflectance during white display to the reflectance during black display was 8 times was obtained as the drive voltage.
  • the voltage was 160V.
  • the driving voltage after rewriting the display 300,000 times showed a slight increase at 200V.
  • An information display panel using the particles for a display medium of the present invention as a display medium is a display unit of a mopile device such as a notebook computer, PDA, mobile phone, handy terminal, or electronic paper such as an electronic book or an electronic newspaper.
  • Billboards such as signboards, posters, blackboards, calculators, home appliances, automotive parts, card displays such as point cards, IC cards, electronic advertisements, information boards, electronic POP (Point Of Presence, Point Of Purchase) advertising), electronic price tag, electronic shelf label, electronic score, RF-ID device display part, etc.

Abstract

 情報表示用パネルにおいて、(1)少なくとも1種類の表示媒体を構成する表示媒体用粒子がモノマーを含む粒子原料を重合してなる概球形粒子であり、粒子原料中に(アクリル系及びメタクリル系)樹脂-炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂-(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有し、該モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーであり、粒子表面に微小な凹凸を一様に有するとともに、(2)表示媒体を構成する全ての粒子の粒子径が500nm以上であるよう構成する。

Description

明 細 書
情報表示用パネル 技術分野
[0001] 本発明は、少なくとも一方が透明な 2枚の基板間に、少なくとも 2種類以上の表示媒 体を封入し、表示媒体に電界を付与することによって、表示媒体を移動させて情報を 表示する情報表示用パネルに関するものである。
背景技術
[0002] 従来より、液晶(LCD)に代わる情報表示装置として、電気泳動方式、エレクト口クロ ミック方式、サーマル方式、 2色粒子回転方式等の技術を用いた情報表示装置が提 案されている。
[0003] これら従来技術は、 LCDと比較すると、通常の印刷物に近い広い視野角が得られ る、消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代 の安価な情報表示装置に使用可能な技術として考えられており、携帯端末用情報表 示、電子ペーパー等への展開が期待されている。特に最近では、分散粒子と着色溶 液力 成る分散液をマイクロカプセルィ匕し、これを対向する基板間に配置して成る電 気泳動方式が提案され、期待が寄せられている。
[0004] し力しながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗に より応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸ィ匕チタン等の 高比重の粒子を分散させているため沈降しやすくなつており、分散状態の安定性維 持が難しぐ情報表示の繰り返し安定性に欠けるという問題を抱えている。また、マイ クロカプセル化にしても、セルサイズをマイクロカプセルレベルにして、見力 4ナ上、上 述した欠点が現れに《して 、るだけであって、本質的な問題は何ら解決されて 、な い。
[0005] 一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒 子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めて 、る(例えば、 趙 国来、外 3名、 "新しいトナーディスプレイデバイス (1) "、 1999年 7月 21日、日本 画像学会年次大会(通算 83回)" Japan Hardcopy' 99"論文集、 p.249-252参照)。し かし、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに 、導電性粒子に電荷を一定に注入することは難しいため、表示安定性に欠けるという 問題もある。
[0006] 上述した種々の問題を解決するための一方法として、少なくとも一方が透明な 2枚 の基板間に表示媒体を封入し、表示媒体に電界を付与することによって、表示媒体 を移動させて情報を表示する情報表示用パネルが知られている。
[0007] 上述した表示媒体を移動させるタイプの情報表示用パネルでは、電界により表示 媒体を構成する表示媒体用粒子 (以下、粒子とも!ヽぅ)を移動させることが可能な範 囲として、その粒子径は 0. 5〜50 m程度が好適である。小さすぎると粒子—粒子 間、粒子一基板間の物理的付着力が増大し、移動に大きな電界が必要となってしま い、大きすぎると基板間距離を大きく取らなければならず、やはり、大きな電界が必要 となる。しかし、上記粒子径の範囲内であっても、表面平滑な粒子を上述した情報表 示用パネルに用いると、粒子を移動(駆動)させる為に必要な電界を与えるために印 加する電圧が高くなつてしまう問題が生じた。これは、平滑な表面であると、粒子一粒 子間、粒子—基板間の物理的付着力が増大してしまい、これらを分離して基板内空 間を移動させる為に必要なエネルギーが大きくなつてしまう為である。
[0008] この問題を解決する方法として、最も簡便に行われている方法が、粒子表面に金属 酸化物微粒子等 (外添剤)を付着させて粒子表面を凹凸化し、付着力を下げる方法 であるが、この方法を上述した情報表示用パネルで用いる表示媒体用粒子に用いた 場合、粒子一粒子間、粒子 電極間での外添剤の移行や、粒子表面、基板表面へ の外添剤の固着等の影響により、表示不良を発生してしまう問題があった。また、重 合させる粒子原料中に、反応不活性な溶剤等を添加して重合した後、加熱や抽出等 によって溶剤等を抜き去りポーラスな粒子を作製して、表面を凹凸化する方法もある 力 溶剤等を除去するための工程と設備が必要となり、効率的でなかった。
[0009] また、上述した表示媒体を移動させるタイプの情報表示用パネルでは、使用する表 示媒体用粒子の粒子径の最適値が不明であるため、コントラストの低下、駆動電圧 悪化、耐久性悪ィ匕という問題もあった。
発明の開示 [0010] 本発明の目的は上述した問題点を解消して、使用する表示媒体用粒子を制御する ことで、表示不良、コントラストの低下、駆動電圧の悪化、耐久性の悪ィ匕などを解消で きる情報表示用パネルを提供しょうとするものである。
[0011] 本発明の情報表示用パネルは、少なくとも一方が透明な 2枚の基板間に、少なくと も 2種類以上の表示媒体を封入し、表示媒体に電界を付与することによって、表示媒 体を移動させて情報を表示する情報表示用パネルにおいて、(1)少なくとも 1種類の 表示媒体を構成する表示媒体用粒子がモノマーを含む粒子原料を重合してなる概 球形粒子であり、粒子原料中に (アクリル系及びメタクリル系)榭脂-炭化水素系榭 脂コポリマーもしくは(アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素あるい は弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマーを含有し、 該モノマーの一部もしくは全部が 1分子中に重合反応基を複数持つ多官能性モノマ 一であり、粒子表面に微小な凹凸を一様に有するとともに、(2)表示媒体を構成する 全ての粒子の粒子径が 500nm以上であることを特徴とするものである。
[0012] なお、本発明の情報表示用パネルの好適例としては、表示媒体用粒子の微小な凹 凸カ 直径相当径 10〜500nmの凸部もしくは凹部であること、表示媒体用粒子の( アクリル系及びメタクリル系)榭脂—炭化水素系榭脂コポリマーの炭化水素榭脂が、 スチレン榭脂であること、表示媒体用粒子の粒子径が 0. 5〜50 /ζ πιであること、表示 媒体用粒子の色が白色であること、表示媒体用粒子の色が黒色であること、がある。
[0013] 本発明の情報表示用パネルでは、使用する表示媒体用粒子における(1)粒子原 料中に(アクリル系及びメタクリル系)榭脂—炭化水素系榭脂コポリマーもしくは (ァク リル系およびメタクリル系)榭脂ー(側鎖に炭化水素あるいは弗化炭化水素を持つァ クリル系およびメタクリル系)榭脂とのコポリマーを含有し、該モノマーの一部もしくは 全部が 1分子中に重合反応基を複数持つ多官能性モノマーであるため、粒子表面 に強固に固定ィ匕した凹凸を得ることができる。また、使用する表示媒体における(2) 表示媒体を構成する全ての粒子の粒子径が 500nm以上であり、粒子径 500nm未 満の微粒子が存在しないために、表示書き換え回数が増えても粒子—粒子間、粒子 一基板間での微粒子の移行や、粒子表面、基板表面への微粒子の固着等の影響 による、表示不良の発生が起き難い。そのため、本発明の情報表示用パネルによれ ば、繰り返し表示書き換えを行う場合にも表示コントラストや応答速度の低下がなぐ 耐久性の良好な情報表示用パネルを得ることができる。
図面の簡単な説明
[0014] [図 l] (a)、(b)はそれぞれ本発明の情報表示用パネルの一例を示す図である。
[図 2] (a)、 (b)はそれぞれ本発明の情報表示用パネルの他の例を示す図である。
[図 3] (a)、 (b)はそれぞれ本発明の情報表示用パネルのさらに他の例を示す図であ る。
[図 4]本発明の情報表示用パネルに用いる表示媒体用粒子を走査型電子顕微鏡 (S EM)で撮像した一例を示す図である。
[図 5]本発明の情報表示用パネルにおける隔壁の形状の一例を示す図である。 発明を実施するための最良の形態
[0015] まず、本発明の情報表示用パネルの基本的な構成について説明する。本発明の 情報表示用パネルでは、対向する 2枚の基板間に封入した表示媒体に電界が付与 される。付与された電界方向にそって、帯電した表示媒体が電界による力やクーロン 力などによって引き寄せられ、表示媒体が電界方向の変化によって移動方向が切り 換わることにより、画像等の情報表示がなされる。従って、表示媒体が、均一に移動 し、かつ、表示した情報を書き換える時あるいは表示した情報を継続して表示した時 の安定性を維持できるように、情報表示用パネルを設計する必要がある。ここで、表 示媒体を構成する粒子に力かる力は、粒子同士のクーロン力により引き付けあう力の 他に、電極や基板との電気鏡像力、分子間力、液架橋力、重力などが考えられる。
[0016] 本発明の対象となる情報表示用パネルの例を、図 1 (a)、 (b)〜図 3 (a)、 (b)に基 づき説明する。
[0017] 図 1 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される それぞれ光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (こ こでは白色の表示媒体用粒子で構成される粒子群力 なる白色表示媒体 3Wと黒色 の表示媒体用粒子で構成される粒子群からなる黒色表示媒体 3Bを示す)を、基板 1 、 2の外部から加えられる電界に応じて、基板 2と垂直に移動させ、黒色表示媒体 3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色表示媒体 3Wを観察 者に視認させて白色の表示を行っている。なお、図 1 (b)に示す例では、図 1 (a)に示 す例に加えて、基板 2との間に例えば格子状に隔壁 4を設けセルを形成している 。また、図 1 (b)において、手前にある隔壁は省略している。
[0018] 図 2 (a)、 (b)に示す例では、それぞれが少なくとも 1種以上の粒子力も構成される それぞれ光学的反射率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (こ こでは白色の表示媒体用粒子で構成される粒子群力 なる白色表示媒体 3Wと黒色 の表示媒体用粒子で構成される粒子群からなる黒色表示媒体 3Bを示す)を、基板 1 に設けた電極 5と基板 2に設けた電極 6との間に電圧を印加することにより発生する 電界に応じて、基板 2と垂直に移動させ、黒色表示媒体 3Bを観察者に視認させ て黒色の表示を行うか、あるいは、白色表示媒体 3Wを観察者に視認させて白色の 表示を行っている。なお、図 2 (b)に示す例では、図 2 (a)に示す例に加えて、基板 1 、 2との間に例えば格子状に隔壁 4を設けセルを形成している。また、図 2 (b)におい て、手前にある隔壁は省略している。
[0019] 図 3 (a)、 (b)に示す例では、少なくとも 1種以上の粒子力も構成される少なくとも光 学的反射率および帯電性を有する 1種の表示媒体 3 (ここでは白色の表示媒体用粒 子で構成される粒子群からなる白色表示媒体 3Wを示す)を、基板 1に設けた電極 5 と電極 6との間に電圧を印加することにより発生する電界に応じて、基板 2と平行 方向に移動させ、白色表示媒体 3Wを観察者に視認させて白色の表示を行うか、あ るいは、電極 6または基板 1の色を観察者に視認させて電極 6または基板 1の色の表 示を行っている。なお、図 3 (b)に示す例では、図 3 (a)に示す例に加えて、基板 2 との間に例えば格子状の隔壁 4を設けセルを形成している。また、図 3 (b)において、 手前にある隔壁は省略して 、る。
[0020] 本発明の特徴は、表示媒体用粒子として、(1)該粒子がモノマーを含む粒子原料 を重合してなる概球形粒子であり、粒子原料中に (アクリル系及びメタクリル系)榭脂
—炭化水素系榭脂コポリマーもしくは (アクリル系およびメタクリル系)榭脂—(側鎖に 炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリ マーを含有し、該モノマーの一部もしくは全部が 1分子中に重合反応基を複数持つ 多官能性モノマーであり、粒子表面に微小な凹凸を一様に有する粒子を用いる点、 及び、(2)表示媒体を構成する全ての粒子の粒子径が 500nm以上である点、にある
[0021] 本発明の情報表示用パネルでは、使用する表示媒体用粒子の構成を上記(1)の ように構成することで、脱落等のない固定化した凹凸が、溶剤等の揮散や抽出等の 工程無しに、重合時に形成され、よって、表示媒体の駆動に必要な電圧が低ぐ表 示不良を起こし難い粒子を安定して作製することができる。表面凹凸の大きさについ ては、凸部もしくは凹部が直径相当径で 10〜500nmの範囲が好ましい。表面凹凸 の大きさは、小さすぎると充分な付着力低減効果が得られず、また、大きすぎると凹 凸部の表面自体で付着してしま 、、凹凸化の効果がなくなってしまう。
[0022] ここで、 1分子中に重合反応基を複数持つ多官能性モノマーの全モノマー中の分 量が 15mol%を下回ると、粒子表面の凹凸が現れないか、もしくは、凹凸が小さくな つてしまい効果が少ない。また、全量を多官能性モノマーとすると、粒子を構成する 榭脂の構造が強固となり、耐熱性に優れ、かつ、表示耐久性に優れた粒子が得られ る。なお、 1分子中の重合反応基を複数持つ多官能性モノマーが、アクリル系もしく はメタクリル系モノマーであると、粒子表面の凹凸が作製し易ぐより好ましい。
[0023] 重合法として懸濁重合法を用いた場合、懸濁重合の際に懸濁安定剤として使用す る材料については、ポリオキシエチレン鎖を有するノ-オン系の界面活性剤が好まし い。比較的良好な懸濁安定性を有すると共に、粒子表面への残留が少なぐ作製さ れた粒子の帯電性能に対する影響が少ない。さらに、懸濁安定性として、ポリオキシ エチレン鎖とスルホン酸塩のノ-オンとァ-オンの両方の界面活性効果を持つ界面 活性剤を使用することがさらに望ましい。ポリオキシエチレン鎖のみの場合に比べて 、懸濁安定性が高い。また、懸濁安定剤として、 PVAやセルロース榭脂等の水溶性 榭脂を使用する方法も取ることができる。この場合は、懸濁安定性は非常に高いが、 粒子表面に残留してしまい粒子の帯電性に影響を及ぼす難点もある。
[0024] 懸濁安定剤として、 10〜: LOOOnmの無機微粒子カゝらなる粉体を使用する方法もあ る。この方法は、酸性下で溶解させた無機酸ィ匕物を中性に戻して微粒子として析出 させ、安定剤として用い、重合終了後は、再び酸性として溶解させ粒子表面から除去 する方法である。この方法も非常に優れた懸濁安定性を示す。しかし、酸性廃液の 処理等のシステムが必要となる欠点もある。重合開始剤としては、 10時間半減期温 度が 40〜75°Cの物質を使用することが最適である。温度が低すぎると、常温でも重 合が進んでしまい、良好な懸濁液を作製することが困難となる。また、重合により粒子 原料の粘度が上がり過ぎると、表面張力による液滴に球形化が起きず、概真球状の 粒子を得られなくなる。一方、温度が高すぎると、重合に時間が掛かりすぎて効率的 ではない。重合開始剤としては、水等懸濁液中に溶け出すと乳化重合が進行してし まい、着色されない微粒子が大量に作製されて表示媒体中に混在することになり表 示品質を低下させてしまう問題があり、これを防ぐ為にも、油溶性の物質を使用する ことが望ましい。開始剤の中では、ァシル系の過酸ィ匕物が挙げられ、あるいは、分子 中の炭素数が 10以上のァゾ系開始剤が適用である。
[0025] また、(アクリル系及びメタクリル系)榭脂—炭化水素系榭脂コポリマーについては、
(アクリル系及びメタクリル系)榭脂ー炭化水素系榭脂ブロックコポリマーであると、より 望ましい。これは、それぞれの榭脂がブロック状になっていることで、ランダム構造より も、より特性を発現させ易くなり、粒子表面の凹凸化が効率的に行える。また、(アタリ ル系及びメタクリル系)榭脂—炭化水素系榭脂コポリマーの炭化水素榭脂が、スチレ ン榭脂であることにより、(アクリル系及びメタクリル系)榭脂との相溶性の違いを出し 易ぐ粒子表面の凹凸化が効率的に行える。着色剤については、懸濁時の懸濁媒へ の移行による着色の効率が悪化することを防ぐ為に、表面処理により疎水化する必 要性がある。また、マスターバッチ化による着色剤の榭脂被覆も同様に効果がある。 表面処理もしくはマスターバッチ化する着色剤の種類については、無機顔料、有機 顔料、有機染料のいずれも使用でき、かつ、併用も可能である。
[0026] 表示媒体用粒子には、帯電性を得る為に荷電制御剤を含有させると、明確な帯電 性能が得られ、目的の性能を得やすい。 目的の帯電性能とは、帯電量、帯電均一性 、逆帯電防止等である。荷電制御剤としては、粒子原料であるモノマーに難溶性の 物質を分散させて含有させる方法があり、この方法は積極的に不均一な帯電分布を 作り出し、小さ!/、な電界でも駆動しやす 、トリガー粒子を同時に作製する方法として 有効である。また、モノマー溶解性の荷電制御剤を用いる方法もある。この方法は、 荷電制御剤の均一分散という点で有利で、揃った帯電性による同電位での粒子の移 動が可能となり、良好な画像等の情報表示品質が得やすい。
[0027] 分子内に帯電性の官能基を持った共重合可能なモノマーを粒子原料中に配合し、 重合時に共重合させて榭脂中に化学的に固定ィヒした荷電制御剤として使用する方 法もある。この方法は、帯電性の官能基を粒子表面に配向させるなど、帯電性部位 の局在化を図ることができ、少量で効果が得られる利点と、荷電制御剤のブリードア ゥトゃ脱落と 、つたことが起こり難 、と 、う点で、帯電性の耐久性確保に有効である。
[0028] 表示媒体用粒子は、情報表示用パネルでの使用環境上、 60°C以上の耐熱性を有 することが望ましいが、物理的な耐熱性および十分な帯電量を確保するのに必要な 耐熱性を考慮すると、榭脂の Tgは 60°C以上であることが好ましい。また、分子内に 重合性官能基を複数持つモノマーの比率を多くした粒子原料を重合して粒子を得た 場合には、良好な耐熱性を得ることができるが、この場合 Tgは観測されない。
[0029] 図 4に本発明の情報表示用パネルに用いる表示媒体用粒子を走査型電子顕微鏡
(SEM)で撮像した一例を示す。図 4の例では、左側に拡大率 3000倍で、右側に拡 大率 15000倍で、それぞれ粒子表面を拡大した状態を示しており、粒子表面に数十 ナノメートルオーダーの微小凹凸が形成されている様子がわかる。
[0030] また、本発明では、上記(2)に示すように、全ての表示媒体を構成する表示媒体用 粒子の粒子径が 500nm以上となるよう構成している。本発明では、粒子径 500nm 未満の表示媒体用粒子が存在しな 、ために、情報表示用パネルにぉ 、て表示回数 が増えても粒子一粒子間、粒子一基板間での微粒子の移行や、粒子表面、基板表 面への微粒子の固着等の影響による、表示不良の発生を防ぐことができる。
[0031] 以下、本発明の情報表示用パネルで用いる表示媒体用粒子 (単に粒子ともいう)に おいて、表面に凹凸を有する粒子の基本的な構成について説明する。
[0032] 粒子は球形であることが好ましい。粒子には、その主成分となる榭脂に、必要に応 じて、従来と同様に、荷電制御剤、着色剤、無機添加剤等を含ますことができる。以 下に、榭脂、荷電制御剤、着色剤、その他添加剤を例示する。
[0033] 本発明の粒子原料の主成分は、(アクリル系及びメタクリル系)榭脂-炭化水素系 榭脂コポリマーもしくは (アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素ある いは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマーであるが 、このほか、ウレタン榭脂、ウレァ榭脂、アクリル榭脂、ポリエステル榭脂、アクリルウレ タン榭脂、アクリルウレタンシリコーン榭脂、アクリルウレタンフッ素榭脂、アクリルフッ 素榭脂、シリコーン榭脂、アクリルシリコーン榭脂、エポキシ榭脂、ポリスチレン榭脂、 スチレンアクリル榭脂、ポリオレフイン榭脂、プチラール榭脂、塩ィ匕ビユリデン榭脂、メ ラミン榭脂、フエノール榭脂、フッ素榭脂、ポリカーボネート榭脂、ポリスルフォン榭脂 、ポリエーテル榭脂、ポリアミド榭脂等が挙げられる。特に、基板との付着力を制御す る観点と、懸濁重合の容易さから、アクリル榭脂、アクリルフッ素榭脂、ポリエステル榭 脂、スチレンアクリル榭脂等の榭脂成分が含まれて 、てもよ 、。
[0034] 荷電制御剤としては、特に制限はな 、が、負荷電制御剤としては例えば、サリチル 酸金属錯体、含金属ァゾ染料、含金属 (金属イオンや金属原子を含む)の油溶性染 料、 4級アンモ-ゥム塩系化合物、力リックスアレンィ匕合物、含ホウ素化合物(ベンジ ル酸ホウ素錯体)、ニトロイミダゾール誘導体、負帯電性官能基を有するスチレンァク リル榭脂等が挙げられる。正荷電制御剤としては例えば、ニグ口シン染料、トリフエ- ルメタン系化合物、 4級アンモ-ゥム塩系化合物、ポリアミン榭脂、イミダゾール誘導 体、正帯電性官能基を有するスチレンアクリル榭脂等が挙げられる。その他、超微粒 子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含 窒素環状化合物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含ん だ榭脂等も荷電制御剤として用いることもできる。
[0035] 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染 料が使用可能である。
[0036] 黒色着色剤としては、カーボンブラック、酸化銅、二酸ィ匕マンガン、ァ-リンブラック 、活性炭等がある。
青色着色剤としては、 C. I.ビグメントブルー 15 : 3、 C. I.ビグメントブルー 15、紺 青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシア-ン ブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファー ストスカイブルー、インダンスレンブルー BC等がある。
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パー マネントレッド 4R、リノールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩 、レーキレッド D、ブリリアントカーミン 6B、ェォシンレーキ、ローダミンレーキ B、ァリザ リンレーキ、ブリリアントカーミン 3B、 C. I.ビグメントレッド 2等がある。
[0037] 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイェロー、黄色酸化鉄、ミネラルファ 一ストイェロー、ニッケノレチタンイェロー、ネーブノレイエロー、ナフトーノレイェロー S、 ノヽンザイェロー G、ハンザイェロー 10G、ベンジジンイェロー G、ベンジジンイェロー GR、キノリンイェローレーキ、パーマネントイェロー NCG、タートラジンレーキ、 C. I. ビグメントイエロー 12等がある。
緑色着色剤としては、クロムグリーン、酸ィ匕クロム、ビグメントグリーン B、 C. I.ピグメ ントグリーン 7、マラカイトグリーンレーキ、フアイナノレイェローグリーン G等がある。 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジ GTR、 ピラゾロン才レンジ、ノ ノレカン才レンジ、インダンスレンブリリアント才レンジ RK:、ベン ジジン才レンジ G、インダンスレンブリリアント才レンジ GK、 C. I.ピグメント才レンジ 3 1等がある。
紫色着色剤としては、マンガン紫、ファーストバイオレット B、メチルバイオレットレー キ等がある。
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫ィ匕亜鉛等がある。
[0038] 体質顔料としては、ノ ライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タル ク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料と して、ニグ口シン、メチレンブルー、ローズベンガル、キノリンイェロー、ウルトラマリン ブルー等がある。
[0039] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いるこ とができる。このうち特に黒色顔料としてカーボンブラック力 白色顔料として酸化チ タンが好ましい。 [0040] また、本発明で用いる粒子は粒子径カ 0. 5〜50 μ mの範囲であり、均一で揃つ ていることが好ましい。粒子径がこの範囲より大きいと表示上の鮮明さに欠け、この範 囲より小さいと粒子同士の凝集力が大きくなりすぎるために表示媒体としての移動に 支障をきたすようになる。
[0041] 更に本発明では、各表示媒体用粒子の粒子径分布に関して、下記式に示される粒 子径分布 Spanを 5未満、好ましくは 3未満とする。
Span= (d(0.9)-d(0.1)) /d(0.5)
(但し、 d(0.5)は粒子の 50%がこれより大きぐ 50%がこれより小さいという粒子径を mで表した数値、 d(0.1)はこれ以下の粒子の比率が 10%である粒子径を/ z mで表し た数値、 d(0.9)はこれ以下の粒子が 90%である粒子径を/ z mで表した数値である。 ) Spanを 5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な表示媒体 としての移動が可能となる。
[0042] さらにまた、各表示媒体用粒子の相関について、使用した粒子の内、最大径を有 する粒子の d(0.5)に対する最小径を有する粒子の d(0.5)の比を 50以下、好ましくは 1 0以下とすることが肝要である。たとえ粒子径分布 Spanを小さくしたとしても、互いに帯 電特性の異なる粒子が互いに反対方向に動くので、互いの粒子サイズが近ぐ互い の粒子が当量ずつ反対方向に容易に移動できるようにするのが好適であり、それが この範囲となる。
[0043] なお、上記の粒子径分布および粒子径は、レーザー回折 Z散乱法などから求める ことができる。測定対象となる粒子にレーザー光を照射すると空間的に回折 Z散乱 光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があるこ とから、粒子径ぉよび粒子径分布が測定できる。
ここで、本発明の粒子における粒子径および粒子径分布は、体積基準分布から得 られたものである。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機 を用いて、窒素気流中に粒子を投入し、付属の解析ソフト (Mie理論を用いた体積基 準分布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができ る。
[0044] 表示媒体用粒子の帯電量は当然その測定条件に依存するが、情報表示用パネル における表示媒体用粒子の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接 触、経過時間に伴う電荷減衰に依存し、特に表示媒体用粒子の帯電挙動の飽和値 が支配因子となって 、ると 、うことが分かった。
[0045] 本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用い て、表示媒体に用いる粒子の帯電量測定を行うことにより、表示媒体の適正な帯電 特性値の範囲を評価できることを見出した。
[0046] 更に、表示媒体用粒子で構成する表示媒体を気中空間で駆動する乾式の情報表 示用パネルに適用する場合には、基板間の表示媒体を取り巻く空隙部分の気体の 管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿 度について、 25°Cにおける相対湿度を 60%RH以下、好ましくは 50%RH以下とする ことが重要である。
この空隙部分とは、図 l (a)、(b)〜図 3 (a)、(b)において、対向する基板 1、基板 2 に挟まれる部分から、電極 5、 6 (基板の内側に電極を設けた場合)、表示媒体 3の占 有部分、隔壁 4の占有部分 (隔壁を設けた場合)、情報表示用パネルのシール部分 を除 、た、 V、わゆる表示媒体が接する気体部分を指すものとする。
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥 空気、乾燥窒素、乾燥アルゴン、乾燥へリウム、乾燥二酸化炭素、乾燥メタンなどが 好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入する ことが必要であり、例えば、表示媒体の充填、情報表示用パネルの組み立てなどを 所定湿度環境下にて行い、さらに、外力 の湿度侵入を防ぐシール材、シール方法 を施すことが肝要である。
[0047] 本発明の対象となる情報表示用パネルにおける基板と基板との間隔は、表示媒体 が移動できて、コントラストを維持できればよいが、通常10〜500 111、好ましくは 10 〜200 μ mに調整される。
対向する基板間の空間における表示媒体の体積占有率は 5〜70%が好ましぐさ らに好ましくは 5〜60%である。 70%を超える場合には表示媒体の移動に支障をき たし、 5%未満の場合にはコントラストが不明確となり易い。
[0048] 以下、本発明の対象となる情報表示用パネルを構成する各部材について説明する [0049] 基板については、少なくとも一方の基板はパネル外側カゝら表示媒体 3の色が確認 できる透明な基板 2であり、可視光の透過率が高くかつ耐熱性の良い材料が好適で ある。基板 1は透明でも不透明でもカゝまわない。基板材料を例示すると、ポリエチレン テレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポ リカーボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう 性のあるもの、および、ガラス、石英などの可とう性のない無機シートが挙げられる。 基板の厚みは、 2〜5000 m力 S好ましく、さらに 5〜2000 m力 S好適であり、薄すぎ ると、強度、基板間の間隔均一性を保ちに《なり、 5000 /z mより厚いと、薄型情報 表示用パネルとする場合に不都合がある。
[0050] 情報表示用パネルに電極を設ける場合の電極形成材料としては、アルミニウム、銀 、ニッケル、銅、金等の金属類や酸化インジウム錫 (ITO)、酸化インジウム、導電性 酸化錫、アンチモン錫酸化物 (ATO)、導電性酸化亜鉛等の導電金属酸化物類、ポ リア-リン、ポリピロール、ポリチォフェンなどの導電性高分子類が例示され、適宜選 択して用いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真 空蒸着法、 CVD (化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶 媒ゃ合成樹脂バインダーに混合して塗布したりする方法が用いられる。視認側 (表示 面側)基板に設ける電極は透明である必要があるが、背面側基板に設ける電極は透 明である必要がな 、。 V、ずれの場合もパターン形成可能である導電性である上記材 料を好適に用いることができる。なお、電極厚みは、導電性が確保でき光透過性に 支障がなければ良ぐ 3〜: LOOOnm、好ましくは 5〜400nmが好適である。背面側基 板に設ける電極の材質や厚みなどは上述した表示側基板に設ける電極と同様であ る力 透明である必要はない。なお、この場合の外部電圧入力は、直流あるいは交流 を重畳しても良い。
[0051] 必要に応じて基板に設ける隔壁 4については、その形状は表示にかかわる表示媒 体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は 2〜: LOO μ m、好ましくは 3〜50 μ mに、隔壁の高さは 10〜500 μ m、好ましくは 10〜200 μ mに調整される。これらのリブ力 なる隔壁により形成されるセルは、図 5に示すごとく 、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配 置としては格子状ゃハニカム状や網目状が例示される。表示面側から見える隔壁断 面部分に相当する部分 (セルの枠部の面積)はできるだけ小さくした方が良ぐ表示 状態の鮮明さが増す。
実施例
[0052] 以下、本発明例、比較例を示して、本発明を具体的に説明するが、本発明は下記 に限定されるものではない。なお、実施例および比較例の情報表示用パネルは、下 記の方法にて作製した粒子をパネル基板間の空間に湿度 50%RH以下の乾燥空気 と共に封止したものを、下記の基準に従い、評価した。
[0053] <実施例 1 >
正帯電粒子としてメチルメタタリレートモノマー(関東ィ匕学試薬) 60重量部、及び、 1 分子中に重合反応基を複数持つ多官能性モノマーとしてエチレングリコールジメタク リレート (和光純薬試薬) 40重量部 (約 25mol%)に、正帯電の荷電制御剤として二 グロシンィ匕合物(ボントロン N07 :オリエント化学製) 3重量部、及び、黒色顔料として 、カーボンブラック (スペシャルブラック 5:デグッサ製) 5重量部をサンドミルにより分散 させ、(アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素あるいは弗化炭化水 素を持つアクリル系およびメタクリル系)榭脂とのコポリマー(モディパー F600 :日本 油脂製、弗化炭素成分: C F ) 5重量を溶解させた後、さらに 2重量部のラウリルパ
8 17
一オキサイド (パーロィル L:日本油脂製)を溶解させた液を、界面活性剤としてポリオ キシエチレンアルキルエーテル硫酸ナトリウム(ラテムル E— 118B:花王製)を 0. 5% 添加した精製水に懸濁、重合させ、濾過、乾燥させた後、分級機 (MDS— 2 :日本- ユーマチック工業)を用いて 5〜20 mの粒子 1を得た。得られた粒子 1において、粒 子径が 500nm未満の粒子は確認されなかった。粒子 1の榭脂成分の Tgは 100°Cで あった。また、粒子 1の表面を SEMで観察したところ、直径相当径約 lOOnmの凹凸 が確認された。
[0054] 負帯電粒子としては、スチレンモノマー(関東化学試薬) 60重量部、及び、ジビュル ベンゼン (DVB— 960 :新日鐡ィ匕学製) 40重量部 (約 35mol%)に、負帯電の荷電 制御剤としてフエノール系縮合物(ボントロン E89:オリエント化学製) 5重量部、及び 、白色顔料として、酸ィ匕チタン (タイペータ CR— 50 :石原産業製) 20重量部をサンド ミルにより分散させ、(アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素あるい は弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー(モディバ 一 F600 :日本油脂製、弗化炭素成分: C F ) 5重量を溶解させた後、さらに 2重量
8 17
部のラウリルパーオキサイド (パーロィル L :日本油脂製)を溶解させた液を、界面活 性剤としてラテムル E— 118B (花王製)を 0. 5%添加した精製水に懸濁、重合させ、 濾過、乾燥させた後、分級機 (MDS— 2 :日本-ユーマチック工業)を用いて 5〜20 μ mの粒子 2を得た。得られた粒子 2において、粒子径が 500nm未満の粒子は確認 されなかった。粒子 2の榭脂成分の Tgは 95°Cであった。また、粒子 2の表面を SEM 観察したところ、直径相当径約 150nmの凹凸が確認された。
[0055] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加すると、正帯電粒子は低 電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して黒色 の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆 方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラス基 板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた。ま た、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白 表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたとこ ろ、その電圧は、 115Vであった。また、粒子 (言い換えれば、表示媒体)移動方向を 交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動 電圧は 115Vで変わらなかった。
[0056] <実施例 2>
正帯電粒子として粒子 1に (アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素 あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー(モ ディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部から 0. 5重量部に変更した以外は、全く同じ方法で粒子 5を得た。 500nm以下の粒子は 確認されなかった。また、粒子の表面を SEMで観察した所、約 lOnmの凹凸が確認 された。
[0057] 負帯電粒子としては粒子 2に (アクリル系およびメタクリル系)榭脂ー(側鎖に炭化水 素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー( モディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部か
8 17
ら 0. 5重量部に変更した以外は、全く同じ方法で粒子 6を得た。 500nm以下の粒子 は確認されなカゝつた。また、粒子の表面を SEMで観察した所、約 12nmの凹凸が確 f*i¾ れ 。
[0058] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加すると、正帯電粒子は低 電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して黒色 の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆 方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラス基 板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた。ま た、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白 表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたとこ ろ、その電圧は、 130Vであった。また、粒子 (言い換えれば、表示媒体)移動方向を 交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動 電圧は 130Vで変わらなかった。
[0059] <実施例 3 >
正帯電粒子として粒子 1に (アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素 あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー(モ ディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部から
8 17
10重量部に変更した以外は、全く同じ方法で粒子 7を得た。 500nm以下の粒子は 確認されなかった。また、粒子の表面を SEMで観察した所、約 480nmの凹凸が確 f*i¾ れ 。
[0060] 負帯電粒子としては粒子 2に (アクリル系およびメタクリル系)榭脂ー(側鎖に炭化水 素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー( モディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部か
8 17
ら 10重量部に変更した以外は、全く同じ方法で粒子 8を得た。 500nm以下の粒子は 確認されなかった。また、粒子の表面を SEMで観察した所、約 500nmの凹凸が確 f*i¾ れ 。
[0061] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加すると、正帯電粒子は低 電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して黒色 の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆 方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラス基 板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた。ま た、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白 表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたとこ ろ、その電圧は、 135Vであった。また、粒子 (言い換えれば、表示媒体)移動方向を 交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動 電圧は 140Vでほとんど変わらなかった。
[0062] <実施例 4 >
正帯電粒子として実施例 1記載の粒子 1に(アクリル系及びメタクリル系)榭脂—炭 化水素系榭脂ブロックコポリマー (モディパー F600 :日本油脂製、弗化炭素成分: C
8
F )を溶解させない以外は、実施例 1と全く同じ方法で粒子 3を得た。得られた粒子
17
3において、粒子径が 500nm未満の粒子は確認されなかった。粒子 3の榭脂成分の Tgは 102°Cであった。また、粒子 3の表面を SEM観察したところ、凹凸は確認されな かった。
負帯電粒子としては実施例 1記載の粒子 2を使用した。
[0063] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加したところ、正帯電粒子 は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して 黒色の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞ れ逆方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラ ス基板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた 。電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白表 示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたところ 、その電圧は 150Vであった。また、粒子 (言い換えると、表示媒体)移動方向を交互 に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動電圧 は 150Vで変わらなかった。
[0064] <実施例 5 >
正帯電粒子としては実施例 1記載の粒子 1を使用した。
負帯電粒子として実施例 1記載の粒子 2に (アクリル系及びメタクリル系)榭脂—炭 化水素系榭脂ブロックコポリマー (モディパー F600 :日本油脂製、弗化炭素成分: C
8
F )を溶解させない以外は、実施例 1と全く同じ方法で粒子 4を得た。得られた粒子
17
4において、粒子径が 500nm未満の粒子は確認されなかった。粒子 4の榭脂成分の Tgは 96°Cであった。また、粒子 4の表面を SEM観察したところ、凹凸は確認されな かった。
[0065] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加したところ、正帯電粒子 は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して 黒色の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞ れ逆方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラ ス基板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた 。電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白表 示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたところ 、その電圧は 160Vであった。また、粒子 (言い換えると、表示媒体)移動方向を交互 に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動電圧 は 160Vで変わらなかった。
[0066] <比較例 1 >
正帯電粒子としては比較例 1記載の粒子 3を使用した。
負帯電粒子としては比較例 2記載の粒子 4を使用した。
[0067] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加したところ、正帯電粒子 は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して 黒色の表示状態が観察された。次に、印加電圧の電位を逆にすると、両粒子はそれ ぞれ逆方向に移動して、白色表示状態が観察できたが、表示が不完全で良好な表 示品質が得られなカゝつた。電圧を徐々に大きくしていき、それぞれの表示状態におけ る反射率を測定し、白表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆 動電圧として求めたところ、その電圧は 280Vであった。また、粒子 (言い換えると、表 示媒体)移動方向を交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示 書き換え後の駆動電圧は 285 Vであった。
[0068] <比較例 2>
正帯電粒子としては比較例 1記載の粒子 3を使用し、外添剤としてシリカ微粒子 (A EROSIL RX20D :日本ァエロジル製 Z平均粒子径 12nm)を粒子 3の表面にコーヒー ミルにより均一に付着させた。
負帯電粒子としては比較例 2記載の粒子 4を使用し、外添剤としてシリカ微粒子 (A EROSIL RX20D :日本ァエロジル製 Z平均粒子径 12nm)を粒子 4の表面にコーヒー ミルにより均一に付着させた。
[0069] 粒子の帯電は、外添剤を付着させた両粒子を等量混合撹拌して摩擦帯電を行った 。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処 理されたガラス基板と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、 情報表示用パネルを得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITO ガラス基板が低電位に、銅基板が高電位となる様に 250Vの直流電圧を印加したとこ ろ、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガ ラス基板を通して黒色の表示状態が観察された。次に、印加電圧の電位を逆にする と、粒子はそれぞれ逆方向に移動して、白色の表示状態が観察された。いずれの場 合でも、 ITOガラス基板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表 示品質が得られた。電圧を徐々に大きくしていき、それぞれの表示状態における反 射率を測定し、白表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電 圧として求めたところ、その電圧は 150Vであった。また、粒子 (言い換えると、表示媒 体)移動方向を交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き 換え後の駆動電圧は 210Vと変化した。
[0070] <比較例 3 >
正帯電粒子として粒子 1に (アクリル系およびメタクリル系)榭脂—(側鎖に炭化水素 あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー(モ ディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部から
8 17
12重量部に変更した以外は、全く同じ方法で粒子 9を得た。 500nm以下の粒子は 確認されなかった。また、粒子の表面を SEMで観察した所、約 560nmの凹凸が確 f*i¾ れ 。
[0071] 負帯電粒子としては、粒子 2に (アクリル系およびメタクリル系)榭脂—(側鎖に炭化 水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)榭脂とのコポリマー (モディパー F600 :日本油脂製、弗化炭素成分: C F )を溶解させる量を 5重量部
8 17
力も 12重量部に変更した以外は、全く同じ方法で粒子 10を得た。 500nm以下の粒 子は確認されなかった。また、粒子の表面を SEMで観察した所、約 520nmの凹凸 が確認された。
[0072] 粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。上記混合粒子を、 100 mのスぺーサーを介して配置された、一方が内側 ITO処理されたガラス基板 と、もう一方が銅基板であるセル中に体積占有率 30%で充填し、情報表示用パネル を得た。 ITOガラス基板、銅基板それぞれに電源を接続し、 ITOガラス基板が低電 位に、銅基板が高電位となる様に 250Vの直流電圧を印加すると、正帯電粒子は低 電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して黒色 の表示状態が観察された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆 方向に移動して、白色の表示状態が観察された。いずれの場合でも、 ITOガラス基 板上に表示させたい粒子と別色粒子の混在は無ぐ良好な表示品質が得られた。ま た、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白 表示時反射率と黒表示時反射率との比が 8倍となる電圧を駆動電圧として求めたとこ ろ、その電圧は、 160Vであった。また、粒子 (言い換えると、表示媒体)移動方向を 交互に反転させて行う繰り返し書き換え耐久試験で 30万回表示書き換え後の駆動 電圧は 200Vで多少の増大が見られた。
産業上の利用可能性
[0073] 本発明の表示媒体用粒子を表示媒体として用いた情報表示用パネルは、ノートパ ソコン、 PDA,携帯電話、ハンディターミナル等のモパイル機器の表示部、電子ブッ ク、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製 品、自動車用品等の表示部、ポイントカード、 ICカード等のカード表示部、電子広告 、情報ボード、電子 POP(Point Of Presence, Point Of Purchase advertising),電子値 札、電子棚札、電子楽譜、 RF— ID機器の表示部などに好適に用いられる。

Claims

請求の範囲
[1] 少なくとも一方が透明な 2枚の基板間に、少なくとも 2種類以上の表示媒体を封入し 、表示媒体に電界を付与することによって、表示媒体を移動させて情報を表示する 情報表示用パネルにおいて、(1)少なくとも 1種類の表示媒体を構成する表示媒体 用粒子がモノマーを含む粒子原料を重合してなる概球形粒子であり、粒子原料中に (アクリル系及びメタクリル系)榭脂—炭化水素系榭脂コポリマーもしくは(アクリル系 およびメタクリル系)榭脂―(側鎖に炭化水素ある!、は弗化炭化水素を持つアクリル 系およびメタクリル系)榭脂とのコポリマーを含有し、該モノマーの一部もしくは全部が 1分子中に重合反応基を複数持つ多官能性モノマーであり、粒子表面に微小な凹 凸を一様に有するとともに、 (2)表示媒体を構成する全ての粒子の粒子径が 500nm 以上であることを特徴とする情報表示用パネル。
[2] 前記表示媒体用粒子の微小な凹凸が、直径相当径 10〜500nmの凸部もしくは凹 部であることを特徴とする請求項 1に記載の情報表示用パネル。
[3] 前記 (アクリル系及びメタクリル系)榭脂-炭化水素系榭脂コポリマーの炭化水素榭 脂が、スチレン榭脂であることを特徴とする請求項 1または 2に記載の情報表示用パ ネノレ。
[4] 前記表示媒体用粒子の粒子径が 0. 5〜50 μ mであることを特徴とする請求項 1〜
3の 、ずれか 1項に記載の情報表示用パネル。
[5] 前記表示媒体用粒子の色が白色であることを特徴とする請求項 1〜4のいずれか 1 項に記載の情報表示用パネル。
[6] 前記表示媒体用粒子の色が黒色であることを特徴とする請求項 1〜4のいずれか 1 項に記載の情報表示用パネル。
PCT/JP2006/307222 2005-04-06 2006-04-05 情報表示用パネル WO2006109648A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005109810 2005-04-06
JP2005-109810 2005-04-06

Publications (1)

Publication Number Publication Date
WO2006109648A1 true WO2006109648A1 (ja) 2006-10-19

Family

ID=37086925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307222 WO2006109648A1 (ja) 2005-04-06 2006-04-05 情報表示用パネル

Country Status (1)

Country Link
WO (1) WO2006109648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313340A (ja) * 2005-04-07 2006-11-16 Bridgestone Corp 表示媒体用粒子及びそれを用いた情報表示用パネル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091799A1 (fr) * 2002-04-26 2003-11-06 Bridgestone Corporation Particule pour affichage d'image et dispositif associe
JP2004029700A (ja) * 2002-05-02 2004-01-29 Bridgestone Corp 画像表示粒子及びそれを用いた画像表示装置
JP2004099700A (ja) * 2002-09-06 2004-04-02 Sekisui Plastics Co Ltd 艶消し塗料組成物
JP2004354511A (ja) * 2003-05-27 2004-12-16 Canon Inc 表示素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091799A1 (fr) * 2002-04-26 2003-11-06 Bridgestone Corporation Particule pour affichage d'image et dispositif associe
JP2004029700A (ja) * 2002-05-02 2004-01-29 Bridgestone Corp 画像表示粒子及びそれを用いた画像表示装置
JP2004099700A (ja) * 2002-09-06 2004-04-02 Sekisui Plastics Co Ltd 艶消し塗料組成物
JP2004354511A (ja) * 2003-05-27 2004-12-16 Canon Inc 表示素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313340A (ja) * 2005-04-07 2006-11-16 Bridgestone Corp 表示媒体用粒子及びそれを用いた情報表示用パネル

Similar Documents

Publication Publication Date Title
JP4328309B2 (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
EP2096491A2 (en) Particles for display medium
JP2006313334A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
WO2006109648A1 (ja) 情報表示用パネル
JP2006313340A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP5052104B2 (ja) 表示媒体用粒子、情報表示用パネルおよび情報表示装置
JP2006313337A (ja) 黒色表示媒体用粒子及びそれを用いた情報表示用パネル
JP2006313336A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2006313326A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2006309212A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2007298969A (ja) 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2006309213A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2006309210A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP5134775B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2006313327A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP4863762B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2006313333A (ja) 情報表示用パネル
JP2006313325A (ja) 表示媒体用粒子の製造方法、表示媒体用粒子および情報表示装置
WO2005103809A1 (ja) 表示媒体用粒子の製造方法、その製造方法によって作製した表示媒体用粒子およびそれを用いた情報表示装置
CN100590685C (zh) 显示介质用颗粒以及使用其的信息显示用面板
JP2006313329A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2006058563A (ja) 画像表示用パネル及びその製造方法
JP2006313339A (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2008102231A (ja) 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2006309211A (ja) 電気泳動情報表示用パネル及びそれを用いた電気泳動情報表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP