WO2006098062A1 - マグネット式ロッドレスシリンダ - Google Patents

マグネット式ロッドレスシリンダ Download PDF

Info

Publication number
WO2006098062A1
WO2006098062A1 PCT/JP2005/022133 JP2005022133W WO2006098062A1 WO 2006098062 A1 WO2006098062 A1 WO 2006098062A1 JP 2005022133 W JP2005022133 W JP 2005022133W WO 2006098062 A1 WO2006098062 A1 WO 2006098062A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
magnet
cylinder tube
piston
tube
Prior art date
Application number
PCT/JP2005/022133
Other languages
English (en)
French (fr)
Inventor
Akiyoshi Horikawa
Naoki Minowa
Hiroshi Yoshida
Mitsuo Noda
Original Assignee
Howa Machinery, Ltd.
Koganei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery, Ltd., Koganei Corporation filed Critical Howa Machinery, Ltd.
Priority to CN2005800491074A priority Critical patent/CN101213377B/zh
Priority to US11/886,312 priority patent/US7669515B2/en
Priority to EP05811318A priority patent/EP1860329B8/en
Publication of WO2006098062A1 publication Critical patent/WO2006098062A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1447Pistons; Piston to piston rod assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/084Characterised by the construction of the motor unit the motor being of the rodless piston type, e.g. with cable, belt or chain
    • F15B15/086Characterised by the construction of the motor unit the motor being of the rodless piston type, e.g. with cable, belt or chain with magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S91/00Motors: expansible chamber type
    • Y10S91/04Magnets

Definitions

  • the present invention relates to a magnet type rodless cylinder having a plurality of cylinder holes in a cylinder tube.
  • the piston includes a piston movably disposed in a cylinder hole formed in the cylinder tube, and a slider movably disposed along the cylinder tube outside the cylinder tube.
  • the piston and the slider are Magnetically coupled magnet-type rodless cylinders are known.
  • a magnet inner magnet
  • a magnet (outer magnet) or magnetic body is placed on the slider, and these attractive forces draw the piston and the slider together.
  • the slider is moved to follow the movement of the piston.
  • Document A discloses a Gunnett's rodless cylinder in which the apparatus is miniaturized by increasing the cross-section of the cylinder tube and the piston to a flat shape, and the cylinder thrust is increased.
  • Reference B discloses a magnetic rodless cylinder in which the cross-sectional shape of the cylinder tube and piston is oval, oval, or a symmetrical peanut shell shape.
  • Document C has a magnet-type rodless cylinder in which two cylinder tubes each having one cylinder hole are arranged in parallel, and a single slider is provided so as to surround the pair of cylinder tubes. It is disclosed.
  • Document D relates to a thin-tube type rodless cylinder. Force is provided in parallel in two cylinder holes in one cylinder tube, and can be moved axially in each cylinder hole in each cylinder hole. A rodless cylinder with a ton of tons is disclosed.
  • the two pistons are mechanically connected to a single slider through a slit with a seal band that opens to the wall of the cylinder tube.
  • Reference E also relates to a slit-type rodless cylinder, but discloses that the cross-sectional outer shape of the cylinder tube and the cylinder hole have a rectangular shape, and accordingly the piston cross-section is also rectangular.
  • document F relates to a rod type cylinder having a rod for transmitting the movement of bistone from the cylinder tube to the outside through a rod axially connected to the piston. It is disclosed that two cylinder holes are provided in parallel to each other.
  • Fig. 6 shows the magnificate rodless cylinder 6 1 of reference C.
  • the magnet type rodless cylinder 61 in Fig. 6 has a configuration in which a pair of cylinder tubes 62 are arranged in parallel with each other, and both ends of these cylinder tubes are connected and fixed by end caps 67 respectively. Cylinder holes (not shown) are formed in each cylinder tube 62, and pistons (not shown) are accommodated in these cylinder holes, respectively.
  • a slider 64 is disposed on the outside of the cylinder tube 62 so as to surround both cylinder tubes 6 2.
  • the piston in the cylinder hole has an inner magnet, and an inner magnet is arranged on the inner surface of the cylinder tube penetration of the slider.
  • the attractive force between the inner magnet and the outer magnet Two pistons and a single slider are magnetically coupled to the body.
  • both pistons are synchronized by supplying working fluid such as compressed air from the end caps 67 on both sides into the cylinder holes of both cylinder tubes. Reciprocate in the cylinder tube. As a result, the slider magnetically coupled to piston is reciprocated following the piston on the outside of the cylinder tube.
  • the cross section of the cylinder tube and the cross section of the cylinder hole have a perfect circular shape. For this reason, even when the internal pressure acts on the tube, the cross section of the tube is uniformly deformed (expanded), and the stress acting on the tube is also uniform, so no local concentration of strain or stress occurs.
  • the cross-sectional shape of the cylinder hole also becomes non-circular, so the internal pressure due to the fluid inside the tube becomes If it works, the deformation of the tube will not be uniform. For this reason, when using a cylinder tube with a non-circular outer shape, stress concentration and local distortion may occur in the tube, and the maximum stress and the maximum deflection may become very large values.
  • the tube thickness can be increased to increase the tube rigidity, and if the tube thickness is increased, the magnetic connection between the piston and the slider can be made accordingly. It is necessary to increase the cohesion.
  • the required magnetic coupling force may be several times as large as the magnetic coupling force when using a tube of circular cross-sectional shape.
  • the present invention makes it possible to adjust the repulsive force acting on each piston when a plurality of cylinders are arranged close to and parallel to one another, thereby preventing a decrease in durability.
  • the aim is to provide a practical, practical magnet-type D-Dress cylinder with a small overall thickness (height).
  • a cylinder made of a nonmagnetic material, and a piss movable in the axial direction of the cylinder in a cylinder hole provided in the cylinder tube.
  • a slider made of a nonmagnetic material disposed so as to be movable in the axial direction of the cylinder tube along the outer peripheral surface of the cylinder tube, an inner magnet disposed on the piston, and a slider 3d
  • an outer magnet or magnetic body for generating a magnetic attraction force between the magnetic magnet and the inner magnet, and the slider is adapted to follow the movement of the piston by the magnetic attraction force.
  • a plurality of sets of the cylinder holes and the pistons are provided in parallel, and at least one of them is made of a magnetic material along the axial direction of the cylinder hole between the adjacent cylinder holes.
  • the magnet DOO type lock Doresushiri Sunda characterized in that a member is provide.
  • the plurality of cylinder holes are formed in a single cylinder tube, and the member made of the magnetic material is disposed in the single cylinder tube.
  • a magnet-type rodless cylinder according to claim 1 is provided. Ru.
  • the cylinder tube is constituted by mutually connecting a plurality of cylinder tube members each provided with at least one cylinder hole, and the cylinder tube member
  • the magnet-type rodless cylinder according to claim 1 or 2 further comprising a recess for receiving the magnetic material member at a mutual connection portion.
  • a spacer made of nonmagnetic material is disposed between the magnetic material member and the cylinder hole.
  • a magnet-type rodless cylinder described in Section is provided.
  • the magnet material member is formed of a synthetic resin containing magnetic metal powder,
  • the minimum working pressure required for the working fluid can be suppressed to a relatively small value as described above, the concentration of deformation and stress of the cylinder tube also becomes small, and the thickness (height) of the flat shape can be reduced. It becomes possible to produce a small magnet type rodless cylinder.
  • the cylinder tube is constituted by connecting a plurality of cylinder tube members, so that it is easy to provide a recess for accommodating the magnetic material member.
  • the cylinder tube member can be easily formed by extrusion molding, so that the surface roughness of the inner surface and the outer surface of the cylinder tube can be easily managed.
  • the magnetic material member is provided between the cylinder holes through the spacer made of nonmagnetic material, for example, a slit is provided in the cylinder tube and the magnetic material is provided. Even when the member is placed, the magnetic material member can be reliably held at an appropriate position in the slit by adjusting the spacer thickness.
  • the position of the magnetic material member between the cylinder holes can be finely adjusted by adjusting the thickness of the spacer, the processing accuracy of the slit and the recess for accommodating the magnetic material member can be relatively set. The cost can be reduced and the processing cost can be reduced.
  • the magnetic material member is formed of a synthetic resin containing magnetic metal powder, the magnetic material member can be easily manufactured at low cost.
  • FIG. 1 is a front view of an embodiment of a magnet type rodless cylinder according to the present invention
  • FIG. 2 is a sectional view taken along line A-A of FIG. 1
  • FIG. 3 is a sectional view taken along line B-B of FIG. 3 is a cross-sectional view taken along line C--C
  • FIG. 5 is a cross-sectional view showing a cylinder tube configuration of a magnet type rodless cylinder different from FIG. 1
  • FIG. 6 is an entire conventional magnet type rodless cylinder. It is a perspective view.
  • FIG. 1 is a front view of the magnet rodless cylinder 1
  • Fig. 2 is a sectional view taken along the line A-A of Fig. 1
  • Fig. 3 is a sectional view taken along the line B_B of Fig. 1.
  • FIG. 4 shows a cross-sectional view along the line C-C in FIG.
  • the magnetic rodless cylinder 1 of the present embodiment includes the cylinder tube 2 made of nonmagnetic material and disposed between the facing surfaces of the end caps 7, 7.
  • a slider 4 having a rectangular cross-sectional outer shape is externally sheathed so as to be slidable in the axial direction of the cylinder tube 2.
  • the cylinder tube 2 has a flat, oval-shaped cross section as shown in FIG. 4, and the cylinder tube 2 is disposed so as to penetrate the slider 4, so that the cylinder 4 is in the horizontal position. Guided in the axial direction of tube 2.
  • the piston 3 is in each cylinder hole 10 and the axis of the cylinder tube 2 It is accommodated so as to be movable in the linear direction, and the inside of each cylinder bore 10 is divided into cylinder chambers 8 and 8 by each piston 3.
  • Each piston 3 is alternately fitted with a plurality of doughnut-shaped inner magnets 1 4 and a doughnut-shaped inner yoke 1 5 alternately in the center piston shaft 13 and both ends through the inner wear ring 9
  • the structure is clamped and fixed by piston end 16.
  • each inner magnet 14 is arranged such that the same poles as NS, SN, NS, and SN correspond to each other in the axial direction, and between adjacent screws 3 and 3, the magnetic poles of the inner magnet 14 are A donut-shaped outer magnet 17 is fitted in the through portion of the cylinder tube 2 of the slider 4 that the same poles correspond to each other. That is, in the slider 4, a plurality of oval and doughnut-shaped outer magnets 17 surrounding the periphery of the cylinder tube 2 are alternately stacked in the axial direction with a plurality of outer yokes 1 8 of the same shape. It is fixed to the end plate 20 through the arranged outer wear ring 19 and attached to the penetration of the cylinder tube 2.
  • the magnetic poles of the outer magnet 17 are such that the same poles face each other in the axial direction, and the opposite poles of the magnetic pole of the inner magnet 14 on the piston 3 side face each other, such as SN, NS, SN, NS It is arranged. For this reason, the pistons 3 and 3 and the slider 4 are magnetically coupled by the magnetic attraction force between the two magnets.
  • Each end cap 7 is formed with a supply / discharge port 1 1 and a flow path 1 2 communicating with the corresponding cylinder chamber 8, 8 from the supply / discharge port 1 1.
  • the two magnets 3 of the inner magnet 14 of the piston 3 are arranged such that the same poles face each other between the pistons. For this reason, a force (repulsive force) acts in a direction (X direction in FIG. 4) in which each bistone 3 repels each other. Due to this repulsive force, each piston 3 is pressed against the inner wall surface of the cylinder hole 10, and the frictional force between the piston 3 crystal 9 and the cylinder hole inner wall surface 10 is increased. There is a problem that the minimum pressure (minimum working pressure) of the working fluid to be supplied to the cylinder chamber 8 to start sliding of screw 3 becomes high.
  • the above problem is solved by arranging a member 2 2 made of a magnetic material between the cylinder holes 10 and 10.
  • a thin iron plate (about 0.1 mm to 0.3 mm thick in the present embodiment) is used as a member (hereinafter referred to as “magnetic material member”) 22 made of a magnetic material, and a pair of It is arranged between the cylinder bores 10 and 10 so as to cover the entire movable range of the piston.
  • magnetic material member made of a magnetic material
  • a slit 25 for accommodating the magnetic material member 22 is formed in the cylinder tube 2 along the axial direction of the cylinder tube 2 at a position between the cylinder holes 10 and 10 in the cylinder tube 2. .
  • the magnetic material member 22 is disposed in the above-mentioned slit 25 in a state in which both sides of the magnetic material member 22 are sandwiched by the spacer 23 made of nonmagnetic material (synthetic resin in this embodiment). As shown in FIG. 4, round holes 24 of a system larger than the width of the slit 25 are formed at the upper end and the lower end of the slit 25 respectively, and the magnetic material member 2 2 and the space are formed. It is possible to easily insert the sensor and to prevent it from forming after insertion.
  • the repulsive force acting between the inner magnets 14 of the pistons 3 on both sides thereof is reduced, and 2 2 and the inner magnet
  • the suction force acts in the direction opposite to the repulsive force direction (Fig. 4 X direction) (Fig. 4 Y direction). Therefore, by adjusting the thickness of the magnetic material member, the repulsive force and suction force acting on piston 3 are balanced, and the contact pressure between wear ring 9 of piston 3 and the cylinder wall 10 is obtained. Can be adjusted.
  • the cylinder tube 2 is reduced in thickness to a practical level by separately forming the pair of cylinder holes 10 in a single circular cylinder 2 in a single cylinder tube 2.
  • the strain and stress of the cylinder tube can be sufficiently reduced when the internal pressure acts in the cylindrical hole. Therefore, we will commercialize a low-profile (thin) flat type magnetic-type rodless cylinder without significantly increasing the magnetic coupling force between piston and slider 4 as in the past. be able to. Further, since one slider 4 is driven by the plurality of pistons 3, the driving force (cylinder thrust) of the slider 4 can be easily increased.
  • a thin iron plate as the magnetic material member 2 2 is disposed in the cylinder tube 2 between the cylinders 10 and 10 along the axial direction so as to cover the entire movement range of the piston 3.
  • a magnetic material member 22 for example, an iron plate with a thickness of 0.1 mm to 0.5 mm
  • a spacer made of nonmagnetic material on both sides is used. It is installed in slips 25 with 3 intervened.
  • the cylinder tube 2 is formed by extrusion, it is difficult to form the width of the slit 25 to a certain extent (2.0 mm to 3, 0 mm) or less.
  • the magnetic material member is held in the slit 25 by using the spacer 23 as described above, the magnetic material thinner than the width of the slit 25 is used.
  • the member 2 2 can be held securely in the slit 2 5.
  • the position of the magnetic material member 2 2 between the cylinder holes 10 can be set precisely. For this reason, even if the accuracy of the installation position of the slit 25 is set low, the surface pressure adjustment of the piston wear ring 9 is not affected, so the processing cost can be reduced.
  • the configuration of the magnet type rodless cylinder of the present invention is not limited to the aspect of the above embodiment, and the cylinder tube, piston, slider, end cap, material of magnetic material member, shape, shape,
  • the configuration, such as the structure and the mounting position, can be changed as needed without departing from the spirit of the present invention.
  • the cylinder tube is configured as a single member, but it is also possible to configure the cylinder tube from a plurality of parts.
  • FIG. 5 is a cross-sectional view showing an example of a cylinder tube 2 'of an assembly structure composed of a plurality of members.
  • the same elements as in FIGS. 1 to 4 are indicated by the same reference numerals.
  • the cylinder tube 2 ′ has an assembly structure in which cylinder tube members (left member 2 a and right member 2 b), which are separately formed, are connected to each other.
  • a cylinder hole 10 is drilled in each of a and the right side member 2b.
  • a recessed portion is provided along the axial direction of the cylinder hole 10 in the joint surface of the right side member 2 b with the left side member 2 a, and in the state of being joined to the left side member 2 a It functions as a slit 25 that accommodates the magnetic material member 22.
  • the magnetic material member 22 may be inserted into the slit 25 formed by the connection after connecting both the cylinder tube members 2a and 2b, or both of the cylinder tube members may be inserted. Before joining 2a and 2b, they may be fitted in the recess of the right side member 2b in advance.
  • the left side member 2a and the right side member 2b are provided with engagement grooves that can be engaged with the engagement ridges and the other engagement ridges, respectively. Both members 2a and 2b are joined by engagement.
  • the individual cylinder tube members 2a and 2b can be formed separately. For this reason, it is possible to improve the dimensional accuracy as compared with the case of extruding the whole at once, and there is an advantage that it is easy to provide the narrow slit 25. Further, in this case, there is also an advantage that the die for extrusion molding can be easily manufactured, and the surface roughness and the dimensional accuracy of the inner and outer surfaces of the molded members 2a and 2b can be improved. Therefore, it is possible to omit the spacer by narrowing the width of the slit 25.
  • the thickness of the magnetic material member 2 2 is 0.2 ⁇ m.
  • an iron plate of 0.3 mm is used, the shape of the magnetic material member 2 2
  • the type is not limited to this.
  • magnetic material member 2 2 from a synthetic resin containing O). It goes without saying that it is also possible to form the magnetic material member 2 2 using a magnetic body other than an iron plate.
  • spacer it is possible to use materials other than synthetic resin, for example, nonmagnetic materials such as aluminum.
  • the number of magnetic material members disposed between the cylinder holes may be two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Abstract

シリンダチューブ2の軸線方向に一対のシリンダ孔10を形成するとともに、これらシリンダ孔の間にスリット25を形成し、このスリット内にシリンダ孔内のピストン3の移動全範囲をカバーする鉄板22を挿入する。鉄板22の両側には合成樹脂製のスペーサ23が介挿され、スリット25内に鉄板22を確実に保持する。鉄板22をシリンダ孔の間に配置することにより、各ピストン3の内側磁石14に相互に作用する反発力を低減し、鉄板22と各内側磁石14との間に吸引力を生じさせることにより、ピストン3のウエアリング9とシリンダ孔10壁面との間の接触面圧を適切な値に調整可能となる。

Description

明 細 書 マグネッ ト式ロッ ドレスシリンダ 技術分野
本発明は、 シリンダチューブ内に複数のシリンダ孔を設けたマグ ネッ ト式ロッ ドレスシリンダに関する。 背景技術
シリ ンダチューブ内に形成されたシリンダ孔内に移動可能に配置 されたピス トンと、 シリンダチューブ外部にシリンダチューブに沿 つて移動可能に配置したスライダとを備え、 これらのピス トンとス ライダとを磁気的に結合したマグネッ ト式ロッ ドレスシリンダが知 られている。
マグネッ ト式ロッ ドレスシリンダでは、 通常、 ピス トンには磁石 (内側磁石) を、 スライダには磁石 (外側磁石) 又は磁性体を配置 し、 これらの吸引力により ピス トンとスライダとを一体に磁気結合 し、 ピス トンの動作に追従してスライダが移動するようにされてい る。
マグネッ ト式ロッ ドレスシリンダとしては、 シリンダ孔とピス ト ンとを複数備え、 これらのビス トン全部と単一のスライダとを磁気 結合したものが知られている。
例えば、 ロッ ドレスシリンダの例としては、 以下の文献 A〜Fに 記載されたものがある。
文献 A : 実開平 4一 1 1 3 3 0 5号公報
文献 B : 特開平 4— 3 5 7 3 1 0号公報
文献 C : 実用新案登録第 2 5 1 4 4 9 9号公報 文献 D : 特開昭 6 0 — 1 7 2 7 1 1号公報
文献 E : 米国特許第 3 8 9 3 3 7 8号明細書
文献 F : 特開平 9 一 2 1 7 7 0 8号公報
文献 Aは、 シリンダチューブとピス トンとの横断面をそれぞれ扁 平形状とすることにより装置を小型化するとともに、 シリンダ推力 を増大させた グネッ ト式ロッ ドレスシリンダを開示している。
また、 文献 Bはシリ ンダチューブ及びピス トンの横断面形状を、 楕円形や長円形、 左右対称的なピーナッツ殻形状としたマグネッ ト 式ロッ ドレスシリンダを開示している。
さらに、 文献 Cは、 それぞれ一つのシリンダ孔を有するシリ ンダ チューブを二本平行に配置して、 これら一対のシリ ンダチューブを 囲むように単一のスライダを設けたマグネッ ト式ロッ ドレスシリ ン ダが開示されている。
また、 文献 Dはスリ ツ トチューブ式ロッ ドレスシリ ンダに関する ものではある力 一つのシリ ンダチューブ内に 2つのシリンダ孔を 平行に設け、 それぞれのシリ ンダ孔内にシリ ンダ軸線方向に移動可 能にピス トンを配置したロッ ドレスシリンダが開示されている。
文献 Dのロッ ドレスシリンダでは、 2つのピス トンはシリンダチ ユーブ壁面に開口するシールバンド付きのスリ ッ トを介して単一の スライダに機械的に連結している。
文献 Eもスリ ッ ト式ロッ ドレスシリ ンダに関するものであるが、 シリ ンダチューブ断面外形とシリ ンダ孔とが長方形の形状であり、 それに応じてピス トン横断面も長方形とされたものを開示している また、 文献 Fはビス トンの動作をピス トンに軸線方向に連結され たロッ ドを通じてシリ ンダチューブから外部に伝えるロッ ドを有す るロッ ドタイプシリ ンダに関するものであるが、 一つのシリンダチ ュ一ブに 2つのシリンダ孔を平行に設けたものが開示されている。 図 6は、 文献 Cのマグネッ 卜式ロッ ドレスシリンダ 6 1 を示して いる。
図 6のマグネッ ト式ロッ ドレスシリンダ 6 1 は、 1対のシリンダ チューブ 6 2 を互いに平行に配置し、 これらのシリンダチューブ両 端をそれぞれエンドキャップ 6 7で連結固定した構成とされている また、 それぞれのシリンダチューブ 6 2内にはシリンダ孔 (図示 せず) が形成されており、 これらのシリ ンダ孔内にはそれぞれピス トン (図示せず) が収容されている。
更に、 シリンダチューブ 6 2の外側には、 両方のシリ ンダチュー プ 6 2 を囲むようにスライダ 6 4が配置されている。
シリ ンダ孔内のピス トンには内側磁石が、 また、 スライダのそれ ぞれのシリンダチューブ貫通部内面には外側磁石が、 それぞれ配置 されており、 これらの内側磁石と外側磁石との吸引力により、 2つ のピス トンと単一のスライダとがー体に磁気結合されている。
図 6のマグネッ ト式ロッ ドレスシリ ンダ 6 1では、 両側のエンド キャップ 6 7から両方のシリンダチューブのシリンダ孔内に圧縮空 気などの作動流体を供給することにより、 両方のピス トンが同期し てシリ ンダチューブ内を往復動する。 これにより、 ピス トンと一体 に磁気結合されたスライダがシリンダチューブ外側でビス トンに追 従して往復動するようになる。
一般的に実用化されているマグネッ ト式シリンダでは、 シリ ンダ チューブ断面及ぴシリ ンダ孔断面形状は真円形状とされている。 こ のため、 チューブに内圧が作用した場合にもチューブ断面は一様に 変形 (膨張) しチューブに作用する応力も一様となるため、 局部的 な歪や応力の集中は生じない。 ところが、 文献 A及び Bのような扁平な (非円形の) 断面のシリ ンダチューブを使用した場合には、 シリ ンダ孔断面形状も非円形形 状となることから、 チューブ内に流体による内圧が作用すると、 チ ユーブの変形は一様にならない。 このため、 非円形外形のシリンダ チューブを使用する場合にはチューブに応力集中や局部的な歪みが 生じ、 最大応力、 最大たわみともに非常に大きな値となる場合があ る。
この問題を解決するためには、 チューブの肉厚を大きく してチュ ーブの剛性を高めることが考えられる力 、 チューブの肉厚を大きく すると、 それに応じてピス トンとスライダとを連結する磁気結合力 を増大させる必要がある。 この場合、 必要とされる磁気結合力は、 円形断面形状のチューブを使用した場合の磁気結合力に対して数倍 もの大きさになる場合がある。
このため、 非円形形状のシリンダ孔を有するマグネッ ト式ロッ ド レスシリンダは実際には実現が困難な問題がある。
一方、 文献 Cのマグネッ ト式ロッ ドレスシリンダでは、 断面真円 のシリ ンダチューブ 6 2 を 2本平行に配置することにより上記問題 を解決している。
しかし、 文献 Cのように複数本のシリンダチューブ 6 2 を使用し た場合には、 部品点数が増大するための組立て工数の増加や、 設置 スペースの増大などの問題が生じてしまう。
また、 文献 Cのように 2本のシリ ンダチューブ 6 2 を互いに近接 して平行に配置すると、 それぞれのシリ ンダチューブ内のピス トン に設けられた内側磁石同士が互いに反発し、 それぞれのビス 卜ンが 外側方向に向う反発力を受ける。 このため、 ピス トンがシリンダ孔 内壁に押圧され、 ピス トンとシリンダ壁間の摩擦力が面圧の増大に 応じて大きくなり、 シリンダ孔内に流体を供給してピス トンを作動 させるために必要とされる最小作動圧力が大きくなる。 作動流体の 最小作動圧力が増大すると、 マグネッ ト式ロッ ドレスシリンダの各 部分では耐久性が低下する等の問題が生じる。 発明の開示
本発明は上記従来技術の問題に鑑み、 複数のシリ ンダチユ ーブを 互いに近接して平行に配置した場合にそれぞれのピス トンに作用す る反発力を調節可能とし 、 耐久性の低下を防止しながら 、 全体とし て厚み (高さ) の小さい 、 実用性に富んだマグネッ ト式 Dッ ドレス シリ ンダを提供することを目的としている。
請求項 1 に記載の発明によれば、 非磁性体からなるシ Uンダチュ 一ブと、 該シリンダチュ一ブ内に設けたシリ ンダ孔にシ Uンダチュ ブ軸線方向に移動可能に配置されたピス トンと、 前記シリ ンダチ ューブ外周面に沿つてシ Uンダチューブ軸線方向に移動可能に配置 された非磁性体からなるスライダと、 前記ピス トンに配置された内 側磁石と、 刖 3dスラィダに配置され前記内側磁石との間に磁気吸引 力を生じさせる外側磁石または磁性体とを備え、 前記磁気吸引力に よつて前記ピス トンの移動に前記スライダが追従するよ にしたマ グネッ ト式ロッ ドレスシリンダにおいて、 前記シリ ンダ孔とピス ト ンとを複数組並列に備え、 これらのうち少なく とも一対の隣接した シリンダ孔間にシリ ンダ孔軸線方向に沿つて磁性材料からなる部材 を配置したことを特徴とするマグネッ ト式ロッ ドレスシリ ンダが提 供される。
また、 請求項 2に記載の発明によれば、 前記複数のシリンダ孔は 単一のシリンダチューブ内に形成され、 前記磁性材料からなる部材 は前記単一のシリンダチューブ内に配置されていることを特徴とす る、 請求項 1 に記載のマグネッ ト式ロッ ドレスシリ ンダが提供され る。
更に請求項 3 に記載の発明によれば、 前記シリンダチューブは、 それぞれが少なく とも 1つのシリンダ孔を備えた複数のシリンダチ ユ ーブ部材を互いに結合することにより構成され、 前記シリンダチ ユ ープ部材相互の結合部に前記磁性材料部材を収容する凹部を備え たことを特徴とする、 請求項 1 または 2に記載のマグネッ ト式ロッ ドレスシリンダが提供される。
また、 請求項 4に記載の発明によれば、 前記磁性材料部材とシリ ンダ孔との間に非磁性材料からなるスぺーサを配置したことを特徴 とする請求項 1 〜 3のいずれか 1項に記載のマグネッ ト式ロッ ドレ スシリ ンダが提供される。
更に、 請求項 5に記載の発明によれば、 前記磁性材料部材を磁性 金属粉を含有する合成樹脂により形成したことを特徴とする、 請求 項 1 〜 3のいずれか 1項に記載のマグネッ ト式ロッ ドレスシリンダ が提供される。
請求項 1のマグネッ ト式ロッ ドレスシリンダでは、 少なく とも一 対のシリ ンダ孔間に軸線方向に沿つて磁性材料からなる部材が配置 されているため、 各ピス トン相互間の反発力が低減される。
また、 各ピス トンと磁性材料部材との間には吸引力が生じるため 、 ピス トンに作用する反発力と吸引力とのバランスを磁性材料部材 により調節することができる。 このため、 本発明によれば、 シリ ン ダ孔を並行配置する場合の各ピス トンのシリ ンダ孔壁面への押圧力 を適切な値に設定することが可能となり、 作動流体に要求される最 小作動圧力の上昇を抑制し、 マグネッ ト式ロッ ドレスシリ ンダの各 部材の耐久性の低下を防止することができる。
また、 請求項 2のマグネッ ト式ロッ ドレスシリンダでは、 単一の シリ ンダチューブ内に複数のシリンダ孔を形成したため、 複数のシ リンダチューブを並行配置した場合に比べて装置全体の小型化を図 ることができる。
この場合、 上述のように作動流体に要求される最小作動圧を比較 的小さく抑制することができるため、 シリンダチューブの変形ゃ応 力の集中も小さくなり、 扁平形状の厚さ (高さ) の小さいマグネッ ト式ロッ ドレスシリ ンダを製作することが可能となる。
また、 複数のピス トンで 1つのスライダを移動させるため、 小型 化とともにシリンダ推力を大きく設定することが可能となる。
更に、 請求項 3のマグネッ ト式ロッ ドレスシリンダでは、 シリ ン ダチューブは複数のシリ ンダチューブ部材を結合することにより構 成されるため、 磁性材料部材を収容する凹部を設けることが容易に なる。 また、 シリンダチューブ部材は押出し成形により容易に成形 可能であり、 これによりシリンダチューブ内面および外面の表面粗 さも管理しやすくなると言う効果がある。
また、 請求項 4のマグネッ ト式ロッ ドレスシリンダでは、 磁性材 料部材を非磁性材料からなるスぺ一サを介してシリンダ孔間に設け たため、 例えばシリンダチューブ内にスリ ッ トを設け磁性材料部材 を配置するような場合にも、 スぺ一サ厚さを調整することによりス リ ッ ト内の適宜な位置に磁性材料部材を確実に保持することができ る。 また、 スぺーザの厚さを調整することによりシリ ンダ孔間の磁 性材料部材位置を微調整することができるため、 磁性材料部材を収 容するスリ ッ トや凹部の加工精度を比較的低くすることができ加工 コス トを低減することが可能となる。
更に請求項 5のマグネッ ト式ロッ ドレスシリ ンダでは、 磁性材料 部材を磁性体金属粉を含有した合成樹脂により成形したため、 磁性 材料部材を容易かつ低コス トで製作することが可能となる。 図面の簡単な説明
図 1は本発明によるマグネッ ト式ロッ ドレスシリンダの一実施形 態の正面図、 図 2は図 1の A— A線断面図、 図 3は図 1 の B— B線 断面図、 図 4は図 3の C一 C線断面図、 図 5は図 1 とは異なるマグ ネッ ト式ロッ ドレスシリンダのシリ ンダチューブ構成を示す断面図 、 図 6は従来のマグネッ 卜式ロッ ドレスシリンダの全体を示す斜視 図である。 発明を実施するための最良の形態
以下、 本発明によるマグネッ ト式ロッ ドレスシリンダの一実施形 態について図面を参照して説明する。
図 1 は、 マグネッ ト式ロッ ドレスシリンダ 1 の正面図、 図 2は図 1 の A— A線に沿った断面図、 図 3は図 1 の B _ B線に沿った断面 図である。 また、 図 4は、 図 3の C— C線に沿った断面図を示す。
図 3 に示すように、 本実施形態のマグネッ ト式ロッ ドレスシリ ン ダ 1 は、 エンドキャップ 7 、 7の対向面間に配置された非磁性材料 から成るシリ ンダチューブ 2を備えている。
シリンダチューブ 2外周には、 横断面外形が矩形状のスライダ 4 が、 シリ ンダチューブ 2の軸線方向にスライ ド可能に外装されてい る。
シリンダチューブ 2は、 図 4に示すように扁平な長円形状の断面 を有しており、 シリンダチューブ 2がスライダ 4を貫通して配置さ れることにより、 スライダ 4が水平な姿勢のままでシリンダチュー ブ 2 の軸線方向に案内される。
また、 シリ ンダチューブ 2の内部には、 図 4に示すように、 横断 面が真円の一対のシリ ンダ孔 1 0 、 1 0が平行に配置されている。
各シリ ンダ孔 1 0内にはピス トン 3が、 シリンダチューブ 2の軸 線方向に移動可能に収容されており、 それぞれのピス トン 3により 各シリンダ孔 1 0内はシリンダ室 8 、 8に区画されている。
各ピス トン 3は、 中央のピス トンシャフ ト 1 3に、 ドーナツ状の 複数の内側磁石 1 4 と、 同じく ドーナツ状の内側ヨーク 1 5 とを交 互に嵌め込み、 両端を内側ウエアリング 9 を介してピス トンエンド 1 6によって締付固定した構造となっている。
各内側磁石 1 4の磁極は、 軸線方向において、 N S、 S N、 N S 、 S Nと同極同士が対応するように配設されており、 隣接するビス トン 3 、 3間では、 内側磁石 1 4の同極同士が対応することになる スライダ 4のシリンダチューブ 2の貫通部には、 ドーナツ状の外 側磁石 1 7が嵌装されている。 すなわち、 スライダ 4内には、 シリ ンダチューブ 2の周囲を囲む長円形でドーナツ状の複数の外側磁石 1 7が、 同じ形状の複数の外側ヨーク 1 8 と交互に軸線方向に積層 され、 両端に配置した外側ウエアリング 1 9 を介してエンドプレー ト 2 0により固定されて、 シリンダチューブ 2の貫通部に取付けら れる。
外側磁石 1 7の磁極は、 軸線方向では同極同士が対向し、 且つピ ス トン 3側の内側磁石 1 4の磁極とは異極同士が対向するように、 S N、 N S 、 S N、 N S と配設されている。 このため、 両磁石同士 の磁気吸引力によって両ピス トン 3 、 3 とスライダ 4とが磁気的に 結合している。
各エンドキャップ 7には、 給排ポート 1 1 と、 この給排ポート 1 1からそれぞれ対応する側の両シリンダ室 8 、 8に連通する流路 1 2 とが形成されている。
左右の給排ポート 1 1 、 1 1から流路 1 2 を経由してシリンダ室 8の一方に圧縮空気を供給することにより、 ピス トン 3 、 3が各シ リ ンダ孔 1 0内を互いに同期して移動する。
前述したように、 2つのピス トン 3 の内側磁石 1 4は、 ピス トン 間で互いに同極同士が対向するように配置されている。 このため、 それぞれのビス トン 3は互いに反発する方向 (図 4における X方向 ) への力 (反発力) が作用する。 この反発力により、 それぞれのピ ス トン 3はシリ ンダ孔 1 0の内壁面に押圧され、 ピス トン 3のゥェ ァリ ング 9 とシリンダ孔内壁面 1 0 との間の摩擦力が増大し、 ビス トン 3 のスライ ドを開始させるためにシリ ンダ室 8 に供給すべき作 動流体の最低圧力 (最小作動圧力) が高くなる問題が生じる。
本実施形態では、 シリ ンダ孔 1 0 、 1 0間に磁性材料からなる部 材 2 2 を配置することにより上記問題を解決している。
本実施形態では、 磁性材料からなる部材 (以下、 「磁性材料部材 」 という) 2 2 として鉄製の薄板 (本実施形態では厚さ 0 . 1 m m 〜 0 . 3 m m程度) が使用され、 一対のシリンダ孔 1 0 、 1 0の間 にピス トンの全移動可能範囲をカバーするように配置されている。
シリンダチューブ 2内にはシリンダ孔 1 0 、 1 0間の位置に、 上 記磁性材料部材 2 2を収容するためのスリ ッ ト 2 5がシリンダチュ ーブ 2軸線方向に沿って形成されている。
磁性材料部材 2 2は、 その両側を非磁性材料 (本実施形態では合 成樹脂) からなるスぺーサ 2 3で挟んだ状態で上記スリ ッ ト 2 5内 に設置される。 図 4に示すように、 スリ ッ ト 2 5の上端と下端とに は、 スリ ッ ト 2 5の幅より大きな系の丸孔 2 4がそれぞれ形成され ており、 磁性材料部材 2 2 とスぺーサ 2 3 とを容易に挿入でき、 し かも挿入後にガ夕が生じないようにされている。
本実施形態では、 磁性材料部材 2 2 をシリンダ孔 1 0間に配置し たことにより、 その両側のピス トン 3の内側磁石 1 4相互間に作用 する反発力が低減されるとともに、 磁性材料部材 2 2 と内側磁石と の間に反発力方向 (図 4 X方向) とは逆方向 (図 4 Y方向) に向け て吸引力が作用するようになる。 このため、 磁性材料部材の厚さを 調節することにより ピス トン 3 に作用する反発力と吸引力とをバラ ンスさせ、 ピス トン 3のウエアリング 9 とシリンダ孔 1 0壁面との 間の面圧の調整を行う ことができる。
上記のように、 本実施形態では単一のシリンダチューブ 2内に一 対の真円形断面のシリンダ孔 1 0 を別個に形成することにより、 シ リンダチューブ 2の肉厚を実用レベルまで薄く した場合でもシリン ダ孔内に内圧が作用したときのシリ ンダチューブの歪みと応力とを 十分に小さくすることができる。 このため、 従来のようにピス トン とスライダ 4との間の磁気結合力を大幅に増大させるこどなく、 高 さの低い (厚みの薄い) 扁平タイプのマグネッ ト式ロッ ドレスシリ ンダを実用化することができる。 また、 複数のピス トン 3で一つの スライダ 4を駆動するようにしたため、 スライダ 4の駆動力 (シリ ンダ推力) を容易に増大することができる。
また、 本実施形態ではシリンダチューブ 2内にシリンダ 1 0、 1 0間に軸線方向に沿って磁性材料部材 2 2 としての鉄製の薄板をピ ス トン 3の全移動範囲をカバーするように配置したことにより、 ピ ス トン 3の内側磁石 1 4相互間に作用する反発力と各内側磁石 1 4 と磁性材料部材 2 2 との間に作用する吸引力とをバランスさせるこ とができる。
これにより、 各ピス トン 3のウエアリング 9 とシリンダ孔 1 0壁 面との間の面圧を適切な値に設定することが可能となり、 ウェアリ ング 9面圧増加による各ピストン 3の最小作動圧力の上昇を抑制す ること可能となり、 マグネッ ト式ロッ ドレスシリンダ 1 の耐久性の 向上を図ることができる。 また、 最小作動圧力を比較的低くできる ため、 シリンダチューブを扁平形状にした場合でも最大歪みや応力 の集中が小さくなる。
更に、 本実施形態では図 4に示すように磁性材料部材 2 2 (例え ば厚さ 0 . l m m〜 0 . 3 m mの鉄板) を、 その両面側に非磁性材 料からなるスぺ一サ 2 3 を介在させた状態でスリ ツ 卜 2 5内に設置 している。
例えばシリンダチューブ 2を押出し加工により成形した場合には 、 スリ ッ ト 2 5の幅をある程度 ( 2 . 0 m m〜 3 , 0 m m ) 以下に 形成することは困難である。 本実施形態では、 上記のようにスぺー サ 2 3 を用いてスリ ツ 卜 2 5内に磁性材料部材を保持するようにし ているため、 スリ ツ ト 2 5の幅より厚さの薄い磁性材料部材 2 2 を スリ ッ ト 2 5内に確実に保持することができる。
さらに、 この場合磁性材料部材 2 2の両側のスぺ一サ 2 3の厚み を変えることにより、 シリンダ孔 1 0間における磁性材料部材 2 2 の位置を精密に設定することができる。 このため、 スリ ッ ト 2 5の 設置位置の精度を低く設定してもピス トンウエアリ ング 9の面圧調 整には影響が生じないので、 加工コス トを低減することができる。
なお、 本発明のマグネッ ト式ロッ ドレスシリ ンダの構成は、 上記 実施形態の態様に何ら限定されるものではなく、 シリ ンダチューブ 、 ピス トン、 スライダ、 エンドキャップ、 磁性材料部材の材質、 形 状、 構造、 取付位置等の構成を、 本発明の精神を逸脱しない範囲で 、 必要に応じて適宜変更することができる。
例えば、 上記実施形態ではシリンダチューブは単一の部材として 構成されていたが、 シリンダチューブを複数の部品から組立てた構 成とすることも可能である。
図 5は、 複数部材からなる組立構造のシリンダチューブ 2 ' の一 例を示す断面図である。 なお、 図 5において、 図 1から図 4と同様 の要素については同一の参照符号を付して示している。 図 5に示すように、 シリンダチューブ 2 ' は、 それぞれ別体に成 形されたシリンダチューブ部材 (左側部材 2 aと右側部材 2 b ) を 互いに結合した組立て構造とされており、,左側部材 2 a及び右側部 材 2 bには、 それぞれシリンダ孔 1 0が穿設されている。
本実施形態では、 右側部材 2 bの左側部材 2 aとの接合面には、 シリンダ孔 1 0軸線方向に沿って凹部が設けられており、 左側'部材 2 aと接合した状態ではこの凹部が磁性材料部材 2 2を収容するス リ ッ ト 2 5 として機能する。
なお、 磁性材料部材 2 2は、 両方のシリンダチューブ部材 2 a、 2 bを連結した後に、 連結により形成されたスリ ッ ト 2 5に挿入す るようにしても良いし、 両方のシリンダチューブ部材 2 a、 2 bを 結合する前に予め右側部材 2 bの凹部に嵌装して置いても良い。 左側部材 2 a及び右側部材 2 bには、 係止凸条及び他方の係止突 条と係合可能な係合溝がそれぞれ設けられており、 それぞれの係止 突条と係合溝とを係合させることにより両部材 2 a、 2 bは接合さ れる。
上記のように、 組立て構造のシリ ンダチューブ 2 ' を用いること により、 押出し成形によりシリンダチューブを製作する場合に、 個 々のシリンダチューブ部材 2 a、 2 bを別々に成形することができ る。 このため、 全体を一度に押出し成形する場合に比べて寸法精度 を向上させることが可能となり、 幅の狭いスリ ッ ト 2 5をを設ける ことが容易になる利点がある。 また、 この場合、 押出し成型用の金 型が製作容易となるとともに、 成形された部材 2 a、 2 bの内外面 の表面粗さや寸法精度を向上させることができる利点もある。 この ため、 スリ ッ ト 2 5の幅を狭くすることによりスぺーサを省略する ことも可能となる。
また、 上記各実施形態では磁性材料部材 2 2 として厚さ 0 . l m m 0 . 3 m mの鉄板を利用しているが、 磁性材料部材 2 2の形状
、 種類はこれに限定されるわけではない。
例えば、 磁性材料部材 2 2としてもつと厚さの大きい鉄板を使用 する とも可能であるし、 或は金網や磁性材料粉 (例えば鉄粉など
) を含有した合成樹脂で磁性材料部材 2 2 を形成することも可能で ある o また、 鉄板以外の磁性体を使用して磁性材料部材 2 2 を構成 する とも可能であることは言うまでもない。
さらに、 スぺーサとしては合成樹脂以外の材料、 例えばアルミ二 ゥム等の非磁性材料を使用することも可能である。
更に 、 上記各実施形態ではシリンダ孔間には単一の磁性材料部材 を配置しているが、 シリ ンダ孔間に配置する磁性材料部材の数は 2 つまたはそれ以上であっても良い。
また 、 逆にシリンダチューブ内に 3つ以上のシリ ンダ孔を設ける
+ 八口には、 必ずしも全部のシリ ンダ孔間に磁性材料部材を配置する 必要はない。
Wに 、 上記各実施形態では単一のシリ ンダチューブ内に複数のシ リ ンダ孔を形成した場合を例にとって説明しているが、 本発明はそ れぞれ一つのシリ ンダ孔が内部に形成されたシリンダチューブを複 数本並列に配置するような場合にも適用可能であることは言うまで もない。

Claims

1 . 非磁性体からなるシリンダチューブと、
該シリンダチューブ内に設けたシリ ンダ孔にシリンダチューブ軸 線方向に移動可能に配置されたピス トンと、
前記シリンダチューブ外周面に沿ってシリンダチューブ軸線方向 請
に移動可能に配置された非磁性体からなるスライダと、
前記ピス トンに配置された内側磁石と、 前記スライダに配置され 前記内側磁石との間に磁気吸引力を生じさせる外側磁石または磁性 体とを備え、 前記磁気吸引力によって前記ピス トンの移動に前記ス ライダが追従するようにしたマグネッ ト式ロッ ドレスシリンダにお 囲
いて、
前記シリ ンダ孔とピス トンとを複数組並列に備え、 これらのうち 少なく とも一対の隣接したシリンダ孔間にシリ ンダ孔軸線方向に沿 つて磁性材料からなる部材を配置したことを特徴とするマグネッ 卜 式ロッ ドレスシリンダ。
2 . 前記複数のシリンダ孔は単一のシリ ンダチューブ内に形成さ れ、 前記磁性材料からなる部材は前記単一のシリンダチューブ内に 配置されていることを特徴とする、 請求項 1 に記載のマグネッ ト式 ロッ ドレスシリ ンダ。
3 . 前記シリンダチューブは、 それぞれが少なく とも 1つのシリ ンダ孔を備えた複数のシリンダチューブ部材を互いに結合すること により構成され、 前記シリンダチューブ部材相互の結合部に前記磁 性材料部材を収容する凹部を備えたことを特徴とする、 請求項 1 ま たは 2に記載のマグネッ ト式ロッ ドレスシリンダ。
4 . 前記磁性材料部材とシリンダ孔との間に非磁性材料からなる スぺーサを配置したことを特徴とする請求項 1 〜 3のいずれか 1項 に記載のマグネッ ト式ロッ ドレスシリ ンダ。
5 . 前記磁性材料部材を磁性金属粉を含有する合成樹脂により形 成したことを特徴とする、 請求項 1〜 3のいずれか 1項に記載のマ グネッ ト式ロッ ドレスシリンダ。
PCT/JP2005/022133 2005-03-15 2005-11-25 マグネット式ロッドレスシリンダ WO2006098062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800491074A CN101213377B (zh) 2005-03-15 2005-11-25 磁铁式无杆缸
US11/886,312 US7669515B2 (en) 2005-03-15 2005-11-25 Magnet type rodless cylinder
EP05811318A EP1860329B8 (en) 2005-03-15 2005-11-25 Magnet-type rodless cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005073518A JP4813812B2 (ja) 2005-03-15 2005-03-15 マグネット式ロッドレスシリンダ
JP2005-073518 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098062A1 true WO2006098062A1 (ja) 2006-09-21

Family

ID=36991419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022133 WO2006098062A1 (ja) 2005-03-15 2005-11-25 マグネット式ロッドレスシリンダ

Country Status (7)

Country Link
US (1) US7669515B2 (ja)
EP (1) EP1860329B8 (ja)
JP (1) JP4813812B2 (ja)
KR (1) KR20070106774A (ja)
CN (1) CN101213377B (ja)
TW (1) TWI302186B (ja)
WO (1) WO2006098062A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773249B2 (ja) * 2006-04-07 2011-09-14 株式会社コガネイ マグネット式ロッドレスシリンダ
GB2476496A (en) * 2009-12-24 2011-06-29 Libertine Fpe Ltd Piston for an engine generator, eg a free piston engine
CN108061074B (zh) * 2016-11-09 2019-11-08 英属开曼群岛商亚德客国际股份有限公司 无杆缸

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893378A (en) 1973-11-23 1975-07-08 Delbert C Hewitt Double acting fluid cylinder
JPS60172711A (ja) 1983-11-08 1985-09-06 ヒグラマ・アクチエンゲゼルシヤフト 圧力媒体シリンダ
JPH04113305U (ja) 1991-03-22 1992-10-02 株式会社コガネイ 磁石式シリンダ装置
JPH04357310A (ja) 1991-04-09 1992-12-10 Koganei:Kk 磁石式シリンダ装置
JP2514499Y2 (ja) 1989-09-08 1996-10-16 シーケーデイ 株式会社 ロツドレスシリンダ
JPH09217708A (ja) 1996-02-15 1997-08-19 Ckd Corp 流体圧シリンダ装置
JPH11336708A (ja) * 1998-05-22 1999-12-07 Ckd Corp ロッドレスシリンダ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2165004B (en) * 1984-09-27 1987-11-11 British Nuclear Fuels Plc Improvements in or relating to fluid operated devices for moving articles
JPH04113305A (ja) 1990-09-03 1992-04-14 Brother Ind Ltd 焦点合わせ装置
JPH07112566B2 (ja) * 1991-07-01 1995-12-06 昭和アルミニウム株式会社 半中空押出型材の製造方法
JP2514499B2 (ja) 1991-09-12 1996-07-10 名古屋鉄道株式会社 レ―ルの遊間測定方法とレ―ル長測定方法
JP3778217B2 (ja) * 1993-10-12 2006-05-24 Smc株式会社 スライドテーブル付アクチュエータ
JP3497901B2 (ja) * 1994-11-10 2004-02-16 Smc株式会社 ロッドレスシリンダ
JP3037593B2 (ja) * 1995-09-08 2000-04-24 シーケーディ株式会社 ガイド付きシリンダ
JP3511761B2 (ja) * 1995-10-20 2004-03-29 豊和工業株式会社 ロッドレスシリンダ
JPH10131911A (ja) * 1996-10-28 1998-05-22 Koganei Corp 流体圧シリンダ
JP3370542B2 (ja) * 1997-02-28 2003-01-27 シーケーディ株式会社 流体圧アクチュエータ
TW396249B (en) * 1998-01-20 2000-07-01 Someya Mitsuhiro Rodless cylinder
DE29815317U1 (de) * 1998-08-26 1998-11-12 Festo AG & Co, 73734 Esslingen Kolbenstangenloser fluidbetätigter Linearantrieb
JP2001330009A (ja) * 2000-05-23 2001-11-30 Toyota Suruzaa Kk シリンダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893378A (en) 1973-11-23 1975-07-08 Delbert C Hewitt Double acting fluid cylinder
JPS60172711A (ja) 1983-11-08 1985-09-06 ヒグラマ・アクチエンゲゼルシヤフト 圧力媒体シリンダ
JP2514499Y2 (ja) 1989-09-08 1996-10-16 シーケーデイ 株式会社 ロツドレスシリンダ
JPH04113305U (ja) 1991-03-22 1992-10-02 株式会社コガネイ 磁石式シリンダ装置
JPH04357310A (ja) 1991-04-09 1992-12-10 Koganei:Kk 磁石式シリンダ装置
JPH09217708A (ja) 1996-02-15 1997-08-19 Ckd Corp 流体圧シリンダ装置
JPH11336708A (ja) * 1998-05-22 1999-12-07 Ckd Corp ロッドレスシリンダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860329A4

Also Published As

Publication number Publication date
US20080141856A1 (en) 2008-06-19
CN101213377A (zh) 2008-07-02
TW200632238A (en) 2006-09-16
JP2006258134A (ja) 2006-09-28
JP4813812B2 (ja) 2011-11-09
TWI302186B (en) 2008-10-21
EP1860329A1 (en) 2007-11-28
EP1860329B8 (en) 2012-09-19
EP1860329A4 (en) 2010-09-29
KR20070106774A (ko) 2007-11-05
US7669515B2 (en) 2010-03-02
EP1860329B1 (en) 2012-04-18
CN101213377B (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
KR101860340B1 (ko) 왕복동식 압축기
CN1756054A (zh) 共振驱动致动器
US7644648B2 (en) Magnet type rodless cylinder
KR101397083B1 (ko) 왕복동 모터 및 이를 구비한 왕복동식 압축기
WO2006098062A1 (ja) マグネット式ロッドレスシリンダ
CN1372371A (zh) 往复压缩机的电动机结构
KR100832732B1 (ko) 마그넷식 로드리스 실린더
JP4773249B2 (ja) マグネット式ロッドレスシリンダ
US7194949B2 (en) Magnet type rodless cylinder
KR101970580B1 (ko) 리니어 모터 및 압축기
JP5068344B2 (ja) ポンプ
US6308614B1 (en) Actuator device
EP2878818A1 (en) Permanent magnet linear piston pump
CN217842188U (zh) 一种薄型多倍力气缸
KR20090085674A (ko) 로드리스실린더장치
JP4962263B2 (ja) ガイド付マグネット式ロッドレスシリンダ
JP2023520292A (ja) 電子膨張弁及び電子膨張弁の製造方法
JPH05340348A (ja) マイクロピストン
CN103299077A (zh) 用于压缩机的壳体
JP2000337310A (ja) アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077020963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005811318

Country of ref document: EP

Ref document number: 11886312

Country of ref document: US

Ref document number: 200580049107.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005811318

Country of ref document: EP