WO2006097993A1 - Liquid crystal display device and method for manufacturing liquid crystal display device - Google Patents

Liquid crystal display device and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
WO2006097993A1
WO2006097993A1 PCT/JP2005/004466 JP2005004466W WO2006097993A1 WO 2006097993 A1 WO2006097993 A1 WO 2006097993A1 JP 2005004466 W JP2005004466 W JP 2005004466W WO 2006097993 A1 WO2006097993 A1 WO 2006097993A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
type spacer
display device
crystal display
spacer
Prior art date
Application number
PCT/JP2005/004466
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Tadaki
Yoshinori Kiyota
Toshiaki Yoshihara
Hironori Shiroto
Tetsuya Makino
Keiichi Betsui
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/004466 priority Critical patent/WO2006097993A1/en
Priority to JP2007507963A priority patent/JPWO2006097993A1/en
Priority to CN2005800490955A priority patent/CN101142516B/en
Publication of WO2006097993A1 publication Critical patent/WO2006097993A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars

Definitions

  • Liquid crystal display device and method of manufacturing liquid crystal display device are Liquid crystal display device and method of manufacturing liquid crystal display device
  • the present invention relates to a liquid crystal display device that performs image display by controlling light transmittance of a liquid crystal material by applying a voltage, and a method for manufacturing a liquid crystal display device, and in particular, maintains a gap between opposing substrates.
  • the present invention relates to a liquid crystal display device that defines the characteristics of a spacer for the purpose and a method for manufacturing the liquid crystal display device.
  • liquid crystal display devices are widely used in various devices because of their low power consumption and portability.
  • disadvantages include low response speed and poor color reproducibility due to the use of color filters.
  • a liquid crystal display device using a strong dielectric liquid crystal has been developed.
  • Patent Document 1 JP 2000-89232 A
  • the uniform orientation state of the Sc * phase is the isotropic phase (Iso phase), one-strength irrnematic phase (N * phase), one-stral irrus metatic C phase (Sc * phase)
  • Iso phase isotropic phase
  • N * phase one-strength irrnematic phase
  • Sc * phase one-stral irrus metatic C phase
  • Patent Document 1 describes a method capable of controlling a cell gap in an expanding direction using a spacer having adhesiveness, and performing highly precise cell gap control.
  • the volume of liquid crystal sealed in the cell gap is determined when the liquid crystal is injected.
  • the difference from the space maintained by the pacer Stress the liquid crystal.
  • adhesive spacers are provided at high density, defects such as voids occur due to differences in the linear expansion coefficient and compression elasticity between the display area and the seal portion, and the display characteristics are remarkably increased. to degrade.
  • the area of the spacer provided in the display area Is increased cracks from the seal part or alignment defects due to stress invade the display area during the cooling process after the alignment process due to differences in the linear expansion coefficient and compression modulus between the display area and the seal part.
  • This alignment defect may disappear with time, but it easily occurs due to a temperature change and deteriorates the display quality.
  • the present invention has been made in view of such circumstances, and has a plurality of types having specific physical properties (linear expansion coefficient, compression elastic modulus, and glass transition temperature) that can favorably follow the temperature change of liquid crystal.
  • An object of the present invention is to provide a liquid crystal display device capable of reducing alignment stress by reducing the stress generated in the liquid crystal by using the spacer.
  • Another object of the present invention is to satisfactorily follow the change in the shape of the spacer with the change in the temperature of the liquid crystal by defining the glass transition temperatures of the plurality of types of spacers according to the temperature in the manufacturing process.
  • Another object of the present invention is to provide a method of manufacturing a liquid crystal display device that can reduce stress generated in liquid crystal and suppress alignment defects.
  • a liquid crystal material is sealed in a gap between opposed substrates, and a plurality of types of spacers are provided to maintain the gap between the substrates.
  • the plurality of types of spacers have a linear expansion coefficient of lOOppm or more and a pressure.
  • the glass transition temperature of the spacer is higher than the glass transition temperature of the second type spacer.
  • the first type spacer having a high glass transition temperature is used for maintaining a gap (cell gap) between the substrates, and the glass transition temperature is low.
  • a seed spacer is used to bond the substrates.
  • type 1 spacers linear expansion coefficient: lOOppm or more, compression modulus: lOOMPa or more
  • type 2 spacers linear expansion coefficient: 20 Oppm or more, compression modulus: lOOMPa or more
  • it is made of a material close to the physical properties (linear expansion coefficient, compression modulus), it is easy to follow the temperature change of the liquid crystal material. Therefore, stress on the liquid crystal material is reduced and alignment defects are less likely to occur.
  • the liquid crystal display device according to the present invention is characterized in that the first type spacer has a linear expansion coefficient of 300 ppm or more.
  • the liquid crystal display device is characterized in that the first type spacer has a compressive elastic modulus of 500 MPa or more.
  • the second type spacer has a linear expansion coefficient of 300 ppm or more.
  • the second type spacer has a compressive elastic modulus of 500 MPa or more.
  • the first type spacer has a linear expansion coefficient of 300 ppm or more and a compressive elastic modulus of 500 MPa or more.
  • the second type spacer has a linear expansion coefficient. Is preferably 30 Oppm or more, and its compression modulus is 500 MPa or more.
  • the liquid crystal display device is characterized in that the first-type spacer and the second-type spacer are stacked.
  • the first-type spacer and the second-type spacer are laminated. Therefore, the area occupied by the spacer is reduced and the effective display area is widened.
  • a method for manufacturing a liquid crystal display device includes a plurality of types of spacers including a first type spacer and a second type spacer having a glass transition temperature lower than that of the first type spacer.
  • a method of manufacturing a liquid crystal display device in which a plurality of substrates are bonded together with a liquid crystal material injected into a gap between the substrates, and the temperature at which the substrates are bonded is set to the first type spacer.
  • the glass transition temperature is lower than the glass transition temperature of the second type spacer, and the temperature at which the liquid crystal material is injected is higher than the glass transition temperature of the second type spacer.
  • the temperature at which the substrates are bonded is set lower than the glass transition temperature of the first type spacer having a high glass transition temperature. Therefore, since the substrates are supported by the first type spacer when the substrates are bonded, the cell structure is not crushed and a predetermined gap is maintained between the opposing substrates. Also, the temperature at which the liquid crystal material is injected is set higher than the glass transition temperature of the type 2 spacer having a low glass transition temperature. In general, the linear expansion coefficient above the glass transition temperature is larger than the linear expansion coefficient below the glass transition temperature, so the cell gap is large until a phase transition occurs after the liquid crystal material is injected. It changes in. Therefore, the type 2 spacer with the glass transition temperature lower than the temperature at the time of injection follows the transition of the large linear expansion coefficient of the liquid crystal material. Therefore
  • the method for manufacturing a liquid crystal display device according to the present invention is characterized in that a glass transition temperature of the second type spacer is not more than a phase transition temperature of the liquid crystal material.
  • the second type spacer whose glass transition temperature is lower than or equal to the phase transition temperature of the liquid crystal material is the same as that of the liquid crystal material. It becomes easier to follow the temperature change.
  • the first type spacer has a linear expansion coefficient of lOOppm or more and a compression elastic modulus of lOOMPa or more
  • the second type spacer is It is characterized by a linear expansion coefficient of 200 ppm or more and a compressive elastic modulus of lOOMPa or more.
  • the linear expansion coefficient and the compressive elastic modulus of the first type spacer are set to lOOppm or more and lOOMPa or more so as to approach the physical properties of the liquid crystal material.
  • the linear expansion coefficient and compression modulus of the type 2 spacer shall be 200 ppm or more and lOOMPa or more.
  • the method for manufacturing a liquid crystal display device according to the present invention is characterized in that the second type spacer exhibits adhesiveness after the substrates are bonded together.
  • the first-type spacer and the first-type spacers having different glass transition temperatures.
  • the physical properties (linear expansion coefficient, compressive modulus) of the two types of spacers are made easy to follow the temperature changes of the liquid crystal material, so stress on the liquid crystal material can be reduced and orientation defects can be reduced. Occurrence can be suppressed.
  • the temperature at which the substrates are bonded is set lower than the glass transition temperature of the first type spacer, and the temperature at which the liquid crystal material is injected is set to the first temperature.
  • the predetermined cell gap can be maintained at the time of bonding, and the type 2 spacer can easily follow the temperature change of the liquid crystal material.
  • the stress on the liquid crystal can be reduced and the occurrence of alignment defects can be suppressed.
  • the glass transition temperature of the type 2 spacer is set to be equal to or lower than the phase transition temperature of the liquid crystal material, good follow-up to the temperature change of the liquid crystal material can be performed even in the vicinity of the phase transition.
  • the type 2 spacer exhibits adhesiveness after the substrates are bonded together, it is possible to control the cell gap in the expanding direction.
  • the area occupied by the spacer can be increased as compared with the case where a conventional spacer is used, and a large panel strength and excellent display quality can be realized.
  • FIG. 1 is a cross-sectional view showing a liquid crystal panel of a liquid crystal display device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a cell state when substrates are bonded together in the method for manufacturing a liquid crystal display device of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a cell state at the time of liquid crystal injection in the method for manufacturing a liquid crystal display device of the present invention.
  • FIG. 4 is a cross-sectional view showing a liquid crystal panel of another example of the liquid crystal display device according to the present invention. Explanation of symbols
  • FIG. 1 is a cross-sectional view showing a liquid crystal panel 1 of a liquid crystal display device according to the present invention.
  • the liquid crystal panel 1 includes a flat electrode layer 2 and pixel electrodes 4 arranged in a matrix via contact holes 3 and TFTs connected to the pixel electrodes 4 (not shown).
  • An alignment film 8 and an alignment film 9 are provided on the pixel electrode 4 and the common electrode 6, respectively.
  • type 1 spacer 10 and type 2 spacer Support 11 is provided.
  • the glass transition temperature of the first type spacer 10 (about 150 ° C) is higher than the glass transition temperature of the second type spacer 11 (about 100 ° C).
  • the linear expansion coefficient of the first type spacer 10 is lOOppm or more, more preferably 300ppm or more, and the compression modulus of the first type spacer 10 is lOOMPa or more, more preferably 500MPa or more. is there.
  • the linear expansion coefficient of the type 2 spacer 11 is 200 ppm or more, more preferably 300 ppm or more, and the compression modulus of the type 2 spacer 11 is lOOMPa or more, more preferably 500 MPa or more.
  • These spacers 10 and 11 and a seal form a gap having a predetermined length between the glass substrates 5 and 7, and a ferroelectric liquid crystal is sealed in the gap to form a liquid crystal layer. 12 is formed.
  • a polarizing plate 13 and a polarizing plate 14 are provided on the outer surfaces of the glass substrate 5 and the glass substrate 7, respectively.
  • a flat resin layer 2 is provided on one glass substrate 5 having TFTs, contact holes 3 are formed, ITO is formed, and pixel electrodes 4 are formed by patterning.
  • the first type spacer 10 is formed, and the alignment film 8 is provided.
  • a common electrode 6 is formed by depositing ITO on the other glass substrate 7, and an alignment film 9 is provided.
  • the second type spacer 11 is formed on the glass substrate 5. After the glass substrates 5 and 7 are rubbed, a seal is formed on the glass substrate 7 and the glass substrates 5 and 7 are bonded together.
  • the temperature at which this bonding is performed (about 135 ° C) is set lower than the glass transition temperature of the first type spacer 10. Therefore, even if an external force is applied as shown in FIG. 2, the first-type spacer 10 functions as a stopper due to its rigidity, so that the cell structure is maintained and a predetermined length of cell gap is maintained. Thus, the first type spacer 10 having a high glass transition temperature functions to maintain a cell gap at the time of bonding.
  • the liquid crystal material such as the inlet
  • the liquid crystal material is heated and pressurized and injected into the empty panel thus manufactured, and after the injection is completed, it is cooled to room temperature and the inlet is sealed. After warming up to the phase transition temperature, orientation treatment is performed by applying a direct current voltage, and then cooled to room temperature again.
  • the temperature at which this liquid crystal material is injected (about 110 ° C.) is set higher than the glass transition temperature of the second type spacer 11. Therefore, as shown in FIG. 3, when the liquid crystal material is injected, the cell gap having a predetermined length is maintained by the second type spacer 11 having a large linear expansion coefficient.
  • the glass transition temperature of the type 2 spacer 11 is lower than the phase transition temperature of the liquid crystal material. Therefore, in the cooling process after the injection, the type 2 spacer 11 does not exceed the glass transition temperature until the liquid crystal material undergoes a phase transition, and therefore changes with a large linear expansion coefficient. As a result, the stress on the liquid crystal material is reduced.
  • FIG. 4 is a cross-sectional view showing a liquid crystal panel 1 of another example of the liquid crystal display device according to the present invention.
  • this example also achieves the same effect as the above-described example.
  • the area occupied by the spacer can be reduced, the effective display area can be expanded.
  • Examples 1 and 2 correspond to the configuration example shown in FIG. 1
  • Example 3 corresponds to the configuration example shown in FIG.
  • a flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having a TFT, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning.
  • a first type spacer 10 having a linear expansion coefficient of 335 ppm, a compression modulus of 590 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 5% and a height of 1.8 m.
  • An alignment film 8 was formed by Z firing.
  • a common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
  • the second-type spacer 11 is made of a glass substrate with an area ratio of 5% using an acrylic resist having a linear expansion coefficient after curing of 249 ppm, a compression modulus of 339 MPa, and a glass transition temperature of 108 ° C. After forming to 5 and pre-curing at 100 ° C for 10 minutes, it was rubbed. In addition, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and fired at 135 ° C for 90 minutes to produce an empty panel.
  • Monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure, and after injection was completed, it was cooled to room temperature and the injection port was sealed. .
  • This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
  • a flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having a TFT, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning.
  • a first type spacer 10 having a linear expansion coefficient of 529 ppm, a compressive elastic modulus of 58 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 5% and a height of 1.
  • a polyimide film is formed.
  • An alignment film 8 was formed by Z firing.
  • a common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
  • the second-spacer 11 is made of a glass substrate with an area ratio of 5% by an acrylic resist having a linear expansion coefficient after curing of 330 ppm, a compression modulus of 310 MPa, and a glass transition temperature of 108 ° C. After forming to 5 and pre-curing at 100 ° C for 10 minutes, it was rubbed. In addition, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and fired at 135 ° C for 90 minutes to produce an empty panel.
  • a monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel. After the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
  • a flat resin layer 2 with a thickness of 2.5 m is provided on one glass substrate 5 with TFT, After forming the tato hole 3, ITO was deposited and the pixel electrode 4 was formed by patterning. Next, a first type spacer 10 having a linear expansion coefficient of 335 ppm, a compression elastic modulus of 590 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 10% and a height of 1. Further, a polyimide film is formed. An alignment film 8 was formed by Z firing. A common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
  • the second type spacer 11 has already been formed of an acrylic resist having a linear expansion coefficient after curing of 249 ppm, a compression modulus of 339 MPa, and a glass transition temperature force S of 108 ° C. It was formed on a type 1 spacer 10 at an area ratio of 2%, pre-cured at 100 ° C. for 10 minutes, and then subjected to a rubbing treatment. Further, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
  • Monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure, and after the injection was completed, it was cooled to room temperature and the injection port was sealed. .
  • This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
  • a flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having TFTs, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning.
  • a spacer having a linear expansion coefficient of 63 ppm, a compressive modulus of 934 MPa, and a glass transition temperature of 200 ° C. (corresponding to the first type spacer 10 of the present invention) is obtained with an area ratio of 5% and a height of 1
  • the film was formed with a thickness of 8 ⁇ m, and a polyimide film was formed.
  • ITO film is formed on the other glass substrate 7 to form the common electrode 6, and polyimide film is also formed by Z firing.
  • An alignment film 9 was formed.
  • Both glass substrates 5 and 7 were rubbed with a rayon puff. Furthermore, adhesive beads (corresponding to type 2 spacer 11 of the present invention) having an average particle diameter of about 4 ⁇ m and a linear expansion coefficient of 61 ppm, a compression modulus of 256 MPa, and a glass transition temperature of 100 ° C. It was sprayed on the glass substrate 5 in the density of about 100 ZMM 2. Further, a seal was formed on the glass substrate 7 and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was enclosed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
  • a monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel, and after the injection was completed, it was cooled to room temperature and the injection port was sealed. .
  • This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
  • a flat resin layer 2 having a thickness of 2.5 m is provided on one glass substrate 5 having a TFT, a contact hole 3 is formed, an ITO film is formed, and a pixel electrode 4 is formed by patterning. Further, an alignment film 8 was formed by film formation Z baking of polyimide. ITO was formed on the other glass substrate 7 to form the common electrode 6, and the alignment film 9 was formed by the same film formation Z firing of polyimide. Both glass substrates 5 and 7 were rubbed with a rayon puff.
  • Silica beads with a particle size of 1. 8 / zm (corresponding to type 1 spacer 10), an average particle size of 61ppm linear compression coefficient, 256MPa compressive modulus, 100 ° C glass transition temperature
  • About 4 ⁇ m adhesive beads (corresponding to the second type spacer 11) were sprayed on the glass substrate 5 with a density of about 100 Zmm 2 each. Further, a seal was formed on the glass substrate 7, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
  • a monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel. After the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel is heated to a chiral nematic state, and before and after the N *-Sc * transition temperature, Orientation treatment was performed by applying a DC voltage of 12V between the cells. From this state, it was gradually cooled to room temperature.
  • a flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having TFTs, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning.
  • a spacer with a linear expansion coefficient of 335ppm, a compression modulus of 590MPa, and a glass transition temperature of 150 ° C is formed with an area ratio of 5% and a height of 1.
  • an alignment film 8 was formed by polyimide film Z firing.
  • a common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing. Both glass substrates 5 and 7 were rubbed with a rayon puff.
  • a monostable ferroelectric liquid crystal was heated to a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure. After the injection was completed, the injection port was sealed by cooling to room temperature. .
  • This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature. In this liquid crystal panel, alignment defects did not occur in the liquid crystal layer direction immediately after the alignment treatment. In addition, even when the temperature changed, alignment defects did not occur.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

Two types of spacers [a first type spacer (10) and a second type spacer (11)] having different materials and different physical properties are provided between glass substrates (5 and 7) for securing a cell gap being uniform in-plain. The first type spacer (10) has a glass transition temperature (approximately 150˚C) higher than that (approximately 100˚C) of the second spacer (11). The first type spacer (10) has a linear expansion coefficient of 100 ppm or more and a compressive elasticity of 100 MPa or more. The second type spacer (11) has a linear expansion coefficient of 200 ppm or more and a compressive elasticity of 100 MPa or more. The glass substrates (5 and 7) are combined at a temperature lower than the glass transition temperature of the first type spacer (10), and a liquid crystalline material is injected at a temperature higher than the glass transition temperature of the second type spacer.

Description

液晶表示装置及び液晶表示装置の製造方法  Liquid crystal display device and method of manufacturing liquid crystal display device
技術分野  Technical field
[0001] 本発明は、電圧印加による液晶材料の光透過率を制御して画像表示を行う液晶表 示装置、及び液晶表示装置の製造方法に関し、特に、対向する基板間の空隙を維 持するためのスぺーサの特性を規定した液晶表示装置及び液晶表示装置の製造方 法に関する。  TECHNICAL FIELD [0001] The present invention relates to a liquid crystal display device that performs image display by controlling light transmittance of a liquid crystal material by applying a voltage, and a method for manufacturing a liquid crystal display device, and in particular, maintains a gap between opposing substrates. The present invention relates to a liquid crystal display device that defines the characteristics of a spacer for the purpose and a method for manufacturing the liquid crystal display device.
背景技術  Background art
[0002] 近年、液晶表示装置は、その低消費電力性、携帯性などから各種の機器に広く使 用されている。一方、欠点として、応答速度が遅いこと、カラーフィルタを用いることに より色再現性が悪いことなどが挙げられる。これらの欠点を解決する技術として、強誘 電性液晶を用いた液晶表示装置が開発されて 、る。  In recent years, liquid crystal display devices are widely used in various devices because of their low power consumption and portability. On the other hand, disadvantages include low response speed and poor color reproducibility due to the use of color filters. As a technique for solving these drawbacks, a liquid crystal display device using a strong dielectric liquid crystal has been developed.
[0003] カイラルスメタティック C相 (Sc *相)を用いた強誘電性液晶パネルは、高速な応答 性及び高精細な表示を実現できるデバイスとして研究が進められている。ところが、 S c *相は層構造を有するので、外力に対して容易に配向状態が破壊されてしまうと 、 う欠点がある。このため基板間の空隙 (セルギャップ)を維持できるように、柱状または 球状のスぺーサを設けることが行われている (例えば、特許文献 1参照)。  [0003] Ferroelectric liquid crystal panels using chiral smetatic C phase (Sc * phase) are being researched as devices that can realize high-speed response and high-definition display. However, since the S c * phase has a layer structure, there is a drawback in that the orientation state is easily destroyed by an external force. For this reason, columnar or spherical spacers are provided so as to maintain a gap (cell gap) between the substrates (see, for example, Patent Document 1).
特許文献 1:特開 2000-89232号公報  Patent Document 1: JP 2000-89232 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] Sc *相の一様な配向状態は、相転移系列が等方相(Iso相)一力イラルネマティック 相(N *相)一力イラルスメタティック C相 (Sc *相)である場合、 N *相から Sc *相へ の相転移時に DC電圧を印加することにより得られる。この相転移の際の体積収縮と 、 Sc *相及びパネル構成部材 (特に、スぺーサ)間の線膨張係数の差とにより、液晶 にストレスが加わり、配向欠陥が発生することがある。  [0004] The uniform orientation state of the Sc * phase is the isotropic phase (Iso phase), one-strength irrnematic phase (N * phase), one-stral irrus metatic C phase (Sc * phase) In this case, it is obtained by applying a DC voltage during the phase transition from the N * phase to the Sc * phase. Due to the volume shrinkage during this phase transition and the difference in linear expansion coefficient between the Sc * phase and the panel components (especially spacers), stress may be applied to the liquid crystal and alignment defects may occur.
[0005] 接着性を有さな!/、スぺーサを用いた場合、スぺーサの密度または面積を大きくする ことにより、セルギャップが縮小する方向にはある程度の空隙保持が可能であるが、 拡大する方向にはセルギャップの制御を行えない。また、スぺーサの膜厚ムラのため に、部分的な強度低下を起こすという問題がある。そこで、特許文献 1には、接着性 を有するスぺーサを用いて、拡大する方向にもセルギャップの制御を可能とし、高精 細なセルギャップ制御を行える方法が記載されている。 [0005] When the spacer is used! /, When the spacer is used, it is possible to maintain a certain amount of voids in the direction in which the cell gap is reduced by increasing the density or area of the spacer. , The cell gap cannot be controlled in the expanding direction. In addition, there is a problem that the strength of the spacer is partially reduced due to uneven film thickness of the spacer. Therefore, Patent Document 1 describes a method capable of controlling a cell gap in an expanding direction using a spacer having adhesiveness, and performing highly precise cell gap control.
[0006] しカゝしながら、接着性のスぺーサを使用した場合、セルギャップに封入される液晶 の体積が液晶注入時に決定されるため、温度変化時に、液晶の体積変化と接着性 スぺーサにより維持される空間との差力 液晶にストレスを与える。特に、接着性スぺ ーサを高密度に設けた場合には、表示領域とシール部分との線膨張係数,圧縮弾 性率の差などによって空隙等の欠陥が発生して、表示特性が著しく劣化する。  [0006] However, when an adhesive spacer is used, the volume of liquid crystal sealed in the cell gap is determined when the liquid crystal is injected. The difference from the space maintained by the pacer Stress the liquid crystal. In particular, when adhesive spacers are provided at high density, defects such as voids occur due to differences in the linear expansion coefficient and compression elasticity between the display area and the seal portion, and the display characteristics are remarkably increased. to degrade.
[0007] また、 2枚の基板同士が周辺シール材及び熱硬化性の接着剤により接着され、強 誘電性液晶が封入されている液晶パネルにあって、表示領域に設けるスぺーサの面 積を大きくした場合、表示領域とシール部分との線膨張係数,圧縮弾性率の差など により、配向処理後の冷却過程でシール部分からの亀裂、またはストレスに起因する 配向欠陥が表示領域に侵入し、画質低下を引き起こす。また、この配向欠陥は、経 時的に消滅する場合もあるが、温度変化によって容易に発生し、表示品質を悪化さ せている。 [0007] Further, in the liquid crystal panel in which the two substrates are bonded to each other by a peripheral sealing material and a thermosetting adhesive and the ferroelectric liquid crystal is sealed, the area of the spacer provided in the display area Is increased, cracks from the seal part or alignment defects due to stress invade the display area during the cooling process after the alignment process due to differences in the linear expansion coefficient and compression modulus between the display area and the seal part. Cause image quality degradation. In addition, this alignment defect may disappear with time, but it easily occurs due to a temperature change and deteriorates the display quality.
[0008] 本発明は斯力る事情に鑑みてなされたものであり、液晶の温度変化に良好に追随 するような特定の物性 (線膨張係数,圧縮弾性率及びガラス転移温度)を有する複数 種のスぺーサを使用することにより、液晶に発生するストレスを低減して、配向欠陥を 抑制できる液晶表示装置を提供することを目的とする。  [0008] The present invention has been made in view of such circumstances, and has a plurality of types having specific physical properties (linear expansion coefficient, compression elastic modulus, and glass transition temperature) that can favorably follow the temperature change of liquid crystal. An object of the present invention is to provide a liquid crystal display device capable of reducing alignment stress by reducing the stress generated in the liquid crystal by using the spacer.
[0009] 本発明の他の目的は、複数種のスぺーサのガラス転移温度を製造工程での温度 に応じて規定することにより、スぺーサの形状変化を液晶の温度変化に良好に追随 させることができ、液晶に発生するストレスを低減して、配向欠陥を抑制できる液晶表 示装置の製造方法を提供することにある。  [0009] Another object of the present invention is to satisfactorily follow the change in the shape of the spacer with the change in the temperature of the liquid crystal by defining the glass transition temperatures of the plurality of types of spacers according to the temperature in the manufacturing process. Another object of the present invention is to provide a method of manufacturing a liquid crystal display device that can reduce stress generated in liquid crystal and suppress alignment defects.
課題を解決するための手段  Means for solving the problem
[0010] 本発明に係る液晶表示装置は、対向する基板間の空隙に液晶材料が封入されて おり、前記基板間の空隙を維持するための複数種のスぺーサを設けて 、る液晶表示 装置において、前記複数種のスぺーサは、線膨張係数が lOOppm以上であって圧 縮弾性率が lOOMPa以上である第 1種スぺーサと、線膨張係数が 200ppm以上で あって圧縮弾性率が lOOMPa以上である第 2種スぺーサとを含んでおり、前記第 1 種スぺーサのガラス転移温度が前記第 2種スぺーサのガラス転移温度より高いことを 特徴とする。 In the liquid crystal display device according to the present invention, a liquid crystal material is sealed in a gap between opposed substrates, and a plurality of types of spacers are provided to maintain the gap between the substrates. In the apparatus, the plurality of types of spacers have a linear expansion coefficient of lOOppm or more and a pressure. A first type spacer having a compressive modulus of lOOMPa or higher and a second type spacer having a linear expansion coefficient of 200 ppm or higher and a compressive modulus of lOOMPa or higher. The glass transition temperature of the spacer is higher than the glass transition temperature of the second type spacer.
[0011] 本発明の液晶表示装置にあっては、ガラス転移温度が高い第 1種スぺーサを基板 間の空隙 (セルギャップ)を維持するために使用し、ガラス転移温度が低 ヽ第 2種ス ぺーサを基板間の接着を行うために使用する。これらの第 1種スぺーサ (線膨張係数 : lOOppm以上,圧縮弾性率: lOOMPa以上)及び第 2種スぺーサ (線膨張係数: 20 Oppm以上,圧縮弾性率: lOOMPa以上)は、液晶材料の物性 (線膨張係数,圧縮 弾性率)に近い材料にて構成するため、液晶材料の温度変化に追随し易い。よって 、液晶材料に対するストレスが低減して、配向欠陥は発生しにくい。  In the liquid crystal display device of the present invention, the first type spacer having a high glass transition temperature is used for maintaining a gap (cell gap) between the substrates, and the glass transition temperature is low. A seed spacer is used to bond the substrates. These type 1 spacers (linear expansion coefficient: lOOppm or more, compression modulus: lOOMPa or more) and type 2 spacers (linear expansion coefficient: 20 Oppm or more, compression modulus: lOOMPa or more) are liquid crystal materials. Because it is made of a material close to the physical properties (linear expansion coefficient, compression modulus), it is easy to follow the temperature change of the liquid crystal material. Therefore, stress on the liquid crystal material is reduced and alignment defects are less likely to occur.
[0012] 本発明に係る液晶表示装置は、前記第 1種スぺーサの線膨張係数が 300ppm以 上であることを特徴とする。  The liquid crystal display device according to the present invention is characterized in that the first type spacer has a linear expansion coefficient of 300 ppm or more.
[0013] 本発明に係る液晶表示装置は、前記第 1種スぺーサの圧縮弾性率が 500MPa以 上であることを特徴とする。  The liquid crystal display device according to the present invention is characterized in that the first type spacer has a compressive elastic modulus of 500 MPa or more.
[0014] 本発明に係る液晶表示装置は、前記第 2種スぺーサの線膨張係数が 300ppm以 上であることを特徴とする。  In the liquid crystal display device according to the present invention, the second type spacer has a linear expansion coefficient of 300 ppm or more.
[0015] 本発明に係る液晶表示装置は、前記第 2種スぺーサの圧縮弾性率が 500MPa以 上であることを特徴とする。  In the liquid crystal display device according to the present invention, the second type spacer has a compressive elastic modulus of 500 MPa or more.
[0016] 第 1種スぺーサは、その線膨張係数が 300ppm以上であって、その圧縮弾性率が 500MPa以上であることが好ましぐまた、第 2種スぺーサは、その線膨張係数が 30 Oppm以上であって、その圧縮弾性率が 500MPa以上であることが好ましい。このよ うな物性を有するようにすれば、液晶材料の物性 (線膨張係数,圧縮弾性率)により 近くなるので、液晶材料に対するストレスは更に低減して、配向欠陥はより発生しにく くなる。  [0016] It is preferable that the first type spacer has a linear expansion coefficient of 300 ppm or more and a compressive elastic modulus of 500 MPa or more. Also, the second type spacer has a linear expansion coefficient. Is preferably 30 Oppm or more, and its compression modulus is 500 MPa or more. By having such physical properties, the physical properties (linear expansion coefficient, compressive elastic modulus) of the liquid crystal material become closer, so the stress on the liquid crystal material is further reduced and alignment defects are less likely to occur.
[0017] 本発明に係る液晶表示装置は、前記第 1種スぺーサ及び前記第 2種スぺーサを積 層していることを特徴とする。  The liquid crystal display device according to the present invention is characterized in that the first-type spacer and the second-type spacer are stacked.
[0018] 本発明の液晶表示装置にあっては、第 1種スぺーサ及び第 2種スぺーサを積層し て設けるため、スぺーサの占有面積が減少して有効表示領域は広くなる。 In the liquid crystal display device of the present invention, the first-type spacer and the second-type spacer are laminated. Therefore, the area occupied by the spacer is reduced and the effective display area is widened.
[0019] 本発明に係る液晶表示装置の製造方法は、第 1種スぺーサと該第 1種スぺーサより ガラス転移温度が低い第 2種スぺーサとを含む複数種のスぺーサを介在させて複数 の基板を貼り合わせ、前記基板間の空隙に液晶材料を注入する液晶表示装置の製 造方法であって、前記基板を貼り合わせるときの温度を、前記第 1種スぺーサのガラ ス転移温度より低くし、前記液晶材料を注入するときの温度を、前記第 2種スぺーサ のガラス転移温度より高くすることを特徴とする。  [0019] A method for manufacturing a liquid crystal display device according to the present invention includes a plurality of types of spacers including a first type spacer and a second type spacer having a glass transition temperature lower than that of the first type spacer. A method of manufacturing a liquid crystal display device in which a plurality of substrates are bonded together with a liquid crystal material injected into a gap between the substrates, and the temperature at which the substrates are bonded is set to the first type spacer. The glass transition temperature is lower than the glass transition temperature of the second type spacer, and the temperature at which the liquid crystal material is injected is higher than the glass transition temperature of the second type spacer.
[0020] 本発明の液晶表示装置の製造方法にあっては、基板を貼り合わせるときの温度を 、ガラス転移温度が高い第 1種スぺーサのガラス転移温度より低くする。よって、貼り 合わせる際に基板が第 1種スぺーサで支えられるため、セル構造がつぶれることはな ぐ対向する基板間で所定の空隙が維持される。また、液晶材料を注入するときの温 度を、ガラス転移温度が低い第 2種スぺーサのガラス転移温度より高くする。一般的 にガラス転移温度以上での線膨張係数は、ガラス転移温度以下での線膨張係数と 比較して大きいため、液晶材料を注入した後、それが相転移するまでセルギャップは 大きな線膨張係数で推移する。よって、注入時の温度よりガラス転移温度を低くした 第 2種スぺーサは、液晶材料の大きな線膨張係数の推移に良好に追随する。よって [0020] In the method of manufacturing a liquid crystal display device of the present invention, the temperature at which the substrates are bonded is set lower than the glass transition temperature of the first type spacer having a high glass transition temperature. Therefore, since the substrates are supported by the first type spacer when the substrates are bonded, the cell structure is not crushed and a predetermined gap is maintained between the opposing substrates. Also, the temperature at which the liquid crystal material is injected is set higher than the glass transition temperature of the type 2 spacer having a low glass transition temperature. In general, the linear expansion coefficient above the glass transition temperature is larger than the linear expansion coefficient below the glass transition temperature, so the cell gap is large until a phase transition occurs after the liquid crystal material is injected. It changes in. Therefore, the type 2 spacer with the glass transition temperature lower than the temperature at the time of injection follows the transition of the large linear expansion coefficient of the liquid crystal material. Therefore
、液晶へのストレスが小さくなり、配向欠陥は起こりにくい。 , The stress on the liquid crystal is reduced and alignment defects are less likely to occur.
[0021] 本発明に係る液晶表示装置の製造方法は、前記第 2種スぺーサのガラス転移温度 は、前記液晶材料の相転移温度以下であることを特徴とする。 [0021] The method for manufacturing a liquid crystal display device according to the present invention is characterized in that a glass transition temperature of the second type spacer is not more than a phase transition temperature of the liquid crystal material.
[0022] 本発明の液晶表示装置の製造方法にあっては、ガラス転移温度が液晶材料の相 転移温度以下である第 2種スぺーサは、相転移近傍にお!ヽても液晶材料の温度変 化に追随し易くなる。 [0022] In the method for producing a liquid crystal display device of the present invention, the second type spacer whose glass transition temperature is lower than or equal to the phase transition temperature of the liquid crystal material is the same as that of the liquid crystal material. It becomes easier to follow the temperature change.
[0023] 本発明に係る液晶表示装置の製造方法は、前記第 1種スぺーサは、線膨張係数 が lOOppm以上であって圧縮弾性率が lOOMPa以上であり、前記第 2種スぺーサは 、線膨張係数が 200ppm以上であって圧縮弾性率が lOOMPa以上であることを特 徴とする。  [0023] In the method for manufacturing a liquid crystal display device according to the present invention, the first type spacer has a linear expansion coefficient of lOOppm or more and a compression elastic modulus of lOOMPa or more, and the second type spacer is It is characterized by a linear expansion coefficient of 200 ppm or more and a compressive elastic modulus of lOOMPa or more.
[0024] 本発明の液晶表示装置の製造方法にあっては、液晶材料の物性に近づくように、 第 1種スぺーサの線膨張係数及び圧縮弾性率を lOOppm以上及び lOOMPa以上と し、第 2種スぺーサの線膨張係数及び圧縮弾性率を 200ppm以上及び lOOMPa以 上とする。 [0024] In the method for manufacturing a liquid crystal display device of the present invention, the linear expansion coefficient and the compressive elastic modulus of the first type spacer are set to lOOppm or more and lOOMPa or more so as to approach the physical properties of the liquid crystal material. The linear expansion coefficient and compression modulus of the type 2 spacer shall be 200 ppm or more and lOOMPa or more.
[0025] 本発明に係る液晶表示装置の製造方法は、前記第 2種スぺーサが、前記基板を貼 り合わせた後に接着性を呈することを特徴とする。  [0025] The method for manufacturing a liquid crystal display device according to the present invention is characterized in that the second type spacer exhibits adhesiveness after the substrates are bonded together.
[0026] 本発明の液晶表示装置の製造方法にあっては、基板を貼り合わせた後に第 2種ス ぺーサが接着性を呈するため、セルギャップが拡大する方向にも制御が可能となる。 発明の効果 In the method for manufacturing a liquid crystal display device of the present invention, since the second type spacer exhibits adhesiveness after the substrates are bonded together, it is possible to control the cell gap in the expanding direction. The invention's effect
[0027] 本発明の液晶表示装置では、ガラス転移温度を異ならせた第 1種スぺーサ及び第 [0027] In the liquid crystal display device of the present invention, the first-type spacer and the first-type spacers having different glass transition temperatures.
2種スぺーサの物性 (線膨張係数,圧縮弾性率)を、液晶材料の温度変化に追随し 易い状態にするようにしたので、液晶材料に対するストレスを低減することができ、配 向欠陥の発生を抑制することができる。 The physical properties (linear expansion coefficient, compressive modulus) of the two types of spacers are made easy to follow the temperature changes of the liquid crystal material, so stress on the liquid crystal material can be reduced and orientation defects can be reduced. Occurrence can be suppressed.
[0028] 本発明の液晶表示装置の製造方法では、基板を貼り合わせるときの温度を第 1種 スぺーサのガラス転移温度より低くするとともに、液晶材料を注入するときの温度を第  In the method for manufacturing a liquid crystal display device of the present invention, the temperature at which the substrates are bonded is set lower than the glass transition temperature of the first type spacer, and the temperature at which the liquid crystal material is injected is set to the first temperature.
2種スぺーサのガラス転移温度より高くするようにしたので、貼り合わせる際に所定の セルギャップを維持できるとともに、第 2種スぺーサを液晶材料の温度変化に追随し 易くすることができ、液晶へのストレスを小さくして、配向欠陥の発生を抑制することが できる。また、第 2種スぺーサのガラス転移温度を液晶材料の相転移温度以下とする 場合には、相転移近傍でも液晶材料の温度変化への良好な追随を行うことができる 。また、基板を貼り合わせた後に第 2種スぺーサが接着性を呈するようにしたので、セ ルギャップが拡大する方向への制御も行うことができる。 Since the glass transition temperature is higher than the glass transition temperature of the type 2 spacer, the predetermined cell gap can be maintained at the time of bonding, and the type 2 spacer can easily follow the temperature change of the liquid crystal material. Thus, the stress on the liquid crystal can be reduced and the occurrence of alignment defects can be suppressed. In addition, when the glass transition temperature of the type 2 spacer is set to be equal to or lower than the phase transition temperature of the liquid crystal material, good follow-up to the temperature change of the liquid crystal material can be performed even in the vicinity of the phase transition. In addition, since the type 2 spacer exhibits adhesiveness after the substrates are bonded together, it is possible to control the cell gap in the expanding direction.
[0029] 本発明では、スぺーサの占有面積を大きくしても、液晶材料へのストレスを小さくで きて配向欠陥の発生を抑制できるので、表示画質が劣化することがない。よって、従 来のスぺーサを用いた場合に比べてスぺーサの占有面積を大きくでき、大きなパネ ル強度と優れた表示品質とを併せて実現することができる。 In the present invention, even if the area occupied by the spacer is increased, the stress on the liquid crystal material can be reduced and the occurrence of alignment defects can be suppressed, so that the display image quality does not deteriorate. Therefore, the area occupied by the spacer can be increased as compared with the case where a conventional spacer is used, and a large panel strength and excellent display quality can be realized.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明による液晶表示装置の液晶パネルを示す断面図である。 FIG. 1 is a cross-sectional view showing a liquid crystal panel of a liquid crystal display device according to the present invention.
[図 2]本発明の液晶表示装置の製造方法における基板貼り合わせ時のセル状態を 示す模式的断面図である。 [図 3]本発明の液晶表示装置の製造方法における液晶注入時のセル状態を示す模 式的断面図である。 FIG. 2 is a schematic cross-sectional view showing a cell state when substrates are bonded together in the method for manufacturing a liquid crystal display device of the present invention. FIG. 3 is a schematic cross-sectional view showing a cell state at the time of liquid crystal injection in the method for manufacturing a liquid crystal display device of the present invention.
[図 4]本発明による液晶表示装置の他の例の液晶パネルを示す断面図である。 符号の説明  FIG. 4 is a cross-sectional view showing a liquid crystal panel of another example of the liquid crystal display device according to the present invention. Explanation of symbols
[0031] 1 液晶パネル [0031] 1 LCD panel
4 画素電極  4 pixel electrodes
5 ガラス基板  5 Glass substrate
6 共通電極  6 Common electrode
7 ガラス基板  7 Glass substrate
10 第 1種スぺーサ  10 Type 1 spacer
11 第 2種スぺーサ  11 Type 2 spacer
12 液晶層  12 Liquid crystal layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 本発明をその実施の形態を示す図面を参照して具体的に説明する。なお、本発明 は以下の実施の形態に限定されるものではない。  [0032] The present invention will be specifically described with reference to the drawings illustrating embodiments thereof. The present invention is not limited to the following embodiment.
[0033] 図 1は、本発明による液晶表示装置の液晶パネル 1を示す断面図である。図 1に示 すように、液晶パネル 1は、平坦ィ匕榭脂層 2にコンタクトホール 3を介してマトリックス状 に配置された画素電極 4及び画素電極 4の夫々に接続された TFT (図示せず)を有 するガラス基板 5と、平板状の共通電極 6を有するガラス基板 7とを備えている。画素 電極 4及び共通電極 6上には夫々配向膜 8及び配向膜 9が設けられている。  FIG. 1 is a cross-sectional view showing a liquid crystal panel 1 of a liquid crystal display device according to the present invention. As shown in FIG. 1, the liquid crystal panel 1 includes a flat electrode layer 2 and pixel electrodes 4 arranged in a matrix via contact holes 3 and TFTs connected to the pixel electrodes 4 (not shown). A glass substrate 5 having a flat common electrode 6 and a glass substrate 7 having a flat common electrode 6. An alignment film 8 and an alignment film 9 are provided on the pixel electrode 4 and the common electrode 6, respectively.
[0034] ガラス基板 5, 7間に面内均一の空隙 (セルギャップ)を保持するために、材料及び 物性が異なる 2種類のスぺーサ、第 1種スぺーサ 10及び第 2種スぺーサ 11が設けら れている。第 1種スぺーサ 10のガラス転移温度(150°C程度)は、第 2種スぺーサ 11 のガラス転移温度(100°C程度)より高い。また、第 1種スぺーサ 10の線膨張係数は 、 lOOppm以上、より好ましくは 300ppm以上であって、第 1種スぺーサ 10の圧縮弹 性率は、 lOOMPa以上、より好ましくは 500MPa以上である。一方、第 2種スぺーサ 11の線膨張係数は、 200ppm以上、より好ましくは 300ppm以上であって、第 2種ス ぺーサ 11の圧縮弾性率は、 lOOMPa以上、より好ましくは 500MPa以上である。 [0035] これらのスぺーサ 10, 11及びシール(図示せず)によって、ガラス基板 5, 7間に所 定長の空隙が形成され、この空隙内に強誘電性液晶を封入して液晶層 12が形成さ れている。更に、ガラス基板 5及びガラス基板 7の外面に、偏光板 13及び偏光板 14 が夫々設けられている。 [0034] In order to maintain a uniform in-plane void (cell gap) between glass substrates 5 and 7, two types of spacers with different materials and physical properties, type 1 spacer 10 and type 2 spacer Support 11 is provided. The glass transition temperature of the first type spacer 10 (about 150 ° C) is higher than the glass transition temperature of the second type spacer 11 (about 100 ° C). Further, the linear expansion coefficient of the first type spacer 10 is lOOppm or more, more preferably 300ppm or more, and the compression modulus of the first type spacer 10 is lOOMPa or more, more preferably 500MPa or more. is there. On the other hand, the linear expansion coefficient of the type 2 spacer 11 is 200 ppm or more, more preferably 300 ppm or more, and the compression modulus of the type 2 spacer 11 is lOOMPa or more, more preferably 500 MPa or more. . These spacers 10 and 11 and a seal (not shown) form a gap having a predetermined length between the glass substrates 5 and 7, and a ferroelectric liquid crystal is sealed in the gap to form a liquid crystal layer. 12 is formed. Further, a polarizing plate 13 and a polarizing plate 14 are provided on the outer surfaces of the glass substrate 5 and the glass substrate 7, respectively.
[0036] 次に、このような液晶表示装置の製造方法について説明する。 TFTを有する一方 のガラス基板 5に平坦ィ匕榭脂層 2を設け、コンタクトホール 3を形成した後、 ITOを成 膜してパターユングにより画素電極 4を形成する。次いで、第 1種スぺーサ 10を形成 し、配向膜 8を設ける。他方のガラス基板 7に ITOを成膜して共通電極 6形成し、配向 膜 9を設ける。更に、第 2種スぺーサ 11をガラス基板 5に形成する。これらのガラス基 板 5, 7にラビング処理を施した後、ガラス基板 7にシールを形成して、両ガラス基板 5 , 7を貼り合わせる。  Next, a method for manufacturing such a liquid crystal display device will be described. A flat resin layer 2 is provided on one glass substrate 5 having TFTs, contact holes 3 are formed, ITO is formed, and pixel electrodes 4 are formed by patterning. Next, the first type spacer 10 is formed, and the alignment film 8 is provided. A common electrode 6 is formed by depositing ITO on the other glass substrate 7, and an alignment film 9 is provided. Further, the second type spacer 11 is formed on the glass substrate 5. After the glass substrates 5 and 7 are rubbed, a seal is formed on the glass substrate 7 and the glass substrates 5 and 7 are bonded together.
[0037] この貼り合わせを行うときの温度(135°C程度)は、第 1種スぺーサ 10のガラス転移 温度よりも低くする。したがって、図 2に示すように外力が加わっても、第 1種スぺーサ 10はその剛性によってストッパとして機能するため、セル構造が潰されることはなぐ 所定長のセルギャップが維持される。このように、ガラス転移温度が高い第 1種スぺー サ 10は、貼り合わせ時のセルギャップを保持する機能を果たす。  [0037] The temperature at which this bonding is performed (about 135 ° C) is set lower than the glass transition temperature of the first type spacer 10. Therefore, even if an external force is applied as shown in FIG. 2, the first-type spacer 10 functions as a stopper due to its rigidity, so that the cell structure is maintained and a predetermined length of cell gap is maintained. Thus, the first type spacer 10 having a high glass transition temperature functions to maintain a cell gap at the time of bonding.
[0038] このようにして作製した空パネルに、注入口カゝら液晶材料を加温して加圧注入し、 注入完了後、室温まで冷却して注入口を封止する。相転移温度まで加温した後、直 流電圧を印加することにより配向処理を行い、再び室温まで冷却する。  [0038] The liquid crystal material, such as the inlet, is heated and pressurized and injected into the empty panel thus manufactured, and after the injection is completed, it is cooled to room temperature and the inlet is sealed. After warming up to the phase transition temperature, orientation treatment is performed by applying a direct current voltage, and then cooled to room temperature again.
[0039] この液晶材料を注入するときの温度(110°C程度)は、第 2種スぺーサ 11のガラス 転移温度よりも高くする。よって、図 3に示すように、液晶材料の注入時には、線膨張 係数が大きい第 2種スぺーサ 11により、所定長のセルギャップが維持される。また、 第 2種スぺーサ 11のガラス転移温度が液晶材料の相転移温度よりも低 、。したがつ て、注入後の冷却過程では、液晶材料が相転移するまで、第 2種スぺーサ 11は、ガ ラス転移温度を超えないので、大きな線膨張係数で推移する。以上のことから、液晶 材料へのストレスは小さくなる。  The temperature at which this liquid crystal material is injected (about 110 ° C.) is set higher than the glass transition temperature of the second type spacer 11. Therefore, as shown in FIG. 3, when the liquid crystal material is injected, the cell gap having a predetermined length is maintained by the second type spacer 11 having a large linear expansion coefficient. In addition, the glass transition temperature of the type 2 spacer 11 is lower than the phase transition temperature of the liquid crystal material. Therefore, in the cooling process after the injection, the type 2 spacer 11 does not exceed the glass transition temperature until the liquid crystal material undergoes a phase transition, and therefore changes with a large linear expansion coefficient. As a result, the stress on the liquid crystal material is reduced.
[0040] ガラス転移温度が低 ヽ第 2種スぺーサ 11は、基板の貼り合わせ後に接着性を呈し 、ガラス基板 5, 7を接着させて、セルギャップの縮小だけでなく拡大をも制御する。 [0041] 図 4は、本発明による液晶表示装置の他の例の液晶パネル 1を示す断面図である。 図 4において、図 1と同一部分には同一番号を付してそれらの説明を省略する。図 4 に示す例では、第 1種スぺーサ 10及び第 2種スぺーサ 11を積層させた構成をなして いる。この例でも、上述した例と同様の効果を奏することは勿論である。また、スぺー サ占有面積を狭くできるので、有効表示領域の拡大を図れる。 [0040] The glass transition temperature is low. The type 2 spacer 11 exhibits adhesiveness after bonding the substrates, and adheres the glass substrates 5 and 7 to control not only the reduction of the cell gap but also the expansion. . FIG. 4 is a cross-sectional view showing a liquid crystal panel 1 of another example of the liquid crystal display device according to the present invention. In FIG. 4, the same parts as those in FIG. In the example shown in FIG. 4, the first type spacer 10 and the second type spacer 11 are stacked. Of course, this example also achieves the same effect as the above-described example. In addition, since the area occupied by the spacer can be reduced, the effective display area can be expanded.
[0042] 次に、本発明の具体的な実施例及び比較例に関し、その製造工程と製造された液 晶表示装置の特性とについて説明する。なお、実施例 1及び 2は図 1に示す構成例 に該当し、実施例 3は図 4に示す構成例に該当する。  Next, regarding specific examples and comparative examples of the present invention, the manufacturing process and the characteristics of the manufactured liquid crystal display device will be described. Examples 1 and 2 correspond to the configuration example shown in FIG. 1, and Example 3 corresponds to the configuration example shown in FIG.
[0043] (実施例 1)  [0043] (Example 1)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成した 。次いで、線膨張係数が 335ppm、圧縮弾性率が 590MPa、ガラス転移温度が 150 °Cである第 1種スぺーサ 10を、面積率 5%、高さ 1. 8 mで形成し、更にポリイミドの 成膜 Z焼成によって配向膜 8を形成した。他方のガラス基板 7に ITOを成膜して共通 電極 6を形成し、同じくポリイミドの成膜 Z焼成によって配向膜 9を形成した。  A flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having a TFT, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning. Next, a first type spacer 10 having a linear expansion coefficient of 335 ppm, a compression modulus of 590 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 5% and a height of 1.8 m. Film Formation An alignment film 8 was formed by Z firing. A common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
[0044] 更に、硬化後の線膨張係数が 249ppm、圧縮弾性率が 339MPa、ガラス転移温度 が 108°Cであるアクリル系レジストにより、第 2種スぺーサ 11を面積率 5%でガラス基 板 5に形成し、 100°C, 10分で仮硬化した後、ラビング処理を施した。また、ガラス基 板 7にラビング処理を施した後、シールを形成して、両ガラス基板 5, 7をラビング方向 が平行となるように貼り合わせた。これを真空パックに封入し、 135°C, 90分の焼成を 行って、空パネルを作製した。  [0044] Furthermore, the second-type spacer 11 is made of a glass substrate with an area ratio of 5% using an acrylic resist having a linear expansion coefficient after curing of 249 ppm, a compression modulus of 339 MPa, and a glass transition temperature of 108 ° C. After forming to 5 and pre-curing at 100 ° C for 10 minutes, it was rubbed. In addition, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and fired at 135 ° C for 90 minutes to produce an empty panel.
[0045] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。  [0045] Monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure, and after injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
[0046] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥は発生しな力つた。  In this liquid crystal panel, alignment defects did not occur in the liquid crystal layer direction immediately after the alignment treatment.
また、温度変化に伴っても、配向欠陥は発生しな力つた。 [0047] この液晶パネルに、プッシュプルゲージを用いて、一辺 lcmの矩形領域に荷重を 力け、耐荷重試験を行った結果、 21. 6 X 104 Paの荷重をかけたときに初めて配向 欠陥が発生し、黒状態が破壊された。 In addition, even when the temperature changed, alignment defects did not occur. [0047] As a result of applying a load to this liquid crystal panel using a push-pull gauge and applying a load resistance test to a rectangular area with a side of lcm, the orientation was not applied for the first time when a load of 21.6 X 10 4 Pa was applied. A defect occurred and the black state was destroyed.
[0048] (実施例 2)  [0048] (Example 2)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成した 。次いで、線膨張係数が 529ppm、圧縮弾性率力 58MPa、ガラス転移温度が 150 °Cである第 1種スぺーサ 10を、面積率 5%、高さ 1. で形成し、更にポリイミドの 成膜 Z焼成によって配向膜 8を形成した。他方のガラス基板 7に ITOを成膜して共通 電極 6を形成し、同じくポリイミドの成膜 Z焼成によって配向膜 9を形成した。  A flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having a TFT, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning. Next, a first type spacer 10 having a linear expansion coefficient of 529 ppm, a compressive elastic modulus of 58 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 5% and a height of 1. Further, a polyimide film is formed. An alignment film 8 was formed by Z firing. A common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
[0049] 更に、硬化後の線膨張係数が 330ppm、圧縮弾性率が 310MPa、ガラス転移温度 が 108°Cであるアクリル系レジストにより、第 2種スぺーサ 11を面積率 5%でガラス基 板 5に形成し、 100°C, 10分で仮硬化した後、ラビング処理を施した。また、ガラス基 板 7にラビング処理を施した後、シールを形成して、両ガラス基板 5, 7をラビング方向 が平行となるように貼り合わせた。これを真空パックに封入し、 135°C, 90分の焼成を 行って、空パネルを作製した。  [0049] Further, the second-spacer 11 is made of a glass substrate with an area ratio of 5% by an acrylic resist having a linear expansion coefficient after curing of 330 ppm, a compression modulus of 310 MPa, and a glass transition temperature of 108 ° C. After forming to 5 and pre-curing at 100 ° C for 10 minutes, it was rubbed. In addition, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and fired at 135 ° C for 90 minutes to produce an empty panel.
[0050] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。  [0050] A monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel. After the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
[0051] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥は発生しな力つた。  In this liquid crystal panel, alignment defects did not occur in the liquid crystal layer direction immediately after the alignment treatment.
また、温度変化に伴っても、配向欠陥は発生しな力つた。  In addition, even when the temperature changed, alignment defects did not occur.
[0052] この液晶パネルに、プッシュプルゲージを用いて、一辺 lcmの矩形領域に荷重を 力け、耐荷重試験を行った結果、 25. 5 X 104 Paの荷重をかけたときに初めて配向 欠陥が発生し、黒状態が破壊された。 [0052] As a result of applying a load to a rectangular area of 1 cm on a side using a push-pull gauge and applying a load resistance test to this liquid crystal panel, the alignment was not applied for the first time when a load of 25.5 X 10 4 Pa was applied. A defect occurred and the black state was destroyed.
[0053] (実施例 3) [0053] (Example 3)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成した 。次いで、線膨張係数が 335ppm、圧縮弾性率が 590MPa、ガラス転移温度が 150 °Cである第 1種スぺーサ 10を、面積率 10%、高さ 1. で形成し、更にポリイミド の成膜 Z焼成によって配向膜 8を形成した。他方のガラス基板 7に ITOを成膜して共 通電極 6を形成し、同じくポリイミドの成膜 Z焼成によって配向膜 9を形成した。 A flat resin layer 2 with a thickness of 2.5 m is provided on one glass substrate 5 with TFT, After forming the tato hole 3, ITO was deposited and the pixel electrode 4 was formed by patterning. Next, a first type spacer 10 having a linear expansion coefficient of 335 ppm, a compression elastic modulus of 590 MPa, and a glass transition temperature of 150 ° C. is formed with an area ratio of 10% and a height of 1. Further, a polyimide film is formed. An alignment film 8 was formed by Z firing. A common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing.
[0054] 更に、硬化後の線膨張係数が 249ppm、圧縮弾性率が 339MPa、ガラス転移温度 力 S 108°Cであるアクリル系レジストにより、第 2種スぺーサ 11を、既に形成されている 第 1種スぺーサ 10上に面積率 2%で形成し、 100°C, 10分で仮硬化した後、ラビン グ処理を施した。また、ガラス基板 7にラビング処理を施した後、シールを形成して、 両ガラス基板 5, 7をラビング方向が平行となるように貼り合わせた。これを真空パック に封入し、 135°C, 90分の焼成を行って、空パネルを作製した。  [0054] Furthermore, the second type spacer 11 has already been formed of an acrylic resist having a linear expansion coefficient after curing of 249 ppm, a compression modulus of 339 MPa, and a glass transition temperature force S of 108 ° C. It was formed on a type 1 spacer 10 at an area ratio of 2%, pre-cured at 100 ° C. for 10 minutes, and then subjected to a rubbing treatment. Further, after the glass substrate 7 was rubbed, a seal was formed, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
[0055] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。  [0055] Monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure, and after the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
[0056] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥は発生しな力つた。  In this liquid crystal panel, alignment defects were not generated in the liquid crystal layer direction immediately after the alignment treatment.
また、温度変化に伴っても、配向欠陥は発生しな力つた。  In addition, even when the temperature changed, alignment defects did not occur.
[0057] この液晶パネルに、プッシュプルゲージを用いて、一辺 lcmの矩形領域に荷重を 力け、耐荷重試験を行った結果、 21. 6 X 104 Paの荷重をかけたときに初めて配向 欠陥が発生し、黒状態が破壊された。 [0057] Using a push-pull gauge, a load was applied to this liquid crystal panel in a rectangular area of 1 cm on a side, and as a result of a load-bearing test, it was the first orientation when a load of 21.6 X 10 4 Pa was applied. A defect occurred and the black state was destroyed.
[0058] (比較例 1) [0058] (Comparative Example 1)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成した 。次いで、線膨張係数が 63ppm、圧縮弾性率が 934MPa、ガラス転移温度が 200 °Cであるスぺーサ (本発明の第 1種スぺーサ 10に相当)を、面積率 5%、高さ 1. 8 μ mで形成し、更にポリイミドの成膜 Z焼成によって配向膜 8を形成した。他方のガラス 基板 7に ITOを成膜して共通電極 6を形成し、同じくポリイミドの成膜 Z焼成によって 配向膜 9を形成した。 A flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having TFTs, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning. Next, a spacer having a linear expansion coefficient of 63 ppm, a compressive modulus of 934 MPa, and a glass transition temperature of 200 ° C. (corresponding to the first type spacer 10 of the present invention) is obtained with an area ratio of 5% and a height of 1 The film was formed with a thickness of 8 μm, and a polyimide film was formed. ITO film is formed on the other glass substrate 7 to form the common electrode 6, and polyimide film is also formed by Z firing. An alignment film 9 was formed.
[0059] 両ガラス基板 5, 7に、レイヨンのパフによりラビング処理を施した。更に、線膨張係 数が 61ppm、圧縮弾性率が 256MPa、ガラス転移温度が 100°Cである平均粒径約 4 μ mの接着ビーズ (本発明の第 2種スぺーサ 11に相当)を、約 100個 Zmm2の密 度でガラス基板 5に散布した。また、ガラス基板 7にシールを形成して、両ガラス基板 5, 7をラビング方向が平行となるように貼り合わせた。これを真空パックに封入し、 13 5°C, 90分の焼成を行って、空パネルを作製した。 Both glass substrates 5 and 7 were rubbed with a rayon puff. Furthermore, adhesive beads (corresponding to type 2 spacer 11 of the present invention) having an average particle diameter of about 4 μm and a linear expansion coefficient of 61 ppm, a compression modulus of 256 MPa, and a glass transition temperature of 100 ° C. It was sprayed on the glass substrate 5 in the density of about 100 ZMM 2. Further, a seal was formed on the glass substrate 7 and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was enclosed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
[0060] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。  [0060] A monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel, and after the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature.
[0061] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥が発生した。  In this liquid crystal panel, alignment defects occurred in the liquid crystal layer direction immediately after the alignment treatment.
[0062] (比較例 2) [0062] (Comparative Example 2)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成し、 更にポリイミドの成膜 Z焼成によって配向膜 8を形成した。他方のガラス基板 7に ITO を成膜して共通電極 6を形成し、同じくポリイミドの成膜 Z焼成によって配向膜 9を形 成した。両ガラス基板 5, 7に、レイヨンのパフによりラビング処理を施した。  A flat resin layer 2 having a thickness of 2.5 m is provided on one glass substrate 5 having a TFT, a contact hole 3 is formed, an ITO film is formed, and a pixel electrode 4 is formed by patterning. Further, an alignment film 8 was formed by film formation Z baking of polyimide. ITO was formed on the other glass substrate 7 to form the common electrode 6, and the alignment film 9 was formed by the same film formation Z firing of polyimide. Both glass substrates 5 and 7 were rubbed with a rayon puff.
[0063] 粒径 1. 8 /z mのシリカビーズ (第 1種スぺーサ 10に相当)と、線膨張係数が 61ppm 、圧縮弾性率が 256MPa、ガラス転移温度が 100°Cである平均粒径約 4 μ mの接着 ビーズ (第 2種スぺーサ 11に相当)とを、夫々約 100個 Zmm2の密度でガラス基板 5 に散布した。また、ガラス基板 7にシールを形成して、両ガラス基板 5, 7をラビング方 向が平行となるように貼り合わせた。これを真空パックに封入し、 135°C, 90分の焼 成を行って、空パネルを作製した。 [0063] Silica beads with a particle size of 1. 8 / zm (corresponding to type 1 spacer 10), an average particle size of 61ppm linear compression coefficient, 256MPa compressive modulus, 100 ° C glass transition temperature About 4 μm adhesive beads (corresponding to the second type spacer 11) were sprayed on the glass substrate 5 with a density of about 100 Zmm 2 each. Further, a seal was formed on the glass substrate 7, and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
[0064] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。 [0064] A monostable ferroelectric liquid crystal was heated in a chiral nematic state (110 ° C) and injected under pressure into the produced empty panel. After the injection was completed, it was cooled to room temperature and the injection port was sealed. . This panel is heated to a chiral nematic state, and before and after the N *-Sc * transition temperature, Orientation treatment was performed by applying a DC voltage of 12V between the cells. From this state, it was gradually cooled to room temperature.
[0065] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥は発生しな力つた。  In this liquid crystal panel, alignment defects did not occur in the liquid crystal layer direction immediately after the alignment treatment.
また、温度変化に伴っても、配向欠陥は発生しな力つた。この液晶パネルに、プッシ ュプルゲージを用いて、一辺 lcmの矩形領域に荷重をかけ、耐荷重試験を行った結 果、 9. 8 X 104 Paの荷重をかけたところで配向欠陥が発生し、黒状態が破壊された In addition, even when the temperature changed, alignment defects did not occur. As a result of applying a load resistance test to this liquid crystal panel using a push-pull gauge and applying a load to a rectangular area of 1 cm on one side, an alignment defect occurred when a load of 9.8 X 10 4 Pa was applied. State destroyed
[0066] なお、比較例 2において、接着ビーズの密度を 100個 Zmm2以上とした場合には、 配向処理後に配向欠陥が発生し、温度変化によってその配向欠陥の発生量が増大 した。これは、接着ビーズの線膨張係数が小さいことに起因している。 In Comparative Example 2, when the density of the adhesive beads was 100 Zmm 2 or more, alignment defects were generated after the alignment treatment, and the amount of alignment defects generated increased due to temperature change. This is because the linear expansion coefficient of the adhesive beads is small.
[0067] (比較例 3)  [0067] (Comparative Example 3)
TFTを有する一方のガラス基板 5に厚さ 2. 5 mの平坦ィ匕榭脂層 2を設け、コンタ タトホール 3を形成した後、 ITOを成膜してパターユングにより画素電極 4を形成した 。次いで、線膨張係数が 335ppm、圧縮弾性率が 590MPa、ガラス転移温度が 150 °Cであるスぺーサ(第 1種スぺーサ 10に相当)を、面積率 5%、高さ 1. で形成 し、更にポリイミドの成膜 Z焼成によって配向膜 8を形成した。他方のガラス基板 7に I TOを成膜して共通電極 6を形成し、同じくポリイミドの成膜 Z焼成によって配向膜 9 を形成した。両ガラス基板 5, 7に、レイヨンのパフによりラビング処理を施した。  A flat resin layer 2 having a thickness of 2.5 m was provided on one glass substrate 5 having TFTs, and after forming a contact hole 3, ITO was formed and a pixel electrode 4 was formed by patterning. Next, a spacer with a linear expansion coefficient of 335ppm, a compression modulus of 590MPa, and a glass transition temperature of 150 ° C (corresponding to type 1 spacer 10) is formed with an area ratio of 5% and a height of 1. Further, an alignment film 8 was formed by polyimide film Z firing. A common electrode 6 was formed by depositing ITO on the other glass substrate 7, and an alignment film 9 was also formed by polyimide film Z firing. Both glass substrates 5 and 7 were rubbed with a rayon puff.
[0068] 線膨張係数が 61ppm、圧縮弾性率が 256MPa、ガラス転移温度が 100°Cである 平均粒径約 4 μ mの接着ビーズ(第 2種スぺーサ 11に相当)を、約 100個 Zmm2の 密度でガラス基板5に散布した。また、ガラス基板7にシールを形成して、両ガラス基 板 5, 7をラビング方向が平行となるように貼り合わせた。これを真空パックに封入し、 135°C, 90分の焼成を行って、空パネルを作製した。 [0068] About 100 adhesive beads (corresponding to type 2 spacer 11) with a linear expansion coefficient of 61 ppm, a compression modulus of 256 MPa, and a glass transition temperature of 100 ° C and an average particle size of about 4 μm It was sprayed on the glass substrate 5 at a density of ZMM 2. In addition, a seal was formed on the glass substrate 7 and the glass substrates 5 and 7 were bonded together so that the rubbing directions were parallel. This was sealed in a vacuum pack and baked at 135 ° C for 90 minutes to produce an empty panel.
[0069] 作製した空パネルに、単安定型強誘電性液晶をカイラルネマティック状態に加温( 110°C)して加圧注入し、注入完了後、室温まで冷却して注入口を封止した。このパ ネルを、カイラルネマティック状態まで加温し、 N *— Sc *転移温度前後にわたつて、 セル間に 12Vの直流電圧を印加することで配向処理を行った。この状態から室温ま で徐冷した。 [0070] この液晶パネルでは、配向処理直後に液晶層方向に配向欠陥は発生しな力つた。 また、温度変化に伴っても、配向欠陥は発生しな力つた。この液晶パネルに、プッシ ュプルゲージを用いて、一辺 lcmの矩形領域に荷重をかけ、耐荷重試験を行った結 果、 15. 7 X 104 Paの荷重をかけたところで配向欠陥が発生し、黒状態が破壊された [0069] A monostable ferroelectric liquid crystal was heated to a chiral nematic state (110 ° C) and injected into the produced empty panel under pressure. After the injection was completed, the injection port was sealed by cooling to room temperature. . This panel was heated to a chiral nematic state, and an orientation treatment was performed by applying a DC voltage of 12 V between the cells before and after the N *-Sc * transition temperature. From this state, it was gradually cooled to room temperature. In this liquid crystal panel, alignment defects did not occur in the liquid crystal layer direction immediately after the alignment treatment. In addition, even when the temperature changed, alignment defects did not occur. As a result of applying a load resistance test to this liquid crystal panel using a push-pull gauge and applying a load to a rectangular area of 1 cm on a side, an alignment defect was generated when a load of 15.7 X 10 4 Pa was applied. State destroyed
[0071] 以上のように、比較例 1では配向処理直後に配向欠陥が発生した。また、比較例 2 , 3では、配向処理直後に配向欠陥が発生しな力つたものの、 9. 8 X 104 Pa (比較例 2)、 15. 7 X 104 Pa (比較例 3)の耐荷重し力得られておらず、耐荷重特性は良くな い。一般的な液晶表示装置における耐荷重の目標値は 19. 6 X 104 Paであり、比較 例 2, 3は何れも、この目標値を達成できていない。 [0071] As described above, in Comparative Example 1, alignment defects occurred immediately after the alignment treatment. Further, in Comparative Examples 2 and 3, although no alignment defects occurred immediately after the alignment treatment, 9.8 X 10 4 Pa (Comparative Example 2) and 15.7 X 10 4 Pa (Comparative Example 3) Loading force is not obtained and load bearing characteristics are not good. The target value of load resistance in a general liquid crystal display device is 19.6 X 10 4 Pa, and neither of Comparative Examples 2 and 3 has achieved this target value.
[0072] これに対して、実施例 1一 3にあっては、配向処理直後に配向欠陥が発生しないこ とは勿論であり、実施例 1 , 3では、 21. 6 X 104 Paの耐荷重が得られて上記目標値 を達成できており、また、実施例 2では 25. 5 X 104 Paという更に大きい耐荷重を実 現できている。 [0072] In contrast, in Examples 1 to 3, there is of course no orientation defect immediately after the orientation treatment, and in Examples 1 and 3, 21.6 X 10 4 Pa resistance resistance. The load was obtained and the above target value was achieved. In Example 2, an even greater load resistance of 25.5 X 10 4 Pa was realized.

Claims

請求の範囲 The scope of the claims
[1] 対向する基板間の空隙に液晶材料が封入されており、前記基板間の空隙を維持 するための複数種のスぺーサを設けている液晶表示装置において、前記複数種の スぺーサは、線膨張係数が lOOppm以上であって圧縮弾性率が lOOMPa以上であ る第 1種スぺーサと、線膨張係数が 200ppm以上であって圧縮弾性率が lOOMPa 以上である第 2種スぺーサとを含んでおり、前記第 1種スぺーサのガラス転移温度が 前記第 2種スぺーサのガラス転移温度より高いことを特徴とする液晶表示装置。  [1] In a liquid crystal display device in which a liquid crystal material is sealed in a gap between opposing substrates and a plurality of types of spacers are provided to maintain the gap between the substrates, the plurality of types of spacers are provided. The first type spacer with a linear expansion coefficient of lOOppm or more and a compression modulus of lOOMPa or more, and the second type spacer with a linear expansion coefficient of 200ppm or more and a compression modulus of elasticity of lOOMPa or more. And a glass transition temperature of the first type spacer is higher than a glass transition temperature of the second type spacer.
[2] 前記第 1種スぺーサの線膨張係数は 300ppm以上であることを特徴とする請求項 1 記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the first type spacer has a linear expansion coefficient of 300 ppm or more.
[3] 前記第 1種スぺーサの圧縮弾性率は 500MPa以上であることを特徴とする請求項 [3] The compression elastic modulus of the first type spacer is 500 MPa or more.
1記載の液晶表示装置。 The liquid crystal display device according to 1.
[4] 前記第 2種スぺーサの線膨張係数は 300ppm以上であることを特徴とする請求項 1 記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the second type spacer has a linear expansion coefficient of 300 ppm or more.
[5] 前記第 2種スぺーサの圧縮弾性率は 500MPa以上であることを特徴とする請求項 1記載の液晶表示装置。  5. The liquid crystal display device according to claim 1, wherein the compression modulus of the second type spacer is 500 MPa or more.
[6] 前記第 1種スぺーサ及び前記第 2種スぺーサを積層していることを特徴とする請求 項 1乃至 5のいずれかに記載の液晶表示装置。  6. The liquid crystal display device according to any one of claims 1 to 5, wherein the first type spacer and the second type spacer are laminated.
[7] 第 1種スぺーサと該第 1種スぺーサよりガラス転移温度が低い第 2種スぺーサとを含 む複数種のスぺーサを介在させて複数の基板を貼り合わせ、前記基板間の空隙に 液晶材料を注入する液晶表示装置の製造方法であって、前記基板を貼り合わせると きの温度を、前記第 1種スぺーサのガラス転移温度より低くし、前記液晶材料を注入 するときの温度を、前記第 2種スぺーサのガラス転移温度より高くすることを特徴とす る液晶表示装置の製造方法。  [7] A plurality of substrates including a first type spacer and a second type spacer having a glass transition temperature lower than that of the first type spacer are bonded together, A method of manufacturing a liquid crystal display device, in which a liquid crystal material is injected into a gap between the substrates, wherein the temperature at the time of bonding the substrates is lower than the glass transition temperature of the first type spacer, and the liquid crystal material A method for manufacturing a liquid crystal display device, characterized in that a temperature at the time of injecting is higher than a glass transition temperature of the second type spacer.
[8] 前記第 2種スぺーサのガラス転移温度は、前記液晶材料の相転移温度以下である ことを特徴とする請求項 7記載の液晶表示装置の製造方法。  8. The method for producing a liquid crystal display device according to claim 7, wherein the glass transition temperature of the second type spacer is not more than the phase transition temperature of the liquid crystal material.
[9] 前記第 1種スぺーサは、線膨張係数が lOOppm以上であって圧縮弾性率が 100M Pa以上であり、前記第 2種スぺーサは、線膨張係数が 200ppm以上であって圧縮弹 性率が lOOMPa以上であることを特徴とする請求項 7または 8記載の液晶表示装置 の製造方法。 [9] The first type spacer has a linear expansion coefficient of lOOppm or more and a compressive modulus of 100 MPa or more, and the second type spacer has a linear expansion coefficient of 200 ppm or more and is compressed. 9. A liquid crystal display device according to claim 7 or 8, wherein the liquid crystal display device has an efficiency ratio of lOOMPa or more. Manufacturing method.
前記第 2種スぺーサは、前記基板を貼り合わせた後に接着性を呈することを特徴と する請求項 7乃至 9のいずれかに記載の液晶表示装置の製造方法。  10. The method for manufacturing a liquid crystal display device according to claim 7, wherein the second type spacer exhibits adhesiveness after the substrates are bonded together.
PCT/JP2005/004466 2005-03-14 2005-03-14 Liquid crystal display device and method for manufacturing liquid crystal display device WO2006097993A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/004466 WO2006097993A1 (en) 2005-03-14 2005-03-14 Liquid crystal display device and method for manufacturing liquid crystal display device
JP2007507963A JPWO2006097993A1 (en) 2005-03-14 2005-03-14 Liquid crystal display device and method of manufacturing liquid crystal display device
CN2005800490955A CN101142516B (en) 2005-03-14 2005-03-14 LCD device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/004466 WO2006097993A1 (en) 2005-03-14 2005-03-14 Liquid crystal display device and method for manufacturing liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2006097993A1 true WO2006097993A1 (en) 2006-09-21

Family

ID=36991353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004466 WO2006097993A1 (en) 2005-03-14 2005-03-14 Liquid crystal display device and method for manufacturing liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2006097993A1 (en)
CN (1) CN101142516B (en)
WO (1) WO2006097993A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115933A (en) * 2007-11-05 2009-05-28 Mitsubishi Electric Corp Liquid crystal display device and method of manufacturing the same
JP2010085796A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Liquid crystal display device, and method of manufacturing the same
JP2011022212A (en) * 2009-07-13 2011-02-03 Fujitsu Ltd Liquid crystal display element
JP2011027851A (en) * 2009-07-22 2011-02-10 Fujitsu Ltd Liquid crystal display device
WO2013047643A1 (en) * 2011-09-27 2013-04-04 積水化成品工業株式会社 Spacer particle for resin composition layer and use thereof
CN104360544A (en) * 2014-11-14 2015-02-18 京东方科技集团股份有限公司 Liquid crystal box component, manufacturing method for same, liquid crystal display panel and display equipment
US9572874B2 (en) 2008-09-30 2017-02-21 Curevac Ag Composition comprising a complexed (M)RNA and a naked mRNA for providing or enhancing an immunostimulatory response in a mammal and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025324B2 (en) * 2011-12-15 2016-11-16 三菱電機株式会社 Liquid crystal display
CN104570491B (en) * 2015-01-20 2017-10-20 昆山龙腾光电有限公司 The preparation method of liquid crystal display device
CN105552077B (en) * 2016-02-16 2019-05-03 武汉华星光电技术有限公司 Thin-film transistor array base-plate and preparation method thereof, touch display panel
US11133580B2 (en) 2017-06-22 2021-09-28 Innolux Corporation Antenna device
CN108873495A (en) * 2018-07-13 2018-11-23 深圳市华星光电技术有限公司 A kind of liquid crystal display substrate and preparation method thereof, liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301621A (en) * 1991-03-29 1992-10-26 Casio Comput Co Ltd Liquid crystal display element
JPH0581829U (en) * 1992-04-02 1993-11-05 カシオ計算機株式会社 Liquid crystal display element
JPH1048641A (en) * 1996-08-05 1998-02-20 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
JP2000321580A (en) * 1999-04-28 2000-11-24 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2005003930A (en) * 2003-06-12 2005-01-06 Jsr Corp Spacer for display panel, radiation-sensitive resin composition and liquid crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE503136C2 (en) * 1994-12-09 1996-04-01 Emt Ag Pressure resistant liquid crystal cell
JPH11311795A (en) * 1998-02-24 1999-11-09 Toray Ind Inc Substrate for liquid crystal display device and liquid crystal display device
JP2001290161A (en) * 2000-04-04 2001-10-19 Advanced Display Inc Liquid crystal display device and its manufacturing method
JP2003015138A (en) * 2001-07-03 2003-01-15 Toppan Printing Co Ltd Color filter for liquid crystal display device provide with columnar spacer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301621A (en) * 1991-03-29 1992-10-26 Casio Comput Co Ltd Liquid crystal display element
JPH0581829U (en) * 1992-04-02 1993-11-05 カシオ計算機株式会社 Liquid crystal display element
JPH1048641A (en) * 1996-08-05 1998-02-20 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
JP2000321580A (en) * 1999-04-28 2000-11-24 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2005003930A (en) * 2003-06-12 2005-01-06 Jsr Corp Spacer for display panel, radiation-sensitive resin composition and liquid crystal display element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115933A (en) * 2007-11-05 2009-05-28 Mitsubishi Electric Corp Liquid crystal display device and method of manufacturing the same
JP2010085796A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Liquid crystal display device, and method of manufacturing the same
US9572874B2 (en) 2008-09-30 2017-02-21 Curevac Ag Composition comprising a complexed (M)RNA and a naked mRNA for providing or enhancing an immunostimulatory response in a mammal and uses thereof
JP2011022212A (en) * 2009-07-13 2011-02-03 Fujitsu Ltd Liquid crystal display element
JP2011027851A (en) * 2009-07-22 2011-02-10 Fujitsu Ltd Liquid crystal display device
WO2013047643A1 (en) * 2011-09-27 2013-04-04 積水化成品工業株式会社 Spacer particle for resin composition layer and use thereof
CN104360544A (en) * 2014-11-14 2015-02-18 京东方科技集团股份有限公司 Liquid crystal box component, manufacturing method for same, liquid crystal display panel and display equipment
CN104360544B (en) * 2014-11-14 2017-07-14 京东方科技集团股份有限公司 Liquid crystal case assembly and preparation method thereof, liquid crystal display panel and display device
US9939687B2 (en) 2014-11-14 2018-04-10 Boe Technology Group Co., Ltd. Liquid crystal cell and method for fabricating the same, liquid crystal display panel, and display device

Also Published As

Publication number Publication date
CN101142516B (en) 2011-08-24
JPWO2006097993A1 (en) 2008-08-21
CN101142516A (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2006097993A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US6011609A (en) Method of manufacturing LCD by dropping liquid crystals on a substrate and then pressing the substrates
JP2001356354A (en) Method for manufacturing liquid crystal display device
JP2007148449A (en) Liquid crystal display device
JP3150826B2 (en) Liquid crystal panel and manufacturing method thereof
JP3773723B2 (en) Liquid crystal display
JP3196744B2 (en) Liquid crystal display device and method of manufacturing the same
WO2004083950A1 (en) Display device producing method and display device producing device
JPH10301121A (en) Production of liquid crystal display element
KR100890973B1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2004094117A (en) Liquid crystal display device
US20060084193A1 (en) Method for fabricating liquid crystal displays with plastic film substrate
JPH06331994A (en) Liquid crystal panel
JPH07140451A (en) Plastic substrate liquid crystal display panel and its production
US20010043307A1 (en) Method of manufacturing a liquid crystal panel
WO2007015356A1 (en) Display device and method of producing the same
JP2002341358A (en) Manufacturing method for liquid crystal display panel
JP5713755B2 (en) Ferroelectric liquid crystal display device and manufacturing method thereof
JP2011081256A (en) Liquid crystal display device, and method for manufacturing the same
JP3775094B2 (en) Manufacturing method of liquid crystal device
JPH06258621A (en) Liquid crystal film and liquid crystal display device
JP5142357B2 (en) Method for producing liquid crystal alignment film
JP2000075307A (en) Production of liquid crystal device and liquid crystal device
JP4324729B2 (en) Manufacturing method of liquid crystal element
JPH01166018A (en) Curved liquid crystal panel and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507963

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077020640

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580049095.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05720734

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5720734

Country of ref document: EP