JP2011022212A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2011022212A
JP2011022212A JP2009164913A JP2009164913A JP2011022212A JP 2011022212 A JP2011022212 A JP 2011022212A JP 2009164913 A JP2009164913 A JP 2009164913A JP 2009164913 A JP2009164913 A JP 2009164913A JP 2011022212 A JP2011022212 A JP 2011022212A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
substrate
volume
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164913A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kurosaki
義久 黒崎
Toshiaki Yoshihara
敏明 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009164913A priority Critical patent/JP2011022212A/en
Publication of JP2011022212A publication Critical patent/JP2011022212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display element having a cell structure using a resin substrate, in which a volume difference between the cell and the liquid crystal with respect to temperature changes is suppressed and peeling in an adhering portion between the resin substrate and a spacer or foaming in the liquid crystal in the cell are prevented. <P>SOLUTION: The liquid crystal display element has a cell structure containing a liquid inside; the cell including resin substrates whose surfaces are bonded via an adhesive columnar spacer; a sealing material enclosing a space between the resin substrates; and a sealing port to be used for externally injecting a liquid to a part of the cell and then sealed. The cell includes a first cell region, having a columnar spacer having a first coefficient of linear expansion and a second cell region having a columnar spacer having a second coefficient of linear expansion, wherein the volume of the second cell region is in a prescribed proportion to the volume of the first cell region, and the difference between the cell volume, after injecting a liquid to the cell and sealing the sealing port, and the volume of the liquid injected into the cell is controlled to be a given value or lower within an assumed use temperature range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,対向面に電極を有した対となる基板間に液晶を内包し、対向する上下基板間にスペーサ材料を設けた構造を有する液晶表示素子に関する。   The present invention relates to a liquid crystal display element having a structure in which liquid crystal is included between a pair of substrates having electrodes on opposite surfaces and a spacer material is provided between upper and lower substrates facing each other.

図8は、従来の液晶表示素子の一構造例を示す。ドットマトリクス構造を持つ液晶表示素子80においては、表面に透明電極と配向膜層82を備えた基板81を対向させ、周辺シール83、封止口84、直径が3〜7um程度の樹脂またはガラス製のビーズスペーサ85、液晶86などから構成される。周辺シール83と封止口84は、基板81間の接合および液晶86を液晶表示素子80内へ密閉する役割をもち、ビーズスペーサ85は基板間のギャップを一定間隔に保つ役割をもっている。   FIG. 8 shows an example of the structure of a conventional liquid crystal display element. In the liquid crystal display element 80 having a dot matrix structure, a substrate 81 provided with a transparent electrode and an alignment film layer 82 is opposed to the surface, a peripheral seal 83, a sealing port 84, and a resin or glass having a diameter of about 3 to 7 μm. Bead spacer 85, liquid crystal 86, and the like. The peripheral seal 83 and the sealing port 84 have a role of bonding between the substrates 81 and sealing the liquid crystal 86 into the liquid crystal display element 80, and the bead spacer 85 has a role of keeping a gap between the substrates at a constant interval.

図9に、ビーズスペーサの散布による配置を示す。基板92に対して上方から散布器91によりビーズスペーサ93を散布するため、ビーズスペーサ93の配置がランダムとなってしまう。   FIG. 9 shows an arrangement by spreading the bead spacers. Since the bead spacers 93 are sprayed by the spreader 91 from above on the substrate 92, the arrangement of the bead spacers 93 is random.

ビーズスペーサ93を用いる代わりに、図10に示す柱状スペーサの規則的な配置を用いた構造も多く用いられている。ビーズスペーサ93は粒状のガラス球または樹脂球を基板上に散布して配置されるのに対して、柱状スペーサ102はフォトリソグラフなどにより基板101上に形成する場合が多い。このため、柱状スペーサ102は、意図した場所に意図した形状でスペーサを配置できるという利点がある。   Instead of using the bead spacers 93, a structure using a regular arrangement of columnar spacers shown in FIG. 10 is often used. The bead spacers 93 are arranged by dispersing granular glass spheres or resin spheres on the substrate, whereas the columnar spacers 102 are often formed on the substrate 101 by photolithography or the like. For this reason, the columnar spacer 102 has an advantage that the spacer can be arranged in the intended shape at the intended location.

近年、液晶表示素子を構成する上下透明電極と配向膜層等を備えた基板として、従来のガラス基板ではなく、より薄くフレキシブルな樹脂基板を用いた素子の開発が盛んである。樹脂基板は、例えば厚さ100〜200μm程度の透明電極付PET、PC、PES等の樹脂基板を用いる。   In recent years, as a substrate provided with upper and lower transparent electrodes and an alignment film layer constituting a liquid crystal display element, development of an element using a thin and flexible resin substrate instead of a conventional glass substrate has been actively conducted. As the resin substrate, for example, a resin substrate such as PET, PC, or PES with a transparent electrode having a thickness of about 100 to 200 μm is used.

このような樹脂基板を用いる場合、上述のビーズスペーサや通常の柱状スペーサを用いた構造にすると、図11の湾曲時のセルギャップ変動に示すように、例えば樹脂基板111、周辺シール112、ビーズスペーサ113、液晶114で構成する液晶表示素子110を湾曲させた時、セルギャップ115を一定に維持できない。このため湾曲時に液晶114が大きく流動してしまい、特に無電圧時に双安定状態を保つコレステリック液晶を用いた素子においては表示画像が乱れたり、表示画像を維持できない等の不都合が生じ、また、これ以外の液晶を用いた素子においても表示画像が乱れることは避けられない。   When such a resin substrate is used, if the above-described bead spacer or normal columnar spacer is used, the resin substrate 111, the peripheral seal 112, the bead spacer, for example, as shown in FIG. When the liquid crystal display element 110 constituted by the liquid crystal 113 and the liquid crystal 114 is curved, the cell gap 115 cannot be maintained constant. For this reason, the liquid crystal 114 flows greatly when bent, and in particular, in an element using a cholesteric liquid crystal that maintains a bistable state when no voltage is applied, a display image is distorted or a display image cannot be maintained. It is inevitable that the display image is disturbed even in an element using other liquid crystal.

この様な問題を解決する手段の一つとして、接着性の柱状スペーサを用いる方法がある。図12に接着性柱状スペーサを配したセル構造の従来例を示す。図はドットマトリクス型の液晶表示素子を示し、2つの樹脂基板121の表面に透明電極122と配向膜125を配して対向させ、接着性柱状スペーサ123を配置して、接着性柱状スペーサ123と配向膜125の間を例えば接着剤あるいは熱圧着により接合した構造を示している。1種類の接着性柱状スペーサ123を上下の樹脂基板121の間に配置した構造であって、接着性柱状スペーサ123の両端が接着されていることにより、上下の樹脂基板121の間隔を一定に保てる。この様な構造とすることで、液晶126の流動と、湾曲時のセルギャップの変動を抑制し、湾曲可能な液晶表示素子としている。   One means for solving such a problem is a method using an adhesive columnar spacer. FIG. 12 shows a conventional example of a cell structure in which adhesive columnar spacers are arranged. The figure shows a dot matrix type liquid crystal display element. A transparent electrode 122 and an alignment film 125 are arranged on the surfaces of two resin substrates 121 to face each other, and an adhesive columnar spacer 123 is arranged. A structure in which the alignment films 125 are joined by, for example, an adhesive or thermocompression bonding is shown. In this structure, one type of adhesive columnar spacer 123 is arranged between the upper and lower resin substrates 121, and the both ends of the adhesive columnar spacer 123 are bonded together, so that the distance between the upper and lower resin substrates 121 can be kept constant. . With such a structure, the liquid crystal 126 can be bent while suppressing the flow of the liquid crystal 126 and the fluctuation of the cell gap at the time of bending.

ところが、上述のような対策をしても図13に示す低温発泡現象といった不具合点が残る。図においては、フレキシブルなフィルム状の基板131は対向する面に透明電極と配向膜を備え(図示省略)、接着性柱状スペーサ132で上下の基板131を貼りあわせ、外周を周辺シール133にて内包する液晶134を密封した構造をもつ液晶表示素子を示している。例えば、a)に示す室温(25℃とする)における液晶表示素子内のセルの容積と内包する液晶134の容積がほぼ等しいとする。−25℃から+50℃の間で液晶134の線膨張係数に対し、基板131、接着性柱状スペーサ132、周辺シール133の線膨張係数が小さいときに周辺環境の温度変化が生じた場合、例えば−20℃において、セルの内容積より液晶134の体積が小さくなりセル内に液晶の存在しない空隙部を生ずる発泡現象が生じる。図中の各矢印は収縮方向を示す。   However, even if the measures described above are taken, there remains a problem such as the low temperature foaming phenomenon shown in FIG. In the figure, a flexible film-like substrate 131 is provided with a transparent electrode and an orientation film (not shown) on opposite surfaces, and the upper and lower substrates 131 are bonded together with an adhesive columnar spacer 132, and the outer periphery is enclosed by a peripheral seal 133. 2 shows a liquid crystal display element having a structure in which a liquid crystal 134 is sealed. For example, it is assumed that the volume of the cell in the liquid crystal display element and the volume of the liquid crystal 134 included in the liquid crystal display element at room temperature (25 ° C.) shown in a) are substantially equal. When the temperature change of the surrounding environment occurs when the linear expansion coefficient of the substrate 131, the adhesive columnar spacer 132, and the peripheral seal 133 is small with respect to the linear expansion coefficient of the liquid crystal 134 between −25 ° C. and + 50 ° C., for example, At 20 ° C., the volume of the liquid crystal 134 becomes smaller than the internal volume of the cell, and a foaming phenomenon occurs in which a void portion where no liquid crystal exists is generated in the cell. Each arrow in the figure indicates the direction of contraction.

さらに、柱状スペーサとして用いる材料はセル内で液晶に接触する部材であるため、液晶と接触した際の経時変化が少ないこと、また、液晶への溶出物が発生しないことなどの点で高い信頼性が求められる。このような部材として、信頼性を保ったまま液晶の線膨張係数に合わせた材料を開発することは非常に困難である。用いる液晶材料の種類も開発に伴い変化していくことが予想され、その度に液晶材料の線膨張係数も異なる。これにあわせて柱状スペーサ材料も線膨張係数の異なる材料を開発していくことは大きなコストと労力が必要となってしまう。   Furthermore, since the material used as the columnar spacer is a member that contacts the liquid crystal in the cell, it has high reliability in that it does not change over time when it comes into contact with the liquid crystal, and that no elution occurs in the liquid crystal. Is required. As such a member, it is very difficult to develop a material that matches the linear expansion coefficient of liquid crystal while maintaining reliability. The type of liquid crystal material used is expected to change with development, and the linear expansion coefficient of the liquid crystal material changes each time. In accordance with this, it is necessary to develop a column spacer material having a different linear expansion coefficient, which requires a large cost and labor.

以下に関連する特許文献を示す。   The following patent documents are shown.

WO2007/007394号公報WO2007 / 007394 WO2006/097993号公報WO2006 / 097993 特開平07−181498号公報Japanese Patent Application Laid-Open No. 07-181498

本発明は、上記の問題を解決するため、樹脂基板を用いたセル構造を有する、液晶表示素子において、温度変化に対するセルと液晶との体積差を抑え、樹脂基板とスペーサとの接着部の剥離やセル内における液晶の発泡を防ぐことを目的とする。   In order to solve the above problems, the present invention suppresses the volume difference between the cell and the liquid crystal with respect to a temperature change in a liquid crystal display element having a cell structure using a resin substrate, and peels off the adhesive portion between the resin substrate and the spacer. It aims at preventing the foaming of the liquid crystal in the cell.

上記目的を達成するために、液晶表示素子の一実施形態は、第1の基板と、前記第1の基板と対向する第2の基板と、前記第1の基板と前記第2の基板との間に挟まれた液晶と、前記第1の基板と前記第2の基板との間の前記液晶を封止するシール材と、前記シール材で囲まれた領域において前記第1の基板と前記第2の基板を接合する、複数の、異なる膨張係数のスペーサと、を備え、所望の温度範囲内において、前記シール材で囲まれた領域から前記複数の異なる膨張係数のスペーサを除いた領域の体積と前記液晶の体積との差が一定値以下とする。   In order to achieve the above object, an embodiment of a liquid crystal display element includes a first substrate, a second substrate facing the first substrate, and the first substrate and the second substrate. A liquid crystal sandwiched therebetween, a sealing material that seals the liquid crystal between the first substrate and the second substrate, and the first substrate and the first substrate in a region surrounded by the sealing material A plurality of spacers having different expansion coefficients that join the two substrates, and a volume of a region obtained by removing the plurality of spacers having different expansion coefficients from a region surrounded by the sealing material within a desired temperature range The difference between the volume of the liquid crystal and the volume of the liquid crystal is set to a certain value or less.

以上のように開示の液晶表示素子によれば、対向する上下基板間に接着性柱状スペーサを設ける構造を持ったセルにおいて、2種類以上の異なる線膨張係数を持つ接着性柱状スペーサの配置の割合を変えることで、セル内に充填する液晶または液体材料の温度変化時の体積変化に対して、セル容積の変化量との差を一定値以下とし、樹脂基板とスペーサとの接着部の剥離やセル内における液晶の発泡を防ぐことができる。   As described above, according to the disclosed liquid crystal display element, the proportion of the arrangement of the adhesive columnar spacers having two or more different linear expansion coefficients in the cell having the structure in which the adhesive columnar spacers are provided between the upper and lower substrates facing each other. By changing the difference between the volume of the liquid crystal or liquid material filled in the cell when the temperature changes, the difference between the change in the cell volume is less than a certain value, and the adhesive portion between the resin substrate and the spacer is peeled off. The foaming of the liquid crystal in the cell can be prevented.

実施形態における第1の実施例First Example of Embodiment 実施形態における第2の実施例Second example of embodiment 2種の柱状スペーサの割合を変更した場合の温度変化時におけるセル容積とLC体積の関係Relationship between cell volume and LC volume during temperature change when the ratio of the two types of columnar spacers is changed 実施形態における第3の実施例Third Example of Embodiment 実施形態における第4の実施例Fourth example of embodiment 実施形態における第5の実施例Example 5 of the embodiment 実施形態における高線膨張係数スペーサの規定例Example of defining the high linear expansion coefficient spacer in the embodiment 従来の液晶表示素子の一構造例A structural example of a conventional liquid crystal display device ビーズスペーサの散布による配置Placement by spreading of bead spacers 柱状スペーサの規則的な配置Regular arrangement of columnar spacers 湾曲時のセルギャップ変動Cell gap fluctuation during bending 接着性柱状スペーサを配したセル構造の従来例Conventional cell structure with adhesive columnar spacers 低温発泡現象Low temperature foaming phenomenon

以下、図面を参照しつつ一実施形態を説明する。   Hereinafter, an embodiment will be described with reference to the drawings.

図1は実施形態における第1の実施例を示す。液晶表示素子に用いられるセル構造1の例である。厚さが100〜200μm程度のPET、PC、PESといった樹脂でつくられた上部基板5−1、下部基板5−2を対向させた面には透明電極と配向膜が設けられている(図示省略、B部の詳細説明は図2を参照して記載する)。上部基板5−1と下部基板5−2の間は第1接着性柱状スペーサ2、第2接着性柱状スペーサ3、外周は封止口6を有して周辺シール4で内包する液晶7が外部に漏れないようになっている。封止口6は、上部基板5−1と下部基板5−2の間に液晶7を満たした後、例えば熱硬化型の樹脂を充し加熱することにより封止される。   FIG. 1 shows a first example of the embodiment. It is an example of the cell structure 1 used for a liquid crystal display element. A transparent electrode and an alignment film are provided on the surfaces of the upper substrate 5-1 and the lower substrate 5-2 made of resin such as PET, PC, and PES having a thickness of about 100 to 200 μm. Detailed description of part B will be described with reference to FIG. Between the upper substrate 5-1 and the lower substrate 5-2, the first adhesive columnar spacer 2 and the second adhesive columnar spacer 3, the outer periphery has a sealing port 6, and the liquid crystal 7 enclosed by the peripheral seal 4 is external. It is designed not to leak. The sealing port 6 is sealed by filling the liquid crystal 7 between the upper substrate 5-1 and the lower substrate 5-2, and then charging and heating, for example, a thermosetting resin.

セル構造1は、セル構造1の外形が100mm×100mm、セルギャップ(上部基板5−1と下部基板5−2との間隔)は約4μm、高線膨張係数をもつ第1接着性柱状スペーサ2と低線膨張係数をもつ第2接着性柱状スペーサ3が配置されている領域全体に対する低線膨張係数をもつ第2接着性柱状スペーサ3が配置されている領域割合を10%、そして各部材の線膨張係数は、液晶7が250ppm(=250μm/℃/m)、高線膨張係数を有する第1接着性柱状スペーサ2が580ppm、低線膨張係数を有する第2接着性柱状スペーサ3が150ppm、上部基板5−1と下部基板5−2が70ppmとする。第1接着性柱状スペーサ2および第2接着性柱状スペーサ2は、例えばアクリル系樹脂の熱接着性柱状スペーサであって直径10〜100μm程度の円柱あるいは十字状の断面形状をした壁面構造をもち、所望する線膨張係数をもつように樹脂等の配合が行われている。周辺シール4はアクリル系もしくはエポキシ系の光硬化型あるいは熱硬化型のシール材料を用いている。液晶は、コレステリック液晶あるいはカイラルネマチック液晶である。ここで、接着性柱状スペーサの断面形状は円、楕円、多角形、その他十形状をもつ壁面状いずれであっても構わない。   The cell structure 1 has an outer shape of the cell structure 1 of 100 mm × 100 mm, a cell gap (a distance between the upper substrate 5-1 and the lower substrate 5-2) of about 4 μm, and a first adhesive columnar spacer 2 having a high linear expansion coefficient. 10% of the area ratio of the second adhesive columnar spacer 3 having the low linear expansion coefficient to the entire area where the second adhesive columnar spacer 3 having the low linear expansion coefficient is disposed, The linear expansion coefficient is 250 ppm for liquid crystal 7 (= 250 μm / ° C./m), the first adhesive columnar spacer 2 having a high linear expansion coefficient is 580 ppm, the second adhesive columnar spacer 3 having a low linear expansion coefficient is 150 ppm, The upper substrate 5-1 and the lower substrate 5-2 are 70 ppm. The first adhesive columnar spacer 2 and the second adhesive columnar spacer 2 are, for example, acrylic resin heat-adhesive columnar spacers having a wall surface structure having a columnar or cross-shaped cross section having a diameter of about 10 to 100 μm, A resin or the like is blended so as to have a desired linear expansion coefficient. The peripheral seal 4 is made of an acrylic or epoxy photocuring or thermosetting sealing material. The liquid crystal is a cholesteric liquid crystal or a chiral nematic liquid crystal. Here, the cross-sectional shape of the adhesive columnar spacer may be any of a circle, an ellipse, a polygon, and other wall surfaces having ten shapes.

図1のa)は、常温(25℃とする)時における平面図を示す。説明のため、上部基板5−1を取り外した状態を示す。b)は常温時におけるA−A’断面図を示す。c)はセル構造1を常温から、例えば−20℃とした時のA−A’断面図を示す。第1接着性柱状スペーサ2の配置されている領域のセルギャップは常温時より小さくなり、第2接着性柱状スペーサ3の配置されている領域のセルギャップは第1接着性柱状スペーサ2の配置されている領域のセルギャップに比べて収縮しない。全体として第2接着性柱状スペーサ3の配置されている領域が見かけ上、膨張した状態となる。   FIG. 1 a shows a plan view at normal temperature (25 ° C.). For the sake of explanation, a state in which the upper substrate 5-1 is removed is shown. b) shows an A-A 'cross-sectional view at room temperature. c) shows an A-A ′ cross-sectional view of the cell structure 1 when the cell structure 1 is at room temperature, for example, at −20 ° C. The cell gap in the region where the first adhesive columnar spacer 2 is disposed is smaller than that at room temperature, and the cell gap in the region where the second adhesive columnar spacer 3 is disposed is disposed in the first adhesive columnar spacer 2. It does not shrink compared to the cell gap in the area. As a whole, the region where the second adhesive columnar spacer 3 is disposed is apparently expanded.

また、d)はセル構造1を常温から、例えば+70℃とした時のA−A’断面図を示す。第1接着性柱状スペーサ2の配置されている領域のセルギャップは常温時より大きくなり、第2接着性柱状スペーサ3の配置されている領域のセルギャップは第1接着性柱状スペーサ2の配置されている領域のセルギャップに比べて大きくはならない。全体として第2接着性柱状スペーサ3の配置されている領域が見かけ上、収縮した状態となる。   Further, d) is a cross-sectional view taken along the line A-A ′ when the cell structure 1 is changed from normal temperature to, for example, + 70 ° C. The cell gap in the region where the first adhesive columnar spacer 2 is arranged is larger than that at room temperature, and the cell gap in the region where the second adhesive columnar spacer 3 is arranged is arranged in the first adhesive columnar spacer 2. It does not become larger than the cell gap of the area where the area is located. As a whole, the region where the second adhesive columnar spacer 3 is arranged is apparently contracted.

図2は実施形態における第2の実施例を示す。図1におけるB部の詳細説明図である。   FIG. 2 shows a second example of the embodiment. It is a detailed explanatory view of the B section in FIG.

厚さが100〜200μm程度のPET、PC、PESといった樹脂でつくられた上部基板5−1、下部基板5−2を対向させた面には各々透明電極と配向膜が設けられている。上側樹脂基板22−1には上側電極21−1と配向膜24が図に示すように設けられている。また下側樹脂基板22−2には下側電極21−2と配向膜24が図に示すように設けられている。透明な電極である上側電極21−1、下側電極21−2は例えばインジウムとスズの酸化物ITOを各々樹脂基板表面にマトリクス状にパターニングし、その上に配向膜24としてポリイミド系の厚さ300〜1000Å程度の膜が積層されている。   A transparent electrode and an alignment film are provided on the surfaces of the upper substrate 5-1 and the lower substrate 5-2 made of resin such as PET, PC, and PES having a thickness of about 100 to 200 μm, respectively. The upper resin substrate 22-1 is provided with an upper electrode 21-1 and an alignment film 24 as shown in the figure. The lower resin substrate 22-2 is provided with a lower electrode 21-2 and an alignment film 24 as shown in the figure. The upper electrode 21-1 and the lower electrode 21-2, which are transparent electrodes, are formed by patterning, for example, indium and tin oxide ITO in a matrix on the surface of the resin substrate, and a polyimide-based thickness as an alignment film 24 thereon. A film of about 300 to 1000 mm is laminated.

本発明においては、対向する上下基板間に接着性柱状スペーサを設ける構造を持ったセルにおいて、2種類以上の異なる線膨張係数を持つ接着性柱状スペーサの配置の割合を変える。すなわち、高線膨張係数をもつ第1接着性柱状スペーサ2の配置されている領域に対する低線膨張係数をもつ第2接着性柱状スペーサ3が配置されている領域割合を例えば上述の10%から他の割合に変更する。これにより、セル内に充填する液晶または液体材料の温度変化時の体積変化に対して、セル容積の変化量との差を一定値以下とし、セル構造1と液晶7との膨張収縮の違いによる樹脂基板とスペーサとの接着部の剥離やセル内における液晶の発泡を防ごうとするものである。   In the present invention, in a cell having a structure in which an adhesive columnar spacer is provided between opposing upper and lower substrates, the ratio of the arrangement of adhesive columnar spacers having two or more different linear expansion coefficients is changed. That is, the ratio of the area in which the second adhesive columnar spacer 3 having a low linear expansion coefficient to the area in which the first adhesive columnar spacer 2 having a high linear expansion coefficient is arranged is changed from, for example, 10% described above. Change to the percentage. As a result, the difference between the change amount of the cell volume with respect to the volume change at the time of the temperature change of the liquid crystal or liquid material filled in the cell is set to a certain value or less, and due to the difference in expansion and contraction between the cell structure 1 and the liquid crystal 7. It is intended to prevent peeling of the bonding portion between the resin substrate and the spacer and foaming of the liquid crystal in the cell.

セル構造1を構成する各部材は、経時変化や液晶への溶出物が発生しないことなど高い信頼性が求められる。これらの部材として、信頼性を保ったまま液晶の線膨張係数に合わせた材料を開発することは困難であり、用いる液晶材料の種類が変わる毎に液晶材料の線膨張係数も異なってくる。これにあわせて柱状スペーサ材料も線膨張係数の異なる材料を開発するには大きなコストと時間が必要となってしまう。このため、上述のように高線膨張係数をもつ第1接着性柱状スペーサ2の配置されている領域に対する低線膨張係数をもつ第2接着性柱状スペーサ3が配置されている領域割合を、例えば上述の10%から他の割合に変更することにより解決しようとするものである。   Each member constituting the cell structure 1 is required to have high reliability such as a change with time and no elution to the liquid crystal. As these members, it is difficult to develop a material that matches the linear expansion coefficient of the liquid crystal while maintaining reliability, and the linear expansion coefficient of the liquid crystal material varies with the type of liquid crystal material used. Along with this, a large cost and time are required to develop materials having different linear expansion coefficients for the columnar spacer materials. For this reason, the ratio of the area where the second adhesive columnar spacer 3 having a low linear expansion coefficient to the area where the first adhesive columnar spacer 2 having a high linear expansion coefficient is arranged as described above, for example, The problem is to be solved by changing from the above 10% to another ratio.

図3は2種の柱状スペーサの割合を変更した場合の温度変化時セル容積とLC体積の関係を示す。図は、下記の計算方法により求めた。   FIG. 3 shows the relationship between the cell volume and the LC volume when the temperature changes when the ratio of the two types of columnar spacers is changed. The figure was obtained by the following calculation method.

樹脂基板の平面方向をX軸、Y軸とし、樹脂基板の厚み方向をZ軸とした場合、0℃において、樹脂基板のX軸方向の長さ:L、樹脂基板のY軸方向の長さ:L、柱状スペーサ(第1接着性柱状スペーサ2と第2接着性柱状スペーサ2)のセル空間に占める体積率:A%、柱状スペーサのZ軸方向の長さ:L(第1接着性柱状スペーサ2と第2接着性柱状スペーサ2の長さは0℃において共に同じとする)、液晶の体積V、樹脂基板の線膨張係数:a、液晶の線膨張係数:a、柱状スペーサ1の線膨張係数:a4、柱状スペーサ2の線膨張係数:aとする。 When the planar direction of the resin substrate is the X axis and the Y axis, and the thickness direction of the resin substrate is the Z axis, the length of the resin substrate in the X axis direction at 0 ° C .: L 1 , the length of the resin substrate in the Y axis direction is: L 2, the columnar spacers volume ratio (the first adhesive columnar spacers 2 second adhesive columnar spacers 2) occupied in the cell space of: a%, the Z-axis direction of the columnar spacer length: L 3 (the first The lengths of the adhesive columnar spacer 2 and the second adhesive columnar spacer 2 are the same at 0 ° C.), the volume V 1 of the liquid crystal, the linear expansion coefficient of the resin substrate: a 1 , and the linear expansion coefficient of the liquid crystal: a 3 linear expansion coefficient of the column spacer 1: a 4, the linear expansion coefficient of the columnar spacers 2: and a 5.

ここで、第1接着性柱状スペーサ2と第2接着性柱状スペーサ2との領域の合計を100としたとき、第1接着性柱状スペーサ2のセル領域の割合をB%とすると柱状スペーサ2のセル領域の割合は(100−B)%であるから、
T℃におけるLC体積(液晶の体積)−セル容積≒[L×{2(a−a)−3×A(B×0.01)×0.01(a−a)}+L×{2(a−a)−3×A(100−B)×0.01×0.01(a−a)}]×Tと表せる。式をまとめると、T℃におけるLC体積(液晶の体積)−セル容積≒K(K−KB)Tとなる。長さの単位はmm、線膨張係数の単位はppm(=250μm/℃/m)である。K、K、Kは定数であり、LC体積−セル容積は、Bを変数とする温度Tの一次式で表されることが分かる。
Here, when the total area of the first adhesive columnar spacer 2 and the second adhesive columnar spacer 2 is 100, the ratio of the cell region of the first adhesive columnar spacer 2 is B%. Since the ratio of the cell area is (100-B)%,
LC volume at T ° C. (liquid crystal volume) −cell volume≈ [L 1 L 2 L 3 × {2 (a 3 −a 1 ) −3 × A (B × 0.01) × 0.01 (a 3 a 4)} + L 1 L 2 L 3 × {2 (a 3 -a 1) -3 × a (100-B) × 0.01 × 0.01 (a 3 -a 5)}] can be expressed as × T . In summary, LC volume at T ° C. (liquid crystal volume) −cell volume≈K 1 (K 2 −K 3 B) T. The unit of length is mm, and the unit of linear expansion coefficient is ppm (= 250 μm / ° C./m). It can be seen that K 1 , K 2 , and K 3 are constants, and the LC volume-cell volume is expressed by a linear expression of temperature T with B as a variable.

図1において示したセル構造1の各部材の諸元を当てはめると、図3に示すようなグラフとなる。即ち、図1において示したセル構造1の各部材においては、第1接着性柱状スペーサ2の割合(両方の接着性柱状スペーサを配置した全体の領域を100とした時の第1接着性柱状スペーサ2の占める領域の割合を%で表す。以下、配置率と呼ぶ)を90%としているが、50%とした場合は(a)の線で示され、樹脂基板5−1、樹脂基板5−2、第1接着性柱状スペーサ2、第2接着性柱状スペーサ3により構成されるセル構造の温度変化時の容積変化が液晶の体積変化と一致しない。この場合は、例えば環境温度が70℃の場合にセル容積に対して液晶体積が0.3mmも大きくなるため、セル内圧力が高まり、壁面の接着部が剥離するという問題が発生する。 When the specifications of each member of the cell structure 1 shown in FIG. 1 are applied, a graph as shown in FIG. 3 is obtained. That is, in each member of the cell structure 1 shown in FIG. 1, the ratio of the first adhesive columnar spacer 2 (the first adhesive columnar spacer when the total area where both adhesive columnar spacers are arranged is 100 is used. The ratio of the area occupied by 2 is expressed in% (hereinafter referred to as the arrangement ratio) is 90%, but in the case of 50%, it is indicated by the line (a), and the resin substrate 5-1 and the resin substrate 5- 2. The volume change at the time of temperature change of the cell structure constituted by the first adhesive columnar spacer 2 and the second adhesive columnar spacer 3 does not coincide with the volume change of the liquid crystal. In this case, for example, when the environmental temperature is 70 ° C., the liquid crystal volume becomes as large as 0.3 mm 3 with respect to the cell volume, which causes a problem that the pressure in the cell is increased and the adhesion portion of the wall surface is peeled off.

高線膨張係数をもつ第1接着性柱状スペーサ2の配置率を(c)に示す80%とすると、樹脂基板5−1、樹脂基板5−2、第1接着性柱状スペーサ2、第2接着性柱状スペーサ3により構成されるセル構造の温度変化時の容積変化が液晶7の体積変化とほぼ一致する。この場合は、例えば環境温度が70℃においてもセル容積と液晶体積にほとんど差がないためセル内圧力の増加もなく、両方の接着性柱状スペーサの接着部が剥離してしまうなどの問題が発生しなくなる。すなわち、理想ラインと呼べるラインである。   When the arrangement ratio of the first adhesive columnar spacers 2 having a high linear expansion coefficient is 80% shown in (c), the resin substrate 5-1, the resin substrate 5-2, the first adhesive columnar spacer 2, and the second adhesion. The volume change at the time of temperature change of the cell structure constituted by the conductive columnar spacer 3 substantially coincides with the volume change of the liquid crystal 7. In this case, for example, even when the environmental temperature is 70 ° C., there is almost no difference between the cell volume and the liquid crystal volume, so there is no increase in the pressure in the cell, and problems such as separation of the adhesive portions of both adhesive columnar spacers occur. No longer. That is, it is a line that can be called an ideal line.

ここで、グラフの各直線は、0℃において交わっているが、これは封止口6を封止する温度を0℃とするため、0℃においてLC体積−セル容積=0となるように計算したためである。   Here, each straight line of the graph intersects at 0 ° C. This is calculated so that LC volume−cell volume = 0 at 0 ° C. because the temperature for sealing the sealing port 6 is 0 ° C. This is because.

以上のように、第1接着性柱状スペーサ2の配置率を100%、即ち第2接着性柱状スペーサ3を使用せずにセル構造1の各部材の諸元を1つ1つ吟味して、セル容積と液晶容積の差の温度変化に対する変動を小さく抑えるのは極めて難しいが、異なった線膨張係数をもつ第2接着性柱状スペーサ3を有する領域を設けることにより、セル容積と液晶容積の差の温度変化に対する変動を吸収しやすくしている。   As described above, the arrangement ratio of the first adhesive columnar spacer 2 is 100%, that is, the specifications of each member of the cell structure 1 are examined one by one without using the second adhesive columnar spacer 3, Although it is extremely difficult to suppress the fluctuation of the difference between the cell volume and the liquid crystal volume with respect to the temperature change, it is difficult to reduce the difference between the cell volume and the liquid crystal volume by providing a region having the second adhesive columnar spacers 3 having different linear expansion coefficients. It is easy to absorb the fluctuation with respect to the temperature change.

図4は実施形態における第3の実施例を示す。図は線膨張係数の異なる2種類の接着性柱状スペーサを有するセル構造の製作プロセスの一例である。図1に示すセル構造でセル構造1の外形が100mm×100mmより大きい外形のものを製作する場合を示す。a)は幅100mm×高さ120mm、厚さ150μmのPET樹脂基板にフォトリソグラフにより第1接着性柱状スペーサを形成する。第1接着性柱状スペーサは十字形の壁面厚さ40μm、厚さ4μm、線膨張係数が580ppmのアクリル系樹脂である。ここで、第2接着性柱状スペーサを形成する10%の領域を図の上部に示すように残しておく。   FIG. 4 shows a third example of the embodiment. The figure shows an example of a manufacturing process of a cell structure having two types of adhesive columnar spacers having different linear expansion coefficients. A case is shown in which the cell structure shown in FIG. 1 has an outer shape larger than 100 mm × 100 mm. In a), a first adhesive columnar spacer is formed by photolithography on a PET resin substrate having a width of 100 mm, a height of 120 mm, and a thickness of 150 μm. The first adhesive columnar spacer is an acrylic resin having a cross-shaped wall thickness of 40 μm, a thickness of 4 μm, and a linear expansion coefficient of 580 ppm. Here, a 10% region for forming the second adhesive columnar spacer is left as shown in the upper part of the figure.

次に、a)’に示すようにPET樹脂基板の周辺に周辺シールを塗布して上側部材41を形成する。周辺シールはアクリル系の熱硬化型のシール材料を用い、幅100μm、厚さ50μmとする。ここでは図1および図3に示す従来技術を用いる上下電極、配向膜、液晶流入口、封止口等の製作プロセスに関する説明は省略する。   Next, as shown in a) ′, a peripheral seal is applied around the PET resin substrate to form the upper member 41. For the peripheral seal, an acrylic thermosetting sealing material is used, and the width is 100 μm and the thickness is 50 μm. Here, description of the manufacturing process of the upper and lower electrodes, the alignment film, the liquid crystal inlet, the sealing port, and the like using the prior art shown in FIGS. 1 and 3 is omitted.

一方、b)に示すように、幅100mm×高さ120mm、厚さ150μmの他のPET樹脂基板にフォトリソグラフにより第2接着性柱状スペーサを形成する。第2接着性柱状スペーサは円柱形の直径50μm、厚さ4μm、線膨張係数が150ppmのアクリル系樹脂である。第2接着性柱状スペーサを形成する領域は、a)’の上部に残された部分に対応する領域であり、c)において貼合わせを行う。接着性柱状スペーサの形成された2枚の面同士を均等に加圧し、加熱することで上下基板を貼り合せる。   On the other hand, as shown in b), a second adhesive columnar spacer is formed by photolithography on another PET resin substrate having a width of 100 mm × a height of 120 mm and a thickness of 150 μm. The second adhesive columnar spacer is a cylindrical acrylic resin having a diameter of 50 μm, a thickness of 4 μm, and a linear expansion coefficient of 150 ppm. A region where the second adhesive columnar spacer is formed is a region corresponding to a portion left on the upper part of a) ′, and bonding is performed in c). The two substrates on which the adhesive columnar spacers are formed are evenly pressurized and heated to bond the upper and lower substrates together.

以上により、d)に示すセル構造が完成する。このセル構造の内部の空間にコレステリック液晶を注入して、所定の温度、例えば0℃において封止口を封止する。   Thus, the cell structure shown in d) is completed. Cholesteric liquid crystal is injected into the space inside the cell structure, and the sealing port is sealed at a predetermined temperature, for example, 0 ° C.

図5は実施形態における第4の実施例を示す。接着性柱状スペーサを2種類配置し、2種類の接着性柱状スペーサの線膨張係数がともに液晶(または液体)材料の線膨張係数よりも大きいセル構造の場合である。樹脂基板51の外形が120mm×100mm、セルギャップは約4μm、低線膨張係数をもつ第1接着性柱状スペーサ53と高線膨張係数をもつ第2接着性柱状スペーサ54が配置されている領域全体に対する高線膨張係数をもつ第2接着性柱状スペーサ54が配置されている領域割合を10%、そして各部材の線膨張係数は、液晶7が250ppm、低線膨張係数を有する第1接着性柱状スペーサ53が300ppm、高線膨張係数を有する第2接着性柱状スペーサ54が580ppm、樹脂基板51が70ppmとする。第1接着性柱状スペーサ2および第2接着性柱状スペーサ2は、例えばアクリル系樹脂の熱接着性柱状スペーサであって直径10〜100μm程度、あるいは十字状の断面形状をした壁面構造のものであって、所望する線膨張係数をもつように樹脂等の配合が行われている。周辺シール55はアクリル系もしくはエポキシ系の光硬化型あるいは熱硬化型のシール材料を用いている。液晶は、コレステリック液晶あるいはカイラルネマチック液晶である。   FIG. 5 shows a fourth example of the embodiment. This is a case of a cell structure in which two types of adhesive columnar spacers are arranged and the linear expansion coefficients of the two types of adhesive columnar spacers are both larger than the linear expansion coefficient of the liquid crystal (or liquid) material. The entire region in which the outer shape of the resin substrate 51 is 120 mm × 100 mm, the cell gap is about 4 μm, the first adhesive columnar spacer 53 having a low linear expansion coefficient and the second adhesive columnar spacer 54 having a high linear expansion coefficient are disposed. 10% of the region where the second adhesive columnar spacer 54 having a high linear expansion coefficient is disposed, and the linear expansion coefficient of each member is 250 ppm for the liquid crystal 7 and the first adhesive columnar shape having a low linear expansion coefficient. The spacer 53 is 300 ppm, the second adhesive columnar spacer 54 having a high linear expansion coefficient is 580 ppm, and the resin substrate 51 is 70 ppm. The first adhesive columnar spacer 2 and the second adhesive columnar spacer 2 are, for example, acrylic resin thermal adhesive columnar spacers having a wall surface structure having a diameter of about 10 to 100 μm or a cross-shaped cross section. Thus, a resin or the like is blended so as to have a desired linear expansion coefficient. The peripheral seal 55 is made of an acrylic or epoxy photocuring or thermosetting sealing material. The liquid crystal is a cholesteric liquid crystal or a chiral nematic liquid crystal.

図5においては図1と異なり、高線膨張係数を有する接着性柱状スペーサの配置率と低線膨張係数を有する接着性柱状スペーサの配置率とが逆転している。   In FIG. 5, unlike FIG. 1, the arrangement rate of the adhesive columnar spacer having a high linear expansion coefficient and the arrangement rate of the adhesive columnar spacer having a low linear expansion coefficient are reversed.

図6は実施形態における第5の実施例を示す。a)は第1接着性柱状スペーサ62の外周を第2接着性柱状スペーサ63が取り囲んだタイプのもの、b)は第2接着性柱状スペーサ63のあった図の下辺領域に第3接着性柱状スペーサ66の領域を設けたタイプのもの、c)は、さらに図の左辺部にも第3接着性柱状スペーサ66の領域を設けたタイプのものを示す。第1接着性柱状スペーサの領域を表示領域、第2接着性柱状スペーサの領域を非表示領域として使用できる例である。   FIG. 6 shows a fifth example of the embodiment. a) is a type in which the outer periphery of the first adhesive columnar spacer 62 is surrounded by the second adhesive columnar spacer 63, and b) is a third adhesive columnar in the lower region of the figure where the second adhesive columnar spacer 63 was present. The type c) in which the region of the spacer 66 is provided, and c) is the type in which the region of the third adhesive columnar spacer 66 is also provided on the left side of the drawing. In this example, the first adhesive columnar spacer region can be used as a display region, and the second adhesive columnar spacer region can be used as a non-display region.

図6に例示したタイプに限らず、図示を省略するが、例えば図6の各図の中央部に第2接着性柱状スペーサの領域を縦方向に帯状に設け、左右に分離された第1接着性柱状スペーサの領域をそれぞれ独立した表示画面として用いることもできる。   Although not shown in the type illustrated in FIG. 6, the illustration is omitted. For example, a first adhesive columnar spacer region is provided in the center of each figure in a vertical direction in a strip shape, and is separated to the left and right. The regions of the columnar spacers can be used as independent display screens.

図7は実施形態における高線膨張係数スペーサの規定例を示す。図3においては、高線膨張係数を有する接着性柱状スペーサ配置率を80%の割合で配置することが理想であるが、配置率の範囲を規定する場合は、基板に対する接着性柱状スペーサの接着強度、接着性柱状スペーサのヤング率、上下基板のヤング率、液晶材料の圧縮弾性率および、セル構造の使用温度範囲から規定される。   FIG. 7 shows an example of defining the high linear expansion coefficient spacer in the embodiment. In FIG. 3, it is ideal to arrange the adhesive columnar spacer arrangement ratio having a high linear expansion coefficient at a ratio of 80%. However, when the range of the arrangement ratio is defined, the adhesion of the adhesive columnar spacer to the substrate is set. It is defined from strength, Young's modulus of the adhesive columnar spacer, Young's modulus of the upper and lower substrates, compression elastic modulus of the liquid crystal material, and operating temperature range of the cell structure.

例えば、図1に示すセル構造において、2種類の接着性柱状スペーサの材料接着力を400N/mm2、2種類の接着性柱状スペーサ材料ヤング率:4.8GPa、上下樹脂基板のヤング率:2.6GPa、セル構造の使用温度範囲:上限70℃とする。この時、接着性柱状スペーサが樹脂基板から剥離する寸前の状態では、フックの法則によれば、セル内での接着性柱状スペーサの伸びが、0.0033μm程度、上下樹脂基板の伸びが0.1538mm程度となる。これにより、接着性柱状スペーサの剥離が発生しないセル容積と液晶体積差は、0.113mm3が上限となる(図7に破線で示す)。LC体積−セル容積の値が、この剥離上限値を使用温度内にて超えない配置率から理想ラインを描く配置率までが、配置率範囲となる。この例の場合であると、70℃において、上限体積差に達するのが配置率70%の時となっており、配置率80%の時に理想ラインを描くことから、70%〜80%が高線膨張スペーサの配置率範囲となることが分かる。 For example, in the cell structure shown in FIG. 1, the material adhesive force of two types of adhesive columnar spacers is 400 N / mm 2 , the two types of adhesive columnar spacer material Young's modulus: 4.8 GPa, and the Young's modulus of the upper and lower resin substrates: 2 .6 GPa, cell structure operating temperature range: upper limit 70 ° C. At this time, in a state just before the adhesive columnar spacer is peeled off from the resin substrate, according to Hook's law, the elongation of the adhesive columnar spacer in the cell is about 0.0033 μm, and the elongation of the upper and lower resin substrates is 0. It is about 1538 mm. Thus, the cell volume and liquid volume difference that peeling does not occur in the adhesive columnar spacers (shown in broken lines in FIG. 7) 0.113 mm 3 is the upper limit. The arrangement ratio range is from the arrangement ratio in which the LC volume-cell volume value does not exceed the peeling upper limit value within the operating temperature to the arrangement ratio drawing an ideal line. In the case of this example, at 70 ° C., the upper limit volume difference is reached when the arrangement ratio is 70%, and since the ideal line is drawn when the arrangement ratio is 80%, 70% to 80% is high. It turns out that it becomes the arrangement | positioning rate range of a linear expansion spacer.

上記の説明において、液晶を内包する2枚の樹脂基板間にはさまれたセル構造の説明をしたが、このようなセル構造のものを複数個重ね合わせたセル構造であってももちろん構わない。   In the above description, the cell structure sandwiched between the two resin substrates containing the liquid crystal has been described. However, a cell structure in which a plurality of such cell structures are stacked may of course be used. .

1 セル構造
2、53、62 第1接着性柱状スペーサ
3、54、63 第2接着性柱状スペーサ
4、55、64、83,112,133 周辺シール
6、52、65、84 封止口
7、25、86,114,126 液晶
24,125 配向膜
26 液晶流入口
41 上側部材
42 下側部材
51、61,111,121 樹脂基板
66 第3接着性柱状スペーサ
80,110 液晶表示素子
81、92,101,131 基板
82 透明電極と配向膜層
85、93、113 ビーズスペーサ
91 散布器
102 柱状スペーサ
115 セルギャップ
122 透明電極
123,132 接着性柱状スペーサ
1 Cell structure 2, 53, 62 First adhesive column spacer 3, 54, 63 Second adhesive column spacer 4, 55, 64, 83, 112, 133 Peripheral seal 6, 52, 65, 84 Sealing port 7, 25, 86, 114, 126 Liquid crystal 24, 125 Alignment film 26 Liquid crystal inlet 41 Upper member 42 Lower member 51, 61, 111, 121 Resin substrate 66 Third adhesive columnar spacers 80, 110 Liquid crystal display elements 81, 92, 101, 131 Substrate 82 Transparent electrode and alignment layer 85, 93, 113 Bead spacer 91 Spreader 102 Column spacer 115 Cell gap 122 Transparent electrode 123, 132 Adhesive column spacer

Claims (5)

第1の基板と、
前記第1の基板と対向する第2の基板と、
前記第1の基板と前記第2の基板との間に挟まれた液晶と、
前記第1の基板と前記第2の基板との間の前記液晶を封止するシール材と、
前記シール材で囲まれた領域において前記第1の基板と前記第2の基板を接合する、複数の、異なる膨張係数のスペーサと、
を備え、
所望の温度範囲内において、前記シール材で囲まれた領域から前記複数の異なる膨張係数のスペーサを除いた領域の体積と前記液晶の体積との差が一定値以下である
液晶表示素子。
A first substrate;
A second substrate facing the first substrate;
A liquid crystal sandwiched between the first substrate and the second substrate;
A sealing material for sealing the liquid crystal between the first substrate and the second substrate;
A plurality of spacers having different expansion coefficients that join the first substrate and the second substrate in a region surrounded by the sealing material;
With
In a desired temperature range, a difference between a volume of a region obtained by removing the plurality of spacers having different expansion coefficients from a region surrounded by the sealing material and a volume of the liquid crystal is a predetermined value or less.
前記液晶表示素子は、
前記シール材で囲まれた領域の内、第1の領域において前記第1の基板と前記第2の基板を接合する第1の膨張係数のスペーサと、
前記シール材で囲まれた領域の内、第2の領域において前記第1の基板と前記第2の基板を接合する第2の膨張係数のスペーサと、
を備える請求項1記載の液晶表示素子。
The liquid crystal display element is
A spacer having a first expansion coefficient that joins the first substrate and the second substrate in a first region of the region surrounded by the sealing material;
A spacer having a second expansion coefficient that joins the first substrate and the second substrate in a second region of the region surrounded by the sealing material;
A liquid crystal display element according to claim 1.
前記第2の膨張係数のスペーサは、所望の温度範囲内において、前記シール材で囲まれた領域から該スペーサ及び前記第1のスペーサを除いた領域の体積と、前記液晶の体積の差が、一定値以下となる膨張係数を有する
請求項2記載の液晶表示素子。
The spacer having the second expansion coefficient has a difference between the volume of the liquid crystal and the volume of the region excluding the spacer and the first spacer from the region surrounded by the sealing material within a desired temperature range. The liquid crystal display element according to claim 2, wherein the liquid crystal display element has an expansion coefficient that is a predetermined value or less.
前記第2の膨張係数のスペーサは、前記シール材で囲まれた領域の内、前記第1の領域のシール材で囲まれた領域から前記第1の膨張係数のスペーサおよび該第2の膨張係数のスペーサを除いた領域の体積と、前記液晶の体積との差が、所望の温度範囲内において一定値以下となる割合の第2の領域において、前記第1の基板と前記第2の基板とを接合する、
請求項2記載の液晶表示素子。
The spacer having the second expansion coefficient includes a spacer having the first expansion coefficient from a region surrounded by the sealing material in the first region, and the second expansion coefficient from the region surrounded by the sealing material. In the second region where the difference between the volume of the region excluding the spacer and the volume of the liquid crystal is a certain value or less within a desired temperature range, the first substrate and the second substrate Joining,
The liquid crystal display element according to claim 2.
前記第1の領域は表示領域であり、
前記第2の領域は非表示領域である
請求項2から4のいずれかに記載の液晶表示素子。
The first area is a display area;
The liquid crystal display element according to claim 2, wherein the second region is a non-display region.
JP2009164913A 2009-07-13 2009-07-13 Liquid crystal display element Pending JP2011022212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164913A JP2011022212A (en) 2009-07-13 2009-07-13 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164913A JP2011022212A (en) 2009-07-13 2009-07-13 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2011022212A true JP2011022212A (en) 2011-02-03

Family

ID=43632375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164913A Pending JP2011022212A (en) 2009-07-13 2009-07-13 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2011022212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037170A (en) * 2011-08-08 2013-02-21 Stanley Electric Co Ltd Liquid crystal display device
WO2020145135A1 (en) * 2019-01-07 2020-07-16 株式会社ジャパンディスプレイ Display device
JP2020112771A (en) * 2019-01-07 2020-07-27 株式会社ジャパンディスプレイ Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375729A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Liquid crystal display element
JP2001125110A (en) * 1999-10-29 2001-05-11 Seiko Epson Corp Liquid crystal device
JP2004163459A (en) * 2002-11-08 2004-06-10 Fujitsu Ltd Liquid crystal panel and method of manufacturing the same
WO2006097993A1 (en) * 2005-03-14 2006-09-21 Fujitsu Limited Liquid crystal display device and method for manufacturing liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375729A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Liquid crystal display element
JP2001125110A (en) * 1999-10-29 2001-05-11 Seiko Epson Corp Liquid crystal device
JP2004163459A (en) * 2002-11-08 2004-06-10 Fujitsu Ltd Liquid crystal panel and method of manufacturing the same
WO2006097993A1 (en) * 2005-03-14 2006-09-21 Fujitsu Limited Liquid crystal display device and method for manufacturing liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037170A (en) * 2011-08-08 2013-02-21 Stanley Electric Co Ltd Liquid crystal display device
WO2020145135A1 (en) * 2019-01-07 2020-07-16 株式会社ジャパンディスプレイ Display device
JP2020112771A (en) * 2019-01-07 2020-07-27 株式会社ジャパンディスプレイ Display device
JP7360255B2 (en) 2019-01-07 2023-10-12 株式会社ジャパンディスプレイ Display device and display device manufacturing method

Similar Documents

Publication Publication Date Title
US8049859B2 (en) Liquid crystal display device including a relief area
US7652743B2 (en) Liquid crystal display element
JP4958977B2 (en) Display device having flexibility
CN1991531B (en) Liquid crystal display panel and method of manufacturing the same
JP6011133B2 (en) Liquid crystal display
WO2011155117A1 (en) Display device
KR100979373B1 (en) Liquid crystal display device
JP2009115933A (en) Liquid crystal display device and method of manufacturing the same
JPWO2006097993A1 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP5791098B2 (en) Optical element
JP4335632B2 (en) Manufacturing method of liquid crystal display device
JP2011022212A (en) Liquid crystal display element
JP2006267532A (en) Sealing member and liquid crystal device using the same
US8767162B2 (en) Liquid crystal display panel
JP2007114461A (en) Method for manufacturing liquid crystal display panel
JP2007171363A (en) Liquid crystal display device
JP5285808B2 (en) Manufacturing method of liquid crystal display panel
JP6820975B2 (en) Liquid crystal panel, coupled liquid crystal panel, and manufacturing method of liquid crystal panel
JP4547202B2 (en) Touch panel and screen input type display device having the same
JP2006234957A (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2002341358A (en) Manufacturing method for liquid crystal display panel
KR100890973B1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2002049042A (en) Color filter, indicating element and method for manufacturing the same
US11340501B2 (en) Display device
JP2017151289A (en) Thermosetting sealing material, display, and method for manufacturing display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422