WO2020145135A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020145135A1
WO2020145135A1 PCT/JP2019/050671 JP2019050671W WO2020145135A1 WO 2020145135 A1 WO2020145135 A1 WO 2020145135A1 JP 2019050671 W JP2019050671 W JP 2019050671W WO 2020145135 A1 WO2020145135 A1 WO 2020145135A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
protrusion
display device
spacer
adhesive
Prior art date
Application number
PCT/JP2019/050671
Other languages
French (fr)
Japanese (ja)
Inventor
順子 長澤
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019099647A external-priority patent/JP7360255B2/en
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020145135A1 publication Critical patent/WO2020145135A1/en
Priority to US17/305,400 priority Critical patent/US20210333600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • Embodiments of the present invention relate to a display device.
  • a display device such as a liquid crystal display device includes a pair of substrates facing each other.
  • a protrusion protruding from one substrate toward the other substrate is arranged between the pair of substrates.
  • An example of this protrusion is a spacer for maintaining the cell gap between the substrates in the display area.
  • Protrusions may be arranged for various purposes in the peripheral region outside the display region.
  • the tips of the protrusions such as spacers are not bonded to the other substrate. Therefore, when an external force is applied to the display device, the tips of the protrusions may move from their original positions. Due to this, various defects such as displacement of elements arranged on both substrates and deterioration of display quality may occur.
  • JP 2006-91200 A Japanese Patent Laid-Open No. 2006-84906 JP, 2009-80280, A Japanese Patent No. 4912643
  • An object of one aspect of the present disclosure is to provide a display device having excellent display quality by improving the structure of the protrusions arranged between the pair of substrates.
  • a display device includes a first substrate, a second substrate facing the first substrate, and a seal that bonds the first substrate and the second substrate in a peripheral region outside a display region including pixels.
  • the second protrusion and the first substrate face each other with a gap in between.
  • a display device is a flexible first substrate, a flexible second substrate facing the first substrate, and the first substrate in a peripheral region outside a display region including pixels. And a sealing material for adhering the second substrate, a first protrusion and a second protrusion protruding from the second substrate toward the first substrate, and a first adhesive for adhering the first protrusion and the first substrate And a second adhesive that bonds the second protrusion to the first substrate.
  • the second protrusion is located closer to the end of the second substrate than the first protrusion, and the width of the first protrusion is larger than the width of the second protrusion.
  • FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic plan view of a structure that can be applied to the subpixel in the first embodiment.
  • FIG. 3 is a schematic sectional view of the display panel taken along line F3-F3 of FIG.
  • FIG. 4 is a diagram showing an example of a manufacturing process of the liquid crystal display device according to the first embodiment.
  • FIG. 5 is a diagram showing the manufacturing process following FIG.
  • FIG. 6 is a diagram showing a manufacturing process following FIG.
  • FIG. 7 is a diagram showing the manufacturing process following FIG.
  • FIG. 8 is a diagram showing the manufacturing process following FIG. 7.
  • FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
  • FIG. 11 is a sectional view showing an example of a liquid crystal layer in a transparent state.
  • FIG. 12 is a cross-sectional view showing an example of the liquid crystal layer in the scattering state.
  • FIG. 13 is a cross-sectional view showing another example of the liquid crystal layer in the scattering state.
  • FIG. 14 is a cross-sectional view showing another example of the liquid crystal layer in the transparent state.
  • FIG. 15 is a schematic plan view of the display panel in the third embodiment.
  • 16 is a schematic sectional view of the display panel taken along line F16-F16 in FIG.
  • FIG. 17 is a schematic plan view of a display panel included in the liquid crystal display device according to the fourth embodiment.
  • FIG. 18 is a schematic sectional view of the display panel taken along line F18-F18 in FIG.
  • FIG. 19 is a schematic cross-sectional view of the liquid crystal display device according to the fifth embodiment.
  • FIG. 20 is a schematic plan view showing an example of the shapes of the light shielding layer, the color filter and the plurality of spacers.
  • FIG. 21 is a diagram showing an example of the manufacturing process of the liquid crystal display device according to the fifth embodiment.
  • FIG. 22 is a diagram showing the manufacturing process following FIG.
  • FIG. 23 is a diagram showing the manufacturing process following FIG.
  • FIG. 24 is a diagram showing the manufacturing process following FIG. 23.
  • FIG. 25 is a diagram showing the manufacturing process following FIG. 24.
  • FIG. 26 is a graph showing an example of the relationship between the load applied to the spacer and the deformation amount of the spacer.
  • FIG. 27 is a schematic sectional view of the liquid crystal display device according to the sixth embodiment.
  • FIG. 28 is a diagram showing an example of a manufacturing process of the liquid crystal display device according to the sixth embodiment.
  • FIG. 29 is a diagram showing the manufacturing process following FIG. 28.
  • FIG. 30 is a diagram showing the manufacturing process following FIG. 29.
  • a liquid crystal display device is disclosed as an example of the display device. It should be noted that each embodiment does not prevent the application of each technical idea disclosed in each embodiment to other types of display devices.
  • Other types of display devices include, for example, a self-luminous display device having an organic electroluminescence display element or a Light Emitting Diode (LED) display element, an electronic paper type display device having an electrophoretic element, and a Micro Electro Mechanical Systems ( A display device to which MEMS) is applied, a display device to which electrochromism is applied, or the like is assumed.
  • FIG. 1 is a plan view showing a schematic configuration of a liquid crystal display device 100 (hereinafter, referred to as a display device 100) according to the first embodiment.
  • the first direction X, the second direction Y and the third direction Z are directions intersecting with each other.
  • the first direction X, the second direction Y and the third direction Z are orthogonal to each other, but these directions may intersect at an angle other than 90 degrees.
  • the display device 100 includes a display panel PNL, a backlight BL, a flexible circuit board FPC, and a controller CTL.
  • the display panel PNL includes an array substrate AR, a counter substrate CT facing the array substrate AR, a sealing material SE, and a liquid crystal layer LC.
  • the array substrate AR and the counter substrate CT are examples of the first substrate and the second substrate.
  • the seal material SE adheres the array substrate AR and the counter substrate CT.
  • the liquid crystal layer LC is enclosed in a region surrounded by the array substrate AR, the counter substrate CT and the sealing material SE.
  • the array substrate AR has an extension area EA extending from the lower end of the counter substrate CT in the figure.
  • the extension area EA includes a terminal T for external connection.
  • the flexible circuit board FPC is connected to the terminal T.
  • the array substrate AR and the counter substrate CT are rectangular in the example of FIG. 1, these substrates may have other shapes.
  • the display panel PNL has a display area DA for displaying an image and a peripheral area PA outside the display area DA.
  • the peripheral area PA includes an extension area EA.
  • the array substrate AR includes a plurality of scanning lines G and a plurality of signal lines S.
  • the plurality of scanning lines G extend in the first direction X and are arranged in the second direction Y.
  • the plurality of signal lines S extend in the second direction Y and are arranged in the first direction X.
  • the display area DA has a plurality of pixels PX arranged in a matrix.
  • the pixel PX includes a plurality of sub-pixels SP corresponding to different colors. As an example, the pixel PX includes red, green, and blue subpixels SP, but the pixel PX may include subpixels SP of other colors such as white.
  • the array substrate AR includes a pixel electrode PE and a switching element SW arranged in each subpixel SP. Further, the array substrate AR includes a common electrode CE extending to the plurality of subpixels SP. A common voltage is applied to the common electrode CE.
  • the controller CTL supplies the display panel PNL with signals necessary for driving for image display.
  • the controller CTL is mounted on the flexible circuit board FPC, but the controller CTL may be mounted on another member.
  • the backlight BL faces the back surface of the array substrate AR.
  • the backlight BL may be an edge light type that includes a light guide plate and a light source that faces the end of the light guide plate, or may be a direct type that includes a light source that faces the back surface of the array substrate AR.
  • the display device 100 may be a reflective type that does not include the backlight BL.
  • FIG. 2 is a schematic plan view of a structure applicable to the sub-pixel SP.
  • the pixel electrode PE has a shape having two line portions LP.
  • the pixel electrode PE may have more line portions LP, or may have only one line portion LP.
  • the pixel electrode PE and the common electrode CE described above can be formed of a transparent conductive material such as indium tin oxide (ITO).
  • the line part LP is inclined with respect to the second direction Y.
  • the signal line S is also inclined like the line portion LP.
  • the shapes of the pixel electrode PE and the signal line S are line-symmetrical with respect to the illustrated sub-pixel SP in the second direction Y.
  • the pixel layout is not limited to this example, and may have a structure in which one sub-pixel SP realizes multi-domain or a single-domain structure.
  • the switching element SW includes a semiconductor layer SC and a relay electrode RE.
  • the semiconductor layer SC is connected to the signal line S through the contact hole CH1 and is connected to the relay electrode RE through the contact hole CH2.
  • the semiconductor layer SC intersects the scanning line G once between the contact holes CH1 and CH2, but may intersect twice.
  • the relay electrode RE is connected to the pixel electrode PE through the contact hole CH3.
  • a plurality of main spacers MS and a plurality of sub spacers SS are arranged.
  • the main spacer MS is an example of the first protrusion
  • the sub spacer SS is an example of the second protrusion.
  • the main spacer MS and the sub spacer SS are arranged so as to sandwich the two sub pixels SP, but the present invention is not limited to this example.
  • the main spacers MS and the sub spacers SS can be arranged with various densities.
  • the number of main spacers MS and the number of sub-spacers SS arranged in the display area DA may be the same or different.
  • the main spacer MS and the sub spacer SS are arranged near the intersection of the scanning line G and the signal line S.
  • the contact hole CH3 of each sub-pixel SP and each spacer MS, SS are arranged in the first direction X.
  • FIG. 3 is a schematic cross-sectional view of the display panel PNL taken along line F3-F3 in FIG.
  • the array substrate AR includes a first base material 10, a first insulating layer 11, a second insulating layer 12, a third insulating layer 13, a fourth insulating layer 14, and a first alignment film 15. ..
  • the insulating layers 11 to 14 are stacked in the third direction Z.
  • the semiconductor layer SC is arranged between the first base material 10 and the first insulating layer 11. Another insulating layer may be interposed between the semiconductor layer SC and the first base material 10.
  • the scanning line G is arranged between the first insulating layer 11 and the second insulating layer 12.
  • the signal line S and the relay electrode RE are arranged between the second insulating layer 12 and the third insulating layer 13.
  • the common electrode CE is disposed between the third insulating layer 13 and the fourth insulating layer 14.
  • the pixel electrode PE is arranged on the fourth insulating layer 14.
  • the first alignment film 15 covers the pixel electrode PE and the fourth insulating layer 14.
  • the third insulating layer 13 is made of, for example, an organic resin material and is thicker than the other insulating layers 11, 12, and 14.
  • the above-mentioned contact hole CH3 is provided in the third insulating layer 13, and the pixel electrode PE is connected to the relay electrode RE through this contact hole CH3.
  • the above-mentioned contact holes CH1 and CH2 both penetrate the first insulating layer 11 and the second insulating layer 12.
  • the counter substrate CT includes a second base material 20, a light shielding layer 21, a color filter layer 22, an overcoat layer 23, and a second alignment film 24.
  • the light shielding layer 21 is formed on the lower surface of the second base material 20, and faces the scanning line G, the signal line S, and the relay electrode RE. In the cross section of FIG. 3, the light shielding layer 21 is provided as a whole, but the light shielding layer 21 is open in the sub-pixel SP.
  • the color filter layer 22 covers the light shielding layer 21.
  • the color filter layer 22 includes a plurality of color filters respectively corresponding to the colors of the sub-pixels SP.
  • the overcoat layer 23 covers the color filter layer 22.
  • the second alignment film 24 covers the overcoat layer 23.
  • a first polarizing plate PL1 is arranged on the lower surface of the first base material 10.
  • a second polarizing plate PL2 is arranged on the upper surface of the second base material 20.
  • the liquid crystal layer LC is arranged between the first alignment film 15 and the second alignment film 24.
  • the first base material 10 and the second base material 20 can be formed of, for example, glass.
  • the first base material 10 and the second base material 20 can also be formed of a resin material such as polyimide. In this case, since the flexible array substrate AR and counter substrate CT are obtained, the display panel PNL can be bent.
  • the main spacer MS and the sub spacer SS project from the counter substrate CT toward the array substrate AR.
  • the main spacer MS and the sub spacer SS are covered with the second alignment film 24.
  • at least a part of the main spacer MS and the sub spacer SS may not be covered with the second alignment film 24.
  • the main spacer MS and the sub spacer SS have a circular planar shape as shown in FIG. 2 and a trapezoidal sectional shape as shown in FIG.
  • the planar shape and cross-sectional shape of the main spacer MS and the sub spacer SS are not limited to these examples.
  • the main spacer MS and the sub spacer SS may have a planar shape elongated in a predetermined direction.
  • the main spacer MS and the sub spacer SS have the same height H.
  • the height H is smaller than the cell gap GP between the array substrate AR and the counter substrate CT.
  • the height of the main spacer MS and the height of the sub spacer SS may be different.
  • Adhesive AD is arranged between the main spacer MS and the array substrate AR.
  • the adhesive AD is disposed on the first alignment film 15 between the two contact holes CH3 arranged in the first direction X.
  • the adhesive AD bonds the tip of the main spacer MS and the array substrate AR.
  • the height of the adhesive AD is smaller than the height H of the main spacer MS, for example.
  • the width of the adhesive AD is slightly larger than the width of the tip of the main spacer MS.
  • the width of the adhesive AD may be the same as the width of the tip of the main spacer MS, or may be smaller than the width of the tip.
  • the main spacer MS keeps the cell gap between the array substrate AR and the counter substrate CT constant.
  • the sub-spacer SS contacts the array substrate AR when an external force is applied to the display panel PNL, for example, and suppresses excessive deformation of the cell gap.
  • the array substrate AR including the first base material 10, the insulating layers 11 to 14, the first alignment film 15, the scanning line G, the signal line S, the switching element SW, the pixel electrode PE, and the common electrode CE is manufactured. Further, the counter substrate CT including the second base material 20, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 is manufactured.
  • a photoresist R serving as a base of the main spacer MS and the sub spacer SS is formed on the counter substrate CT (on the overcoat layer 23). Further, after baking the photoresist R (pre-baking), the light L is irradiated (exposure) to the position where the main spacer MS and the sub spacer SS are formed in the photoresist R.
  • the excess photoresist R is removed using a chemical solution (development) to form the main spacer MS and the sub spacer SS as shown in FIG.
  • a chemical solution development
  • one main spacer MS and two sub spacers SS are shown as an example.
  • post-baking By further baking the main spacers MS and the sub spacers SS, their strength can be increased (post-baking).
  • the second alignment film 24 is formed as shown in FIG.
  • the main spacer MS and the sub spacer SS are covered with the second alignment film 24. Since the second alignment film 24 before curing has fluidity, the second alignment film 24 may flow down from the tips of the main spacer MS and the sub spacer SS. In this case, the tips of the main spacers MS and the sub spacers SS are exposed from the second alignment film 24 or covered with the second alignment film 24 thinner than other portions.
  • the adhesive AD is formed at a position corresponding to the main spacer MS by, for example, an inkjet method.
  • the adhesive AD for example, an acrylic resin can be used, but it is not limited to this example.
  • the counter substrate CT and the array substrate AR manufactured in this way are bonded together by a seal material SE as shown in FIG.
  • the tip of the main spacer MS contacts the adhesive AD directly or through the second alignment film 24.
  • the liquid crystal layer LC can be formed by, for example, a dropping method (ODF method). That is, the frame-shaped sealing material SE is formed on one of the array substrate AR and the counter substrate CT, the liquid crystal material is dropped inside the sealing material SE, and both substrates are bonded together in a vacuum atmosphere.
  • ODF method a dropping method
  • the liquid crystal layer LC can also be formed by a vacuum injection method. In this case, an injection port is provided in the sealing material SE, and after bonding both substrates, the liquid crystal material is injected through the injection port.
  • the seal material SE is, for example, a UV curable material and is cured by irradiation with UV light. Furthermore, after curing with UV light, heat is applied to further cure the sealing material SE. At this time, the adhesive AD is also thermally cured.
  • a thermosetting agent may be included in the adhesive AD in order to accelerate the thermosetting of the adhesive AD.
  • the thermosetting agent an imidazole type thermosetting agent, an amine type thermosetting agent, a phenol type thermosetting agent, a polythiol type thermosetting agent, an acid anhydride, a thermal cation initiator, or the like can be used.
  • the thermosetting agent only one kind may be used, or two or more kinds may be used in combination.
  • a low temperature curing resin may be used as the adhesive AD so that the crosslinking of the adhesive AD proceeds even at the heat curing temperature of the seal material SE, which is a relatively low temperature. In this case, since it is not necessary to apply high temperature, the effect of preventing the main spacer MS from peeling off due to the difference in thermal expansion between the counter substrate CT and the array substrate AR can be obtained.
  • the main spacer MS is not adhered to the array substrate AR by the adhesive AD, the array substrate AR and the counter substrate CT are adhered only by the seal material SE in the peripheral area PA.
  • an element such as the pixel electrode PE of the array substrate AR and an element such as the color filter layer 22 of the counter substrate CT are easily displaced.
  • color mixing may occur in which light that should pass through the color filter layer 22 of a certain subpixel SP passes through the adjacent subpixel SP.
  • the tip of the main spacer MS may damage the first alignment film 15 and give an undesired alignment ability to the first alignment film 15. As a result, the display quality of the display device 100 may deteriorate.
  • the main spacer MS when the main spacer MS is adhered to the array substrate AR with the adhesive AD as in the present embodiment, the array substrate AR and the counter substrate CT are unlikely to shift in the display area DA. Furthermore, the tip of the main spacer MS does not damage the first alignment film 15.
  • the manufacturing process of the main spacer MS and the sub spacer SS becomes easy. That is, if the heights of the main spacer MS and the sub spacer SS are different, multitone exposure is required in the process shown in FIG. On the other hand, if the height H of the main spacer MS and the sub-spacer SS is the same, multi-tone exposure is unnecessary.
  • the main spacer MS and the sub spacer SS which are an example of the first protrusion and the second protrusion, project from the counter substrate CT toward the array substrate AR.
  • the main spacer MS and the sub spacer SS may project from the array substrate AR toward the counter substrate CT.
  • FIG. 9 is a schematic sectional view of a liquid crystal display device 200 (hereinafter, referred to as a display device 200) according to the second embodiment.
  • the display panel PNL is bent.
  • the array substrate AR and the counter substrate CT having such flexibility can be realized by forming the first base material 10 and the second base material 20 with a resin material as described above.
  • the array substrate AR and the counter substrate CT are entirely bent so that the array substrate AR side is convex. That is, the center of curvature O of the bent array substrate AR and counter substrate CT is located on the counter substrate CT side.
  • the display panel PNL may be bent so that the counter substrate CT side is convex. Further, the display panel PNL may include a bent portion and a flat portion.
  • the first main spacer MS1 is arranged near the center CL in the first direction X of the display panel PNL, and the second main spacer MS2 is arranged at a position closer to the end of the counter substrate CT than the first main spacer MS1. ing.
  • FIG. 9 shows one first main spacer MS1 and two second main spacers MS2, the display panel PNL includes more main spacers MS1 and MS2. Further, the display panel PNL may include a plurality of sub spacers SS as in the first embodiment.
  • the width of the first main spacer MS1 is W1 and the height thereof is H1.
  • the first main spacer MS1 is adhered to the array substrate AR with the first adhesive AD1.
  • the first main spacer MS1 is an example of the first protrusion in this embodiment.
  • Width of the second main spacer MS2 is W2 and height is H2.
  • the second main spacer MS2 is adhered to the array substrate AR with the second adhesive AD2.
  • the second main spacer MS2 is an example of the second protrusion in the present embodiment.
  • the width W1 (or cross-sectional area) of the first main spacer MS1 As a result, the stress applied to the first main spacer MS1 is reduced, so that buckling of the first main spacer MS1 can be suppressed.
  • the shapes of the main spacers MS1 and MS2 are determined so that W1>W2 and H1 ⁇ H2.
  • the widths W1 and W2 may be the width of the root of each of the main spacers MS1 and MS2, the width of the tip, or the width of the intermediate portion between the root and the tip.
  • W1>W2 is satisfied at each of the root, the tip, and the intermediate portion.
  • the shape of the sub-spacer SS is not particularly limited, but as an example, the width of the sub-spacer SS may be W2 and the height may be H1.
  • the shapes of the main spacers MS1 and MS2 as in the present embodiment, even when the display panel PNL is bent, the displacement between the array substrate AR and the counter substrate CT and the variation in the cell gap are suppressed, As a result, the display quality can be improved.
  • the display panel PNL may include three or more types of main spacers MS having different widths and heights.
  • the main spacer MS closer to the center CL may have a larger width
  • the main spacer MS closer to the end of the display panel PNL may have a larger height.
  • a third embodiment will be described.
  • a transparent liquid crystal display device in which the background is visible is disclosed.
  • the configurations and effects not particularly mentioned are the same as those in the first embodiment.
  • FIG. 10 is a schematic sectional view of a liquid crystal display device 300 (hereinafter, referred to as a display device 300) according to the third embodiment.
  • the display device 300 includes a display panel PNL and a light source LS.
  • the display panel PNL includes an array substrate AR, a counter substrate CT, a liquid crystal layer LC, and a seal material SE.
  • the array substrate AR includes a first base material 10 and pixel electrodes PE.
  • the counter substrate CT includes a second base material 20 and a common electrode CE.
  • the first base material 10 and the second base material 20 are made of glass, for example.
  • the first base material 10 and the second base material 20 can also be formed of a transparent resin material.
  • the pixel electrode PE and the common electrode CE can be formed of a transparent conductive material such as indium tin oxide (ITO).
  • the counter substrate CT does not include a color filter layer.
  • the light source LS is arranged in the extension area EA and irradiates the side surface of the counter substrate CT with light.
  • the light source LS may be arranged at a position other than the extension area EA. Further, the light source LS may irradiate the side surface of the array substrate AR with light.
  • the light source LS includes an LED that emits red light, an LED that emits green light, and an LED that emits blue light.
  • the light source LS may include LEDs that emit light other than red, green, and blue.
  • a lens system may be arranged between the light source LS and the counter substrate CT.
  • the liquid crystal layer LC in this embodiment is configured to be switchable between a scattering state in which light is scattered and a transparent state in which light is transmitted with little scattering, depending on the applied voltage.
  • the liquid crystal layer LC near the pixel electrode PE to which no voltage is applied (OFF in the figure) is in a transparent state
  • the liquid crystal layer LC near the pixel electrode PE to which a voltage is applied (ON in the figure). Is a scattering state.
  • the liquid crystal layer LC near the pixel electrode PE to which the voltage is not applied may be in the scattering state
  • the liquid crystal layer LC near the pixel electrode PE to which the voltage is applied may be in the transparent state.
  • the light L1 emitted by the light source LS is incident on the side surface of the counter substrate CT and propagates inside the counter substrate CT and the array substrate AR.
  • the light L1 is scattered by the liquid crystal layer LC in the scattering state.
  • the scattered light is emitted from the array substrate AR and the counter substrate CT and can be visually recognized as a display image from both the array substrate AR side and the counter substrate CT side.
  • External light L2 incident on the liquid crystal layer LC in the transparent state passes through the display device 1 with almost no scattering. That is, when the display device 300 is viewed from the counter substrate CT side, the background on the array substrate AR side is visible, and when the display device 300 is viewed from the array substrate AR side, the background on the counter substrate CT side is visible. It is possible.
  • the display device 300 having the above configuration can be driven by, for example, a field sequential method.
  • one frame period includes a plurality of subframe periods (fields).
  • the light source LS includes red, green, and blue LEDs
  • one frame period includes red, green, and blue subframe periods.
  • the red LED is turned on and a voltage according to the red image data is applied to each pixel electrode PE. As a result, a red image is displayed.
  • the green and blue LEDs are turned on and the voltages corresponding to the green and blue image data are applied to the pixel electrodes PE, respectively. As a result, green and blue images are displayed. In this way, the red, green, and blue images displayed in time division are combined with each other and visually recognized as an image of multicolor display by an observer.
  • the liquid crystal layer LC includes a liquid crystal polymer 31 and liquid crystal molecules 32, which is an example of a polymer liquid crystal composition.
  • the liquid crystal polymer 31 and the liquid crystal molecules 32 have the same optical anisotropy or refractive index anisotropy. Further, the liquid crystal polymer 31 and the liquid crystal molecules 32 have different responsiveness to the electric field. That is, the response of the liquid crystal polymer 31 to the electric field is lower than the response of the liquid crystal molecules 32 to the electric field.
  • the example shown in FIG. 11 corresponds to, for example, a transparent state in which no voltage is applied to the liquid crystal layer LC (a state in which the potential difference between the pixel electrode PE and the common electrode CE is zero).
  • a transparent state in which no voltage is applied to the liquid crystal layer LC a state in which the potential difference between the pixel electrode PE and the common electrode CE is zero.
  • the optical axis Ax1 of the liquid crystal polymer 31 and the optical axis Ax2 of the liquid crystal molecules 32 are parallel to each other.
  • the liquid crystal polymer 31 and the liquid crystal molecules 32 have substantially the same refractive index anisotropy, and the optical axes Ax1 and Ax2 are parallel to each other. Therefore, there is almost no difference in refractive index between the liquid crystal polymer 31 and the liquid crystal molecules 32 in all directions. Accordingly, the light La parallel to the thickness direction (third direction Z) of the liquid crystal layer LC and the lights Lb and Lc inclined with respect to the thickness direction are transmitted through the liquid crystal layer LC with almost no scattering. ..
  • the example shown in FIG. 12 corresponds to a scattering state in which a voltage is applied to the liquid crystal layer LC (a state in which a potential difference is formed between the pixel electrode PE and the common electrode CE).
  • the response of the liquid crystal polymer 31 to the electric field is lower than the response of the liquid crystal molecules 32 to the electric field. Therefore, while the alignment direction of the liquid crystal polymer 31 hardly changes, the alignment direction of the liquid crystal molecules 32 changes according to the electric field, and as a result, the optical axis Ax2 tilts with respect to the optical axis Ax1. This causes a large difference in refractive index between the liquid crystal polymer 31 and the liquid crystal molecules 32 in all directions. In this state, the lights La, Lb, and Lc incident on the liquid crystal layer LC are scattered in the liquid crystal layer LC.
  • FIGS. 13 and 14 are cross-sectional views showing another example of a structure applicable to the liquid crystal layer LC.
  • the configurations shown in FIGS. 13 and 14 correspond to a polymer network type liquid crystal in which a polymer fiber structure (polymer network structure) is formed in the liquid crystal layer LC. That is, the liquid crystal layer LC has the polymer 41 and the liquid crystal molecules 42 formed in a network.
  • the plurality of polymers 41 are arranged irregularly, but the plurality of polymers 41 may be arranged substantially parallel to the main surface of the array substrate AR (see FIG. 10).
  • FIG. 13 shows a scattering state in which no voltage is applied to the liquid crystal layer LC, and the liquid crystal molecules 42 are irregularly arranged by the action of the polymer 41. In this state, the light incident on the liquid crystal layer LC is scattered.
  • FIG. 14 shows a transparent state in which a voltage is applied to the liquid crystal layer LC, and liquid crystal molecules 42 are arranged in a predetermined direction. In this state, light is hardly scattered and passes through the liquid crystal layer LC.
  • FIG. 15 is a schematic plan view of the display panel PNL.
  • the liquid crystal layer LC is formed by injecting a liquid crystal material between the array substrate AR and the counter substrate CT by the ODF method.
  • the seal material SE has an injection port IN for injecting a liquid crystal material in the manufacturing process of the display panel PNL.
  • the inlet IN is closed by the sealing resin SR.
  • the wall portion WL is arranged between the array substrate AR and the counter substrate CT.
  • the wall portion WL is located between the peripheral edge of the counter substrate CT and the seal material SE, and extends in a frame shape along the seal material SE.
  • the wall portion WL surrounds the seal material SE except the inlet IN.
  • the wall portion WL is an example of the protrusion in this embodiment.
  • the display panel PNL may further include the main spacer MS and the sub spacer SS disclosed in the first and second embodiments.
  • FIG. 16 is a schematic sectional view of the display panel PNL taken along line F16-F16 in FIG.
  • the wall portion WL projects from the counter substrate CT toward the array substrate AR.
  • the adhesive AD is arranged between the tip of the wall portion WL and the array substrate AR.
  • the wall portion WL and the adhesive AD can be formed by the same process as the main spacer MS and the adhesive AD in the first embodiment, for example.
  • the width Wa of the wall portion WL is large, the peripheral area PA increases. Therefore, the width Wa is preferably smaller than the width Wb of the seal material SE (Wa ⁇ Wb).
  • the width Wb may be the width of the root of the wall portion WL, the width of the tip, or the width of the intermediate portion between the root and the tip.
  • Wa ⁇ Wb is satisfied at each of the root, the tip, and the intermediate portion. If the width Wa is equal to or less than half the width Wb, the increase of the peripheral area PA can be suppressed more preferably.
  • the width Wb is set to 100 ⁇ m or more and the width Wa is set to a range of 5 ⁇ m or more and 10 ⁇ m or less.
  • the wall portion WL and the adhesive agent AD are in contact with the seal material SE.
  • a gap is provided between the side surface of the counter substrate CT and the wall portion WL.
  • the liquid crystal material When the liquid crystal material is injected through the injection port IN in the manufacturing process of the display device 300, the liquid crystal material may pass through the injection port IN and enter the gap between the array substrate AR and the counter substrate CT outside the sealing material SE.
  • the liquid crystal material can reach not only the side where the injection port IN is provided but also other sides along the gap.
  • the liquid crystal material other than the seal material SE absorbs or reflects the light from the light source LS, particularly when it enters between the light source LS and the counter substrate CT, which is one of the causes for lowering the light utilization efficiency. .. If the utilization efficiency of light is reduced, the brightness of the image is reduced, so that the display quality may be degraded.
  • the wall portion WL is provided between the seal material SE and the peripheral edge of the counter substrate CT. Therefore, it is possible to prevent the liquid crystal material from entering the gap between the array substrate AR and the counter substrate CT outside the seal material SE.
  • the wall portion WL is adhered to the array substrate AR with the adhesive AD, the gap between the array substrate AR and the counter substrate CT can be more preferably closed. As a result, the effect of suppressing entry of the liquid crystal material is enhanced.
  • the wall portion WL which is an example of a protrusion, protrudes from the counter substrate CT toward the array substrate AR.
  • the wall portion WL may project from the array substrate AR toward the counter substrate CT.
  • FIG. 17 is a schematic plan view of a display panel PNL included in the liquid crystal display device 400 (hereinafter, referred to as the display device 400) according to the fourth embodiment.
  • the seal material SE does not have a liquid crystal material injection port.
  • the liquid crystal layer LC can be formed by the ODF method.
  • the wall portion WL is arranged between the seal material SE and the display area DA.
  • the wall portion WL has, for example, a frame shape that surrounds the display area DA without a break.
  • the wall portion WL is an example of the protrusion in this embodiment.
  • the display panel PNL may further include the main spacer MS and the sub spacer SS disclosed in the first and second embodiments.
  • FIG. 18 is a schematic sectional view of the display panel PNL taken along line F18-F18 in FIG. Similar to the third embodiment, the wall portion WL projects from the counter substrate CT toward the array substrate AR, and the adhesive AD is disposed between the tip of the wall portion WL and the array substrate AR.
  • the wall portion WL is in contact with the liquid crystal layer LC.
  • the seal material SE is not in contact with the liquid crystal layer LC. However, a part of the frame-shaped sealing material SE shown in the plan view of FIG. 17 may be in contact with the liquid crystal layer LC.
  • a gap is provided between the seal material SE and the wall portion WL.
  • the sealing material SE spreads in the width direction. By providing the gap, it is possible to prevent the wall portion WL from being damaged by the force from the seal material SE when the width of the seal material SE is widened.
  • the width Wd of the gap is, for example, smaller than the width Wb of the seal material SE and larger than the width Wa of the wall portion WL (Wa ⁇ Wd ⁇ Wb). Considering the tolerance of the formation position of the seal material SE and the tolerance of the width of the seal material SE, the width Wd is preferably 100 ⁇ m or more (Wd>100 ⁇ m). Note that part of the frame-shaped sealing material SE shown in the plan view of FIG. 17 may be in contact with the wall portion WL.
  • the liquid crystal material is dropped inside the semi-cured sealing material SE formed on the array substrate AR or the counter substrate CT. Further, the array substrate AR and the counter substrate CT are bonded together, and then the sealing material SE is cured. In such a process, since the liquid crystal layer LC is in contact with the semi-cured sealing material SE, the resin component of the sealing material SE may be eluted into the liquid crystal layer LC to generate ionic impurities.
  • the seal material SE is not in contact with the liquid crystal layer LC. Therefore, the generation of the ionic impurities is suppressed, and as a result, the display quality can be improved.
  • the wall portion WL which is an example of a protrusion, protrudes from the counter substrate CT toward the array substrate AR.
  • the wall portion WL may project from the array substrate AR toward the counter substrate CT.
  • FIG. 19 is a schematic sectional view of a liquid crystal display device 500 (hereinafter, referred to as a display device 500) according to the fifth embodiment.
  • the display device 500 includes a main spacer MS, a sub spacer SS, and an adhesive spacer AS between the array substrate AR and the counter substrate CT. These spacers MS, SS, AS project from the counter substrate CT toward the array substrate AR.
  • the main spacer MS is an example of the first protrusion in the present embodiment.
  • the adhesive spacer AS is an example of the second protrusion in the present embodiment.
  • a plurality of main spacers MS, a plurality of sub spacers SS, and a plurality of adhesive spacers AS are distributed and arranged.
  • Each of the spacers MS, SS and AS overlaps with the light shielding layer 21 and the color filter layer 22.
  • the tips of the main spacer MS and the adhesive spacer AS are in contact with the array substrate AR (first alignment film 15).
  • the tip of the main spacer MS is not adhered to the array substrate AR and can slide on the array substrate AR.
  • the tip of the adhesive spacer AS is adhered (adhered) to the array substrate AR (first alignment film 15).
  • a gap is formed between the sub spacer SS and the array substrate AR.
  • the color filter layer 22 includes a red color filter 22R, a green color filter 22G, and a blue color filter 22B.
  • the main spacer MS and the adhesive spacer AS overlap the color filter 22B, and the sub spacer SS overlaps the boundary between the color filters 22R and 22B, but the present invention is not limited to this example.
  • the lower surface of the color filter layer 22 is covered with the overcoat layer 23 as in the example of FIG.
  • the second alignment film 24 covers the side surface and the tip of the main spacer MS.
  • the second alignment film 24 covers the side surface and the tip of the sub spacer SS.
  • the second alignment film 24 may be extremely thin at the tips of the spacers MS and SS, or there may be a portion of the tips not covered with the second alignment film 24.
  • the second alignment film 24 passes between the adhesive spacer AS and the color filter layer 22. From another point of view, the adhesive spacer AS is located between the second alignment film 24 and the array substrate AR.
  • FIG. 20 is a schematic plan view showing an example of the shapes of the light shielding layer 21, the color filter layer 22, and the spacers MS, SS, AS.
  • the color filters 22R, 22G, and 22B extend in a band shape in the second direction Y according to the shape of the sub-pixel SP.
  • the color filters 22G, 22R, 22B are repeatedly arranged in this order in the first direction X.
  • the light-shielding layer 21 has a first portion 21a overlapping the scanning line G shown in FIG. 2 and a second portion 21b overlapping the signal line S shown in FIG.
  • the width of the first portion 21a in the second direction Y is larger than the width of the second portion 21b in the first direction X.
  • the plurality of first portions 21a and the plurality of second portions 21b form the openings 21c in each subpixel SP.
  • the main spacer MS and the sub spacer SS are arranged at the position where the first portion 21a and the second portion 21b intersect (the position where the scanning line G and the signal line S intersect).
  • the light shielding layer 21 has a circular extended portion 21d around the main spacer MS. Further, the light shielding layer 21 has a circular extended portion 21e around the sub spacer SS.
  • the diameter of the expanded portion 21d is larger than the diameter of the expanded portion 21e.
  • the adhesive spacer AS is arranged near the main spacer MS. That is, the distance between the adhesive spacer AS and the main spacer MS is smaller than the distance between the adhesive spacer AS and the sub spacer SS. Note that the present invention is not limited to this example, and the adhesive spacer AS may be arranged at another position such as near the sub spacer SS.
  • the adhesive spacer AS overlaps the first portion 21a. As shown, the adhesive spacer AS is preferably located within the circular extent of the extension 21d. As a result, it is not necessary to enlarge the light shielding layer for the adhesive spacer AS, and the opening 21c around the adhesive spacer AS can be enlarged.
  • Each sub-spacer SS overlaps the boundary between the color filters 22R and 22B.
  • the main spacer MS and the adhesive spacer AS do not overlap such a boundary but overlap the color filter 22B.
  • the main spacer MS has its tip in contact with the array substrate AR to keep the cell gap constant.
  • the adhesive spacer AS adheres the array substrate AR and the counter substrate CT to each other and suppresses the displacement therebetween. Therefore, the heights of the main spacer MS and the adhesive spacer AS require a certain degree of accuracy. In this regard, by not overlapping the main spacer MS and the adhesive spacer AS on the boundary between the adjacent color filters, the main spacer MS and the adhesive spacer AS having a desired height can be accurately formed.
  • the color filter 22B has a protruding portion PT that protrudes toward the adjacent color filter 22R. Further, the main spacer MS is arranged so as to overlap the protruding portion PT. With such a structure, the main spacer MS can be disposed at the position where the scanning line G and the signal line S intersect with each other, but the superposition of the main spacer MS and the boundary between the color filters 22R and 22B can be avoided.
  • the adhesive spacers AS may be arranged for all of the main spacers MS dispersedly arranged in the display area DA, or may be arranged for some of the main spacers MS.
  • the width Wms of the main spacer MS is smaller than the width Wss of the sub spacer SS (Wss>Wms).
  • the width Was of the adhesive spacer AS is smaller than the width Wms of the main spacer MS (Wms>Was).
  • the widths Wms, Wss, and Was may be the width of the base of each spacer MS, SS, AS, the width of the tip, or the width of the intermediate portion between the root and the tip. May be.
  • Wss>Wms>Was is satisfied at each of the root, the tip, and the intermediate portion.
  • an example of a method of manufacturing the display device 500 will be described with reference to FIGS. 21 to 24.
  • an array substrate AR including the above-described first base material 10, insulating layers 11 to 14, first alignment film 15, scanning line G, signal line S, switching element SW, pixel electrode PE and common electrode CE is manufactured.
  • the counter substrate CT including the second base material 20, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 described above is manufactured.
  • a photoresist R1 serving as a base of the main spacer MS and the sub spacer SS is formed on the counter substrate CT (for example, on the overcoat layer 23). Further, after baking the photoresist R1 (pre-baking), the light L1 is irradiated (exposure) to the position where the main spacer MS and the sub spacer SS are formed in the photoresist R1. At this time, since the heights of the main spacer MS and the sub spacer SS are different, a multitone mask is used.
  • the excess photoresist R1 is removed using a chemical solution (development) to form the main spacer MS and the sub spacer SS as shown in FIG.
  • a chemical solution development
  • one main spacer MS and one sub spacer SS are shown as an example.
  • post-baking By further baking the main spacers MS and the sub spacers SS, their strength can be increased (post-baking).
  • the second alignment film 24 is formed as shown in FIG. Alignment ability is imparted to the second alignment film 24 by an alignment treatment such as a rubbing treatment, a photolysis treatment, or a photocuring treatment. In any of the alignment treatments, the second alignment film 24 is baked at a temperature of about 230° C., for example.
  • an alignment treatment such as a rubbing treatment, a photolysis treatment, or a photocuring treatment.
  • the second alignment film 24 is baked at a temperature of about 230° C., for example.
  • the main spacer MS and the sub spacer SS are covered with the second alignment film 24.
  • the second alignment film 24 may flow down from the tips of the main spacer MS and the sub spacer SS.
  • the tips of the main spacers MS and the sub spacers SS are exposed from the second alignment film 24 or covered with the second alignment film 24 thinner than other portions.
  • a photoresist R2 which is a base of the adhesive spacer AS is formed. After baking the photoresist R2 (prebaking), the light L2 is irradiated (exposure) to the position where the adhesive spacer AS is formed in the photoresist R2. After that, the excess photoresist R2 is removed by using a chemical solution (development) to form the adhesive spacer AS as shown in FIG.
  • the counter substrate CT manufactured in this way is bonded to the array substrate AR by the sealing material SE as shown in FIG.
  • the tip of the adhesive spacer AS contacts the array substrate AR (first alignment film 15).
  • the adhesive spacer AS has not been fired. Therefore, the adhesive spacer AS is in a semi-cured state in which crosslinking has not progressed sufficiently.
  • the counter substrate CT and the array substrate AR are heated while being bonded to each other to cure the seal material SE. Due to this heat, crosslinking also progresses in the adhesive spacer AS, and the tip of the adhesive spacer AS is adhered to the array substrate AR.
  • the height of the adhesive spacer AS may be larger than the height of the main spacer MS.
  • the tip of the adhesive spacer AS is likely to adhere to the array substrate AR.
  • the main spacer MS, the sub spacer SS, and the adhesive spacer AS can be formed of a resin material such as an acrylic resin or an epoxy resin.
  • the main spacer MS since the main spacer MS has a role of maintaining the cell gap, it is preferable that the main spacer MS has a property that cross-linking is sufficiently advanced and is not easily crushed.
  • the adhesive spacer AS since the adhesive spacer AS has a role of adhering the array substrate AR and the counter substrate CT, it is preferable that the adhesive spacer AS has a low-crosslinking and flexible property.
  • FIG. 26 is a graph showing an example of the relationship between the load (mN) applied to the resin spacer and the spacer deformation amount ( ⁇ m).
  • the load in the height direction is gradually applied to the spacer in the period T1 (for example, 20 seconds), the load is constant during the period T2 (for example, 5 seconds), and the period T3 (for example, 20 seconds). ), the load is gradually reduced.
  • the amount of deformation increases as the load increases.
  • the deformation amount also increases in the period T2, and the deformation amount decreases as the load decreases in the period T3. Since the spacer is plastically deformed, the amount of deformation does not become zero even when the load becomes zero.
  • the deformation amount (total deformation amount) at the completion of the period T2 is defined as Da
  • the deformation amount (plastic deformation amount) at the completion of the period T3 is defined as Db
  • the height of the spacer is defined as H.
  • the total deformation rate (%) of the spacer in the cycle of FIG. 26 can be expressed as Da/H ⁇ 100.
  • the restoration rate (%) in the cycle can be expressed as (Da ⁇ Db)/Da ⁇ 100.
  • the deformation rate and the restoration rate mainly depend on the material of the spacer, the applied load, and the diameter (or cross-sectional area). It is preferable that the main spacer MS and the adhesive spacer AS have the same deformation rate if the load and the diameter are the same.
  • the main spacer MS since the main spacer MS needs to be hard to be deformed in order to maintain the cell gap, it is preferable that the main spacer MS is sufficiently fired in the above manufacturing process.
  • the counter substrate CT and the array substrate AR are bonded together in a state where the adhesive spacer AS is not fully fired, and then the adhesive spacer AS is cured by the heat when the sealing material SE is cured.
  • the crosslinking is less likely to proceed as in the main spacer MS. Therefore, if the load and the diameter are the same, the restoration rate of the adhesive spacer AS is smaller than the restoration rate of the main spacer MS. Become. Note that, with the adhesive spacer AS having a small restoration rate as described above, even if an external force is applied to the display panel PNL, it is difficult to peel it off from the array substrate AR or the counter substrate CT.
  • this adhesive may spread more than necessary.
  • the adhesive spacer AS is patterned on the counter substrate CT, such spreading of the adhesive does not occur.
  • the main spacer MS is covered with the second alignment film 24, and the second alignment film 24 is located between the adhesive spacer AS and the color filter layer 22.
  • the adhesive spacer AS can be formed in a semi-cured state after firing the second alignment film 24. If the adhesive spacer AS is first formed and then the second alignment film 24 is formed, it is necessary to bake the second alignment film 24 at a low temperature at which the crosslinking reaction of the adhesive spacer AS is not completed. Further, the second alignment film 24 may be attached to the tip of the adhesive spacer AS, and the adhesiveness to the array substrate AR may be reduced.
  • FIG. 27 is a schematic sectional view of a liquid crystal display device 600 (hereinafter, referred to as a display device 600) according to the sixth embodiment.
  • the display device 600 includes a main spacer MS, a sub spacer SS, and an adhesive AD located between the main spacer MS and the array substrate AR, as in the first embodiment.
  • the width Wad of the adhesive AD is less than the width Wms of the tip of the main spacer MS (Wad ⁇ Wms).
  • the “tip” of the main spacer MS means, for example, a portion of the surface of the main spacer MS having a height of 90% or more with respect to the maximum height of the main spacer MS.
  • the adhesive AD is contained in the area between the tip and the array substrate AR, and does not protrude from the area.
  • the main spacer MS, the sub spacer SS, and the second alignment film 24 on the counter substrate CT and forming the photoresist R2 on them are the same as in the fifth embodiment.
  • the main spacer MS and the sub spacer SS may have the same height.
  • the light L2 is irradiated above the main spacer MS (exposure). Further, the excess photoresist R2 is removed using a chemical solution (development) to form the adhesive agent AD as shown in FIG.
  • the counter substrate CT manufactured in this way is bonded to the array substrate AR by the sealing material SE as shown in FIG.
  • the adhesive AD contacts the array substrate AR (first alignment film 15). At this stage, the adhesive AD has not been fully fired. Therefore, the adhesive AD is in a semi-cured state in which crosslinking has not progressed sufficiently.
  • the counter substrate CT and the array substrate AR are heated while being bonded to each other to cure the seal material SE. Due to the heat at this time, crosslinking also proceeds in the adhesive AD, and the main spacer MS and the array substrate AR are adhered by the adhesive AD.
  • the adhesive AD is formed by the same method as the adhesive spacer AS in the fifth embodiment. That is, the adhesive AD is a semi-cured solid in the state shown in FIG.
  • the adhesive AD according to the present embodiment does not cause such spread. Therefore, the adhesive agent AD can be formed between the tip of the main spacer MS and the array substrate AR.
  • the adhesive AD has a smaller restoration rate than the main spacer MS.
  • a total restoration rate of the main spacer MS and the adhesive AD is obtained by subtracting the plastic deformation amount of both of the main spacer MS and the adhesive AD adhered to the tip thereof from the total deformation amount when a predetermined load is applied, and further calculating that value. It is equivalent to the value divided by.
  • the above-mentioned total restoration rate is the restoration rate of the sub-spacer SS due to the presence of the adhesive AD. Will be smaller than.
  • the adhesive AD in the present embodiment may be provided for all the main spacers MS dispersed in the display area DA, or may be provided for some main spacers MS.
  • Liquid crystal display device PNL... Display panel, AR... Array substrate, CT... Counter substrate, LC... Liquid crystal layer, PE... Pixel electrode, CE... Common electrode, SE... Sealing material , DA... Display area, PA... Peripheral area, SP... Sub-pixel, MS... Main spacer, SS... Sub spacer, WL... Wall portion, AD... Adhesive, AS... Adhesive spacer.

Abstract

Provided is a display device having excellent display quality. A display device pertaining to an embodiment is provided with a first substrate (10), a second substrate (20) facing the first substrate, a seal material for bonding the first substrate and the second substrate in a peripheral region on the outside of a display region including pixels, first projections (MS) and second projections (SS) protruding toward the first substrate from the second substrate, and an adhesive (AD) for bonding the first projections and the first substrate. Furthermore, the second projections and the first substrate face each other via a gap.

Description

表示装置Display device
 本発明の実施形態は、表示装置に関する。 Embodiments of the present invention relate to a display device.
 例えば液晶表示装置などの表示装置は、互いに対向する一対の基板を備えている。一対の基板の間には、一方の基板から他方の基板に向けて突出する突起が配置される。この突起の一例としては、表示領域における基板間のセルギャップを保つためのスペーサが挙げられる。表示領域の外側の周辺領域において、各種の目的で突起が配置されることもある。 A display device such as a liquid crystal display device includes a pair of substrates facing each other. A protrusion protruding from one substrate toward the other substrate is arranged between the pair of substrates. An example of this protrusion is a spacer for maintaining the cell gap between the substrates in the display area. Protrusions may be arranged for various purposes in the peripheral region outside the display region.
 一般的に、スペーサなどの突起の先端は、他方の基板に接着されていない。したがって、外力が表示装置に加わると、突起の先端が本来あるべき位置から動くことがある。これに起因して、両基板に配置された要素がずれるなど、表示品位の低下に繋がる各種の不具合を生じ得る。 Generally, the tips of the protrusions such as spacers are not bonded to the other substrate. Therefore, when an external force is applied to the display device, the tips of the protrusions may move from their original positions. Due to this, various defects such as displacement of elements arranged on both substrates and deterioration of display quality may occur.
特開2006-91200号公報JP 2006-91200 A 特開2006-84906号公報Japanese Patent Laid-Open No. 2006-84906 特開2009-80280号公報JP, 2009-80280, A 特許第4912643号公報Japanese Patent No. 4912643
 本開示の一態様における目的は、一対の基板の間に配置される突起の構造を改善することにより、表示品位に優れた表示装置を提供することである。 An object of one aspect of the present disclosure is to provide a display device having excellent display quality by improving the structure of the protrusions arranged between the pair of substrates.
 一実施形態に係る表示装置は、第1基板と、前記第1基板に対向する第2基板と、画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、前記第1突起と前記第1基板を接着する接着剤と、を備えている。前記第2突起と前記第1基板は、隙間を介して対向している。 A display device according to an embodiment includes a first substrate, a second substrate facing the first substrate, and a seal that bonds the first substrate and the second substrate in a peripheral region outside a display region including pixels. A material, a first protrusion and a second protrusion protruding from the second substrate toward the first substrate, and an adhesive for bonding the first protrusion and the first substrate. The second protrusion and the first substrate face each other with a gap in between.
 他の実施形態に係る表示装置は、可撓性の第1基板と、前記第1基板に対向する可撓性の第2基板と、画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、前記第1突起と前記第1基板を接着する第1接着剤と、前記第2突起と前記第1基板を接着する第2接着剤と、を備えている。前記第2突起は、前記第1突起よりも前記第2基板の端部に近い位置にあり、前記第1突起の幅は、前記第2突起の幅よりも大きい。 A display device according to another embodiment is a flexible first substrate, a flexible second substrate facing the first substrate, and the first substrate in a peripheral region outside a display region including pixels. And a sealing material for adhering the second substrate, a first protrusion and a second protrusion protruding from the second substrate toward the first substrate, and a first adhesive for adhering the first protrusion and the first substrate And a second adhesive that bonds the second protrusion to the first substrate. The second protrusion is located closer to the end of the second substrate than the first protrusion, and the width of the first protrusion is larger than the width of the second protrusion.
 さらに他の実施形態に係る表示装置は、第1基板と、前記第1基板に対向する第2基板と、画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、前記第2基板から前記第1基板に向けて突出する突起と、前記突起と前記第1基板を接着する接着剤と、を備えている。前記突起は、前記周辺領域において前記シール材に沿って延在している。 In a display device according to another embodiment, a first substrate, a second substrate facing the first substrate, and the first substrate and the second substrate bonded to each other in a peripheral region outside a display region including pixels. And a protrusion protruding from the second substrate toward the first substrate, and an adhesive that adheres the protrusion and the first substrate. The protrusion extends along the sealing material in the peripheral region.
 さらに他の実施形態に係る表示装置は、第1基板と、前記第1基板に対向する第2基板と、画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、を備えている。前記第1突起は、接着されずに前記第1基板と接しており、前記第2突起は、前記第1基板に接着されている。 In a display device according to another embodiment, a first substrate, a second substrate facing the first substrate, and the first substrate and the second substrate bonded to each other in a peripheral region outside a display region including pixels. And a first protrusion and a second protrusion protruding from the second substrate toward the first substrate. The first protrusion is in contact with the first substrate without being adhered, and the second protrusion is adhered to the first substrate.
図1は、第1実施形態に係る液晶表示装置の概略的な構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device according to the first embodiment. 図2は、第1実施形態において副画素に適用し得る構造の概略的な平面図である。FIG. 2 is a schematic plan view of a structure that can be applied to the subpixel in the first embodiment. 図3は、図2のF3-F3線に沿う表示パネルの概略的な断面図である。FIG. 3 is a schematic sectional view of the display panel taken along line F3-F3 of FIG. 図4は、第1実施形態に係る液晶表示装置の製造プロセスの一例を示す図である。FIG. 4 is a diagram showing an example of a manufacturing process of the liquid crystal display device according to the first embodiment. 図5は、図4に続く製造プロセスを示す図である。FIG. 5 is a diagram showing the manufacturing process following FIG. 図6は、図5に続く製造プロセスを示す図である。FIG. 6 is a diagram showing a manufacturing process following FIG. 図7は、図6に続く製造プロセスを示す図である。FIG. 7 is a diagram showing the manufacturing process following FIG. 図8は、図7に続く製造プロセスを示す図である。FIG. 8 is a diagram showing the manufacturing process following FIG. 7. 図9は、第2実施形態に係る液晶表示装置の概略的な断面図である。FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment. 図10は、第3実施形態に係る液晶表示装置の概略的な断面図である。FIG. 10 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment. 図11は、透明状態にある液晶層の一例を示す断面図である。FIG. 11 is a sectional view showing an example of a liquid crystal layer in a transparent state. 図12は、散乱状態にある液晶層の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of the liquid crystal layer in the scattering state. 図13は、散乱状態にある液晶層の他の一例を示す断面図である。FIG. 13 is a cross-sectional view showing another example of the liquid crystal layer in the scattering state. 図14は、透明状態にある液晶層の他の一例を示す断面図である。FIG. 14 is a cross-sectional view showing another example of the liquid crystal layer in the transparent state. 図15は、第3実施形態における表示パネルの概略的な平面図である。FIG. 15 is a schematic plan view of the display panel in the third embodiment. 図16は、図15におけるF16-F16線に沿う表示パネルの概略的な断面図である。16 is a schematic sectional view of the display panel taken along line F16-F16 in FIG. 図17は、第4実施形態に係る液晶表示装置が備える表示パネルの概略的な平面図である。FIG. 17 is a schematic plan view of a display panel included in the liquid crystal display device according to the fourth embodiment. 図18は、図17におけるF18-F18線に沿う表示パネルの概略的な断面図である。FIG. 18 is a schematic sectional view of the display panel taken along line F18-F18 in FIG. 図19は、第5実施形態に係る液晶表示装置の概略的な断面図である。FIG. 19 is a schematic cross-sectional view of the liquid crystal display device according to the fifth embodiment. 図20は、遮光層、カラーフィルタおよび複数のスペーサの形状の一例を示す概略的な平面図である。FIG. 20 is a schematic plan view showing an example of the shapes of the light shielding layer, the color filter and the plurality of spacers. 図21は、第5実施形態に係る液晶表示装置の製造プロセスの一例を示す図である。FIG. 21 is a diagram showing an example of the manufacturing process of the liquid crystal display device according to the fifth embodiment. 図22は、図21に続く製造プロセスを示す図である。FIG. 22 is a diagram showing the manufacturing process following FIG. 図23は、図22に続く製造プロセスを示す図である。FIG. 23 is a diagram showing the manufacturing process following FIG. 図24は、図23に続く製造プロセスを示す図である。FIG. 24 is a diagram showing the manufacturing process following FIG. 23. 図25は、図24に続く製造プロセスを示す図である。FIG. 25 is a diagram showing the manufacturing process following FIG. 24. 図26は、スペーサに加えられる荷重とスペーサの変形量との関係の一例を示すグラフである。FIG. 26 is a graph showing an example of the relationship between the load applied to the spacer and the deformation amount of the spacer. 図27は、第6実施形態に係る液晶表示装置の概略的な断面図である。FIG. 27 is a schematic sectional view of the liquid crystal display device according to the sixth embodiment. 図28は、第6実施形態に係る液晶表示装置の製造プロセスの一例を示す図である。FIG. 28 is a diagram showing an example of a manufacturing process of the liquid crystal display device according to the sixth embodiment. 図29は、図28に続く製造プロセスを示す図である。FIG. 29 is a diagram showing the manufacturing process following FIG. 28. 図30は、図29に続く製造プロセスを示す図である。FIG. 30 is a diagram showing the manufacturing process following FIG. 29.
 いくつかの実施形態につき、図面を参照しながら説明する。 
 なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有される。また、図面は、説明をより明確にするため、実際の態様に比べて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。各図において、連続して配置される同一又は類似の要素については符号を省略することがある。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を省略することがある。
Some embodiments will be described with reference to the drawings.
It should be noted that the disclosure is merely an example, and a person having ordinary skill in the art can easily think of appropriate modifications while keeping the gist of the invention, and of course fall within the scope of the present invention. Further, although the drawings may be schematically illustrated in comparison with an actual mode in order to make the description clearer, they are merely examples and do not limit the interpretation of the present invention. In each figure, the same or similar elements arranged consecutively may be omitted from the reference numerals. In addition, in the present specification and the drawings, components having the same or similar functions as those described above with reference to the drawings already described are denoted by the same reference numerals, and redundant detailed description may be omitted.
 各実施形態においては、表示装置の一例として、液晶表示装置を開示する。なお、各実施形態は、他種の表示装置に対する、各実施形態にて開示される個々の技術的思想の適用を妨げるものではない。他種の表示装置としては、例えば、有機エレクトロルミネッセンス表示素子またはLight Emitting Diode(LED)表示素子を有する自発光型の表示装置、電気泳動素子を有する電子ペーパ型の表示装置、Micro Electro Mechanical Systems(MEMS)を応用した表示装置、或いはエレクトロクロミズムを応用した表示装置などが想定される。 In each embodiment, a liquid crystal display device is disclosed as an example of the display device. It should be noted that each embodiment does not prevent the application of each technical idea disclosed in each embodiment to other types of display devices. Other types of display devices include, for example, a self-luminous display device having an organic electroluminescence display element or a Light Emitting Diode (LED) display element, an electronic paper type display device having an electrophoretic element, and a Micro Electro Mechanical Systems ( A display device to which MEMS) is applied, a display device to which electrochromism is applied, or the like is assumed.
 [第1実施形態] 
 図1は、第1実施形態に係る液晶表示装置100(以下、表示装置100と呼ぶ)の概略的な構成を示す平面図である。図中において、第1方向X、第2方向Yおよび第3方向Zは互いに交差する方向である。本実施形態においては、第1方向X、第2方向Yおよび第3方向Zが互いに直交するが、これら方向が90度以外の角度で交差してもよい。
[First Embodiment]
FIG. 1 is a plan view showing a schematic configuration of a liquid crystal display device 100 (hereinafter, referred to as a display device 100) according to the first embodiment. In the figure, the first direction X, the second direction Y and the third direction Z are directions intersecting with each other. In the present embodiment, the first direction X, the second direction Y and the third direction Z are orthogonal to each other, but these directions may intersect at an angle other than 90 degrees.
 表示装置100は、表示パネルPNLと、バックライトBLと、フレキシブル回路基板FPCと、コントローラCTLとを備えている。表示パネルPNLは、アレイ基板ARと、アレイ基板ARに対向する対向基板CTと、シール材SEと、液晶層LCとを備えている。アレイ基板ARおよび対向基板CTは、第1基板および第2基板の一例である。シール材SEは、アレイ基板ARと対向基板CTを接着する。液晶層LCは、アレイ基板AR、対向基板CTおよびシール材SEで囲われた領域に封入されている。 The display device 100 includes a display panel PNL, a backlight BL, a flexible circuit board FPC, and a controller CTL. The display panel PNL includes an array substrate AR, a counter substrate CT facing the array substrate AR, a sealing material SE, and a liquid crystal layer LC. The array substrate AR and the counter substrate CT are examples of the first substrate and the second substrate. The seal material SE adheres the array substrate AR and the counter substrate CT. The liquid crystal layer LC is enclosed in a region surrounded by the array substrate AR, the counter substrate CT and the sealing material SE.
 図1の例において、アレイ基板ARは、対向基板CTの図中下方の端部より延出した延出領域EAを有している。延出領域EAは、外部接続用の端子Tを含む。フレキシブル回路基板FPCは、端子Tに接続されている。図1の例においてはアレイ基板ARおよび対向基板CTが矩形状であるが、これら基板は他の形状であってもよい。 In the example of FIG. 1, the array substrate AR has an extension area EA extending from the lower end of the counter substrate CT in the figure. The extension area EA includes a terminal T for external connection. The flexible circuit board FPC is connected to the terminal T. Although the array substrate AR and the counter substrate CT are rectangular in the example of FIG. 1, these substrates may have other shapes.
 表示パネルPNLは、画像を表示する表示領域DAと、表示領域DAの外側の周辺領域PAとを有している。周辺領域PAは、延出領域EAを含む。表示領域DAにおいて、アレイ基板ARは、複数の走査線Gと、複数の信号線Sとを備えている。複数の走査線Gは、第1方向Xに延びるとともに第2方向Yに並んでいる。複数の信号線Sは、第2方向Yに延びるとともに第1方向Xに並んでいる。 The display panel PNL has a display area DA for displaying an image and a peripheral area PA outside the display area DA. The peripheral area PA includes an extension area EA. In the display area DA, the array substrate AR includes a plurality of scanning lines G and a plurality of signal lines S. The plurality of scanning lines G extend in the first direction X and are arranged in the second direction Y. The plurality of signal lines S extend in the second direction Y and are arranged in the first direction X.
 表示領域DAは、マトリクス状に配列された複数の画素PXを有している。画素PXは、異なる色に対応する複数の副画素SPを含む。一例として、画素PXは赤色、緑色、青色の副画素SPを含むが、画素PXは白色などの他の色の副画素SPを含んでもよい。アレイ基板ARは、各副画素SPに配置された画素電極PEおよびスイッチング素子SWを備えている。さらに、アレイ基板ARは、複数の副画素SPに延在する共通電極CEを備えている。共通電極CEには、共通電圧が印加される。 The display area DA has a plurality of pixels PX arranged in a matrix. The pixel PX includes a plurality of sub-pixels SP corresponding to different colors. As an example, the pixel PX includes red, green, and blue subpixels SP, but the pixel PX may include subpixels SP of other colors such as white. The array substrate AR includes a pixel electrode PE and a switching element SW arranged in each subpixel SP. Further, the array substrate AR includes a common electrode CE extending to the plurality of subpixels SP. A common voltage is applied to the common electrode CE.
 コントローラCTLは、画像表示のための駆動に必要な信号を表示パネルPNLに供給する。図1の例においては、コントローラCTLがフレキシブル回路基板FPCに実装されているが、コントローラCTLは他の部材に実装されてもよい。 The controller CTL supplies the display panel PNL with signals necessary for driving for image display. In the example of FIG. 1, the controller CTL is mounted on the flexible circuit board FPC, but the controller CTL may be mounted on another member.
 バックライトBLは、アレイ基板ARの裏面に対向している。例えば、バックライトBLは、導光板と、導光板の端部に対向する光源とを備えるエッジライト型であってもよいし、アレイ基板ARの裏面に対向する光源を備えた直下型であってもよい。また、表示装置100は、バックライトBLを備えない反射型であってもよい。 The backlight BL faces the back surface of the array substrate AR. For example, the backlight BL may be an edge light type that includes a light guide plate and a light source that faces the end of the light guide plate, or may be a direct type that includes a light source that faces the back surface of the array substrate AR. Good. In addition, the display device 100 may be a reflective type that does not include the backlight BL.
 図2は、副画素SPに適用し得る構造の概略的な平面図である。この例において、画素電極PEは、2本の線部LPを有した形状である。画素電極PEは、より多くの線部LPを有してもよいし、線部LPを1本のみ有してもよい。画素電極PEおよび上述の共通電極CEは、例えばインジウム・ティン・オキサイド(ITO)のような透明導電材料で形成することができる。 FIG. 2 is a schematic plan view of a structure applicable to the sub-pixel SP. In this example, the pixel electrode PE has a shape having two line portions LP. The pixel electrode PE may have more line portions LP, or may have only one line portion LP. The pixel electrode PE and the common electrode CE described above can be formed of a transparent conductive material such as indium tin oxide (ITO).
 線部LPは、第2方向Yに対して傾いている。信号線Sも線部LPと同様に傾いている。図示した副画素SPと第2方向Yに隣り合う副画素SPにおいては、画素電極PEおよび信号線Sの形状が、図示した副画素SPにおける形状と第2方向Yに関して線対称の形状となる。これにより、疑似的なマルチドメインの画素レイアウトを実現できる。ただし、画素レイアウトはこの例に限られず、1つの副画素SPにおいてマルチドメインを実現する構造であってもよいし、シングルドメインの構造であってもよい。 The line part LP is inclined with respect to the second direction Y. The signal line S is also inclined like the line portion LP. In the sub-pixel SP adjacent to the illustrated sub-pixel SP in the second direction Y, the shapes of the pixel electrode PE and the signal line S are line-symmetrical with respect to the illustrated sub-pixel SP in the second direction Y. Thereby, a pseudo multi-domain pixel layout can be realized. However, the pixel layout is not limited to this example, and may have a structure in which one sub-pixel SP realizes multi-domain or a single-domain structure.
 スイッチング素子SWは、半導体層SCと、中継電極REとを備えている。半導体層SCは、信号線SとコンタクトホールCH1を通じて接続され、中継電極REとコンタクトホールCH2を通じて接続されている。半導体層SCは、コンタクトホールCH1,CH2の間で走査線Gと1回交差しているが、2回交差してもよい。中継電極REは、コンタクトホールCH3を通じて画素電極PEと接続されている。 The switching element SW includes a semiconductor layer SC and a relay electrode RE. The semiconductor layer SC is connected to the signal line S through the contact hole CH1 and is connected to the relay electrode RE through the contact hole CH2. The semiconductor layer SC intersects the scanning line G once between the contact holes CH1 and CH2, but may intersect twice. The relay electrode RE is connected to the pixel electrode PE through the contact hole CH3.
 表示領域DAにおいては、複数のメインスペーサMSと、複数のサブスペーサSSとが配置されている。メインスペーサMSは第1突起の一例であり、サブスペーサSSは第2突起の一例である。 In the display area DA, a plurality of main spacers MS and a plurality of sub spacers SS are arranged. The main spacer MS is an example of the first protrusion, and the sub spacer SS is an example of the second protrusion.
 図2の例においては、2つの副画素SPを挟んでメインスペーサMSとサブスペーサSSが配置されているが、この例に限られない。メインスペーサMSおよびサブスペーサSSは、様々な密度で配置することができる。表示領域DAに配置されるメインスペーサMSの数とサブスペーサSSの数は同じであってもよいし、異なってもよい。 In the example of FIG. 2, the main spacer MS and the sub spacer SS are arranged so as to sandwich the two sub pixels SP, but the present invention is not limited to this example. The main spacers MS and the sub spacers SS can be arranged with various densities. The number of main spacers MS and the number of sub-spacers SS arranged in the display area DA may be the same or different.
 メインスペーサMSとサブスペーサSSは、走査線Gと信号線Sの交点の近傍に配置されている。図2の例においては、各副画素SPのコンタクトホールCH3と各スペーサMS,SSが第1方向Xに並んでいる。 The main spacer MS and the sub spacer SS are arranged near the intersection of the scanning line G and the signal line S. In the example of FIG. 2, the contact hole CH3 of each sub-pixel SP and each spacer MS, SS are arranged in the first direction X.
 図3は、図2におけるF3-F3線に沿う表示パネルPNLの概略的な断面図である。アレイ基板ARは、第1基材10と、第1絶縁層11と、第2絶縁層12と、第3絶縁層13と、第4絶縁層14と、第1配向膜15とを備えている。絶縁層11~14は、第3方向Zに積層されている。 FIG. 3 is a schematic cross-sectional view of the display panel PNL taken along line F3-F3 in FIG. The array substrate AR includes a first base material 10, a first insulating layer 11, a second insulating layer 12, a third insulating layer 13, a fourth insulating layer 14, and a first alignment film 15. .. The insulating layers 11 to 14 are stacked in the third direction Z.
 半導体層SCは、第1基材10と第1絶縁層11の間に配置されている。半導体層SCと第1基材10の間に他の絶縁層が介在してもよい。図3の断面には示されていないが、走査線Gは、第1絶縁層11と第2絶縁層12の間に配置されている。信号線Sおよび中継電極REは、第2絶縁層12と第3絶縁層13の間に配置されている。図3の断面には示されていないが、共通電極CEは、第3絶縁層13と第4絶縁層14の間に配置されている。 The semiconductor layer SC is arranged between the first base material 10 and the first insulating layer 11. Another insulating layer may be interposed between the semiconductor layer SC and the first base material 10. Although not shown in the cross section of FIG. 3, the scanning line G is arranged between the first insulating layer 11 and the second insulating layer 12. The signal line S and the relay electrode RE are arranged between the second insulating layer 12 and the third insulating layer 13. Although not shown in the cross section of FIG. 3, the common electrode CE is disposed between the third insulating layer 13 and the fourth insulating layer 14.
 画素電極PEは、第4絶縁層14の上に配置されている。第1配向膜15は、画素電極PEおよび第4絶縁層14を覆っている。第3絶縁層13は、例えば有機樹脂材料で形成されており、他の絶縁層11,12,14よりも厚い。 The pixel electrode PE is arranged on the fourth insulating layer 14. The first alignment film 15 covers the pixel electrode PE and the fourth insulating layer 14. The third insulating layer 13 is made of, for example, an organic resin material and is thicker than the other insulating layers 11, 12, and 14.
 第3絶縁層13には上述のコンタクトホールCH3が設けられており、このコンタクトホールCH3を通じて画素電極PEが中継電極REに接続されている。図3の断面には示されていないが、上述のコンタクトホールCH1,CH2は、いずれも第1絶縁層11および第2絶縁層12を貫通している。 The above-mentioned contact hole CH3 is provided in the third insulating layer 13, and the pixel electrode PE is connected to the relay electrode RE through this contact hole CH3. Although not shown in the cross section of FIG. 3, the above-mentioned contact holes CH1 and CH2 both penetrate the first insulating layer 11 and the second insulating layer 12.
 対向基板CTは、第2基材20と、遮光層21と、カラーフィルタ層22と、オーバーコート層23と、第2配向膜24とを備えている。遮光層21は、第2基材20の下面に形成され、走査線G、信号線Sおよび中継電極REと対向している。図3の断面においては、全体的に遮光層21が設けられているが、遮光層21は副画素SPにおいて開口している。 The counter substrate CT includes a second base material 20, a light shielding layer 21, a color filter layer 22, an overcoat layer 23, and a second alignment film 24. The light shielding layer 21 is formed on the lower surface of the second base material 20, and faces the scanning line G, the signal line S, and the relay electrode RE. In the cross section of FIG. 3, the light shielding layer 21 is provided as a whole, but the light shielding layer 21 is open in the sub-pixel SP.
 カラーフィルタ層22は、遮光層21を覆っている。カラーフィルタ層22は、副画素SPの色にそれぞれ対応する複数のカラーフィルタを含む。オーバーコート層23は、カラーフィルタ層22を覆っている。第2配向膜24は、オーバーコート層23を覆っている。 The color filter layer 22 covers the light shielding layer 21. The color filter layer 22 includes a plurality of color filters respectively corresponding to the colors of the sub-pixels SP. The overcoat layer 23 covers the color filter layer 22. The second alignment film 24 covers the overcoat layer 23.
 第1基材10の下面には、第1偏光板PL1が配置されている。第2基材20の上面には、第2偏光板PL2が配置されている。液晶層LCは、第1配向膜15と第2配向膜24の間に配置されている。 A first polarizing plate PL1 is arranged on the lower surface of the first base material 10. A second polarizing plate PL2 is arranged on the upper surface of the second base material 20. The liquid crystal layer LC is arranged between the first alignment film 15 and the second alignment film 24.
 第1基材10および第2基材20は、例えばガラスで形成することができる。また、第1基材10および第2基材20は、ポリイミドなどの樹脂材料で形成することもできる。この場合、可撓性を有するアレイ基板ARおよび対向基板CTが得られるので、表示パネルPNLを曲げることができる。 The first base material 10 and the second base material 20 can be formed of, for example, glass. The first base material 10 and the second base material 20 can also be formed of a resin material such as polyimide. In this case, since the flexible array substrate AR and counter substrate CT are obtained, the display panel PNL can be bent.
 メインスペーサMSおよびサブスペーサSSは、対向基板CTからアレイ基板ARに向けて突出している。図3の例においては、メインスペーサMSおよびサブスペーサSSが第2配向膜24で覆われている。ただし、メインスペーサMSおよびサブスペーサSSの少なくとも一部が第2配向膜24にて覆われていなくてもよい。 The main spacer MS and the sub spacer SS project from the counter substrate CT toward the array substrate AR. In the example of FIG. 3, the main spacer MS and the sub spacer SS are covered with the second alignment film 24. However, at least a part of the main spacer MS and the sub spacer SS may not be covered with the second alignment film 24.
 例えば、メインスペーサMSおよびサブスペーサSSは、図2に示すように平面形状が円形であり、図3に示すように断面形状が台形である。ただし、メインスペーサMSおよびサブスペーサSSの平面形状および断面形状は、これらの例に限られない。他の例として、メインスペーサMSおよびサブスペーサSSは、所定方向に長尺な平面形状を有してもよい。 For example, the main spacer MS and the sub spacer SS have a circular planar shape as shown in FIG. 2 and a trapezoidal sectional shape as shown in FIG. However, the planar shape and cross-sectional shape of the main spacer MS and the sub spacer SS are not limited to these examples. As another example, the main spacer MS and the sub spacer SS may have a planar shape elongated in a predetermined direction.
 本実施形態において、メインスペーサMSおよびサブスペーサSSは、同じ高さHを有している。高さHは、アレイ基板ARと対向基板CTの間のセルギャップGPよりも小さい。なお、メインスペーサMSの高さとサブスペーサSSの高さが異なってもよい。 In the present embodiment, the main spacer MS and the sub spacer SS have the same height H. The height H is smaller than the cell gap GP between the array substrate AR and the counter substrate CT. The height of the main spacer MS and the height of the sub spacer SS may be different.
 メインスペーサMSとアレイ基板ARの間には、接着剤ADが配置されている。接着剤ADは、第1方向Xに並ぶ2つのコンタクトホールCH3の間において、第1配向膜15の上に配置されている。接着剤ADは、メインスペーサMSの先端とアレイ基板ARとを接着している。接着剤ADの高さは、例えばメインスペーサMSの高さHよりも小さい。 Adhesive AD is arranged between the main spacer MS and the array substrate AR. The adhesive AD is disposed on the first alignment film 15 between the two contact holes CH3 arranged in the first direction X. The adhesive AD bonds the tip of the main spacer MS and the array substrate AR. The height of the adhesive AD is smaller than the height H of the main spacer MS, for example.
 図3の例においては、メインスペーサMSの先端の幅よりも、接着剤ADの幅が若干大きい。ただし、接着剤ADの幅は、メインスペーサMSの先端の幅と同じであってもよいし、当該先端の幅より小さくてもよい。 In the example of FIG. 3, the width of the adhesive AD is slightly larger than the width of the tip of the main spacer MS. However, the width of the adhesive AD may be the same as the width of the tip of the main spacer MS, or may be smaller than the width of the tip.
 一方、サブスペーサSSとアレイ基板ARの間には、接着剤が配置されておらず、隙間が形成されている。したがって、サブスペーサSSとアレイ基板ARは、上記隙間に存在する液晶層LCを介して対向している。 On the other hand, no adhesive is placed between the sub spacer SS and the array substrate AR, and a gap is formed. Therefore, the sub spacer SS and the array substrate AR are opposed to each other with the liquid crystal layer LC existing in the gap therebetween.
 メインスペーサMSは、アレイ基板ARと対向基板CTの間のセルギャップを一定に保つ。サブスペーサSSは、例えば表示パネルPNLに外力が加わった際にアレイ基板ARに接触し、セルギャップの過度な変形を抑制する。 The main spacer MS keeps the cell gap between the array substrate AR and the counter substrate CT constant. The sub-spacer SS contacts the array substrate AR when an external force is applied to the display panel PNL, for example, and suppresses excessive deformation of the cell gap.
 続いて、表示装置100の製造方法の一例につき、図4ないし図8を用いて説明する。先ず、第1基材10、絶縁層11~14、第1配向膜15、走査線G、信号線S、スイッチング素子SW、画素電極PEおよび共通電極CEを備えるアレイ基板ARを作製する。さらに、第2基材20、遮光層21、カラーフィルタ層22およびオーバーコート層23を備える対向基板CTを作製する。 Next, an example of a method of manufacturing the display device 100 will be described with reference to FIGS. 4 to 8. First, the array substrate AR including the first base material 10, the insulating layers 11 to 14, the first alignment film 15, the scanning line G, the signal line S, the switching element SW, the pixel electrode PE, and the common electrode CE is manufactured. Further, the counter substrate CT including the second base material 20, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 is manufactured.
 次に、図4に示すように、対向基板CTの上(オーバーコート層23の上)にメインスペーサMSおよびサブスペーサSSの基となるフォトレジストRを形成する。さらに、フォトレジストRを焼成した後(プリベーク)、フォトレジストRにおいてメインスペーサMSおよびサブスペーサSSを形成する位置に光Lを照射する(露光)。 Next, as shown in FIG. 4, a photoresist R serving as a base of the main spacer MS and the sub spacer SS is formed on the counter substrate CT (on the overcoat layer 23). Further, after baking the photoresist R (pre-baking), the light L is irradiated (exposure) to the position where the main spacer MS and the sub spacer SS are formed in the photoresist R.
 その後、薬液を用いて余分なフォトレジストRを除去することにより(現像)、図5に示すようにメインスペーサMSおよびサブスペーサSSを形成する。ここでは一例として、1つのメインスペーサMSと2つのサブスペーサSSを示している。メインスペーサMSおよびサブスペーサSSをさらに焼成することで、これらの強度を増すことができる(ポストベーク)。 After that, the excess photoresist R is removed using a chemical solution (development) to form the main spacer MS and the sub spacer SS as shown in FIG. Here, one main spacer MS and two sub spacers SS are shown as an example. By further baking the main spacers MS and the sub spacers SS, their strength can be increased (post-baking).
 メインスペーサMSおよびサブスペーサSSを形成した後、図6に示すように第2配向膜24を形成する。メインスペーサMSおよびサブスペーサSSは、第2配向膜24により覆われる。硬化前の第2配向膜24は流動性を有するために、メインスペーサMSおよびサブスペーサSSの先端から第2配向膜24が流れ落ちることもある。この場合、メインスペーサMSおよびサブスペーサSSの先端は第2配向膜24から露出するか、あるいは他の部分よりも薄い第2配向膜24で覆われる。 After forming the main spacer MS and the sub spacer SS, the second alignment film 24 is formed as shown in FIG. The main spacer MS and the sub spacer SS are covered with the second alignment film 24. Since the second alignment film 24 before curing has fluidity, the second alignment film 24 may flow down from the tips of the main spacer MS and the sub spacer SS. In this case, the tips of the main spacers MS and the sub spacers SS are exposed from the second alignment film 24 or covered with the second alignment film 24 thinner than other portions.
 図7に示すように、アレイ基板ARにおいては、メインスペーサMSに対応する位置に、例えばインクジェット方式により接着剤ADを形成する。接着剤ADとしては、例えばアクリル樹脂を用いることができるが、この例に限られない。 As shown in FIG. 7, in the array substrate AR, the adhesive AD is formed at a position corresponding to the main spacer MS by, for example, an inkjet method. As the adhesive AD, for example, an acrylic resin can be used, but it is not limited to this example.
 このように作製された対向基板CTおよびアレイ基板ARは、図8に示すようにシール材SEにより貼り合わされる。メインスペーサMSの先端は、直接あるいは第2配向膜24を介して接着剤ADに接触する。 The counter substrate CT and the array substrate AR manufactured in this way are bonded together by a seal material SE as shown in FIG. The tip of the main spacer MS contacts the adhesive AD directly or through the second alignment film 24.
 液晶層LCは、例えば滴下方式(ODF方式)にて形成することができる。すなわち、アレイ基板ARおよび対向基板CTの一方に枠状のシール材SEを形成し、その内側に液晶材料を滴下し、両基板を真空雰囲気中で貼り合せる。ただし、液晶層LCは、真空注入方式にて形成することもできる。この場合、シール材SEに注入口を設け、両基板を貼り合せた後に当該注入口を通じて液晶材料を注入する。 The liquid crystal layer LC can be formed by, for example, a dropping method (ODF method). That is, the frame-shaped sealing material SE is formed on one of the array substrate AR and the counter substrate CT, the liquid crystal material is dropped inside the sealing material SE, and both substrates are bonded together in a vacuum atmosphere. However, the liquid crystal layer LC can also be formed by a vacuum injection method. In this case, an injection port is provided in the sealing material SE, and after bonding both substrates, the liquid crystal material is injected through the injection port.
 シール材SEは、例えばUV硬化型の材料であり、UV光の照射により硬化される。さらに、UV光による硬化の後、熱を加えることでシール材SEの硬化がさらに進行する。このとき、接着剤ADも共に熱硬化する。接着剤ADの熱硬化を促進するために、接着剤ADに熱硬化剤を含ませてもよい。例えば、熱硬化剤としては、イミダゾール系熱硬化剤、アミン系熱硬化剤、フェノール系熱硬化剤、ポリチオール系熱硬化剤、酸無水物および熱カチオン開始剤等を用いることができる。熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The seal material SE is, for example, a UV curable material and is cured by irradiation with UV light. Furthermore, after curing with UV light, heat is applied to further cure the sealing material SE. At this time, the adhesive AD is also thermally cured. A thermosetting agent may be included in the adhesive AD in order to accelerate the thermosetting of the adhesive AD. For example, as the thermosetting agent, an imidazole type thermosetting agent, an amine type thermosetting agent, a phenol type thermosetting agent, a polythiol type thermosetting agent, an acid anhydride, a thermal cation initiator, or the like can be used. As the thermosetting agent, only one kind may be used, or two or more kinds may be used in combination.
 比較的低温であるシール材SEの熱硬化温度でも接着剤ADの架橋が進行するように、接着剤ADとして低温硬化樹脂を使用してもよい。この場合には、高温を加える必要が無いので、対向基板CTとアレイ基板ARの熱膨張差によるメインスペーサMSの剥がれを防止する効果も得られる。 A low temperature curing resin may be used as the adhesive AD so that the crosslinking of the adhesive AD proceeds even at the heat curing temperature of the seal material SE, which is a relatively low temperature. In this case, since it is not necessary to apply high temperature, the effect of preventing the main spacer MS from peeling off due to the difference in thermal expansion between the counter substrate CT and the array substrate AR can be obtained.
 仮に、メインスペーサMSが接着剤ADによりアレイ基板ARに接着されていない場合、アレイ基板ARと対向基板CTは周辺領域PAのシール材SEによってのみ接着されることになる。この場合、表示領域DAにおいては、アレイ基板ARの画素電極PEなどの要素と、対向基板CTのカラーフィルタ層22などの要素とのずれが生じやすい。このようなずれが生じると、ある副画素SPのカラーフィルタ層22を通過すべき光が隣の副画素SPを通過する混色が生じ得る。さらに、メインスペーサMSの先端が第1配向膜15を傷付け、不所望な配向能を第1配向膜15に与える可能性もある。これらにより、表示装置100の表示品位が低下し得る。 If the main spacer MS is not adhered to the array substrate AR by the adhesive AD, the array substrate AR and the counter substrate CT are adhered only by the seal material SE in the peripheral area PA. In this case, in the display area DA, an element such as the pixel electrode PE of the array substrate AR and an element such as the color filter layer 22 of the counter substrate CT are easily displaced. When such a shift occurs, color mixing may occur in which light that should pass through the color filter layer 22 of a certain subpixel SP passes through the adjacent subpixel SP. Further, the tip of the main spacer MS may damage the first alignment film 15 and give an undesired alignment ability to the first alignment film 15. As a result, the display quality of the display device 100 may deteriorate.
 一方、本実施形態のようにメインスペーサMSが接着剤ADによりアレイ基板ARに接着されている場合、表示領域DAにおいてアレイ基板ARと対向基板CTがずれにくい。さらに、メインスペーサMSの先端が第1配向膜15を傷付けることもない。 On the other hand, when the main spacer MS is adhered to the array substrate AR with the adhesive AD as in the present embodiment, the array substrate AR and the counter substrate CT are unlikely to shift in the display area DA. Furthermore, the tip of the main spacer MS does not damage the first alignment film 15.
 また、メインスペーサMSとサブスペーサSSの高さHが同じである場合、メインスペーサMSおよびサブスペーサSSの製造プロセスが容易となる。すなわち、仮にメインスペーサMSおよびサブスペーサSSの高さが異なる場合、図4に示すプロセスにおいて、マルチトーンの露光が必要である。これに対し、メインスペーサMSとサブスペーサSSの高さHが同じであれば、マルチトーンの露光が不要である。 Further, when the height H of the main spacer MS and the sub spacer SS is the same, the manufacturing process of the main spacer MS and the sub spacer SS becomes easy. That is, if the heights of the main spacer MS and the sub spacer SS are different, multitone exposure is required in the process shown in FIG. On the other hand, if the height H of the main spacer MS and the sub-spacer SS is the same, multi-tone exposure is unnecessary.
 なお、本実施形態においては、対向基板CTからアレイ基板ARに向けて第1突起および第2突起の一例であるメインスペーサMSとサブスペーサSSが突出する構成を例示した。ただし、メインスペーサMSおよびサブスペーサSSは、アレイ基板ARから対向基板CTに向けて突出してもよい。 In addition, in the present embodiment, the main spacer MS and the sub spacer SS, which are an example of the first protrusion and the second protrusion, project from the counter substrate CT toward the array substrate AR. However, the main spacer MS and the sub spacer SS may project from the array substrate AR toward the counter substrate CT.
 [第2実施形態] 
 第2実施形態について説明する。特に言及しない構成および効果については、第1実施形態と同様である。
[Second Embodiment]
The second embodiment will be described. The configurations and effects not particularly mentioned are the same as those in the first embodiment.
 図9は、第2実施形態に係る液晶表示装置200(以下、表示装置200と呼ぶ)の概略的な断面図である。図示した例においては、表示パネルPNLが曲げられている。このような可撓性を有するアレイ基板ARおよび対向基板CTは、上述の通り第1基材10および第2基材20を樹脂材料で形成することにより実現できる。 FIG. 9 is a schematic sectional view of a liquid crystal display device 200 (hereinafter, referred to as a display device 200) according to the second embodiment. In the illustrated example, the display panel PNL is bent. The array substrate AR and the counter substrate CT having such flexibility can be realized by forming the first base material 10 and the second base material 20 with a resin material as described above.
 図9の例においては、アレイ基板AR側が凸となるように、アレイ基板ARおよび対向基板CTが全体的に曲げられている。すなわち、曲げられたアレイ基板ARおよび対向基板CTの曲率中心Oは、対向基板CT側に位置している。他の例として、対向基板CT側が凸となるように表示パネルPNLが曲げられてもよい。また、表示パネルPNLは、曲げられた部分と平坦な部分とを含んでもよい。 In the example of FIG. 9, the array substrate AR and the counter substrate CT are entirely bent so that the array substrate AR side is convex. That is, the center of curvature O of the bent array substrate AR and counter substrate CT is located on the counter substrate CT side. As another example, the display panel PNL may be bent so that the counter substrate CT side is convex. Further, the display panel PNL may include a bent portion and a flat portion.
 表示パネルPNLの第1方向Xにおける中心CLの近傍には第1メインスペーサMS1が配置され、第1メインスペーサMS1よりも対向基板CTの端部に近い位置には第2メインスペーサMS2が配置されている。図9においては1つの第1メインスペーサMS1と2つの第2メインスペーサMS2を示しているが、表示パネルPNLはより多くのメインスペーサMS1,MS2を備えている。また、表示パネルPNLは、第1実施形態と同じく複数のサブスペーサSSを備えてもよい。 The first main spacer MS1 is arranged near the center CL in the first direction X of the display panel PNL, and the second main spacer MS2 is arranged at a position closer to the end of the counter substrate CT than the first main spacer MS1. ing. Although FIG. 9 shows one first main spacer MS1 and two second main spacers MS2, the display panel PNL includes more main spacers MS1 and MS2. Further, the display panel PNL may include a plurality of sub spacers SS as in the first embodiment.
 第1メインスペーサMS1の幅はW1であり、高さはH1である。第1メインスペーサMS1は、第1接着剤AD1によりアレイ基板ARに接着されている。第1メインスペーサMS1は、本実施形態における第1突起の一例である。 The width of the first main spacer MS1 is W1 and the height thereof is H1. The first main spacer MS1 is adhered to the array substrate AR with the first adhesive AD1. The first main spacer MS1 is an example of the first protrusion in this embodiment.
 第2メインスペーサMS2の幅はW2であり、高さはH2である。第2メインスペーサMS2は、第2接着剤AD2によりアレイ基板ARに接着されている。第2メインスペーサMS2は、本実施形態における第2突起の一例である。 Width of the second main spacer MS2 is W2 and height is H2. The second main spacer MS2 is adhered to the array substrate AR with the second adhesive AD2. The second main spacer MS2 is an example of the second protrusion in the present embodiment.
 中心CLの近傍においては、厚さ方向に曲げに起因した大きな力が加わる。そこで、第1メインスペーサMS1の幅W1(または断面積)を大きくすることが好ましい。これにより、第1メインスペーサMS1に加わる応力が軽減されるので、第1メインスペーサMS1の座屈を抑制できる。  In the vicinity of the center CL, a large force due to bending is applied in the thickness direction. Therefore, it is preferable to increase the width W1 (or cross-sectional area) of the first main spacer MS1. As a result, the stress applied to the first main spacer MS1 is reduced, so that buckling of the first main spacer MS1 can be suppressed.
 一方で、表示パネルPNLの端部近傍では、アレイ基板ARおよび対向基板CTの面と平行な方向に曲げに起因した大きな力が加わる。そこで、第2メインスペーサMS2の高さH2を大きくすることが好ましい。これにより、アレイ基板ARと対向基板CTのずれに対する第2メインスペーサMS2の追従性が高まり、第2メインスペーサMS2とアレイ基板ARとの剥がれを抑制できる。 On the other hand, near the end of the display panel PNL, a large force due to bending is applied in a direction parallel to the surfaces of the array substrate AR and the counter substrate CT. Therefore, it is preferable to increase the height H2 of the second main spacer MS2. As a result, the followability of the second main spacer MS2 with respect to the displacement between the array substrate AR and the counter substrate CT is enhanced, and the peeling between the second main spacer MS2 and the array substrate AR can be suppressed.
 以上のことから、本実施形態においては、W1>W2かつH1<H2となるように各メインスペーサMS1,MS2の形状を定める。幅W1,W2は、各メインスペーサMS1,MS2の根元の幅であってもよいし、先端の幅であってもよいし、根本と先端の間の中間部の幅であってもよい。好ましくは、根本、先端、中間部のそれぞれにおいて、W1>W2が成立するとよい。サブスペーサSSの形状は特に限定されないが、一例としてサブスペーサSSの幅をW2とし、高さをH1としてもよい。 From the above, in the present embodiment, the shapes of the main spacers MS1 and MS2 are determined so that W1>W2 and H1<H2. The widths W1 and W2 may be the width of the root of each of the main spacers MS1 and MS2, the width of the tip, or the width of the intermediate portion between the root and the tip. Preferably, W1>W2 is satisfied at each of the root, the tip, and the intermediate portion. The shape of the sub-spacer SS is not particularly limited, but as an example, the width of the sub-spacer SS may be W2 and the height may be H1.
 本実施形態のようにメインスペーサMS1,MS2の形状を工夫することにより、表示パネルPNLが曲げられた場合であっても、アレイ基板ARと対向基板CTのずれやセルギャップの変動が抑制され、結果として表示品位を高めることができる。 By devising the shapes of the main spacers MS1 and MS2 as in the present embodiment, even when the display panel PNL is bent, the displacement between the array substrate AR and the counter substrate CT and the variation in the cell gap are suppressed, As a result, the display quality can be improved.
 なお、本実施形態においては2種類のメインスペーサMS1,MS2を例示したが、表示パネルPNLは幅および高さが異なる3種類以上のメインスペーサMSを備えてもよい。例えばこの場合においては、中心CLに近いメインスペーサMSほど幅を大きくし、表示パネルPNLの端部に近いメインスペーサMSほど高さを大きくすればよい。 Although two types of main spacers MS1 and MS2 are illustrated in this embodiment, the display panel PNL may include three or more types of main spacers MS having different widths and heights. For example, in this case, the main spacer MS closer to the center CL may have a larger width, and the main spacer MS closer to the end of the display panel PNL may have a larger height.
 [第3実施形態] 
 第3実施形態について説明する。本実施形態においては、背景を視認可能な透明液晶表示装置を開示する。特に言及しない構成および効果については、第1実施形態と同様である。
[Third Embodiment]
A third embodiment will be described. In this embodiment, a transparent liquid crystal display device in which the background is visible is disclosed. The configurations and effects not particularly mentioned are the same as those in the first embodiment.
 図10は、第3実施形態に係る液晶表示装置300(以下、表示装置300と呼ぶ)の概略的な断面図である。表示装置300は、表示パネルPNLと、光源LSとを備えている。表示パネルPNLは、アレイ基板ARと、対向基板CTと、液晶層LCと、シール材SEとを備えている。 FIG. 10 is a schematic sectional view of a liquid crystal display device 300 (hereinafter, referred to as a display device 300) according to the third embodiment. The display device 300 includes a display panel PNL and a light source LS. The display panel PNL includes an array substrate AR, a counter substrate CT, a liquid crystal layer LC, and a seal material SE.
 アレイ基板ARは、第1基材10と、画素電極PEとを備えている。対向基板CTは、第2基材20と、共通電極CEとを備えている。第1基材10および第2基材20は、例えばガラスで形成されている。ただし、第1基材10および第2基材20は、透明な樹脂材料で形成することもできる。画素電極PEおよび共通電極CEは、インジウム・ティン・オキサイド(ITO)のような透明導電材料で形成することができる。本実施形態において、対向基板CTは、カラーフィルタ層を備えていない。 The array substrate AR includes a first base material 10 and pixel electrodes PE. The counter substrate CT includes a second base material 20 and a common electrode CE. The first base material 10 and the second base material 20 are made of glass, for example. However, the first base material 10 and the second base material 20 can also be formed of a transparent resin material. The pixel electrode PE and the common electrode CE can be formed of a transparent conductive material such as indium tin oxide (ITO). In this embodiment, the counter substrate CT does not include a color filter layer.
 光源LSは、延出領域EAに配置され、対向基板CTの側面に光を照射する。光源LSは、延出領域EA以外の位置に配置されてもよい。さらに、光源LSは、アレイ基板ARの側面に光を照射してもよい。 The light source LS is arranged in the extension area EA and irradiates the side surface of the counter substrate CT with light. The light source LS may be arranged at a position other than the extension area EA. Further, the light source LS may irradiate the side surface of the array substrate AR with light.
 例えば、光源LSは、赤色の光を発するLEDと、緑色の光を発するLEDと、青色の光を発するLEDとを含む。ただし、光源LSは、赤色、緑色および青色以外の光を発するLEDを備えてもよい。光源LSと対向基板CTの間にレンズ系が配置されてもよい。 For example, the light source LS includes an LED that emits red light, an LED that emits green light, and an LED that emits blue light. However, the light source LS may include LEDs that emit light other than red, green, and blue. A lens system may be arranged between the light source LS and the counter substrate CT.
 本実施形態における液晶層LCは、光を散乱する散乱状態と、光を殆ど散乱せずに透過する透明状態とを、印加される電圧に応じて切り替え可能に構成されている。例えば、電圧が印加されていない画素電極PE(図中のOFF)の近傍の液晶層LCは透明状態であり、電圧が印加されている画素電極PE(図中のON)の近傍の液晶層LCは散乱状態である。反対に、電圧が印加されていない画素電極PEの近傍の液晶層LCが散乱状態であり、電圧が印加されている画素電極PEの近傍の液晶層LCが透明状態であってもよい。 The liquid crystal layer LC in this embodiment is configured to be switchable between a scattering state in which light is scattered and a transparent state in which light is transmitted with little scattering, depending on the applied voltage. For example, the liquid crystal layer LC near the pixel electrode PE to which no voltage is applied (OFF in the figure) is in a transparent state, and the liquid crystal layer LC near the pixel electrode PE to which a voltage is applied (ON in the figure). Is a scattering state. On the contrary, the liquid crystal layer LC near the pixel electrode PE to which the voltage is not applied may be in the scattering state, and the liquid crystal layer LC near the pixel electrode PE to which the voltage is applied may be in the transparent state.
 光源LSが放つ光L1は、対向基板CTの側面に入射し、対向基板CTおよびアレイ基板ARの内部を伝播する。光L1は、散乱状態の液晶層LCにおいて散乱される。この散乱光は、アレイ基板ARおよび対向基板CTから出射し、アレイ基板AR側および対向基板CT側のいずれからも表示画像として視認できる。 The light L1 emitted by the light source LS is incident on the side surface of the counter substrate CT and propagates inside the counter substrate CT and the array substrate AR. The light L1 is scattered by the liquid crystal layer LC in the scattering state. The scattered light is emitted from the array substrate AR and the counter substrate CT and can be visually recognized as a display image from both the array substrate AR side and the counter substrate CT side.
 透明状態の液晶層LCに入射する外光L2は、ほとんど散乱されることなく表示装置1を透過する。すなわち、対向基板CT側から表示装置300を見た場合にはアレイ基板AR側の背景が視認可能であり、アレイ基板AR側から表示装置300を見た場合には対向基板CT側の背景が視認可能である。 External light L2 incident on the liquid crystal layer LC in the transparent state passes through the display device 1 with almost no scattering. That is, when the display device 300 is viewed from the counter substrate CT side, the background on the array substrate AR side is visible, and when the display device 300 is viewed from the array substrate AR side, the background on the counter substrate CT side is visible. It is possible.
 以上のような構成の表示装置300は、例えばフィールドシーケンシャル方式にて駆動することができる。この方式においては、1つのフレーム期間が複数のサブフレーム期間(フィールド)を含む。例えば、光源LSが赤色、緑色および青色のLEDを含む場合、1つのフレーム期間には、赤色、緑色および青色のサブフレーム期間が含まれる。 The display device 300 having the above configuration can be driven by, for example, a field sequential method. In this method, one frame period includes a plurality of subframe periods (fields). For example, when the light source LS includes red, green, and blue LEDs, one frame period includes red, green, and blue subframe periods.
 赤色のサブフレーム期間においては、赤色のLEDが点灯するとともに、赤色の画像データに応じた電圧が各画素電極PEに印加される。これにより、赤色の画像が表示される。緑色および青色のサブフレーム期間においても同様に、それぞれ緑色および青色のLEDが点灯するとともに、それぞれ緑色および青色の画像データに応じた電圧が各画素電極PEに印加される。これにより、緑色および青色の画像が表示される。このように時分割で表示される赤色、緑色および青色の画像は、互いに合成されて多色表示の画像として観察者に視認される。 In the red sub-frame period, the red LED is turned on and a voltage according to the red image data is applied to each pixel electrode PE. As a result, a red image is displayed. Similarly in the green and blue sub-frame periods, the green and blue LEDs are turned on and the voltages corresponding to the green and blue image data are applied to the pixel electrodes PE, respectively. As a result, green and blue images are displayed. In this way, the red, green, and blue images displayed in time division are combined with each other and visually recognized as an image of multicolor display by an observer.
 図11および図12は、液晶層LCに適用し得る構成の一例を示す断面図である。液晶層LCは、高分子液晶組成物の一例である液晶ポリマー31および液晶分子32を含む。液晶ポリマー31および液晶分子32は、それぞれ同等の光学異方性あるいは屈折率異方性を有している。また、液晶ポリマー31および液晶分子32の各々の電界に対する応答性は異なる。すなわち、液晶ポリマー31の電界に対する応答性は、液晶分子32の電界に対する応答性より低い。 11 and 12 are cross-sectional views showing an example of a structure applicable to the liquid crystal layer LC. The liquid crystal layer LC includes a liquid crystal polymer 31 and liquid crystal molecules 32, which is an example of a polymer liquid crystal composition. The liquid crystal polymer 31 and the liquid crystal molecules 32 have the same optical anisotropy or refractive index anisotropy. Further, the liquid crystal polymer 31 and the liquid crystal molecules 32 have different responsiveness to the electric field. That is, the response of the liquid crystal polymer 31 to the electric field is lower than the response of the liquid crystal molecules 32 to the electric field.
 図11に示す例は、例えば、液晶層LCに電圧が印加されていない透明状態(画素電極PEと共通電極CEの間の電位差がゼロである状態)に相当する。この状態においては、液晶ポリマー31の光軸Ax1および液晶分子32の光軸Ax2は、互いに平行となる。 The example shown in FIG. 11 corresponds to, for example, a transparent state in which no voltage is applied to the liquid crystal layer LC (a state in which the potential difference between the pixel electrode PE and the common electrode CE is zero). In this state, the optical axis Ax1 of the liquid crystal polymer 31 and the optical axis Ax2 of the liquid crystal molecules 32 are parallel to each other.
 上述の通り、液晶ポリマー31および液晶分子32は略同等の屈折率異方性を有しており、しかも光軸Ax1,Ax2は互いに平行である。そのため、あらゆる方向において液晶ポリマー31と液晶分子32の間にほとんど屈折率差がない。これにより、液晶層LCの厚さ方向(第3方向Z)と平行な光Laや、この厚さ方向に対して傾斜した光Lb,Lcは、殆ど散乱されることなく液晶層LCを透過する。 As described above, the liquid crystal polymer 31 and the liquid crystal molecules 32 have substantially the same refractive index anisotropy, and the optical axes Ax1 and Ax2 are parallel to each other. Therefore, there is almost no difference in refractive index between the liquid crystal polymer 31 and the liquid crystal molecules 32 in all directions. Accordingly, the light La parallel to the thickness direction (third direction Z) of the liquid crystal layer LC and the lights Lb and Lc inclined with respect to the thickness direction are transmitted through the liquid crystal layer LC with almost no scattering. ..
 図12に示す例は、液晶層LCに電圧が印加されている散乱状態(画素電極PEと共通電極CEの間に電位差が形成された状態)に相当する。上記の通り、液晶ポリマー31の電界に対する応答性は、液晶分子32の電界に対する応答性より低い。そのため、液晶ポリマー31の配向方向が殆ど変化しないのに対して、液晶分子32の配向方向は電界に応じて変化し、結果として光軸Ax2が光軸Ax1に対して傾斜する。これにより、あらゆる方向において液晶ポリマー31と液晶分子32の間に大きな屈折率差が生ずる。この状態においては、液晶層LCに入射する光La,Lb,Lcが液晶層LC内で散乱される。 The example shown in FIG. 12 corresponds to a scattering state in which a voltage is applied to the liquid crystal layer LC (a state in which a potential difference is formed between the pixel electrode PE and the common electrode CE). As described above, the response of the liquid crystal polymer 31 to the electric field is lower than the response of the liquid crystal molecules 32 to the electric field. Therefore, while the alignment direction of the liquid crystal polymer 31 hardly changes, the alignment direction of the liquid crystal molecules 32 changes according to the electric field, and as a result, the optical axis Ax2 tilts with respect to the optical axis Ax1. This causes a large difference in refractive index between the liquid crystal polymer 31 and the liquid crystal molecules 32 in all directions. In this state, the lights La, Lb, and Lc incident on the liquid crystal layer LC are scattered in the liquid crystal layer LC.
 図13および図14は、液晶層LCに適用し得る構成の他の例を示す断面図である。図13および図14に示す構成は、液晶層LCの中に高分子繊維構造体(ポリマーネットワーク構造体)を形成させたポリマーネットワーク型液晶に相当する。すなわち、液晶層LCは、ネットワーク状に形成されたポリマー41と、液晶分子42とを有している。図13および図14においては複数のポリマー41が不規則に配置されているが、複数のポリマー41がアレイ基板AR(図10参照)の主面に略平行に配置されてもよい。 13 and 14 are cross-sectional views showing another example of a structure applicable to the liquid crystal layer LC. The configurations shown in FIGS. 13 and 14 correspond to a polymer network type liquid crystal in which a polymer fiber structure (polymer network structure) is formed in the liquid crystal layer LC. That is, the liquid crystal layer LC has the polymer 41 and the liquid crystal molecules 42 formed in a network. 13 and 14, the plurality of polymers 41 are arranged irregularly, but the plurality of polymers 41 may be arranged substantially parallel to the main surface of the array substrate AR (see FIG. 10).
 図13は、液晶層LCに電圧が印加されていない散乱状態であり、液晶分子42がポリマー41の作用により不規則に並んでいる。この状態においては、液晶層LCに入射する光が散乱される。図14は、液晶層LCに電圧が印加されている透明状態であり、液晶分子42が所定の方向に配列している。この状態においては、光がほとんど散乱されずに液晶層LCを透過する。 FIG. 13 shows a scattering state in which no voltage is applied to the liquid crystal layer LC, and the liquid crystal molecules 42 are irregularly arranged by the action of the polymer 41. In this state, the light incident on the liquid crystal layer LC is scattered. FIG. 14 shows a transparent state in which a voltage is applied to the liquid crystal layer LC, and liquid crystal molecules 42 are arranged in a predetermined direction. In this state, light is hardly scattered and passes through the liquid crystal layer LC.
 図15は、表示パネルPNLの概略的な平面図である。本実施形態においては、ODF方式にて液晶材料をアレイ基板ARと対向基板CTの間に注入することにより、液晶層LCが形成される。シール材SEは、表示パネルPNLの製造プロセスにおいて液晶材料を注入するための注入口INを有している。注入口INは、封止樹脂SRにより閉じられている。 FIG. 15 is a schematic plan view of the display panel PNL. In this embodiment, the liquid crystal layer LC is formed by injecting a liquid crystal material between the array substrate AR and the counter substrate CT by the ODF method. The seal material SE has an injection port IN for injecting a liquid crystal material in the manufacturing process of the display panel PNL. The inlet IN is closed by the sealing resin SR.
 周辺領域PAにおいて、アレイ基板ARと対向基板CTの間に壁部WLが配置されている。図15の例において、壁部WLは、対向基板CTの周縁とシール材SEの間に位置し、シール材SEに沿って枠状に延在している。壁部WLは、注入口INを除き、シール材SEを囲っている。 In the peripheral area PA, the wall portion WL is arranged between the array substrate AR and the counter substrate CT. In the example of FIG. 15, the wall portion WL is located between the peripheral edge of the counter substrate CT and the seal material SE, and extends in a frame shape along the seal material SE. The wall portion WL surrounds the seal material SE except the inlet IN.
 壁部WLは、本実施形態における突起の一例である。表示パネルPNLは、第1実施形態および第2実施形態にて開示したメインスペーサMSおよびサブスペーサSSをさらに備えてもよい。 The wall portion WL is an example of the protrusion in this embodiment. The display panel PNL may further include the main spacer MS and the sub spacer SS disclosed in the first and second embodiments.
 図16は、図15におけるF16-F16線に沿う表示パネルPNLの概略的な断面図である。壁部WLは、対向基板CTからアレイ基板ARに向けて突出している。壁部WLの先端とアレイ基板ARの間には、接着剤ADが配置されている。壁部WLおよび接着剤ADは、例えば第1実施形態におけるメインスペーサMSおよび接着剤ADと同様のプロセスで形成することができる。 FIG. 16 is a schematic sectional view of the display panel PNL taken along line F16-F16 in FIG. The wall portion WL projects from the counter substrate CT toward the array substrate AR. The adhesive AD is arranged between the tip of the wall portion WL and the array substrate AR. The wall portion WL and the adhesive AD can be formed by the same process as the main spacer MS and the adhesive AD in the first embodiment, for example.
 壁部WLの幅Waが大きいと、周辺領域PAが増大する。そこで、幅Waは、シール材SEの幅Wbより小さいことが好ましい(Wa<Wb)。幅Wbは、壁部WLの根元の幅であってもよいし、先端の幅であってもよいし、根本と先端の間の中間部の幅であってもよい。好ましくは、根本、先端、中間部のそれぞれにおいて、Wa<Wbが成立するとよい。幅Waを幅Wbの半分以下とすれば、周辺領域PAの増大をより好適に抑制できる。具体例を挙げると、幅Wbを100μm以上で定め、幅Waを5μm以上かつ10μm以下の範囲で定めることが好ましい。 If the width Wa of the wall portion WL is large, the peripheral area PA increases. Therefore, the width Wa is preferably smaller than the width Wb of the seal material SE (Wa<Wb). The width Wb may be the width of the root of the wall portion WL, the width of the tip, or the width of the intermediate portion between the root and the tip. Preferably, Wa<Wb is satisfied at each of the root, the tip, and the intermediate portion. If the width Wa is equal to or less than half the width Wb, the increase of the peripheral area PA can be suppressed more preferably. As a specific example, it is preferable that the width Wb is set to 100 μm or more and the width Wa is set to a range of 5 μm or more and 10 μm or less.
 壁部WLおよび接着剤ADは、シール材SEと接している。平面視において、対向基板CTの側面と壁部WLの間には、隙間が設けられている。このような隙間を設けることにより、表示装置300の製造工程においてマザーガラスから表示パネルPNLを切り出す際に、壁部WLおよび接着剤ADが切断を阻害することを抑制できる。例えば、隙間の幅Wcは、幅Waよりも小さい(Wc<Wa)。 The wall portion WL and the adhesive agent AD are in contact with the seal material SE. In a plan view, a gap is provided between the side surface of the counter substrate CT and the wall portion WL. By providing such a gap, when the display panel PNL is cut out from the mother glass in the manufacturing process of the display device 300, it is possible to suppress the wall portion WL and the adhesive AD from inhibiting the cutting. For example, the width Wc of the gap is smaller than the width Wa (Wc<Wa).
 表示装置300の製造プロセスにおいて液晶材料を注入口INから注入する際に、液晶材料が注入口INを乗り越え、シール材SEの外側におけるアレイ基板ARと対向基板CTの隙間に入り込むことがある。液晶材料は、この隙間を伝って、注入口INが設けられた辺だけでなく、他の辺にも到達し得る。このようなシール材SEの外の液晶材料は、特に光源LSと対向基板CTの間に入り込んだ場合に、光源LSからの光を吸収または反射し、光の利用効率を低下させる一因となる。光の利用効率が低下すれば、画像の輝度が低下するために、表示品位が低下し得る。 When the liquid crystal material is injected through the injection port IN in the manufacturing process of the display device 300, the liquid crystal material may pass through the injection port IN and enter the gap between the array substrate AR and the counter substrate CT outside the sealing material SE. The liquid crystal material can reach not only the side where the injection port IN is provided but also other sides along the gap. The liquid crystal material other than the seal material SE absorbs or reflects the light from the light source LS, particularly when it enters between the light source LS and the counter substrate CT, which is one of the causes for lowering the light utilization efficiency. .. If the utilization efficiency of light is reduced, the brightness of the image is reduced, so that the display quality may be degraded.
 本実施形態においては、シール材SEと対向基板CTの周縁との間に、壁部WLが設けられている。したがって、シール材SEの外側におけるアレイ基板ARと対向基板CTの隙間への液晶材料の入り込みを抑制することができる。 In this embodiment, the wall portion WL is provided between the seal material SE and the peripheral edge of the counter substrate CT. Therefore, it is possible to prevent the liquid crystal material from entering the gap between the array substrate AR and the counter substrate CT outside the seal material SE.
 さらに、壁部WLは接着剤ADによりアレイ基板ARに接着されているので、アレイ基板ARと対向基板CTの隙間をより好適に塞ぐことができる。結果として、液晶材料の入り込みを抑制する効果が高まる。 Further, since the wall portion WL is adhered to the array substrate AR with the adhesive AD, the gap between the array substrate AR and the counter substrate CT can be more preferably closed. As a result, the effect of suppressing entry of the liquid crystal material is enhanced.
 なお、本実施形態においては、対向基板CTからアレイ基板ARに向けて突起の一例である壁部WLが突出する構成を例示した。ただし、壁部WLは、アレイ基板ARから対向基板CTに向けて突出してもよい。 Note that, in the present embodiment, a configuration is illustrated in which the wall portion WL, which is an example of a protrusion, protrudes from the counter substrate CT toward the array substrate AR. However, the wall portion WL may project from the array substrate AR toward the counter substrate CT.
 [第4実施形態] 
 第4実施形態について説明する。本実施形態においては、第3実施形態と同じく透明液晶表示装置を開示する。特に言及しない構成および効果については、第3実施形態と同様である。
[Fourth Embodiment]
A fourth embodiment will be described. In this embodiment, a transparent liquid crystal display device is disclosed as in the third embodiment. The configurations and effects not particularly mentioned are the same as those in the third embodiment.
 図17は、第4実施形態に係る液晶表示装置400(以下、表示装置400と呼ぶ)が備える表示パネルPNLの概略的な平面図である。本実施形態において、シール材SEは、液晶材料の注入口を有していない。このような構成の場合、ODF方式にて液晶層LCを形成することができる。 FIG. 17 is a schematic plan view of a display panel PNL included in the liquid crystal display device 400 (hereinafter, referred to as the display device 400) according to the fourth embodiment. In this embodiment, the seal material SE does not have a liquid crystal material injection port. In the case of such a configuration, the liquid crystal layer LC can be formed by the ODF method.
 本実施形態においては、壁部WLがシール材SEと表示領域DAの間に配置されている。壁部WLは、例えば切れ目なく表示領域DAを囲う枠状である。壁部WLは、本実施形態における突起の一例である。表示パネルPNLは、第1実施形態および第2実施形態にて開示したメインスペーサMSおよびサブスペーサSSをさらに備えてもよい。 In the present embodiment, the wall portion WL is arranged between the seal material SE and the display area DA. The wall portion WL has, for example, a frame shape that surrounds the display area DA without a break. The wall portion WL is an example of the protrusion in this embodiment. The display panel PNL may further include the main spacer MS and the sub spacer SS disclosed in the first and second embodiments.
 図18は、図17におけるF18-F18線に沿う表示パネルPNLの概略的な断面図である。第3実施形態と同じく、壁部WLは対向基板CTからアレイ基板ARに向けて突出しており、壁部WLの先端とアレイ基板ARの間には接着剤ADが配置されている。 FIG. 18 is a schematic sectional view of the display panel PNL taken along line F18-F18 in FIG. Similar to the third embodiment, the wall portion WL projects from the counter substrate CT toward the array substrate AR, and the adhesive AD is disposed between the tip of the wall portion WL and the array substrate AR.
 壁部WLは、液晶層LCに接している。シール材SEは、液晶層LCに接していない。ただし、図17の平面図に示した枠状のシール材SEの一部が液晶層LCと接していてもよい。 The wall portion WL is in contact with the liquid crystal layer LC. The seal material SE is not in contact with the liquid crystal layer LC. However, a part of the frame-shaped sealing material SE shown in the plan view of FIG. 17 may be in contact with the liquid crystal layer LC.
 シール材SEと壁部WLの間には、隙間が設けられている。アレイ基板ARと対向基板CTを貼り合せる製造プロセスにおいては、シール材SEが幅方向に広がる。上記隙間を設けることで、シール材SEの幅が広がる際に壁部WLがシール材SEから力を受けて損傷することを抑制できる。 A gap is provided between the seal material SE and the wall portion WL. In the manufacturing process of bonding the array substrate AR and the counter substrate CT, the sealing material SE spreads in the width direction. By providing the gap, it is possible to prevent the wall portion WL from being damaged by the force from the seal material SE when the width of the seal material SE is widened.
 上記隙間の幅Wdは、例えば、シール材SEの幅Wbよりも小さく、壁部WLの幅Waよりも大きい(Wa<Wd<Wb)。シール材SEの形成位置の公差やシール材SEの幅の公差を考慮すると、幅Wdは100μm以上であることが好ましい(Wd>100μm)。なお、図17の平面図に示した枠状のシール材SEの一部が壁部WLと接していてもよい。 The width Wd of the gap is, for example, smaller than the width Wb of the seal material SE and larger than the width Wa of the wall portion WL (Wa<Wd<Wb). Considering the tolerance of the formation position of the seal material SE and the tolerance of the width of the seal material SE, the width Wd is preferably 100 μm or more (Wd>100 μm). Note that part of the frame-shaped sealing material SE shown in the plan view of FIG. 17 may be in contact with the wall portion WL.
 ODF方式にて液晶層LCを形成する場合、アレイ基板ARまたは対向基板CTに形成された半硬化状態のシール材SEの内側に液晶材料が滴下される。さらに、アレイ基板ARと対向基板CTが貼り合わされ、その後にシール材SEが硬化される。このようなプロセスにおいては、液晶層LCが半硬化状態のシール材SEと接するため、シール材SEの樹脂成分が液晶層LCに溶出し、イオン性不純物を生じる可能性がある。 When the liquid crystal layer LC is formed by the ODF method, the liquid crystal material is dropped inside the semi-cured sealing material SE formed on the array substrate AR or the counter substrate CT. Further, the array substrate AR and the counter substrate CT are bonded together, and then the sealing material SE is cured. In such a process, since the liquid crystal layer LC is in contact with the semi-cured sealing material SE, the resin component of the sealing material SE may be eluted into the liquid crystal layer LC to generate ionic impurities.
 これに対し、本実施形態においては、シール材SEが液晶層LCに接していない。したがって、上記イオン性不純物の生成が抑制され、結果として表示品位を高めることができる。 On the other hand, in the present embodiment, the seal material SE is not in contact with the liquid crystal layer LC. Therefore, the generation of the ionic impurities is suppressed, and as a result, the display quality can be improved.
 なお、本実施形態においては、対向基板CTからアレイ基板ARに向けて突起の一例である壁部WLが突出する構成を例示した。ただし、壁部WLは、アレイ基板ARから対向基板CTに向けて突出してもよい。 Note that, in the present embodiment, a configuration is illustrated in which the wall portion WL, which is an example of a protrusion, protrudes from the counter substrate CT toward the array substrate AR. However, the wall portion WL may project from the array substrate AR toward the counter substrate CT.
 [第5実施形態] 
 第5実施形態について説明する。特に言及しない構成については、上述の各実施形態と同様のものを適用できる。
[Fifth Embodiment]
A fifth embodiment will be described. For the configurations not particularly mentioned, the same configurations as those in the above-described respective embodiments can be applied.
 図19は、第5実施形態に係る液晶表示装置500(以下、表示装置500と呼ぶ)の概略的な断面図である。表示装置500は、メインスペーサMSと、サブスペーサSSと、接着スペーサASとを、アレイ基板ARと対向基板CTの間に備えている。これらスペーサMS,SS,ASは、対向基板CTからアレイ基板ARに向けて突出している。メインスペーサMSは、本実施形態における第1突起の一例である。接着スペーサASは、本実施形態における第2突起の一例である。 FIG. 19 is a schematic sectional view of a liquid crystal display device 500 (hereinafter, referred to as a display device 500) according to the fifth embodiment. The display device 500 includes a main spacer MS, a sub spacer SS, and an adhesive spacer AS between the array substrate AR and the counter substrate CT. These spacers MS, SS, AS project from the counter substrate CT toward the array substrate AR. The main spacer MS is an example of the first protrusion in the present embodiment. The adhesive spacer AS is an example of the second protrusion in the present embodiment.
 表示領域DAにおいては、複数のメインスペーサMS、複数のサブスペーサSSおよび複数の接着スペーサASが分散配置されている。各スペーサMS,SS、ASは、いずれも遮光層21およびカラーフィルタ層22と重畳している。 In the display area DA, a plurality of main spacers MS, a plurality of sub spacers SS, and a plurality of adhesive spacers AS are distributed and arranged. Each of the spacers MS, SS and AS overlaps with the light shielding layer 21 and the color filter layer 22.
 メインスペーサMSおよび接着スペーサASの先端は、アレイ基板AR(第1配向膜15)に接している。メインスペーサMSの先端は、アレイ基板ARに対して接着はされておらず、アレイ基板ARに対して摺動可能である。一方、接着スペーサASの先端は、アレイ基板AR(第1配向膜15)に接着(密着)されている。サブスペーサSSとアレイ基板ARの間には、隙間が形成されている。 The tips of the main spacer MS and the adhesive spacer AS are in contact with the array substrate AR (first alignment film 15). The tip of the main spacer MS is not adhered to the array substrate AR and can slide on the array substrate AR. On the other hand, the tip of the adhesive spacer AS is adhered (adhered) to the array substrate AR (first alignment film 15). A gap is formed between the sub spacer SS and the array substrate AR.
 カラーフィルタ層22は、赤色のカラーフィルタ22Rと、緑色のカラーフィルタ22Gと、青色のカラーフィルタ22Bとを含む。図19の例においては、メインスペーサMSおよび接着スペーサASがカラーフィルタ22Bと重畳し、サブスペーサSSがカラーフィルタ22R,22Bの境界と重畳しているが、この例に限られない。図19においては省略しているが、カラーフィルタ層22の下面は図3の例と同じくオーバーコート層23で覆われている。 The color filter layer 22 includes a red color filter 22R, a green color filter 22G, and a blue color filter 22B. In the example of FIG. 19, the main spacer MS and the adhesive spacer AS overlap the color filter 22B, and the sub spacer SS overlaps the boundary between the color filters 22R and 22B, but the present invention is not limited to this example. Although omitted in FIG. 19, the lower surface of the color filter layer 22 is covered with the overcoat layer 23 as in the example of FIG.
 第2配向膜24は、メインスペーサMSの側面および先端を覆っている。また、第2配向膜24は、サブスペーサSSの側面および先端を覆っている。これらスペーサMS,SSの先端において第2配向膜24が極めて薄くなるか、あるいはこれら先端において第2配向膜24で覆われていない箇所が存在してもよい。 The second alignment film 24 covers the side surface and the tip of the main spacer MS. The second alignment film 24 covers the side surface and the tip of the sub spacer SS. The second alignment film 24 may be extremely thin at the tips of the spacers MS and SS, or there may be a portion of the tips not covered with the second alignment film 24.
 一方、第2配向膜24は、接着スペーサASとカラーフィルタ層22の間を通っている。他の観点からいえば、接着スペーサASは、第2配向膜24とアレイ基板ARの間に位置している。 On the other hand, the second alignment film 24 passes between the adhesive spacer AS and the color filter layer 22. From another point of view, the adhesive spacer AS is located between the second alignment film 24 and the array substrate AR.
 図20は、遮光層21、カラーフィルタ層22および各スペーサMS,SS,ASの形状の一例を示す概略的な平面図である。カラーフィルタ22R,22G,22Bは、副画素SPの形状に合わせて第2方向Yに帯状に延びている。図示した例においては、カラーフィルタ22G,22R,22Bがこの順で第1方向Xに繰り返し配置されている。 FIG. 20 is a schematic plan view showing an example of the shapes of the light shielding layer 21, the color filter layer 22, and the spacers MS, SS, AS. The color filters 22R, 22G, and 22B extend in a band shape in the second direction Y according to the shape of the sub-pixel SP. In the illustrated example, the color filters 22G, 22R, 22B are repeatedly arranged in this order in the first direction X.
 遮光層21は、図2に示した走査線Gに重畳する第1部分21aと、図2に示した信号線Sに重畳する第2部分21bとを有している。第1部分21aの第2方向Yにおける幅は、第2部分21bの第1方向Xにおける幅よりも大きい。複数の第1部分21aおよび複数の第2部分21bは、各副画素SPにおいて開口21cを形成する。 The light-shielding layer 21 has a first portion 21a overlapping the scanning line G shown in FIG. 2 and a second portion 21b overlapping the signal line S shown in FIG. The width of the first portion 21a in the second direction Y is larger than the width of the second portion 21b in the first direction X. The plurality of first portions 21a and the plurality of second portions 21b form the openings 21c in each subpixel SP.
 例えば、メインスペーサMSおよびサブスペーサSSは、第1部分21aと第2部分21bが交差する位置(走査線Gと信号線Sが交差する位置)に配置されている。メインスペーサMSの周囲において、遮光層21は、円形の拡張部分21dを有している。また、サブスペーサSSの周囲において、遮光層21は、円形の拡張部分21eを有している。拡張部分21dの直径は、拡張部分21eの直径よりも大きい。これら拡張部分21d,21eは、各スペーサMS,SSに起因した液晶分子の配向乱れによる表示不良を抑制する。 For example, the main spacer MS and the sub spacer SS are arranged at the position where the first portion 21a and the second portion 21b intersect (the position where the scanning line G and the signal line S intersect). The light shielding layer 21 has a circular extended portion 21d around the main spacer MS. Further, the light shielding layer 21 has a circular extended portion 21e around the sub spacer SS. The diameter of the expanded portion 21d is larger than the diameter of the expanded portion 21e. These extended portions 21d and 21e suppress display defects due to disordered alignment of liquid crystal molecules due to the spacers MS and SS.
 接着スペーサASは、メインスペーサMSの近傍に配置されている。すなわち、接着スペーサASとメインスペーサMSの間の距離は、接着スペーサASとサブスペーサSSの間の距離よりも小さい。なお、この例に限られず、接着スペーサASはサブスペーサSSの近傍など他の位置に配置されてもよい。 The adhesive spacer AS is arranged near the main spacer MS. That is, the distance between the adhesive spacer AS and the main spacer MS is smaller than the distance between the adhesive spacer AS and the sub spacer SS. Note that the present invention is not limited to this example, and the adhesive spacer AS may be arranged at another position such as near the sub spacer SS.
 接着スペーサASは、第1部分21aと重畳している。図示したように、接着スペーサASが拡張部分21dの円形の範囲内に配置されることが好ましい。これにより、接着スペーサASのために遮光層を拡大する必要がなくなり、接着スペーサASの周囲の開口21cを大きくすることができる。 The adhesive spacer AS overlaps the first portion 21a. As shown, the adhesive spacer AS is preferably located within the circular extent of the extension 21d. As a result, it is not necessary to enlarge the light shielding layer for the adhesive spacer AS, and the opening 21c around the adhesive spacer AS can be enlarged.
 各サブスペーサSSは、カラーフィルタ22R,22Bの境界と重畳している。一方、メインスペーサMSおよび接着スペーサASは、このような境界には重畳せず、カラーフィルタ22Bに重畳している。メインスペーサMSは、先端をアレイ基板ARに接触させてセルギャップを一定に保つ。また、接着スペーサASは、アレイ基板ARと対向基板CTを接着して両者のずれを抑制する。したがって、メインスペーサMSと接着スペーサASの高さには、ある程度の精度が必要とされる。この点に関し、メインスペーサMSおよび接着スペーサASを隣り合うカラーフィルタの境界に重畳させないことで、所望の高さを有するメインスペーサMSおよび接着スペーサASを精度よく形成できる。 Each sub-spacer SS overlaps the boundary between the color filters 22R and 22B. On the other hand, the main spacer MS and the adhesive spacer AS do not overlap such a boundary but overlap the color filter 22B. The main spacer MS has its tip in contact with the array substrate AR to keep the cell gap constant. Further, the adhesive spacer AS adheres the array substrate AR and the counter substrate CT to each other and suppresses the displacement therebetween. Therefore, the heights of the main spacer MS and the adhesive spacer AS require a certain degree of accuracy. In this regard, by not overlapping the main spacer MS and the adhesive spacer AS on the boundary between the adjacent color filters, the main spacer MS and the adhesive spacer AS having a desired height can be accurately formed.
 図20の例においては、カラーフィルタ22Bが隣接するカラーフィルタ22Rに向けて突出する突出部分PTを有している。さらに、この突出部分PTと重畳するようにメインスペーサMSが配置されている。このような構造であれば、メインスペーサMSを走査線Gと信号線Sが交差する位置に配置しながらも、メインスペーサMSとカラーフィルタ22R,22Bの境界との重畳を避けることができる。 In the example of FIG. 20, the color filter 22B has a protruding portion PT that protrudes toward the adjacent color filter 22R. Further, the main spacer MS is arranged so as to overlap the protruding portion PT. With such a structure, the main spacer MS can be disposed at the position where the scanning line G and the signal line S intersect with each other, but the superposition of the main spacer MS and the boundary between the color filters 22R and 22B can be avoided.
 接着スペーサASは、表示領域DAに分散配置される各メインスペーサMSの全てに対して配置されてもよいし、一部のメインスペーサMSに対して配置されてもよい。 The adhesive spacers AS may be arranged for all of the main spacers MS dispersedly arranged in the display area DA, or may be arranged for some of the main spacers MS.
 セルギャップを規定するスペーサの分布密度が高いと、低温下で表示パネルPNLに衝撃が加わった際に、液晶層LCにおいて気泡が発生することが知られている。このような気泡は、低温衝撃気泡と呼ばれる。本実施形態においては、メインスペーサMSに加えて接着スペーサASを設けているので、低温衝撃気泡を抑制するためにはメインスペーサMSと接着スペーサASの分布密度や大きさを調整する必要がある。 It is known that when the distribution density of the spacers that define the cell gap is high, bubbles are generated in the liquid crystal layer LC when a shock is applied to the display panel PNL at low temperature. Such bubbles are called cold shock bubbles. In the present embodiment, since the adhesive spacer AS is provided in addition to the main spacer MS, it is necessary to adjust the distribution density and size of the main spacer MS and the adhesive spacer AS in order to suppress low temperature impact bubbles.
 図20の例においては、サブスペーサSSの幅WssよりもメインスペーサMSの幅Wmsの方が小さい(Wss>Wms)。また、メインスペーサMSの幅Wmsよりも接着スペーサASの幅Wasの方が小さい(Wms>Was)。このように、幅Wmsおよび幅Wasを小さくすれば、低温衝撃気泡の抑制に寄与し得る。また、幅Wasを小さくすることで、接着スペーサASの周囲を遮光層21により遮光しやすくなる。他の方法として、メインスペーサMSおよび接着スペーサASの分布密度を下げることで、低温衝撃気泡を抑制してもよい。 In the example of FIG. 20, the width Wms of the main spacer MS is smaller than the width Wss of the sub spacer SS (Wss>Wms). The width Was of the adhesive spacer AS is smaller than the width Wms of the main spacer MS (Wms>Was). By thus reducing the width Wms and the width Was, it is possible to contribute to the suppression of low-temperature impact bubbles. Further, by reducing the width Was, it becomes easier to shield the periphery of the adhesive spacer AS by the light shielding layer 21. As another method, the low temperature impact bubbles may be suppressed by reducing the distribution density of the main spacers MS and the adhesive spacers AS.
 なお、幅Wms,Wss,Wasは、各スペーサMS,SS,ASの根元の幅であってもよいし、先端の幅であってもよいし、根本と先端の間の中間部の幅であってもよい。好ましくは、根本、先端、中間部のそれぞれにおいて、Wss>Wms>Wasが成立するとよい。 The widths Wms, Wss, and Was may be the width of the base of each spacer MS, SS, AS, the width of the tip, or the width of the intermediate portion between the root and the tip. May be. Preferably, Wss>Wms>Was is satisfied at each of the root, the tip, and the intermediate portion.
 続いて、表示装置500の製造方法の一例につき、図21ないし図24を用いて説明する。先ず、上述の第1基材10、絶縁層11~14、第1配向膜15、走査線G、信号線S、スイッチング素子SW、画素電極PEおよび共通電極CEを備えるアレイ基板ARを作製する。さらに、上述の第2基材20、遮光層21、カラーフィルタ層22およびオーバーコート層23を備える対向基板CTを作製する。 Next, an example of a method of manufacturing the display device 500 will be described with reference to FIGS. 21 to 24. First, an array substrate AR including the above-described first base material 10, insulating layers 11 to 14, first alignment film 15, scanning line G, signal line S, switching element SW, pixel electrode PE and common electrode CE is manufactured. Further, the counter substrate CT including the second base material 20, the light shielding layer 21, the color filter layer 22, and the overcoat layer 23 described above is manufactured.
 次に、図21に示すように、対向基板CTの上(例えばオーバーコート層23の上)にメインスペーサMSおよびサブスペーサSSの基となるフォトレジストR1を形成する。さらに、フォトレジストR1を焼成した後(プリベーク)、フォトレジストR1においてメインスペーサMSおよびサブスペーサSSを形成する位置に光L1を照射する(露光)。このとき、メインスペーサMSとサブスペーサSSの高さが異なることから、マルチトーンマスクが用いられる。 Next, as shown in FIG. 21, a photoresist R1 serving as a base of the main spacer MS and the sub spacer SS is formed on the counter substrate CT (for example, on the overcoat layer 23). Further, after baking the photoresist R1 (pre-baking), the light L1 is irradiated (exposure) to the position where the main spacer MS and the sub spacer SS are formed in the photoresist R1. At this time, since the heights of the main spacer MS and the sub spacer SS are different, a multitone mask is used.
 その後、薬液を用いて余分なフォトレジストR1を除去することにより(現像)、図22に示すようにメインスペーサMSおよびサブスペーサSSを形成する。ここでは一例として、メインスペーサMSとサブスペーサSSを1つずつ示している。メインスペーサMSおよびサブスペーサSSをさらに焼成することで、これらの強度を増すことができる(ポストベーク)。 After that, the excess photoresist R1 is removed using a chemical solution (development) to form the main spacer MS and the sub spacer SS as shown in FIG. Here, one main spacer MS and one sub spacer SS are shown as an example. By further baking the main spacers MS and the sub spacers SS, their strength can be increased (post-baking).
 メインスペーサMSおよびサブスペーサSSを形成した後、図23に示すように第2配向膜24を形成する。第2配向膜24には、ラビング処理、光分解処理または光硬化処理のような配向処理によって配向能が付与される。いずれの配向処理の場合であっても、第2配向膜24は、例えば230℃程度の温度で焼成される。 After forming the main spacer MS and the sub spacer SS, the second alignment film 24 is formed as shown in FIG. Alignment ability is imparted to the second alignment film 24 by an alignment treatment such as a rubbing treatment, a photolysis treatment, or a photocuring treatment. In any of the alignment treatments, the second alignment film 24 is baked at a temperature of about 230° C., for example.
 メインスペーサMSおよびサブスペーサSSは、第2配向膜24により覆われる。上述の通り、メインスペーサMSおよびサブスペーサSSの先端から第2配向膜24が流れ落ちることもある。この場合、メインスペーサMSおよびサブスペーサSSの先端は第2配向膜24から露出するか、あるいは他の部分よりも薄い第2配向膜24で覆われる。 The main spacer MS and the sub spacer SS are covered with the second alignment film 24. As described above, the second alignment film 24 may flow down from the tips of the main spacer MS and the sub spacer SS. In this case, the tips of the main spacers MS and the sub spacers SS are exposed from the second alignment film 24 or covered with the second alignment film 24 thinner than other portions.
 さらに、図23に示すように、接着スペーサASの基となるフォトレジストR2を形成する。このフォトレジストR2を焼成した後(プリベーク)、フォトレジストR2において接着スペーサASを形成する位置に光L2を照射する(露光)。その後、薬液を用いて余分なフォトレジストR2を除去することにより(現像)、図24に示すように接着スペーサASを形成する。 Further, as shown in FIG. 23, a photoresist R2 which is a base of the adhesive spacer AS is formed. After baking the photoresist R2 (prebaking), the light L2 is irradiated (exposure) to the position where the adhesive spacer AS is formed in the photoresist R2. After that, the excess photoresist R2 is removed by using a chemical solution (development) to form the adhesive spacer AS as shown in FIG.
 このように作製された対向基板CTは、図25に示すようにシール材SEによりアレイ基板ARと貼り合わされる。接着スペーサASの先端は、アレイ基板AR(第1配向膜15)に接触する。この段階においては、接着スペーサASが本焼成されていない。したがって、接着スペーサASは、架橋が十分に進行していない半硬化状態である。 The counter substrate CT manufactured in this way is bonded to the array substrate AR by the sealing material SE as shown in FIG. The tip of the adhesive spacer AS contacts the array substrate AR (first alignment film 15). At this stage, the adhesive spacer AS has not been fired. Therefore, the adhesive spacer AS is in a semi-cured state in which crosslinking has not progressed sufficiently.
 その後、対向基板CTおよびアレイ基板ARを互いに貼り合せた状態で加熱することにより、シール材SEを硬化させる。この熱により、接着スペーサASにおいても架橋が進み、接着スペーサASの先端がアレイ基板ARに接着される。 After that, the counter substrate CT and the array substrate AR are heated while being bonded to each other to cure the seal material SE. Due to this heat, crosslinking also progresses in the adhesive spacer AS, and the tip of the adhesive spacer AS is adhered to the array substrate AR.
 なお、図24に示す状態においては、接着スペーサASの高さがメインスペーサMSの高さより大きくてもよい。この場合、その後の貼り合せにおいて、接着スペーサASの先端がアレイ基板ARに密着しやすい。 Incidentally, in the state shown in FIG. 24, the height of the adhesive spacer AS may be larger than the height of the main spacer MS. In this case, in the subsequent bonding, the tip of the adhesive spacer AS is likely to adhere to the array substrate AR.
 メインスペーサMS、サブスペーサSSおよび接着スペーサASは、アクリル系樹脂やエポキシ系樹脂などの樹脂材料で形成することができる。ただし、メインスペーサMSはセルギャップを維持する役割を有することから、十分に架橋が進んでいて潰れにくい性質を有することが好ましい。一方、接着スペーサASは、アレイ基板ARと対向基板CTを接着する役割を有することから、低架橋で柔軟な性質を有することが好ましい。 The main spacer MS, the sub spacer SS, and the adhesive spacer AS can be formed of a resin material such as an acrylic resin or an epoxy resin. However, since the main spacer MS has a role of maintaining the cell gap, it is preferable that the main spacer MS has a property that cross-linking is sufficiently advanced and is not easily crushed. On the other hand, since the adhesive spacer AS has a role of adhering the array substrate AR and the counter substrate CT, it is preferable that the adhesive spacer AS has a low-crosslinking and flexible property.
 図26は、樹脂製のスペーサに加えられる荷重(mN)と、スペーサの変形量(μm)との関係の一例を示すグラフである。この図の例においては、期間T1(例えば20秒)においてスペーサに対して徐々に高さ方向の荷重が加えられ、期間T2(例えば5秒)において荷重が一定とされ、期間T3(例えば20秒)において徐々に荷重が低減されている。 FIG. 26 is a graph showing an example of the relationship between the load (mN) applied to the resin spacer and the spacer deformation amount (μm). In the example of this figure, the load in the height direction is gradually applied to the spacer in the period T1 (for example, 20 seconds), the load is constant during the period T2 (for example, 5 seconds), and the period T3 (for example, 20 seconds). ), the load is gradually reduced.
 期間T1においては、荷重の増加に伴い変形量が増加する。期間T2においても変形量が増加し、期間T3においては荷重の減少に伴い変形量が減少する。スペーサが塑性変形するために、荷重が0となった場合でも変形量が0にならない。 During period T1, the amount of deformation increases as the load increases. The deformation amount also increases in the period T2, and the deformation amount decreases as the load decreases in the period T3. Since the spacer is plastically deformed, the amount of deformation does not become zero even when the load becomes zero.
 ここで、期間T2の完了時における変形量(総変形量)をDa、期間T3の完了時における変形量(塑性変形量)をDbと定義する。さらに、スペーサの高さをHと定義する。この場合、図26のサイクルにおけるスペーサの総変形率(%)は、Da/H×100と表すことができる。また、当該サイクルにおける復元率(%)は、(Da-Db)/Da×100と表すことができる。変形率および復元率は、主にスペーサの材質、加えられる荷重、直径(または断面積)に依存する。メインスペーサMSおよび接着スペーサASは、仮に荷重と直径が同じである場合に、同等の変形率を有することが好ましい。 Here, the deformation amount (total deformation amount) at the completion of the period T2 is defined as Da, and the deformation amount (plastic deformation amount) at the completion of the period T3 is defined as Db. Further, the height of the spacer is defined as H. In this case, the total deformation rate (%) of the spacer in the cycle of FIG. 26 can be expressed as Da/H×100. The restoration rate (%) in the cycle can be expressed as (Da−Db)/Da×100. The deformation rate and the restoration rate mainly depend on the material of the spacer, the applied load, and the diameter (or cross-sectional area). It is preferable that the main spacer MS and the adhesive spacer AS have the same deformation rate if the load and the diameter are the same.
 また、メインスペーサMSは、セルギャップを保つために変形しにくい必要があることから、上述の製造工程において十分に本焼成されていることが好ましい。一方、上述の製造工程においては、接着スペーサASが本焼成されていない状態で対向基板CTとアレイ基板ARが貼り合せられ、その後にシール材SEの硬化時の熱で接着スペーサASが硬化する。この場合、接着スペーサASにおいてはメインスペーサMSほどに架橋が進行しにくいため、仮に荷重と直径が同じである場合には、メインスペーサMSの復元率よりも接着スペーサASの復元率の方が小さくなる。なお、このように復元率が小さい接着スペーサASであれば、表示パネルPNLに外力が加わった場合でもアレイ基板ARまたは対向基板CTから剥がれにくい。 Further, since the main spacer MS needs to be hard to be deformed in order to maintain the cell gap, it is preferable that the main spacer MS is sufficiently fired in the above manufacturing process. On the other hand, in the above-described manufacturing process, the counter substrate CT and the array substrate AR are bonded together in a state where the adhesive spacer AS is not fully fired, and then the adhesive spacer AS is cured by the heat when the sealing material SE is cured. In this case, in the adhesive spacer AS, the crosslinking is less likely to proceed as in the main spacer MS. Therefore, if the load and the diameter are the same, the restoration rate of the adhesive spacer AS is smaller than the restoration rate of the main spacer MS. Become. Note that, with the adhesive spacer AS having a small restoration rate as described above, even if an external force is applied to the display panel PNL, it is difficult to peel it off from the array substrate AR or the counter substrate CT.
 以上の本実施形態のように、メインスペーサMSとは別の接着スペーサASによりアレイ基板ARと対向基板CTを接着する場合であっても、上述の各実施形態と同様の効果を得ることができる。 Even when the array substrate AR and the counter substrate CT are bonded by the adhesive spacer AS different from the main spacer MS as in the present embodiment described above, the same effect as in the above-described respective embodiments can be obtained. ..
 流動性のある接着剤をメインスペーサMSの先端やアレイ基板ARに塗布する場合には、この接着剤が必要以上に広がってしまう可能性がある。本実施形態においては接着スペーサASを対向基板CTにパターニングするため、このような接着剤の広がりが生じない。 When applying a fluid adhesive to the tip of the main spacer MS or the array substrate AR, this adhesive may spread more than necessary. In the present embodiment, since the adhesive spacer AS is patterned on the counter substrate CT, such spreading of the adhesive does not occur.
 また、本実施形態においては、メインスペーサMSが第2配向膜24で覆われるとともに、接着スペーサASとカラーフィルタ層22の間に第2配向膜24が位置している。この場合、図23および図24に示したように、第2配向膜24を焼成した後に接着スペーサASを半硬化の状態で形成できる。仮に、先に接着スペーサASを形成して後に第2配向膜24を形成する場合、接着スペーサASの架橋反応が完了しない程度の低温で第2配向膜24を焼成する必要がある。また、接着スペーサASの先端に第2配向膜24が付着して、アレイ基板ARとの接着性が低下する可能性もある。これらに対し、本実施形態の構成であれば、第2配向膜24を低温で焼成する必要がないし、接着スペーサASの先端に第2配向膜24が存在しないのでアレイ基板ARとの接着性も向上する。 Further, in the present embodiment, the main spacer MS is covered with the second alignment film 24, and the second alignment film 24 is located between the adhesive spacer AS and the color filter layer 22. In this case, as shown in FIGS. 23 and 24, the adhesive spacer AS can be formed in a semi-cured state after firing the second alignment film 24. If the adhesive spacer AS is first formed and then the second alignment film 24 is formed, it is necessary to bake the second alignment film 24 at a low temperature at which the crosslinking reaction of the adhesive spacer AS is not completed. Further, the second alignment film 24 may be attached to the tip of the adhesive spacer AS, and the adhesiveness to the array substrate AR may be reduced. On the other hand, in the configuration of the present embodiment, it is not necessary to bake the second alignment film 24 at a low temperature, and since the second alignment film 24 does not exist at the tip of the adhesive spacer AS, the adhesiveness to the array substrate AR is also improved. improves.
 [第6実施形態] 
 第6実施形態について説明する。特に言及しない構成については、上述の各実施形態と同様のものを適用できる。
[Sixth Embodiment]
A sixth embodiment will be described. For the configurations not particularly mentioned, the same configurations as those in the above-described respective embodiments can be applied.
 図27は、第6実施形態に係る液晶表示装置600(以下、表示装置600と呼ぶ)の概略的な断面図である。表示装置600は、第1実施形態と同じく、メインスペーサMSと、サブスペーサSSと、メインスペーサMSとアレイ基板ARの間に位置する接着剤ADとを備えている。 FIG. 27 is a schematic sectional view of a liquid crystal display device 600 (hereinafter, referred to as a display device 600) according to the sixth embodiment. The display device 600 includes a main spacer MS, a sub spacer SS, and an adhesive AD located between the main spacer MS and the array substrate AR, as in the first embodiment.
 本実施形態においては、接着剤ADの幅Wadが、メインスペーサMSの先端の幅Wms以下である(Wad≦Wms)。メインスペーサMSの「先端」は、例えば、メインスペーサMSの表面のうち、メインスペーサMSの最大高さに対して90%以上の高さを有する部分を意味する。接着剤ADは、このような先端とアレイ基板ARの間の領域に収まっており、当該領域からはみ出していない。 In the present embodiment, the width Wad of the adhesive AD is less than the width Wms of the tip of the main spacer MS (Wad≦Wms). The “tip” of the main spacer MS means, for example, a portion of the surface of the main spacer MS having a height of 90% or more with respect to the maximum height of the main spacer MS. The adhesive AD is contained in the area between the tip and the array substrate AR, and does not protrude from the area.
 続いて、表示装置600の製造方法の一例につき、図28ないし図30を用いて説明する。対向基板CTにメインスペーサMS、サブスペーサSSおよび第2配向膜24を形成し、これらの上にフォトレジストR2を形成する工程までは、第5実施形態と同様である。ただし、本実施形態においては、メインスペーサMSとサブスペーサSSの高さが同じであってもよい。 Next, an example of a method of manufacturing the display device 600 will be described with reference to FIGS. 28 to 30. The steps up to the step of forming the main spacer MS, the sub spacer SS, and the second alignment film 24 on the counter substrate CT and forming the photoresist R2 on them are the same as in the fifth embodiment. However, in the present embodiment, the main spacer MS and the sub spacer SS may have the same height.
 フォトレジストR2を形成した後、図28に示すように、メインスペーサMSの上方に光L2を照射する(露光)。さらに、薬液を用いて余分なフォトレジストR2を除去することにより(現像)、図29に示すように接着剤ADを形成する。 After forming the photoresist R2, as shown in FIG. 28, the light L2 is irradiated above the main spacer MS (exposure). Further, the excess photoresist R2 is removed using a chemical solution (development) to form the adhesive agent AD as shown in FIG.
 このように作製された対向基板CTは、図30に示すようにシール材SEによりアレイ基板ARと貼り合わされる。接着剤ADは、アレイ基板AR(第1配向膜15)に接触する。この段階においては、接着剤ADが本焼成されていない。したがって、接着剤ADは、架橋が十分に進行していない半硬化状態である。 The counter substrate CT manufactured in this way is bonded to the array substrate AR by the sealing material SE as shown in FIG. The adhesive AD contacts the array substrate AR (first alignment film 15). At this stage, the adhesive AD has not been fully fired. Therefore, the adhesive AD is in a semi-cured state in which crosslinking has not progressed sufficiently.
 その後、対向基板CTおよびアレイ基板ARを互いに貼り合せた状態で加熱することにより、シール材SEを硬化させる。このときの熱により、接着剤ADにおいても架橋が進み、接着剤ADによってメインスペーサMSとアレイ基板ARとが接着される。 After that, the counter substrate CT and the array substrate AR are heated while being bonded to each other to cure the seal material SE. Due to the heat at this time, crosslinking also proceeds in the adhesive AD, and the main spacer MS and the array substrate AR are adhered by the adhesive AD.
 このように、本実施形態においては、第5実施形態における接着スペーサASと同様の方法で接着剤ADが形成される。すなわち、接着剤ADは、図29に示す状態において半硬化の固体状である。 As described above, in the present embodiment, the adhesive AD is formed by the same method as the adhesive spacer AS in the fifth embodiment. That is, the adhesive AD is a semi-cured solid in the state shown in FIG.
 仮に流動性のある接着剤をメインスペーサMSの先端やアレイ基板ARに塗布する場合には、この接着剤が必要以上に広がってしまう。そのため、メインスペーサMSの先端とアレイ基板ARの間に収まるように接着剤を配置することが困難である。これに対し、本実施形態における接着剤ADであれば、そのような広がりが生じない。したがって、メインスペーサMSの先端とアレイ基板ARの間に収まった接着剤ADを形成できる。 If the fluid adhesive is applied to the tip of the main spacer MS or the array substrate AR, this adhesive will spread more than necessary. Therefore, it is difficult to dispose the adhesive so as to fit between the tip of the main spacer MS and the array substrate AR. On the other hand, the adhesive AD according to the present embodiment does not cause such spread. Therefore, the adhesive agent AD can be formed between the tip of the main spacer MS and the array substrate AR.
 第5実施形態における接着スペーサASと同様に、接着剤ADはメインスペーサMSに比べて復元率が小さい。ここで、メインスペーサMSと接着剤ADとを合わせた合計復元率を想定する。この合計復元率は、メインスペーサMSとその先端に接着された接着剤ADに対して所定の荷重を加えた場合の総変形量から両者の塑性変形量を減算し、さらにその値を総変形量で除した値を百分率表記したものに相当する。 Like the adhesive spacer AS in the fifth embodiment, the adhesive AD has a smaller restoration rate than the main spacer MS. Here, assume a total restoration rate of the main spacer MS and the adhesive AD. This total restoration rate is obtained by subtracting the plastic deformation amount of both of the main spacer MS and the adhesive AD adhered to the tip thereof from the total deformation amount when a predetermined load is applied, and further calculating that value. It is equivalent to the value divided by.
 仮に、メインスペーサMSとサブスペーサSSの直径(または断面積)が同じであり、かつ加える荷重も同じである場合、接着剤ADが存在することにより、上記合計復元率はサブスペーサSSの復元率よりも小さくなる。 If the diameter (or cross-sectional area) of the main spacer MS and the sub-spacer SS is the same and the load applied is also the same, the above-mentioned total restoration rate is the restoration rate of the sub-spacer SS due to the presence of the adhesive AD. Will be smaller than.
 なお、本実施形態における接着剤ADは、表示領域DAに分散配置された全てのメインスペーサMSに対して設けられもよいし、一部のメインスペーサMSに対して設けられてもよい。 The adhesive AD in the present embodiment may be provided for all the main spacers MS dispersed in the display area DA, or may be provided for some main spacers MS.
 以上、本発明の実施形態として説明した表示装置を基にして、当業者が適宜設計変更して実施し得る全ての表示装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 As described above, all display devices that can be appropriately modified and implemented by those skilled in the art based on the display devices described as the embodiments of the present invention also belong to the scope of the present invention as long as they include the gist of the present invention.
 本発明の思想の範疇において、当業者であれば、各種の変形例に想到し得るものであり、それら変形例についても本発明の範囲に属するものと解される。例えば、上述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 Various modifications are conceivable to those skilled in the art within the scope of the idea of the present invention, and it is understood that these modifications also belong to the scope of the present invention. For example, those skilled in the art appropriately add, delete, or change the design of each of the above-described embodiments, or add, omit, or change the conditions of the process of the present invention. As long as it has the gist, it is included in the scope of the present invention.
 また、各実施形態において述べた態様によりもたらされる他の作用効果について、本明細書の記載から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。 Further, regarding other operational effects brought about by the modes described in the respective embodiments, those apparent from the description of the present specification, or those that can be appropriately conceived by those skilled in the art are understood to be naturally brought about by the present invention. To be done.
 100,200,300,400,500,600…液晶表示装置、PNL…表示パネル、AR…アレイ基板、CT…対向基板、LC…液晶層、PE…画素電極、CE…共通電極、SE…シール材、DA…表示領域、PA…周辺領域、SP…副画素、MS…メインスペーサ、SS…サブスペーサ、WL…壁部、AD…接着剤,AS…接着スペーサ。 100, 200, 300, 400, 500, 600... Liquid crystal display device, PNL... Display panel, AR... Array substrate, CT... Counter substrate, LC... Liquid crystal layer, PE... Pixel electrode, CE... Common electrode, SE... Sealing material , DA... Display area, PA... Peripheral area, SP... Sub-pixel, MS... Main spacer, SS... Sub spacer, WL... Wall portion, AD... Adhesive, AS... Adhesive spacer.

Claims (20)

  1.  第1基板と、
     前記第1基板に対向する第2基板と、
     画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、
     前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、
     前記第1突起と前記第1基板を接着する接着剤と、を備え、
     前記第2突起と前記第1基板は、隙間を介して対向する、
     表示装置。
    A first substrate,
    A second substrate facing the first substrate;
    A sealing material for adhering the first substrate and the second substrate in a peripheral region outside a display region including pixels,
    A first protrusion and a second protrusion protruding from the second substrate toward the first substrate;
    An adhesive that bonds the first protrusion to the first substrate,
    The second protrusion and the first substrate face each other with a gap in between,
    Display device.
  2.  前記第1突起と前記第2突起は、同じ高さを有している、
     請求項1に記載の表示装置。
    The first protrusion and the second protrusion have the same height,
    The display device according to claim 1.
  3.  前記接着剤は、熱硬化剤を含む、
     請求項1に記載の表示装置。
    The adhesive includes a thermosetting agent,
    The display device according to claim 1.
  4.  前記接着剤の幅は、前記第1突起の先端の幅以下である、
     請求項1乃至3のうちいずれか1項に記載の表示装置。
    The width of the adhesive is less than or equal to the width of the tip of the first protrusion,
    The display device according to any one of claims 1 to 3.
  5.  可撓性の第1基板と、
     前記第1基板に対向する可撓性の第2基板と、
     前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、
     画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、
     前記第1突起と前記第1基板を接着する第1接着剤と、
     前記第2突起と前記第1基板を接着する第2接着剤と、を備え、
     前記第2突起は、前記第1突起よりも前記第2基板の端部に近い位置にあり、
     前記第1突起の幅は、前記第2突起の幅よりも大きい、
     表示装置。
    A flexible first substrate,
    A flexible second substrate facing the first substrate;
    A first protrusion and a second protrusion protruding from the second substrate toward the first substrate;
    A sealing material for adhering the first substrate and the second substrate in a peripheral region outside a display region including pixels,
    A first adhesive for bonding the first protrusion and the first substrate;
    A second adhesive that bonds the second protrusion to the first substrate,
    The second protrusion is closer to the end of the second substrate than the first protrusion,
    The width of the first protrusion is larger than the width of the second protrusion,
    Display device.
  6.  前記第2突起の高さは、前記第1突起の高さよりも大きい、
     請求項5に記載の表示装置。
    The height of the second protrusion is greater than the height of the first protrusion,
    The display device according to claim 5.
  7.  前記第1基板および前記第2基板は、曲げられている、
     請求項5又は6に記載の表示装置。
    The first substrate and the second substrate are bent,
    The display device according to claim 5 or 6.
  8.  第1基板と、
     前記第1基板に対向する第2基板と、
     画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、
     前記第2基板から前記第1基板に向けて突出する突起と、
     前記突起と前記第1基板を接着する接着剤と、を備え、
     前記突起は、前記周辺領域において前記シール材に沿って延在している、
     表示装置。
    A first substrate,
    A second substrate facing the first substrate;
    A sealing material for adhering the first substrate and the second substrate in a peripheral region outside a display region including pixels,
    A protrusion protruding from the second substrate toward the first substrate;
    An adhesive that bonds the protrusion to the first substrate,
    The protrusion extends along the sealing material in the peripheral region,
    Display device.
  9.  前記突起は、前記第2基板の周縁と前記シール材の間に配置されている、
     請求項8に記載の表示装置。
    The protrusion is disposed between the peripheral edge of the second substrate and the sealing material,
    The display device according to claim 8.
  10.  前記シール材は、液晶材料の注入口を有し、
     前記突起は、前記注入口を除いて前記シール材を囲っている、
     請求項9に記載の表示装置。
    The sealing material has a liquid crystal material injection port,
    The protrusion surrounds the sealing material except the inlet.
    The display device according to claim 9.
  11.  平面視において、前記第2基板の側面と前記突起の間には、隙間が設けられている、
     請求項9に記載の表示装置。
    In a plan view, a gap is provided between the side surface of the second substrate and the protrusion.
    The display device according to claim 9.
  12.  前記突起は、前記シール材と前記表示領域の間に配置されている、
     請求項8に記載の表示装置。
    The protrusion is disposed between the sealing material and the display area,
    The display device according to claim 8.
  13.  前記突起と前記シール材の間には、隙間が設けられている、
     請求項12に記載の表示装置。
    A gap is provided between the protrusion and the sealing material,
    The display device according to claim 12.
  14.  前記第1基板と前記第2基板の間に配置された液晶層をさらに備え、
     前記突起は、前記表示領域を囲い、前記液晶層と接している、
     請求項12に記載の表示装置。
    Further comprising a liquid crystal layer disposed between the first substrate and the second substrate,
    The protrusion surrounds the display area and is in contact with the liquid crystal layer,
    The display device according to claim 12.
  15.  前記第1基板と前記第2基板の間に配置された液晶層と、
     前記第1基板または前記第2基板の側面に光を照射する光源と、をさらに備え、
     前記液晶層は、前記光源からの光を散乱する状態と、前記光源からの光を透過する状態とを、印加される電圧に応じて切り替え可能である、
     請求項8乃至13のうちいずれか1項に記載の表示装置。
    A liquid crystal layer disposed between the first substrate and the second substrate,
    A light source that irradiates the side surface of the first substrate or the second substrate with light,
    The liquid crystal layer can switch between a state in which light from the light source is scattered and a state in which light from the light source is transmitted depending on an applied voltage.
    The display device according to any one of claims 8 to 13.
  16.  第1基板と、
     前記第1基板に対向する第2基板と、
     画素を含む表示領域の外側の周辺領域において前記第1基板と前記第2基板を接着するシール材と、
     前記第2基板から前記第1基板に向けて突出する第1突起および第2突起と、を備え、
     前記第1突起は、接着されずに前記第1基板と接しており、
     前記第2突起は、前記第1基板に接着されている、
     表示装置。
    A first substrate,
    A second substrate facing the first substrate;
    A sealing material for adhering the first substrate and the second substrate in a peripheral region outside a display region including pixels,
    A first protrusion and a second protrusion protruding from the second substrate toward the first substrate,
    The first protrusion is in contact with the first substrate without being bonded,
    The second protrusion is bonded to the first substrate,
    Display device.
  17.  前記第2突起に荷重を加えた場合の復元率は、前記第1突起に当該荷重を加えた場合の復元率よりも小さい、
     請求項16に記載の表示装置。
    The restoration rate when a load is applied to the second protrusion is smaller than the restoration rate when the load is applied to the first protrusion,
    The display device according to claim 16.
  18.  前記第2突起の幅は、前記第1突起の幅よりも小さい、
     請求項16に記載の表示装置。
    The width of the second protrusion is smaller than the width of the first protrusion,
    The display device according to claim 16.
  19.  前記第2基板から前記第1基板に向けて突出し、かつ前記第1基板と隙間を介して対向する第3突起をさらに備え、
     前記第1突起および前記第2突起の幅は、前記第3突起の幅よりも小さい、
     請求項16に記載の表示装置。
    A third protrusion protruding from the second substrate toward the first substrate and facing the first substrate through a gap;
    The width of the first protrusion and the second protrusion is smaller than the width of the third protrusion,
    The display device according to claim 16.
  20.  前記第2基板は、前記第1基板に対向する配向膜を備え、
     前記配向膜は、前記第1突起の少なくとも一部を覆い、
     前記第2突起は、前記配向膜と前記第1基板の間に位置している、
     請求項16乃至19のうちいずれか1項に記載の表示装置。
    The second substrate includes an alignment film facing the first substrate,
    The alignment film covers at least a part of the first protrusion,
    The second protrusion is located between the alignment film and the first substrate,
    The display device according to any one of claims 16 to 19.
PCT/JP2019/050671 2019-01-07 2019-12-24 Display device WO2020145135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/305,400 US20210333600A1 (en) 2019-01-07 2021-07-07 Display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-000659 2019-01-07
JP2019000659 2019-01-07
JP2019099647A JP7360255B2 (en) 2019-01-07 2019-05-28 Display device and display device manufacturing method
JP2019-099647 2019-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,400 Continuation US20210333600A1 (en) 2019-01-07 2021-07-07 Display device

Publications (1)

Publication Number Publication Date
WO2020145135A1 true WO2020145135A1 (en) 2020-07-16

Family

ID=71520698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050671 WO2020145135A1 (en) 2019-01-07 2019-12-24 Display device

Country Status (1)

Country Link
WO (1) WO2020145135A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117107A (en) * 1999-10-15 2001-04-27 Hitachi Ltd Liquid crystal display device
JP2002207225A (en) * 2001-01-10 2002-07-26 Minolta Co Ltd Liquid crystal display element
JP2008165171A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Liquid crystal display device and method of manufacturing the same
JP2009139672A (en) * 2007-12-07 2009-06-25 Sony Corp Liquid crystal display element, and manufacturing method for liquid crystal display element
JP2011022212A (en) * 2009-07-13 2011-02-03 Fujitsu Ltd Liquid crystal display element
JP2013190551A (en) * 2012-03-13 2013-09-26 Seiko Instruments Inc Liquid crystal display device
JP2013238729A (en) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp Liquid crystal display
JP2015200739A (en) * 2014-04-07 2015-11-12 株式会社ジャパンディスプレイ display device
US20180095317A1 (en) * 2016-09-30 2018-04-05 Lg Display Co., Ltd. Touch-panel liquid-crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117107A (en) * 1999-10-15 2001-04-27 Hitachi Ltd Liquid crystal display device
JP2002207225A (en) * 2001-01-10 2002-07-26 Minolta Co Ltd Liquid crystal display element
JP2008165171A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Liquid crystal display device and method of manufacturing the same
JP2009139672A (en) * 2007-12-07 2009-06-25 Sony Corp Liquid crystal display element, and manufacturing method for liquid crystal display element
JP2011022212A (en) * 2009-07-13 2011-02-03 Fujitsu Ltd Liquid crystal display element
JP2013190551A (en) * 2012-03-13 2013-09-26 Seiko Instruments Inc Liquid crystal display device
JP2013238729A (en) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp Liquid crystal display
JP2015200739A (en) * 2014-04-07 2015-11-12 株式会社ジャパンディスプレイ display device
US20180095317A1 (en) * 2016-09-30 2018-04-05 Lg Display Co., Ltd. Touch-panel liquid-crystal display device

Similar Documents

Publication Publication Date Title
JP5123078B2 (en) Liquid crystal display device and manufacturing method
JP4849769B2 (en) Liquid crystal display device and manufacturing method thereof
JP4496159B2 (en) Liquid crystal display device and manufacturing method thereof
US7880854B2 (en) Panel and method for manufacturing the same
JP4011591B2 (en) Manufacturing method of liquid crystal display panel with microlens
US7859615B2 (en) Display device having ultraviolet ray transmitting small holes included in a wiring electrode disposed in the peripheral region of the display but not where a seal member is disposed
WO2010058502A1 (en) Liquid crystal display device and method for manufacturing same
US20080186435A1 (en) Liquid crystal display device and method of fabricating the same
KR20120014507A (en) Liquid crystal display device
WO2016208199A1 (en) Liquid crystal display device
WO2021051626A1 (en) Liquid crystal display panel and manufacturing method therefor
JP2011150187A (en) Liquid crystal display device and method for manufacturing the same
JP2014026173A (en) Liquid crystal display device
JP2008139555A (en) Liquid crystal display device and its manufacturing method
US10642094B2 (en) Display panel
KR20160064297A (en) Manufacturing method of display panel and display panel manufactured by the method
JP7360255B2 (en) Display device and display device manufacturing method
US11402697B2 (en) Display device
JP2015155994A (en) display device
WO2020145135A1 (en) Display device
JP2017181816A (en) Display device, liquid crystal display device, and manufacturing method for display device
CN110658654A (en) Liquid crystal panel, connected liquid crystal panel and manufacturing method of liquid crystal panel
JP2007264102A (en) Liquid crystal display panel and method of manufacturing same
KR100744390B1 (en) Liquid crystal display device
JP2024038595A (en) Liquid crystal panels and liquid crystal display devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909149

Country of ref document: EP

Kind code of ref document: A1