WO2006094881A1 - Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen - Google Patents

Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen Download PDF

Info

Publication number
WO2006094881A1
WO2006094881A1 PCT/EP2006/060035 EP2006060035W WO2006094881A1 WO 2006094881 A1 WO2006094881 A1 WO 2006094881A1 EP 2006060035 W EP2006060035 W EP 2006060035W WO 2006094881 A1 WO2006094881 A1 WO 2006094881A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
molding according
oxide
laser
transparent
Prior art date
Application number
PCT/EP2006/060035
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter SCHÜBEL
Jürgen Kreutz
Wilhelm Wolff
Günther Ittmann
Thomas Hasskerl
Harald HÄGER
Ralf Richter
Wolfgang Stuber
Original Assignee
Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Gmbh filed Critical Degussa Gmbh
Priority to DE502006000883T priority Critical patent/DE502006000883D1/de
Priority to EP06743190A priority patent/EP1856199B1/de
Publication of WO2006094881A1 publication Critical patent/WO2006094881A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording

Definitions

  • the invention relates to plastic moldings with two- or three-dimensional image structures produced internally by internal laser engraving, wherein the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, and both the plastic material and the metal oxide contained the laser light used to generate the image structures is transparent.
  • the marking of plastics by laser marking acts on the object surface or in the near-surface region. Decisive here is the absorption of the laser energy in the plastic material by direct interaction with the polymer or with an additive added to the plastic material, such as an organic dye or an inorganic pigment which absorbs the laser radiation. In any case, the absorption of the laser energy causes a chemical change in the material and thus a visible local discoloration of the plastic.
  • the laser markability depends on the wavelength - specific absorption behavior of the
  • Plastic materials or the underlying polymers of the wavelength-specific Absorption behavior of any laser-sensitive additives as well as the wavelength and radiation power of the laser radiation to be used.
  • Nd YAG lasers (neodymium-doped yttrium aluminum Garnet lasers) with the characteristic wavelengths of 1064 nm and 532 nm are increasingly being used in this technique.
  • Laser-markable plastic materials which contain laser-sensitive additives in the form of dyes and / or pigments generally have a more or less pronounced coloring and / or lack of transparency. Often, the equipment is to be set as laser-absorbing molding compounds by the introduction of carbon black.
  • the laser engraving has to work in any depth of the material. This presupposes that the material is essentially transparent to the incident laser radiation, since otherwise it would already be absorbed in the surface region.
  • microcracking When focusing a laser beam of sufficiently high power density into the interior of the material which is transparent to the laser light, optical effects cause a limited development of thermal energy in the laser focus. This heat development results in locally limited microcracking in the material. Such microcracks have a dot diameter of 25-40 microns. In visible light transparent glasses and plastics, the microcracks appear as bright spots due to the scattering of daylight at the crack edges.
  • corresponding structures can be composed of individual microcracks in the workpiece.
  • the pulse repetition frequency of the lasers typically used in this case allows the generation of structures with up to about 1000 points per minute.
  • the starting point is a 3D representation of the later motif in a CAD program.
  • the surface or the entire structure of the model is computationally resolved as a point cloud whose individual points are converted by the laser beam in the glass or plastic as microcracks. The denser the point cloud through which the object is displayed, the more accurate and clean the model is mapped.
  • this cracking can even lead to a subsequent destruction of the molding, some of which only days or even weeks after the laser engraving occurs.
  • plastics in addition to the cracking, a local destruction of the material and carbonization may additionally occur, which is undesirable in the interior engraving of materials that are transparent in visible light because of the dark discoloration.
  • No. 5,761,111 describes a method for crack-free internal laser engraving by laser pulses in the femtosecond range.
  • suitable lasers for technical use are not yet available and would also be very expensive.
  • the present invention therefore an object of the invention to find plastic materials and to provide two-dimensional or three-dimensional image structures with significantly improved imaging accuracy by means of laser engraving while avoiding uncontrolled cracking and crack propagation.
  • the commercially available commercially available laser sources should be used.
  • plastic moldings which consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm
  • three-dimensional image structures of the highest fineness and detail can be produced by means of internal laser engraving, if laser light is used for that both the plastic material and the metal oxide contained is transparent, irradiated by imaging.
  • the invention thus relates to plastic moldings with two- or three-dimensional image structures produced in the interior by internal laser engraving, which are characterized in that the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, wherein both the Plastic material and the metal oxide contained is transparent to the laser light used to generate the image structures.
  • the invention further relates to a process for the production of two- or three-dimensional image structures in the interior of plastic moldings by internal laser engraving, in which moldings consisting of plastic materials having a content of nanoscale metal oxides with particle size of 1 to 500 nm, with Laser light for which both the plastic material and the metal oxide contained is transparent, imagewise irradiated.
  • Transparent plastic materials should be understood as meaning those which are essentially transparent in a wavelength range of 300 to 1300 nm. On the one hand, the visible wavelength range of 400 to 800 nm is preferred.
  • Corresponding materials are particularly suitable for introducing visually perceptible structures by internal laser engraving, for example in the form of art objects.
  • plastic materials with laser transparency in the wavelength range from 800 to 1300 nm are preferred.
  • Corresponding materials which may also appear colored and / or opaque or completely opaque in their visual appearance are suitable for introducing visually imperceptible structures by internal laser engraving. for example as bar codes or data matrix codes for, for example, security purposes.
  • the transmission of the plastic material in the selected wavelength range of typically commercially used, commercially available laser sources should be greater than 80%, preferably greater than 85% and particularly preferably greater than 90%.
  • the haze in the wavelength range from 400 to 800 nm should be less than 5, preferably less than 2 and in particular less than 1%. The determination of transmission and haze is carried out according to ASTM D 1003.
  • Nanoscale metal oxides are understood as meaning all inorganic-metallic oxides, such as metal oxides, metal mixed oxides, complex oxides and mixtures thereof, which cause little or no absorption in the characteristic wavelength range of the laser to be used.
  • nanoscale is meant that the largest dimension of the discrete particles of these laser-sensitive metal oxides smaller than 1 ⁇ m, that is in the nanometer range.
  • This size definition refers to all possible particle morphologies such as primary particles as well as any aggregates and agglomerates.
  • Metal oxides 1 to 500 nm and in particular 5 to 100 nm. When the particle size is below 100 nm, the metal oxide particles are no longer visible per se and do not affect the transparency of the plastic matrix.
  • the content of inorganic nanoparticles is suitably 0.0001 to 0.1 wt.%, Preferably 0.0005 to 0.05 wt.% And particularly preferably 0.001 to 0.01 wt.%, Based on the plastic material. In this concentration range is usually and for all eligible
  • Plastic materials a controlled crack formation and thus a visible depth mark with high imaging accuracy causes.
  • Wavelength range of highly transparent matrix materials excluded any impairment of intrinsic transparency.
  • Suitable inorganic nanoparticles for the production of laser-deep-markable plastic materials are preferably doped indium oxide, doped tin oxide, doped zinc oxide, doped aluminum oxide, doped antimony oxide and corresponding mixed oxides.
  • inorganic nanoparticles are indium tin oxide (ITO) or antimony tin oxide (ATO) and doped indium or antimony tin oxides.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • doped indium or antimony tin oxides are particularly preferred.
  • indium tin oxide and in turn, the "blue" indium tin oxide obtainable by a partial reduction process.
  • the unreduced "yellow” indium tin oxide may cause a visually perceptible slightly yellowish hue of the plastic material at higher concentrations and / or particle sizes at the top, while the "blue” indium tin oxide will not cause any discernible color change. At most, a faint blueness is observed, which is regarded by the viewer but rather as high quality, as a yellow cast.
  • the inorganic nanoparticles to be used according to the invention are known per se and are also commercially available in nanoscale form, that is to say with particle sizes below 1 ⁇ m, and in particular in the preferred size range, often in the form of dispersions.
  • the inorganic nanoparticles are generally agglomerated.
  • the agglomerates, whose particle size is between 1 .mu.m and several mm, can be broken down into nanoscale particles by means of strong shearing.
  • the determination of the Agglomerationagrades takes place in the sense of DIN 53206 (from August 1972).
  • Nanoscale metal oxides can be prepared, for example, by pyrolytic processes. Such processes are described, for example, in EP 1 142 830 A, EP 1 270 511 A or DE 103 11 645. Furthermore, inorganic nanoparticles can be prepared by precipitation processes, as described for example in DE 100 22 037. The nanoscale metal oxides can be incorporated into virtually any plastic system to impart laser markability.
  • Typical are plastic materials in which the plastic matrix on poly (meth) acrylate, polyamide, polyurethane, polyolefins, styrene polymers and styrene copolymers, polycarbonate, silicones, polyimides, polysulfone, polyethersulfone, polyketones, polyether ketones, PEEK, polyphenylene sulfide, polyester (such as PET, PEN, PBT ), Polymethylene oxide, polyurethane, polyolefins or fluorine-containing polymers (such as PVDF, EFEP, PTFE).
  • poly (meth) acrylate, polyamide, polyurethane, polyolefins, styrene polymers and styrene copolymers polycarbonate, silicones, polyimides, polysulfone, polyethersulfone, polyketones, polyether ketones, PEEK, polyphenylene sulfide, polyester (such as PET,
  • inorganic nanoparticles are found in particular in highly transparent plastic systems such as polycarbonates, transparent polyamides (for example Grilamid® TR55, TR90, Trogamid® T5000, CX7323),
  • Polymethyl methacrylate and their copolymers wear because they do not affect the transparency of the material. Furthermore, transparent polystyrene and polypropylene are to be mentioned, furthermore all semicrystalline plastics which can be processed by the use of nucleating agents or special processing conditions to transparent moldings.
  • the transparent polyamides of the invention are generally prepared from the building blocks: branched and unbranched aliphatic (6 C to 14 C atoms), alkyl-substituted or unsubstituted cycloaliphatic (14 C to 22 C atoms), araliphatic diamines (C14 - C22) and aliphatic and cycloaliphatic dicarboxylic acids (C6 to C44); The latter can be partly due to aromatic Dicarboxylic acids are replaced.
  • the transparent polyamides may additionally consist of monomer units with 6 C atoms, 10 C atoms, 11 C atoms or 12 C atoms, which are derived from lactams or ⁇ -aminocarboxylic acids.
  • the transparent polyamides according to the invention are prepared from the following building blocks: laurolactam or ⁇ -aminododecanoic acid, azelaic acid, sebacic acid, dodecanedioic acid, fatty acids (C18-C36;
  • decanediamine dodecanediamine, nonanediamine, hexamethylenediamines branched, unbranched or substituted
  • decanediamine dodecanediamine
  • nonanediamine hexamethylenediamines branched, unbranched or substituted
  • cycloaliphatic diamines bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) - methane, bis (4-aminocyclohexyl) propane, bis (amino-cyclohexane), bis (aminomethyl) -cyclohexane, isophoronediamine or substituted pentamethylenediamines.
  • Cycloolefin copolymers of norbornene and OC-olefins which can be made laser-marked with the aid of the inorganic nanoparticles according to the invention without impairing the transparency of the material.
  • nanoscale metal oxides can also be used in colored high-transparency systems become.
  • neutral color of these additives allows a free choice of color.
  • the transparent plastic materials which can be structured according to the invention by internal laser engraving can be present as plates, shaped bodies, semi-finished products or molding compositions. In this case, only a part of the plates, moldings, semi-finished products and molding compounds can be set laser-engravable inside.
  • the production of the laser-engravable plastic materials is carried out in a conventional manner according to common in plastics production and processing techniques and methods. It is possible to enter the nanoparticulate additives before or during the polymerization or polycondensation into individual starting materials or Eduktgemische or even during the reaction, wherein the known in the art specific manufacturing process for the plastics in question are used.
  • polycondensates such as polyamides
  • incorporation of the additive into one of the monomer components can take place. This monomer component can then with the other reactants in the usual way a
  • plastic matrix material liquid Depending on the formulation of the plastic matrix material liquid, semi-liquid and solid formulation ingredients or monomers and optionally required additives such as polymerization initiators, stabilizers (such as UV absorbers, heat stabilizers), optical brighteners, Anstistatika, plasticizers, mold release agents, lubricants, dispersing aids, antistatic agents but also Fillers and reinforcing agents or impact modifiers, etc. in customary devices and equipment such as reactors, stirred tanks, mixers, roll mills, extruders, etc. blended and homogenized, optionally shaped and then cured.
  • additives such as polymerization initiators, stabilizers (such as UV absorbers, heat stabilizers), optical brighteners, Anstistatika, plasticizers, mold release agents, lubricants, dispersing aids, antistatic agents but also Fillers and reinforcing agents or impact modifiers, etc. in customary devices and equipment such as reactors, stirred tanks, mixers, roll mills, extruders, etc. blended
  • Metal oxides are introduced at the appropriate time in the material and incorporated homogeneously. Particularly preferred is the incorporation of the nanoscale metal oxides in the form of a concentrated masterbatch with the same or a compatible plastic material.
  • Plastic moldings and semi-finished products are obtainable by injection molding or extruding from molding materials or by casting from the monomers and / or prepolymers.
  • the polymerization is carried out by methods known to the person skilled in the art, for example by adding one or more polymerization initiators and inducing the polymerization by heating or irradiation.
  • an annealing step can follow the polymerization.
  • the internal laser engraving can be carried out on a commercially available laser marking device, for example from Cerion (Cerion X2, compact, green 532 nm) with a writing speed of 300 to 1000 points / s, a pulse frequency of 3 kHz and a pulse energy of 1 to 2 mJ ,
  • Cerion Cerion X2, compact, green 532 nm
  • the shaped bodies to be engraved are placed in the device and, after irradiation with a focused laser beam, obtain white to dark gray image structures with sharp contours and high contrast.
  • the required settings can be determined in individual cases without further ado.
  • laser crystals for example, the following materials may also be used:
  • Yb YAG (wavelength 1030 nm, 1st harmonic: 515 nm, 2nd harmonic: 343 nm)
  • Nd YAG and Nd: Ce: Tb: YAG (wavelength 1064 nm, 1st harmonic: 532 nm, 2nd harmonic: 355 nm)
  • diode lasers emitting at wavelengths of 808, 940 and 980 nm can also be used.
  • Plastic moldings with three-dimensional image structures produced under the surface by internal laser engraving be used.
  • artistic objects can be realized.
  • the transparent polymers can also be colored. It makes sense to use colors that match the laser light do not absorb.
  • the coloring can be transparent, translucent but also covered.
  • 90g PMMA molding compound PLEXIGLAS® 7N are melted on the preheated two-roll mill.
  • the roll temperature is on the front roller 166 0 C and G on the rear roller 148 0 C.
  • Another 90 PMMA molding composition PLEXIGLAS 7N be premixed with 20g Nano®ITO IT-05 C5000 and loaded with about 5g of stearic acid on the rollers.
  • the rear roller is rotated a little faster, creating a friction.
  • the rolled sheet is pulled off the roll 10 times, folded and returned to the roll. Then you pull the roller skin from the roller, allowed to cool and crushed. 2.
  • dispersing agent eg PLEX® 8684 F from DEGUSSA AG / Röhm
  • the bottle is closed and rolled on a roll bar for 50 hours.
  • the polymerization mixture is stirred for 30 min, allowed to stand for 10 min, filled into the polymerization and then immediately placed in a water bath.
  • Polymerization in a polymerization chamber From two 6mm thick float glass panes, a spacer cord and some metal clips, a polymerization chamber size of 10 x 200 x 200 mm size is built. The polymerization is set up vertically, allowed to run slowly the polymerization mixture and sealed the chamber. The filled polymerisation is horizontally inserted into the to 5O 0 C heated water bath at 45 and as long are allowed to be polymerized to the polymerization mixture into a solid mass. After removal of the clamps and the spacer cord, the polymerization chamber is 4h end polymerized in a pre-heated to 115 0 C tempering, then allowed to cool in a tempering and removed from the mold.
  • Visible light transmission is 90% and Haze 1%.
  • the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm power level 3, duration 4 min).
  • the procedure is analogous to the procedure of Example 1. Only the process steps 3 and 4 are carried out. On the production of a rolled sheet can be omitted. The appropriate amount of stock solution from step 3 can be replaced by an appropriate amount of MMA / PMMA syrup.
  • Visible light transmission is 90% and Haze 1%.
  • the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 3, duration 4 min).
  • Trogamid® CX 7323 a commercial product of Degussa AG, Business Unit High Performance Polymers, Mari, is coated with nano-scale indium tin oxide Nano® IT0 05-C5000 from Nanogate in a concentration of 0.01 wt.% On a Berstorff ZE 2533 D extruder 300 0 C compounded and granulated. From the granules plates were produced by injection molding with the dimensions 10 x 100 x 100 mm.
  • the light transmission in the visible range is 90% and the Haze 1.5%.
  • the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 4, duration 1 min).
  • the light transmission in the visible range is 90% and the Haze 1.5%.
  • the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 4, duration 1 min).
  • Example 1 A clear line pattern was produced in the polymer material doped with ITO.
  • Figure 2 shows the result with the undoped polymer material from Example 2. A line structure is difficult to detect. The differences in the
  • Figure 3 shows the result with the material from example 1. With the doped material every single point in the letter is clearly visible. All points are separated. A confluence of dots due to uncontrolled cracking is not observed.
  • Figure 4 shows the result with the undoped polymer material from Example 2.
  • the letter "a” is traversed by cracks and the edge appears very blurred.
  • lead crystal glass which is commonly used for the production of art objects by laser engraving, the superiority of the imaging accuracy of doped PMMA in laser engraving is clearly visible.
  • Figure 5 material of Example 1
  • Figure 6 shows the result of the interior engraving in lead crystal glass (same point cloud file as in Figure 5).
  • the outstanding imaging accuracy of the doped PMMA is also observed in the third dimension.
  • Figure 7 shows the side view of the letter "S" from Figure 5 (material from Example 1). A line pattern of approximately 10 lines that are completely separated from each other can be observed.
  • Figure 8 shows the same image structure in the lead crystal block. The approximately 10 lines are much wider and more offset than the lines in Figure 7.

Abstract

Die vorliegende Erfindung betrifft Kunststoffformkörper mit im Inneren durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen. Die Kunststoffformkörper bestehen aus Kunststoffmaterialien, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, wobei sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist. Die Kunststoffmaterialien, aus denen die Formkörper hergestellt sind, enthaltenen insbesondere Metalloxide mit Partikelgröße von 5 bis 100 nm bei einem Gehalt von 0,0001 bis 0,1 Gew.-%. Typische Metalloxide sind nanoskaliges Indium-Zinnoxid oder Antimon-Zinnoxid.

Description

Kunststoffformkörper mit durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen
Beschreibung
Die Erfindung betrifft Kunststoffformkörper mit im Inneren durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen, wobei die Kunststoffformkörper aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, und sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist.
Das Einbringen optischer Informationen in Kunststoffmaterialien durch Laserstrahlung ist an sich bekannt. Man unterscheidet hierbei die Lasermarkierung und die Laser-Innengravur.
Die Kennzeichnung von Kunststoffen durch Lasermarkierung wirkt an der Objektoberfläche beziehungsweise im oberflächennahen Bereich. Entscheidend ist hierbei die Absorption der Laserenergie im Kunststoffmaterial durch direkte Wechselwirkung mit dem Polymer oder mit einem dem Kunststoffmaterial zugesetzten Additiv, wie etwa einem organischer Farbstoff oder einem anorganischen Pigment, das die Laserstrahlung absobiert. In jedem Fall wird durch Absorption der Laserenergie eine chemische Materialveränderung und damit eine lokale sichtbare Verfärbung des Kunststoffes bewirkt.
Die Lasermarkierbarkeit ist abhängig von dem wellenlängenspezifischen Absorptionsverhalten der
Kunststoffmaterialien bzw. der diesen zugrunde liegenden Polymere, von dem wellenlängenspezifischen Absorptionsverhalten an etwaigen lasersensitiven Zusätzen sowie von Wellenlänge und Strahlungsleistung der einzusetzenden Laserstrahlung. Neben CO2- und Excimer- Lasern kommen in dieser Technik vermehrt Nd:YAG-Laser (Neodym-dotierte Yttrium-Aluminium-Garnet-Laser) mit den charakteristischen Wellenlängen 1064 nm und 532 nm zum Einsatz .
Lasermarkierbare Kunststoffmaterialien, die lasersensitive Zusätze in Form von Farbstoffen und/oder Pigmenten enthalten, weisen generell eine mehr oder weniger ausgeprägte Färbung und/oder Intransparenz auf. Oft erfolgt die Ausrüstung der als laserabsorbierend einzustellenden Formmassen durch das Einbringen von Ruß.
Hochtransparente Kunststoffmaterialien, die durch einen Zusatz an nanoskaligen laserabsorbierenden Metalloxiden lasermarkierbar gemacht werden können, sind in dem deutschen Gebrauchsmuster 20 2004 003362.3 und in der nicht vorveröffentlichten deutschen Patentanmeldung 10 2004 010504.9 beschrieben.
Zur Technologie der Innengravur von für Laserstrahlung transparenten Gläsern und Kunststoffen durch Laserstrahlen seien beispielhaft die Schriften DE 44 07 547 und US 5,206,496 genannt.
Im Gegensatz zur Lasermarkierung hat die Laser-Innengravur in beliebiger Tiefe des Materials zu wirken. Dies setzt voraus, daß das Material im wesentlichen transparent für die eingestrahlte Laserstrahlung ist, da ansonsten diese bereits im Oberflächenbereich absorbiert würde.
Bei der Fokussierung eines Laserstrahls genügend hoher Leistungsdichte in das Innere des für das Laserlicht an sich transparenten Materials kommt es auf Grund optischer Effekte zu einer begrenzten Entwicklung von Wärmeenergie im Laserfokus . Diese Wärmeentwicklung hat eine lokal eng begrenzte Mikrorissbildung im Material zur Folge. Derartige Mikrorisse weisen einen Punktdurchmesser von 25 - 40 μm auf. Bei im sichtbaren Licht transparenten Gläsern und Kunststoffen erscheinen die Mikrorisse wegen der Streuung des Tageslichtes an den Risskanten als helle Punkte.
Durch die Ablenkung der Laserstrahlung über Spiegel und die Bewegung des Werkstückes sowie durch eine Synchronisation zwischen dem Bewegungsablauf und den Laserpulsen lassen sich im Werkstück entsprechende Strukturen aus einzelnen Mikrorissen zusammensetzen.
Die Pulsfolgefrequenz der typischerweise hierbei eingesetzten Laser ermöglicht die Erzeugung von Strukturen mit bis zu etwa 1000 Punkten in der Minute.
Ausgangspunkt ist eine 3D-Darstellung des späteren Motivs in einem CAD-Programm. Die Oberfläche oder die gesamte Struktur des Modells wird rechnerisch als Punktwolke aufgelöst, deren Einzelpunkte durch den Laserstrahl im Glas oder Kunststoff als Mikrorisse umgesetzt werden. Je dichter die Punktwolke ist, durch die das Objekt dargestellt wird, umso genauer und sauberer wird das Modell abgebildet.
Bei der Laser-Innengravur von Kunststoffen mit Laserlicht, für das der Kunststoff eigentlich transparent ist, wird durch entsprechende Fokussierung des Laserstrahls eine Markierung im Inneren des Materials in Form von Mikrorissen erzeugt. Dabei kann es zur unkontrollierten Rissbildung und Rissausbreitung kommen. Dies stellt eine Schwächung des Materials dar. Daher sollte versucht werden, diese Schwächung so gering wie möglich zu halten.
In Glas kann diese Rissbildung sogar zu einer nachträglichen Zerstörung des Formkörpers führen, die zum Teil erst Tage oder sogar Wochen nach der Laser-Innengravur auftritt . In Kunststoffen kann neben der Rissbildung zusätzlich eine lokale Zerstörung des Materials und Karbonisierung auftreten, welche bei der Innengravur von im sichtbaren Licht transparenten Materialien wegen der dunklen Verfärbung unerwünscht ist.
Ein weiteres Problem der Laser-Innengravur mit Methoden und Materialien nach dem Stand der Technik ist die ungenügende Abbildegenauigkeit bei detailreichen, filigranen Mustern, sowohl in Glas als auch in Kunststoffen. Theoretisch kann man die Abbildegenauigkeit durch Erhöhung der
Punktwolkendichte verbessern. In der Praxis laufen die Punkte aber ab einer gewissen Punktdichte durch die unkontrollierte Rissausbreitung ineinander und werden nicht mehr aufgelöst, so dass die Abbildegenauigkeit sogar leidet.
In US 5,761,111 wird ein Verfahren zur rissfreien Laser- Innengravur durch Laserpulse im Femtosekundenbereich beschrieben. Allerdings sind hierfür geeignete Laser für den technischen Einsatz noch nicht verfügbar und wären zudem noch sehr teuer.
In US 6,537,479 wird das Problem der Rissbildung dadurch umgangen, daß die Lasermarkierung im plastifizierten Zustand des Materials durchgeführt und das Objekt entweder in diesem Zustand belassen (umhüllt von einer festen Schutzhülle) oder anschließend aushärtet wird. Diese Methode ist sehr aufwändig und zudem im Falle der nachfolgenden Aushärtung auf Materialien beschränkt, die beim Aushärten keinen Schrumpf zeigen, da sonst die filigrane Geometrie der Lasergravur wieder zerstört würde. Auf die in der technischen Anwendung gebräuchlichen
Polymermaterialien ist dieses Verfahren nur bedingt und dann mit erheblichem Zusatzaufwand anwendbar.
Der vorliegenden Erfindung lag daher die Aufgabenstellung zugrunde, Kunststoffmaterialien aufzufinden und bereitzustellen, in denen mittels Laser-Innengravur unter Vermeidung unkontrollierter Rissbildung und Rissausbreitung zwei- oder dreidimensionale Bildstrukturen mit deutlich verbesserter Abbildegenauigkeit erzeugt werden können. Hierbei sollten die typischerweise im technischen Einsatz befindlichen, kommerziell erhältlichen Laserquellen eingesetzt werden können.
Überraschenderweise wurde gefunden, daß im Inneren von Kunststoffformkörpern, die aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, mittels Laser- Innengravur dreidimensionale Bildstrukturen von höchster Feinheit und Detailtreue erzeugt werden können, wenn man mit Laserlicht für das sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid transparent ist, bildgebend bestrahlt .
Gegenstand der Erfindung sind somit Kunststoffformkörper mit im Inneren durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen, die dadurch gekennzeichnet sind, daß die Kunststoffformkörper aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, wobei sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Erzeugung von zwei- oder dreidimensionalen Bildstrukturen im Inneren von Kunststoffformkörpern durch Laser- Innengravur, bei dem man Formkörper, die aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, mit Laserlicht für das sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid transparent ist, bildgebend bestrahlt. Unter transparenten Kunststoffmaterialien sollen solche verstanden werden, die in einem Wellenlängenbereich von 300 bis 1300 nm im wesentlichen transparent sind. Bevorzugt ist zum einen der sichtbare Wellenlängenbreich von 400 bis 800 nm. Entsprechende Materialien eignen sich insbesondere für die Einbringung visuell wahrnehmbarer Strukturen durch Laser-Innengravur, etwa in Form von Kunstobjekten. Bevorzugt sind zum anderen Kunststoffmaterialien mit Lasertransparenz im Wellenlängenbereich von 800 bis 1300 nm. Entsprechende Materialien, die auch in ihrer visuellen Erscheinung farbig und/oder opak bzw. gänzlich undurchsichtig erscheinen können, eignen sich zur Einbringung von visuell nicht wahrnehmbaren Strukturen durch Laser-Innengravur, etwa als Bar-Codes oder Data Matrix Codes für zum Beispiel Sicherungszwecke.
Die Transmission des Kunststoffmaterials im ausgewählten Wellenlängenbereich von typischerweise im technischen Einsatz befindlichen, kommerziell erhältlichen Laserquellen sollte größer 80%, vorzugsweise größer 85% und besonders bevorzugt größer 90% sein. Der Haze im Wellenlängenbereich von 400 bis 800 nm sollte kleiner 5, vorzugsweise kleiner 2 und insbesondere kleiner 1% sein. Die Bestimmung von Transmission und Haze erfolgen nach ASTM D 1003.
Unter nanoskaligen Metalloxiden sind alle anorganisch- metallischen Oxide wie Metalloxide, Metallmischoxide, komplexe Oxide und Gemische hiervon zu verstehen, die im charakteristischen Wellenlängenbereich des einzusetzenden Lasers keine oder nur eine geringe Absorption hervorrufen.
Insgesamt muss streng darauf geachtet werden, das sowohl der transparente Kunststofformkörper als auch das nanoskalige Metalloxid für das einzusetzende Laserlicht transparent sind.
Unter nanoskalig ist zu verstehen, daß die größte Dimension der diskreten Partikel dieser lasersensitiven Metalloxide kleiner als 1 μm, also im Nanometerbereich ist. Dabei bezieht sich diese Größendefinition auf alle möglichen Partikelmorphologien wie Primärpartikel sowie etwaige Aggregate und Agglomerate.
Bevorzugt beträgt die Partikelgröße der lasersensitiven
Metalloxide 1 bis 500 nm und insbesondere 5 bis 100 nm. Bei Wahl der Partikelgröße unter 100 nm sind die Metalloxidpartikel per se nicht mehr sichtbar und beeinträchtigen die Transparenz der Kunststoffmatrix nicht.
In dem Kunststoffmaterial beträgt der Gehalt an anorganischen Nanopartikeln zweckmäßigerweise 0,0001 bis 0,1 Gew.%, vorzugsweise 0,0005 bis 0,05 Gew.% und besonders bevorzugt 0,001 bis 0,01 Gew.%, bezogen auf das Kunststoffmaterial. In diesem Konzentrationsbereich wird in aller Regel und für alle in Frage kommenden
Kunststoffmaterialien eine kontrollierte Rissausbildung und damit eine sichtbare Tiefenmarkierung mit hoher Abbildegenauigkeit bewirkt.
Bei geeigneter Wahl von Partikelgröße und Konzentration in den angegebenen Bereichen ist auch bei im sichtbaren
Wellenlängenbereich hochtransparenten Matrixmaterialien eine Beeinträchtigung der intrinsischen Transparenz ausgeschlossen. So ist es zweckmäßig für Nanopartikel mit Partikelgößen über 100 nm den unteren Konzentrationsbereich zu wählen, während bei Partikelgößen unter 100 nm auch höhere Konzentrationen gewählt werden können.
Als anorganische Nanopartikel zur Herstellung von lasertiefenmarkierenbaren Kunststoffmaterialien kommen vorzugsweise dotiertes Indiumoxid, dotiertes Zinnoxid, dotiertes Zinkoxid, dotiertes Aluminiumoxid, dotiertes Antimonoxid und entsprechende Mischoxide in Betracht.
Auch bei opaken Kunststoffmaterialien, die im Wellenbereich zwischen 800 und 1300 nm bildgebend bestrahlt werden sollen, werden sinnvollerweise Nanopartikel mit Partikelgrössen von kleiner 100 nm eingesetzt, da so eine homogene Verteilung der Metalloxide in der Polymermatrix erreicht werden kann, die für eine kontrollierte Rissausbildung entscheidend ist.
Besonders geeignete anorganische Nanopartikel sind Indium- Zinnoxid (ITO) oder Antimon-Zinnoxid (ATO) sowie dotierte Indium- bzw. Antimon-Zinnoxide. Besonders bevorzugt ist Indium-Zinnoxid und hiervon wiederum das durch einen partiellen Reduktionsprozess erhältliche "blaue" Indium- Zinnoxid. Das nichtreduzierte "gelbe" Indium-Zinnoxid kann bei höheren Konzentrationen und/oder Partikelgrößen im oberen Bereich einen visuell wahrnehmbaren leicht gelblichen Farbton des Kunststoffmaterials bewirken, während das "blaue" Indium-Zinnoxid zu keiner wahrnehmbaren Farbveränderung führt. Allenfalls wird eine schwache Bläuung beobachtet, die vom Betrachter aber eher als hochwertig angesehen wird, als ein Gelbstich.
Die erfindungsgemäß einzusetzenden anorganischen Nanopartikel sind an sich bekannt und auch in nanoskaliger Form, also mit Partikelgrößen unter lμm, und insbesondere im hier bevorzugten Größenbereich kommerziell verfügbar, häufig in Form von Dispersionen. In ihrer Lieferform sind die anorganischen Nanopartikel in der Regel agglomeriert. Die Agglomerate, deren Teilchengröße zwischen 1 μm bis zu mehreren mm beträgt, lassen sich mittels starker Scherung zu nanoskaligen Partikeln zerlegen. Die Bestimmung des Agglomerationagrades erfolgt im Sinne der DIN 53206 (von August 1972) .
Nanoskalige Metalloxide können beispielsweise durch pyrolytische Verfahren hergestellt werden. Solche Verfahren sind beispielsweise in EP 1 142 830 A, EP 1 270 511 A oder DE 103 11 645 beschrieben. Weiterhin können anorganische Nanopartikel durch Fällungsverfahren hergestellt werden, wie etwa in DE 100 22 037 beschrieben. Die nanoskaligen Metalloxide können in praktisch alle KunststoffSysteme eingearbeitet werden, um diesen Lasermarkierbarkeit zu verleihen. Typisch sind Kunststoffmaterialien bei denen die Kunststoffmatrix auf PoIy (meth) acrylat, Polyamid, Polyurethan, Polyolefinen, Styrolpolymeren und Styrolcopolymeren, Polycarbonat, Silikonen, Polyimiden, Polysulfon, Polyethersulfon, Polyketone, Polyetherketone, PEEK, Polyphenylensulfid, Polyester (wie PET, PEN, PBT) , Polymethylenoxid, Polyurethan, Polyolefinen oder fluorhaltigen Polymeren (wie PVDF, EFEP, PTFE) basiert. Ebenfalls ist eine Einarbeitung in Blends möglich, die als Komponenten oben genannte Kunststoffe beinhalten, oder in von diesen Klassen abgeleitete Polymere, die durch nachträgliche Reaktionen verändert wurden. Diese Materialien sind in großer Vielfalt bekannt und kommerziell erhältlich. Der erfindungsgemäße Vorteil der anorganischen Nanopartikel kommt insbesondere bei hochtransparenten KunststoffSystemen wie Polycarbonaten, transparenten Polyamiden (beispielsweise Grilamid® TR55, TR90, Trogamid® T5000, CX7323) ,
Polyethylenterephthalat, Polysulfon, Polyethersulfon, Cycloolefincopolymeren (Topas®, Zeonex®) ,
Polymethylmethacrylat und deren Copolymeren zum tragen, da sie die Transparenz des Materials nicht beeinflussen. Des weiteren sind transparentes Polystyrol und Polypropylen zu nennen, weiterhin alle teilkristallinen Kunststoffe, die durch den Einsatz von Nukleierungsmitteln oder speziellen Verarbeitungsbedingungen zu transparenten Formkörpern verarbeitet werden können.
Die erfindungsgemäßen transparenten Polyamide werden allgemein hergestellt aus den Bausteinen: verzweigte und unverzweigte aliphatische (6 C- bis 14 C-Atome) , alkylsubstituierte oder unsubstituierten cycloaliphatische (14 C- bis 22 C-Atome), araliphatische Diamine (C14 - C22) und aliphatische und cycloaliphatische Dicarbonsäuren (C6 bis C44); letztere können teilweise durch aromatische Dicarbonsäuren ersetzt werden. Insbesondere können sich die transparenten Polyamide zusätzlich aus Monomerbausteinen mit 6 C-Atomen, 10 C-Atomen, 11 C-Atomen beziehungsweise 12 C-Atomen zusammensetzen, die sich von Lactamen oder ω- Aminocarbonsäuren ableiten.
Bevorzugt, aber nicht ausschließlich, werden die erfindungsgemäßen transparenten Polyamide aus den folgenden Bausteinen hergestellt: Laurinlactam oder ω- Aminododekansäure, Azelainsäure, Sebacinsäure, Dodecandisäure, Fettsäuren (C18 - C36; z.B. unter dem
Handelsnamen Pripol®) , Cyclohexandicarbonsäuren, partieller oder teilweiser Ersatz dieser aliphatischen Säuren durch Isoterephthalsäure, Terephthalsäure, Naphthalindicarbonsäure, Tributylisophthalsäure . Desweiteren finden Verwendung Dekandiamin, Dodecandiamin, Nonandiamin, Hexamethylendiamine verzweigt, unverzweigt oder substituiert, sowie als Vertreter aus der Klasse der alkylsubstituierten/unsubstituierten cycloaliphatisehen Diamine Bis- (4-aminocyclohexyl) -methan, Bis- (3-methyl-4- aminocyclohexyl) -methan, Bis- (4-aminocyclohexyl) -propan, Bis- (aminoeyclohexan) , Bis- (aminomethyl) -cyclohexan, Isophorondiamin oder auch substituierte Pentamethylendiamine .
Beispiele für entsprechende transparente Polyamide sind etwa in EP 0 725 100 und EP 0 725 101 beschrieben.
Besonders bevorzugt sind hochtransparente KunststoffSysteme auf Basis von Polymethylmethacrylat, Bisphenol-A- Polycarbonat, Polyamid und sogenannter
Cycloolefincopolymere aus Norbornen und OC-Olefinen die mit Hilfe der erfindungsgemäßen anorganischen Nanopartikel ohne Beeinträchtigung der Transparenz des Materials lasertiefenmarkierbar gemacht werden können.
Selbstverständlich können die nanoskaligen Metalloxide auch in eingefärbten hochtransparenten Systemen verwendet werden. Hier ist insbesondere vorteilhaft, daß die neutrale Eigenfarbe dieser Additive eine freie Farbwahl ermöglicht.
Die erfindungsgemäß durch Laser-Innengravur strukturierbaren transparenten Kunststoffmaterialien können als Platten, Formkörper, Halbzeuge oder Formmassen vorliegen. Dabei kann auch nur ein Teil der Platten, Formkörper, Halbzeuge und Formmassen laser-innengravierbar eingestellt sein.
Die Herstellung der laser-innengravierbaren Kunststoffmaterialien erfolgt in an sich bekannter Weise nach in der Kunststoffherstellung und Verarbeitung gängigen und üblichen Techniken und Verfahren. Dabei ist es möglich, die nanopartikulären Additive vor oder während der Polymerisation oder Polykondensation in einzelne Edukte oder Eduktgemische einzutragen oder auch während der Reaktion zuzusetzen, wobei die dem Fachmann bekannten spezifischen Herstellverfahren für die betreffenden Kunststoffe eingesetzt werden. Im Falle von Polykondensaten wie Polyamiden kann beispielsweise eine Einarbeitung des Additives in eine der Monomerkomponenten erfolgen. Diese Monomerkomponente kann dann mit den übrigen Reaktionspartnern in üblicher Weise einer
Polykondensationsreaktion unterworfen werden. Weiter können nach Bildung von Makromolekülen die entstandenen hochmolekularen Zwischen- oder Endprodukte mit den nanopartikulären Additiven versetzt werden, wobei auch in diesem Falle alle dem Fachmann geläufigen Verfahren eingesetzt werden können.
Je nach Rezeptur des Kunststoffmatrixmaterials werden flüssige, halbflüssige und feste Rezepturbestandteile oder Monomere sowie gegebenenfalls erforderliche Additive wie etwa Polymerisationsinitiatoren, Stabilisatoren, (wie UV- Absorber, Wärmestabilisatoren) , optische Aufheller, Anstistatika, Weichmacher, Entformungshilfsmittel, Schmiermittel, Dispergierhilfsmittel, Antistatika aber auch Füll- und Verstärkungsstoffe oder Schlagzähmodifikatoren etc. in dafür üblichen Vorrichtungen und Anlagen wie Reaktoren, Rührkesseln, Mischern, Walzenstühlen, Extrudern etc. gemischt und homogenisiert, gegebenenfalls geformt und danach zur Aushärtung gebracht. Die nanoskaligen
Metalloxide werden hierbei zum geeigneten Zeitpunkt in das Material eingebracht und homogen eingearbeitet. Besonders bevorzugt ist die Einarbeitung der nanoskaligen Metalloxide in Form einer konzentrierten Vormischung (Masterbatch) mit dem gleichen oder einem kompatiblen Kunststoffmaterial.
Es ist vorteilhaft, wenn die Einarbeitung der nanoskaligen Metalloxide in die Kunststoffmatrix unter hoher Scherung in die Kunststoffmatrix erfolgt. Dies kann durch entsprechende Einstellung der Mischer, Walzenstühle, Extruder vorgenommen werden. Hierdurch wird eine etwaige Agglomeration oder
Aggregation der nanoskaligen Metalloxidpartikel zu größeren Einheiten wirksam verhindert; etwa vorhandene größere Partikel werden zerkleinert. Dem Fachmann sind die entsprechenden Techniken und die jeweils zu wählenden Verfahrensparameter geläufig.
Kunststoffformkörper und Halbzeuge sind durch Spritzgießen oder Extrudieren aus Formmassen oder durch Gussverfahren aus den Monomeren und/oder Präpolymeren erhältlich.
Die Polymerisation erfolgt nach dem Fachmann bekannten Verfahren, beispielsweise durch Zusatz eines oder mehrerer Polymerisationsinitiatoren und Induktion der Polymerisation durch Erwärmen oder Bestrahlen. Zur vollständigen Umsetzung des oder der Monomere kann sich ein Temperschritt an die Polymerisation anschließen.
Nach Herstellung von Kunststoffformteilen aus den nanoskalige Metalloxide enthaltenden Kunststoffmaterialien lassen sich diese durch Bestrahlen mit Laserlicht markieren . Das Laser-Innengravieren kann auf einem handelsüblichen Lasermarkierungsgerät, z.B. der Firma Cerion (Cerion X2, compact, grün 532 nm) mit einer Schreibgeschwindigkeit von 300 bis 1000 Punkten/s, einer Pulsfrequenz von 3 kHz und einer Pulsenergie von 1 bis 2 mJ durchgeführt werden. Man legt die zu gravierenden Formkörper in das Gerät ein und erhält nach Bestrahlung mit fokussiertem Laserstrahl weiße bis dunkelgraue Bildstrukturen mit scharfen Konturen und hohem Kontrast. Die erforderlichen Einstellungen können im Einzelfall ohne weiteres ermittelt werden.
Als Laserkristalle können zum Beispiel auch folgende Materialien verwendet werden:
Ti:A12O3 (Wellenlänge einstellbar von 680 bis 1100 nm)
Yb: YAG (Wellenlänge 1030 nm, 1. Oberschwingung: 515 nm, 2. Oberschwingung: 343 nm)
Nd: YAG und Nd: Ce: Tb: YAG (Wellenlänge 1064 nm, 1. Oberschwingung: 532 nm, 2. Oberschwingung: 355 nm)
Ho: Cr: Tm: YAG (Wellenlänge 2097 nm, 1. Oberschwingung: 1048,5 nm, 2. Oberschwingung: 699 nm)
Er: YAG (Wellenlänge 2940 nm, 1. Oberschwingung: 1470 nm, 2. Oberschwingung: 980 nm)
Es können natürlich auch Diodenlaser eingesetzt werden, die bei Wellenlängen von 808, 940 und 980 nm emittieren.
Die transparenten Kunststoffmaterialien können erfindungsgemäß sehr vorteilhaft zur Herstellung von
Kunststoffformkörper mit unter der Oberfläche durch Laser- Innengravur erzeugten dreidimensionalen Bildstrukturen verwendet werden. Neben technischen Anwendungen können insbesondere auch künstlerische Objekte realisiert werden.
Die transparenten Polymere können auch eingefärbt werden. Sinnvollerweise werden Farben verwandt, die das Laserlicht nicht absorbieren. Die Einfärbung kann transparent, transluzent aber auch gedeckt ausgeführt sein.
Besonders interessante Kunstobjekte werden erhalten, wenn fluoreszierende Farbstoffe verwendet werden. Durch Beleuchtung der Kanten derartiger Kunstobjekte können besonders wertvoll erscheinende Kunstobjekte hergestellt werden.
Im folgenden soll die Herstellung der Nanopartikel/ Kunststoffmischungen und die Durchführung der Innengravur durch Lasertiefenmarkierung beispielhaft an
Polymethylmethacrylat- und Polyamidsystemen erläutert werden.
Beispiel 1:
Herstellung eines gegossenen Polymethylmethacrylat-Blockes (PLEXIGLAS® GS) mit 100 ppm Indiumzinnoxid
1. Dispergierung von Indiumzinnoxid Nano®IT0 IT-05 C5000 der Firma Nanogate in PMMA-Formmasse PLEXIGLAS® 7N an einem Zweiwalzenstuhl Polymix 110 L der Fa Schwabenthan:
90g PMMA-Formmasse PLEXIGLAS® 7N werden auf dem vorgeheizten Zweiwalzenstuhl aufgeschmolzen. Die Walzentemperatur beträgt an der vorderen Walze 1660C und an der hinteren Walze 1480C. Weitere 90 g PMMA-Formmasse PLEXIGLAS® 7N werden mit 20g Nano®ITO IT-05 C5000 vorgemischt und mit ca. 5g Stearinsäure auf die Walzen aufgegeben. Die hintere Walze lässt man etwas schneller rotieren und erzeugt dadurch eine Friktion. Innerhalb von 6 Minuten wird das Walzfell 10-mal von der Walze abgezogen, gefaltet und wieder auf die Walze aufgegeben. Anschließend zieht man das Walzfell von der Walze ab, lässt abkühlen und zerkleinert . 2. Herstellung einer Stammlösung mit dem Walzfell:
In eine 11 Weithalsflasche werden eingewogen:
50,0 g 10% iges Walzfell (aus 1.)
87,5 g Dispergiermittel (z. B. PLEX® 8684 F von DEGUSSA AG /Röhm)
750,0 g MMA
750,0 g MMA/PMMA Sirup mit 25% PMMA mit MG von 170000
Zum Lösen des Walzfells und des polymeren Dispergiermittels wird die Flasche verschlossen und 50h auf einer Rollbank gerollt .
3. Herstellung des Polymerisationsansatzes:
Herstellung des Polymerisationsansatzes von 1000g mit 0,01! Nano®ITO IT-05 C5000.
34,50 g Stammlösung
0,80 g Initiator (2,2'- Azobis-(2,4- dimethylvaleronitril)
0,20 g bis 1,0 g Trennmittel (Lecithin)
960,00 g MMA/PMMA Sirup mit 25% PMMA mit MG von 170000
Der Polymerisationsansatz wird 30 Min. gerührt, 10 Min. stehen gelassen, in die Polymerisationskammer eingefüllt und danach sofort in ein Wasserbad eingelegt.
4. Polymerisation in einer Polymerisationskammer Aus zwei 6mm dicken Floatglasscheiben, einer Distanzierschnur und einigen Metallklammern wird eine Polymerisationskammergröße von 10 x 200 x 200 mm Größe gebaut. Die Polymerisationskammer wird senkrecht aufgestellt, der Polymerisationsansatz langsam einlaufen gelassen und die Kammer verschlossen. Die gefüllte Polymerisationskammer wird waagrecht in das auf 45 bis 5O0C aufgeheizte Wasserbad eingelegt und so lange liegen gelassen bis der Polymerisationsansatz zu einer festen Masse polymerisiert ist. Nach Entfernen der Klammern und der Distanzierschnur wird die Polymerisationskammer 4h in einem auf 1150C vorgeheizten Temperschrank endpolymerisiert, anschließend im Temperschrank abkühlen gelassen und aus der Form entnommen.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1 %.
Das Material wurde mit einem frequenzverdoppelten Nd: YAG Laser (Emissionswellenlänge 532 nm Leistungstufe 3, Dauer 4 min) laserinnenmarkiert .
Vergleichsbeispiel 2 :
Herstellung eines undotierten gegossenen Polymethylmethacrylat-Blockes (PLEXIGLAS® GS)
Es wird analog der Vorschrift des Beispiels 1 verfahren. Dabei werden nur die Verfahrenschritte 3. und 4. durchgeführt. Auf die Herstellung eines Walzfelles kann verzichtet werden. Die entsprechende Menge Stammlösung aus Schritt 3. kann durch eine entsprechende Menge MMA/PMMA Sirup ersetzt werden.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1 %. Das Material wurde mit einem frequenzverdoppelten Nd: YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 3, Dauer 4 min) laserinnenmarkiert .
Beispiel 3:
Herstellung eines Polyamid/ITO Compounds
Trogamid® CX 7323, ein Handelsprodukt der Degussa AG, Geschäftsbereich High Performance Polymers, Mari, wird mit nanoskaligem Indiumzinnoxid Nano®IT0 IT-05 C5000 der Firma Nanogate in einer Konzentration von 0,01 Gew.% auf einem Extruder Berstorff ZE 2533 D bei 3000C compoundiert und granuliert. Aus dem Granulat wurden im Spritzgußverfahren Platten mit den Maßen 10 x 100 x 100 mm hergestellt.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1,5 %.
Das Material wurde mit einem frequenzverdoppelten Nd: YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 4, Dauer 1 min) laserinnenmarkiert.
Vergleichsbeispiel 4 :
Herstellung von undotierten Polyamid-Platten
Aus Trogamid® CX 7323, einem Handelsprodukt der Degussa AG, Geschäftsbereich High Performance Polymers, Mari, wurden im Spritzgußverfahren Platten mit den Maßen 10 x 100 x 100 mm hergestellt.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1,5 %. Das Material wurde mit einem frequenzverdoppelten Nd: YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 4, Dauer 1 min) laserinnenmarkiert .
Beispiel 5:
Ergebnisse der Lasertiefenmarkierung an PMMA Compounds
Die folgenden Abbildungen wurden von mit einem frequenzverdoppelten Nd: YAG Laser (Emissionswellenlänge 532 nm) innengravierten Formkörpern hergestellt.
Abbildung 1 zeigt das Ergebnis mit dem Material aus
Beispiel 1. Im mit ITO dotierten Polymermaterial wurde ein klares Linienmuster erzeugt.
Abbildung 2 zeigt das Ergebnis mit dem undotiertem Polymermaterial aus Beispiel 2. Eine Linienstruktur ist nur schwer zu erkennen. Die Unterschiede in der
Abbildungsgenauigkeit sind deutlich zu erkennen.
Auch beim Schreiben von Buchstaben ist eine deutlich bessere Abbildegenauigkeit der dotierten PMMA Proben zu erkennen.
Abbildung 3 zeigt das Ergebnis mit dem Material aus Beispiel 1. Bei dem dotierten Material ist jeder einzelne Punkt im Buchstaben deutlich zu erkennen. Sämtliche Punkte sind voneinander getrennt. Ein Ineinanderfließen der Punkte durch unkontrollierte Rissbildung wird nicht beobachtet.
Abbildung 4 zeigt das Ergebnis mit dem undotiertem Polymermaterial aus Beispiel 2. Hier ist der Buchstabe "a" von Rissen durchzogen und der Rand erscheint sehr unscharf. Auch im Vergleich zu Bleikristallglas, welches üblicherweise für die Herstellung von Kunstobjekten durch Laserinnengravur verwendet wird ist die Überlegenheit der Abbildegenauigkeit von dotiertem PMMA bei der Laserinnengravur deutlich sichtbar.
Während bei Abbildung 5 (Material aus Beispiel 1) das Punktwolkenmuster mit hoher Abbildegenauigkeit zu erkennen ist, wird im Bleikristallglas ein sehr unscharfes Linienmuster erhalten. Abbildung 6 zeigt das Ergebnis der Innengravur in Bleikristallglas (gleiche Punktwolkendatei wie bei Abbildung 5) .
Die herausragende Abbildegenauigkeit des dotierten PMMA wird auch in der 3. Dimension beobachtet.
Abbildung 7 zeigt die Seitenansicht des Buchstaben "S" aus Abbildung 5 (Material aus Beispiel 1) . Ein Linienmuster aus ca. 10 Linien, die voneinander vollständig getrennt sind kann beobachtet werden.
Abbildung 8 zeigt die gleiche Bildstruktur in dem Bleikristallblock. Die ca. 10 Linien sind deutlich breiter und stärker versetzt, als die Linien in Abbildung 7.

Claims

Patentansprüche
1. Kunststoffformkörper mit im Inneren durch Laser- Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen, dadurch gekennzeichnet, daß die Kunststoffformkörper aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, wobei sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist.
2. Kunststoffformkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Partikelgröße der in dem Kunststoffmaterial enthaltenen Metalloxide 5 bis 100 nm beträgt .
3. Kunststoffformkörper nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß der Gehalt an Metalloxiden 0,0001 bis 0,1 Gew.-%, vorzugsweise 0,001 bis 0,01 Gew.- %, bezogen auf das Kunststoffmaterial, beträgt.
4. Kunststoffformkörper nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß in dem Kunststoffmaterial als nanoskaliges Metalloxid dotiertes Indiumoxid, dotiertes Zinnoxid, dotiertes Zinkoxid, dotiertes Aluminiumoxid oder dotiertes Antimonoxid enthalten ist.
5. Kunststoffformkörper nach Anspruch 4, dadurch gekennzeichnet, daß in dem Kunststoffmaterial als nanoskaliges Metalloxid Indium-Zinnoxid, Antimon- Zinnoxid oder dotierte Indium- oder Antimon-Zinnoxide enthalten sind.
6. Kunststoffformkörper nach Anspruch 5, dadurch gekennzeichnet, daß in dem Kunststoffmaterial als nanoskaliges Metalloxid blaues Indium-Zinnoxid enthalten ist.
7. Kunststoffformkörper nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Kunststoffmatrix auf PoIy (meth) acrylat, Polyamid, Polyurethan, Polyolefinen, Styrolpolymeren und Styrolcopolymeren, Polycarbonat, Silikonen, Polyimiden, Polysulfon, Polyethersulfon, Polyketone, Polyetherketone, Polyphenylensulfid, Polyester, Polyethylenoxid, Polyurethan, Polyolefinen und chlor- oder fluorhaltigen Polymeren basiert.
8. Kunststoffformkörper nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Kunststoffmatrix auf Polymethylmethacrylat basiert.
9. Kunststoffformkörper nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Kunststoffmatrix auf Bisphenol-A-Polycarbonat basiert .
10. Kunststoffformkörper nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Kunststoffmatrix auf Polyamid basiert.
11. Kunststoffformkörper nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Kunststoffmatrix auf Cycloolefincopolymeren aus Norbornen und 0C-Olefinen basiert .
12. Kunststofformkörper nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, das der Kunststofformkörper für Laserlicht der Wellenlänge von 300 bis 1300 nm transparent ist.
13. Kunststofformkörper nach Anspruch 12, dadurch gekennzeichnet, das der Kunststofformkörper für Laserlicht der Wellenlänge von 400 bis 800 nm transparent ist.
14. Kunststofformkörper nach Anspruch 12, dadurch gekennzeichnet, das der Kunststofformkörper für Laserlicht der Wellenlänge von 800 bis 1300 nm transparent ist.
15. Verfahren zur Erzeugung von zwei- oder dreidimensionalen Bildstrukturen im Inneren von Kunststoffformkörpern durch Laser-Innengravur, dadurch gekennzeichnet, daß man Formkörper, die aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, mit Laserlicht für das sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid transparent ist, bildgebend bestrahlt.
PCT/EP2006/060035 2005-03-09 2006-02-16 Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen WO2006094881A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502006000883T DE502006000883D1 (de) 2005-03-09 2006-02-16 Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen
EP06743190A EP1856199B1 (de) 2005-03-09 2006-02-16 Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005011180A DE102005011180A1 (de) 2005-03-09 2005-03-09 Kunststoffformkörper mit durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen
DE102005011180.7 2005-03-09

Publications (1)

Publication Number Publication Date
WO2006094881A1 true WO2006094881A1 (de) 2006-09-14

Family

ID=36216945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060035 WO2006094881A1 (de) 2005-03-09 2006-02-16 Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen

Country Status (6)

Country Link
EP (1) EP1856199B1 (de)
AT (1) ATE397639T1 (de)
DE (2) DE102005011180A1 (de)
ES (1) ES2308743T3 (de)
TW (1) TWI383015B (de)
WO (1) WO2006094881A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023432A1 (de) 2009-08-27 2011-03-03 Evonik Röhm Gmbh Schild für kfz-kennzeichen umfassend mindestens eine transluzente, retroreflektierende schicht
DE102011084269A1 (de) 2011-10-11 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von Polymer-Nanopartikel-Compounds mittels einerNanopartikel-Dispersion

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062269A1 (de) 2006-12-22 2008-06-26 Eckart Gmbh & Co. Kg Verwendung von sphärischen Metallpartikeln als Lasermarkierungs- oder Laserschweißbarkeitsmittel sowie lasermarkierbarer und/oder laserschweißbarer Kunststoff
ATE447476T1 (de) 2007-11-30 2009-11-15 Eckart Gmbh Verwendung einer mischung mit sphärischen metallpartikeln und metallflakes als lasermarkierungs- oder laserschweissbarkeitsmittel sowie lasermarkierbarer und/oder laserschweissbarer kunststoff
DE102008006955B4 (de) * 2008-01-31 2010-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Herstellung und Applikationen multifunktionaler optischer Module zur photovoltaischen Stromerzeugung und für Beleuchtungszwecke
ES2377695B1 (es) * 2009-07-14 2013-02-15 Bsh Electrodomésticos España, S.A. Placa de cubierta de aparato doméstico con un grabado interior por láser.
DE102009047164A1 (de) 2009-11-26 2011-12-15 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensor zur Bestimmung einer Messgröße in einem Messmedium
DE102011016440A1 (de) * 2011-04-08 2012-10-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kennzeichenvorrichtung für ein Fahrzeug und Verfahren zur Herstellung derselben
DE102011016435A1 (de) * 2011-04-08 2012-10-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kennzeichenvorrichtung für ein Fahrzeug und Verfahren zur Herstellung derselben
DE102011016416A1 (de) * 2011-04-08 2012-10-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kennzeichnungsvorrichtung für ein Fahrzeug und Verfahren zur Herstellung derselben
DE202011100305U1 (de) 2011-05-05 2011-10-20 Cero Gmbh Laserbearbeitungseinrichtung
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
DE102014016286A1 (de) 2014-11-05 2016-05-12 Merck Patent Gmbh Lasermarkierbare und laserschweißbare polymere Materialien
ES2712063T3 (es) * 2015-02-10 2019-05-09 Jt Int Sa Procedimiento y aparato para marcar un embalaje de artículos y el embalaje resultante
EP3862209B1 (de) * 2020-02-10 2023-06-07 Smart Coloring GmbH Anzeigevorrichtung mit funktionselementen und verfahren zur herstellung einer solchen anzeigevorrichtung
EP3862210B1 (de) * 2020-02-10 2023-06-07 Smart Coloring GmbH Anzeigevorrichtung mit funktionselementen und verfahren zur herstellung einer solchen anzeigevorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159529A2 (de) * 1984-03-30 1985-10-30 Bayer Ag Kunststoffverbundteil, welches eine Aenderung des Materials enthält
JPH111065A (ja) * 1997-06-12 1999-01-06 Somar Corp レーザー光の照射により黒色系に発色するレーザーマーキング材料及びそれを含む樹脂組成物
WO2005047009A1 (en) * 2003-11-07 2005-05-26 Engelhard Corporation Nanometer size antimony tin oxide (ato) particles comprising laser marking additive
WO2005084955A1 (de) * 2004-03-04 2005-09-15 Degussa Ag Durch farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweissbare kunststoffmaterialien

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4407547C2 (de) * 1994-03-07 1996-05-30 Swarovski & Co Körper aus transparentem Material mit einer Markierung und Verfahren zu dessen Herstellung
US6664501B1 (en) * 2002-06-13 2003-12-16 Igor Troitski Method for creating laser-induced color images within three-dimensional transparent media
US6950157B2 (en) * 2003-06-05 2005-09-27 Eastman Kodak Company Reflective cholesteric liquid crystal display with complementary light-absorbing layer
DE202004003362U1 (de) * 2004-03-04 2004-05-13 Degussa Ag Hochtransparente lasermarkierbare und laserschweißbare Kunststoffmaterialien

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159529A2 (de) * 1984-03-30 1985-10-30 Bayer Ag Kunststoffverbundteil, welches eine Aenderung des Materials enthält
JPH111065A (ja) * 1997-06-12 1999-01-06 Somar Corp レーザー光の照射により黒色系に発色するレーザーマーキング材料及びそれを含む樹脂組成物
WO2005047009A1 (en) * 2003-11-07 2005-05-26 Engelhard Corporation Nanometer size antimony tin oxide (ato) particles comprising laser marking additive
WO2005084955A1 (de) * 2004-03-04 2005-09-15 Degussa Ag Durch farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweissbare kunststoffmaterialien

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04 30 April 1999 (1999-04-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023432A1 (de) 2009-08-27 2011-03-03 Evonik Röhm Gmbh Schild für kfz-kennzeichen umfassend mindestens eine transluzente, retroreflektierende schicht
DE102009028937A1 (de) 2009-08-27 2011-03-03 Evonik Röhm Gmbh Schild für KFZ-Kennzeichen umfassend mindestens eine transluzente, retroreflektierende Schicht
DE102011084269A1 (de) 2011-10-11 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von Polymer-Nanopartikel-Compounds mittels einerNanopartikel-Dispersion
WO2013053598A1 (de) 2011-10-11 2013-04-18 Evonik Degussa Gmbh Verfahren zur herstellung von polymer-nanopartikel-compounds mittels einer nanopartikel-dispersion

Also Published As

Publication number Publication date
ES2308743T3 (es) 2008-12-01
TWI383015B (zh) 2013-01-21
DE102005011180A1 (de) 2006-09-14
TW200643079A (en) 2006-12-16
ATE397639T1 (de) 2008-06-15
DE502006000883D1 (de) 2008-07-17
EP1856199B1 (de) 2008-06-04
EP1856199A1 (de) 2007-11-21

Similar Documents

Publication Publication Date Title
EP1856199B1 (de) Kunststoffformkörper mit durch laser-innengravur erzeugten zwei- oder dreidimensionalen bildstrukturen
US7704586B2 (en) Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving
DE102004010504B4 (de) Hochtransparente lasermarkierbare und laserschweißbare Kunststoffmaterialien, deren Verwendung und Herstellung sowie Verwendung von Metallmischoxiden und Verfahren zur Kennzeichnung von Produktionsgütern
EP1722984B1 (de) Durch farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweissbare kunststoffmaterialien
EP2065165B1 (de) Verwendung einer Mischung mit sphärischen Metallpartikeln und Metallflakes als Lasermarkierungs- oder Laserschweissbarkeitsmittel sowie lasermarkierbarer und/oder laserschweissbarer Kunststoff
WO2005090056A1 (de) Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm
EP1400340A1 (de) Polymerpulver für SIV-Verfahren
EP3157995B1 (de) Mikrokugeln
EP1763431B1 (de) Laserschweissverfahren und -material
DE102004051457A1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien
EP3215347B1 (de) Lasermarkierbare und laserschweissbare polymere materialien
DE102006062269A1 (de) Verwendung von sphärischen Metallpartikeln als Lasermarkierungs- oder Laserschweißbarkeitsmittel sowie lasermarkierbarer und/oder laserschweißbarer Kunststoff
WO2008138362A1 (de) Verwendung von sphärischen metallpartikeln als lasermarkierungsadditive für dichtungs-, verschluss-, oder beschichtungsmaterialien oder lacke aus kunststoff sowie lasermarkierbares dichtungs-, verschluss-, oder beschichtungsmaterial oder lasermarkierbarer lack aus kunststoff
EP3328925A1 (de) Lasermarkierbare polymere und beschichtungen
EP2524009A1 (de) Laseradditiv
DE202005003918U1 (de) Kunststoffformkörper mit durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen
DE10311446A1 (de) Polymerpulver für SIV-Verfahren
EP3155039B1 (de) Lasermarkierbare und laserschweissbare polymere materialien
DE202004016363U1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien
DE4446874A1 (de) Verfahren zur Herstellung von kontrastreich beschrifteten, aus Silicon bestehenden Gegenständen und deren Verwendung
DE4411106A1 (de) Verfahren zur Beschriftung von Formkörpern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006743190

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006743190

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2006743190

Country of ref document: EP