WO2005090056A1 - Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm - Google Patents

Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm Download PDF

Info

Publication number
WO2005090056A1
WO2005090056A1 PCT/EP2005/050346 EP2005050346W WO2005090056A1 WO 2005090056 A1 WO2005090056 A1 WO 2005090056A1 EP 2005050346 W EP2005050346 W EP 2005050346W WO 2005090056 A1 WO2005090056 A1 WO 2005090056A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
absorber
laser
polymer
wavelength
Prior art date
Application number
PCT/EP2005/050346
Other languages
English (en)
French (fr)
Inventor
Sylvia Monsheimer
Maik Grebe
Rainer Göring
Franz-Erich Baumann
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Publication of WO2005090056A1 publication Critical patent/WO2005090056A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material

Definitions

  • Ner drives that work on the basis of powdery materials and in which the desired structures are produced in layers by selective melting and solidification are particularly suitable.
  • the ner drives are also suitable for the production of small series.
  • the invention relates to a special laser sintering process, a powder for use in this process and a process for the production of this polymer, as well as moldings produced by this process using the powder according to the invention.
  • plastic ulver or plastic-coated metal or ceramic powder, or plastic-coated sand is selectively briefly exposed in a chamber with a laser beam, whereby the powder particles that are hit by the laser beam melt. The molten particles run into each other and quickly solidify again to a solid mass. By repeatedly exposing newly applied layers, this process can be used to produce three-dimensional bodies of complex geometry simply and quickly.
  • PA 12 polyamide 12 powder
  • a PA 12 powder with an average grain size (dso) of 50 to 150 ⁇ m is particularly suitable, as is obtained, for example, according to DE 197 08 946 or DE 44 21 454.
  • powdery substrates in particular polymers or copolymers, preferably selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, poly (N-methyl methacrylimide) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester , Copolyamides, terpolymers, ac ⁇ nitru-butadiene-styrene copolymers (ABS) or mixtures thereof can also be used.
  • polymers or copolymers preferably selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, poly (N-methyl methacrylimide) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester , Copolyamides, terpolymers, ac ⁇ nitru-butadiene-s
  • a disadvantage of the known method is that not all lasers available on the market can be used.
  • a CO 2 laser is required, which is expensive to purchase and complex in terms of care, handling and maintenance.
  • the wavelength of 10600 nm is characteristic of the CO 2 laser; this corresponds to the Ferninfiarot area.
  • a complex mirror system must be used to guide the laser beam over the building level; furthermore the laser has to be cooled permanently.
  • the use of optical fibers is not possible.
  • specially trained personnel must be kept available for operation. As a result, such systems are out of the question for many end users.
  • the object of the present invention was therefore to develop a ner driving which enables a more flexible and inexpensive solution for the production of laser-sintered shaped bodies.
  • molded parts can be produced by a laser sintering method using lasers with a wavelength between 100 and 3000 nm if a modified polymer is used either in powder form or as a jacket for other powdery materials.
  • the lasers used generate electromagnetic radiation with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm or between 1900 and 2100 nm, and very particularly preferably 800 to 1000 nm (diode laser) or 1064 nm ( ⁇ d: YAG laser).
  • the beam can either be pulsed or continuous (continous wave).
  • argon lasers with a wavelength of 488 and 514 nm argon lasers with a wavelength of 488 and 514 nm
  • helium-neon lasers with a wavelength of 543, 633 and 1150 nm nitrogen lasers with a wavelength of 337 ⁇ m
  • Hydrogen laser with a wavelength of 2600 to 3000 nm Hydrogen laser with a wavelength of 2600 to 3000 nm
  • krypton laser with a wavelength of 330 to 360 nm or from 420 to 800 nm
  • KTP laser frequency-doubled Nd: YAG laser
  • KTP laser frequency-doubled Nd: YAG laser
  • YAG laser frequency tripled Nd
  • Alexandrite laser with a wavelength of 755 nm, and YAG laser argon lasers with a wavelength of 488 and 514 nm
  • the YAG lasers have an yttrium aluminum Garnet crystal rod as the laser medium.
  • the rod is made of rare earth metal such as neodymium (NdrYAG, wavelength 1064 nm), erbium (Er: YAG, wavelength 2940 nm), holmium (Ho: YAG, wavelength 2070 nm), or also thulium (Tm, wavelength 2074 nm) or chromium (Cr), or combinations thereof, doped.
  • Other examples are TmYLF lasers or Ho: YLF lasers, which use a different laser medium and also have a wavelength of approximately 2000 nm.
  • diode lasers with a high power with a wavelength between 800 and 1000 nm and excimer lasers with a wavelength of 193 nm or 352 nm can be used.
  • the excimer lasers include, in particular, F2 excimer lasers with a wavelength of 157 nm, ArF excimer lasers with a wavelength of 193 nm, KrCl- Excimer lasers with a wavelength of 222 nm, KrF excimer lasers with a wavelength of 248 nm, XeCl excimer lasers with a wavelength of 308 nm and XeF excimer lasers with a wavelength of 351 nm.
  • the lasers can be solid-state lasers (examples are the ruby or Nd: YAG laser), semiconductor lasers, or gas lasers (for example the argon laser, the helium-neon laser or the krypton laser) or trade a fiber laser.
  • the lasers used can usually work with a power between 1 and 500 watts, preferably between 10 and 100 watts, and particularly preferably between 12 and 30 watts.
  • the focus of the laser beam is an important variable for the component resolution that can be achieved with the method. It is usually in the radius between 0.05 and 1 mm, preferably between 0.1 and 0.4 mm.
  • the exposure speed is usually between 10 and 10000 mm / s, preferably between 700 and 5000 mm / s. This means the speed of the laser focus on the building level or the powder bed; Either the laser beam can be movable, for example via a mirror or via flexible light-conducting cables, or the powder bed.
  • the process parameters must be selected accordingly.
  • the layer thickness, the laser power and the exposure speed as well as the wavelength of the laser and the powder used, and especially the absorber and the proportion of the absorber in the powder play a role, among other things.
  • the modification of the powder consists in the incorporation of absorbers; these can be colorants or other additives. Examples of these are carbon black, KHP (copper hydroxide phosphate), bone carbon, flame retardants based on melamine cyanurate or phosphorus, carbon fibers, chalk, graphite or for primarily transparent powders such as interference pigments and ClearWeld® (WO 0238677), without wishing to restrict the invention thereto.
  • absorbers these can be colorants or other additives. Examples of these are carbon black, KHP (copper hydroxide phosphate), bone carbon, flame retardants based on melamine cyanurate or phosphorus, carbon fibers, chalk, graphite or for primarily transparent powders such as interference pigments and ClearWeld® (WO 0238677), without wishing to restrict the invention thereto.
  • the modification can be done in a variety of ways. In principle, almost all powders can be modified in this way.
  • Absorption is defined as a reduction in the energy of a beam (light, electrons, etc.) as it passes through matter. The energy released is converted into other forms of energy, e.g. B. heat converted. Accordingly, an absorber is a piece of material, or body, that is supposed to absorb radiation (from www. hunters.de). In this text, an absorber is to be understood as an additive which can completely or predominantly absorb laser radiation in the range between 100 and 3000 nm; it is sufficient if parts of the absorber fulfill this function.
  • the present invention therefore relates to a method for producing a three-dimensional object, which is characterized in that it comprises the steps a) providing a layer of a powdery substrate b) tempering the installation space c) selectively melting regions of the powder layer by introducing energy through a Lasers with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm or between 1900 and 2100 nm, and particularly preferably with a YAG laser or a diode laser, very particularly preferably with an Nd: YAG laser d) cooling the melted and non-melted areas to a temperature that enables non-destructive removal of the molded parts e) removal of the molded parts.
  • a Lasers with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm or between 1900 and 2100 nm, and particularly preferably with a YAG laser or a diode laser, very particularly preferably with an Nd: YAG laser d) cooling the melted and
  • Steps a) to c) are repeated until the desired molded part has been processed layer by layer.
  • Step b) depends on the material and is therefore optional.
  • the selectivity can be increased by focusing the laser energy, for example by means of appropriate optical fibers or, if necessary. can also be achieved with the help of mirrors and / or lenses.
  • the laser sintering process according to US 6136948 and WO 96/06881 is an example of such a method.
  • the thickness of the applied layer is, for example, between 0.05 and 2 mm, preferably between 0.08 and 0.2 mm.
  • a layer of material according to the invention does not let through more than 40% of the laser radiation. However, at least 5% of the radiation is advantageously transmitted, so that the limit receives sufficient radiation to fuse between the current and the previous layer.
  • the present invention also relates to a powder, in particular building powder or rapid prototyping and rapid manufacturing powder (RP / RM powder) for rapid prototyping or rapid manufacturing applications, for processing in the processes described above for Layer-by-layer construction of three-dimensional objects, in which areas of the respective powder layer are selectively melted, which is characterized in that the powder has at least one polymer and at least one absorber for the wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm, such as carbon black , KHP (copper hydroxide phosphate), bone carbon, chalk, graphite, carbon fibers, or flame retardants.
  • RP / RM powder rapid prototyping and rapid manufacturing powder
  • the polymer component in the powder according to the invention has a melting point between 50 and 350 ° C., preferably between 70 and 220 ° C.
  • the present invention also relates to a method for producing powder according to the invention, which is characterized in that either a powdery mixture of a polymer and a corresponding absorber is produced, or that the additive used as an absorber is compounded into the polymer and then ground or that the absorber is added to the polymer during the precipitation or that the absorber is added to a polymer suspension with subsequent drying.
  • the present invention also relates to the use of powder according to the invention for the production of moldings by the process described above, and to moldings produced by a process for the layered construction of three-dimensional objects, in which parts of a powder are selectively melted using a laser a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm, and which are characterized in that they have at least one absorber for these wavelengths and at least one polymer.
  • the powder according to the invention has the advantage that it uses an RP or RM process as described above for the layer-by-layer construction of three-dimensional objects, in which parts of the powder used are selectively preferred by means of energy input by a laser with a wavelength between 100 and 3000 nm between 800 and 1070 nm, can be melted, moldings can be produced that are cheaper and more flexible to produce than those produced with a CO 2 laser. At the same time, the mechanical properties of the moldings are essentially retained. This opens up areas of application that were previously out of the question due to the high cost of operating a laser sintering system. Applications in small and medium-sized companies are particularly worth mentioning, such as engineering offices, architects and interior designers, advertising agencies and designers, whose competitiveness can be increased by using rapid prototyping processes.
  • the building powder according to the invention or the powdered composition according to the invention for processing in a method for the layer-by-layer construction of three-dimensional objects, in which parts of the powder are melted selectively by energy input from a laser with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm, is characterized in that the powder has at least one polymer and at least one absorber, which is suitable for absorbing energy at these wavelengths, and has an average particle size between 20 and 150 ⁇ m, preferably between 45 and 70 ⁇ m.
  • the powder is preferably bonded by the introduction of electromagnetic energy, particularly preferably by the action of heat, the particles being bonded to one another by melting or unification.
  • the polymer and also the absorber can be present in the powder according to the invention as a mixture of the respective powders, or as a powder in which the predominant number of grains or each grain contains both polymer and absorber.
  • the absorber can be homogeneously distributed in the particles or can be enriched in the middle of the particle or on the surface of the particle. If the polymer is used as a coating, the absorber can likewise either be distributed uniformly in the polymer or be concentrated on the surface.
  • the powder preferably has a homo- or copolymer selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyarylene ether, polyurethane, polylactide, thermoplastic elastomer, polyoxyalkylene, poly (N-me ylmemacrylimide) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester, copolyamides, silicone polymers, terpolymers, Ac ⁇ lniM-butadiene-styrene copolymers (ABS) or mixtures thereof.
  • the powder according to the invention particularly preferably has a polymer which has a melting temperature of 50 to 350 ° C., preferably 70 to 220 ° C.
  • the polymer particles present in the powder according to the invention can in particular be produced by grinding, precipitation and / or anionic polymerization or a combination thereof or by subsequent fractionation.
  • the powder according to the invention preferably has at least one polyamide.
  • the powder according to the invention preferably has a polyamide which has at least 8 carbon atoms per carbonamide group.
  • the powder according to the invention preferably has at least one polyamide which has 9 or more carbon atoms per carbonamide group.
  • the powder very particularly preferably has at least one polyamide selected from polyamide 612 (PA 612), polyamide 11 (PA 11) and polyamide 12 (PA 12) or copolyamides based on the aforementioned polyamides.
  • the powder according to the invention has a regulated, partially regulated or unregulated polyamide, preferably an unregulated polyamide. It can be AABB or AB polyamides. It can be linear aliphatic polyamide or it can also contain aromatic components. Blends or copolyamides or mixtures thereof can also be used.
  • polyamide 12 which has a melting temperature of 185 to 189 ° C, preferably from 186 to 188 ° C, a melting enthalpy of 120 ⁇ 17 J / g, preferably from 110 to 130 J / g and a solidification temperature of 130 to 140 ° C, preferably from 135 to 138 ° C and preferably also a crystallization temperature after aging from 135 to 140 ° C.
  • the process for the production of the polyamide powder on which the sinter powders according to the invention are based is generally known and can be used in the case of PA 12 e.g. the documents DE 29 06 647, DE 35 10 687, DE 35 10 691 and DE 4421 454, the contents of which are to belong to the disclosure content of the present invention.
  • the required polyamide granules can be obtained from various manufacturers, for example polyamide 12 granules are available from Degussa AG under the trade name VESTAMID.
  • the powder according to the invention preferably has from 0.01 to 15% by mass of an absorber, preferably from 0.1 to 10% by mass of an absorber, particularly preferably from 0.2 to 5% by mass. % of an absorber and very particularly preferably from 0.4 to 2% by mass of an absorber.
  • the ranges given relate to the total content of an absorber in the powder which can be excited by a laser with a wavelength between 100 and 3000, preferably between 800 and 1070 nm, with powder meaning the total amount consisting of components
  • the powder according to the invention can have a mixture of an absorber and polymer particles or else polymer particles or powder which have incorporated absorbers.
  • the polymer particles have an average particle size between 20 and 150 ⁇ m, preferably an average particle size of 45 to 70 ⁇ m.
  • the absorber preferably has a particle size which is below the average particle size d 50 of the polymer particles or powder by at least 20%, preferably by more than 50% and very particularly preferably by more than 70%.
  • the absorber has an average particle size of 0.01 to 50 ⁇ m, preferably 1 to 10 ⁇ m. The small particle size results in a good distribution of the powdery absorber in the powdery polymer powder.
  • the absorber has a so-called colorant.
  • a colorant is understood to mean all colorants according to DEST 55944, which can be divided into inorganic and organic colorants as well as natural and synthetic colorants (see Römpps Chemielexikon, 1981, 8th edition, S 1237).
  • a pigment is a practically insoluble, inorganic or organic, colored or achromatic colorant in the application medium.
  • Dyes are inorganic or organic, colored or achromatic colorants which are soluble in solvents and / or binders.
  • the absorber can also obtain its absorbing effect by having additives.
  • additives for example, flame retardants based on Melamine cyanurate (Melapur from DSM), or based on phosphorus, preferably phosphates, phosphites, phosphonites, or elementary red phosphorus.
  • flame retardants based on Melamine cyanurate (Melapur from DSM), or based on phosphorus, preferably phosphates, phosphites, phosphonites, or elementary red phosphorus.
  • carbon fibers preferably ground, glass balls, also hollow, or kaolin, chalk, wollastonite or graphite.
  • the absorber contained in the powder according to the invention preferably has carbon black or KHP (copper hydroxide phosphate) or chalk, bone carbon, carbon tubes, graphite, flame retardants or interference pigments as the main component.
  • Interference pigments are so-called pearlescent pigments. Based on the natural mineral mica, they are coated with a thin layer of metal oxides, for example titanium dioxide and / or iron oxide, and are available with an average grain size distribution between 1 and 60 ⁇ m. Interference pigments are offered, for example, by Merck under the name Iriodin.
  • the Modin range from Merck includes pearlescent pigments and metal oxide-coated mica pigments as well as the subclasses: interference pigments, metal luster effect pigments (iron oxide coating of the mica core), silver-white effect pigments, gold luster effect pigments (mica core coated with titanium dioxide and iron oxide).
  • modin types of the odin-LS series is particularly preferred, namely Modin LS 820, Iriodin LS 825, Iriodin LS 830, Iriodin LS 835 and Iriodin LS 850.
  • the use of Iriodin LS 820 and Iriodin LS 825 is very particularly preferred.
  • mica or mica pigments titanium dioxide, kaolin, organic and inorganic color pigments, antimony (TII) oxide, metal pigments, pigments based on bismuth oxychloride (e.g. Biflair series from Merck, high-gloss pigment), indium tin oxide (Nano ITO Powder, from Nanogate Technologies GmbH or AdNano ta ITO from Degussa), AdNano tm zinc oxide (Degussa), lantane hexachloride, ClearWeld® (WO 0238677) as well as commercially available antifouling agents which are melamine cyanurate or phosphorus, preferably phosphates, phosphites, phosphonites or elementary (red ) Have phosphorus.
  • the absorber points preferably interference pigments, particularly preferably from the Iriodin LS series from Merck, or Clearweld®.
  • the chemical name for the KHP is copper hydroxide phosphate; This is used as a light green, fine crystalline powder with an average grain diameter of just under 3 ⁇ m.
  • the carbon black can be produced by the furnace black process, the gas black process or the flame black process, preferably by the furnace black process.
  • the primary particle size is between 10 and 100 nm, preferably between 20 and 60 nm, the particle size distribution can be narrow or wide.
  • the BET surface area according to DIN 53601 is between 10 and 600 m 2 / g, preferably between 70 and 400 m 2 / g.
  • the soot particles can be oxidatively aftertreated to adjust surface functionalities. They can be hydrophobic (for example Printex 55 or flame black 101 from Degussa) or hydrophilic (for example colored carbon black FW20 or Printex 150 T from Degussa).
  • Bone char is a mineral black pigment that contains elemental carbon. It consists of 70 to 90% calcium phosphate and 30 to 10% carbon. The density is typically between 2.3 and 2.8 g ml.
  • the absorber can also be a mixture of organic and / or inorganic pigments,
  • Contain flame retardants, or other colorants each of which does not or poorly absorb each in the wavelengths between 100 and 3000 nm, but in the combination, however, is sufficiently good for use in the method according to the invention absorb electromagnetic energy.
  • the absorber can be present, for example, as granules or as a powder. Depending on the production process of the powder suitable for the process according to the invention, they can be ground or remilled. If the use of a dispersion is advantageous for the production process, the absorber can either already be present as a dispersion or a dispersion can be produced from finely divided absorbent articles. The absorber can also exist as a liquid. ClearWeld® is an example of this.
  • Such additives which are used here as absorbers, are available, for example, from Merck under the name Iriodin®.
  • Soot means standard commercial carbon blacks, such as those offered by Degussa AG, Cäbot Corp., or Continental Carbon.
  • Suitable absorbers in general are Iriodin® LS 820 or Iriodin® LS 825 or Iriodin® LS 850 from Merck.
  • Printex 60, Printex A, Printex XE2, or Printex Alpha from Degussa may serve as an example of the carbon black.
  • Suitable KHP is also offered by Degussa under the brand name Vestodur FP-LAS.
  • Powder according to the invention can also have at least one auxiliary, at least one filler and / or at least one pigment.
  • auxiliary substances can be, for example, anti-caking agents, such as, for example, pyrogenic silicon dioxide or precipitated silica.
  • Fumed silica (fumed silica) is offered, for example, by Degussa AG under the product name Aerosil ® , with different specifications.
  • Powder according to the invention preferably has less than 3% by mass, preferably from 0.001 to 2% by mass and very particularly preferably from 0.05 to 1% by mass, of such pigments, based on the total sum of the components, that is to say the sum of polymers and absorbers.
  • the fillers can, for example, glass, metal, in particular aluminum or ceramic particles, such as solid or hollow glass balls, steel balls, aluminum balls or Metal powder or colored pigments, such as transition metal oxides.
  • the filler particles preferably have a smaller or approximately the same average grain size as the particles of the polymers or the particles coated with polymer.
  • the average grain size d 50 of the fillers should preferably be less than 20%, preferably not more than 15% and very particularly preferably not more than 5%, of the mean grain size d 50 of the polymers.
  • the particle size is particularly limited by the permissible overall height or layer thickness in the layered apparatus used in each case.
  • Powder according to the invention preferably has less than 75% by mass, preferably from 0.001 to 70% by mass, particularly preferably from 0.05 to 50% by mass and very particularly preferably from 0.5 to 25% by mass of such fillers, based on the total of the components, so that the volume fraction of the polymers is in any case greater than 50%. If the particles are coated, the volume fraction of the polymers can also be less than 50%.
  • the powders according to the invention can be produced in a simple manner and are preferably carried out according to the method according to the invention for producing powders according to the invention, which is characterized in that at least one polymer is mixed with at least one absorber. Mixing can be done dry in the dry blend. A polymer powder obtained, for example, by reprecipitation and or grinding, which can also subsequently be fractionated, is preferably mixed with the absorber. It may be advantageous to initially provide the powdered absorber alone or else the finished mixture with a trickle aid, for example from the Aerosil series from Degussa, e.g. B. Aerosil R972 or R812 or Aerosil 200.
  • a trickle aid for example from the Aerosil series from Degussa, e.g. B. Aerosil R972 or R812 or Aerosil 200.
  • the powder can be a polymer powder which is already suitable for laser sintering and to which fine particles of the absorber are simply added.
  • the particles preferably have a smaller to at most approximately the same size average grain size as the particles of the polymers or of the particles coated with polymer.
  • the average particle size d 50 of the absorber should preferably be less than the average particle size d 50 of the polymer powders by more than 20%, preferably by more than 50% and very particularly preferably by more than 70%.
  • the upper limit of the grain size is particularly limited by the permissible overall height or layer thickness in the rapid prototyping system.
  • a suitable pouring aid such as pyrogenic aluminum oxide, pyrogenic silicon dioxide or pyrogenic titanium dioxide, can be added externally to the precipitated or ground powder to improve the flow behavior.
  • the absorber in another process variant, can be compounded into a melt of at least one polymer and the granules thus obtained can be processed into powder by grinding, preferably at low temperatures.
  • the process variant in which the absorber is compounded has the advantage over the pure mixing process that a more homogeneous distribution of the absorber in the powder is achieved.
  • a subsequent fractionation and / or finishing with a trickle aid can be connected.
  • Mechanical post-processing for example in a high-speed mixer, to round the sharp-edged particles formed during grinding and thus to improve the applicability of thin layers can also be useful.
  • polyamide is used, preferably a PA12 or a polyamide 11.
  • the absorber is already added during the precipitation process of the polyamide.
  • Such a precipitation process is described for example in DE 35 10 687 and DE 29 06 647.
  • This process can be used, for example, to remove polyamide 12 from a polyamide-ethanol solution by removing ethanol and simultaneously lowering the solution temperature be canceled. If the polyamide-ethanol solution has absorber particles suspended, a precipitated absorber-containing polyamide powder is obtained.
  • DE 35 10 687 and DE 29 06 647 For a detailed description of the method, reference is made to DE 35 10 687 and DE 29 06 647.
  • this method can also be applied in a modified form to other polyamides, with the prerequisite being that polyamide and solvent are selected so that the polyamide dissolves (at an elevated temperature) in the solvent and that Polyamide precipitates at a lower temperature and / or when the solvent is removed from the solution. Additions of absorber particles of suitable particle size to this solution give the respective absorbers containing polyamides.
  • the resulting absorber-containing powder can then be further ground and / or fractionated and / or rounded by mechanical aftertreatment and / or provided with a trickle aid.
  • an absorption-containing dispersion is mixed with the powder, and the powder according to the invention is obtained by subsequent drying.
  • This variant of the mixing has the advantage over the pure mixing process that a more homogeneous distribution of the absorber particles in the polymer powder is achieved.
  • the resulting absorber-containing powder can then be further ground and / or fractionated and / or rounded by mechanical aftertreatment and / or provided with a trickle aid become.
  • fine-particle mixing can be carried out, for example, by mixing finely powdered absorber onto the dry powder in high-speed mechanical mixers.
  • the absorber can handelsübhche products that can be obtained for example in Fa. Merck or Degussa under the trade name Iriodin ® or Printex ®, or the above-described can be used.
  • a leveling agent such as metal soaps, preferably alkali metal or alkaline earth metal salts, can be used to improve the melt flow during the production of the moldings the underlying alkane monocarboxylic acids or dimer acids can be added to the filed or ground powder.
  • the metal soaps were used in amounts of 0.01 to 30% by weight, preferably 0.5 to 15% by weight, based on the sum of the polymers present in the powder.
  • the sodium or calcium salts of the underlying alkane monocarboxylic acids or dimer acids were preferably used as metal soaps. Examples of commercially available products are Licomont NaV 101 or Licomont CaV 102 from Clariant.
  • the metal soap particles can be incorporated into the polymer particles, but mixtures of finely divided metal soap particles and polymer particles can also be present.
  • inorganic pigments in particular colored pigments, such as e.g. Transition metal oxides, stabilizers such as e.g. Phenols, especially sterically hindered 5 phenols, leveling and pouring aids, e.g. pyrogenic silicas and filler particles are added.
  • the amount of these substances added to the powders is such that the concentrations specified for fillers and / or auxiliaries for the powder according to the invention are observed.
  • the present invention also relates to the use of powder according to the invention for Production of moldings in a layer-by-layer process and selectively melting the powder (rapid prototyping or rapid manufacturing), in which powders according to the invention which have at least one polymer and one absorber are used 5.
  • the present invention relates to the use of the powder for the production of moldings by selective laser sintering of a precipitated powder based on a polyamide 12 which contains an absorber and which has a melting temperature of 185 to 189 ° C., a melting enthalpy of 112 ⁇ 17 J / g and a solidification temperature from 136 to 145 ° C and the use of which is described in US Pat. No. 6,245,281.
  • the laser sintering processes have long been known and are based on the selective sintering of polymer particles, layers of polymer particles being briefly exposed to laser light and the polymer particles which were exposed to the laser light being fused.
  • the successive sintering of layers of polymer particles produces three-dimensional objects. Details on the method of selective laser sintem are e.g. the documents US 6,136,948 and WO 96/06881.
  • the powder according to the invention can also be used in processes which use lasers with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm or between 1900 and 2100 nm, in particular in the one described above.
  • the powder according to the invention can thus be used in particular for the production of moldings from powders by the SLS process (selective laser sintering) by means of lasers with a wavelength between 100 and 3000 nm, preferably between 800 and 1070 nm or between 1900 and 2100 nm.
  • SLS process selective laser sintering
  • Laser energy with wavelengths between 100 and 3000 nm can usually be easily coupled into an optical fiber. This makes it possible to dispense with complex mirror systems if this optical fiber can then be flexibly guided over the construction site.
  • the laser beam can be further focused via lenses or mirrors. Cooling of the laser is also not necessary in all cases.
  • the moldings according to the invention produced by a process for the layered construction of three-dimensional objects, in which parts of a powder, in particular the powder according to the invention, are selectively melted, such as, for example, selective laser sintering, are distinguished by the fact that they have at least one absorber and at least one have a polymer or a particle coated with polymer.
  • the moldings according to the invention preferably have at least one polyamide which has at least 8 carbon atoms per carbonamide group.
  • moldings according to the invention have at least one polyamide 612, polyamide 11 and / or Polyamide 12 or copolyamides based on these polyamides and at least one absorber.
  • the absorber present in the molded body according to the invention can have, for example, a so-called colorant.
  • a colorant is understood to mean all colorants according to DIN 55944, which can be divided into inorganic and organic colorants as well as natural and synthetic colorants (see Römpps Chemielexikon, 1981, 8th edition, S 1237).
  • DIN 55943 Sept. 1984
  • DIN 55945 Aug. 1983
  • Dyes are inorganic or organic, colored or achromatic colorants which are soluble in solvents and / or binders.
  • the absorber present in the molded article according to the invention can also obtain its absorbing effect by having additives.
  • additives can be, for example, flame retardants based on melamine cyanurate (Melapur from DSM), or based on phosphorus, preferably phosphates, phosphites, phosphonites, or elementary red phosphorus.
  • flame retardants based on melamine cyanurate (Melapur from DSM)
  • phosphorus preferably phosphates, phosphites, phosphonites, or elementary red phosphorus.
  • carbon fibers preferably ground, glass balls, also hollow, or kaolin, chalk, wollastonite or graphite
  • the absorber present in the molded body according to the invention preferably has carbon black or KHP (copper hydroxide phosphate) or chalk, bone carbon, carbon fibers, graphite, flame retardants or interference pigments as the main component.
  • Interference pigments are so-called pearlescent pigments. Based on the natural mineral mica, they are coated with a thin layer of metal oxides, for example titanium dioxide and / or iron oxide, and are available with an average grain size distribution between 1 and 60 ⁇ m. Interference pigments are offered, for example, by Merck under the name Iriodin.
  • the Modin range from Merck includes pearlescent pigments and metal oxide-coated glow pigments as well as the subclasses: interference pigments, metal shine effect pigments (iron oxide coating of the mica core), silver-white effect pigments, gold shine effect pigments (coated with titanium dioxide and iron oxide Mica core).
  • modine types of the Modin-LS series is particularly preferred, namely Modin LS 820, Iriodin LS 825, Iriodin LS 830, Modin LS 835 and Iriodin LS 850.
  • the use of Modin LS 820 and Modin LS 825 is very particularly preferred.
  • the absorber present in the molded article according to the invention can, for example, mica or glow pigments, titanium dioxide, kaolin, organic and inorganic color pigments, antimony (III) oxide, metal pigments, pigments based on bismuth oxychloride (e.g.
  • the molded body according to the invention preferably has, based on the sum of the components present in the molded body, from 0.01 to 15% by mass of absorber, preferably from 0.1 to 10% by mass, particularly preferably from 0.2 to 5% by mass and very particularly preferably from 0.4 to 2 mass%.
  • the maximum amount of absorber is 15% by mass based on the sum of the components present in the molded body.
  • the moldings can also have fillers and / or auxiliaries and / or pigments, such as, for example, thermal stabilizers and / or oxidation stabilizers, such as, for example, sterically hindered phenol derivatives.
  • Fillers can be, for example, glass, ceramic particles and also metal particles such as iron balls, or corresponding hollow balls.
  • the shaped bodies according to the invention preferably have glass particles, very particularly preferably glass balls. Shaped bodies according to the invention preferably have less than 3% by weight, preferably from 0.001 to 2% by mass and very particularly preferably from 0.05 to 1% by mass, of such auxiliaries, based on the sum of the components present.
  • Moldings according to the invention likewise preferably have less than 75% by mass, preferably from 0.001 to 70% by mass, particularly preferably from 0.05 to 50% by mass and very particularly preferably from 0.5 to 25% by mass of such fillers based on the sum of the components present.
  • the BET surface area carried out in the examples below was carried out in accordance with DIN 66 131.
  • the bulk density was determined using an apparatus in accordance with DIN 53 466.
  • the measured values of the laser diffraction were obtained on a Malvern Mastersizer S, Ver.2.18.
  • Example 1 Comparative example (not according to the invention):
  • the jacket temperature is then reduced to 120 ° C. and the internal temperature is brought to 120 ° C. with a cooling rate of 45 K h at the same stirrer speed. From now on, the jacket temperature is kept 2 K - 3 K below the inside temperature at the same cooling rate. The internal temperature is brought to 117 ° C. with the same cooling rate and then kept constant for 60 minutes. Then the internal temperature is brought to 111 ° C. at a cooling rate of 40 K / h. Precipitation begins at this temperature, recognizable by the heat development. After 25 minutes, the inside temperature files down, which indicates the end of the precipitation. After the suspension has cooled to 75 ° C., the suspension is transferred to a paddle dryer.
  • Example 2 Incorporation of Iriodin® LS 820 by compounding and subsequent grinding 40 kg (100 parts) regulated, made by hydrolytic polymerization PA 12, type Vestamid L1600 from Degussa AG, are mixed with 0.3 kg IRGANOX ® 245 and 400 g (1 Part) absorber (Modin® LS 820, Merck) extruded at 220 ° C in a twin-shaft compounding machine (Bersttorf ZE25) and granulated as a strand. The granules are then ground at low temperatures (-40 ° C) in an impact mill to a particle size distribution between 0 and 120 ⁇ m. 40 g of Aerosil 200 (0.1 part) were then mixed in at room temperature and 500 rpm for 3 minutes
  • Example 1 To 1900 g (100 Teüe) polyamide 12 powder, prepared according to DE 29 06 647, Example 1 having a mean grain diameter d 5 o of 57 ⁇ m (Laser diffraction) and a bulk density in accordance with DIN 53 466 of 458 g / 1 9.5 g (0.5 parts) Iriodin® LS 825 dry blended using a Henschel mixer FML10 / KM23 at 500 rpm at 40 ° C in 2 minutes. Then 3.8 g of Aerosil 200 (0.2 parts) were mixed in at room temperature and 500 rpm in 3 minutes.
  • Example 1 To 1900 g (100 parts) of polyamide 12 powder, produced according to DE 29 06 647, Example 1 with an average grain diameter d 50 of 57 ⁇ m (laser diffraction) and a bulk density according to DIN 53 466 of 458 g / 1, 40 g (2 parts ) KHP (Vestodur FP-LAS) dry blended using a Henschel mixer FML10 / KM23 at 500 rpm at 40 ° C in 2 minutes. Then 1 g of Aerosil R812 (0.05 part) was mixed in at room temperature and 500 rpm in 3 minutes.
  • Example 5 Incorporation of Iriodin® LS 825 and metal soap in a dry blend
  • Example 1 With an average grain diameter d 5 o of 56 ⁇ m (laser diffraction) and a bulk density according to DIN 53 466 of 459 g / 1 becomes 9.5 g (0.5 part) of Iriodin® LS 825 in the dry blend process using a Henschel mixer FML10 / KM23 mixed at 700 rpm at 50 ° C in 3 minutes.
  • 38 g (2 parts) of Licomont NaV 101 and 2 g of Aerosil 200 (0.1 part) were mixed in at room temperature and 500 rpm in 3 minutes.
  • Example 6 Incorporation of Printex alpha in the dry blend
  • Example 7 Incorporation of Printex alpha in a dry blend
  • copolyamide powder (Vestamelt 470 from Degussa) with an average grain diameter d 50 of 80 ⁇ m (laser diffraction) and a bulk density according to DIN 53 466 of 505 g / 1 38 g (2 parts) of Printex alpha are mixed in a dry blend process using a Henschel mixer FML10 / KM23 at 700 rpm at room temperature in 2 minutes. Then 2.0 g of Aerosil 200 (0.1 part) were mixed in at room temperature and 500 rpm in 2 minutes.
  • the floor was moved to within half a centimeter of the top edge; the remaining space was filled with powder and smoothed out with a metal plate.
  • the 5 apparatus was placed in the installation space of a Star Mark 65 Nd: YAG laser (manufacturer Carl Basel Lasertechnik) and a rectangle of 3 * 25 mm 2 was lasered into the powder layer.

Abstract

Die vorliegende Erfindung betrifft ein Pulver, welches zusätzlich zu einem Polymer einen Absorber, aufweist, die Verwendung dieses Pulvers zur schichtweisen Herstellung von Formkörpern mittels eines Lasers mit einer Wellenlänge zwischen 100 und 3000 nm sowie Formkörper, mit diesem Verfahren hergestellt aus diesem Pulver. Die mit dem erfindungsgemässen Pulver nach dem erfindungsgemässen Verfahren gebauten Formkörper zeigen gegenüber mit herkömmlichen Lasersinterverfahren hergestellten Formkörpern bezüglich ihrer Herstellkosten und ihres Herstellaufwandes deutliche Vorteile. Insbesondere kann der Laserstrahl mit der Wellenlänge zwischen 100 und 3000 nm meist in Lichtwellenleiter eingekoppelt werden, die auch flexibel sein können. Dadurch kann auf aufwendige Spiegelsysteme verzichtet werden. Damit kann ein neuer Endanwenderkreis erschlossen werden.

Description

asersinteni mit Lasern mit einer Wellenlänge von 100 bis 3000 nm
Die zügige Bereitstellung von Prototypen ist eine in der jüngsten Zeit häufig gestellte Aufgabe. Besonders geeignet sind Nerfahren, die auf der Basis von pulverförmigen Werkstoffen arbeiten, und bei denen schichtweise durch selektives Aufschmelzen und Verfestigen die gewünschten Strukturen hergestellt werden. Die Nerfahren sind auch für die Herstellung von Kleinserien geeignet.
Die Erfindung betrifft ein spezielles Lasersinterverfahren, ein Pulver zur Verwendung in diesem Verfahren sowie ein Verfahren zur Herstellung dieses Polymers sowie Formkörper, hergestellt mit diesem Verfahren unter Verwendung des erfindungsgemäßen Pulvers.
Ein Verfahren, welches besonders gut für den Zweck des Rapid Prototypings geeignet ist, ist das selektive Laser-Sintern. Bei diesem Verfahren werden Kunststofl ulver oder mit Kunststoff ummantelte Metall-, oder Keramikpulver, oder mit Kunststoff ummantelter Sand in einer Kammer selektiv kurz mit einem Laserstrahl belichtet, wodurch die Pulver-Partikel, die von dem Laserstrahl getroffen werden, schmelzen. Die geschmolzenen Partikel verlaufen ineinander und erstarren schnell wieder zu einer festen Masse. Durch wiederholtes Belichten von immer neu aufgebrachten Schichten können mit diesem Verfahren dreidimensionale Körper auch komplexer Geometrie einfach und schnell hergestellt werden.
Das Verfahren des Laser-Sinterns (Rapid Prototyping) zur Darstellung von Formkörpern aus pulverförmigen Polymeren wird ausführlich in den Schriften US 6,136,948 und WO 96/06881 (beide DTM Corporation) beschrieben. Eine Vielzahl von Polymeren und Copolymeren kann für diese Anwendung eingesetzt werden, wie z.B. Polyacetat, Polypropylen, Polyethylen, Ionomere und Polyamid.
In der Praxis hat sich beim Laser-Sintern vor allem Polyamid 12-Pulver (PA 12) für die
Herstellung von Formkörpern, insbesondere von technischen Bauteilen bewährt. Die aus PA- 12 Pulver gefertigten Teile genügen den hohen Anforderungen, die bezügüch der mechanischen Beanspruchung gestellt werden und kommen damit in ihren Eigenschaften besonders nahe an die späteren Serienteile, die durch Extrusion oder Spritzgießen erstellt werden.
Gut geeignet ist dabei ein PA 12-Pulver mit einer mittleren Korngröße (dso) von 50 bis 150 μm, wie man es beispielsweise gemäß DE 197 08 946 oder auch DE 44 21 454 erhält. Vorzugsweise wird dabei ein Polyamid 12 Pulver mit einer Schmelztemperatur von 185 bisl89 °C, einer Schmelzenthalpie von 112 ± 17 J/g und einer Erstarrungstemperatur von 138 bis 143 °C, wie es in EP 0911 142 beschrieben wird, verwendet
Prinzipiell kann eine Auswahl pulverförmiger Substrate, insbesondere Polymere oder Copolymere, vorzugsweise ausgewählt aus Polyester, Polyvinylchlorid, Polyacetal, Polypropylen, Polyethylen, Polystyrol, Polycarbonat, Poly-(N-methylmethacrylimide) (PMMI), Polymethylmethacrylat (PMMA), Ionomer, Polyamid, Copolyester, Copolyamide, Terpolymere, Ac^lnitrü-Butadien-Styrol-Copolymere (ABS) oder Gemische davon ebenfalls verwendet werden.
Nachteilig bei dem bekannten Verfahren ist jedoch, dass nicht alle am Markt verfügbaren Laser eingesetzt werden können. Um Kunststofrpulver oder mit Kunststoff ummantelte Partikel vereintem zu können, ist ein CO2-Laser erforderlich, der teuer in der Anschaffung und aufwendig bezüglich Pflege, Handhabung und Wartung ist. Kennzeichnend für den CO2-Laser ist die Wellenlänge von 10600 nm; das entspricht dem Ferninfiarotbereich. So muss ein aufwendiges Spiegelsystem verwendet werden, um den Laserstrahl über die Bauebene zu fuhren; ferner muß der Laser permanent gekühlt werden. Die Verwendung von Lichtwellenleitern ist nicht möglich. Es muss in der Regel eigens geschultes Personal für den Betrieb vorgehalten werden. Dadurch kommen solche Systeme für viele Endanwender nicht in Frage. Preiswertere Laser mit einer Wellenlänge im Mittel- oder Nahinfrarotbereich, im Bereich des sichtbaren Lichts, oder des Ultravioletfbereichs können aber nicht verwendet werden, da Kunststoffe in der Regel dadurch nicht bzw. nicht in einem für das Lasersintern erforderlichen Maß aufgeschmolzen werden können. Aufgabe der vorliegenden Erfindung war es deshalb, ein Nerfahren zu entwickeln, welches eine flexiblere und preisgünstigere Lösung zur Herstellung von lasergesinterten Formkörpern ermöglicht.
Überraschenderweise wurde nun, wie in den Ansprüchen beschrieben, gefunden, dass Formteile durch ein Lasersinterverfahren mit Lasern mit einer Wellenlänge zwischen 100 und 3000 nm hergestellt werden können, wenn ein modifiziertes Polymer entweder in Pulverform oder als Ummantelung anderer pulverfδrrniger Materialien verwendet wird. Die verwendeten Laser erzeugen elektromagnetische Strahlung mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm oder zwischen 1900 und 2100 nm, und ganz besonders bevorzugt 800 bis 1000 nm (Diodenlaser) oder 1064 nm (Νd:YAG-Laser). Der Strahl kann entweder gepulst oder kontinuierlich (continous wave) sein. Besonders zu erwähnen sind, ohne die Erfindung darauf zu beschränken, Argon-Laser mit einer Wellenlänge von 488 und 514 nm, Helium-Neon-Laser mit einer Wellenlänge von 543, 633 bzw. 1150 nm, Stickstoff-Laser mit einer Wellenlänge von 337 um, Wasserstofflaser mit einer Wellenlänge von 2600 bis 3000 nm, Krypton-Laser mit einer Wellenlänge von 330 bis 360 nm oder von 420 bis 800 nm, Rubin-Laser mit einer Wellenlänge von 694 nm, KTP-Laser (frequenzverdoppelter Nd:YAG-Laser) mit einer Wellenlänge von 532 nm, ein frequenzverdreifachter Nd:YAG-Laser mit einer Wellenlänge von 355nm oder ein f equenzvervierfachter Nd:YAG-Laser mit einer Wellenlänge von 266 nm, Alexandrite-Laser mit einer Wellenlänge von 755 nm, sowie YAG- Laser. Die YAG-Laser besitzen einen Yttrium-Aluminium-Garnet-Kristallstab als Lasermedium. Der Stab ist mit Seltenerdmetall wie beispielsweise Neodym (NdrYAG, Weilenlänge 1064 nm), Erbium (Er: YAG, Wellenlänge 2940 nm), Holmium (Ho:YAG, Wellenlänge 2070 nm), oder auch Thulium (Tm, Wellenlänge 2074 nm) oder Chrom (Cr), oder Kombinationen daraus, dotiert. Andere Beispiele sind TmYLF-Laser oder Ho:YLF-Laser, die ein anderes Lasermedium verwenden und ebenfalls eine Wellenlänge von ca. 2000 nm aufweisen. Weiterhin können Diodenlaser mit einer hohen Leistung mit einer Wellenlänge zwischen 800 und 1000 nm sowie Excimer-Laser mit einer Wellenlänge von 193 nm oder 352 nm eingesetzt werden. Bei den Excimer-Lasern sind insbesondere F2-Excimerlaser mit einer Wellenlänge von 157 nm, ArF-Excimerlaser mit einer Wellenlämge von 193 nm, KrCl- Excimerlaser mit einer Wellenlänge von 222 nm, KrF-Excimerlaser mit einer Wellenlänge von 248 nm, XeCl-Excήnerlaser mit einer Wellenlänge von 308 nm und XeF-Excimerlaser mit einer Wellenlänge von 351 nm zu nennen.
Bei den Lasern kann es sich um Festkörperlaser (Beispiele sind der Rubin- bzw. der Nd:YAG- Laser), Halbleiterlaser, oder Gaslaser (zum Beispiel der Argon-Laser, der Helium-Neon-Laser oder der Krypton-Laser) oder um einen Faserlaser handeln.
Die verwendeten Laser können üblicherweise mit einer Leistung zwischen 1 und 500 Watt, bevorzugt zwischen 10 und 100 Watt, und besonders bevorzugt zwischen 12 und 30 Watt, arbeiten. Der Fokus des Laserstrahls stellt eine wichtige Größe für die mit dem Verfahren erzielbare Bauteilauflösung dar. Üblicherweise liegt er im Radius zwischen 0,05 und 1 mm, bevorzugt zwischen 0,1 und 0,4 mm. Die Belichtungsgeschwindigkeit beträgt üblicherweise zwischen 10 und 10000 mm/s, bevorzugt zwischen 700 und 5000 mm/s. Gemeint ist damit die Geschwindigkeit des Laserfokus auf der Bauebene bzw. dem Pulverbett; es kann entweder der Strahl des Lasers beweglich sein, beispielsweise über Spiegel oder über flexible lichtleitende Kabel, oder aber das Pulverbett.
Um das erfindungsgemäße Polymerpulver Schicht für Schicht aufschmelzen zu können, müssen die Verfahrensparameter entsprechend ausgewählt werden. Beispielsweise spielt die Schichtdicke, die Laserleistung und die Belichtungsgeschwindigkeit sowie die Wellenlänge des Lasers und das verwendete Pulver, und besonders der Absorber sowie der Anteil des Absorbers am Pulver, unter anderem eine Rolle.
Die Modifizierung des Pulvers besteht in der Einarbeitung von Absorbern; das können Farbmittel oder andere Zusatzstoffe sein. Beispiele dafür sind Ruß, KHP (Kupferhydroxidphosphat), Knochenkohle, Flammschutemittel auf Basis Melamincyanurat oder Phosphor, Kohlenstoffϊasern, Kreide, Graphit oder für vornehmlich transparente Pulver z.B. Interferenzpigmente und ClearWeld® (WO 0238677), ohne die Erfindung darauf beschränken zu wollen. Die Modifizierung kann auf die verschiedenste Art und Weise erfolgen. Grundsätzlich können nahezu alle Pulver derart modifiziert werden.
Absorption ist definiert als eine Verminderung der Energie eines Strahls (Licht, Elektronen u. a.) beim Durchgang durch Materie. Die abgegebene Energie wird dabei in andere Energieformen, z. B. Wärme, umgewandelt. Dementsprechend ist ein Absorber ein Materiestück, bzw. Körper, der eine Strahlung absorbieren soll (aus www.wissen.de). In diesem Text soll als Absorber ein Additiv verstanden werden, welches Laserstrahlung im Bereich zwischen 100 und 3000 nm vollständig oder überwiegend absorbieren kann; dabei reicht es aus, wenn Teile des Absorbers diese Funktion erfüllen.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung eines dreidimensionalen Objektes, welches dadurch gekennzeichnet ist, dass es die Schritte a) Bereitstellen einer Schicht eines pulverförmigen Substrates b) Temperieren des Bauraumes c) Selektives Aufschmelzen von Bereichen der Pulverschicht mittels Einbringung von Energie durch einen Laser mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm oder zwischen 1900 und 2100 nm, und besonders bevorzugt mit einem YAG-Laser oder einem Diodenlaser, ganz besonders bevorzugt mit einem Nd:YAG-Laser d) Abkühlen der geschmolzenen und nicht aufgeschmolzenen Bereiche auf eine Temperatur, die eine zerstörungsfreie Entnahme der Formteile ermöglicht e) Entnahme der Formteile umfasst. Die Schritte a) bis c) werden dabei solange wiederholt, bis das gewünschte Formteil Schicht 'für Schicht abgearbeitet worden ist. Schritt b) ist materialabhängig und damit optional. Die Selektivität kann durch Fokussierung der Laserenergie beispielsweise mittels entsprechender Lichtleitfasern oder aber, ggfls. auch zusätzlich, mit Hilfe von Spiegeln und/oder Linsen erreicht werden. Der Lasersinterprozeß nach US 6136948 und WO 96/06881 stellt ein Beispiel für ein solches Verfahren dar. Die Dicke der aufgetragenen Schicht liegt beispielsweise zwischen 0,05 und 2 mm, bevorzugt zwischen 0,08 und 0,2 mm. Eine Schicht aus erfindungsgemäßem Material läßt nicht mehr als 40 % der Laserstrahlung durch. Vorteilhaft wird jedoch wenigstens 5% der Strahlung durchgelassen, so daß die Grenze zwischen der aktuellen und der vorherigen Schicht noch ausreichend Strahlung zum Verschmelzen erhält.
Gegenstand der vorliegenden Erfindung ist ebenfalls ein Pulver, insbesondere Baupulver bzw. Rapid-Prototyping- und Rapid-Manufacturing-Pulver (RP-/RM-Pulver) für Rapid-Prototyping- oder Rapid-Manufacturing-Anwendungen, zur Verarbeitung in oben beschriebenen Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden, welches dadurch gekennzeichnet ist, dass das Pulver zumindest ein Polymer und zumindest ein Absorber für die Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm, wie beispielsweise Ruß, KHP (Kupferhydroxidphosphat), Knochenkohle, Kreide, Graphit, Kohlenstoffasern, oder Flammschutzmittel. Basierend auf Phosphor oder Melamincyanurat oder Interferenzpigment sowie eine mittlere Partikelgröße zwischen 20 und 150 um, bevorzugt zwischen 45 und 70 μm, aufweist. Es kann sich auch um mit dem Polymeren und dem Absorber gecoatetes Metall- oder Keramikpulver, oder Sand handeln. Um eine gute Verarbeitbarkeit im erfindungsgemäßen Verfahren zu gewährleisten, weist die Polymerkomponente im erfindungsgemäßen Pulver einen Schmelzpunkt zwischen 50 und 350 °C auf, bevorzugt zwischen 70 und 220 °C.
Ebenso ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung von erfindungsgemäßem Pulver, welches dadurch gekennzeichnet ist, dass entweder eine pulverförmige Mischung eines Polymeren und eines entsprechenden Absorbers hergestellt wird, oder dass das als Absorber verwendetete Additiv in das Polymer eincompoundiert wird > und dieses anschließend vermählen wird, oder dass der Absorber dem Polymeren bei der Fällung hinzugegeben wird oder dass der Absorber in eine Polymersuspension mit anschließender Trocknung hinzugegeben wird.
Außerdem ist Gegenstand der vorliegenden Erfindung die Verwendung von erfindungsgemäßem Pulver zur Herstellung von Formkörpern durch oben beschriebenes Verfahren sowie Formkörper, hergestellt durch ein Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Teile eines Pulvers durch Aufschmelzen mit einem Laser mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm, aufgeschmolzen werden, und welche dadurch gekennzeichnet sind, dass sie zumindest einen Absorber für diese Wellenlängen und zumindest ein Polymer aufweisen.
Das erfindungsgemäße Pulver hat den Vorteil, dass aus ihm durch ein wie oben beschriebenes RP- oder RM- Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Teile des eingesetzten Pulvers mittels Energieeintrag durch einen Laser mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm, aufgeschmolzen werden, Formkörper hergestellt werden können, die kostengünstiger und flexibler in ihrer Herstellung sind als mit einem CO2-Laser erzeugte. Gleichzeitig werden die mechanischen Eigenschaften der Formkörper im wesentlichen beibehalten. Damit eröffnen sich Anwendungsbereiche, die bisher aufgrund des hohen Aufwandes für den Betrieb eines Lasersintersystems nicht in Frage kamen. Besonders sind Anwendungen in kleinen und mittelständischen Unternehmen zu nennen, wie beispielsweise Ingenieurbüros, Architekten und Innenarchitekten, Werbeagenturen und Designer, deren Wettbewerbsfähigkeit durch Einsatz von Rapid Prototyping Verfahren gesteigert werden kann.
Das erfindungsgemäße Pulver sowie diverse Verfahren zu dessen Herstellung werden nachfolgend beschrieben, ohne dass die Erfindung darauf beschränkt sein soll.
Das erfindungsgemäße Baupulver bzw. die erfindungsgemäße pulverformige Zusammensetzung zur Verarbeitung in einem Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Teile des Pulvers durch Energieeintrag eines Lasers mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm, aufgeschmolzen werden, zeichnet sich dadurch aus, dass das Pulver zumindest ein Polymer und zumindest einen Absorber, der zur Energieaufnahme bei diesen Wellenlängen geeignet ist, und eine mittlere Partikelgröße zwischen 20 und 150 μm, vorzugsweise zwischen 45 bis 70 um aufweist. Das Pulver wird in diesen Verfahren vorzugsweise durch den Eintrag elektromagnetischer Energie, besonders bevorzugt durch Wärmeeinwirkung, verbunden, wobei die Partikel untereinander durch Verschmelzen oder Vereintem verbunden werden. Das Polymer und auch der Absorber können in dem erfindungsgemäßen Pulver als Mischung der jeweiligen Pulver vorliegen, oder als Pulver, in denen die überwiegende Anzahl der Kömer oder jedes Korn sowohl Polymer als auch Absorber aufweist. Bei solchen Pulvern kann der Absorber homogen in den Partikeln verteilt sein oder aber in der Mitte des Partikels oder an der Oberfläche des Partikels angereichert sein. Wird das Polymer als Coating verwendet, so kann der Absorber sich ebenfalls entweder gleichmäßig im Polymer verteilt, oder an der Oberfläche konzentriert befinden.
Das Pulver weist als Polymer vorzugsweise ein Homo- oder Copolymer ausgewählt aus Polyester, Polyvinylchlorid, Polyacetal, Polypropylen, Polyethylen, Polystyrol, Polycarbonat, Polybutylenterephthalat, Polyethylenterephthalat, Polysulfon, Polyarylenether, Polyurethan, Polylactide, thermoplastische Elastomere, Polyoxyalkylene, Poly-(N-me ylmemacrylimide) (PMMI), Polymethylmethacrylat (PMMA), Ionomer, Polyamid, Copolyester, Copolyamide, Silikonpolymere, Terpolymere, Ac^lniM-Butadien-Styrol-Copolymere (ABS) oder Gemischen davon aus. Besonders bevorzugt weist das erfindungsgemäße Pulver ein Polymer auf, welches eine Schmelztemperatur von 50 bis 350 °C, vorzugsweise von 70 bis 220 °C aufweist.
Die im erfindungsgemäßen Pulver vorhandenen Polymerpartikel können insbesondere durch Vermählen, Fällen und/oder anionische Polymerisation oder einer Kombination daraus oder durch anschließende Fraktionierung hergestellt werden.
Das erfindungsgemäße Pulver weist vorzugsweise zumindest ein Polyamid auf. Als Polyamid weist das erfindungsgemäße Pulver vorzugsweise ein Polyamid auf, welches pro Carbonamid- Gruppe mindestens 8 Kohlenstoffätome aufweist. Bevorzugt weist das erfindungsgemäße Pulver mindestens ein Polyamid auf, welches 9 oder mehr Kohlenstoffatome pro Carbonamid- Gruppe aufweist. Ganz besonders bevorzugt weist das Pulver zumindest ein Polyamid, ausgewählt aus Polyamid 612 (PA 612), Polyamid 11 (PA 11) und Polyamid 12 (PA 12) oder Copolyamide, basierend auf den vorgenannten Polyamiden, auf. Das erfindungsgemäße Pulver weist ein geregeltes, teilgeregeltes oder ungeregeltes Polyamid, vorzugsweise ein ungeregeltes Polyamid auf. Es kann sich um Polyamide des Typs AABB oder AB handeln. Es kann sich um linear aliphatisches Polyamid handeln oder es können auch aromatische Anteile enthalten sein. Auch Blends oder Copolyamide oder Mischungen daraus können verwendet werden.
Ebenfalls besonders gut geeignet ist Polyamid 12, welches eine Schmelztemperatur von 185 bis 189 °C, vorzugsweise von 186 bis 188 °C, eine Schmelzenthalpie von 120 ± 17 J/g, vorzugsweise von 110 bis 130 J/g und eine Erstarrungstemperatur von 130 bis 140 °C, vorzugsweise von 135 bis 138 °C und vorzugsweise auch eine Kristallisationstemperatur nach einer Alterung von 135 bis 140 °C aufweist. Die Ermittlung dieser Messwerte erfolgte wie in EP 0 911 142 beschrieben mittels DSC. Die DSC-Messung wird vorzugsweise nach DIN 53765 bzw. ISO 11357 durchgeführt.
Der Prozess für die Herstellung für die den erfindungsgemäßen Sinterpulvem zugrunde liegenden Polyamidpulver ist allgemein bekannt und kann im Fall von PA 12 z.B. den Schriften DE 29 06 647, DE 35 10 687, DE 35 10 691 und DE 4421 454, deren Inhalt zum Offenbarungsgehalt der vorliegenden Erfindung gehören sollen, entnommen werden. Das benötigte Polyamidgranulat kann von verschiedenen Herstellern bezogen werden, beispielsweise wird Polyamid 12 Granulat von der Degussa AG unter dem Handelsnamen VESTAMID angeboten.
Das erfindungsgemäße Pulver weist bezogen auf die Summe der im Pulver vorhandenen Polymere vorzugsweise von 0,01 bis 15 Massen-% an einem Absorber, bevorzugt von 0,1 bis 10 Massen-% eines Absorbers, besonders bevorzugt von 0,2 bis 5 Massen-% eines Absorbers und ganz besonders bevorzugt von 0,4 bis 2 Massen-% eines Absorbers, auf. Die angegebenen Bereiche beziehen sich dabei auf den Gesamtgehait eines durch einen Laser mit einer Wellenlänge zwischen 100 und 3000, bevorzugt zwischen 800 und 1070 nm anregbaren Absorbers im Pulver, wobei mit Pulver die gesamte aus Komponenten bestehende Menge gemeint ist Das erfindungsgemäße Pulver kann eine Mischung eines Absorbers und Polymerpartikeln aufweisen oder aber Polymerpartikel bzw. -pulver, welche eingearbeiteten Absorber aufweisen. Bei einem Anteil des Absorbers von unter 0,01 Massen-% bezogen auf die gesamte aus Komponenten bestehende Menge nimmt der gewünschte Effekt der Aufschmelzbarkeit der gesamten Komposition durch einen Laser mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm, deutlich ab. Bei einem Anteil des Absorbers von über 15 Massen-% bezogen auf die gesamte aus Komponenten bestehende Menge verschlechtem sich die mechanischen Eigenschaften wie z.B. die Reißdehnung der aus solchen Pulvern hergestellten Formkörper deutlich und die Verarbeitbarkeit leidet
Weist das Pulver eine Mischung von Polymerpartikeln und einem Absorber auf, so weisen die Polymerpartikel eine mittlere Partikelgröße zwischen 20 und 150 um, vorzugsweise eine mittlere Partikelgröße von 45 bis 70 μm auf. Der Absorber weist vorzugsweise eine Partikelgröße auf, die die mittlere Korngröße d50 der Polymerpartikel bzw. -pulver um mindestens 20 %, vorzugsweise um mehr als 50 % und ganz besonders bevorzugt um mehr als 70 % unterschreiten. Insbesondere weist der Absorber eine mittlere Partikelgröße von 0,01 bis 50 μm, bevorzugt von 1 bis 10 μm auf. Durch die geringe Partikelgröße kommt es zu einer guten Verteilung des pulverförmigen Absorbers in dem pulverförmigen Polymerpulver.
Im einfachsten Fall weist der Absorber ein sogenanntes Farbmittel auf. Unter einem Farbmittel versteht man alle farbgebenden Stoffe nach DEST 55944, welche in anorganische und organische Farbmittel sowie in natürliche und synthetische Farbmittel einteilbar sind (s. Römpps Chemielexikon, 1981, 8. Auflage, S 1237). Nach DIN 55943 (Sept. 1984) und DIN 55945 (Aug. 1983) ist ein Pigment ein im Anwendungsmedium praktisch unlösliches, anorganisches oder organisches, buntes oder unbuntes Farbmittel. Farbstoffe sind in Lösemitteln und/oder Bindemitteln lösliche anorganische oder organische, bunte oder unbunte Farbmittel.
Der Absorber kann aber auch seine absorbierende Wirkung dadurch erhalten, daß er Zusatzstoffe aufweist. Das können beispielsweise Flammschutzmittel auf der Basis von Melamincyanurat sein (Melapur von der DSM), oder auf der Basis von Phosphor, bevorzugt Phosphate, Phosphite, Phosphonite, oder elementarer roter Phosphor. Ebenfalls als Zusatzstoff geeignet sind Kohlenstofffasern, bevorzugt gemahlen, Glaskugeln, auch hohl, oder Kaolin, Kreide, Wollastonit, oder Graphit.
Der im erfindungsgemäßen Pulver enthaltene Absorber weist bevorzugt Ruß oder KHP (Kupferhydroxidphoshat) oder Kreide, Knochenkohle, KohlenstofiHäsern, Graphit, Flammschutzmittel oder I terferenzpigmente als Hauptkomponente auf. Interferenzpigmente sind sogenannte Perlglanzpigmente. Auf Basis von dem natürlichen Mineral Glimmer werden sie mit einer dünnen Schicht aus Metalloxiden, zum Beispiel Titandioxid und/oder Eisenoxid umhüllt und stehen mit einer mittleren Korngrößenverteilung zwischen 1 und 60 μm zur Verfügung. Interferenzpigmente werden beispielsweise von der Fa. Merck unter dem Namen Iriodin angeboten. Die Modinpalette von Merck umfasst Perlglanzpigmente und metalloxidbeschichtete Glimmerpigmente sowie die Unterklassen: Interferenzpigmente, Metallglanz-Effektpigmente (Eisenoxidbeschichtung des Glimmerkerns), Silberweiß- Effektpigmente, Goldglanzeffekrpigmente(mit Titandioxid und Eisenoxid beschichteter Glimmerkern). Besonders bevorzugt ist die Verwendung von Modintypen der odin-LS- Reihe, namentlich Modin LS 820, Iriodin LS 825, Iriodin LS 830, Iriodin LS 835 und Iriodin LS 850. Ganz besonders bevorzugt ist die Verwendung von Iriodin LS 820 und Iriodin LS 825.
Daneben eignen sich ebenfalls: Glimmer bzw. Glimmerpigmente, Titandioxid, Kaolin, organische und anorganische Farbpigmente, Antimon(TII)oxid, Metallpigmente, Pigmente auf der Basis von Bismutoxichlorid (z. B. Serie Biflair von Merck, Hochglanzpigment), Indiumzinnoxid (Nano ITO-Pulver, von Nanogate Technologies GmbH oder AdNanota ITO der Degussa), AdNanotm Zinkoxid (Degussa), Lantanhexachlorid, ClearWeld® (WO 0238677) sowie kommerziell erhältliche Hammschutzmittel, welche Melamincyanurat oder Phosphor, bevorzugt Phosphate, Phosphite, Phosphonite oder elementaren (roter) Phosphor, aufweisen.
Wenn eine Störung der Eigenfarbe des Pulvers vermieden werden soll, weist der Absorber bevorzugt Interferenzpigmente, besonders bevorzugt aus der Iriodin LS-Reihe von Merck, oder Clearweld®, aus.
Die chemische Bezeichnung für das KHP ist Kupferhydroxidphosphat; dieses wird als hellgrünes, feines kristallines Pulver mit einem mittleren Komdurchmesser von knapp 3 μm eingesetet.
Der Ruß kann nach dem Furnacerußverfahren, dem Gasrußverfahren oder dem Flammrußverfahren hergestellt werden, vorzugsweise nach dem Furnacerußverfahren. Die Primärteilchengröße liegt zwischen 10 und 100 nm, vorzugsweise zwischen 20 und 60 nm, die Kornverteilung kann eng oder breit sein. Die BET-Oberfläche nach DIN 53601 liegt zwischen 10 und 600 m2/g, bevorzugt zwischen 70 und 400 m2/g. Die Rußpartikel können zur Einstellung von Oberflächenfunktionalitäten oxidativ nachbehandelt sein. Sie können hydrophob (beispielsweise Printex 55 oder Flammruß 101 der Degussa) oder hydrophil (beispielsweise Farbruß FW20 oder Printex 150 T der Degussa) eingestellt sein. Sie können hochstrukturiert oder niederstrukturiert sein; damit wird ein Aggregationsgrad der Primärteilchen beschrieben. Durch die Verwendung spezieller Leitfahigkeitsruße kann die elektrische Leitfähigkeit der aus dem erfindungsgemäßen Pulver hergestellten Bauteile eingestellt werden. Durch die Verwendung von geperlten Rußen kann eine bessere Dispergierbarkeit sowohl bei den nassen als auch bei den trockenen Mischverfehren genutzt werden. Auch die Verwendung von Rußdispersionen kann von Vorteil sein.
Knochenkohle ist ein mineralisches Schwarzpigment, welches elementaren Kohlenstoff enthält. Sie besteht zu 70 bis 90 % aus Calciumphosphat und zu 30 bis 10 % aus Kohlenstoff. Die Dichte hegt typischerweise zwischen 2,3 und 2,8 g ml.
Der Absorber kann auch eine Mischung von organischen und/oder anorganischen Pigmenten,
Flammschutzrnitteln, oder anderen Farbmitteln enthalten, die jedes für sich in den Wellenlängen zwischen 100 und 3000 nm nicht oder schlecht absorbieren, in der Kombination jedoch ausreichend gut zur Verwendung im erfindungsgemäßen Verfahren die eingetragene elektromagnetische Energie absorbieren.
Der Absorber kann beispielsweise als Granulat, oder als Pulver vorliegen. Je nach Herstellverfahren des für das erfindungsgemäße Verfahren geeigneten Pulvers können sie vermählen oder nachgemahlen werden. Falls die Verwendung einer Dispersion für das Herstellverfahren von Vorteil ist, so kann der Absorber entweder bereits als Dispersion vorliegen, oder aus feinteiligen Absorbe artikeln eine Dispersion hergestellt werden. Der Absorber kann auch als Flüssigkeit vorhegen. Als Beispiel hierfür sei ClearWeld® genannt.
Solche Additive, die hier als Absorber verwendet werden, sind beispielsweise bei der Firma Merck unter dem Namen Iriodin® erhältlich. Mit Ruß sind handelsübliche Standardruße gemeint, wie sie beispielsweise von den Firmen Degussa AG, Cäbot Corp., oder Continental Carbon angeboten werden.
Kommerziell erhältliche Beispiele für geeignete Absorber im allgemeinen sind Iriodin® LS 820 oder Iriodin® LS 825 oder Iriodin® LS 850 der Firma Merck. Als Beispiel f r den Ruß mag Printex 60, Printex A, Printex XE2, oder Printex Alpha der Firma Degussa dienen. Geeignetes KHP wird ebenfalls von der Firma Degussa unter dem Markennamen Vestodur FP-LAS angeboten.
Erfindungsgemäßes Pulver kann außerdem zumindest einen Hilfsstofϊ, zumindest einen Füllstoff und/oder zumindest ein Pigment aufweisen. Solche Hilfestoffe können z.B. RieselhilfimitteL wie z.B. pyrogenes Siliziumdioxid oder auch gefällte Kieselsäure sein. Pyrogenes Siliziumdioxid (pyrogene Kieselsäure) wird zum Beispiel unter dem Produktnamen Aerosil®, mit unterschiedlichen Spezifikationen, durch die Degussa AG angeboten. Vorzugsweise weist erftndungsgemäßes Pulver weniger als 3 Massen-%, vorzugsweise von 0,001 bis 2 Massen-% und ganz besonders bevorzugt von 0,05 bis 1 Massen-% solcher Pigmente bezogen auf Gesamtsumme der Komponenten, also der Summe aus Polymeren und Absorber auf. Die Füllstoffe können z.B. Glas-, Metall-, insbesondere Aluminium- oder Keramikpartikel, wie z.B. massive oder hohle Glaskugeln, Stahlkugeln, Aluminiumkugeln oder Metallgrieß oder auch Buntpigmente, wie z.B. Übergangsmetalloxide sein.
Die Füllstofipartikel weisen dabei vorzugsweise eine kleinere oder ungefähr gleich große mittlere Korngröße wie die Partikel der Polymere oder die mit Polymer umhüllten Partikel auf. Vorzugsweise sollte die mittlere Korngröße d50 der Füllstoffe die mittlere Korngröße d50 der Polymere um nicht mehr als 20 %, vorzugsweise um nicht mehr als 15 % und ganz besonders bevorzugt um nicht mehr als 5 % unterschreiten. Die Partikelgröße ist insbesondere limitiert durch die zulässige Bauhöhe bzw. Schichtdicke in der jeweils verwendeten schichtweise arbeitenden Apparatur.
Vorzugsweise weist erfindungsgemäßes Pulver weniger als 75 Massen-%, bevorzugt von 0,001 bis 70 Massen-%, besonders bevorzugt von 0,05 bis 50 Massen-% und ganz besonders bevorzugt von 0,5 bis 25 Massen-% solcher Füllstoffe bezogen auf die Gesamtsumme der Komponenten auf, so dass der Volumenanteil der Polymere in jedem Fall größer 50 % beträgt. Falls es sich um gecoatete Partikel handelt, kann der Volumenanteil der Polymere auch kleiner als 50 % sein.
Beim Überschreiten der angegebenen Höchstgrenzen für Hilfs- und/oder Füllstoffe kann es, je nach eingesetztem Füll- oder Hilfsstoff zu deutlichen Verschlechterungen der mechanischen Eigenschaften von Formkörpern kommen, die mittels solcher Pulver hergestellt wurden.
Die Herstellung der erfindungsgemäßen Pulver ist einfach möglich und erfolgt bevorzugt gemäß dem erfindungsgemäßen Verfahren zur Herstellung von erfindungsgemäßem Pulver, welches sich dadurch auszeichnet, dass zumindest ein Polymer mit zumindest einem Absorber vermischt wird. Das Mischen kann trocken im Dry Blend erfolgen. Vorzugsweise wird ein z.B. durch Umfallung und oder Vermahlung erhaltenes Polymerpulver, welches auch noch anschließend fraktioniert werden kann, mit dem Absorber vermischt. Dabei kann es von Vorteil sein, den pulverförmigen Absorber zunächst allein oder aber auch die fertige Mischung mit einer Rieselhilfe zu versehen, beispielsweise aus der Aerosil-Reihe von Degussa, z. B. Aerosil R972 oder R812 oder Aerosil 200. Das Pulver kann bei dieser Variante des erfindungsgemäßen Verfahrens ein bereits für das Lasersinterverfehren geeignetes Polymerpulver sein, dem einfach feinteilige Partikel des Absorbers zugemischt werden. Die Partikel weisen dabei vorzugsweise eine kleinere bis maximal ungefähr gleich große mittlere Korngröße wie die Partikel der Polymere oder der mit polymer gecoateten Partikel auf. Vorzugsweise sollte die mittlere Korngröße d50 des Absorbers die mittlere Korngröße d50 der Polymerpulver um mehr als 20 %, vorzugsweise um mehr als 50 % und ganz besonders bevorzugt um mehr als 70 % unterschreiten. Die Korngröße ist nach oben hin insbesondere limitiert durch die zulässige Bauhöhe bzw. Schichtdicke in der Rapid- Prototyping-Anlage.
Gegebenenfalls kann zur Verbesserung des Rieselverhaltens dem erfindungsgemäßen Pulver eine geeignete Rieselhilfe, wie pyrogenes Aluminiumoxid, pyrogenes Siliziumdioxid oder pyrogenes Titandioxid, dem gefällten oder gemahlenen Pulver äußerlich zugesetzt werden.
In einer anderen Verfehrensvariante kann der Absorber in eine Schmelze von zumindest einem Polymer eincompoundiert werden und das so erhaltene Granulat durch Vermahlung, bevorzugt bei tiefen Temperaturen zu Pulver verarbeitet werden. Die Verfahrensvariante, bei welcher der Absorber eincompoundiert wird, hat gegenüber dem reinen Mischungsverfahren den Vorteil, dass eine homogenere Verteilung des Absorbers in dem Pulver erzielt wird. Eine nachfolgende Fraktionierung und/oder Ausrüstung mit einer Rieselhilfe kann angeschlossen werden. Eine mechanische Nachbearbeitung, beispielsweise in einem schnellaufenden Mischer, zur Verrundung der beim »Mahlen entstandenen scharfkantigen Partikel und damit zur besseren Auftragbarkeit dünner Schichten kann ebenfalls sinnvoll sein.
h einer weiteren, bevorzugten Verfehrensvariante wird Polyamid verwendet, bevorzugt ein PA12 oder ein Polyamid 11. Dabei wird der Absorber bereits beim Fällprozess des Polyamids zugesetzt. Ein solcher Fällprozess ist beispielsweise in DE 35 10 687 und DE 29 06 647 beschrieben. Mittels dieses Verfahrens kann z.B. Polyamid 12 aus einer Polyamid-Ethanol- Lösung durch Abziehen von Ethanol und gleichzeitigem Senken der Lösungstemperatur ausgefällt werden. Weist die Polyamid-Ethanol Lösung Absorberpartikel suspendiert auf, wird ein gefälltes absorberhaltiges Polyamid-Pulver erhalten. Für eine detaillierte Beschreibung des Verfahrens wird auf DE 35 10 687 bzw. DE 29 06 647 verwiesen. Der Fachmann erkennt sehr schnell, dass dieses Verfahren in abgewandelter Form auch auf andere Polyamide angewendet werden kann, wobei als Voraussetzung gilt, dass Polyamid und Lösemittel so gewählt werden, dass sich das Polyamid (bei einer erhöhten Temperatur) in dem Lösemittel löst und dass das Polyamid bei einer niedrigeren Temperatur und/oder beim Entfernen des Lösemittels aus der Lösung ausfallt Durch Zugäbe von Absorberpartikel geeigneter Partikelgröße zu dieser Lösung werden die jeweiligen Absorber aufweisenden Polyamide erhalten. Das so entstandene absorberhaltige Pulver kann anschließend weiter vermählen und/oder fraktioniert und/oder durch mechanische Nachbehandlung verrundet und/oder mit einer Rieselhilfe versehen werden.
In einer weiteren Verfahrensvariante wird eine Absorber-enthaltende Dispersion mit dem Pulver vermischt, durch anschließende Trocknung erhält man das erfindungsgemäße Pulver. Diese Variante der Durchmischung hat gegenüber dem reinen Mischungsverfehren den Vorteil, dass eine homogenere Verteilung der Absorberpartikel in dem Polymerpulver erzielt wird Das so entstandene absorberhaltige Pulver kann anschließend weiter vermählen und/oder fraktioniert und/oder durch mechanische Nachbehandlung verrundet und/oder mit einer Rieselhilfe versehen werden.
Eine feinteilige Vermischung kann in der einfachsten Ausführungsart des erfindungsgemäßen Verfahrens beispielsweise durch Aufmischen fein gepulverten Absorbers auf das trockene Pulver in schnelllaufenden mechanischen Mischern erfolgen. <
Als Absorber können handelsübhche Produkte, die beispielsweise bei der Fa. Merck oder Degussa unter dem Handelsnamen Iriodin® oder Printex® bezogen werden können, bzw. die oben beschriebenen eingesetzt werden.
Zur Verbesserung des Schmelzeverlaufs bei der Herstellung der Formkörper kann ein Verlaufsmittel wie beispielsweise Metallseifen, bevorzugt Alkali- oder Erdalkalisalze der zugrunde hegenden Alkanmonocarbonsäuren oder Dimersäuren, dem gefeilten oder gemahlenen Pulver zugesetzt werden. Die Metallseifen wurden in Mengen von 0,01 bis 30 Gew.-%, vorzugsweise 0,5 bis 15 Gew.- %, bezogen auf die Summe der im Pulver vorhandenen Polymere, eingesetzt. Bevorzugt 5 wurden als Metallseifen die Natrium- oder Calciumsalze der zugrundeliegenden Alkanmonocarbonsäuren oder Dimersäuren eingesetzt. Beispiele für kommerziell verfügbare Produkte sind Licomont NaV 101 oder Licomont CaV 102 der Firma Clariant.
Die Metallseifenpartikel können in die Polymerpartikel eingearbeitet werden, es können aber o auch Mischungen von feinteiligen Metallseifenpartikeln und Polymerpartikeln vorliegen.
Zur Verbesserung der Verarbeitungsfälligkeit oder zur weiteren Modifikation des* Pulvers können diesem anorganische Pigmente, insbesondere Buntpigmente, wie z.B. Übergangsmetalloxide, Stabilisatoren, wie z.B. Phenole, insbesondere sterisch gehinderte5 Phenole, Verlaufs- und Rieselhilfsmittel, wie z.B. pyrogene Kieselsäuren sowie Füllstoffpartikel zugegeben werden. Vorzugsweise wird, bezogen auf das Gesamtgewicht an Komponenten im Pulver, soviel dieser Stoffe den Pulvern zugegeben, dass die für das erfindungsgemäße Pulver angegeben Konzentrationen für Füll- und/oder Hilfsstoffe eingehalten werden.0 Gegenstand der vorliegenden Erfindung ist auch die Verwendung von erfindungsgemäßem Pulver zur Herstellung von Formkörpern in einem schichtweise arbeitenden und selektiv das Pulver aufschmelzenden (Rapid-Prototyping- oder Rapid-Manufacturing-) Verfahren, bei denen erfindungsgemäße Pulver, die zumindest ein Polymer und einen Absorber, aufweisen,5 eingesetzt werden.
Insbesondere ist Gegenstand der vorliegenden Erfindung die Verwendung des Pulvers zur Herstellung von Formkörpern durch selektives Lasersintern eines Absorber enthaltenden Fällpulvers auf Basis eines Polyamid 12, welches eine Schmelztemperatur von 185 bis 189 °C,0 eine Schmelzenthalpie von 112 ± 17 J/g und eine Erstarrungstemperatur von 136 bis 145 °C aufweist und dessen Verwendung in US 6,245,281 beschrieben wird.
Die Laser-Sinter-Verfahren sind hinlänghch bekannt und beruhen auf dem selektiven Sintern von Polymerpartikeln, wobei Schichten von Polymerpartikeln kurz einem Laserlicht ausgesetzt werden und so die Polymerpartikel, die dem Laserlicht ausgesetzt waren, verschmolzen werden. Durch die aufeinanderfolgende Versinterung von Schichten von Polymerpartikeln werden dreidimensionale Objekte hergestellt. Einzelheiten zum Verfahren des selektiven Laser- Sintems sind z.B. den Schriften US 6,136,948 und WO 96/06881 zu entnehmen. Das erfindungsgemäße Pulver kann aber auch in Verfahren, welches Laser mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm oder zwischen 1900 und 2100 nm, verwendet, insbesondere in dem oben beschriebenen, eingesetzt werden. So kann das erfindungsgemäße Pulver insbesondere zur Herstellung von Formkörpern aus Pulvern durch das SLS- Verfahren (selektives Lasersintern) mittels Lasern mit einer Wellenlänge zwischen 100 und 3000 nm, bevorzugt zwischen 800 und 1070 nm oder zwischen 1900 und 2100 nm, verwendet werden.
Laserenergie mit Wellenlängen zwischen 100 und 3000 nm kann meist problemlos in einen Lichtwellenleiter eingekoppelt werden. Das ermöglicht den Verzicht auf aufwendige Spiegelsysteme, wenn dieser Lichtwellenleiter dann flexibel über das Baufeld geführt werden kann. Eine weitere Bündelung des Laserstrahls kann über Linsen oder Spiegel erfolgen. Auch eine Kühlung des Lasers ist nicht in allen Fällen erforderlich.
Die erfindungsgemäßen Formkörper, hergestellt durch ein Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Teile eines Pulvers, insbesondere des erfindungsgemäßen Pulvers, aufgeschmolzen werden, wie z.B. dem selektiven Laser-Sintern, zeichnen sich dadurch aus, dass sie zumindest einen Absorber und zumindest ein Polymer oder einen mit Polymer gecoateten Partikel aufweisen. Vorzugsweise weisen die erfindungsgemäßen Formkörper zumindest ein Polyamid auf, welches pro Carbonamid-Gruppe mindestens 8 Kohlenstoffetome aufweist Ganz besonders bevorzugt weisen erfindungsgemäße Formkörper zumindest ein Polyamid 612, Polyamid 11 und/oder ein Polyamid 12 oder Copolyamide, basierend auf diesen Polyamiden und zumindest einem Absorber auf.
Der im erfindungsgemäßen Formkörper vorhandene Absorber kann beispielsweise ein sogenanntes Farbmittel aufweisen. Unter einem Farbmittel versteht man alle farbgebenden Stoffe nach DIN 55944, welche in anorganische und organische Farbmittel sowie in natürliche und synthetische Farbmittel einteilbar sind (s. Römpps Chemielexikon, 1981, 8. Auflage, S 1237). Nach DIN 55943 (Sept. 1984) und DIN 55945 (Aug. 1983) ist ein Pigment ein im Anwendungsmedium praktisch unlösliches, anorganisches oder organisches, buntes oder unbuntes Farbmittel. Farbstoffe sind in Lösemitteln und/oder Bindemitteln lösliche anorganische oder organische, bunte oder unbunte Farbmittel.
Der im erfindungsgemäßen Formköφer vorhandene Absorber kann aber auch seine absorbierende Wirkung dadurch erhalten, daß er Zusatzstoffe aufweist. Das können beispielsweise Flammschutzmittel auf der Basis von Melamincyanurat sein (Melapur von der DSM), oder auf der Basis von Phosphor, bevorzugt Phosphate, Phosphite, Phosphonite, oder elementarer roter Phosphor. Ebenfalls als Zusatzstoff geeignet sind Kohlenstofffasern, bevorzugt gemahlen, Glaskugeln, auch hohl, oder Kaolin, Kreide, Wollastonit, oder Graphit
Der im erfindungsgemäßen Formköφer vorhandene Absorber weist bevorzugt Ruß oder KHP (Kupferhydroxidphoshat) oder Kreide, Knochenkohle, Kohlenstofffasern, Graphit, Flammschutzmittel oder Interferenzpigmente als Hauptkomponente auf. Interferenzpigmente sind sogenannte Perlglanzpigmente. Auf Basis von dem natürlichen Mineral Glimmer werden sie mit einer dünnen Schicht aus Metalloxiden, zum Beispiel Titandioxid und/oder Eisenoxid umhüllt und stehen mit einer mittleren Korngrößenverteilung zwischen 1 und 60 μm zur Verfügung. Interferenzpigmente werden beispielsweise von der Fa. Merck unter dem Namen Iriodin angeboten. Die Modinpalette von Merck umfesst Perlglanzpigmente und metalloxidbeschichtete Glimmeφigmente sowie die Unterklassen: Interferenzpigmente, Metaüglanz-Effektpigmente (Eisenoxidbeschichtung des Glimmerkerns), Silberweiß- Effektpigmente, Goldglanzeffektpigmente (mit Titandioxid und Eisenoxid beschichteter Glimmerkern). Besonders bevorzugt ist die Verwendung von Modintypen der Modin-LS- Reihe, namentlich Modin LS 820, Iriodin LS 825, Iriodin LS 830, Modin LS 835 und Iriodin LS 850. Ganz besonders bevorzugt ist die Verwendung von Modin LS 820 und Modin LS 825.
Der im erfindungsgemäßen Formköφer vorhandene Absorber kann beispielsweise Glimmer bzw. Glimmeφigmente, Titandioxid, Kaolin, organische und anorganische Farbpigmente, Antimon(III)oxid, Metallpigmente, Pigmente auf der Basis von Bismutoxichlorid (z. B. Serie Biflair von Merck, Hochglanzpigment), Incüumzinnoxid (Nano ITO-Pulver, von Nanogate Technologies GmbH oder AdNano1™ ITO der Degussa), AdNano*™ Zinkoxid (Degussa), Lantanhexachlorid, ClearWeld® (WO 0238677) sowie kommerziell erhältliche Flammschutzmittel, welche Melamincyanurat oder Phosphor, bevorzugt Phosphate, Phosphite, Phosphonite oder elementaren (roter) Phosphor, aufweisen.
Vorzugsweise weist der erfindungsgemäße Formköφer, bezogen auf die Summe der im Formköφer vorhandenen Komponenten, von 0,01 bis 15 Massen-% an Absorber, bevorzugt von 0,1 bis 10 Massen-%, besonders bevorzugt von 0,2 bis 5 Massen-% und ganz besonders bevorzugt von 0,4 bis 2 Massen-% auf. Maximal beträgt der Anteil an Absorber 15 Massen-% bezogen auf die Summe der im Formköφer vorhandenen Komponenten.
Die Formköφer können neben Polymer und Absorber außerdem Füllstoffe und/oder Hilfsstoffe und/oder Pigmente, wie z.B. thermische Stabilisatoren und/oder Oxidationsstäbili- satoren wie z.B. sterisch gehinderte Phenolderivate aufweisen. Füllstoffe können z.B. Glas-, Keramikpartikel und auch Metallpartikel wie zum Beispiel Eisenkugeln, bzw. entsprechende Hohlkugeln sein. Bevorzugt weisen die erfindungsgemäßen Formköφer Glaspartikel, ganz besonders bevorzugt Glaskugeln auf. Vorzugsweise weisen erfindungsgemäße Formköφer weniger als 3 Gew.-%, vorzugsweise von 0,001 bis 2 Massen-% und ganz besonders bevorzugt von 0,05 bis 1 Massen-% solcher Hilfsstoffe bezogen auf die Summe der vorhandenen Komponenten auf. Ebenso bevorzugt weisen erfindungsgemäße Formköφer weniger als 75 Massen-%, bevorzugt von 0,001 bis 70 Massen-%, besonders bevorzugt von 0,05 bis 50 Massen-% und ganz besonders bevorzugt von 0,5 bis 25 Massen-% solcher Füllstoffe bezogen auf die Summe der vorhandenen Komponenten auf.
Die folgenden Beispiele sollen die erfindungsgemäße pulverförmige Komposition sowie deren Verwendung beschreiben, ohne die Erfindung auf die Beispiele einzuschränken.
Die in den nachfolgenden Beispielen durchgeführte Bestimmung der BET-Oberfläche erfolgte nach DIN 66 131. Die Schüttdichte wurde mit einer Apparatur gemäß DIN 53 466 ermittelt. Die Messwerte der Laserbeugung wurden an einem Malvern Mastersizer S, Ver.2.18 erhalten.
Bespiel 1: Vergleichsbeispiel (nicht erfindungsgemäß):
40 kg ungeregeltes, durch hydrolytische Polymerisation hergestelltes PA 12 hergestellt in Anlehnung an DE 35 10 691, Beispiel 1 mit einer relativen Lösungsviskosität ηreι, von 1,61 (in angesäuertem m-Kresol) und einem Endgruppengehalt von 72 mmol/kg COOH bzw. 68 mmol/kg NH2 werden mit 0,3 kg IRGANOX® 1098 in 350 1 Ethanol, vergällt mit 2- Butanon und 1 % Wassergehalt, innerhalb von 5 Stunden in einem 0,8 m3 -Rührkessel (D = 90 cm, h = 170 cm) auf 145 °C gebracht und unter Rühren (Blattrührer, d = 42 cm, Drehzahl = 91 Upm) 1 Stunde bei dieser Temperatur belassen. Anschließend wird die Manteltemperatur auf 120 °C reduziert und mit einer Kühlrate von 45 K h bei der derselben Rührerdrehzahl die Innentemperatur auf 120 °C gebracht. Von jetzt an wird bei gleicher Kühlrate die Manteltemperatur 2 K - 3 K unter der Innentemperatur gehalten. Die Innentemperatur wird mit gleicher Kühlrate auf 117 °C gebracht und dann 60 Minuten konstant gehalten. Danach wird mit einer Kühlrate von 40 K/h die Innentemperatur auf 111 °C gebracht. Bei dieser Temperatur setzt die Fällung ein, erkennbar an der Wärmeentwicklung. Nach 25 Minuten feilt die Innentemperatur ab, was das Ende der Fällung anzeigt. Nach Abkühlen der Suspension auf 75 °C wird die Suspension in einen Schaufeltrockner überführt. Das Ethanol wird daraus bei laufendem Rührwerk bei 70 °C/400 mbar äbdestilliert, und der Rückstand anschließend bei 20 mbar/ 85 °C 3 Stunden nachgetrocknet.
Figure imgf000022_0001
Schüttdichte: 429 g/1 Laserbeugung: d(10 %): 42 μm, d(50 %): 69 μm, d(90 %): 91μm
Beispiel 2: Einarbeitung von Iriodin® LS 820 durch Compoundierung und anschließende Vermahlung 40 kg (100 Teile) geregeltes, durch hydrolytische Polymerisation hergestelltes PA 12, Typ Vestamid L1600 der Degussa AG, werden mit 0,3 kg IRGANOX ® 245 und 400 g (1 Teil) Absorber (Modin® LS 820, Merck) bei 220 °C in einer Zweiwellen-Compoundiermaschine (Bersttorf ZE25) extrudiert und als Strang granuliert. Das Granulat wird anschließend bei tiefen Temperaturen (-40 °C) in einer Prallmühle auf eine Korngrößenverteilung zwischen 0 und 120 μm vermählen. Anschheßend wurden 40 g Aerosil 200 (0,1 Teile) bei Raumtemperatur und 500 U/min 3 Minuten untergemischt
Beispiel 3: Einarbeitung von Iriodin® LS 825 im Dry Blend
Zu 1900 g (100 Teüe) Polyamid 12-Pulver, hergestellt gemäß DE 29 06 647, Beispiel 1 mit einem mittleren Korndurchmesser d5o von 57μm (Laserbeugung) und einer Schüttdichte gemäß DIN 53 466 von 458 g/1 wird 9,5 g (0,5 Teile) Iriodin® LS 825 im Dry-Blend-Verfähren unter Benutzung eines Henschelmischers FML10/KM23 bei 500 U/min bei 40 °C in 2 Minuten gemischt. Anschließend wurden 3,8 g Aerosil 200 (0,2 Teile) bei Raumtemperatur und 500 U/min in 3 Minuten untergemischt.
Beispiel 4: Einarbeitung von KHP im Dry Blend
Zu 1900 g (100 Teile) Polyamid 12-Pulver, hergestellt gemäß DE 29 06 647, Beispiel 1 mit einem mittleren Komdurchmesser d50 von 57μm (Laserbeugung) und einer Schüttdichte gemäß DIN 53 466 von 458 g/1 wird 40 g (2 Teile) KHP (Vestodur FP-LAS) im Dry-Blend-Verfehren unter Benutzung eines Henschelmischers FML10/KM23 bei 500 U/min bei 40 °C in 2 Minuten gemischt. Anschließend wurden 1 g Aerosil R812 (0,05 Teile) bei Raumtemperatur und 500 U/min in 3 Minuten untergemischt.
Beispiel 5: Einarbeitung von Iriodin® LS 825 und Metallseife im Dry Blend Zu 1900 g (100 Teile) Polyamid 12-Pulver, hergestellt gemäß DE 29 06 647, Beispiel 1 mit einem mittleren Korndurchmesser d5o von 56 μm (Laserbeugung) und einer Schüttdichte gemäß DIN 53 466 von 459 g/1 wird 9,5 g (0,5 Teile) Iriodin® LS 825 im Dry-Blend- Verfahren unter Benutzung eines Henschelmischers FML10/KM23 bei 700 U/min bei 50 °C in 3 Minuten gemischt. Anschließend wurden 38 g (2 Teile) Licomont NaV 101 und 2 g Aerosil 200 (0,1 Teile) bei Raumtemperatur und 500 U/min in 3 Minuten untergemischt. Beispiel 6: Einarbeitung von Printex alpha im Dry Blend
Zu 1900 g (100 Teile) Polyamid 12-Pulver, hergestellt gemäß DE 29 06 647, Beispiel 1 mit einem mittleren Korndurchmesser d50 von 56 μm (Laserbeugung) und einer Schüttdichte gemäß DIN 53 466 von 459 g/1 wird 38 g (2 Teile) Printex alpha im Dry-Blend-Verfehren unter Benutzung eines Henschelmischers FML10 KM23 bei 700 U/min bei 50 °C in 3 Minuten gemischt. Anschließend wurden 2,0 g Aerosil 200 (0,1 Teile) bei Raumtemperatur und 500 U/min in 3 Minuten untergemischt
Beispiel 7: Einarbeitung von Printex alpha im Dry Blend Zu 1900 g (100 Teile) Copolyamid-Pulver (Vestamelt 470 der Degussa) mit einem mittleren Komdurchmesser d50 von 80 μm (Laserbeugung) und einer Schüttdichte gemäß DIN 53 466 von 505 g/1 wird 38 g (2 Teile) Printex alpha im Dry-Blend- Verfahren unter Benutzung eines Henschelmischers FML10/KM23 bei 700 U/min bei Raumtemperatur in 2 Minuten gemischt. Anschheßend wurden 2,0 g Aerosil 200 (0,1 Teile) bei Raumtemperatur und 500 U/min in 2 Minuten untergemischt.
Beispiel 8: Einarbeitung von KHP in PBT durch Compoundierung und anschließende Vermahlung
5 kg (100 Teile) Polybutylenterephthalat, Typ Vestodur 1000 der Degussa AG, werden mit 75 g (1,5 Teile) KHP (Vestodur FP-LAS) bei 250 °C in einer Compoundiermaschine (Werner und Pfleiderer ZSK30) extrudiert und als Strang granuliert. Das Granulat wird anschließend bei tiefen Temperaturen (-40 °C) in einer Prallmühle auf eine Korngrößenverteilung zwischen 0 und 120 μm vermählen. Anschheßend wurden 5 g Aerosil 200 (0,1 Teile) bei Raumtemperatur und 500 U/min 3 Minuten untergemischt. Weiterverarbeitung und Test Ein 10x10 cm oben offener Kasten wurde mit einem Boden versehen, der über eine Spindel verfehrbar ist. Der Boden wurde bis auf einen halben Zentimeter an die obere Kante bewegt; der verbliebene Raum wurde mit Pulver gefüllt und mit einer Metallplatte glattgestrichen. Die 5 Apparatur wurde in den Bauraum eines Nd:YAG-Lasers Star Mark 65 (Hersteller Carl Basel Lasertechnik) gestellt, und es wurde ein Rechteck von 3*25 mm2 in die Pulverschicht gelasert. Die nächsten Schritte, Drehung der Spindel zum Absenken des Bodens um 0,1 mm sowie Auftrag der nächsten Pulverschicht, glattstreichen und anschließend erneutes Belichten durch den Nd:YAG-Laser zum Aufschmelzen des Pulvers, wurden einige Male wiederholt Nach l o Abkühlen der Versuchsanordnung sollte ein gesinterter Block vorliegen.
Die aufgeschmolzenen Strukturen zeigten leicht Neigung zu Curl, dem aber durch Anwärmen der Apparatur entgegengewirkt werden konnte. Alle Proben wurden mit einer Leistung zwischen 50 und 60 Watt und einer Behchtungsgeschwindigkeit von 100 mmsec behandelt.
15 Besonders gut schmolzen die mit Ruß modifizierten Proben auf. Auch die mit Modin-Pigment versehenen Proben eigneten sich sehr gut. Beide Proben ließen sich auch mit schnellerer Behchtungsgeschwindigkeit und weniger Leistung gut aufsschmelzen. Die anderen Proben schmolzen ebenfalls gut auf. In allen Fällen konnten die Blöcke hergestellt werden. Für alle Proben können die Verarbeitungsparameter noch nach Bedarf optimiert werden. 0 Die unbehandelte Vergleichsprobe aus Beispiel 1 zeigte auch nach langer Lasereinwirkung kein Aufschmelzen.

Claims

Patentansprüche:
1. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfehren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein Laser mit einer Wellenlänge zwischen 100 und 3000 nm eingesetzt werden kann.
2. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfehren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden nach Anspruch 1, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein Laser mit einer Wellenlänge zwischen 800 und 1070 nm eingesetzt werden kann.
3. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfehren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden nach Anspruch 1, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein Laser mit einer Wellenlänge zwischen 1900 und 2100 nm eingesetzt werden kann.
4. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfehren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden nach Ansprach 1, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein YAG-Laser eingesetzt werden kann.
5. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden nach Anspruch 1, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein Nd: YAG-Laser mit einer Wellenlänge von 1064 nm eingesetzt werden kann.
6. Pulverförmige Zusammensetzung zur Verarbeitung in einem Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen mittels Laser, bei dem selektiv Bereiche der jeweiligen Pulverschicht aufgeschmolzen werden nach Anspruch 1, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymer und zumindest einen Absorber aufweist, wobei ein Diodenlaser mit einer Wellenlänge zwischen 800 und 1000 nm eingesetzt werden kann.
7. Pulver nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Pulver zumindest ein Polymeφulver aufweist, welches durch durch Vermählen, Fällen, und/oder anionische Polymerisation oder einer Kombination daraus oder durch anschließende Fraktionierung hergestellt wurde.
8. Pulver nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Pulver Partikel aufweist, welche mit dem Polymer gecoated sind.
9. Pulver nach zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Polymer ein Homo- oder Copolymer ausgewählt aus Polyester, Polyvinylchlorid, Polyacetal, Polypropylen, Polyethylen, Polystyrol, Polycarbonat, Polybutylenterephthalat, Polyethylenterephthalat, Polysulfon, Polyarylenether, Polyurethan, thermoplastische Elastomere, Polylactide, Polyoxyalkylene, Poly-(N-methylmethacrylimide) (PMMI), Polymethylmethacrylat (PMMA), Ionomer, Polyamid, Copolyester, Copolyamide, Silikonpolymere, Teφolymere, Acrylnitril-Butadien-Styrol-Copolymere (ABS) oder Gemische davon, aufweist.
10. Pulver nach zumindest einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Pulver ein Polyamid 612, Polyamid 11 oder Polyamid 12 oder Copolyamide basierend auf den vorgenannten Polyamiden aufweist.
11. Pulver nach zumindest einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Polymere eine Schmelztemperatur von 50 bis 350 °C aufweist.
12. Pulver nach Anspruch 11, dadurch gekennzeichnet, dass das Polymere eine Schmelztemperatur von 70 bis 220 °C aufweist.
13. Pulver nach zumindest einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Pulver eine mittlere Partikelgröße von 20 bis 150 μm aufweist.
14. Pulver nach Anspruch 13, dadurch gekennzeichnet, dass das Pulver eine mittlere Partikelgröße von 45 bis 70 μm aufweist
15. Pulver nach zumindest einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es zusätzlich zumindest einen Hilfsstoff und/oder zumindest einen Füllstoff und/oder zumindest ein Pigment aufweist.
16. Pulver nach Anspruch 15, dadurch gekennzeichnet, dass es als Hilfestoff Rieselhilfsmittel aufweist.
17. Pulver nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Absorber Farbmittel aufweist.
18. Pulver nach Anspruch 17, dadurch gekennzeichnet, dass der Absorber Farbstoffe aufweist.
19. Pulver nach Anspruch 17, dadurch gekennzeichnet, dass der Absorber Pigmente aufweist.
20. Pulver nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Absorber Ruß, KHP, Knochenkohle, Graphit, Kohlenstofiϊasem, Kreide oder Interferenzpigmente aufweist.
21. Pulver nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Absorber neben Ruß, KHP, Knochenkohle, Graphit, Kohlenstofffesem, Kreide oder Interferenzpigmenten weitere Komponenten aufweist.
22. Pulver nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Absorber Flammschutzmittel basierend auf Phosphor oder Melamincyanurat aufweist.
23. Pulver nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das Pulver die Absorberkomponente pulverformig mit einer mittleren Partikelgröße von 0,01 bis 50 μm aufweist.
24. Pulver nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Pulver bezogen auf die Summe der im Pulver vorhandenen Polymere von 0,01 bis 30 Gew.-% Metallseife aufweist.
25. Pulver nach Anspruch 24, dadurch gekennzeichnet, dass das Pulver bezogen auf die Summe der im Pulver vorhandenen Polymere von 0,5 bis 15 Gew.-% Metallseife aufweist
26. Verfehren zur Herstellung von Pulver gemäß zumindest einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass zumindest ein Polymer mit einem Absorber vermischt wird
27. Verfehren nach Anspruch 26, dadurch gekennzeichnet, dass durch Umfallung oder Vermahlung erhaltenes Polymeφulver im Dry Blend mit dem Absorber vermischt wird.
28. Verfehren nach Ansprach 26, dadurch gekennzeichnet, dass der Absorber in eine Schmelze von Polymer eincompoundiert wird und das erhaltene Gemisch durch Vermahlung zu Pulver verarbeitet wird
29. Verfahren nach Ansprach 26, dadurch gekennzeichnet, dass der Absorber bei der Umfallung der Polymer enthaltenden Lösung zugegeben wird
30. Verfehren nach Anspruch 26, dadurch gekennzeichnet,
5 dass der Absorber mit einer das Polymer aufweisenden Suspension vermischt wird und eine Trocknung angeschlossen wird.
31. Verwendung von Pulvem gemäß zumindest einem der Ansprüche 1 bis 25 zur Herstellung von Formkörpern durch ein schichtweise arbeitendes, selektiv das Pulver aufschmelzendes o Verfehren mittels eines Lasers mit einer Wellenlänge zwischen 100 und 3000 nm.
32. Verwendung von Pulvern gemäß zumindest einem der Ansprüche 1 bis 25 zur Herstellung von Formkörpern durch ein schichtweise arbeitendes, selektiv das Pulver aufschmelzendes Verfehren mittels eines Lasers mit einer Wellenlänge zwischen 800 und 1070 nm.5 33. Verwendung von Pulvem gemäß zumindest einem der Ansprüche 1 bis 25 zur Herstellung von Formkörpern durch ein schichtweise arbeitendes, selektiv das Pulver aufschmelzendes Verfehren mittels eines Lasers mit einer Wellenlänge zwischen 1900 und 2100 nm. 0 34. Verwendung nach zumindest einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass die Herstellung von Foimkörpern durch selektives Lasersintern erfolgt.
35. Formköφer, hergestellt durch ein Verfahren zum schichtweisen Aufbau von5 dreidimensionalen Gegenständen, bei dem selektiv Teile eines Pulvers mittels Energieeintrag durch einen Laser mit einer Wellenlänge zwischen 100 und 3000 nm aufgeschmolzen werden, dadurch gekennzeichnet, dass er zumindest einen Absorber und zumindest ein Polymer aufweist.0
36. Formköφer, hergestellt durch ein Verfahren zum schichtweisen Aufbau von dreidimensionalen Gegenständen, bei dem selektiv Teile eines Pulvers mittels Energieeintrag durch einen Laser mit einer Wellenlänge zwischen 100 und 3000 nm aufgeschmolzen werden, dadurch gekennzeichnet, dass er zumindest einen Absorber und zumindest ein Homo- oder Copolymer ausgewählt aus Polyester, Polyvinylchlorid, Polyacetal, Polypropylen, Polyethylen, Polystyrol, Polycarbonat, Polybutylenterephthalat, Polyethylenterephthalat, Polysulfbn, Polyarylenether, Polyurethan, Polylactide, thermoplastische Elastomere, Polyoxyalkylene, Poly-(N-methylmethacιylimide) (PMMI), Polymethylmethaciylat (PMMA), Ionomer, Polyamid, Copolyester, Copolyamide, Silikonpolymere, Teφolymere, Acrylnitril-Butadien- Styrol-Copolymere (ABS)oder Gemische davon, aufweist.
37. Formköφer nach zumindest einem der Ansprüche 35 oder 36, dadurch gekennzeichnet, dass er ein Polyamid aufweist, welches pro Carbonamid-Gruppe zumindest 8 Kohlenstoffatome aufweist.
38. Formköφer nach Anspruch 37, dadurch gekennzeichnet, dass er Polyamid 612, Polyamid 11 und/oder Polyamid 12 oder Copolyamide, basierend auf diesen Polyamiden aufweist
39. Formköφer nach zumindest einem der Ansprüche 35 bis 38, dadurch gekennzeichnet, dass er bezogen auf die Summe der vorhandenen Komponenten von 0,01 bis 15 Massen-% Absorber aufweist.
40. Formköφer nach Anspruch 39, dadurch gekennzeichnet, dass er bezogen auf die Summe der vorhandenen Polymere von 0,1 bis 10 Gew.-% Absorber aufweist.
41. Formköφer nach zumindest einem der Ansprüche 35 bis 40, dadurch gekennzeichnet, dass er Farbmittel aufweist
42. Formköφer nach Anspruch 41, dadurch gekennzeichnet, dass er Farbstoffe aufweist.
43. Formköφer nach Anspruch 41, dadurch gekennzeichnet, dass er Pigmente aufweist.
44. Formköφer nach zumindest einem der Ansprüche 35 bis 40, dadurch gekennzeichnet, dass er Ruß, KHP, Knochenkohle, Graphit, Kohlenstofffesern, Kreide oder Interferenzpigmente oder Flammschutzmittel basierend auf Phosphor oder auf Melamincyanurat aufweist
45. Formköφer nach zumindest einem der Ansprüche 35 bis 44, dadurch gekennzeichnet, dass er Füllstoffe und/oder Hilfestofle aufweist.
46. Formköφer nach zumindest einem der Ansprüche 35 bis 45, dadurch gekennzeichnet, dass er bezogen auf die Summe der im Pulver vorhandenen Polymere von 0,01 bis 30 Gew.-% Metallseife aufweist.
7. Formköφer nach Ansprach 46, dadurch gekennzeichnet, dass er bezogen auf die Summe der im Pulver vorhandenen Polymere von 0,5 bis 15 Gew.- % Metallseife aufweist.
PCT/EP2005/050346 2004-03-16 2005-01-27 Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm WO2005090056A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004012683A DE102004012683A1 (de) 2004-03-16 2004-03-16 Lasersintern mit Lasern mit einer Wellenlänge von 100 bis 3000 nm
DE102004012683.6 2004-03-16

Publications (1)

Publication Number Publication Date
WO2005090056A1 true WO2005090056A1 (de) 2005-09-29

Family

ID=34960039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050346 WO2005090056A1 (de) 2004-03-16 2005-01-27 Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm

Country Status (2)

Country Link
DE (1) DE102004012683A1 (de)
WO (1) WO2005090056A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1743759A1 (de) * 2005-07-16 2007-01-17 Degussa GmbH Verwendung von cyclischen Oligomeren in einem formgebenden Verfahren und Formkörper, hergestellt nach diesem Verfahren
WO2008019925A1 (de) * 2006-08-14 2008-02-21 Chemische Fabrik Budenheim Kg Laserbeschriftbares polymermaterial
US9011982B2 (en) 2007-05-25 2015-04-21 Eos Gmbh Electro Optical Systems Method for a layer-wise manufacturing of a three-dimensional object
WO2017180166A1 (en) 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials
WO2018046582A1 (de) * 2016-09-08 2018-03-15 Ineos Styrolution Group Gmbh Thermoplastische polymerpulver für das selektive lasersintern (sls)
WO2018122142A1 (de) 2016-12-28 2018-07-05 Covestro Deutschland Ag Additives fertigungsverfahren mit einem aufbaumaterial enthaltend einen ir-absorber
CN109575323A (zh) * 2018-11-09 2019-04-05 湖南华曙高科技有限责任公司 一种高分子聚合物粉末材料及其制备方法
WO2020043886A1 (de) * 2018-08-30 2020-03-05 Airbus Operations Gmbh Verfahren zur additiven fertigung von werkstücken aus einem flammhemmend ausgerüsteten polyamidmaterial, dadurch erhältliche werkstücke und verwendung des polyamidmaterials
WO2020083800A1 (de) 2018-10-26 2020-04-30 Covestro Deutschland Ag Additives fertigungsverfahren mit einem aufbaumaterial enthaltend metalloxid-beschichteten glimmer
CN111978813A (zh) * 2020-08-07 2020-11-24 红旗集团电力金具有限公司 一种高强度耐张线夹及其加工工艺
US11104819B2 (en) 2018-03-21 2021-08-31 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11548216B2 (en) 2018-03-21 2023-01-10 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11613646B2 (en) 2018-03-21 2023-03-28 Hewlett-Packard Development Company, L.P. Material for three-dimensional printing comprising specific polypropylene block copolymer
US11674013B2 (en) 2017-10-16 2023-06-13 Eos Gmbh Electro Optical Systems Composition for use in additive manufacturing processes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047876A1 (de) 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102004062761A1 (de) 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
DE102005008044A1 (de) 2005-02-19 2006-08-31 Degussa Ag Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102006015791A1 (de) 2006-04-01 2007-10-04 Degussa Gmbh Polymerpulver, Verfahren zur Herstellung und Verwendung eines solchen Pulvers und Formkörper daraus
DE102007019133A1 (de) 2007-04-20 2008-10-23 Evonik Degussa Gmbh Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver
DE102007038578A1 (de) 2007-08-16 2009-02-19 Evonik Degussa Gmbh Verfahren zur Dekorierung von Oberflächen
DE102008000755B4 (de) 2008-03-19 2019-12-12 Evonik Degussa Gmbh Copolyamidpulver und dessen Herstellung, Verwendung von Copolyamidpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Copolyamidpulver
EP3323601B1 (de) * 2008-05-20 2022-04-27 EOS GmbH Electro Optical Systems Beeinflussung spezifischer mechanischer merkmale von dreidimensionalen objekten, hergestellt durch selektives sintern mit elektromagnetischer strahlung aus einem pulver mit mindestens einem polymer oder copolymer
DE102010008781B4 (de) * 2010-02-22 2017-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur schichtweisen Fertigung von Bauteilen, sowie Verfahren zur schichtweisen Fertigung von Bauteilen
DE102010008960A1 (de) * 2010-02-23 2011-08-25 EOS GmbH Electro Optical Systems, 82152 Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts, das sich insbesondere für den Einsatz in der Mikrotechnik eignet
DE102010062875A1 (de) 2010-12-13 2012-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Bauteils durch Lasersintern
DE102011078720A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
DE102011078719A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Partikel
DE102011078721A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel
DE102011078722A1 (de) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete anorganische Partikel
CH710441A2 (de) 2014-12-02 2016-06-15 Rowak Ag Pulverförmige Zusammensetzungen aus thermoplastischen Kunststoffen und Verwendung der Zusammensetzungen.
PL412719A1 (pl) * 2015-06-17 2016-12-19 Sinterit Spółka Z Ograniczoną Odpowiedzialnością Kompozycja proszku i sposób wytwarzania trójwymiarowych obiektów metodą selektywnego spiekania lub/i topienia
WO2017180095A1 (en) 2016-04-11 2017-10-19 Hewlett-Packard Development Company, L.P. Particulate build material
DE102018219302A1 (de) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Selektives Sintern von polymerbasiertem Aufbaumaterial
DE102018219303A1 (de) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Verzugsoptimiertes Kunststoffpulver
DE202022000644U1 (de) 2022-03-15 2022-04-21 Evonik Operations Gmbh Pulver zur Verarbeitung in einem schichtweisen Verfahren mit Lasern im sichtbaren und Nahinfrarotbereich
EP4245506A1 (de) 2022-03-15 2023-09-20 Evonik Operations GmbH Pulver zur verarbeitung in einem schichtweisen verfahren mit lasern im sichtbaren und nahinfrarotbereich

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255901A2 (de) * 1986-08-07 1988-02-17 BASF Aktiengesellschaft Flammgeschützte verstärkte Polyamidformmassen mit heller Einfärbung
WO1988002677A2 (en) * 1986-10-17 1988-04-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
EP0911142A1 (de) * 1997-10-27 1999-04-28 Hüls Aktiengesellschaft Verwendung eines Polyamids 12 für selektives Laser-Sintern
DE19820725A1 (de) * 1998-05-11 1999-11-18 Bayer Ag Verfahren und Material zur Herstellung von Modellkörpern
DE19918981A1 (de) * 1999-04-27 2000-11-02 Bayer Ag Verfahren und Material zur Herstellung von Modellkörpern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255901A2 (de) * 1986-08-07 1988-02-17 BASF Aktiengesellschaft Flammgeschützte verstärkte Polyamidformmassen mit heller Einfärbung
WO1988002677A2 (en) * 1986-10-17 1988-04-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
EP0911142A1 (de) * 1997-10-27 1999-04-28 Hüls Aktiengesellschaft Verwendung eines Polyamids 12 für selektives Laser-Sintern
DE19820725A1 (de) * 1998-05-11 1999-11-18 Bayer Ag Verfahren und Material zur Herstellung von Modellkörpern
DE19918981A1 (de) * 1999-04-27 2000-11-02 Bayer Ag Verfahren und Material zur Herstellung von Modellkörpern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMACHTENBERG E ET AL: "LASERSINTERN VON POLYAMID. LASER-SINTERING OF POLYAMIDE", June 1997, KUNSTSTOFFE, CARL HANSER VERLAG. MUNCHEN, DE, PAGE(S) 773-774,776, ISSN: 0023-5563, XP000656866 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1743759A1 (de) * 2005-07-16 2007-01-17 Degussa GmbH Verwendung von cyclischen Oligomeren in einem formgebenden Verfahren und Formkörper, hergestellt nach diesem Verfahren
KR100830362B1 (ko) * 2005-07-16 2008-05-20 데구사 게엠베하 사이클릭 올리고머를 포함하는 분말을 사용하는 성형품의 제조방법 및 당해 방법으로 제조한 성형품
US7988906B2 (en) 2005-07-16 2011-08-02 Evonik Degussa Gmbh Three-dimensional layer-by-layer production process with powders based on cyclic oligomers
WO2008019925A1 (de) * 2006-08-14 2008-02-21 Chemische Fabrik Budenheim Kg Laserbeschriftbares polymermaterial
CN101501140B (zh) * 2006-08-14 2012-06-06 化学制造布敦海姆两合公司 可激光书写的聚合物材料
US8293147B2 (en) 2006-08-14 2012-10-23 Chemische Fabrik Budenheim Kg Laser-writable polymer material
KR101381770B1 (ko) * 2006-08-14 2014-04-07 케미쉐 파브릭 부덴하임 카게 레이저-기재가능 중합체 물질
US9011982B2 (en) 2007-05-25 2015-04-21 Eos Gmbh Electro Optical Systems Method for a layer-wise manufacturing of a three-dimensional object
WO2017180166A1 (en) 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials
US11732150B2 (en) 2016-04-15 2023-08-22 Hewlett-Packard Development Company, L.P. Composite particulate build materials
CN108495886A (zh) * 2016-04-15 2018-09-04 惠普发展公司,有限责任合伙企业 复合颗粒状构建材料
US20190002714A1 (en) * 2016-04-15 2019-01-03 Hewlett-Packard Development Company, L.P. Composite particulate build materials
JP2019502806A (ja) * 2016-04-15 2019-01-31 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 複合粒状構築材料
EP3443032A4 (de) * 2016-04-15 2019-12-18 Hewlett-Packard Development Company, L.P. Zusammengesetztes partikelförmiges baumaterial
CN108495886B (zh) * 2016-04-15 2021-02-02 惠普发展公司,有限责任合伙企业 复合颗粒状构建材料
WO2018046582A1 (de) * 2016-09-08 2018-03-15 Ineos Styrolution Group Gmbh Thermoplastische polymerpulver für das selektive lasersintern (sls)
US11193019B2 (en) 2016-09-08 2021-12-07 Ineos Styrolution Group Gmbh Thermoplastic polymer powder for selective laser sintering (SLS)
US10974498B2 (en) 2016-12-28 2021-04-13 Covestro Deutschland Ag Additive fabrication process with a structural material comprising an IR absorber
WO2018122142A1 (de) 2016-12-28 2018-07-05 Covestro Deutschland Ag Additives fertigungsverfahren mit einem aufbaumaterial enthaltend einen ir-absorber
US11674013B2 (en) 2017-10-16 2023-06-13 Eos Gmbh Electro Optical Systems Composition for use in additive manufacturing processes
US11104819B2 (en) 2018-03-21 2021-08-31 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11548216B2 (en) 2018-03-21 2023-01-10 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11613646B2 (en) 2018-03-21 2023-03-28 Hewlett-Packard Development Company, L.P. Material for three-dimensional printing comprising specific polypropylene block copolymer
US11745417B2 (en) 2018-03-21 2023-09-05 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2020043886A1 (de) * 2018-08-30 2020-03-05 Airbus Operations Gmbh Verfahren zur additiven fertigung von werkstücken aus einem flammhemmend ausgerüsteten polyamidmaterial, dadurch erhältliche werkstücke und verwendung des polyamidmaterials
WO2020083800A1 (de) 2018-10-26 2020-04-30 Covestro Deutschland Ag Additives fertigungsverfahren mit einem aufbaumaterial enthaltend metalloxid-beschichteten glimmer
CN109575323B (zh) * 2018-11-09 2020-11-06 湖南华曙高科技有限责任公司 一种高分子聚合物粉末材料及其制备方法
CN109575323A (zh) * 2018-11-09 2019-04-05 湖南华曙高科技有限责任公司 一种高分子聚合物粉末材料及其制备方法
CN111978813A (zh) * 2020-08-07 2020-11-24 红旗集团电力金具有限公司 一种高强度耐张线夹及其加工工艺

Also Published As

Publication number Publication date
DE102004012683A1 (de) 2005-10-06

Similar Documents

Publication Publication Date Title
WO2005090056A1 (de) Lasersintern mit lasern mit einer wellenlänge von 100 bis 3000 nm
EP1674497B1 (de) Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
EP1505111B1 (de) Polymerpulver mit phosphonatbasierendem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
EP1737646B1 (de) Verfahren zur herstellung von dreidimensionalen objekten mittels lasertechnik und auftragen eines absorbers per inkjet-verfahren
EP2103643B1 (de) Copolyamidpulver und dessen Herstellung, Verwendung von Copolyamidpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Copolyamidpulver
EP1400340B1 (de) Verfahren zur Herstellung eines dreidimensionalen Objektes
EP1745090B1 (de) Polymerpulver mit polyamid, verwendung in einem formgebenden verfahren und formkörper, hergestellt aus diesem polymerpulver
EP1743759B1 (de) Verwendung von cyclischen Oligomeren in einem formgebenden Verfahren
EP1982816B1 (de) Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver
EP1537170B1 (de) Verrundetes kunststoffpulver, insbesondere zur verwendung beim lasersintern, verfahren zur herstellung eines solchen pulvers und lasersinterverfahren, das ein solches pulver verwendet
WO2005010087A1 (de) Pulverförmige komposition von polymer und ammoniumpolyphosphathaltigem flammschutzmittel, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem pulver
EP3028842B1 (de) Pulverförmige zusammensetzungen aus thermoplastischen kunststoffen und verwendung der zusammensetzungen
DE102006015791A1 (de) Polymerpulver, Verfahren zur Herstellung und Verwendung eines solchen Pulvers und Formkörper daraus
EP1411087A1 (de) Laser-Sinter-Pulver mit Titandioxidpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
WO2018197577A1 (de) Verfahren zur herstellung eines dreidimensionalen objekts
WO2005084955A1 (de) Durch farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweissbare kunststoffmaterialien
DE102004020452A1 (de) Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102005054723A1 (de) Verwendung von Polyesterpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polyesterpulver
EP1763431B1 (de) Laserschweissverfahren und -material
DE102004051457A1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien
DE102011078721A1 (de) Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel
DE102004009234A1 (de) Polymerpulver mit Rußpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
WO2005082979A1 (de) Polymerpulver mit copolymer, verwendung in einem formgebenden verfahren mit fokussiertem energieeintrag und formkörper, hergestellt aus diesem polymerpulver
DE10311446A1 (de) Polymerpulver für SIV-Verfahren
DE202004016363U1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase