WO2006094467A1 - Procede et systeme de purification du sang bases sur une absorption par affinite - Google Patents
Procede et systeme de purification du sang bases sur une absorption par affinite Download PDFInfo
- Publication number
- WO2006094467A1 WO2006094467A1 PCT/CN2006/000371 CN2006000371W WO2006094467A1 WO 2006094467 A1 WO2006094467 A1 WO 2006094467A1 CN 2006000371 W CN2006000371 W CN 2006000371W WO 2006094467 A1 WO2006094467 A1 WO 2006094467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- blood purification
- column
- blood
- ligand
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
- A61M1/3486—Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3265—Non-macromolecular compounds with an organic functional group containing a metal, e.g. a metal affinity ligand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3272—Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
- B01J20/3274—Proteins, nucleic acids, polysaccharides, antibodies or antigens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
- B01D15/3804—Affinity chromatography
- B01D15/3809—Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
- B01D15/3804—Affinity chromatography
- B01D15/3828—Ligand exchange chromatography, e.g. complexation, chelation or metal interaction chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/60—Use in several different columns
- B01J2220/603—Use in several different columns serially disposed columns
Definitions
- the present invention relates to a novel blood purification method, a method of purifying a patient's blood to treat a disease, and a blood purification system dedicated to the method. More particularly, the present invention relates to an improved affinity-based adsorption-based blood purification method and system for adding another adsorption step after conventional adsorption purification for adsorbing exfoliated ligands to reduce Side effects of conventional blood purification methods. Background technique
- Blood purification treatment refers to the patient's blood being returned to the patient after some treatment in vitro. This treatment includes hemodialysis, blood filtration, blood permeation, plasma exchange or immunoadsorption, which can remove the virulence factor from the patient's blood. .
- Plasmapheresis is widely used to remove various pathogens in plasma including antibodies, immune complexes, abnormal immunoglobulins, cryoprecipitate proteins, abnormal coagulation factors, and other virulence factors.
- plasma exchange has certain limitations in terms of selectivity and specificity. It removes pathogens and also removes essential proteins from certain human blood.
- the plasmapheresis process requires the use of an alternative fluid (e.g., human albumin solution) which is expensive and increases the likelihood that such treatments will introduce contaminants, thus greatly limiting the application of plasmapheresis methods.
- LDL Low-density lipoprotein
- LDL-C LDL cholesterol
- the traditional treatment method is to reduce LDL and LDL-C levels in patients by controlling diet and drugs.
- oral lipid-lowering drugs such as lovastatin are likely to cause liver damage and lower lipid-lowering effects.
- Reduce LDL and LDL-C by in vitro adsorption by affinity adsorption The concentration of cholesterol and LDL in the blood can show better effects, and the affinity adsorbents used include anti-LDL antibodies and other chemical adsorbents such as dextran sulfate or glycoside.
- the invention studies a new blood purification method and a blood purification system applied to the method based on the prior art, and the purification method is characterized in that it comprises two-step affinity adsorption, that is, the first step adsorption is used for The pathogenic factor in the patient's blood is removed, and the second step is to remove the ligand that has fallen off after the first step of adsorption.
- the blood purification system for the method comprises two adsorption columns connected in series, namely a first adsorption column for removing pathogenic factors in the blood of the patient, and for removing by the first suction A second adsorption column of the ligand with the column detached.
- the method and system of the present invention solves the problem of ligand shedding in blood purification, and greatly reduces the side effects that may occur in blood purification. Moreover, the blood purification method and system of the present invention are used in the treatment without the need for a replacement fluid.
- the blood purification methods and systems of the present invention are useful for treating diseases such as atherosclerosis, autoimmune diseases, and other blood related diseases.
- This method is a blood purification method based on affinity, which has no or only a few ligand shedding problems, thus greatly reducing the side effects that may occur in blood purification.
- the present invention provides a novel blood purification method which comprises the step of adsorbing a protein which is detached from a carrier after adsorption in the first step after a conventional purification adsorption step, thereby overcoming the problem of ligand shedding.
- the method of the present invention for blood purification by affinity adsorption comprises the following steps:
- the blood or plasma purified by the column A is passed through the second affinity adsorption column B, which has a fixed metal ion as a ligand and is capable of adsorbing the ligand protein which is detached from the column A.
- the method of the present invention can be used to treat plasma or blood.
- the plasma can be plasma obtained by separating blood into plasma and blood cells using a blood plasma separator.
- the blood purified by the above method can be returned to the patient; the plasma purified by the above method can also be returned to the patient after being mixed with the blood cells of the patient. Therefore, this purification process does not require the replacement liquid to participate.
- the blood purification method of the present invention can be used for the treatment of diseases such as atherosclerosis, autoimmune diseases and other diseases associated with blood purification.
- Another object of the present invention is to provide a method of treating a disease by purifying a patient's blood, the method comprising the steps of:
- the plasma separated from the blood outputted from the patient passes through the first affinity adsorption column A, or the blood output from the patient body is directly passed through the first affinity adsorption column A, and the adsorbent in the column is treated with protein.
- a ligand for removing a causative agent
- the column is capable of adsorbing the ligand protein detached from the column A by using a fixed metal ion as a ligand; (3) delivering the purified blood to the patient; or mixing the purified blood paddle with the patient's blood cells and delivering it to the patient.
- Another object of the present invention is to provide a specialized blood purification system for the above blood purification method and treatment method which is a novel affinity adsorption purification system.
- the blood purification system of the present invention comprises two adsorption columns, a first affinity adsorption column A for removing pathogenic factors, and a second affinity adsorption column 8 for adsorbing proteins detached from the column A. .
- the blood purification system of the present invention may further comprise a plasma separator for separating blood into plasma and blood cells.
- the blood purification system of the present invention comprises three parts, namely a plasma separator, a first affinity adsorption column A and a second affinity adsorption column B.
- the blood purification system of the present invention comprises a first affinity column A with a protein as a ligand and a second affinity column B with a fixed metal ion as a ligand, and the column A is connected in series with the column B.
- the blood purification system can also include a plasma separator.
- the system and method of the present invention When the system and method of the present invention is used to treat a disease, it can be carried out as follows: The patient's blood is separated into plasma and blood cells by a plasma separator, and the plasma is then subjected to the above blood purification method in the system. The treatment is carried out in two steps; or the patient's blood is directly subjected to the two-step treatment in the system according to the above blood purification method.
- the first step is to use affinity adsorption column A, column A to use protein as a ligand for removing pathogenic factors in blood or plasma;
- the second step is to use affinity adsorption column B, column B to fix the metal
- the ion is a ligand for adsorbing the ligand detached from the column A; the purified blood is returned to the patient, or the purified plasma is mixed with the cells and then returned to the patient. Therefore, this purification process does not require the use of an alternative fluid.
- the first affinity adsorption column A is a protein adsorption column, the ligand of which is a protein attached to a carrier.
- protein refers to a broad class of proteins, including antibodies.
- the protein may be a whole or a part of a protein, i.e., a polypeptide, having the ability to bind to disease-causing molecules in the blood.
- ligand proteins which can be used in column A are, for example, protein A, protein G or related variants, etc.; the proteins or polypeptides are synthesized in vitro or synthesized by recombinant DNA techniques in cells or animals.
- the antibody comprises an intact antibody, an antibody fragment, or a single-chain Fv or the like, such as IgG or Ig A, which can bind to pathogenic antigens or molecules in the blood.
- these antibodies can be synthesized in vitro or It is obtained by genetic recombination technology.
- the ligand protein of the column A adsorbent in the method and system of the invention is preferably a His(n) label , a histidine-tagged protein. Since the histidine residue has a property of easily binding to metal ions, the introduction of this label on the ligand makes the exfoliated ligand more susceptible to adsorption by the second affinity adsorption column. the term
- His(n) means at least 4 consecutive histidine residues, preferably 6-10 consecutive histidine residues, most preferably 6 consecutive histidine residues, such that n is greater than 4 An integer, preferably n is an integer from 6 to 10, most preferably n is 6.
- the position of the His (n) tag with the ligand protein can be at the N-terminus, C-terminus of the ligand protein or other position that does not affect the function of the protein.
- the His(n) label must be exposed on the surface of the column A ligand protein so that the ligand protein can bind to the metal affinity column B after shedding.
- the His(n) labeling described in the methods and systems of the invention is relatively short and generally does not affect protein activity.
- the histidine-tagged immunogenicity is low, and many recent examples have shown that the addition of the marker to the protein does not affect the therapeutic effect.
- Poon and Hunt expressed His6-labeled protein A in E. coli and purified by immorbilized-metal affinity chromatography (IMAC) R. Poon and T. Hunt, "Reversible Immunoprecipitation Using Histidine- or Glutaththione-S -Transferase-Tagged Staphylococcal Protein A", Analytical Biochemistry 218:26-33 (1994)).
- the His6 protein A is linked to an agarose gel and its ability to bind IgG is similar to that of the usual protein A-agarose gel, which means that the His6 tag does not affect the protein activity of protein A.
- the His(n) marker protein used in the present invention introduces a His(n) label on a commonly used adsorbent protein.
- the method of introducing the His(n) label can be found in the above-mentioned Poon and Hunt literature.
- the affinity adsorption column B of the second step is for adsorbing the ligand which is detached from the first column A.
- the column B can be a fixed metal affinity column commonly used in the biochemical field, using a fixed metal affinity chromatography (IMAC) method. IMAC is a widely used separation technique that has appeared in recent years.
- IMAC immunodeficiency MAC
- the solid phase carrier in the filler chelates metal ions by covalent bonds, and some metal ions act as ligands to bind to histidine residues. Labeled protein. IMAC has a wide range of functions in protein purification because of its ligand stability, high protein adsorption capacity, mild elution conditions, simple regeneration and low cost.
- the ligand-immobilized metal used in the second affinity adsorption column B includes, but is not limited to, the following: Ni(II), Co(II), Cu(II), Fe(II) and ⁇ ( ⁇ ).
- Ni(II), Co(II), Cu(II), Fe(II) and ⁇ ( ⁇ ) As for the fixed metal affinity column, it has been reported in the prior art that the fixed metal affinity column is very stable, and trace amounts of such metals do not cause harm to the human body if they fall off.
- the carrier in the affinity adsorption column and the crucible may be particles, fibers, and macroporous groups.
- the first affinity adsorption column A and the second affinity adsorption column B described in the method and system of the present invention are connected in series.
- Column A and column B may each be a single column or a group of columns, for example two or more columns in parallel. It is preferred to use a single column or a parallel double column.
- the blood purification method and system of the present invention can be used to treat blood-related diseases including, but not limited to, diseases caused by abnormalities of autoantibodies, such as systemic lupus erythematosus, rheumatoid arthritis, glomerulonephritis, and vasculitis.
- diseases caused by abnormalities of autoantibodies such as systemic lupus erythematosus, rheumatoid arthritis, glomerulonephritis, and vasculitis.
- congenital thrombocytopenic purpura autoimmune hemolytic anemia caused by IgG, multiple sclerosis, pemphigus, Wegener's granulomatosis, thrombocytopenia, pulmonary hemorrhagic nephritis syndrome, systemic vasculitis, chronic Demyelinating neuritis, acute infectious polyneuritis, myasthenia gravis dilated cardiomyopathy, hemolytic uremic syndrome caused by chemotherapy, hemophilia, leukocyte antigenic hyperfunction caused by kidney transplantation, high immunoglobulin E Symptoms, etc., and diseases that may be caused by abnormalities in certain proteins in the blood, such as hyperlipidemia, arteriosclerosis, dialysis-related infusion-like degeneration, end stage renal disease, chronic renal failure, sepsis, endotoxin shock, AIDS, etc. Wait. It is especially useful for the treatment of hyperlipidemia, atherosclerosis and autoimmune diseases such as systemic lupus erythematosus
- test results show that the abnormal protein or antibody in the blood of the patient treated by the method of the present invention is remarkably reduced, and the ligand His(n)-labeled protein which is detached from the column A can be adsorbed by the metal affinity column B. Therefore, the side effects caused thereby can be reduced. It is clear that the reduction of abnormal proteins in the blood of patients can significantly improve their clinical symptoms.
- Figure 1 is a schematic illustration of a two-step affinity adsorption blood purification system of the present invention.
- the system includes a blood separator, adsorption column A and adsorption column B, and a regeneration system for the adsorbent.
- Figure 1 specifically illustrates the process of blood purification of a patient's plasma using a two-step affinity adsorption method: the patient's blood flows into the blood pool 101 through a catheter, and heparin 102 or other stable anticoagulant is added to the blood pool, regarding the anticoagulant.
- heparin 102 or other stable anticoagulant is added to the blood pool, regarding the anticoagulant.
- the blood flows into the blood plasma separator 105 through the conduit 104, and the plasma is separated from the blood cells, and the plasma flows into the column A (113).
- the adsorbent in the column A is a ligand of a protein, preferably a protein labeled with His(n). .
- an affinity adsorption reaction occurs, such as between an antigen and an antibody, to remove abnormal pathogenic molecules in the blood by affinity adsorption.
- Plasma purified by column A Flowing into column B (121), the adsorbent in column B is a metal affinity resin capable of adsorbing ligand proteins that are detached from column A, particularly adsorbed shed Hi S (n) labeled proteins.
- valve 108 When the valve 108 is closed and the valve 109 is opened, the column A enters a regenerative state, the flushing buffer flows from the 111 into the column A, the valve 114 is opened, and the waste liquid flows into the waste liquid pool 115, and the liquid in the tank can be directly discarded or carried out. analysis.
- valve 109 When valve 109 is closed and valve 110 is opened, the buffer is equilibrated from column 112 into column A.
- Valve 1 14 opens and buffer enters 115.
- the regeneration of column B is similar, washed with rinsing buffer in 118, the buffer in 119 is equilibrated, and finally the effluent flows into waste sump 123, which controls the plasma flow rate.
- the plasma purified by the two columns enters the mixed small blood pool (127) and is remixed with the blood cells and finally returned to the patient.
- the controller 128 can control the valves 108, 109, 110, 114, 116, 117, 120, 122. And 124, if you do not use online regeneration, you can also directly replace the adsorbent.
- Fig. 2 is a schematic view of another blood purification system of the present invention, wherein two affinity adsorption columns each employ two parallel columns, i.e., parallel double columns.
- column A1 (204) is purged
- column A2 (227) is regenerated
- column B2 (229) is regenerated when column B1 (206) is purged, thus improving purification efficiency.
- Figure 2 details the process of an improved blood purification system for treatment.
- the system uses parallel columns for each step of adsorption, which greatly increases blood purification efficiency.
- Column A2 and column B2 can be regenerated when column A1 and column B1 are being purged; conversely, column A1 and column B 1 can be regenerated when column A2 and column B2 are performing a purge operation. Therefore, this two-column system can complete the blood purification process faster than a single-column system.
- the blood separator As shown, after the patient's blood passes through the blood separator, plasma enters column A1 (204) through conduit 106, and an affinity reaction occurs in column A1 to remove the causative agent; the blood paddle flowing from column A1 flows through Column B1, the purified plasma enters the mixed small blood pool (not shown) and is mixed with the blood cells and returned to the patient.
- the pumps 201 and 203 can control the pressure to ensure the plasma flow.
- the column A1 and the column B1 perform the purification function, the column A2
- the column B2 can be regenerated, and the regeneration process is similar to that illustrated in FIG.
- the blood purification process can be completed faster than the single-column system described in Figure 1.
- Figure 3 is a comparison of the binding IgG levels of His6-labeled protein A to non-labeled protein A.
- Commercially available protein A and control protein (HSA-human serum albumin) used in the assay were purchased by Sigma, Protein A and His6 labeled protein A were prepared as described in Example 1. Specific implementation
- This example is intended to illustrate the preparation of the His(n)-labeled ligand protein used in column A.
- the prepared column A ligand and the unlabeled natural protein A (conventional ligand used) were compared by functional assay of IgG binding force.
- His6 in the prepared labeled protein A cannot affect the activity of the protein and can be bound by the fixed metal ligand of column B. Tests have shown that His6-protein A binds to IgG similarly to protein A.
- Protein A and His6 protein A are obtained by genetic recombination techniques (Sambrook J. Fritsch BF and Maniatis ⁇ , Molecular Cloning, A Laboratory Manual, 2 nd . Edition, Cold Spring Harbor Laboratory Press, 1989). It is reported that His6 located at the C-terminus of protein A does not affect protein A activity (Poon and Hunt, "Reversible Immunoprecipitation Using Histidine- or Glutaththione-S-Transferase-Tagged Staphylococcal Protein A", Analytical Biochemistry 218: 26-331994).
- the His6 marker protein A was prepared according to the method disclosed in the above literature.
- the cDNA encoding protein A and C-terminal His6 was constructed by PCR and cloned into vector pET21b (Novagen) and expressed in Escherichia coli BL21 strain (DE3), isopropylthio-( ⁇ )-D-galactose The expression was induced by isopropylthio- ⁇ -D-galactoside (IPTG), and His6-protein A was purified by Ni-NTA resin (Qiagen) and ligated to an agarose gel. The process of obtaining recombinant protein A and attaching to the vector is similar to the former.
- This example is intended to compare the in vitro blood purification with conventional single column chromatography and the plasma IgG level and His6-protein in patients with systemic lupus erythematosus (SLE) after in vitro blood purification using the two-column tandem chromatography of the present invention. The falling off of A.
- the SLE patient is a 40-year-old woman who takes 200 ml of blood from the patient and centrifuges plasma and blood cells. Each 100 ml of blood was taken through conventional single column chromatography and the two column tandem chromatography system of the present invention.
- the single column chromatography system comprises a 75 ml column using His6-pr 0 tein A prepared in Example 1 as an adsorbent; the two column tandem chromatography system of the present invention comprises a column identical thereto, and a 20 ml metal affinity.
- Resin Ni-NTA column Qiagen
- the adsorbent for this column is metal Ni).
- Plasma can be purified multiple times depending on the need for purification.
- the amount of IgG and His6-protein A in the purified blood plasma was measured. IgG was determined by chromatography and immunoelectrophoresis, and the shed His6-protein A was assayed by ELISA using anti-protein A antibody and anti-His6 antibody (for assays, see H. Sato, T. Kidaka and M. Hori, "Leakage of Immobilized IgG From Therapeutic Immunoadsorpents", Applied Biochemistry and Biotechnology, 15: 145-158 (1987)). The results are shown in Table 1.
- Table 1 Contents of antibodies and His6-Protein A in plasma of patients with SLE after purification by a conventional single column treatment system and the two-column treatment system of the present invention.
- This example is intended to compare the detachment of IgG levels in dog serum with His6-protein A after purification using a conventional single column system and the dual column affinity adsorption blood purification system of the present invention.
- This embodiment employs the two-column affinity adsorption blood purification system shown in Fig. 2, in which the adsorbents used for column A and column B are each the same as in Example 2, the volume of column A is 150 ml, and the column B is 40 ml.
- the conventional single column blood purification system only includes column A.
- the experimental animals were male, dogs for medical experiments, weighing 10-13 kg. After the dog is under general anesthesia, blood is drawn from the dog's hind leg femoral artery and into the plasma membrane separator. The membrane separator divides the blood into two parts: blood cell and plasma.
- the blood paddle flows through the column 1 system at a rate of 30 mL/min (A1-B1 double column in series), and the column 2 system (A2-B2 double column in series) is closed for 10 minutes. Later, close the column 1 system inlet and outlet and open the column 2 system. The z-column 1 system enters the elution and equilibration process.
- the regeneration process is to first wash the adsorbed protein with an acidic eluent and then equilibrate the column with an equilibration buffer. After the regeneration process is complete, open the column 1 system inlet and close the column 2 system inlet. The above operation was repeated, and each column was switched 5 times. After being treated by the device shown in Fig. 2, the purified plasma was mixed with the blood cells and returned to the hind leg vein of the dog.
- the sampling measurement was started 10 minutes after the system was operated. IgG was determined by chromatography and immunoelectrophoresis, and the shed His6-protein A was determined by ELISA.
- the His6-protein A antibody including anti-protein A antibody and anti-His6 antibody, was assayed as described in Example 2. The results are shown in Table 2.
- test results show that the blood purification method and system of the present invention greatly reduces the number of exfoliated ligands in the purified blood, thereby correspondingly reducing side effects caused by ligand shedding, and solving the problems in the blood purification treatment method.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- External Artificial Organs (AREA)
Description
基于亲和吸附的血液净化方法及系统
技术领域
本发明涉及新的血液净化方法,净化患者血液来治疗疾病的方法以及所 述方法专用的血液净化系统。 更具体地, 本发明涉及改进的、基于亲和吸附 的血液净化方法和系统,所述的血液净化方法是在常规的吸附净化后增加另 一吸附步骤, 用以吸附脱落的配体, 以减少常规血液净化方法的副作用。 背景技术
血液净化治疗是指患者血液在体外通过某种处理后再回输到患者体内, 这种处理包括血液透析、 血液过滤、 血液渗透、 血浆置换或免疫吸附, 可以 从患者血液中移除致病因子。
血浆置换被广泛应用于移除血浆中的各类病原体包括抗体、 免疫复合 物、 异常的免疫球蛋白、 冷沉 (淀)蛋白、 异常的凝结因子和其他毒性因子。 然而, 血浆置换在选择性与特异性方面有一定局限性。它在移除病原体的同 时还会移除某些人体血液中必需的蛋白。此外, 血浆置换过程还需要使用替 代液(如人体白蛋白溶液) , 此替代液的价格昂贵, 并且增加了此种治疗方 法引入污染物的可能, 因此大大限制了血浆置换方法的应用。
为了克服这些问题, 基于免疫吸附方法的亲和选择开始被应用于血液净 化, 并且其作用日益明显。 免疫吸附能够有选择的移除血液中的致病因子。 在免疫吸附方法中, Protein A应用最为广泛, protein A来源于金黄色葡萄 球菌, 能够与 IgG的 Fc片段特异性结合。 Protein A吸附方法已经成功地应 用于治疗各种免疫疾病, M Gaubitz and KM Schneider就描述了用 protein A 吸附 IgG和免疫复合物来治疗某种自身免疫性疾病例如系统性红斑狼疮 (M Gaubitz and KM Schneider, "Immunoadsorption in systemic lupus erythematosus: different techniques and their current role in medical therapy", Therapeutic Apheresis and Dialysis, 7(2): 183- 188(2003》。
低密度脂蛋白 (LDL) 和 LDL胆固醇 (LDL-C) 是导致动脉硬化症的 主要因素之一。 传统治疗方法是通过控制饮食和药物来降低患者 LDL 与 LDL-C 水平, 然而口服降脂药如洛伐他汀 (Lovastatin) 很可能导致对肝的 损害, 而且降脂效果较低。通过亲和吸附在体外移除 LDL 和 LDL-C来降低
患血液中胆固醇与 LDL的浓度能够表现出更好的效果, 所使用的亲和吸附 剂包括抗 LDL 抗体和其他化学吸附剂如右旋糖苷硫酸盐或苷磷脂。 Strahilevitz的美国专利 6,676,622设计了一种亲和吸附系统, 但是没有提供 实验数据; 也有关于某种治疗动脉硬化症的吸附剂的报道, 由螯和因子移除 能够导致 LDL氧化的重金属; protein A也能吸附导致血液中 LDL氧化的自 身抗体。
然而, 在免疫治疗中, 存在着吸附剂配体从载体脱落的问题。 据报道, 有 41%的高血脂患者在接受 LDL抗体免疫治疗后会出现低血压症状 (伍强 等人, "免疫吸附法治疗高血脂症疗效观察" , Journal of Modern Clinical Medical Bioengineering, 9:110-112, 2003 ) 。 目前所使用的大多数抗体是鼠源 或羊源,这些非人源性抗体如果脱落进入人体内就会作为抗原引发人体内难 以预测的免疫反应。在透析和血浆灌注过程中, 血浆会多次经过免疫亲和吸 附柱, 因此配体很有可能脱落进入血液中, 从而导致严重的副作用。 目前已 有许多关于 protein A从载体上脱落问题的研究, 如果脱落数量达到一定值 将会引起严重的副作用。 已有报道从血浆中发现了脱落的 protein A并且导 致各种副作用(JP Balint, FR Jones and HW Snyder, "The PROSORBA Column Clinical Trial Group: Selective extracorporeal removal of immunoglobulin G and circulating immune complexes: A review", Plasma Therapy and Transfusion Technology, 7:333-349 (1986)) 。
美国专利 6,441,146和 5,962,641 中描述了 His ( 6) 标记蛋白的纯化方 法, 然而没有涉及血液净化及解决配体脱落问题的方法。
至今为止, 在血液净化领域, 关于配体脱落问题还没有好的解决方案。 本领域技术人员仍在不断寻找更有效的血液净化方法。 发明内容
本发明在现有技术的基础上研究了一种新的血液净化方法和应用于该 方法的血液净化系统, 所述的净化方法其特征在于包括两步亲和吸附, 即第 一步吸附用于移除患者血液中的致病因子,第二步吸附用于去除第一步吸附 后脱落的配体。 相应的, 用于该方法的血液净化系统包括串联连接的两种吸 附柱, 即用于移除患者血液中致病因子的第一吸附柱, 和用于去除由第一吸
附柱脱落的配体的第二吸附柱。本发明的方法及系统解决了血液净化中配体 脱落的难题, 大大减少了血液净化可能出现的副作用。 并且, 将本发明的血 液净化方法和系统用于治疗时无需替代液参与。
本发明的血液净化方法和系统可用于治疗诸如动脉硬化症、自身免疫性 疾病和其他与血液有关的疾病。
本发明的目的是提供一种通过亲和吸附进行血液净化的新方法。该方法 是一种基于亲和作用的血液净化方法, 该方法没有或只有很少配体脱落问 题, 因此大大减少了血液净化中可能出现的副作用。
具体的, 本发明提供了一种新的血液净化方法, 该方法包括在常规的净 化吸附步骤之后加入吸附第一步吸附后由载体上脱落的蛋白的步骤,从而克 服了配体脱落的问题。
更具体地, 本发明通过亲和吸附进行血液净化的方法包括以下步骤:
(1)将血液或经过分离的血浆通过第一亲和吸附柱 A,该柱中的吸附剂以 蛋白作为配体, 用于去除致病因子;
(2)使经过柱 A净化的血液或血浆通过第二亲和吸附柱 B, 该柱以固定 的金属离子为配体, 能够吸附从柱 A脱落的配体蛋白。
本发明的方法可用于处理血浆或血液, 用于处理血浆时, 所述的血浆可 以是用血桨分离器将血液分离为血浆与血细胞后所获得的血浆。
采用上述方法净化后的血液可输回患者体内;用上述方法净化后的血浆 在与患者的血细胞混合后也可被输回患者体内。所以此净化过程无需替代液 参与。
本发明的血液净化方法可用于治疗诸如动脉硬化症、自身免疫性疾病和 其他与血液净化有关的疾病。
本发明的另一目的是提供一种通过净化患者血液来治疗疾病的方法,该 方法包括以下步骤:
(1)将从病人体内输出的血液分离得到的血浆通过第一亲和吸附柱 A,或 将从病人体内输出的血液直接通过第一亲和吸附柱 A,该柱中的吸附剂以蛋 白作为配体, 用于去除致病因子;
(2)使经过柱 A净化的血液或血浆通过第二亲和吸附柱 B, 该柱以固定 的金属离子为配体, 能够吸附从柱 A脱落的配体蛋白;
(3)将净化后的血液输送至患者体内; 或将净化后的血桨与患者的血细 胞混合后输送至患者体内。
本发明的另一目的是提供一种用于上述血液净化方法和治疗方法的专 用血液净化系统, 它是一种新颖的亲和吸附净化系统。
具体的说, 本发明的血液净化系统包括二种吸附柱, 即用于去除致病因 子的第一亲和吸附柱 A,和用于吸附由柱 A脱落的蛋白的第二亲和吸附柱8。
本发明的血液净化系统还可包括血浆分离器,用于将血液分离为血浆和 血细胞。 在此情况下, 本发明的血液净化系统包括三部分, 即血浆分离器、 第一亲和吸附柱 A和第二亲和吸附柱 B。
更具体地, 本发明的血液净化系统包括以蛋白为配体的第一亲和柱 A 和以固定的金属离子为配体的第二亲和柱 B, 且柱 A与柱 B 串联连接。 所 述的血液净化系统还可包括血浆分离器。
在将本发明的系统和方法用于治疗疾病时, 可按照下述方法进行: 将患 者的血液经血浆分离器分离为血浆与血细胞,再将所述的血浆在该系统中按 照上述血液净化方法经过两步处理;或者将患者的血液在该系统中按照上述 血液净化方法直接进行两步处理。 第一步处理是用亲和吸附柱 A, 柱 A 以 蛋白为配体, 用于移除血液或血浆中的致病因子; 第二步处理用亲和吸附柱 B, 柱 B以固定的金属离子为配体, 用于吸附从柱 A脱落的配体; 净化后的 血液再输回到患者体内, 或将净化后的血浆与细胞混合后再输回到患者体 内。 因此, 此净化过程无需替代液参与。
在本发明的方法和系统中, 第一亲和吸附柱 A 是一种蛋白吸附柱, 其 配体是一种蛋白, 连接到某种载体上。 本文所用的术语 "蛋白"是指广义的 蛋白, 也包括抗体。 所述蛋白可以是蛋白的整体或是一部分, 即多肽, 具有 能与血液中的致病分子结合的能力。 可用于柱 A 的配体蛋白的实例例如 protein A、 protein G或相关变体等; 所述蛋白或多肽包括体外合成的, 或 是通过重组 DNA技术细胞或动物合成的。 所述的蛋白是抗体时, 该抗体包 括完整抗体、 抗体片段、 或单链 Fv等, 如 IgG或 Ig A, 能够结合血液中的 致病抗原或分子, 这些抗体可以是体外合成的, 也可以是通过基因重组技术 获得的。
本发明的方法和系统中所述柱 A 吸附剂的配体蛋白优选是 His(n)标记
的,即组氨酸标记的蛋白。由于组氨酸残基具有易于和金属离子结合的特性, 在配体上引入此标记使脱落的配体更易于被第二亲和吸附柱吸附。 术语
"His(n)"是指至少 4个连续的组氨酸残基,优选 6-10个连续的组氨酸残基, 最优选为 6个连续的组氨酸残基, 因此 n为大于 4的整数, 优选 n为 6-10 的整数, 最优选 n为 6。 His (n) 标记与配体蛋白的连接位置可以在配体蛋 白的 N-端, C-端或其他不影响蛋白性质功能的位置。所述的 His(n)标记必须 暴露在柱 A配体蛋白表面, 以便配体蛋白脱落后能与金属亲和柱 B结合。
本发明的方法和系统中所述的 His(n)标记相对较短, 通常情况下不会影 响蛋白活性。 组氨酸标记的免疫原性低, 最近有许多实例证明蛋白增加了该 标记后并不影响治疗效果。 Poon 和 Hunt 在大肠杆菌中表达了 His6 标记 protein A, 并且通过固定金属亲和色谱 (immorbilized-metal affinity chromatography , IMAC) 纯 化 ( R. Poon 和 T. Hunt, "Reversible Immunoprecipitation Using Histidine- or Glutaththione-S-Transferase-Tagged Staphylococcal Protein A", Analytical Biochemistry 218:26-33 (1994))。该 His6 protein A 连接到琼脂糖凝胶上, 其结合 IgG的能力与通常的 protein A-琼脂 糖凝胶相似, 也就是说 His6标记并不影响 protein A的蛋白活性。
本发明所使用的 His(n)标记蛋白是在通常所用的吸附剂蛋白上引入 His(n)标记。 引入 His(n)标记的方法可参见上述 Poon 和 Hunt的文献。 在本 发明的方法和系统中, 第二步的亲和吸附柱 B用来吸附由第一柱 A脱落的 配体。 该柱 B 可以是生化领域中常用的固定金属亲和柱, 其采用了固定金 属亲和色谱 (IMAC)方法。 IMAC是近年来出现的应用很广的一种分离技术, 它的作用原理是 填料中的固相载体通过共价键螯合金属离子,某些金属离 子作为配体能够结合具有组氨酸残基标记的蛋白质。 IMAC具有配体稳定、 高蛋白吸附能力、 洗脱条件温和、 再生简单、 成本低廉的特点, 因此在蛋白 纯化中应用广泛。
本发明的方法和系统中, 第二亲和吸附柱 B 所使用的配体固定金属包 括但不仅限于以下几种: Ni(II), Co(II), Cu(II), Fe(II) 和 Ζη(Π)。 关于固定 金属亲和柱现有技术中已有报道, 固定金属亲和柱非常稳定, 痕量的此类金 属如果脱落也不会对人体造成伤害。
在本发明中, 亲和吸附柱 Α和 Β中的载体可以是颗粒、 纤维、 大孔基
质、膜或中空纤维, 其中的颗粒优选是球形颗粒, 例如琼脂糖、纤维素颗粒。 本发明的方法和系统中所述的第一亲和吸附柱 A和第二亲和吸附柱 B 是串联连接。 柱 A和柱 B各自可以是单柱, 也可以是一组柱, 例如二个或 二个以上的柱并联。 优选使用单柱或平行双柱。
本发明的血液净化方法和系统可用于治疗与血液有关的疾病,这些疾病 包括但不限于由于自身抗体异常导致的疾病, 例如系统性红斑狼疮、 风湿性 关节炎、 血管球性肾炎和脉管炎、 先天性血小板减少性紫癜、 IgG引起的自 身免疫溶血性贫血、 多发性硬化症、 天疱疮、 韦格内肉芽肿病、 血小板无力 症、 肺出血肾炎综合征、 系统性脉管炎、 慢性脱髓鞘性神经炎、 急性感染性 多发性神经炎、 重症肌无力扩张型心肌症、 化疗引起的溶血性尿毒症、 血友 病、 肾脏移植引起的白细胞抗原机能亢进、 免疫球蛋白 E过高症候群等, 以 及由于血液中某些蛋白异常可能导致的疾病, 例如高脂血症、 动脉硬化症、 透析相关性锭粉样变性、 末期肾脏疾病、 慢性肾衰竭、 败血症、 内毒素休克 和艾滋病等等。特别是用于治疗高脂血症、动脉硬化症和自身免疫性疾病如 系统性红斑狼疮、 风湿性关节炎、 天疱疮等。
试验结果表明,用本发明的方法进行治疗的患者其血液中的异常蛋白或 抗体明显减少, 由柱 A上脱落的配体 His(n)标记蛋白可被金属亲和柱 B吸 附。 因此可减少由此而产生的副作用。 很显然, 患者血液中异常蛋白的减少 可使他们的临床症状得到明显改善。 附图说明
下面参照附图进一步描述本发明的实施方案。
图 1是本发明的两步法亲和吸附血液净化系统简图。该系统包括血桨分 离器、 吸附柱 A和吸附柱 B, 以及吸附剂的再生系统。 图 1具体说明了使用 两步亲和吸附法对患者的血浆进行血液净化的过程:患者血液通过导管流入 血池 101, 肝素 102或其他稳定的抗凝剂加入血池中, 关于抗凝剂的加入可 参考美国专利 4,614,513。血液通过导管 104流入血桨分离器 105, 血浆与血 细胞分离, 所述血浆流入柱 A ( 113 ) , 柱 A中的吸附剂以蛋白为配体, 优 选以 His(n)标记的蛋白为配体。 在柱 A中, 发生亲和吸附反应, 如抗原与抗 体之间, 通过亲和吸附移除血液中异常的致病分子。 经过柱 A 净化的血浆
流入柱 B ( 121 ) , 柱 B中的吸附剂是金属亲和树脂, 能够吸附从柱 A中脱 落的配体蛋白, 特别是吸附脱落的 HiS(n)标记蛋白。 当关闭阀门 108, 打开 阀门 109时, 柱 A就进入再生状态, 冲洗缓冲液由 111流入柱 A, 打开阀 门 114, 废液就流到废液池 115中, 该池中液体可直接丢弃或进行分析。 当 关闭阀门 109, 打开阀门 110时, 缓冲液从 112中进入柱 A中平衡。 阀门 1 14打开, 缓冲液进入 115。 柱 B的再生与此类似, 用 118中的冲洗缓冲液 清洗, 119中的缓冲液进行平衡,最终废液流到废液池 123中,泵 103与 125 控制血浆流速。 通过两个柱子净化后的血浆进入混合小血池 (127) 中与血 细胞重新混合,最后输回到患者体内,控制器 128可以控制阀门 108, 109, 110, 114, 116, 117, 120, 122 和 124, 如果不使用在线再生, 也可以直接更换吸附 剂。
图 2 是本发明另一血液净化系统简图, 其中两种亲和吸附柱各自采用 两个平行柱, 即并联双柱。 当柱 A1 ( 204) 净化时, 柱 A2 ( 227 ) 再生; 类 似地, 当柱 B1 ( 206) 净化时, 柱 B2 ( 229 ) 再生, 因此可提高净化效率。
图 2 具体描述了一个改进的血液净化系统用于治疗的过程。 与图 1不 同的是, 此系统每一步吸附采用的都是平行柱, 这可以大大增加血液净化效 率。 当柱 A1和柱 B1在进行净化操作时, 柱 A2和柱 B2可以进行再生; 反 之, 当柱 A2和柱 B2在进行净化操作时, 柱 A1和柱 B 1可以再生。 因此, 此双柱系统可比单柱系统更快的完成血液净化过程。
如图所示, 患者的血液经过血桨分离器后, 血浆通过导管 106 进入柱 A1 (204), 在柱 A1中发生亲和反应, 移除致病因子; 从柱 A1流出的血桨流 经柱 B1 , 净化后的血浆进入混合小血池 (未显示) 与血细胞混合后输回患 者体内, 泵 201和 203可控制压力保证血浆的流动, 在柱 A1和柱 B1行使 净化功能时, 柱 A2和柱 B2可进行再生, 再生过程与图 1中说明类似。
应用此系统对患者的血液进行净化时,可比图 1所描述的单柱系统更快 的完成血液净化过程。
图 3 是 His6标记 protein A与非标记 protein A结合 IgG水平的比较。 试验所用的商购 protein A 和对照 protein (HSA-人血清白蛋白)是由 Sigma 公司.购买, Protein A和 His6标记 protein A 按照实施例 1所述方法制备。
具体实施方案
以下用实例举例说明本发明的方法、 系统和治疗方法, 但本发明并不限 于以下应用。
实施例 1 柱 A配体 His6 标记 protein A的制备
本例旨在说明柱 A所用 His(n)标记配体蛋白的制备。并通过 IgG的结合 力之功能测定对所制备的柱 A配体和无标记的天然 protein A (常规使用的 配体)进行比较。 为了符合柱 A所用配体蛋白的要求, 所制备的标记 protein A中 His6不能影响该蛋白的活性并且可被柱 B的固定金属配体结合。 试验 表明, His6-protein A与 IgG的结合力和 protein A类似。
Protein A和 His6 protein A均可通过基因重组技术获得 (Sambrook J. Fritsch BF and Maniatis Τ·, Molecular Cloning, A Laboratory Manual, 2nd. Edition, Cold Spring Harbor Laboratory Press, 1989)。 根据报道已知位于 protein A C-端 的 His6 不会影响 protein A活性 (Poon and Hunt, "Reversible Immunoprecipitation Using Histidine- or Glutaththione-S-Transferase-Tagged Staphylococcal Protein A", Analytical Biochemistry 218 :26-331994)。
His6 标记 protein A, 按照上述文献公开的方法制备。
通过 PCR方法构建编码 protein A 和 C-端 His6标记的 cDNA, 克隆 到载体 pET21b (Novagen公司), 并且在 Escherichia coli BL21菌株 (DE3)中 表达, 异丙硫基- ( β ) -D-半乳糖苷 ( isopropylthio- β -D- galactoside, IPTG) 诱导表达, 通过 Ni-NTA 树脂 (Qiagen公司)纯化 His6-protein A后连接到琼 脂糖凝胶上。 重组 protein A 的获得及连接到载体上的过程与前者类似。
测定 IgG结合能力采用如下方法。 10 ml protein A或 10 ml His6 protein A 与 50 ml 医学实验用的狗血清于 4 °C孵育 1 小时, 缓冲液为 20 raM Tris-HCl(pH7.5)和 50 raM NaCl。 用缓冲液冲洗, 结合的 IgG洗脱后用抗狗 IgG抗体通过 ELISA方法定量(测定方法参见 H. Sato, T. Kidaka and M. Hori, "Leakage of Immobilized IgG from Therapeutic Immunoadsorpents", Applied Biochemistry and Biotechnology, 15 : 145-158 (1987))。如图三所示 His6 protein A具有与 protein A 相似的 IgG 结合能力, 也就是说加入的组氨酸标记不会 阻挡 protein A 与 IgG 的结合区域。
结果说明 His6 标记不影响 protein A 功能。
实施例 2
此例旨在比较用常规的单柱层析法进行体外血液净化和用本发明的双 柱串联层析法进行体外血液净化后 '系统性红斑狼疮(SLE)患者血浆中 IgG 水平与 His6-protein A的脱落情况。
SLE患者为一位 40岁的妇女, 从患者体内取血 200ml, 离心分离血浆 与血细胞。各取 100ml血桨通过常规的单柱层析和本发明的双柱串联层析系 统。 单柱层析系统包括一个以实施例 1制备的 His6-pr0tein A为吸附剂的的 75ml 柱; 本发明的双柱串联层析系统包括一个与此相同的柱, 以及一个 20ml金属亲和树脂 Ni-NTA柱 (Qiagen公司) (该柱的吸附剂是金属 Ni) 。 血浆过柱后用酸性洗脱液和中性平衡缓冲液再生、 重平衡柱子。根据净化需 要,可对血浆进行多次净化。完成净化后,测定纯化血桨中 IgG和 His6-protein A的量。 IgG通过色谱法和免疫电泳方法测定, 脱落的 His6-protein A用抗 protein A抗体和抗 His6抗体按照 ELISA方法测定(测定方法参见 H. Sato, T. Kidaka and M. Hori, "Leakage of Immobilized IgG from Therapeutic Immunoadsorpents", Applied Biochemistry and Biotechnology, 15 : 145-158 (1987) ) 。 结果列于表一。
表一 经过常规的单柱处理系统和本发明的双柱处理系统净化后 SLE患 者血浆中抗体和 His6-Protein A 的含量
如表一所示, 单柱层析和双柱串联层析在体外结合 IgG的能力相近, 然 而单柱层析系统处理后的血桨中 His6-protein A 明显高于双柱串联层析系
统。 实施例 3
本例旨在比较用常规的单柱系统和本发明的双柱亲和吸附血液净化系 统净化后, 狗血清中 IgG水平与 His6-protein A的脱落情况。
本实施例应用了图 2所示的双柱亲和吸附血液净化系统, 其中柱 A和 柱 B使用的吸附剂各自与实施例 2相同,柱 A体积为 150ml, 柱 B为 40ml。 而常规的单柱血液净化系统只包括柱 A。
实验动物为雄性、 供医学实验用的狗, 体重为 10-13公斤。 狗全身麻醉 后, 血液从狗的后腿股动脉引出, 进入血浆膜分离器。 膜分离器将血液分成 血球、 血浆两部分, 血桨以 30mL/min的速度流过柱 1系统 (A1-B1双柱串 联) , 柱 2系统 (A2-B2双柱串联) 关闭, 运行 10分钟以后, 关闭柱 1系 统入口和出口, 开启柱 2系统。 z柱 1系统进入洗脱、 平衡过程, 再生过程为 先用酸性洗脱液洗去吸附的蛋白, 再用平衡缓冲液平衡柱子。再生过程完毕 后, 开启柱 1系统入口, 同时关闭柱 2系统入口。 重复以上操作, 每柱各切 换 5次, 经图 2所示装置处理后, 纯化的血浆与血球混合后一同输回狗的 后腿静脉。
系统运行 10分钟后开始取样测量。 IgG通过色谱法和免疫电泳方法测 定, 脱落的 His6-protein A用 ELISA方法测定, 用于测量 His6-protein A抗 体包括抗 protein A抗体和抗 His6抗体, 测定方法如实施例 2所述。 结果列 于表二。
表二 单柱和双柱系统处理后狗血浆中 IgG抗体和 His6-Protein A 的含 量变化
如表二所示, 与常 的单柱吸附血液净化系统相比, 通过双柱亲和吸附 血液净化系统后的 His6-protein A配体脱落的数量大大地降低。
试验结果表明本发明的血液净化方法和系统使净化的血液中脱落配体 的数量大大减少, 因此可相应的减少由配体脱落引起的副作用, 解决了血液 净化治疗方法中所存在的难题。
以上已经详细描述了本发明的实施方案,对本领域技术人员来说很明显 可以做很多改进和变化而不会背离本发明的基本精神。所有这些变化和改进 都在本发明的范围之内, 其特征由上述说明书确定。
Claims
权利要求
1. 通过亲和选择吸附进行血液净化的方法, 该方法包括在净化吸附步骤之后加 入吸附上一步骤吸附后又脱落的配体蛋白的步骤。
2. 按照权利要求 1的血液净化方法, 该方法包括以下步骤:
(1)将血液或经过分离的血浆通过第一吸附 ¾ A, 该柱的吸附剂以蛋白为配体, 连接 到某种载体上; .
(2)使柱 A净化的血液或血浆通过第二吸附柱 B,该柱以固定的金属离子为配体, 能够吸附从柱 A脱落的蛋白。
3. 按照权利要求 2的血液净化方法, 其中所述经过分离的血浆是使用血浆分离 器分离的。
4. 按照权利要求 1或 2的血液净化方法,其中经过净化的血液可输回患者体内, 净化后的血浆在与患者的血细胞混合后可输回患者体内。
5. 按照权利要求 2-4 任意一项的血液净化方法, 其中所述柱 A 的配体蛋白是 His(n)标记的蛋白。 r
6. 按照权利要求 ' 1或 5的血液净化方法,其中所述的蛋白包括完整蛋白或多肽;
7. 按照权利要求 6的血液净化方法, 其中所述的蛋白可以是 protein A, protein C 或相关变体。
8. 按照权利要求 7的血液净化方法, 其中所述的相关变体包括能与抗体结合 任何蛋白抗原。
9. 按照权利要求 5的血液净化方法,其中所述的 His(n) 标记蛋白是体外合成的: 或是通过重组 DNA技术获得的。
10. 按照权利要求 5 的血液净化方法, 其中所述 His(n)标记的位置位于蛋白 N-端、 C-端或其他不影响蛋白功能活性的任何位置。
11. 按照权利要求 1或 5的血液净化方法, 其中所述的配体蛋白是抗体, 所述白 抗体可选自完整抗体、 抗体片段、 单链 Fv、 IgG 或 Ig A。
12. 按照权利要求 5或 11的血液净化方法, 其中所述蛋白或抗体中的组氨酸歹
14. 按照权利要求 2的血液净化方法, 其中所述柱 B中的金属离子选自 Ni++ 、 Cu++、 Co++ 和 Zn++。
15. 按照权利要求 2的血液净化方法,其中所述的每一步亲和吸附可各自独立 i! 使用单柱或平行双柱。
16. 一种血液净化系统, 该系统包括以蛋白为配体的第一吸附柱 A, 和以固定白 金属离子为配体的第二吸附柱 B, 且柱 A与柱 B串联连接。
17. 按照权利要求 16的血液净化系统, 其中所述的血液净化系统还包括血浆 离器。
18. 按照权利要求 16的血液净化系统, 其中所述柱 A的配体蛋白是 His(n)标 ΐ 的蛋白。
19. 按照权利要求 16-18任意一项的血液净化系统, 其中所述的蛋白包括完整 § 白或多肽。
20. 按照按照权利要求 19 的血液净化系统, 其中所述的蛋白包括 protein A、 protein G或相关变体。
21. 按照按照权利要求 20的血液净化系统, 其中所述的相关变体包括能与抗 结合的任何蛋白抗原。
22. 按照按照权利要求 18的血液净化系统, 其中所述的 His(n) 标记蛋白是体夕 I 合成的, 或是通过重组 DNA技术获得的。
23. 按照权利要求 18的血液净化系统, 其中所述 His (n) 的位置可以位于蛋 έ 的 Ν-端、 C-端或其他不影响蛋白功能活性的任何位置。
24. 按照权利要求 18 的血液净化系统, 其中所述蛋白中的组氨酸残基数量至 为 4。
25. 按照权利要求 24的血液净化系统, 其中所述组氨酸残基数量为 6-10。
26. 按照权利要求 16-18任意一项的血液净化系统, 其中所述的蛋白是抗体, 戶) 述抗体选自完整抗体、 抗体片段、 单链 Fv、 IgG 或 Ig A。
27. 按照权利要求 16的血液净化系统, 其中所述柱 B的金属离子选自 Ni++ 、 Cu++、 Co++ 和 Zn++。
28. 按照权利要求 16的血液净化系统, 其中所述的吸附柱 A和 B可各自独立: ti
使用单柱或平行双柱。
29. 按照权利要求 1- 15任意一项的血液净化方法在血液净化中的应用。
30. 按照权利要求 16-28任意一项的血液净化系统在血液净化中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510011414.5 | 2005-03-11 | ||
CN2005100114145A CN1830495B (zh) | 2005-03-11 | 2005-03-11 | 基于亲和吸附的血液净化方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006094467A1 true WO2006094467A1 (fr) | 2006-09-14 |
Family
ID=36952960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2006/000371 WO2006094467A1 (fr) | 2005-03-11 | 2006-03-13 | Procede et systeme de purification du sang bases sur une absorption par affinite |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1830495B (zh) |
WO (1) | WO2006094467A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011046504A1 (en) * | 2009-10-18 | 2011-04-21 | Glycorex Ab | Method and product for blood treatment and purification |
EP2574631A1 (en) * | 2010-03-24 | 2013-04-03 | JSR Corporation | Filler for affinity chromatography and method for isolating immunoglobulin |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105214341B (zh) * | 2015-09-17 | 2017-12-15 | 广州康盛生物科技有限公司 | 组合型吸附柱及其制备方法 |
CN105343953A (zh) * | 2015-10-06 | 2016-02-24 | 浙江大学 | 一次性血浆免疫吸附管路 |
CN106166311B (zh) * | 2016-08-30 | 2018-07-13 | 张小曦 | 一种血浆净化系统及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983722A (en) * | 1988-06-08 | 1991-01-08 | Miles Inc. | Removal of protein A from antibody preparations |
WO2000000276A1 (en) * | 1998-06-30 | 2000-01-06 | Fresenius Hemocare Beteiligungsges.Mbh | Method and device for treatment of whole blood |
US6746607B1 (en) * | 1998-10-30 | 2004-06-08 | Centre National De La Recherche Scientifique | Use of an adsorbent gel for eliminating and purifying biomolecules |
JP2004180703A (ja) * | 2002-11-29 | 2004-07-02 | Toray Ind Inc | 脱離可能なリガンド親和性物質固定化基材、および該基材にリガンドを結合させた材料およびそれを用いたカラム |
WO2004076845A1 (de) * | 2003-02-27 | 2004-09-10 | Robert Bosch Gmbh | sRENNSTOFFEINSPRITZVENTIL |
US20040204569A1 (en) * | 2003-01-16 | 2004-10-14 | Edmund Radmacher | Separation material, column having that separation material, and use thereof for purifying proteins |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT1601697E (pt) * | 2003-02-28 | 2007-09-04 | Lonza Biologics Plc | Purificação de anticorpos através de proteína a e cromatografia de troca iónica. |
-
2005
- 2005-03-11 CN CN2005100114145A patent/CN1830495B/zh active Active
-
2006
- 2006-03-13 WO PCT/CN2006/000371 patent/WO2006094467A1/zh not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983722A (en) * | 1988-06-08 | 1991-01-08 | Miles Inc. | Removal of protein A from antibody preparations |
WO2000000276A1 (en) * | 1998-06-30 | 2000-01-06 | Fresenius Hemocare Beteiligungsges.Mbh | Method and device for treatment of whole blood |
US6746607B1 (en) * | 1998-10-30 | 2004-06-08 | Centre National De La Recherche Scientifique | Use of an adsorbent gel for eliminating and purifying biomolecules |
JP2004180703A (ja) * | 2002-11-29 | 2004-07-02 | Toray Ind Inc | 脱離可能なリガンド親和性物質固定化基材、および該基材にリガンドを結合させた材料およびそれを用いたカラム |
US20040204569A1 (en) * | 2003-01-16 | 2004-10-14 | Edmund Radmacher | Separation material, column having that separation material, and use thereof for purifying proteins |
WO2004076845A1 (de) * | 2003-02-27 | 2004-09-10 | Robert Bosch Gmbh | sRENNSTOFFEINSPRITZVENTIL |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011046504A1 (en) * | 2009-10-18 | 2011-04-21 | Glycorex Ab | Method and product for blood treatment and purification |
US9675746B2 (en) | 2009-10-18 | 2017-06-13 | Glycorex Ab | Method and product for blood treatment and purification |
EP2574631A1 (en) * | 2010-03-24 | 2013-04-03 | JSR Corporation | Filler for affinity chromatography and method for isolating immunoglobulin |
EP2574631A4 (en) * | 2010-03-24 | 2013-12-04 | Jsr Corp | FILLER FOR AFFINITY CHROMATOGRAPHY AND METHOD FOR ISOLATING IMMUNE LOBULIN |
US9051355B2 (en) | 2010-03-24 | 2015-06-09 | Jsr Corporation | Filler for affinity chromatography and method for isolating immunoglobulin |
Also Published As
Publication number | Publication date |
---|---|
CN1830495B (zh) | 2010-12-15 |
CN1830495A (zh) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4361509A (en) | Ultrapurification of factor VIII using monoclonal antibodies | |
JP5858299B2 (ja) | エンドトキシン用の新しい吸着剤 | |
CA2050277A1 (en) | Process for purifying a protein | |
CN101420992B (zh) | 用于体外处理含粒子的液体的可再生过滤器及其应用 | |
WO2005094960A1 (en) | A method for chromatographic purification | |
US5672685A (en) | Source of apolipoprotein E and method of isolating apolipoprotein E | |
WO2006094467A1 (fr) | Procede et systeme de purification du sang bases sur une absorption par affinite | |
EP3669888A1 (en) | Extracorporeal devices for methods for treating diseases associated with anti-neutrophil cytoplasmic antibodies | |
WO2021109177A1 (zh) | 一种免疫球蛋白结合蛋白及其制备方法和应用 | |
WO2019160708A1 (en) | Extracorporeal devices and methods of treating complement factor related diseases | |
EP1409538B1 (en) | Process for obtaining growth factor (tgf-beta and igf-1), lactoperoxidase and immunoglobulins preparations from milk products having low mutual cross-contamination | |
CA1252744A (en) | Ultrapurification of factor ix and other vitamin k- dependent proteins | |
Teschner et al. | ABO‐incompatible kidney transplantation using regenerative selective immunoglobulin adsorption | |
Vallar et al. | Immunoadsorption procedure as a potential method for the specific β2-microglobulin removal from plasma of patients with chronic renal failure | |
CN115651081A (zh) | 一种破伤风抗毒素的纯化方法、层析填料及破伤风抗毒素 | |
TW200927254A (en) | Antibody production method | |
Olson | Affinity chromatography | |
Srour et al. | Histidine based adsorbents for selective removal of monoclonal immunoglobulin IgM antibodies from Waldenstrom's macroglobulinemia patient sera: A preliminary study | |
JP2001170501A (ja) | 乳清からのラクトフェリンアイソフォームの分離方法 | |
US11732004B2 (en) | Compositions and methods for simplified high efficiency isolation of proteins | |
Matic et al. | Selective apheresis-time for a change | |
EP2041572A1 (en) | Use of denaturing agents during affinity capture | |
RU2325172C2 (ru) | Сорбент для удаления иммуноглобулинов | |
JP2013532031A (ja) | 新規な媒体、装置および方法 | |
JP2584261B2 (ja) | ヘモグロビンの吸着剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06705738 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6705738 Country of ref document: EP |