WO2006093430A1 - Method for elaborating navigation parameters and vertical of a place - Google Patents

Method for elaborating navigation parameters and vertical of a place Download PDF

Info

Publication number
WO2006093430A1
WO2006093430A1 PCT/RU2005/000654 RU2005000654W WO2006093430A1 WO 2006093430 A1 WO2006093430 A1 WO 2006093430A1 RU 2005000654 W RU2005000654 W RU 2005000654W WO 2006093430 A1 WO2006093430 A1 WO 2006093430A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
place
gyro platform
signals
axes
Prior art date
Application number
PCT/RU2005/000654
Other languages
English (en)
French (fr)
Inventor
Vladimir Aronovich Belenkiy
Original Assignee
Vladimir Aronovich Belenkiy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladimir Aronovich Belenkiy filed Critical Vladimir Aronovich Belenkiy
Priority to DE112005003458T priority Critical patent/DE112005003458T5/de
Priority to EP05851122A priority patent/EP1852681A4/en
Priority to CN2005800485001A priority patent/CN101124456B/zh
Priority to US11/722,516 priority patent/US7933717B2/en
Publication of WO2006093430A1 publication Critical patent/WO2006093430A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope

Definitions

  • the invention relates to gyroscopic instrumentation and can be used to provide navigation of sea, air and land objects.
  • There is a method of generating navigation parameters and vertical space including the measurement of components of apparent acceleration using accelerometers, the sensitivity axis of which is connected to the gyro platform, generating the gyro platform control signals, testing the generated signals using a gyroscope or absolute angular velocity sensors [1], or includes measuring components apparent acceleration using accelerometers, measuring signals of gyroscopes or sensors of absolute angular velocity, axes are sensitive five of which are directed along the axes of the instrument trihedron, the analytical solution of the orientation by simulation inertial system operation [2], and generation of navigation parameters vertical space.
  • the aim of the invention is to improve the accuracy characteristics and the expansion of the dynamic capabilities of the method.
  • control signals of a gyroplatform or a model of a gyroplatform are formed from the provision condition in the absence of ballistic deviations of the period of natural oscillations of a gyroplatform or model of a gyroplatform that is different from the Schuler period, by using differences of the same information developed by inertial systems or their models with different periods natural oscillations provide asymptotic stability (autonomous damping) of each inertial system or model of inertia Flax system that using the difference information of the same name, developed by Inertial systems or their models with different periods of natural oscillations (with different parameters ,, n ") provide an assessment of instrumental errors by increasing the guiding force to the compass meridian, increasing the accuracy of the object course development and reducing the readiness time.
  • inertial systems for implementing the method. This is an inertial system with linear correction with a gyroplatform in biaxial and triaxial gimbal suspensions. This is an inertial system with linear correction when working together with an inertial system with an integrated correction. This is an inertial system in a strapless form. Consider the most common case.
  • the drawing shows a functional block diagram of an inertial system for implementing the method (see FIG. 1).
  • the considered inertial system with linear correction consists of two structurally identical stabilized gyroplatforms 1 and G and block 2 - the control unit and the generation of output parameters.
  • the kinetic moment of the gyroscope is perpendicular to the plane of the stabilized gyroplatform.
  • Gyroscopes have sensors 4, 5 and 4 ', 5' moments and angle sensors 6, 7 and 6 ', T.
  • accelerometers 8, 9 and 8', 9 ' are installed on each stabilized gyro platform.
  • the axes of sensitivity of accelerometers on each gyroplatform are orthogonal with each other and parallel to the plane of the gyroplatform.
  • the axis of one accelerometer is parallel to the internal axis of the gyro platform gimbal.
  • External axles of gimbal 11 and 1 G are installed in a common cardan ring 18 (see fig. 2).
  • the axis of the common cardan ring is mounted on the platform 19 stabilized in the horizon.
  • Axes 11 and 1 G are parallel to the plane of the stabilized platform 19 and parallel to each other.
  • An engine 20 and a heading sensor 21 are located on the axis of the common cardan ring.
  • Angle sensors 16 and 16 ' are also located on the common ring 18, measuring speed deviations 16 and 16' and engines 14 and 14 '.
  • the outputs of the angle sensors 6, 7 and 6 ', T corners of the gyros 3 and 3' through the amplifiers 12,13 and 12 ', 13' are connected to the inputs of the engines 14,15 and 14 ', 15', which are connected with the axles of the gimbal.
  • Angle sensors 16, 17 and 16 ', 17' are connected with these axes.
  • the inputs of the sensors 4, 5 and 4 ', 5' torque gyroscopes 3 and 3 ' are connected to the corresponding outputs of the control unit 2 and the generation of output parameters.
  • the outputs of the accelerometers 8, 9 and 8 ', 9' and the angle sensors 16, 17 and 16 ', 17' are connected to the corresponding inputs of block 2.
  • Information block 2 is connected with an inertial system with an integrated correction.
  • the outputs of block 2 for consumers are K - course of the object, ⁇ - latitude of place, ⁇ - longitude of place, ⁇ and ⁇ - angles of side and keel roll.
  • the proposed system operates as follows. Each gyro-platform with the help of motors 14, 15 and 14 ', 15', respectively, according to the error signals of the sensors of angles 6, 7 and 6 ', 7' of gyros 3 and 3 'is kept in the same plane with the gyroscope casing.
  • each gyroscope together with the gyro platform is brought to the position corresponding to the set value of the speed deviation for this gyroplatform, using torques imposed by 4, 5 and 4 ', 5' gyroscopes 3 and 3 'torques by control signals generated in block 2 Since the given values of the velocity deviations are different for each gyroplatform, the differences in the readings of the angle sensors 16 and 16 'are the initial sources of information for determine the horizontal component of the absolute angular velocity of the Darboux trihedron.
  • the plane of the common cardan ring 18 using the tracking engine 20 is kept in the direction perpendicular to the plane of the compass meridian.
  • V; rV, g where g is the acceleration of gravity.
  • ⁇ 0 is the Shuler frequency
  • SmQr 1 gyro control signals can look like:
  • the signal that ensures the stability of engine control 20 will be where: AK - compass heading error;
  • the vertical component of the absolute angular velocity of the Darboux trihedron is produced from:
  • R pr W N / V pri cos ⁇ Pr .
  • FIG. 3 shows a diagram of an inertial system with a linear correction with a gyroplatform in a biaxial gimbal. It can be shown that the error in developing a compass course in this case will be:
  • FIG. 4 shows a diagram of an inertial system with linear correction with a gyroplatform in a three-axis gimbal.
  • the engine 20 is controlled by an angle sensor 17 by the signal ⁇ .
  • the engine 20 is controlled by an angle sensor 17 'by the signal ⁇ 2 . It can be shown that the error in developing a compass course in this case will be:
  • the generalized coordinate ⁇ is observable.
  • An inertial system with integral correction which provides for stabilization of gyroplatforms in the horizon, can determine independently the values of the compass heading of an object K G c i c and the value of the most horizontal component of the absolute angular on the horizontal components of the absolute angular velocity of the trihedron Darboux

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Description

СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И
ВЕРТИКАЛИ МЕСТА
Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных объектов.
Известен способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, оси чувствительности которых, связаны с гироплатформой, формирование сигналов управления гироплатформой, отработку сформированных сигналов при помощи гироскопа или датчиков абсолютной угловой скорости [1], или включающий измерение составляющих кажущегося ускорения при помощи акселерометров, измерение сигналов гироскопов или датчиков абсолютной угловой скорости, оси чувствительности которых направлены по осям приборного трехгранника, аналитическое решение задачи ориентации путем моделирования работы инерциальной системы [2], выработку навигационных параметров и вертикали места.
Недостатком известного способа являются ограниченные возможности точностных и динамических характеристик.
Целью изобретения является повышение точностных характеристик и расширение динамических возможностей способа.
Технический эффект достигается тем, что управляющие сигналы гироплатформы или модели гироплатформы формируют из условия обеспечения при отсутствии баллистических девиаций периода собственных колебаний гироплатформы или модели гироплатформы, отличного от периода Шулера, тем, что используя разности одноименной информации, выработанные инерциальными системами или их моделями с разными периодами собственных колебаний, обеспечивают асимптотическую устойчивость (автономное демпфирование) каждой инерциальной системы или модели инерциальной системы тем, что используя разности одноименной информации, выработанные инерциальными системами или их моделями с разными периодами собственных колебаний (с разными параметрами ,,n") обеспечивают оценку инструментальных погрешностей тем, что увеличивая направляющую силу к компасному меридиану, повышают точность выработки курса объекта и уменьшают время готовности.
Можно привести несколько примеров инерциальных систем для осуществления способа. Это инерциальная система с линейной коррекцией с гироплатформой в двухосном и в трехосном карданных подвесах. Это инерциальная система с линейной коррекцией при совместной работе с инерциальной системой с интегральной коррекцией. Это инерциальная система в бесплатформенном исполнении. Рассмотрим наиболее общий случай.
На чертеже представлена функциональная блок-схема инерциальной системы для осуществления способа (см. фиг. 1).
Рассматриваемая инерциальная система с линейной коррекцией состоит из двух конструктивно идентичных стабилизированных гироплатформ 1 и Г и блока 2 - блока управления и выработки выходных параметров. На каждой стабилизированной гироплатформе расположен один трехстепенной гироскоп 3 и 3'. При этом кинетический момент гироскопа перпендикулярен плоскости стабилизированной гироплатформы. Гироскопы имеют датчики 4, 5 и 4', 5' моментов и датчики углов 6, 7 и 6', T. Кроме того, на каждой стабилизированной гироплатформе установлены акселерометры 8, 9 и 8', 9'. Оси чувствительности акселерометров на каждой гироплатформе ортогональны между собой и параллельны плоскости гироплатформы. Ось одного акселерометра параллельна внутренней оси карданного подвеса гироплатформы. Наружные оси карданных подвесов 11 и 1 Г установлены в общем карданном кольце 18 (см. фиг. 2). Ось общего карданного кольца установлена на стабилизированной в горизонте платформе 19. Оси 11 и 1 Г параллельны плоскости стабилизированной платформы 19 и параллельны между собой. На оси общего карданного кольца расположены двигатель 20 и датчик курса 21. На общем кольце 18 размещены также датчики углов 16 и 16', замеряющие скоростные девиации 16 и 16' и двигатели 14 и 14'. Выходы датчиков углов 6, 7 и 6', T углов гироскопов 3 и 3' через посредство усилителей 12,13 и 12', 13' соединены с входами двигателей 14,15 и 14', 15', которые связаны с осями карданного подвеса. С этими же осями связаны датчики углов 16, 17 и 16', 17'. Входы датчиков 4, 5 и 4', 5' момента гироскопов 3 и 3' соединены с соответствующими выходами блока 2 управления и выработки выходных параметров. Выходы акселерометров 8, 9 и 8', 9' и датчики углов 16, 17 и 16', 17' соединены с соответствующими входами блока 2. Информационно блок 2 связан с инерциальной системой с интегральной коррекцией.
Выходами блока 2 для потребителей являются К - курс объекта, φ - широта места, λ — долгота места, θ и ψ — углы бортовой и килевой качек.
Функционирует предлагаемая система следующим образом. Каждая гироплатформа с помощью двигателей 14, 15 и 14', 15' соответственно по сигналам рассогласования датчиков углов 6, 7 и 6', 7' гироскопов 3 и 3' все время удерживается в одной плоскости с кожухом гироскопа.
Кожух каждого гироскопа вместе с гироплатформой приводится в положение, соответствующее заданному значению скоростной девиации для данной гироплатформы, с помощью моментов, накладываемых через датчики моментов 4, 5 и 4', 5' гироскопов 3 и 3' токами управления по сигналам, вырабатываемым в блоке 2. Поскольку заданные значения скоростных девиаций различны для каждой гироплатформы, разности показаний датчиков углов 16 и 16' являются исходными источниками информации для определения горизонтальной составляющей абсолютной угловой скорости трехгранника Дарбу. Плоскость общего карданного кольца 18 с помощью следящего двигателя 20 все время удерживается в направлении, перпендикулярном плоскости компасного меридиана.
В качестве исходной системы координат выберем сопровождающий трехгранник Дарбу E0NOZ0 ориентированный осью ON0 по горизонтальной составляющей абсолютной угловой скорости V/R. Тогда проекции абсолютной угловой скорости трехгранника E0N0Zo на его оси будут О; V/R; г. Проекции ускорения вершины трехгранника EoN0Z0 на его ось суть
V ; rV, g, где g - ускорение силы тяжести.
С кожухом гироскопа первой гироплатформы жестко свяжем правую систему координат EiNiZi. С кожухом гироскопа второй гироплатформы - систему координат E2N2Z2. Систему координат - EiNiZi - получим поворотами вокруг оси OE0 на угол αi и вокруг вспомогательной оси ONi на угол βi. Систему координат E2N2Z2.пoлyчим поворотами вокруг сои OE0 на угол α2 и вокруг вспомогательной оси ON2 на угол β2.
Проекции абсолютной угловой скорости трехгранников EiNiZi и E2N2Z2 на их оси ОЕь ONi ; OE2; ON2 будут:
Figure imgf000006_0001
Проекции ускорения вершин трехгранников EiNiZi и E2N2Z2 на оси ОЕь ONi и coи OE2; ON2 будут:
Figure imgf000007_0003
где: Δрь Ap2, Δqь 2- дрейфы гироскопов; AWEi , ΔWEi , AWNi , AWNi - погрешности акселерометров. Для обеспечения периода собственных колебаний гироплатформы, отличного от периода Шулера, инвариантные значения скоростных девиаций могут иметь вид:
, а сигналы
Figure imgf000007_0005
управления гироскопами в системах координат EiNiZ1 и E2N2Z2 могут иметь различный вид, например,
'
Figure imgf000007_0001
где: ω0 частота Шулера; nь n2 - параметры системы. Примем n2 = - U1= п, 2αпp = α2- αi - разность показаний датчиков угла 16' и 16.
Для обеспечения инвариантных значений скоростных девиаций,
например, SmQr1 сигналы управления гироскопами могут
Figure imgf000007_0002
иметь вид:
Figure imgf000007_0004
Figure imgf000008_0001
Figure imgf000008_0002
Сигнал, обеспечивающий устойчивость управления двигателем 20 будет
Figure imgf000008_0005
где: AK - погрешность выработки компасного курса;
F - передаточная функция; βг , βr разность показаний датчиков угла 17' и 17.
При п > 1 увеличивается направляющая сила, воздействующая на гироскоп, и тем самым уменьшается влияние дрейфа гироскопа на точность вырабатываемых параметров.
При этом существенно повышается точность выработки курса объекта. По значению угла αпp вырабатывают горизонтальную составляющую абсолютной угловой скорости из соотношений:
Figure imgf000008_0004
Вертикальную составляющую абсолютной угловой скорости трехгранника Дарбу вырабатывают из :
Rпp = WN / Vпp cos αПp.
По значениям Vпp/R, rпp и курсу компасному Kгк вырабатывают координаты места φ и λ и курс объекта К. Для иллюстрации достижения поставленной задачи сформируем управляющие сигналы гироплатформ или модели гироплатформ в соответствии с выражениями (1).
Уравнениями функционирования системы будут:
Figure imgf000008_0003
Уравнения ошибок гироплатформы или модели гироплатформы без учёта влияния членов с вертикальной составляющей абсолютной угловой скорости г будут:
(2)
(3)
Figure imgf000009_0001
Λ " где: Aa; А Я - погрешности выработки вертикали места.
;
Figure imgf000009_0002
где: Δαь βi- ошибки одной гироплатформы;
Δα2; βг- ошибки другой гироплатформы;
Figure imgf000009_0003
ак следует из уравнений (2) и (3), частота собственных колебаний гироплатформы гироплатформ при отсутствии баллистических девиаций
Λ Λ по координатам β ; A(χ будет nω0cosα, а по координатам β ; A(χ -
ω0cosα; отсюда следует что частоты собственных колебаний гироплатформ отличаются от частоты ω0 - частоты Шулера. При этом степень отличия зависит от параметра "п". T =2π/ω0 , где T - период Шулера. Как следует из уравнений (3) направляющая сила к компасному меридиану будет псоосоsα, а ошибка выработки курса объекта при аналитическом решении задачи инерциальной системы будет т.е. уменьшается в (псоsα) раз.
Figure imgf000010_0003
На фиг. 3 представлена схема инерциальной системы с линейной коррекцией с гироплатформой в двухосном карданном подвесе. Можно показать, что погрешность выработки компасного курса в этом случае будет:
Figure imgf000010_0002
где ω - угловая скорость Земли; φ- широта места.
Обобщенная координата AK = K2 - K1 -наблюдаема.
На фиг. 4 представлена схема инерциальной системы с линейной коррекцией с гироплатформой в трехосном карданном подвесе. Двигатель 20 управляется датчиком угла 17 по сигналу βь Двигатель 20 управляется датчиком угла 17' по сигналу β2. Можно показать, что погрешность выработки компасного курса в этом случаи будет:
Figure imgf000010_0001
Обобщенная координата β - наблюдаема.
Инерциальная система с интегральной коррекцией, обеспечивающая стабилизацию гироплатформ в горизонте, по горизонтальным составляющим абсолютной угловой скорости трехгранника Дарбу может определять самостоятельно значения компасного курса объекта KГкиc и значение самой горизонтальной составляющей абсолютной угловой
скорости . По показаниям акселерометров инерциальная система
Figure imgf000010_0004
может определять проекции ускорения вершины трехгранника Дарбу
E0NOZ0 на его оси ON0 и OEo (rV)Иc и Vис .
Указанная информация вместе с одноименной информацией, выработанной рассматриваемой инерциальной системой с линейной коррекцией, может быть использована для управления обеими этими системами.
Используя сигналы разности одноименной информации, обеспечивают асимптотическую устойчивость (демпфирование) двух систем, имеющих разные частотные свойства, а также оценку их инструментальных погрешностей. В бесплатформенном исполнении инерциалных систем указанные процессы решаются путем моделирования.
Источники информации: [1] В. А. Беленький - Патент JYs 2000544 РФ.
[2] А. В. Репников, Г. П. Сачков, А. И. Черноморский - «Гиpocкoпичecкиe cиcтeмы».

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, оси чувствительности которых, связаны с гироплатформой, ф ормирование сигналов управления гироплатформой, отработку сформированных сигналов при помощи гироскопа или датчиков абсолютной угловой скорости, или включающий измерение составляющих кажущегося ускорения при помощи акселерометров, измерение сигналов гироскопов или датчиков абсолютной угловой скорости, оси чувствительности которых, направлены по осям приборного трехгранника аналитическое решение задачи ориентации путем моделирования работы инерциальной системы, выработку навигационных параметров и вертикали места, отличающийся тем, что управляющие сигналы гироплатформы или модели гироплатформы формируют из условия обеспечения при отсутствии баллистических девиаций периода собственных колебаний гироплатформы или модели гироплатформы, отличного от периода Шулера.
2. Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, оси чувствительности которых, связаны с гироплатформой, формирование сигналов управления гироплатформой, отработку сформированных сигналов при помощи гироскопа или датчиков абсолютной угловой скорости, или включающий измерение составляющих кажущегося ускорения при помощи акселерометров, измерение сигналов гироскопов или датчиков абсолютной угловой
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) скорости, оси чувствительности которых, направлены по осям приборного трехгранника аналитическое решение задачи ориентации путем моделирования работы инерциальной системы, выработку навигационных параметров и вертикали места, отличающийся тем, что используя разности одноименной информации, выработанные инерциальными системами или их моделями с разными периодами собственных колебаний, обеспечивают асимптотическую устойчивость (автономное демпфирование) каждой инерциальной системы или модели инерциальной системы.
3. Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, оси чувствительности которых, связаны с гироплатформой, формирование сигналов управления гироплатформой, отработку сформированных сигналов, при помощи гироскопа или датчиков абсолютной угловой скорости, или включающий измерение составляющих кажущегося ускорения при помощи акселерометров, измерение сигналов гироскопов или датчиков абсолютной угловой скорости, оси чувствительности которых, направлены по осям приборного трехгранника аналитическое решение задачи ориентации путем моделирования работы инерциальной системы, выработку навигационных параметров и вертикали места, отличающийся тем, что используя разности одноименной информации, выработанные инерциальными системами или их моделями с разными периодами собственных колебаний (с разными параметрами ,,п") обеспечивают оценку инструментальных погрешностей.
4. Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, оси чувствительности которых, связаны с гироплатформой, формирование сигналов управления гироплатформой,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) отработку сформированных сигналов при помощи гироскопа или датчиков абсолютной угловой скорости, или включающий измерение составляющих кажущегося ускорения при помощи акселерометров, измерение сигналов гироскопов или датчиков абсолютной угловой скорости, оси чувствительности которых, направлены по осям приборного трехгранника аналитическое решение задачи ориентации путем моделирования работы инерциальной системы, выработку навигационных параметров и .вертикали места, отличающийся тем, что увеличивая направляющую силу к компасному меридиану, повышают точность выработки курса объекта и уменьшают время готовности системы.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2005/000654 2005-02-21 2005-12-21 Method for elaborating navigation parameters and vertical of a place WO2006093430A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112005003458T DE112005003458T5 (de) 2005-02-21 2005-12-21 Verfahren zur Erarbeitung von Navigationsparameters und der Ortssenkrechten
EP05851122A EP1852681A4 (en) 2005-02-21 2005-12-21 METHOD FOR PRODUCING THE NAVIGATION PARAMETERS AND THE VERTICAL OF A PLACE
CN2005800485001A CN101124456B (zh) 2005-02-21 2005-12-21 产生导航参数和竖直位置的方法
US11/722,516 US7933717B2 (en) 2005-02-21 2005-12-21 Method for elaborating navigation parameters and vertical of a place

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005104599 2005-02-21
RU2005104599/28A RU2272995C1 (ru) 2005-02-21 2005-02-21 Способ выработки навигационных параметров и вертикали места (варианты)

Publications (1)

Publication Number Publication Date
WO2006093430A1 true WO2006093430A1 (en) 2006-09-08

Family

ID=36388957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000654 WO2006093430A1 (en) 2005-02-21 2005-12-21 Method for elaborating navigation parameters and vertical of a place

Country Status (6)

Country Link
US (1) US7933717B2 (ru)
EP (1) EP1852681A4 (ru)
CN (1) CN101124456B (ru)
DE (1) DE112005003458T5 (ru)
RU (1) RU2272995C1 (ru)
WO (1) WO2006093430A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598569B (zh) * 2008-06-05 2011-12-07 财团法人工业技术研究院 设置方位辨识方法及其导航装置
SE532832C2 (sv) * 2008-12-15 2010-04-20 Alignment Systems Ab Anordning och förfarande för mätning av en konstruktion
US8294766B2 (en) 2009-01-28 2012-10-23 Apple Inc. Generating a three-dimensional model using a portable electronic device recording
CN106379564B (zh) * 2016-10-10 2017-05-17 哈尔滨工业大学 航天器地面仿真用三轴微干扰力矩运动模拟装置
RU2634071C1 (ru) * 2016-11-08 2017-10-23 Сергей Анатольевич Черенков Способ определения навигационных параметров и бесплатформенная инерциальная навигационная система для его осуществления
RU2661446C1 (ru) * 2017-08-16 2018-07-16 Сергей Анатольевич Черенков Способ определения навигационных параметров объекта и бесплатформенная инерциальная навигационная система для осуществления способа
CN115931009B (zh) * 2023-03-13 2023-04-28 北京航空航天大学 一种基于陀螺仪和激光测距的惯性器件离心测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1212876A (en) * 1966-12-27 1970-11-18 Philips Nv A platform for inertial navigation systems or the like
EP0392104A1 (en) * 1989-04-13 1990-10-17 Litton Systems, Inc. Inertial navigation system
US5359889A (en) * 1991-12-10 1994-11-01 Textron Inc. Vertical position aided inertial navigation system
RU2046289C1 (ru) * 1991-12-12 1995-10-20 Владимир Аронович Беленький Способ определения навигационных параметров и вертикали места
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2098765C1 (ru) * 1994-09-30 1997-12-10 Владимир Аронович Беленький Способ выработки навигационных параметров и вертикали места
RU2126136C1 (ru) * 1997-05-21 1999-02-10 Беленький Владимир Аронович Способ выработки навигационных параметров и вертикали места

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944426A (en) * 1956-05-31 1960-07-12 Lockheed Aircraft Corp Stabilized platform reference device
US3028592A (en) * 1957-06-27 1962-04-03 Gen Precision Inc Doppler inertial navigation data system
US4783744A (en) * 1986-12-08 1988-11-08 General Dynamics, Pomona Division Self-adaptive IRU correction loop design interfacing with the target state estimator for multi-mode terminal handoff
RU2000544C1 (ru) * 1991-11-26 1993-09-07 Беленький В.А. Гироскопическа навигационна система дл подвижных объектов
CN2277094Y (zh) * 1996-12-27 1998-03-25 唐世明 组合导航惯性平台
CN1089160C (zh) * 1998-08-07 2002-08-14 清华大学 一种应用微型惯性测量组合进行三维位置测量的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1212876A (en) * 1966-12-27 1970-11-18 Philips Nv A platform for inertial navigation systems or the like
EP0392104A1 (en) * 1989-04-13 1990-10-17 Litton Systems, Inc. Inertial navigation system
US5359889A (en) * 1991-12-10 1994-11-01 Textron Inc. Vertical position aided inertial navigation system
RU2046289C1 (ru) * 1991-12-12 1995-10-20 Владимир Аронович Беленький Способ определения навигационных параметров и вертикали места
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2098765C1 (ru) * 1994-09-30 1997-12-10 Владимир Аронович Беленький Способ выработки навигационных параметров и вертикали места
RU2126136C1 (ru) * 1997-05-21 1999-02-10 Беленький Владимир Аронович Способ выработки навигационных параметров и вертикали места

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852681A4 *

Also Published As

Publication number Publication date
CN101124456B (zh) 2012-02-15
CN101124456A (zh) 2008-02-13
EP1852681A4 (en) 2011-05-18
US20080010017A1 (en) 2008-01-10
EP1852681A1 (en) 2007-11-07
US7933717B2 (en) 2011-04-26
DE112005003458T5 (de) 2008-06-19
RU2272995C1 (ru) 2006-03-27

Similar Documents

Publication Publication Date Title
Grenon et al. Enhancement of the inertial navigation system for the morpheus autonomous underwater vehicles
Curey et al. Proposed IEEE inertial systems terminology standard and other inertial sensor standards
WO2006093430A1 (en) Method for elaborating navigation parameters and vertical of a place
CN112595350B (zh) 一种惯导系统自动标定方法及终端
CN103471613A (zh) 一种飞行器惯性导航系统参数仿真方法
CN107677292B (zh) 基于重力场模型的垂线偏差补偿方法
Qazizada et al. Mobile robot controlling possibilities of inertial navigation system
Liang et al. A solution to the attitude problem using two rotation units of micromechanical gyroscopes
Zacchini et al. Novel noncontinuous carouseling approaches for MEMS-based north seeking using Kalman filter: Theory, simulations, and preliminary experimental evaluation
Zhang et al. An improved computation scheme of strapdown inertial navigation system using rotation technique
RU2256881C2 (ru) Способ определения параметров ориентации и навигации и бесплатформенная инерциальная навигационная система для быстровращающихся объектов
Sushchenko Mathematical model of triaxial multimode attitude and heading reference system
Belge et al. Sensor fusion based on integrated navigation data of sea surface vehicle with machine learning method
Sun et al. Implementation of GPS/INS navigation system using low-cost MEMS sensors
Krasnov et al. Gyro stabilization system of a gravimeter
RU2315956C1 (ru) Способ демпфирования инерциальной системы
Li et al. A Dual-Axis Rotation Scheme for High-Precision RLG Inertial Navigation Systems Considering the G-sensitive Misalignment
RU2247324C1 (ru) Способ выработки навигационных параметров и вертикали места
RU2251078C1 (ru) Способ выработки навигационных параметров и вертикали места
Liu et al. Moving base alignment for SINS based on pseudo inertial navigation system modeling
RU2257545C1 (ru) Способ выработки навигационных параметров и вертикали места
RU2256879C1 (ru) Способ выработки навигационных параметров и вертикали места
Nie et al. High accuracy ins based on fiber optical gyroscope for AUV application
Sushchenko Mathematical model of attitude and heading reference system with biaxial horizontal platform
Djärf Practical Trials of Fiber Optical Gyroscope Based Inertial Navigation System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11722516

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005851122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580048500.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050034585

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005851122

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11722516

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005003458

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P