WO2006093349A1 - Inspecting apparatus and inspecting method - Google Patents

Inspecting apparatus and inspecting method Download PDF

Info

Publication number
WO2006093349A1
WO2006093349A1 PCT/JP2006/304668 JP2006304668W WO2006093349A1 WO 2006093349 A1 WO2006093349 A1 WO 2006093349A1 JP 2006304668 W JP2006304668 W JP 2006304668W WO 2006093349 A1 WO2006093349 A1 WO 2006093349A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
sensor
gas flow
inspection object
liquid crystal
Prior art date
Application number
PCT/JP2006/304668
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Ikeda
Shuji Yamaoka
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Publication of WO2006093349A1 publication Critical patent/WO2006093349A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for inspecting the quality of pixel electrodes formed on, for example, a liquid crystal panel and a liquid crystal display.
  • liquid crystal display panels with a high pixel count have been developed, and products that use them have been put on the market.
  • the so-called pin contact method uses a probe and does not improve the inspection accuracy. Therefore, in a non-contact state via capacitive coupling between the conductor pattern to be inspected and the sensor.
  • a method has been used in which an inspection signal is supplied to an inspection object, and the signal is detected from the inspection object in a non-contact state to conduct a continuity inspection.
  • a liquid crystal display substrate inspection apparatus disclosed in Patent Document 1 uses air levitation in a glass substrate inspection apparatus.
  • Patent Document 2 discloses a printed wiring board inspection device that moves a substrate to be inspected to a sensor position by airflow.
  • the levitation device described in Patent Document 3 moves a planar object with air pressure. It is a stable surface and uses less compressed air. Therefore, it is equipped with an air mixing means that mixes the supplied compressed air with the atmospheric air in the vicinity of the device, and reduces the compressed air by mixing the atmospheric air, and at the same time increases the air flow rate and injects it to the object. It is configured to float up.
  • Patent Document 1 Japanese Patent Laid-Open No. 1 1 1 1 4 2 8 0 2
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2— 1 8 1 8 7 5
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 4-2 6 2 6 0 8
  • the sensor In the inspection using the non-contact method, the sensor is placed close to the pixel electrode of the liquid crystal display. Therefore, the glass substrate on which the pixel electrode to be inspected is placed is fixed on the stage, and the sensor head is aired. It is necessary to keep the gap between the inspection target and the sensor head constant by floating. In other words, in the non-contact method, it is necessary to determine whether the inspection target is good or not based on a slight level difference in the detection signal.
  • the inspection target and sensor head There is a problem that the gap between the object to be inspected and the sensor head cannot be controlled.
  • the inspection apparatus described in Patent Document 1 uses air to reduce the frictional resistance between the substrate to be inspected and the stage, and in the apparatus described in Patent Document 3, air is injected to the bottom of the substrate.
  • air is injected to the bottom of the substrate.
  • compressed air and air in the atmosphere are mixed and jetted to save compressed air. None of the devices controls the gap between the sensor and the test object.
  • the conventional air levitation method requires the adjustment in the z-axis direction (perpendicular to the object to be inspected) for each sensor, resulting in a complicated mechanism for maintaining the gap. Also, since the inertial mass of the sensor head is relatively large, when performing a high-speed scan, it may not be able to follow it and fall into a stop state (crash). Furthermore, adjustment work at the site of use The work is complicated and it is difficult to attach and detach the sensor. Disclosure of the invention
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting the quality of pixel electrodes on a panel with high accuracy and high speed. That is, it is to provide an inspection apparatus and an inspection method that can follow high-speed scanning.
  • the present invention is an inspection apparatus that supplies an inspection signal to an inspection object and inspects the state of the inspection object, and is a first device that generates a gas flow from a first direction with respect to the inspection object.
  • Gas flow generating means for generating a gas flow with respect to the inspection object from a second direction opposite to the first direction, and detecting the inspection signal from the inspection object
  • a sensor detects the inspection signal in a non-contact manner from the inspection object in a state of being floated by the gas flow from the first direction and the gas flow from the second direction, and The quality of the inspection object is identified based on the detected change in the detection signal.
  • the gas flow from the first direction is a gas flow rising toward the inspection object
  • the gas flow from the second direction is a gas flow descending toward the inspection object.
  • the second gas flow generating means is provided in a plurality of regions in the vicinity of the sensor.
  • control means for controlling the ejection of the gas flow by the second gas flow generation means so that the sensor is separated from the inspection object by a predetermined distance.
  • control means individually selects the second gas flow generation means according to the distance between the sensor and the inspection object.
  • the gas flow is ejected.
  • control means measures the distance between the sensor and the inspection object based on the interference phase difference between the incident laser light and the reflected laser light on the inspection object, and the first measurement based on the measurement result. It is characterized in that the gas flow is controlled by the gas flow generating means (2).
  • the gas flow includes at least a gas flow of air, nitrogen, or other inert gas.
  • the senor has a configuration in which a portion facing the inspection object protrudes, and a sensor electrode is arranged on the protruding portion, and the inspection object is contactlessly connected through capacitive coupling between the sensor electrode and the inspection object. Further, the above inspection signal is detected.
  • the apparatus further comprises positioning movement means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining the proximity state of the sensor electrode and the inspection object.
  • the present invention is an inspection method for supplying an inspection signal to an inspection object and inspecting the state of the inspection object by a sensor
  • a gas flow is generated from the direction 1 and a gas flow is also ejected from the second direction facing the first direction toward the inspection target, and the inspection target is floated by the sensor.
  • the inspection signal is detected in a non-contact manner from the inspection object, and the quality of the inspection object is identified based on a change in the detection signal.
  • the ejection of the gas flow from the second direction is controlled so that the sensor is separated from the inspection object by a predetermined distance.
  • the gas flow from the second direction is ejected from a plurality of regions near the sensor, and the gas flow from the second direction depends on the distance between the sensor and the inspection object. These gas flows are selected individually.
  • FIG. 1 is a block diagram showing the overall configuration of an inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration when the sensor of the embodiment is cut.
  • FIG. 3 is a diagram for explaining the position control of the inspection object and the sensor at the time of inspection.
  • FIG. 4 is a diagram showing an arrangement example of a laser input / output unit and an air jet unit in the sensor.
  • FIG. 5 is a flowchart showing a control procedure of the distance (gap) between the inspection object and the sensor in the inspection apparatus according to the present embodiment.
  • FIG. 6 is a diagram showing another arrangement example of the laser input / output unit and the air ejection unit.
  • Fig. 1 is a block diagram showing the overall configuration of an inspection apparatus (array test) according to this embodiment.
  • Fig. 1 (a) shows the configuration of signal processing
  • Fig. 1 (b) shows the configuration for air control.
  • the inspection target here has, for example, a structure in which a plurality of pixel electrodes and a thin film transistor (TFT) for driving them are arranged in an array (or matrix) on a glass substrate. LCD panel and evening type panel.
  • TFT thin film transistor
  • the line-shaped sensor 1 is positioned at a position separated from the liquid crystal panel 10 by a predetermined distance in the vertical direction.
  • This sensor 1 has, for example, the same width as the width of the liquid crystal panel 10 and a one-dimensional line for determining the presence / absence of disconnection of the pixel electrode on the liquid crystal panel 10 by a non-contact method using a sensor circuit described later. It is a sensor.
  • This inspection device inspects the quality of the pixel electrodes of the liquid crystal panel 10 based on the output from the sensor 1. Further, a pixel voltage supply unit 13 is connected to the liquid crystal panel 10, thereby supplying signals necessary for pixel inspection to individual pixel electrodes.
  • the sensor 1 includes a plurality of sensor substrates 5 a and 5 b arranged regularly as shown in FIG. 1 (a). That is, in the sensor 1, the sensor substrates 5a and 5b are arranged in a line, and they are alternately juxtaposed at a constant pitch width on the spacer 33 having a predetermined thickness.
  • This is a one-dimensional line sensor configured to have almost the same width as the inspection target part of the liquid crystal panel 10, and the tip part of the sensor board 5 a, 5 b on the spacer 33 side is arranged oppositely.
  • the other sensor substrate is arranged in such a manner that a part thereof overlaps with the tip end portion in the row direction.
  • the tip end portions of the sensor boards 5 a and 5 b partially overlap with the opposing sensor boards, so that the sensor circuits 3 1 ( Since the sensor electrodes of each other also overlap each other in the column direction, depending on the relative positional relationship between the pixel electrodes of the liquid crystal panel 10 and the sensor circuit, two sensor circuits More specifically, since the sensor electrode 3 1) can simultaneously detect signals, the pixel electrode can be reliably judged as good or bad.
  • the pixel signal detected by the sensor circuit 31 arranged on each sensor board 5a, 5b is input to the signal processing unit 3.
  • the signal processing unit 3 performs processing such as amplification, multiplexing, waveform shaping, and AZD conversion, for example.
  • the control part 6 Compares the signal level processed by the signal processing unit 3 with a preset reference value and determines whether or not it is within the reference range. The judgment result is sent to the display unit 9.
  • the sensor 1 outputs a laser beam 18 a (for example, a pulsed laser) toward the liquid crystal panel 10 to be inspected as shown in FIG.
  • Laser input / output unit 2 consisting of 1 8 and a light receiving unit 1 9 (for example, a photomultiplier tube) that receives the laser beam 19 9 (reflected beam) reflected by the liquid crystal panel 10 and returning again
  • the length measuring unit 4 that measures the distance to the inspection target (liquid crystal panel 10), and the length measuring unit 4 as described later.
  • An air control unit 1 2 that receives the measurement result, and an air injection unit 1 1 that ejects air (downward airflow) from the sensor 1 toward the inspection object in accordance with the control from the air control unit 12 .
  • the gas ejected toward the inspection object is described as an example of air.
  • the present invention is not limited to this, and for example, a gas flow caused by nitrogen or other inert gas may be used. Good.
  • control unit 6 is composed of, for example, a micro-port sensor, and comprehensively controls a predetermined inspection sequence.
  • the control unit 6 has a ROM 7 and a RAM 8, and the ROM 7 stores a control procedure including an inspection procedure as a computer program, for example, and the RAM temporarily stores, for example, control data and inspection data. Used as a work area to store automatically.
  • the display unit 9 is made up of, for example, a CRT, a liquid crystal display, and the like. If the inspection object (pixel electrode of the liquid crystal panel) that is the determination result sent from the control unit 6 is satisfactory, the position information of the sensor 1 is inspected. Visually display in a format that can be easily understood. If there is an abnormality in the position of sensor 1, this is indicated, and the pixel electrode etc. If there is a defect, the position of the electrode on the panel substrate is also displayed by, for example, the electrode number and coordinates. In addition, the display of the inspection result is not limited to the visual display, and may be output in a format such as sound. Also, visual display and audio may be mixed.
  • the drive unit 16 receives the control signal from the control unit 6 and moves the entire liquid crystal panel 10 in a predetermined direction at a predetermined speed.
  • the sensor 1 sequentially scans the arrayed pixel electrodes on the liquid crystal panel 10 in a non-contact state.
  • the drive unit 16 moves the liquid crystal panel 10 that has been levitated by the air flow from the bottom to the top in a predetermined direction on the order. For this reason, three-dimensional position control is possible by four-axis control of XYZ0 angles, and the liquid crystal panel 10 is positioned at a reference position before inspection, which is separated from the sensor position by a certain distance.
  • FIG. 2 shows a cross-sectional configuration when the sensor 1 is cut along the two-dot chain line A—A ′ in FIG.
  • the sensor substrates 5 a and 5 b are made of glass having a predetermined thickness t 2 (for example, 0.5 mm) with a size of, for example, 2500 mm ⁇ 100 mm, and approximately at the center thereof The structure is bent (bent) into an S-shape with a loose cross section.
  • a sensor circuit 31 having a sensor electrode 20 is disposed on the upper surface end of the sensor substrate 5a, 5b opposite to the inspection target.
  • the substrate material of the sensor substrates 5a and 5b is not limited to glass, and may be made of plastic or quartz, for example.
  • the liquid crystal panel 10 to be inspected is composed of a glass substrate and a plurality of pixel electrodes 15 formed on the surface thereof as shown in FIG. 2, and is arranged close to the pixel electrodes 15.
  • the sensor electrode 20 of the sensor 1 is connected to the pixel electrode 15 of the liquid crystal panel 10 from the pixel voltage supply unit 13 shown in FIG. Signal potential (pixel voltage) is detected in a non-contact manner.
  • the distance d between the sensor electrode 20 and the pixel electrode 15 on the liquid crystal panel 10 is set to For example, 50 or less.
  • the spacer 3 3 provided on the substrate 24 (having a thickness tl of 1.0 mm, for example) has a structure in which the central portion of the sensor 1 protrudes more vertically than the substrate 24.
  • the sensor electrode 20 constituting the sensor circuit 31 is connected to the gate terminal (G) of the CMO S element (MOS type field effect transistor) formed on the sensor substrates 5a and 5b, for example. It consists of a conductor film (for example, IT * film) having a predetermined area.
  • the substrate 24 is made of a metal such as aluminum.
  • FIG. 3 is a diagram for explaining the positional control and positional relationship between the inspection object and the sensor at the time of inspection.
  • the sensor 1 is fixedly disposed at a predetermined position above the liquid crystal panel 10 to be inspected in a non-contact state with the liquid crystal panel 10, and the air supply unit 5 is disposed below the liquid crystal panel 10.
  • An air flow (upward flow indicated by an upward arrow in the figure) is generated from the air supply unit 50 toward the liquid crystal panel 10, and the liquid crystal panel 10 receives the air flow and receives a predetermined distance. Only emerged. That is, the air supply section 50 has a large number of holes (not shown) over the entire upper surface, and the air flow ejected from these holes is blown evenly over the entire inspection target, The liquid crystal panel 10 is lifted by the pressure of the air flow.
  • FIG. 4 shows an example of the arrangement of the laser input / output unit and air ejection unit in the sensor.
  • FIG. 4 shows the state when the sensor 1 is viewed from the liquid crystal panel 10 side.
  • the sensor 2 substrate 2 4 On the side where the substrate 5 a, 5 b is arranged, the laser input / output units 2 a to 2 z and the air jet are ejected at regular intervals at the end of the substrate 24 near the sensor substrates 5 a, 5 b. Parts 1 1 a to 1 1 z are arranged.
  • Each laser input / output unit 2a to 2z outputs laser light from its output unit 18 (see Fig. 1 (b)) toward the liquid crystal panel 10 during inspection, and receives the reflected laser beam.
  • the length measuring unit 4 determines the distance between the sensor electrode 20 and the pixel electrode 15 on the liquid crystal panel 10 based on the interference phase difference between the laser beam incident on the liquid crystal panel 10 and the reflected laser beam. Measure d.
  • the air control unit 1 2 determines which of the sensor substrates 5 a and 5 b has an abnormality in the distance d between the sensor electrode 20 and the pixel electrode 15. In other words, it is determined whether the distance is too close or too far from the predetermined distance determined in advance. Then, the air control unit 12 controls the air ejection units 1 1 a to 1 1 z individually according to the determination result.
  • Feed pack control is performed so that the distance d between the sensor electrode and the pixel electrode of the liquid crystal panel is maintained at a predetermined value (a constant value). For example, when the distance d between the sensor electrode and the pixel electrode is smaller than a predetermined value in the vicinity of the laser input / output units 2a to 2c, the air control unit 12 It is determined that the sensor 1 is too close, and a predetermined amount of air (downflow) is ejected from the air ejection portions 1 1 a to l 1 c.
  • FIG. 5 shows a control procedure for the distance (gap) between the inspection target and the sensor in the inspection apparatus according to the present embodiment. It is a flowchart.
  • the length measuring unit 4 uses a sensor electrode and a liquid crystal panel based on the interference phase difference between the incident laser beam and the reflected laser beam from all laser input / output units 2a to 2z. Measure the distance d between the upper pixel electrodes.
  • the measured value is compared with a predetermined value to determine whether the distance (gap) d between the sensor electrode and the pixel electrode is within an appropriate range.
  • step S 1 3 If the distance (gap) d is an appropriate value as a result of the determination in step S 1 3, the air amount from the air ejection sections 1 1 a to 1 1 z is maintained at the current value in step S 1 4. . If it is determined that the distance (gap) d is small, it is determined that the liquid crystal panel 10 is too close to the sensor 1. In step S15, the sensor 1 is too close to the liquid crystal panel 10 In step S16, select the air outlet corresponding to the identified location. In step S 17, the air ejection amount from the selected air ejection section is increased.
  • step S 25 the air blowout part corresponding to the identified part is selected in step S26. Then, in the following step S27, the air ejection amount from the selected air ejection section is reduced.
  • the liquid crystal panel 10 is moved, for example, in the direction of the arrow in FIG. Then, the sensor 1 sequentially scans the pixel electrodes 15 on the liquid crystal panel 10, thereby checking the quality continuously. In step S 3 0, the end of the inspection is determined. If all the pixels have not been inspected, the process returns to step S 1 1 and the distance d between the sensor electrode and the pixel electrode is measured again. Then, the air ejection control is continued as described above. When the inspection is completed, measurement and air control are also completed.
  • the sensor and liquid crystal panel are measured by laser measurement.
  • air is also blown from the sensor side based on the result, and the gap between the sensor and the liquid crystal panel is controlled, eliminating the need for on-site adjustments. It becomes easy to attach and detach.
  • air flow from both sides of the inspection target not only facilitates control of the distance between the sensor and the inspection target, but also provides high tracking capability for high-speed operation for scanning and inspection of the inspection target.
  • damage to the liquid crystal panel can be easily avoided.
  • the distance between the sensor and the object to be inspected can be controlled to the minimum, the sensitivity and resolution of the sensor are improved, and the pixel voltage of the pixel electrode can be reliably detected in a non-contact manner.
  • by providing a length measurement unit and air control unit corresponding to the sensor substrate of the sensor it is possible to control the distance between the sensor and the inspection target at the same time or individually at multiple locations of the sensor, and it is necessary to adjust the Z axis for each sensor Disappears.
  • the arrangement of the laser input / output part and the air ejection part in the sensor is not limited to the example shown in FIG. 4, but the laser input / output part is placed on both sides of the tip of each sensor board 5a, 5b as shown in FIG. May be provided.
  • the gap control between the inspection target and the sensor head can be easily performed with high accuracy, and the quality of the inspection target can be detected accurately and at high speed.
  • the sensor is easy to attach and detach because of its simple mechanism.

Abstract

An inspecting apparatus and an inspecting method for inspecting conformity of an object to be inspected at a high speed are provided. Noncontact inspection is performed by fixing a sensor (1) on an upper section of a liquid crystal panel (glass substrate) (10) i.e. the object to be inspected and floating the object (10) by an air flow. At the time of performing such inspection, a distance between the sensor (1) and the liquid crystal panel (10) is measured by a laser length measurement by a length measuring section (4). Based on the results, air is jetted from an air jetting section (11) also from the senor side, and the distance (gap) between the sensor (1) and the liquid crystal panel (10) is controlled.

Description

明細書 検査装置および検査方法 技術分野  Description Inspection apparatus and inspection method Technical Field
本発明は、 例えば、 液晶パネル、 液晶ディスプレイに形成された画素 電極の良否を検査する検査装置および検査方法に関するものである。 背景技術  The present invention relates to an inspection apparatus and an inspection method for inspecting the quality of pixel electrodes formed on, for example, a liquid crystal panel and a liquid crystal display. Background art
テレビ受像機、 パーソナルコンピュータ等のディスプレイの薄型化や 大型化の要求に伴ない、 高画素数の液晶表示パネルが開発され、 それを 採用した製品が市場に出回っている。 このような薄型かつ大型の表示装 置を採用した製品では、 製品組立て後の動作試験はもとより、 ディスプ レイ単体における画素電極の欠陥の有無を判定するための検査が重要で ある。  In response to demands for thinner and larger displays such as television receivers and personal computers, liquid crystal display panels with a high pixel count have been developed, and products that use them have been put on the market. For products that employ such thin and large display devices, it is important not only to perform operation tests after product assembly, but also to check for pixel electrode defects in the display alone.
画素電極や導電パターン等の検査方法として、 いわゆるピンコンタク ト方式ではプローブを使用することから検査精度が向上しないため、 検 査対象である導体パターンとセンサ間の容量結合を介して、 非接触状態 で検査対象に検査信号を供給し、 その信号を非接触状態で検査対象より 検出して導通検査を行う方式が、 従来より使用されている。 このような 非接触状態を維持するため、 例えば、 特許文献 1 ίこ開示された液晶ディ スプレイ基板の検査装置では、 ガラス基板検査装置においてエアー浮上 を利用している。 また、 特許文献 2には、 エアーフローにより検査対象 基板をセンサ位置まで移動させるプリント配線板の検査装置が開示され ている。  As the inspection method for pixel electrodes, conductive patterns, etc., the so-called pin contact method uses a probe and does not improve the inspection accuracy. Therefore, in a non-contact state via capacitive coupling between the conductor pattern to be inspected and the sensor. Conventionally, a method has been used in which an inspection signal is supplied to an inspection object, and the signal is detected from the inspection object in a non-contact state to conduct a continuity inspection. In order to maintain such a non-contact state, for example, a liquid crystal display substrate inspection apparatus disclosed in Patent Document 1 uses air levitation in a glass substrate inspection apparatus. Patent Document 2 discloses a printed wiring board inspection device that moves a substrate to be inspected to a sensor position by airflow.
一方、 特許文献 3に記載の浮上装置は、 平面状対象物を空気の圧力で 安定に浮上させ、 圧縮空気消費量を少なくしたものである。 そのため、 供給される圧縮空気と装置近辺の大気中の空気とを混合する空気混合手 段を備え、 大気中の空気を混合することによって圧縮空気を減圧すると 同時に空気流量を増量し対象物に噴射して浮上させる構成としている。 On the other hand, the levitation device described in Patent Document 3 moves a planar object with air pressure. It is a stable surface and uses less compressed air. Therefore, it is equipped with an air mixing means that mixes the supplied compressed air with the atmospheric air in the vicinity of the device, and reduces the compressed air by mixing the atmospheric air, and at the same time increases the air flow rate and injects it to the object. It is configured to float up.
特許文献 1 特開平 1 1 一 1 4 2 8 0 2号公報  Patent Document 1 Japanese Patent Laid-Open No. 1 1 1 1 4 2 8 0 2
特許文献 2 特開 2 0 0 2— 1 8 1 8 7 5号公報  Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2— 1 8 1 8 7 5
特許文献 3 特開 2 0 0 4— 2 6 2 6 0 8号公報  Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 4-2 6 2 6 0 8
非接触方式を採用した検査では、 液晶ディスプレイの画素電極等にセ ンサを近接させるため、 検査対象である画素電極等が配されたガラス製 基板をステージ上に固定し、 センサへッ ドを空気浮上等させることで、 検査対象とセンサへッ ド間のギヤップを一定に維持する必要がある。 す なわち、 非接触方式では、 検出信号のわずかなレベル差をもとに検査対 象の良否判定を行う必要があるが、 上述した従来の装置や方法では、 検 査対象とセンサへッ ドを十分に近接できないだけでなく、 検査対象とセ ンサへッド間のギヤップ制御も不可能であるという問題がある。  In the inspection using the non-contact method, the sensor is placed close to the pixel electrode of the liquid crystal display. Therefore, the glass substrate on which the pixel electrode to be inspected is placed is fixed on the stage, and the sensor head is aired. It is necessary to keep the gap between the inspection target and the sensor head constant by floating. In other words, in the non-contact method, it is necessary to determine whether the inspection target is good or not based on a slight level difference in the detection signal. However, in the conventional devices and methods described above, the inspection target and sensor head There is a problem that the gap between the object to be inspected and the sensor head cannot be controlled.
特に特許文献 1に記載の検査装置は、 検査対象基板とステージとの摩 擦抵抗低減のためにエア一を使用しており、 また、 特許文献 3に記載の 装置では、 基板下部への空気噴射により基板をエアーで浮上させる際、 圧縮空気と大気中の空気を混合噴射することによって圧縮空気の節約を 図っている。 いずれの装置もセンサと検査対象間のギャップ制御を行つ ていない。  In particular, the inspection apparatus described in Patent Document 1 uses air to reduce the frictional resistance between the substrate to be inspected and the stage, and in the apparatus described in Patent Document 3, air is injected to the bottom of the substrate. When the substrate is levitated by air, compressed air and air in the atmosphere are mixed and jetted to save compressed air. None of the devices controls the gap between the sensor and the test object.
従って、 上記従来の空気浮上方法では、 センサ毎に z軸方向 (検査対 象に対して鉛直方向) の調整が必要となり、 ギャップ維持のための機構 が複雑になるという問題がある。 また、 センサヘッドの慣性質量が比較 的大きいため、 高速スキャンを行った場合、 それに追従できずに停止状 態 (クラッシュ) に陥る可能性もある。 さらには、 使用現場での調整作 業が煩雑になり、 センサの着脱も困難であるという問題がある。 発明の開示 Therefore, the conventional air levitation method requires the adjustment in the z-axis direction (perpendicular to the object to be inspected) for each sensor, resulting in a complicated mechanism for maintaining the gap. Also, since the inertial mass of the sensor head is relatively large, when performing a high-speed scan, it may not be able to follow it and fall into a stop state (crash). Furthermore, adjustment work at the site of use The work is complicated and it is difficult to attach and detach the sensor. Disclosure of the invention
本発明は、 上述した課題に鑑みてなされたもので、 その目的とすると ころは、 パネル上の画素電極の良否を高精度かつ高速に検出できる検査 装置および検査方法を提供することである。 すなわち、 高速スキャンに 追従できる検査装置および検査方法を提供することである。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting the quality of pixel electrodes on a panel with high accuracy and high speed. That is, it is to provide an inspection apparatus and an inspection method that can follow high-speed scanning.
かかる目的を達成し、 上述した課題を解決する一手段として、 例えば 、 以下の構成を備える。 すなわち、 本発明は、 検査対象に検査信号を供 給して、 その検査対象の状態を検査する検査装置であって、 上記検査対 象に対して第 1の方向から気体流を発生する第 1の気体流発生手段と、 上記第 1の方向に対向する第 2の方向から上記検査対象に対して気体流 を発生する第 2の気体流発生手段と、 上記検査対象より上記検査信号を 検出するセンサとを備え、 上記センサは上記第 1の方向からの気体流と 上記第 2の方向からの気体流とにより浮上した状態にある上記検査対象 より非接触で上記検査信号を検出するとともに、 上記検出された検出信 号の変化に基づいて上記検査対象の良否を識別することを特徴とする。 例えば、 上記第 1の方向から気体流は上記検査対象に向けて上昇する 気体流であり、 上記第 2の方向から気体流は上記検査対象に向けて下降 する気体流であることを特徴とする。 また、 例えば、 上記第 2の気体流 発生手段は上記センサ近傍の複数の領域に設けられていることを特徴と する。  As a means for achieving this object and solving the above-mentioned problems, for example, the following configuration is provided. That is, the present invention is an inspection apparatus that supplies an inspection signal to an inspection object and inspects the state of the inspection object, and is a first device that generates a gas flow from a first direction with respect to the inspection object. Gas flow generating means, second gas flow generating means for generating a gas flow with respect to the inspection object from a second direction opposite to the first direction, and detecting the inspection signal from the inspection object A sensor, and the sensor detects the inspection signal in a non-contact manner from the inspection object in a state of being floated by the gas flow from the first direction and the gas flow from the second direction, and The quality of the inspection object is identified based on the detected change in the detection signal. For example, the gas flow from the first direction is a gas flow rising toward the inspection object, and the gas flow from the second direction is a gas flow descending toward the inspection object. . Further, for example, the second gas flow generating means is provided in a plurality of regions in the vicinity of the sensor.
例えば、 上記センサを上記検査対象より所定距離離間させるよう上記 第 2の気体流発生手段による気体流の噴出を制御する制御手段をさらに 備えることを特徴とする。 また、 例えば、 上記制御手段は上記センサと 上記検査対象間の距離に応じて、 上記第 2の気体流発生手段を個別に選 択して上記気体流の噴出を行うことを特徴とする。 For example, it is characterized by further comprising control means for controlling the ejection of the gas flow by the second gas flow generation means so that the sensor is separated from the inspection object by a predetermined distance. Further, for example, the control means individually selects the second gas flow generation means according to the distance between the sensor and the inspection object. Alternatively, the gas flow is ejected.
例えば、 上記制御手段は上記検査対象への入射レーザ光と反射レーザ 光の干渉位相差をもとに上記センサと上記検査対象間の距離を測長し、 その測長結果をもとに上記第 2の気体流発生手段による気体流の噴出制 御を行うことを特徴とする。  For example, the control means measures the distance between the sensor and the inspection object based on the interference phase difference between the incident laser light and the reflected laser light on the inspection object, and the first measurement based on the measurement result. It is characterized in that the gas flow is controlled by the gas flow generating means (2).
. 例えば、 上記気体流には少なくとも空気、 窒素、 その他の不活性気体 による気体流が含まれることを特徴とする。  For example, the gas flow includes at least a gas flow of air, nitrogen, or other inert gas.
例えば、 上記センサは、 上記検査対象に対向する部分が突出し、 その 突出部分にセンサ電極を配した構成を有し、 上記センサ電極と上記検査 対象間の容量結合を介して非接触で上記検査対象より上記検査信号を検 出することを特徴とする。  For example, the sensor has a configuration in which a portion facing the inspection object protrudes, and a sensor electrode is arranged on the protruding portion, and the inspection object is contactlessly connected through capacitive coupling between the sensor electrode and the inspection object. Further, the above inspection signal is detected.
例えば、 上記センサ電極と上記検査対象の近接状態を維持したまま上 記検査対象を順次走査するよう上記検査対象を位置決め移動させる位置 決め移動手段をさらに備えることを特徴とする。  For example, the apparatus further comprises positioning movement means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining the proximity state of the sensor electrode and the inspection object.
上述した課題を解決する他の手段として、 例えば、 以下の構成を備え る。 すなわち、 本発明は、 検査対象に検査信号を供給して、 その検査対 象の状態をセンサにより検査する検査方法であって、 上記検査対象の第 As another means for solving the above-described problems, for example, the following configuration is provided. That is, the present invention is an inspection method for supplying an inspection signal to an inspection object and inspecting the state of the inspection object by a sensor,
1の方向から気体流を発生するとともに上記第 1の方向に対向する第 2 の方向からも上記検査対象に向けて気体流を噴出し、 上記検査対象を浮 上させた状態で上記センサによって上記検査対象より非接触で上記検査 信号を検出し、 その検出信号の変化に基づいて上記検査対象の良否を識 別することを特徴とする。 A gas flow is generated from the direction 1 and a gas flow is also ejected from the second direction facing the first direction toward the inspection target, and the inspection target is floated by the sensor. The inspection signal is detected in a non-contact manner from the inspection object, and the quality of the inspection object is identified based on a change in the detection signal.
例えば、 上記センサを上記検査対象より所定距離離間させるよう上記 第 2の方向からの気体流の噴出を制御することを特徴とする。 また、 例 えば、 上記第 2の方向からの気体流は上記センサ近傍の複数の領域より 噴出し、 上記センサと上記検査対象間の距離に応じて上記第 2の方向か らの気体流を個別に選択することを特徴とする。 図面の簡単な説明 For example, the ejection of the gas flow from the second direction is controlled so that the sensor is separated from the inspection object by a predetermined distance. For example, the gas flow from the second direction is ejected from a plurality of regions near the sensor, and the gas flow from the second direction depends on the distance between the sensor and the inspection object. These gas flows are selected individually. Brief Description of Drawings
第 1図は、 本発明の実施の形態例に係る検査装置の全体構成を示すブ ロック図である。  FIG. 1 is a block diagram showing the overall configuration of an inspection apparatus according to an embodiment of the present invention.
第 2図は、 実施の形態例のセンサを切断したときの断面構成を示す図 である。  FIG. 2 is a diagram showing a cross-sectional configuration when the sensor of the embodiment is cut.
第 3図は、 検査時における検査対象とセンサの位置制御を説明するた めの図である。  FIG. 3 is a diagram for explaining the position control of the inspection object and the sensor at the time of inspection.
第 4図は、 センサにおけるレーザ入出力部やエア一噴出部の配置例を 示す図である。  FIG. 4 is a diagram showing an arrangement example of a laser input / output unit and an air jet unit in the sensor.
第 5図は、 本実施の形態例に係る検査装置における検査対象とセンサ 間の距離 (ギャップ) の制御手順を示すフローチャートである。  FIG. 5 is a flowchart showing a control procedure of the distance (gap) between the inspection object and the sensor in the inspection apparatus according to the present embodiment.
第 6図は、 レーザ入出力部やエアー噴出部の他の配置例を示す図であ る。 発明を実施するための最良の形態  FIG. 6 is a diagram showing another arrangement example of the laser input / output unit and the air ejection unit. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る実施の形態例を詳細に説明 する。 図 1は、 本実施の形態例に係る検査装置 (アレイテス夕) の全体 構成を示すブロック図であり、 図 1 ( a ) は信号処理の構成を、 図 1 ( b ) はエアー制御のための構成をそれぞれ示している。 ここでの検査対 象は、 例えば、 ガラス製の基板上に複数の画素電極、 およびそれらを駆 動するための薄膜トランジスタ (T F T ) がアレイ状 (あるいは、 マト リックス状) に配列された構造を有する液晶表示パネルや夕ツチ式パネ ル等である。  Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. Fig. 1 is a block diagram showing the overall configuration of an inspection apparatus (array test) according to this embodiment. Fig. 1 (a) shows the configuration of signal processing, and Fig. 1 (b) shows the configuration for air control. Each configuration is shown. The inspection target here has, for example, a structure in which a plurality of pixel electrodes and a thin film transistor (TFT) for driving them are arranged in an array (or matrix) on a glass substrate. LCD panel and evening type panel.
図 1 ( a ) に示す検査装置では、 画素電極等を非接触方式で検査する ために、 液晶パネル 1 0から鉛直方向に所定距離離間した位置にライン 状のセンサ 1が位置決めされている。 このセンサ 1は、 例えば、 液晶パ ネル 1 0の幅と同じ幅を有するとともに、 後述するセンサ回路等により 非接触方式で液晶パネル 1 0上の画素電極の断線の有無等を判定する一 次元ラインセンサである。 本検査装置は、 センサ 1からの出力に基づい て、 液晶パネル 1 0の画素電極等の良否を検査する。 また、 液晶パネル 1 0には、 画素電圧供給部 1 3が接続されており、 それにより個々の画 素電極に画素の検査に必要な信号を供給している。 In the inspection device shown in Fig. 1 (a), the pixel electrodes are inspected in a non-contact manner. Therefore, the line-shaped sensor 1 is positioned at a position separated from the liquid crystal panel 10 by a predetermined distance in the vertical direction. This sensor 1 has, for example, the same width as the width of the liquid crystal panel 10 and a one-dimensional line for determining the presence / absence of disconnection of the pixel electrode on the liquid crystal panel 10 by a non-contact method using a sensor circuit described later. It is a sensor. This inspection device inspects the quality of the pixel electrodes of the liquid crystal panel 10 based on the output from the sensor 1. Further, a pixel voltage supply unit 13 is connected to the liquid crystal panel 10, thereby supplying signals necessary for pixel inspection to individual pixel electrodes.
センサ 1は、 図 1 ( a ) に示すように規則的に配列した複数のセンサ 基板 5 a , 5 bからなる。 すなわち、 センサ 1は、 センサ基板 5 a, 5 bをライン状に配し、 それらを、 所定の厚さを有するスぺ一サ 3 3上に 一定のピッチ幅で交互に並置するとともに、 全体として液晶パネル 1 0 の検査対象部分とほぼ同じ幅を有するように構成された一次元ラインセ ンサであり、 センサ基板 5 a , 5 bのスぺーサ 3 3側の先端部分は、 対 向して配された他のセンサ基板の先端端部と列方向において互いに一部 が重なり合う配列構成をとる。  The sensor 1 includes a plurality of sensor substrates 5 a and 5 b arranged regularly as shown in FIG. 1 (a). That is, in the sensor 1, the sensor substrates 5a and 5b are arranged in a line, and they are alternately juxtaposed at a constant pitch width on the spacer 33 having a predetermined thickness. This is a one-dimensional line sensor configured to have almost the same width as the inspection target part of the liquid crystal panel 10, and the tip part of the sensor board 5 a, 5 b on the spacer 33 side is arranged oppositely. The other sensor substrate is arranged in such a manner that a part thereof overlaps with the tip end portion in the row direction.
このように各センサ基板 5 a , 5 bの先端端部が、 対向するセンサ基 板と一部が重なり合う構成をとることで、 各センサ基板 5 a , 5 bに配 されたセンサ回路 3 1 (図 2参照) が有するセンサ電極も列方向に互い に重なり合うため、 液晶パネル 1 0の画素電極とセンサ回路との相対的 な位置関係によっては、 1つの画素電極に対して 2つのセンサ回路 (具 体的にはセンサ電極 3 1 ) で同時に信号を検出できるため、 その画素電 極の確実な良否判定が可能となる。  In this way, the tip end portions of the sensor boards 5 a and 5 b partially overlap with the opposing sensor boards, so that the sensor circuits 3 1 ( Since the sensor electrodes of each other also overlap each other in the column direction, depending on the relative positional relationship between the pixel electrodes of the liquid crystal panel 10 and the sensor circuit, two sensor circuits More specifically, since the sensor electrode 3 1) can simultaneously detect signals, the pixel electrode can be reliably judged as good or bad.
各センサ基板 5 a , 5 b上に配されたセンサ回路 3 1で検出された画 素信号は信号処理部 3に入力される。 この信号処理部 3は、 例えば、 増 幅、 多重化、 波形整形、 A Z D変換等の処理を行う。 そして、 制御部 6 は、 信号処理部 3で処理された信号レベルと、 あらかじめ設定した基準 値とを比較し、 それが基準の範囲内か否かを判定する。 判定結果は、 表 示部 9へ送られる。 The pixel signal detected by the sensor circuit 31 arranged on each sensor board 5a, 5b is input to the signal processing unit 3. The signal processing unit 3 performs processing such as amplification, multiplexing, waveform shaping, and AZD conversion, for example. And the control part 6 Compares the signal level processed by the signal processing unit 3 with a preset reference value and determines whether or not it is within the reference range. The judgment result is sent to the display unit 9.
さらにセンサ 1は、 図 1 ( b ) に示すように検査対象である液晶パネ ル 1 0に向けてレーザ光 1 8 a (例えば、 パルスレーザ) を出力するた め、 レーザダイオード等からなる出力部 1 8と、 その液晶パネル 1 0に 当たって反射し、 再び戻ってくるレーザ光 1 9 a (反射ビーム) を受光 する受光部 1 9 (例えば、 光電子倍増管) とからなるレーザ入出力部 2 を有する。 また、 これら出力レーザ光 1 8 aと反射レーザ光 1 9 aをも とに、 検査対象 (液晶パネル 1 0 ) までの距離を計測する測長部 4と、 後述するように測長部 4より測長結果を受けるエアー制御部 1 2と、 ェ ァー制御部 1 2からの制御に従って、 センサ 1より検査対象へ向けて空 気 (下降気流) を噴出するエア一噴出部 1 1とを有する。  Further, the sensor 1 outputs a laser beam 18 a (for example, a pulsed laser) toward the liquid crystal panel 10 to be inspected as shown in FIG. Laser input / output unit 2 consisting of 1 8 and a light receiving unit 1 9 (for example, a photomultiplier tube) that receives the laser beam 19 9 (reflected beam) reflected by the liquid crystal panel 10 and returning again Have Further, based on the output laser beam 18 a and the reflected laser beam 19 a, the length measuring unit 4 that measures the distance to the inspection target (liquid crystal panel 10), and the length measuring unit 4 as described later. An air control unit 1 2 that receives the measurement result, and an air injection unit 1 1 that ejects air (downward airflow) from the sensor 1 toward the inspection object in accordance with the control from the air control unit 12 .
なお、 以下の説明では、 検査対象に向けて噴出される気体は空気を例 として説明しているが、 これに限定されるものではなく、 例えば、 窒素 、 その他の不活性気体による気体流としてもよい。  In the following description, the gas ejected toward the inspection object is described as an example of air. However, the present invention is not limited to this, and for example, a gas flow caused by nitrogen or other inert gas may be used. Good.
制御部 6は、 本検査装置全体の制御を行うため、 例えば、 マイクロプ 口セッサで構成され、 所定の検査シーケンスを統括的に制御する。 制御 部 6は、 R O M 7や R A M 8を有し、 R O M 7には、 検査手順を含む制 御手順等が、 例えば、 コンピュータプログラムとして格納され、 R A M は、 例えば、 制御データや検査データ等を一時的に格納するための作業 領域として使用される。  In order to control the entire inspection apparatus, the control unit 6 is composed of, for example, a micro-port sensor, and comprehensively controls a predetermined inspection sequence. The control unit 6 has a ROM 7 and a RAM 8, and the ROM 7 stores a control procedure including an inspection procedure as a computer program, for example, and the RAM temporarily stores, for example, control data and inspection data. Used as a work area to store automatically.
表示部 9は、 例えば、 C R Tや液晶表示器等からなり、 制御部 6から 送られた判定結果である検査対象 (液晶パネルの画素電極) の良否ゃセ ンサ 1の位置情報等を、 検査員が容易に理解できる形式で可視表示する 。 センサ 1の位置に異常があればその旨を表示し、 また、 画素電極等に 不良があれば、 その電極のパネル基板上での位置も、 例えば、 電極番号 や座標等で表示する。 なお、 検査結果の表示は、 可視表示に限定されず 、 音声等の形式で出力してもよい。 また、 可視表示と音声を混在させて もよい。 The display unit 9 is made up of, for example, a CRT, a liquid crystal display, and the like. If the inspection object (pixel electrode of the liquid crystal panel) that is the determination result sent from the control unit 6 is satisfactory, the position information of the sensor 1 is inspected. Visually display in a format that can be easily understood. If there is an abnormality in the position of sensor 1, this is indicated, and the pixel electrode etc. If there is a defect, the position of the electrode on the panel substrate is also displayed by, for example, the electrode number and coordinates. In addition, the display of the inspection result is not limited to the visual display, and may be output in a format such as sound. Also, visual display and audio may be mixed.
駆動部 1 6は、 制御部 6からの制御信号を受けて、 液晶パネル 1 0全 体を所定方向に所定の速度で移動させる。 その結果、 センサ 1は、 非接 触の状態で液晶パネル 1 0上のアレイ状の画素電極を順次走査する。 具 体的には、 駆動部 1 6は、 後述するように、 下方から上方へ向かう空気 流により浮上している液晶パネル 1 0を、 オーダ一で所定方向へ移 動する。 そのため、 X Y Z 0角度の 4軸制御により三次元位置制御が可 能に構成されており、 液晶パネル 1 0をセンサ位置より一定距離離反さ せた検査前の基準となる位置に位置決めする。  The drive unit 16 receives the control signal from the control unit 6 and moves the entire liquid crystal panel 10 in a predetermined direction at a predetermined speed. As a result, the sensor 1 sequentially scans the arrayed pixel electrodes on the liquid crystal panel 10 in a non-contact state. Specifically, as will be described later, the drive unit 16 moves the liquid crystal panel 10 that has been levitated by the air flow from the bottom to the top in a predetermined direction on the order. For this reason, three-dimensional position control is possible by four-axis control of XYZ0 angles, and the liquid crystal panel 10 is positioned at a reference position before inspection, which is separated from the sensor position by a certain distance.
次に、 本実施の形態例に係る検査装置におけるセンサ部について説明 する。 図 2は、 図 1 ( a ) の二点鎖線 A— A ' に沿ってセンサ 1を切断 したときの断面構成を示している。 センサ基板 5 a, 5 bは、 その大き さが、 例えば、 2 5 0 mm X 1 0 0 m mで所定厚 t 2 (例えば、 0 . 5 mm ) のガラスで構成され、 ほぼ中央部において、 その断面がゆるい S 字型に屈曲した (たわんだ) 構造を有する。 そして、 センサ基板 5 a, 5 bの検査対象と対向する側の上面端部には、 センサ電極 2 0を有する センサ回路 3 1が配されている。 なお、 センサ基板 5 a, 5 bの基板材 料はガラスに限定されず、 例えばプラスチックや石英等で構成してもよ い。  Next, the sensor unit in the inspection apparatus according to the present embodiment will be described. FIG. 2 shows a cross-sectional configuration when the sensor 1 is cut along the two-dot chain line A—A ′ in FIG. The sensor substrates 5 a and 5 b are made of glass having a predetermined thickness t 2 (for example, 0.5 mm) with a size of, for example, 2500 mm × 100 mm, and approximately at the center thereof The structure is bent (bent) into an S-shape with a loose cross section. A sensor circuit 31 having a sensor electrode 20 is disposed on the upper surface end of the sensor substrate 5a, 5b opposite to the inspection target. The substrate material of the sensor substrates 5a and 5b is not limited to glass, and may be made of plastic or quartz, for example.
なお、 検査対象である液晶パネル 1 0は、 図 2に示すようにガラス基 板とその表面に形成された複数の画素電極 1 5からなり、 それらの画素 電極 1 5に近接して配されるセンサ 1のセンサ電極 2 0は、 図 1に示す 画素電圧供給部 1 3より液晶パネル 1 0の画素電極 1 5に印加された信 号電位 (画素電圧) を非接触方式で検出する。 The liquid crystal panel 10 to be inspected is composed of a glass substrate and a plurality of pixel electrodes 15 formed on the surface thereof as shown in FIG. 2, and is arranged close to the pixel electrodes 15. The sensor electrode 20 of the sensor 1 is connected to the pixel electrode 15 of the liquid crystal panel 10 from the pixel voltage supply unit 13 shown in FIG. Signal potential (pixel voltage) is detected in a non-contact manner.
本実施の形態例に係る検査装置では、 センサ 1を使用して非接触で液 晶パネルの検査を行うため、 センサ電極 2 0と液晶パネル 1 0上の画素 電極 1 5との距離 dを、 例えば 5 0 以下にする。 そのため、 基板 2 4上に設けたスぺ一サ 3 3 (その厚さ t lは、 例えば、 1 . 0 mm) に よって、 センサ 1の中央部分が基板 2 4よりも鉛直方向に突出した構造 としている。 また、 センサ回路 3 1を構成するセンサ電極 2 0は、 例え ば、 センサ基板 5 a , 5 b上に形成された C M〇 S素子 (M O S型電界 効果トランジスタ) のゲート端子 (G ) に連結されており、 所定の面積 を有する導体膜 (例えば、 I T〇膜等) からなる。 基板 2 4は、 例えば 、 アルミニウム等の金属からなる。  In the inspection apparatus according to the present embodiment, since the liquid crystal panel is inspected in a non-contact manner using the sensor 1, the distance d between the sensor electrode 20 and the pixel electrode 15 on the liquid crystal panel 10 is set to For example, 50 or less. For this reason, the spacer 3 3 provided on the substrate 24 (having a thickness tl of 1.0 mm, for example) has a structure in which the central portion of the sensor 1 protrudes more vertically than the substrate 24. Yes. Also, the sensor electrode 20 constituting the sensor circuit 31 is connected to the gate terminal (G) of the CMO S element (MOS type field effect transistor) formed on the sensor substrates 5a and 5b, for example. It consists of a conductor film (for example, IT * film) having a predetermined area. The substrate 24 is made of a metal such as aluminum.
次に、 本実施の形態例に係る検査装置における検査対象とセンサ間の 距離制御 (ギャップ制御) について説明する。 図 3は、 検査時における 検査対象とセンサとの位置制御と位置関係を説明するための図である。 図 3に示すように、 検査対象である液晶パネル 1 0上部の所定位置に、 その液晶パネル 1 0と非接触状態でセンサ 1を固定配置するとともに、 液晶パネル 1 0の下部に空気供給部 5 0を配瘇する。 空気供給部 5 0か らは、 液晶パネル 1 0に向けて空気流 (図中、 上向きの矢印で示す上昇 流) が発生しており、 液晶パネル 1 0は、 その空気流を受けて所定距離 だけ浮上した状態となる。 すなわち、 この空気供給部 5 0には、 その上 面全体に渡って多数の孔 (不図示) が空けられており、 それらの孔より 噴出する空気流は、 検査対象全体に均等に吹き付けられ、 その空気流に よる圧力で液晶パネル 1 0が浮上するようになっている。  Next, distance control (gap control) between the inspection object and the sensor in the inspection apparatus according to the present embodiment will be described. FIG. 3 is a diagram for explaining the positional control and positional relationship between the inspection object and the sensor at the time of inspection. As shown in FIG. 3, the sensor 1 is fixedly disposed at a predetermined position above the liquid crystal panel 10 to be inspected in a non-contact state with the liquid crystal panel 10, and the air supply unit 5 is disposed below the liquid crystal panel 10. Serve 0. An air flow (upward flow indicated by an upward arrow in the figure) is generated from the air supply unit 50 toward the liquid crystal panel 10, and the liquid crystal panel 10 receives the air flow and receives a predetermined distance. Only emerged. That is, the air supply section 50 has a large number of holes (not shown) over the entire upper surface, and the air flow ejected from these holes is blown evenly over the entire inspection target, The liquid crystal panel 10 is lifted by the pressure of the air flow.
図 4は、 センサにおけるレーザ入出力部やエアー噴出部の配置例を示 している。 なお、 図 4は、 センサ 1を液晶パネル 1 0側から見たときの 様子である。 図 3および図 4に示すように、 センサ 1の基板 2 4のセン サ基板 5 a , 5 bが配された側には、 各センサ基板 5 a , 5 bの近傍で あって基板 2 4の端部に一定間隔でレーザ入出力部 2 a〜 2 z とエアー 噴出部 1 1 a〜 1 1 zが配されている。 各レーザ入出力部 2 a〜 2 zは 、 検査実行中、 その出力部 1 8 (図 1 ( b )参照) より液晶パネル 1 0に 向けてレーザ光を出力し、 その反射レーザ光を受光部 1 9で受ける。 そ して、 測長部 4は、 液晶パネル 1 0への入射レーザ光と反射レーザ光の 干渉位相差をもとに、 センサ電極 2 0と液晶パネル 1 0上の画素電極 1 5間の距離 dを測長する。 Fig. 4 shows an example of the arrangement of the laser input / output unit and air ejection unit in the sensor. FIG. 4 shows the state when the sensor 1 is viewed from the liquid crystal panel 10 side. As shown in Figure 3 and Figure 4, the sensor 2 substrate 2 4 On the side where the substrate 5 a, 5 b is arranged, the laser input / output units 2 a to 2 z and the air jet are ejected at regular intervals at the end of the substrate 24 near the sensor substrates 5 a, 5 b. Parts 1 1 a to 1 1 z are arranged. Each laser input / output unit 2a to 2z outputs laser light from its output unit 18 (see Fig. 1 (b)) toward the liquid crystal panel 10 during inspection, and receives the reflected laser beam. 1 Receive in 9. Then, the length measuring unit 4 determines the distance between the sensor electrode 20 and the pixel electrode 15 on the liquid crystal panel 10 based on the interference phase difference between the laser beam incident on the liquid crystal panel 10 and the reflected laser beam. Measure d.
これらの計測結果は、 距離 (ギャップ) データとして測長部 4よりェ ァー制御部 1 2へ送られる。 エア一制御部 1 2は、 この距離データをも とに、 各センサ基板 5 a, 5 bのうち、 どの基板部分において、 センサ 電極 2 0と画素電極 1 5間の距離 dに異常があるか、 つまり、 あらかじ め決めた所定距離よりも近づき過ぎであるか、 あるいは離れ過ぎである かを判定する。 そして、 エアー制御部 1 2は、 その判定結果に従って、 エアー噴出部 1 1 a〜 1 1 zを個別に制御する。  These measurement results are sent as distance (gap) data from the length measuring section 4 to the gear control section 12. Based on this distance data, the air control unit 1 2 determines which of the sensor substrates 5 a and 5 b has an abnormality in the distance d between the sensor electrode 20 and the pixel electrode 15. In other words, it is determined whether the distance is too close or too far from the predetermined distance determined in advance. Then, the air control unit 12 controls the air ejection units 1 1 a to 1 1 z individually according to the determination result.
すなわち、 実測されたセンサ電極 2 0と画素電極 1 5間の距離 (ギヤ ップ) dをもとに、 各エアー噴出部 1 1 a〜 1 1 zからの空気噴出量を 調整することによって、 センサ電極と液晶パネルの画素電極間の距離 d が所定値 (一定値) に維持されるようにフィードパック制御を行う。 例 えば、 レーザ入出力部 2 a〜 2 c近辺においてセンサ電極と画素電極間 の距離 dが所定値よりも小さくなっている場合、 エア一制御部 1 2は、 その箇所において液晶パネル 1 0がセンサ 1に接近しすぎていると判断 して、 エアー噴出部 1 1 a〜 l 1 cから所定量の空気 (下降流) を噴出 する。 この噴出空気による圧力を受けた液晶パネル 1 0は、 その圧力と 空気供給部 5 0からの空気流による圧力とが均衡する位置まで押しやら れる。 このような距離 (ギャップ) dの計測と空気噴出を繰り返すこと で、 センサ電極と画素電極間の距離 dが所定値になるように制御される 図 5は、 本実施の形態例に係る検査装置における検査対象とセンサ間 の距離 (ギャップ) の制御手順を示すフローチャートである。 図 5のス テツプ S 1 1で、 測長部 4は、 全てのレーザ入出力部 2 a〜 2 zからの 入射レーザ光と反射レーザ光の干渉位相差をもとに、 センサ電極と液晶 パネル上の画素電極間の距離 dを計測する。 続くステップ S 1 3におい て、 その計測値とあらかじめ決めた所定値とを対比して、 センサ電極と 画素電極間の距離 (ギャップ) dが適正な範囲内にあるかどうかを判断 する。 That is, by adjusting the air ejection amount from each of the air ejection portions 1 1 a to 1 1 z based on the actually measured distance (gap) d between the sensor electrode 20 and the pixel electrode 15, Feed pack control is performed so that the distance d between the sensor electrode and the pixel electrode of the liquid crystal panel is maintained at a predetermined value (a constant value). For example, when the distance d between the sensor electrode and the pixel electrode is smaller than a predetermined value in the vicinity of the laser input / output units 2a to 2c, the air control unit 12 It is determined that the sensor 1 is too close, and a predetermined amount of air (downflow) is ejected from the air ejection portions 1 1 a to l 1 c. The liquid crystal panel 10 that has received the pressure of the blown air is pushed to a position where the pressure and the pressure of the air flow from the air supply unit 50 are balanced. Repeat this distance (gap) d measurement and air ejection FIG. 5 shows a control procedure for the distance (gap) between the inspection target and the sensor in the inspection apparatus according to the present embodiment. It is a flowchart. In step S 1 1 in Fig. 5, the length measuring unit 4 uses a sensor electrode and a liquid crystal panel based on the interference phase difference between the incident laser beam and the reflected laser beam from all laser input / output units 2a to 2z. Measure the distance d between the upper pixel electrodes. In the subsequent step S 13, the measured value is compared with a predetermined value to determine whether the distance (gap) d between the sensor electrode and the pixel electrode is within an appropriate range.
ステップ S 1 3における判断の結果、 距離 (ギャップ) dが適正な値 にあれば、 ステップ S 1 4で、 エアー噴出部 1 1 a〜 1 1 zからのエア 一量を現状の値に維持する。 また、 距離 (ギャップ) dが小さいと判断 した場合、 液晶パネル 1 0がセンサ 1に接近し過ぎているとして、 ステ ップ S 1 5において、 センサ 1のうち、 液晶パネル 1 0に接近し過ぎて いる箇所を特定し、 続くステップ S 1 6で、 特定した箇所に対応するェ ァー噴出部を選定する。 そして、 ステップ S 1 7において、 選定された エアー噴出部からのエアー噴出量を増量する。  If the distance (gap) d is an appropriate value as a result of the determination in step S 1 3, the air amount from the air ejection sections 1 1 a to 1 1 z is maintained at the current value in step S 1 4. . If it is determined that the distance (gap) d is small, it is determined that the liquid crystal panel 10 is too close to the sensor 1. In step S15, the sensor 1 is too close to the liquid crystal panel 10 In step S16, select the air outlet corresponding to the identified location. In step S 17, the air ejection amount from the selected air ejection section is increased.
一方、 距離 (ギャップ) dが大きいと判断された場合には、 液晶パネ ル 1 0がセンサ 1から離れ過ぎているため、 ステップ S 2 5において、 センサ 1のうち、 液晶パネル 1 0から離れ過ぎている箇所を特定し、 ス テツプ S 2 6で、 特定した箇所に対応するエアー噴出部を選定する。 そ して、 続くステップ S 2 7において、 選定されたエアー噴出部からのェ ァー噴出量を減量する。  On the other hand, if it is determined that the distance (gap) d is large, the liquid crystal panel 1 0 is too far from the sensor 1, so in step S 25, the sensor 1 is too far from the liquid crystal panel 10. And the air blowout part corresponding to the identified part is selected in step S26. Then, in the following step S27, the air ejection amount from the selected air ejection section is reduced.
上記の制御の結果、 エアー噴出部 1 1 a〜 1 1 zからのエアー噴出量 を増量、 あるいは減量することで、 そのエア一量に応じて増加、 あるい は減少した圧力分だけ、 空気供給部 5 0からの空気流による圧力が劣勢 、 あるいは優勢となる。 その結果、 液晶パネル 1 0がセンサ 1側より離 れるか、 あるいは接近することになる。 このように、 各エアー噴出部 1 1 a〜 1 1 zからの空気噴出量を調整することによって、 センサ電極 2 0と液晶パネル 1 0の画素電極 1 5間の距離 dが一定となるように、 測 長部 4とエアー制御部 1 2間でフィードバック制御を行うことで、 液晶 パネルとセンサとの距離が一定に維持される。 As a result of the above control, increase or decrease the air ejection amount from the air ejection section 1 1 a to 1 1 z to increase or decrease according to the amount of air. The pressure due to the air flow from the air supply unit 50 becomes inferior or prevailing by the reduced pressure. As a result, the liquid crystal panel 10 is separated from or closer to the sensor 1 side. In this way, by adjusting the air ejection amount from each of the air ejection sections 1 1 a to 1 1 z, the distance d between the sensor electrode 20 and the pixel electrode 15 of the liquid crystal panel 10 becomes constant. By performing feedback control between the measurement unit 4 and the air control unit 1 2, the distance between the liquid crystal panel and the sensor is kept constant.
検査の際、 液晶パネル 1 0は、 例えば、 図 1中の矢印方向へ移動され る。 そして、 センサ 1によって液晶パネル 1 0上の画素電極 1 5を順次 、 走査することで、 その良否を連続して検査する。 ステップ S 3 0で検 査の終了を判断し、 全画素の検査が終了していない場合には処理をステ ップ S 1 1に戻して、 再度、 センサ電極と画素電極間の距離 dを計測し 、 上記と同様にエア一噴出制御を継続する。 検査が終了した場合には、 計測およびエアー制御も終了する。  At the time of inspection, the liquid crystal panel 10 is moved, for example, in the direction of the arrow in FIG. Then, the sensor 1 sequentially scans the pixel electrodes 15 on the liquid crystal panel 10, thereby checking the quality continuously. In step S 3 0, the end of the inspection is determined. If all the pixels have not been inspected, the process returns to step S 1 1 and the distance d between the sensor electrode and the pixel electrode is measured again. Then, the air ejection control is continued as described above. When the inspection is completed, measurement and air control are also completed.
以上説明したように、 検査対象である液晶パネル (ガラス基板) の上 部にセンサを固定して、 その検査対象をエアフローにより浮上させて非 接触検査を行う際、 レーザ測長によりセンサと液晶パネル間の距離を計 測し、 その結果をもとにセンサ側からもエアー噴出を行ってセンサと液 晶パネル間のギャップを制御することで、 現場での調整が不要になり、 それに伴ってセンサの着脱も容易になる。  As described above, when a sensor is fixed to the upper part of the liquid crystal panel (glass substrate) to be inspected and the inspection object is floated by airflow to perform non-contact inspection, the sensor and liquid crystal panel are measured by laser measurement. By measuring the distance between the sensors, air is also blown from the sensor side based on the result, and the gap between the sensor and the liquid crystal panel is controlled, eliminating the need for on-site adjustments. It becomes easy to attach and detach.
また、 検査対象 (ガラス基板) の両面からエアフローを行うことで、 センサと検査対象間の間隔制御が容易になるだけでなく、 検査対象の走 査、 検査のための高速動作における追従性が高くなり、 しかも液晶パネ ルの損傷等を容易に回避できる。 さらには、 センサと検査対象の間隔を 最小に制御できるため、 センサの感度と分解能が向上し、 画素電極の画 素電圧を非接触方式で確実に検出することができる。 また、 センサのセンサ基板対応に測長部とエアー制御部を設けること で、 センサの複数箇所において同時に、 あるいは個別にセンサと検査対 象の間隔制御ができ、 センサ毎に Z軸を調整する必要がなくなる。 In addition, air flow from both sides of the inspection target (glass substrate) not only facilitates control of the distance between the sensor and the inspection target, but also provides high tracking capability for high-speed operation for scanning and inspection of the inspection target. In addition, damage to the liquid crystal panel can be easily avoided. Furthermore, since the distance between the sensor and the object to be inspected can be controlled to the minimum, the sensitivity and resolution of the sensor are improved, and the pixel voltage of the pixel electrode can be reliably detected in a non-contact manner. In addition, by providing a length measurement unit and air control unit corresponding to the sensor substrate of the sensor, it is possible to control the distance between the sensor and the inspection target at the same time or individually at multiple locations of the sensor, and it is necessary to adjust the Z axis for each sensor Disappears.
なお、 本発明は、 上述の実施の形態例に限定されるものではなく、 本 発明の趣旨を逸脱しない限度において種々の変形が可能である。 例えば The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example
、 センサにおけるレーザ入出力部とエアー噴出部の配置は、 図 4に示す 例に限定されず、 図 6に示すようにレーザ入出力部を各センサ基板 5 a , 5 bの先端部の両側に設けてよい。 産業上の利用可能性 The arrangement of the laser input / output part and the air ejection part in the sensor is not limited to the example shown in FIG. 4, but the laser input / output part is placed on both sides of the tip of each sensor board 5a, 5b as shown in FIG. May be provided. Industrial applicability
本発明によれば、 検査対象とセンサへッド間のギャップ制御を容易か つ高精度に行うことができ、 検査対象の良否を精度よく、 かつ高速に検 出できる。 また、 簡単な機構であるためセンサの着脱が容易になる。  According to the present invention, the gap control between the inspection target and the sensor head can be easily performed with high accuracy, and the quality of the inspection target can be detected accurately and at high speed. In addition, the sensor is easy to attach and detach because of its simple mechanism.

Claims

請求の範囲 The scope of the claims
1 . 検査対象に検査信号を供給して、 その検査対象の状態を検査する 検査装置であって、 1. An inspection device that supplies an inspection signal to an inspection object and inspects the state of the inspection object,
前記検査対象に対して第 1の方向から気体流を発生する第 1の気体流 発生手段と、  First gas flow generating means for generating a gas flow from a first direction with respect to the inspection object;
前記第 1の方向に対向する第 2の方向から前記検査対象に対して気体 流を発生する第 2の気体流発生手段と、  A second gas flow generating means for generating a gas flow with respect to the inspection object from a second direction opposite to the first direction;
前記検査対象より前記検査信号を検出するセンサとを備え、 前記センサは前記第 1の方向からの気体流と前記第 2の方向からの気 体流とにより浮上した状態にある前記検査対象より非接触で前記検査信 号を検出するとともに、 前記検出された検出信号の変化に基づいて前記 検査対象の良否を識別することを特徴とする検査装置。  A sensor for detecting the inspection signal from the inspection object, wherein the sensor is less than the inspection object in a state of being floated by the gas flow from the first direction and the gas flow from the second direction. An inspection apparatus, wherein the inspection signal is detected by contact, and the quality of the inspection target is identified based on a change in the detected detection signal.
2 . 前記第 1の方向から気体流は前記検査対象に向けて上昇する気体 流であり、 前記第 2の方向から気体流は前記検査対象に向けて下降する 気体流であることを特徴とする請求項 1記載の検査装置。  2. The gas flow from the first direction is a gas flow rising toward the inspection object, and the gas flow from the second direction is a gas flow descending toward the inspection object. The inspection apparatus according to claim 1.
3 . 前記第 2の気体流発生手段は前記センサ近傍の複数の領域に設け られていることを特徴とする請求項 2記載の検査装置。  3. The inspection apparatus according to claim 2, wherein the second gas flow generating means is provided in a plurality of regions near the sensor.
4 . さらに、 前記センサを前記検査対象より所定距離離間させるよう 前記第 2の気体流発生手段による気体流の噴出を制御する制御手段を備 えることを特徴とする請求項 3記載の検査装置。  4. The inspection apparatus according to claim 3, further comprising a control unit that controls ejection of the gas flow by the second gas flow generation unit so that the sensor is separated from the inspection target by a predetermined distance.
5 . 前記制御手段は前記センサと前記検査対象間の距離に応じて、 前 記第 2の気体流発生手段を個別に選択して前記気体流の噴出を行うこと を特徴とする請求項 4記載の検査装置。  5. The control means selects the second gas flow generation means individually according to the distance between the sensor and the inspection object, and ejects the gas flow. Inspection equipment.
6 . 前記制御手段は前記検査対象への入射レーザ光と反射レーザ光の 干渉位相差をもとに前記センサと前記検査対象間の距離を測長し、 その 測長結果をもとに前記第 2の気体流発生手段による気体流の噴出制御を 行うことを特徴とする請求項 5記載の検査装置。 6. The control means measures the distance between the sensor and the inspection object based on the interference phase difference between the incident laser light and the reflected laser light on the inspection object, and 6. The inspection apparatus according to claim 5, wherein ejection control of the gas flow by the second gas flow generation means is performed based on the measurement result.
7 . 前記気体流には少なくとも空気、 窒素、 その他の不活性気体によ る気体流が含まれることを特徴とする請求項 1乃至 6のいずれかに記載 の検査装置。  7. The inspection apparatus according to any one of claims 1 to 6, wherein the gas flow includes at least a gas flow of air, nitrogen, or other inert gas.
8 . 前記センサは、 前記検査対象に対向する部分が突出し、 その突出 部分にセンサ電極を配した構成を有し、 前記センサ電極と前記検査対象 間の容量結合を介して非接触で前記検査対象より前記検査信号を検出す ることを特徴とする請求項 1記載の検査装置。  8. The sensor has a configuration in which a portion facing the inspection object protrudes and a sensor electrode is disposed on the protruding portion, and the inspection object is contactlessly connected through capacitive coupling between the sensor electrode and the inspection object. The inspection apparatus according to claim 1, further comprising detecting the inspection signal.
9 . さらに、 前記センサ電極と前記検査対象の近接状態を維持したま ま前記検査対象を順次走査するよう前記検査対象を位置決め移動させる 位置決め移動手段を備えることを特徴とする請求項 1乃至 8のいずれか に記載の検査装置。 9. The apparatus according to claim 1, further comprising positioning moving means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining a proximity state of the sensor electrode and the inspection object. The inspection device according to any one of the above.
1 0 . 検査対象に検査信号を供給して、 その検査対象の状態をセンサ により検査する検査方法であって、  1 0. An inspection method in which an inspection signal is supplied to an inspection object and the state of the inspection object is inspected by a sensor,
前記検査対象の第 1の方向から気体流を発生するとともに前記第 1の 方向に対向する第 2の方向からも前記検査対象に向けて気体流を噴出し 、 前記検査対象を浮上させた状態で前記センサによって前記検査対象よ り非接触で前記検査信号を検出し、 その検出信号の変化に基づいて前記 検査対象の良否を識別することを特徴とする検査方法。  In a state in which a gas flow is generated from the first direction of the inspection object and a gas flow is ejected from the second direction opposite to the first direction toward the inspection object, and the inspection object is floated An inspection method, wherein the inspection signal is detected by the sensor in a non-contact manner from the inspection object, and the quality of the inspection object is identified based on a change in the detection signal.
1 1 . 前記センサを前記検査対象より所定距離離間させるよう前記第 2の方向からの気体流の噴出を制御することを特徴とする請求項 1 0記 載の検査方法。  11. The inspection method according to claim 10, wherein ejection of a gas flow from the second direction is controlled so that the sensor is separated from the inspection object by a predetermined distance.
1 2 . 前記第 2の方向からの気体流は前記センサ近傍の複数の領域よ り噴出し、 前記センサと前記検査対象間の距離に応じて前記第 2の方向 からの気体流を個別に選択することを特徴とする請求項.1 1記載の検査 方法。 1 2. The gas flow from the second direction is ejected from a plurality of areas near the sensor, and the gas flow from the second direction is individually selected according to the distance between the sensor and the inspection object. Claim 1. The inspection according to claim 1 Method.
PCT/JP2006/304668 2005-03-04 2006-03-03 Inspecting apparatus and inspecting method WO2006093349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005061290A JP2006242860A (en) 2005-03-04 2005-03-04 Inspection device and inspection method
JP2005-061290 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006093349A1 true WO2006093349A1 (en) 2006-09-08

Family

ID=36941370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304668 WO2006093349A1 (en) 2005-03-04 2006-03-03 Inspecting apparatus and inspecting method

Country Status (3)

Country Link
JP (1) JP2006242860A (en)
TW (1) TW200643411A (en)
WO (1) WO2006093349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2092350A2 (en) * 2006-11-16 2009-08-26 Siemens Aktiengesellschaft Measuring device and measuring method for inspecting the surface of a substrate
WO2012122578A1 (en) * 2011-03-17 2012-09-20 Rainer Gaggl Device for high voltage testing of semiconductor components

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046154B4 (en) * 2005-09-27 2008-07-03 Siemens Ag Measuring device and measuring system for inspecting a surface of a substrate
JP5299037B2 (en) 2009-04-04 2013-09-25 日本電産リード株式会社 Inspection probe
KR20110127598A (en) * 2010-05-19 2011-11-25 우관제 Inspection apparatus for a touch sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050662A (en) * 2000-07-31 2002-02-15 Fujitsu Ltd Apparatus and method of testing semiconductor substrate
JP2003177153A (en) * 2002-08-21 2003-06-27 Mitsubishi Heavy Ind Ltd Liquid crystal panel inspection device
WO2003061354A2 (en) * 2001-12-27 2003-07-24 Orbotech Ltd. System and methods for conveying and transporting levitated articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050662A (en) * 2000-07-31 2002-02-15 Fujitsu Ltd Apparatus and method of testing semiconductor substrate
WO2003061354A2 (en) * 2001-12-27 2003-07-24 Orbotech Ltd. System and methods for conveying and transporting levitated articles
JP2003177153A (en) * 2002-08-21 2003-06-27 Mitsubishi Heavy Ind Ltd Liquid crystal panel inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2092350A2 (en) * 2006-11-16 2009-08-26 Siemens Aktiengesellschaft Measuring device and measuring method for inspecting the surface of a substrate
WO2012122578A1 (en) * 2011-03-17 2012-09-20 Rainer Gaggl Device for high voltage testing of semiconductor components
US9291664B2 (en) 2011-03-17 2016-03-22 Rainer Gaggl Device for high voltage testing of semiconductor components

Also Published As

Publication number Publication date
JP2006242860A (en) 2006-09-14
TW200643411A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
KR101175284B1 (en) Paste dispenser and method for controlling the same
KR101451549B1 (en) Circuit pattern inspection device
WO2006093349A1 (en) Inspecting apparatus and inspecting method
KR20040007674A (en) Circuit Pattern Inspection Device, Circuit Pattern Inspection Method, and Recording Medium
WO2006078043A1 (en) Circuit pattern inspection device and method thereof
US9863991B2 (en) Inspection device
JP4841459B2 (en) Paste pattern inspection method
CN101196391B (en) Surface shape measuring device
KR101175384B1 (en) Circuit pattern inspection device, method thereof and computer readable recording medium storing program therein
US7088107B2 (en) Circuit pattern inspection instrument and pattern inspection method
US20020121917A1 (en) Apparatus and method for testing electrode structure for thin display device using FET function
WO2006077950A1 (en) Sensor, inspection apparatus and inspection method
KR100901025B1 (en) Apparatus for detecting ecectrode with non-contact style
KR101202544B1 (en) Coating method and coating apparatus
US20040100299A1 (en) Apparatus and method for testing electrode structure for thin display device using FET function
JP2003185695A (en) Method and apparatus for inspection of wiring pattern
US20220208579A1 (en) Synchronous substrate transport and electrical probing
US11577506B2 (en) Apparatus and method for inspecting droplet
JP5029826B2 (en) Probe pin contact inspection method and TFT array inspection apparatus
KR101196721B1 (en) Paste dispenser and method for controlling the same
JP2007247812A (en) Hydrostatic air bearing monitoring device and stage device equipped therewith
JP4861755B2 (en) Jig for position calibration of sensor part of circuit pattern inspection equipment
JP2008281417A (en) Distribution circuit inspection method
JP2010019675A (en) Method and device for inspecting tabular shape
JPH06109648A (en) Device for inspecting substrate hole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715489

Country of ref document: EP

Kind code of ref document: A1