WO2006077950A1 - Sensor, inspection apparatus and inspection method - Google Patents

Sensor, inspection apparatus and inspection method Download PDF

Info

Publication number
WO2006077950A1
WO2006077950A1 PCT/JP2006/300793 JP2006300793W WO2006077950A1 WO 2006077950 A1 WO2006077950 A1 WO 2006077950A1 JP 2006300793 W JP2006300793 W JP 2006300793W WO 2006077950 A1 WO2006077950 A1 WO 2006077950A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
inspection
substrate
inspection object
signal
Prior art date
Application number
PCT/JP2006/300793
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Ikeda
Shuji Yamaoka
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Publication of WO2006077950A1 publication Critical patent/WO2006077950A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to a sensor, an inspection apparatus, and an inspection method capable of inspecting the quality of pixel electrodes formed on, for example, a liquid crystal panel and a liquid crystal display.
  • liquid crystal display panels with a high pixel count have been developed, and products that use them have been put on the market.
  • a probe is brought into contact with each of a gate wiring and a source wiring connected to a TFT transistor provided for each pixel.
  • the output voltage is used to determine whether a pixel electrode is defective.
  • problems such as frequent contact failure and increased probe replacement cost occur due to the full color of the liquid crystal display and the narrowing of the pixel pitch accompanying high definition. It was.
  • a thin array sensor is arranged on a substrate, an amplifier and a scanner are provided adjacent to the array sensor, and these A lead wire is formed between the metal film and the array sensor is placed close to the liquid crystal panel to be inspected.
  • the detection level and SZN ratio in non-contact inspection are improved.
  • the above array sensor incorporates a potential sensor using a field effect transistor.
  • a source on an inspection substrate is opposed to an image electrode arranged on a liquid crystal display substrate. Inspection that arranges switch elements consisting of electrodes, semiconductors, and drain electrodes, brings the inspection substrate close to the pixel electrode, and conducts conduction between the source electrode and drain electrode by applying a normal voltage to the pixel electrode, and detects the conduction An apparatus is disclosed.
  • the potential sensor described in Patent Document 3 uses an enhancement type MO S-FET as a method for inspecting the quality of a pixel electrode of a liquid crystal display in proximity to the pixel electrode.
  • MO S-FET enhancement type MO S-FET
  • electrostatic CM OS sensors are also known.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 1 1 1 1 5 3 6 3 7
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-6 24 7 4
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 1— 1 3 348 7
  • the senor used in the conventional inspection method described above for example, the potential sensor described in Patent Documents 1 and 2, causes the pixel electrode of the liquid crystal panel to be inspected to act as the gate of the field effect transistor, and the pixel voltage Wire disconnection or short circuit is detected.
  • the sensitivity of the sensor depends on the process of creating the field effect transistor, and the function as a sensor is insufficient.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sensor, an inspection apparatus, and an inspection method that can detect the quality of a pixel electrode on a panel with high accuracy.
  • Another object of the present invention is to provide a sensor, an inspection apparatus, and an inspection method capable of avoiding a decrease in sensor resolution.
  • the present invention is a sensor that supplies an inspection signal to an inspection object and inspects the state of the inspection object, and includes a first substrate having a flat surface and a predetermined portion of the first substrate. A provided convex portion, a second substrate curved so that at least one end abuts the surface of the convex portion and the other end abuts the surface of the first substrate, and the second substrate A sensor element disposed on the surface of the one end, wherein the sensor element is provided with a sensor electrode facing the inspection object.
  • the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS transistor formed on the second substrate.
  • the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
  • the second substrate has an array configuration in which the one end portions are arranged in a row on the convex portion while the one end portions face each other, and a part of the one end portion overlaps in the row direction. It is characterized by.
  • the second substrate is made of glass, plastic or quartz having a predetermined thickness.
  • the convex portion is a spacer placed between the first substrate and the one end portion of the second substrate.
  • the protrusion is characterized by being formed by protruding a part of the first substrate.
  • the convex portion is formed by laminating a third substrate on a predetermined portion of the first substrate.
  • a plurality of the second substrates arranged in a row are provided, and the sensor elements corresponding to the plurality of rows of substrates can be individually selected.
  • the present invention includes a signal supply means for supplying an inspection signal to an inspection object, a sensor having a configuration in which a portion facing the inspection object is protruded, and the inspection A means for detecting the inspection signal in a non-contact manner from an object; and an identification means for identifying the quality of the inspection object based on a change in the detection signal.
  • the sensor includes a plurality of sensors each having a sensor electrode.
  • the sensor substrates are arranged opposite to each other in a row, and one end portion of the sensor substrate is in contact with a convex portion provided at a predetermined portion of the flat plate substrate, and the other end portion of the sensor substrate.
  • the sensor electrode is curved so as to come into contact with the surface, and the sensor electrode is disposed on the surface of the one end portion of the sensor substrate so as to face the inspection object.
  • the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS transistor formed on the sensor substrate.
  • the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
  • the sensor substrate has an arrangement configuration in which the one end portions are arranged in a row on the convex portions while facing each other, and the one end portions overlap each other in the row direction.
  • the sensor substrate is made of glass, plastic or quartz having a predetermined thickness.
  • the sensor board may further include a plurality of rows of the sensor substrates arranged in the row, and a means for individually selecting the plurality of rows of sensor substrates.
  • it is characterized by further comprising positioning moving means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining the proximity state of the sensor electrode and the inspection object.
  • the positioning moving means performs the positioning in a state where the inspection object is floated by an air flow.
  • the inspection method according to the present invention is characterized by inspecting the state of the inspection object using the above-described inspection apparatus.
  • FIG. 1 is a block diagram showing the overall configuration of an inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an array state of each sensor substrate in the sensor of the embodiment.
  • FIG. 3 is a diagram showing a cross-sectional configuration when the sensor of the embodiment is cut.
  • FIG. 4 is a diagram schematically showing a circuit configuration of a sensor unit in the inspection apparatus according to the embodiment.
  • FIG. 5 is a diagram showing a positional relationship between the inspection object and the sensor at the time of inspection by the inspection apparatus according to the embodiment.
  • FIG. 6 is a diagram showing a circuit configuration of a sensor unit according to a modification of the embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of the inspection apparatus according to the present embodiment.
  • the inspection object of the inspection apparatus shown in FIG. 1 includes, for example, a plurality of pixel electrodes and a thin film transistor (TFT) for driving them arranged in an array (or matrix) on a glass substrate.
  • TFT thin film transistor
  • a sensor 1 is disposed on the upper surface of the liquid crystal panel 10 to be inspected, and the liquid crystal panel 1 is based on the sensor output.
  • the line-shaped sensor 1 is positioned at a position separated from the liquid crystal panel 10 by a predetermined distance in order to perform the inspection in a non-contact manner.
  • the sensor 1 is, for example, a one-dimensional line sensor that has the same width as the liquid crystal panel 10 and determines whether or not the pixel electrode of the liquid crystal panel 10 is disconnected in a non-contact manner by a sensor circuit or the like described later. is there.
  • Sensor 1 'shown in Fig. 1 is a sensor
  • FIG 1 shows the structure of the functional part placed on the opposite side (back side) of the sensor placement side.
  • a pixel voltage supply unit 13 is connected to the liquid crystal panel 10, thereby supplying signals necessary for pixel inspection to individual pixel electrodes.
  • each sensor 1 has a plurality of sensors regularly arranged as described later. Since the pixel signal detected by each sensor is a very small signal, it is amplified with a predetermined amplification degree by a not-shown operational amplifier (op-amp), etc., and then is multiplexed with a multiplexer (MPX) 2 at a constant cycle. Scanned and multiplexed. Each multiplexed sensor signal is sent to a waveform shaping unit 3 constituted by, for example, a limiter circuit.
  • the output signal from the waveform shaping unit 3 is sent to the AZD conversion unit 4.
  • AZD The conversion unit 4 performs a waveform process for converting the AC signal amplified and waveform-shaped as described above into a DC level signal, and a conversion process such as converting an analog signal into a digital signal.
  • the control unit 6 compares the converted signal level with a preset reference value, and determines whether or not the result obtained by the above signal processing is within the reference range. The determination result is sent to the display unit 9.
  • the control unit 6 is configured by, for example, a microprocessor to control the entire inspection apparatus, and comprehensively controls a predetermined inspection sequence.
  • the control unit 6 further includes a ROM 7 and a RAM 8, and the ROM 7 stores a control procedure including an inspection procedure, for example, as a computer program, and temporarily stores the RAM 8, for example, control data and inspection data. It is used as a work area for storing data.
  • the display unit 9 is composed of, for example, a CRT, a liquid crystal display, etc., and is visible in a format that allows the inspector to easily understand the quality of the inspection target (pixel electrode of the liquid crystal panel) that is the determination result sent from the control unit 6. indicate. If the pixel electrode is defective, the position of the electrode on the panel substrate is also displayed by, for example, the electrode number and coordinates.
  • the display of inspection results is not limited to visual display, and may be output in a format such as audio. Moreover, visual display and sound may be mixed.
  • the drive unit 16 receives the control signal from the control unit 6 and moves the entire stage (not shown) on which the liquid crystal panel 10 is placed at a predetermined speed in a predetermined direction, so that the sensor 1
  • the arrayed pixel electrodes on the liquid crystal panel 10 can be sequentially scanned in a non-contact state. Specifically, since the drive unit 16 moves the stage in a predetermined direction on the m order, the three-dimensional position control is possible by the 4-axis control of the XYZ 0 angle, and the liquid crystal panel 10 is moved to the sensor position. Position it at a reference position before inspection that is separated by a certain distance. Next, the sensor unit in the inspection apparatus according to the present embodiment will be described. FIG.
  • FIG. 2 shows an arrangement state of each sensor board in the sensor unit of the present embodiment
  • FIG. 3 is a diagram for explaining the structure of the sensor unit of the present embodiment.
  • the cross-sectional configuration when the sensor substrate is cut along the two-dot chain line A—A ′ is shown.
  • the sensor 1 has a plurality of sensor boards 5 a and 5 b arranged in a line, and they are arranged on a spacer 33 having a predetermined thickness.
  • This is a one-dimensional line sensor that is arranged in parallel with the pitch width and has the same width as the inspection target portion of the liquid crystal panel 10 as a whole.
  • the tip of sensor board 5a, 5b on the spacer 33 side is partly in the row direction with the tip of the other sensor board. An overlapping arrangement is taken.
  • the sensor substrates 5a and 5b are made of glass having a predetermined thickness, but are not limited thereto, and may be made of plastic or quartz, for example.
  • the sensor substrates 5 a and 5 b have a structure that is bent (bent) into an S-shape with a loose cross section at a substantially central portion.
  • a sensor circuit 31 is disposed on the upper end of the sensor board 5a, 5b on the spacer 33 side (see FIG. 3).
  • the sensor circuit 31 arranged on each sensor board 5a, 5b can be obtained by adopting a configuration in which the tip end part of each sensor board 5a, 5b partially overlaps the opposing sensor board. Since sensor electrodes 20 described later also overlap each other in the column direction, depending on the relative positional relationship between the pixel electrode 15 of the liquid crystal panel 10 and the sensor circuit 31, two sensor circuits may be applied to one pixel electrode. Since signals can be simultaneously detected by the path 31 (specifically, the sensor electrode 20), it is possible to reliably determine the quality of the pixel electrode.
  • the liquid crystal panel 10 to be inspected is composed of a glass substrate and a plurality of pixel electrodes 15 formed on the surface thereof as shown in FIG.
  • the sensor electrode 20 arranged in this manner detects the signal potential (pixel voltage) applied to the pixel electrode 15 of the liquid crystal panel 10 from the pixel voltage supply unit 13 in a non-contact manner.
  • the separation distance d between the sensor electrode 20 and the liquid crystal panel 10 is set to, for example, 10 Must be 0 or less. Therefore, as a configuration in which the central portion of sensor 1 is protruded, each sensor substrate 5 a, 5 b is provided with a bent portion (flexible portion) 21 so that the separation distance d can be controlled to the minimum, and the sensor substrate
  • the sensor circuit 3 1 is placed in close contact with the spacer 3 3 so that the sensor circuit 3 1 is higher than the surface position of the signal board 2 4 and the tab 2 5 described later.
  • 5a and 5b have a structure in which the part opposite to the side where the sensor circuit 3 1 is arranged is in close contact with the signal board 24 at a position lower than the sensor electrode 20.
  • a conductive pattern 3 4 formed by a metal film forming method is wired on the sensor substrates 5 a and 5 b, and a signal detected by the sensor circuit 3 1 is transmitted through the conductive pattern 3 4.
  • Tab 2 to 5 As shown in FIG. 3, the tab 25 is U-shaped in cross section, and the conductive pattern 3 on the sensor substrate 5 a, 5 b side through the conductive part provided inside the tab 25. 4 and the conductive pattern 35 on the signal board 24 side are electrically connected to each other, and the sensor boards 5 a and 5 b and the signal board 24 are fixed to each other.
  • Conductive pattern 3 5 has a signal from sensor circuit 3 1 where the multiplexer (MPX) 2 placed on the back side of signal board 2 4 (the side opposite to the side where sensor boards 5 a and 5 b are placed) This is a signal path to the waveform shaping unit 3 and AZD conversion unit 4.
  • MPX multiplexer
  • the AZD conversion unit 4 converts the pixel voltage value detected by the sensor electrode 20 into a digital value and sends it to the control unit 6 shown in FIG. Control unit 6 is As described above, the signal value obtained by the conversion by the AZD converter 4 is compared with the reference value (threshold value) set in advance, and whether or not the sensor signal level is within the reference value range. Determine.
  • the means for making the sensor circuit 31 higher than the surface position of the signal substrate 24 and bringing the sensor electrode 20 close to the pixel electrode 15 formed on the liquid crystal panel 10 is the above-mentioned space.
  • a part of the signal board 24 is raised to provide a protrusion having a predetermined height, or another substrate of a predetermined size is further laminated on the signal board 24 to form a convex part. It may be realized by forming. In either case, the portion of the sensor substrate 5a, 5b in which the sensor circuit 31 is disposed is brought into close contact with the upper surface of the protrusion.
  • FIG. 4 schematically shows the circuit configuration of the sensor unit in the inspection apparatus according to the present embodiment.
  • the sensor electrode 2 0 constituting the sensor circuit 3 1 is composed of the CM ⁇ S element (MOS field effect transistor) 4 1 formed on the sensor substrate 5 a, 5 b of the sensor 1 It is connected to the gate terminal (G) and is made of a conductor film (for example, an ITO film) having a predetermined area.
  • the distance L between the centers of the sensor electrodes 20 regularly arranged in parallel is, for example, 70 z / m, and the pitch width is 50 m. However, the distance is not limited to these, and can be adjusted according to the size of the inspection object. ,
  • each CMOS element 41 is connected to the sensor circuit diode (GND), and each drain terminal (D) is connected to the signal via the conductive patterns 34 and 35 described above.
  • GND sensor circuit diode
  • D drain terminal
  • a waveform shaping unit 3 and an AZD conversion unit 4 are arranged after the multiplexer 2.
  • FIG. 5 shows the positional relationship between the inspection object and the sensor when the inspection apparatus according to the present embodiment is inspected.
  • an air supply unit 50 is arranged below the liquid crystal panel 10 to be inspected, and the liquid crystal panel 10 is an air flow blown up from the air supply unit 50 (in the figure, an upward arrow). Will be in a floating state. Then, while maintaining a predetermined height, it moves in the direction of arrow 61 in the figure.
  • the upper part of the liquid crystal panel 10 has a sensor 1 arranged in a non-contact state with the liquid crystal panel 10 and moves in the direction of arrow 61 while maintaining the distance between the sensor 1 and the liquid crystal panel 10 constant.
  • the air supply unit 50 has a large number of holes (not shown) on its entire surface, and the air flow from these holes is controlled to be in different directions depending on the region to be inspected. Specifically, as shown in FIG. 5, a portion of the liquid crystal panel 10 facing the sensor 1 disposed in the upper part (region C in the figure) is supplied from the air supply unit 50 to the liquid crystal panel. An airflow is generated by mixing an airflow rising to 10 and an airflow falling from the liquid crystal panel 10 to the air supply unit 50.
  • an air flow rising from the air supply unit 50 toward the liquid crystal panel 10 is generated in the peripheral regions A and B of the portion of the liquid crystal panel 10 facing the sensor 1.
  • the pixel electrode 15 of the liquid crystal panel 10 to be inspected and the sensor of the sensor 1 It is possible to prevent the separation distance d from the circuit 31 from fluctuating. As a result, the distance d in the lower region of the sensor 1 is always kept at a minimum and constant during non-contact inspection, and damage to the liquid crystal panel 10 due to movement for scanning is avoided. .
  • a curved part (flexible part) is provided in the middle part of each sensor board constituting the sensor to form a curve, and a sensor circuit is arranged on the upper surface of one end part, and the end part is connected to the signal.
  • the sensor circuit is made to adhere to a spacer of a predetermined height provided on the substrate so that the sensor circuit is higher than the surface position of the signal substrate, so that the sensor circuit can be easily applied to the pixel electrode of the liquid crystal panel to be inspected. They can be placed close to each other, and the distance between the sensor and the inspection object can be easily controlled.
  • the sensitivity and resolution of the sensor are improved, and the pixel voltage of the pixel electrode can be reliably detected in a non-contact manner. Furthermore, by improving the sensor sensitivity and resolution of each sensor, it is possible to improve the reliability of inspection and shorten the inspection time, and there is an advantage that the processing capacity (throughput) of the entire inspection is increased.
  • the sensor electrodes arranged opposite to each other in a row form an array configuration in which the sensor electrodes partially overlap each other in the column direction by adopting an arrangement configuration in which the portions overlap each other in the column direction.
  • all the pixel electrodes of the liquid crystal panel can be inspected without fail.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the sensor section of the inspection apparatus according to the above embodiment is a one-dimensional line sensor configured by alternately arranging a plurality of sensor substrates on a spacer. When such a configuration is adopted, if any one of a plurality of sensors fails or becomes defective, it becomes difficult to perform the function as a sensor. In that case, the entire sensor is usually discarded and replaced with a normal one.
  • FIG. 6 shows a circuit configuration of a sensor unit according to a modification of the above embodiment.
  • the sensor unit according to this modification is provided with a plurality of one-dimensional line sensors. They can be selected individually and used for inspection. That is, the sensor circuit shown in FIG. 6 has three one-dimensional line sensors 8 1 to 8 3, and each line sensor has a plurality of CMOS elements (one-dimensional) as in the sensor circuit shown in FIG.
  • a sensor electrode sensor electrode 70 a to 70 f in the one-dimensional line sensor 8 1
  • G gate terminal
  • the one-dimensional line sensor 8 1 when used as the one-dimensional line sensor of the sensor unit, a selection signal is sent to the selection line S 1 and the switch elements 7 3 a to 7 3 f connected thereto are driven ( When active), the switch elements 7 3 a to 7 3 f are turned on.
  • the signal detected by the sensor electrodes 70 a to 70 f connected to the gate terminal (G) (the signal applied to the pixel electrode from the pixel voltage supply unit) is converted into the CMOS element 7 1 a ⁇ 71 f is input to the multiplexer (MP X) 9 2 via the drain (D) of 1 f and the switch elements 7 3 a to 7 3 f.
  • MP X multiplexer
  • the present invention it is possible to accurately detect the quality of pixel electrodes on a panel to be inspected. Further, according to the present invention, it is possible to realize a non-contact inspection that avoids a decrease in the resolution of the sensor.

Abstract

A sensor for highly accurately inspecting conformity of an inspecting object, an inspection apparatus and an inspection method are provided. A sensor circuit (31) is arranged on an upper plane of one end portion of sensor substrates (5a, 5b), which are bent at the center part and composed of a glass or the like whose cross-section shape is gently curved S. A part whereupon the sensor circuit is arranged is closely attached to a spacer (33) which is provided on other signal substrate (24) and has a fixed height. As a result, the sensor circuit (31) is at a position higher than a surface position of the signal substrate (24), and for control, a sensor electrode (20) provided on the sensor circuit (31) can be easily brought close to a pixel electrode of a liquid crystal panel which is the inspection object.

Description

明細書 センサ、 検査装置および検査方法 技術分野  Description Sensor, Inspection Device and Inspection Method Technical Field
本発明は、 例えば、 液晶パネル、 液晶ディスプレイに形成された画素 電極の良否を検査可能なセンサ、 検査装置および検査方法に関するもの である。 背景技術  The present invention relates to a sensor, an inspection apparatus, and an inspection method capable of inspecting the quality of pixel electrodes formed on, for example, a liquid crystal panel and a liquid crystal display. Background art
テレビ受像機、 パーソナルコンピュータ等のディスプレイの薄型化や 大型化の要求に伴ない、 高画素数の液晶表示パネルが開発され、 それを 採用した製品が市場に出回っている。 このような薄型かつ大型の表示装 置を採用した製品では、 製品組立て後の動作試験はもとより、 ディスプ レイ単体での検査が重要である。  In response to demands for thinner and larger displays such as television receivers and personal computers, liquid crystal display panels with a high pixel count have been developed, and products that use them have been put on the market. For products that use such thin and large display devices, it is important to conduct inspections on the display alone as well as operation tests after product assembly.
液晶表示パネル等のディスプレイ基板を検査する方法として、 従来よ り知られているものに、 各画素に対応して設けられた T F Tトランジス 夕に接続されたゲート配線、 ソース配線それぞれにプローブを接触させ て、 その出力電圧から画素電極の欠陥の有無を判定するものがある。 一方、 上記のようなプローブを使用する検査方法では、 液晶ディスプ レイのフルカラー化、 高精細化に伴なう画素ピッチの狭小により、 接触 不良の多発、 プローブの交換費用の増大等の問題が生じていた。 このよ うな問題点に鑑み、 例えば、 特許文献 1に開示された液晶パネル検査装 置では、 基板上に薄型のアレイセンサを配し、 そのアレイセンサに隣接 してアンプ、 スキャナを設け、 それらの間に金属膜成膜による引出し電 線を配線して、 ァレイセンサを検査対象である液晶パネルに近接させて 、 非接触検査における検知レベルと SZN比を向上させている。 As a method for inspecting a display substrate such as a liquid crystal display panel, a probe is brought into contact with each of a gate wiring and a source wiring connected to a TFT transistor provided for each pixel. In some cases, the output voltage is used to determine whether a pixel electrode is defective. On the other hand, in the inspection method using the probe as described above, problems such as frequent contact failure and increased probe replacement cost occur due to the full color of the liquid crystal display and the narrowing of the pixel pitch accompanying high definition. It was. In view of such problems, for example, in the liquid crystal panel inspection apparatus disclosed in Patent Document 1, a thin array sensor is arranged on a substrate, an amplifier and a scanner are provided adjacent to the array sensor, and these A lead wire is formed between the metal film and the array sensor is placed close to the liquid crystal panel to be inspected. The detection level and SZN ratio in non-contact inspection are improved.
上記のアレイセンサは、 電界効果トランジス夕を応用した電位センサ を組み込んでなるが、 同様に、 特許文献 2には、 液晶ディスプレイ基板 上に配列された画像電極に対向して、 検査基板上にソース電極、 半導体 、 ドレイン電極からなるスィッチ素子を配列し、 検査基板を画素電極に 接近させて、 その画素電極への正常な電圧印加によりソース電極および ドレイン電極間を導通させ、 その導通を検出する検査装置が開示されて いる。  The above array sensor incorporates a potential sensor using a field effect transistor. Similarly, in Patent Document 2, a source on an inspection substrate is opposed to an image electrode arranged on a liquid crystal display substrate. Inspection that arranges switch elements consisting of electrodes, semiconductors, and drain electrodes, brings the inspection substrate close to the pixel electrode, and conducts conduction between the source electrode and drain electrode by applying a normal voltage to the pixel electrode, and detects the conduction An apparatus is disclosed.
液晶ディスプレイの画素電極にセンサを近接させて、 非接触でその良 否を検査する方法として、 例えば、 特許文献 3に記載の電位センサは、 エンハンスメント型 MO S— F E Tを使用しており、 その他、 静電 CM O Sセンサを採用したものも知られている。  For example, the potential sensor described in Patent Document 3 uses an enhancement type MO S-FET as a method for inspecting the quality of a pixel electrode of a liquid crystal display in proximity to the pixel electrode. Those using electrostatic CM OS sensors are also known.
特許文献 1 特開平 1 1一 1 5 3 6 3 7号公報  Patent Document 1 Japanese Unexamined Patent Publication No. 1 1 1 1 5 3 6 3 7
特許文献 2 特開平 1 0— 6 24 7 4号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 10-6 24 7 4
特許文献 3 特開 2 0 0 1— 1 3 348 7号公報  Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 1— 1 3 348 7
しかし、 上述した従来の検査方法で使用するセンサ、 例えば、 特許文 献 1, 2に記載の電位センサは、 検査対象の液晶パネルの画素電極を電 界効果トランジスタのゲートとして作用させ、 その画素電圧より配線の 断線や短絡を検出している。 そのため、 センサ感度等が電界効果トラン ジス夕の作り込みのプロセスに依存し、 センサとしての機能が不十分で ある、 という問題があった。  However, the sensor used in the conventional inspection method described above, for example, the potential sensor described in Patent Documents 1 and 2, causes the pixel electrode of the liquid crystal panel to be inspected to act as the gate of the field effect transistor, and the pixel voltage Wire disconnection or short circuit is detected. As a result, the sensitivity of the sensor depends on the process of creating the field effect transistor, and the function as a sensor is insufficient.
また、 静電 CMO Sセンサを採用したものでは、 平坦なセンサ基板の 上面に、 そのセンサからの検出信号をアンプ等へ導くためにフレキ接続 をしており、 そのフレキ厚 ( 3 0 jum) の占めるギャップが不可避とな る。 その結果、 フレキ厚が非接触検査においてセンサと検査対象を近接 させる際の妨げとなって、 センサ感度や分解能が低下するという問題が あった。 発明の開示 In the case of using an electrostatic CMO S sensor, a flexible connection is made on the upper surface of a flat sensor board to guide the detection signal from the sensor to an amplifier, etc. The gap occupied is inevitable. As a result, the flexible thickness hinders the proximity of the sensor and the inspection object in non-contact inspection, and there is a problem that the sensitivity and resolution of the sensor decrease. there were. Disclosure of the invention
本発明は、 上述した課題に鑑みてなされたもので、 その目的とすると ころは、 パネル上の画素電極の良否を高精度で検出できるセンサ、 検査 装置および検査方法を提供することである。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sensor, an inspection apparatus, and an inspection method that can detect the quality of a pixel electrode on a panel with high accuracy.
また、 本発明の他の目的は、 センサの分解能の低下を回避可能なセン サ、 検査装置および検査方法を提供することである。  Another object of the present invention is to provide a sensor, an inspection apparatus, and an inspection method capable of avoiding a decrease in sensor resolution.
かかる目的を達成し、 上述した課題を解決する一手段として、 例えば 、 以下の構成を備える。 すなわち、 本発明は、 検査対象に検査信号を供 給して、 その検査対象の状態を検査するセンサであって、 表面が平板状 の第 1の基板と、 上記第 1の基板の所定部位に設けられた凸部と、 少な くとも一方端部が上記凸部表面に当接するとともに他方端部が上記第 1 の基板の表面に当接するよう湾曲した第 2の基板と、 上記第 2の基板の 上記一方端部の表面に配したセンサ素子とを備え、 上記センサ素子は、 上記検査対象に対向するセンサ電極を配設してなることを特徴とする。 例えば、 上記センサ電極は、 上記第 2の基板上に形成された M O S型 トランジスタのゲート端子に連結された所定の面積を有する導体膜であ ることを特徴とする。 また、 例えば、 上記センサ電極と上記検査対象間 の容量結合を介して非接触で上記検査対象より上記検査信号を検出する ことを特徴とする。  As a means for achieving this object and solving the above-mentioned problems, for example, the following configuration is provided. That is, the present invention is a sensor that supplies an inspection signal to an inspection object and inspects the state of the inspection object, and includes a first substrate having a flat surface and a predetermined portion of the first substrate. A provided convex portion, a second substrate curved so that at least one end abuts the surface of the convex portion and the other end abuts the surface of the first substrate, and the second substrate A sensor element disposed on the surface of the one end, wherein the sensor element is provided with a sensor electrode facing the inspection object. For example, the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS transistor formed on the second substrate. Further, for example, the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
例えば、 上記第 2の基板は、 上記一方端部どうしが対向しながら上記 凸部上に列状に配されるとともに、 その列方向において上記一方端部の 一部が互いに重なり合う配列構成を有することを特徴とする。 また、 例 えば、 上記第 2の基板は、 所定厚のガラスあるいはプラスチックあるい は石英からなることを特徴とする。 また、 例えば、 上記凸部は、 上記第 1の基板と上記第 2の基板の上記 一方端部との間に載設したスぺーサであることを特徴とする。 例えば、 上記凸部は、 上記第 1の基板の一部を突出して形成されていることを特 徵とする。 例えば、 上記凸部は、 上記第 1の基板の所定部位に第 3の基 板を積層してなることを特徴とする。 For example, the second substrate has an array configuration in which the one end portions are arranged in a row on the convex portion while the one end portions face each other, and a part of the one end portion overlaps in the row direction. It is characterized by. For example, the second substrate is made of glass, plastic or quartz having a predetermined thickness. In addition, for example, the convex portion is a spacer placed between the first substrate and the one end portion of the second substrate. For example, the protrusion is characterized by being formed by protruding a part of the first substrate. For example, the convex portion is formed by laminating a third substrate on a predetermined portion of the first substrate.
例えば、 上記列状に配された上記第 2の基板を複数列設け、 これら複 数列の基板に対応した上記センサ素子を個別に選択できることを特徴と する。  For example, a plurality of the second substrates arranged in a row are provided, and the sensor elements corresponding to the plurality of rows of substrates can be individually selected.
上述した課題を解決する他の手段として、 例えば、 本発明は、 検査対 象に検査信号を供給する信号供給手段と、 上記検査対象に対向する部分 を突出させた構成を有するセンサと、 上記検査対象より非接触で上記検 查信号を検出する手段と、 上記検出信号の変化に基づいて上記検査対象 の良否を識別する識別手段とを備え、 上記センサは、 各々がセンサ電極 を有する複数のセンサ基板を列状に対向して配してなり、 上記センサ基 板は、 その一方端部が、 平板状の基板の所定部位に設けられた凸部に当 接するとともに、 他方端部が上記基板の表面に当接するよう湾曲し、 上 記センサ電極は、 上記検査対象に対向するよう上記センサ基板の上記一 方端部の表面に配設されていることを特徴とする。  As another means for solving the above-described problem, for example, the present invention includes a signal supply means for supplying an inspection signal to an inspection object, a sensor having a configuration in which a portion facing the inspection object is protruded, and the inspection A means for detecting the inspection signal in a non-contact manner from an object; and an identification means for identifying the quality of the inspection object based on a change in the detection signal. The sensor includes a plurality of sensors each having a sensor electrode. The sensor substrates are arranged opposite to each other in a row, and one end portion of the sensor substrate is in contact with a convex portion provided at a predetermined portion of the flat plate substrate, and the other end portion of the sensor substrate. The sensor electrode is curved so as to come into contact with the surface, and the sensor electrode is disposed on the surface of the one end portion of the sensor substrate so as to face the inspection object.
例えば、 上記センサ電極は、 上記センサ基板上に形成された M O S型 トランジス夕のゲート端子に連結された所定の面積を有する導体膜であ ることを特徴とする。 また、 例えば、 上記センサ電極と上記検査対象と の間の容量結合を介して非接触で上記検査対象より上記検査信号を検出 することを特徴とする。  For example, the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS transistor formed on the sensor substrate. Further, for example, the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
例えば、 上記センサ基板は、 上記一方端部どうしが対向しながら上記 凸部上に列状に配されるとともに、 その列方向において上記一方端部の 一部が互いに重なり合う配列構成を有することを特徴とする。 例えば、 上記センサ基板は、 所定厚のガラスあるいはプラスチックあるいは石英 からなることを特徴とする。 For example, the sensor substrate has an arrangement configuration in which the one end portions are arranged in a row on the convex portions while facing each other, and the one end portions overlap each other in the row direction. And For example, The sensor substrate is made of glass, plastic or quartz having a predetermined thickness.
例えば、 さらに、 上記列状に配された上記センサ基板を複数列設け、 これら複数列のセンサ基板を個別に選択する手段を備えることを特徴と する。 また、 例えば、 さらに、 上記センサ電極と上記検査対象の近接状 態を維持したまま上記検査対象を順次走査するよう上記検査対象を位置 決め移動させる位置決め移動手段を備えることを特徴とする。 例えば、 上記位置決め移動手段は、 検査対象を空気流で浮かせた状態で上記位置 決めを行うことを特徴とする。  For example, the sensor board may further include a plurality of rows of the sensor substrates arranged in the row, and a means for individually selecting the plurality of rows of sensor substrates. Further, for example, it is characterized by further comprising positioning moving means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining the proximity state of the sensor electrode and the inspection object. For example, the positioning moving means performs the positioning in a state where the inspection object is floated by an air flow.
上述した課題を解決する他の手段として、 例えば、 本発明に係る検査 方法は、 上述した検査装置を用いて検査対象の状態を検査することを特 徵とする。 図面の簡単な説明  As another means for solving the above-described problem, for example, the inspection method according to the present invention is characterized by inspecting the state of the inspection object using the above-described inspection apparatus. Brief Description of Drawings
第 1図は、 本発明の実施の形態例に係る検査装置の全体構成を示すブ ロック図である。  FIG. 1 is a block diagram showing the overall configuration of an inspection apparatus according to an embodiment of the present invention.
第 2図は、 実施の形態例のセンサにおける各センサ基板の配列状態を 示す図である。  FIG. 2 is a diagram showing an array state of each sensor substrate in the sensor of the embodiment.
第 3図は、 実施の形態例のセンサを切断したときの断面構成を示す図 である。  FIG. 3 is a diagram showing a cross-sectional configuration when the sensor of the embodiment is cut.
第 4図は、 実施の形態例に係る検査装置におけるセンサ部の回路構成 を模式的に示す図である。  FIG. 4 is a diagram schematically showing a circuit configuration of a sensor unit in the inspection apparatus according to the embodiment.
第 5図は、 実施の形態例に係る検査装置の検査時における検査対象と センサの位置関係を示す図である。  FIG. 5 is a diagram showing a positional relationship between the inspection object and the sensor at the time of inspection by the inspection apparatus according to the embodiment.
第 6図は、 実施の形態例の変形例に係るセンサ部の回路構成を示す図 である。 発明を実施するための最良の形態 FIG. 6 is a diagram showing a circuit configuration of a sensor unit according to a modification of the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る実施の形態例を詳細に説明 する。 図 1は、 本実施の形態例に係る検査装置の全体構成を示すブロッ ク図である。 図 1に示す検査装置の検査対象は、 例えば、 ガラス製の基 板上に複数の画素電極、 およびそれらを駆動するための薄膜トランジス 夕 (T F T ) がアレイ状 (あるいは、 マトリックス状) に配列された構 造を有する液晶表示パネルや夕ツチ式パネル等である。  Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing the overall configuration of the inspection apparatus according to the present embodiment. The inspection object of the inspection apparatus shown in FIG. 1 includes, for example, a plurality of pixel electrodes and a thin film transistor (TFT) for driving them arranged in an array (or matrix) on a glass substrate. Such as liquid crystal display panels and evening-type panels.
図 1に示す検査装置において、 検査対象である液晶パネル 1 0の上面 にはセンサ 1が配されており、 そのセンサ出力に基づいて液晶パネル 1 In the inspection apparatus shown in FIG. 1, a sensor 1 is disposed on the upper surface of the liquid crystal panel 10 to be inspected, and the liquid crystal panel 1 is based on the sensor output.
0の画素電極等の良否を検査する。 本実施の形態例に係る検査装置では 、 非接触方式で検査を行うため、 液晶パネル 1 0と所定距離離間した位 置にライン状のセンサ 1が位置決めされている。 センサ 1は、 例えば、 液晶パネル 1 0の幅と同じ幅を有するとともに、 後述するセンサ回路等 により非接触方式で液晶パネル 1 0の画素電極の断線の有無等を判定す る一次元ラインセンサである。 なお、 図 1に示すセンサ 1 'は、 センサThe quality of the pixel electrode of 0 is inspected. In the inspection apparatus according to the present embodiment, the line-shaped sensor 1 is positioned at a position separated from the liquid crystal panel 10 by a predetermined distance in order to perform the inspection in a non-contact manner. The sensor 1 is, for example, a one-dimensional line sensor that has the same width as the liquid crystal panel 10 and determines whether or not the pixel electrode of the liquid crystal panel 10 is disconnected in a non-contact manner by a sensor circuit or the like described later. is there. Sensor 1 'shown in Fig. 1 is a sensor
1のセンサ配置面とは逆の面 (裏面) に配された機能部分の構成を示し ている。 1 shows the structure of the functional part placed on the opposite side (back side) of the sensor placement side.
液晶パネル 1 0には、 画素電圧供給部 1 3が接続されており、 それに より個々の画素電極に画素の検査に必要な信号を供給している。 センサ A pixel voltage supply unit 13 is connected to the liquid crystal panel 10, thereby supplying signals necessary for pixel inspection to individual pixel electrodes. Sensor
1は、 後述するように規則的に配列した複数のセンサを有する。 各々の センサで検出された画素信号は微小な信号であるため、 不図示の演算増 幅器 (オペアンプ) 等により所定の増幅度で増幅された後、 マルチプレ クサ (M P X ) 2によって一定の周期で走査 (スキャン) され、 多重化 される。 多重化された各センサ信号は、 例えば、 リミッタ回路等で構成 された波形整形部 3へ送られる。 1 has a plurality of sensors regularly arranged as described later. Since the pixel signal detected by each sensor is a very small signal, it is amplified with a predetermined amplification degree by a not-shown operational amplifier (op-amp), etc., and then is multiplexed with a multiplexer (MPX) 2 at a constant cycle. Scanned and multiplexed. Each multiplexed sensor signal is sent to a waveform shaping unit 3 constituted by, for example, a limiter circuit.
波形整形部 3からの出力信号は、 A Z D変換部 4へ送られる。 A Z D 変換部 4は、 上述のように増幅され、 波形整形された交流信号を直流レ ベルの信号に変換する波形処理や、 アナログ信号をディジ夕ル信号に変 換する等の変換処理を行う。 The output signal from the waveform shaping unit 3 is sent to the AZD conversion unit 4. AZD The conversion unit 4 performs a waveform process for converting the AC signal amplified and waveform-shaped as described above into a DC level signal, and a conversion process such as converting an analog signal into a digital signal.
制御部 6は、 変換後の信号レベルと、 あらかじめ設定した基準値とを 比較し、 上記の信号処理で得た結果が基準の範囲内か否かを判定する。 その判定結果は、 表示部 9へ送られる。 また、 制御部 6は、 本検査装置 全体の制御を行うため、 例えば、 マイクロプロセッサで構成され、 所定 の検査シーケンスを統括的に制御する。 制御部 6は、 さらに ROM 7や RAM8を有し、 ROM 7には、 検査手順を含む制御手順等が、 例えば 、 コンピュータプログラムとして格納され、 RAM 8を、 例えば、 制御 データや検査データ等を一時的に格納するための作業領域として使用し ている。  The control unit 6 compares the converted signal level with a preset reference value, and determines whether or not the result obtained by the above signal processing is within the reference range. The determination result is sent to the display unit 9. In addition, the control unit 6 is configured by, for example, a microprocessor to control the entire inspection apparatus, and comprehensively controls a predetermined inspection sequence. The control unit 6 further includes a ROM 7 and a RAM 8, and the ROM 7 stores a control procedure including an inspection procedure, for example, as a computer program, and temporarily stores the RAM 8, for example, control data and inspection data. It is used as a work area for storing data.
表示部 9は、 例えば、 C RTや液晶表示器等からなり、 制御部 6から 送られた判定結果である検査対象 (液晶パネルの画素電極) の良否を検 査員が容易に理解できる形式で可視表示する。 画素電極等に不良があれ ば、 その電極のパネル基板上での位置も、 例えば、 電極番号や座標等で 表示する。 なお、 検査結果の表示は、 可視表示に限定されず、 音声等の 形式で出力してもよい。 また、 可視表示と音声を混在させてもよい。 駆動部 1 6は、 制御部 6からの制御信号を受けて、 液晶パネル 1 0を 載置しているステージ (不図示) 全体を所定方向に所定の速度で移動す ることで、 センサ 1が、 非接触の状態で液晶パネル 1 0上のアレイ状の 画素電極を順次走査できるようにしている。 具体的には、 駆動部 1 6は 、 mオーダーでステージを所定方向へ移動するため、 XYZ 0角度の 4軸制御により三次元位置制御が可能に構成されており、 液晶パネル 1 0をセンサ位置より一定距離離反させた検査前の基準となる位置に位置 決めする。 次に、 本実施の形態例に係る検査装置におけるセンサ部について説明 する。 図 2は、 本実施の形態例のセンサ部における各センサ基板の配列 状態を示しており、 図 3は、 本実施の形態例のセンサ部の構造を説明す るための図であり、 図 2の二点鎖線 A— A ' に沿ってセンサ基板を切断 したときの断面構成を示している。 図 2および図 3に示すように、 セン サ 1は、 複数のセンサ基板 5 a , 5 bをライン状に配し、 それらを、 所 定の厚さを有するスぺーサ 3 3上に一定のピッチ幅で交互に並置すると ともに、 全体として液晶パネル 1 0の検査対象部分とほぼ同じ幅を有す るように構成された一次元ラインセンサである。 The display unit 9 is composed of, for example, a CRT, a liquid crystal display, etc., and is visible in a format that allows the inspector to easily understand the quality of the inspection target (pixel electrode of the liquid crystal panel) that is the determination result sent from the control unit 6. indicate. If the pixel electrode is defective, the position of the electrode on the panel substrate is also displayed by, for example, the electrode number and coordinates. The display of inspection results is not limited to visual display, and may be output in a format such as audio. Moreover, visual display and sound may be mixed. The drive unit 16 receives the control signal from the control unit 6 and moves the entire stage (not shown) on which the liquid crystal panel 10 is placed at a predetermined speed in a predetermined direction, so that the sensor 1 The arrayed pixel electrodes on the liquid crystal panel 10 can be sequentially scanned in a non-contact state. Specifically, since the drive unit 16 moves the stage in a predetermined direction on the m order, the three-dimensional position control is possible by the 4-axis control of the XYZ 0 angle, and the liquid crystal panel 10 is moved to the sensor position. Position it at a reference position before inspection that is separated by a certain distance. Next, the sensor unit in the inspection apparatus according to the present embodiment will be described. FIG. 2 shows an arrangement state of each sensor board in the sensor unit of the present embodiment, and FIG. 3 is a diagram for explaining the structure of the sensor unit of the present embodiment. The cross-sectional configuration when the sensor substrate is cut along the two-dot chain line A—A ′ is shown. As shown in FIG. 2 and FIG. 3, the sensor 1 has a plurality of sensor boards 5 a and 5 b arranged in a line, and they are arranged on a spacer 33 having a predetermined thickness. This is a one-dimensional line sensor that is arranged in parallel with the pitch width and has the same width as the inspection target portion of the liquid crystal panel 10 as a whole.
センサ基板 5 a , 5 bのスぺーサ 3 3側の先端部分は、 図 2に示すよ うに、 対向して配された他のセンサ基板の先端端部と列方向において互 いに一部が重なり合う配列構成をとる。 また、 センサ基板 5 a, 5 bは 、 図 3に示すように、 所定厚のガラスで構成されているが、 これに限定 されず、 例えばプラスチックや石英等で構成してもよい。 センサ基板 5 a , 5 bは、 略中央部において、 その断面がゆるい S字型に屈曲した ( たわんだ) 構造を有する。 そして、 センサ基板 5 a, 5 bのスぺ一サ 3 3側の上面端部には、 センサ回路 3 1が配されている (図 3参照)。 このように各センサ基板 5 a , 5 bの先端端部が、 対向するセンサ基 板と一部が重なり合う構成をとることで、 各センサ基板 5 a, 5 bに配 されたセンサ回路 3 1が有する後述のセンサ電極 2 0も列方向に互いに 重なり合うため、 液晶パネル 1 0の画素電極 1 5とセンサ回路 3 1との 相対的な位置関係によっては、 1つの画素電極に対して 2つのセンサ回 路 3 1 (具体的には、 センサ電極 2 0 ) で同時に信号を検出できるため 、 その画素電極の確実な良否判定が可能となる。  As shown in Fig. 2, the tip of sensor board 5a, 5b on the spacer 33 side is partly in the row direction with the tip of the other sensor board. An overlapping arrangement is taken. Further, as shown in FIG. 3, the sensor substrates 5a and 5b are made of glass having a predetermined thickness, but are not limited thereto, and may be made of plastic or quartz, for example. The sensor substrates 5 a and 5 b have a structure that is bent (bent) into an S-shape with a loose cross section at a substantially central portion. A sensor circuit 31 is disposed on the upper end of the sensor board 5a, 5b on the spacer 33 side (see FIG. 3). Thus, the sensor circuit 31 arranged on each sensor board 5a, 5b can be obtained by adopting a configuration in which the tip end part of each sensor board 5a, 5b partially overlaps the opposing sensor board. Since sensor electrodes 20 described later also overlap each other in the column direction, depending on the relative positional relationship between the pixel electrode 15 of the liquid crystal panel 10 and the sensor circuit 31, two sensor circuits may be applied to one pixel electrode. Since signals can be simultaneously detected by the path 31 (specifically, the sensor electrode 20), it is possible to reliably determine the quality of the pixel electrode.
検査対象である液晶パネル 1 0は、 図 3に示すようにガラス基板とそ の表面に形成された複数の画素電極 1 5からなり、 画素電極 1 5に近接 して配されるセンサ電極 2 0は、 画素電圧供給部 1 3より液晶パネル 1 0の画素電極 1 5に印加された信号電位 (画素電圧) を非接触方式で検 出する。 The liquid crystal panel 10 to be inspected is composed of a glass substrate and a plurality of pixel electrodes 15 formed on the surface thereof as shown in FIG. The sensor electrode 20 arranged in this manner detects the signal potential (pixel voltage) applied to the pixel electrode 15 of the liquid crystal panel 10 from the pixel voltage supply unit 13 in a non-contact manner.
非接触で液晶パネルの検査を行うため、 センサ電極 2 0と液晶パネル 1 0 (実際は、 液晶パネル 1 0上に形成された画素電極 1 5 ) との間の 離間距離 dを、 例えば、 1 0 0 以下にする必要がある。 そこで、 セ ンサ 1の中央部分を突出させた構成として、 離間距離 dを最小に制御で きるよう、 各センサ基板 5 a, 5 bに屈曲部 (たわみ部) 2 1を設け、 そのセンサ基板のセンサ回路 3 1を配した部分をスぺ一サ 3 3に密着さ せて、 センサ回路 3 1が信号基板 2 4や後述するタブ 2 5の面位置より も高くなるようにするとともに、 センサ基板 5 a, 5 bのセンサ回路 3 1を配した側と反対側の部分が、 センサ電極 2 0よりも低い位置で信号 基板 2 4に密着する構造となっている。  In order to inspect the liquid crystal panel in a non-contact manner, the separation distance d between the sensor electrode 20 and the liquid crystal panel 10 (actually, the pixel electrode 15 formed on the liquid crystal panel 10) is set to, for example, 10 Must be 0 or less. Therefore, as a configuration in which the central portion of sensor 1 is protruded, each sensor substrate 5 a, 5 b is provided with a bent portion (flexible portion) 21 so that the separation distance d can be controlled to the minimum, and the sensor substrate The sensor circuit 3 1 is placed in close contact with the spacer 3 3 so that the sensor circuit 3 1 is higher than the surface position of the signal board 2 4 and the tab 2 5 described later. 5a and 5b have a structure in which the part opposite to the side where the sensor circuit 3 1 is arranged is in close contact with the signal board 24 at a position lower than the sensor electrode 20.
センサ基板 5 a , 5 b上には、 例えば、 金属膜形成法で形成した導電 パターン 3 4が配線されており、 その導電パターン 3 4を介して、 セン サ回路 3 1で検出された信号がタブ 2 5へ至る。 タブ 2 5は、 図 3に示 すように、 その断面が U字型をしており、 タブ 2 5の内側に設けた導電 部を介して、 センサ基板 5 a , 5 b側の導電パターン 3 4と信号基板 2 4側の導電パターン 3 5を相互に電気的に接続するとともに、 センサ基 板 5 a , 5 bと信号基板 2 4を相互に固定する機能を有している。  For example, a conductive pattern 3 4 formed by a metal film forming method is wired on the sensor substrates 5 a and 5 b, and a signal detected by the sensor circuit 3 1 is transmitted through the conductive pattern 3 4. Tab 2 to 5. As shown in FIG. 3, the tab 25 is U-shaped in cross section, and the conductive pattern 3 on the sensor substrate 5 a, 5 b side through the conductive part provided inside the tab 25. 4 and the conductive pattern 35 on the signal board 24 side are electrically connected to each other, and the sensor boards 5 a and 5 b and the signal board 24 are fixed to each other.
導電パターン 3 5は、 センサ回路 3 1からの信号が、 信号基板 2 4の 裏面 (センサ基板 5 a , 5 bが配置された面とは逆の面) に配したマル チプレクサ (M P X ) 2や波形整形部 3、 A Z D変換部 4へ至る信号経 路となる。  Conductive pattern 3 5 has a signal from sensor circuit 3 1 where the multiplexer (MPX) 2 placed on the back side of signal board 2 4 (the side opposite to the side where sensor boards 5 a and 5 b are placed) This is a signal path to the waveform shaping unit 3 and AZD conversion unit 4.
A Z D変換部 4は、 センサ電極 2 0で検出された画素電圧の値をディ ジ夕ル値に変換し、 それを図 1に示す制御部 6へ送る。 制御部 6は、 上 述したように、 AZD変換部 4で変換して得られた信号の値と、 あらか じめ設定した基準値 (閾値) とを比較し、 センサ信号のレベルが基準値 の範囲内か否かを判定する。 The AZD conversion unit 4 converts the pixel voltage value detected by the sensor electrode 20 into a digital value and sends it to the control unit 6 shown in FIG. Control unit 6 is As described above, the signal value obtained by the conversion by the AZD converter 4 is compared with the reference value (threshold value) set in advance, and whether or not the sensor signal level is within the reference value range. Determine.
なお、 センサ回路 3 1を信号基板 24の面位置よりも高くして、 セン サ電極 2 0を液晶パネル 1 0上に形成された画素電極 1 5に近接させる ための手段は、 上記のスぺーサ 3 3に限るものではなく、 例えば、 信号 基板 24の一部を隆起させて所定高の突部を設けたり、 あるいは、 信号 基板 24上にさらに所定サイズの別基板を積層して凸部を形成すること で実現してもよい。 いずれの場合においても、 その突部ゃ凸部の上面に センサ基板 5 a, 5 bのうち、 センサ回路 3 1を配した部分を密着させ ることになる。  The means for making the sensor circuit 31 higher than the surface position of the signal substrate 24 and bringing the sensor electrode 20 close to the pixel electrode 15 formed on the liquid crystal panel 10 is the above-mentioned space. For example, a part of the signal board 24 is raised to provide a protrusion having a predetermined height, or another substrate of a predetermined size is further laminated on the signal board 24 to form a convex part. It may be realized by forming. In either case, the portion of the sensor substrate 5a, 5b in which the sensor circuit 31 is disposed is brought into close contact with the upper surface of the protrusion.
図 4は、 本実施の形態例に係る検査装置におけるセンサ部の回路構成 を模式的に示している。 図 4に示すように、 センサ回路 3 1を構成する センサ電極 2 0は、 センサ 1のセンサ基板 5 a, 5 b上に形成された C M〇 S素子 (MO S型電界効果トランジスタ) 4 1のゲート端子 (G) に連結されており、 所定の面積を有する導体膜 (例えば、 I TO膜等) からなる。 規則的に並列配置された各センサ電極 2 0の中心間の距離 L は、 例えば、 7 0 z/mで、 ピッチ幅は 5 0 mである。 しかし、 距離等 はこれらに限定されるものではなく、 検査対象の大きさに合わせて調整 可能である。 、  FIG. 4 schematically shows the circuit configuration of the sensor unit in the inspection apparatus according to the present embodiment. As shown in Fig. 4, the sensor electrode 2 0 constituting the sensor circuit 3 1 is composed of the CM〇 S element (MOS field effect transistor) 4 1 formed on the sensor substrate 5 a, 5 b of the sensor 1 It is connected to the gate terminal (G) and is made of a conductor film (for example, an ITO film) having a predetermined area. The distance L between the centers of the sensor electrodes 20 regularly arranged in parallel is, for example, 70 z / m, and the pitch width is 50 m. However, the distance is not limited to these, and can be adjusted according to the size of the inspection object. ,
また、 各 CMO S素子 4 1のソース端子 (S) は、 センサ回路のダラ ンド (GND) に接続され、 各ドレイン端子 (D) は、 上述した導電パ ターン 34, 3 5を介して、 信号基板 24に配されたマルチプレクサ 2 に集中して接続されている。 なお、 マルチプレクサ 2の後段には、 波形 整形部 3、 AZD変換部 4が配されている。  The source terminal (S) of each CMOS element 41 is connected to the sensor circuit diode (GND), and each drain terminal (D) is connected to the signal via the conductive patterns 34 and 35 described above. Centrally connected to the multiplexer 2 disposed on the substrate 24. A waveform shaping unit 3 and an AZD conversion unit 4 are arranged after the multiplexer 2.
次に、 本実施の形態例に係る検査装置における検査対象の検査方法に ついて簡単に説明する。 図 5は、 本実施の形態例に係る検査装置の検査 時における検査対象とセンサとの位置関係を示している。 図 5において 、 検査対象である液晶パネル 1 0の下部には空気供給部 5 0が配置され 、 液晶パネル 1 0は、 その空気供給部 5 0から吹き上げられる空気流 ( 図中、 上向きの矢印で示す) を受けて浮いた状態となる。 そして、 所定 の高さに維持されながら、 図中の矢印 6 1方向へ移動する。 Next, in the inspection method of the inspection object in the inspection apparatus according to the present embodiment A brief description will be given. FIG. 5 shows the positional relationship between the inspection object and the sensor when the inspection apparatus according to the present embodiment is inspected. In FIG. 5, an air supply unit 50 is arranged below the liquid crystal panel 10 to be inspected, and the liquid crystal panel 10 is an air flow blown up from the air supply unit 50 (in the figure, an upward arrow). Will be in a floating state. Then, while maintaining a predetermined height, it moves in the direction of arrow 61 in the figure.
一方、 液晶パネル 1 0の上部には、 それとは非接触状態で配置したセ ンサ 1があり、 センサ 1と液晶パネル 1 0間の距離を一定に維持しなが ら矢印 6 1方向へ移動する液晶パネル 1 0上の画素電極 1 5を順次、 走 査することで、 その良否を連続して検査できる。  On the other hand, the upper part of the liquid crystal panel 10 has a sensor 1 arranged in a non-contact state with the liquid crystal panel 10 and moves in the direction of arrow 61 while maintaining the distance between the sensor 1 and the liquid crystal panel 10 constant. By sequentially scanning the pixel electrodes 15 on the liquid crystal panel 10, the quality can be continuously inspected.
空気供給部 5 0は、 その全面に渡り多数の孔 (不図示) が空けられて おり、 それらの孔からの空気流は、 検査対象の領域別に異なる方向とな るよう制御されている。 具体的には、 図 5に示すように液晶パネル 1 0 のうち、 その上部に配されたセンサ 1に対向する部分 (図中の領域 C ) に対しては、 空気供給部 5 0より液晶パネル 1 0へ上昇する空気流と、 液晶パネル 1 0から空気供給部 5 0へ下降する空気流とを混在させた空 気流を発生させている。  The air supply unit 50 has a large number of holes (not shown) on its entire surface, and the air flow from these holes is controlled to be in different directions depending on the region to be inspected. Specifically, as shown in FIG. 5, a portion of the liquid crystal panel 10 facing the sensor 1 disposed in the upper part (region C in the figure) is supplied from the air supply unit 50 to the liquid crystal panel. An airflow is generated by mixing an airflow rising to 10 and an airflow falling from the liquid crystal panel 10 to the air supply unit 50.
一方、 液晶パネル 1 0のうち、 センサ 1に対向する部分の周辺部領域 A , Bに対しては、 空気供給部 5 0より液晶パネル 1 0へ向かって上昇 する空気流を発生させている。 このような空気流で液晶パネル 1 0を浮 かせることで、 例えば、 液晶パネル 1 0の自重によるたわみ等に起因し て、 検査対象である液晶パネル 1 0の画素電極 1 5とセンサ 1のセンサ 回路 3 1との間の離間距離 dが変動するのを防止できる。 その結果、 非 接触検査時にセンサ 1の下部領域における離間距離 dを常に最小かつ一 定に保つようにするとともに、 走査のための移動に伴なう液晶パネル 1 0の損傷等を回避している。 以上説明したように、 センサの中央部分を突出させた構成とすること で、 センサと検査対象間の距離が最小となるよう容易に制御できる。 す なわち、 センサを構成する各センサ基板の中間部位に湾曲部 (たわみ部 ) を設けてカーブ状に形成し、 その一方の端部上面にセンサ回路を配す るとともに、 その端部を信号基板上に設けた所定高のスぺーザに密着さ せて、 センサ回路が信号基板の面位置よりも高くなるようにすることで 、 センサ回路を検査対象である液晶パネルの画素電極に容易に近接して 配することができ、 センサと検査対象間の間隔制御も容易になる。 On the other hand, an air flow rising from the air supply unit 50 toward the liquid crystal panel 10 is generated in the peripheral regions A and B of the portion of the liquid crystal panel 10 facing the sensor 1. By floating the liquid crystal panel 10 with such an air flow, for example, due to the deflection of the liquid crystal panel 10 due to its own weight, the pixel electrode 15 of the liquid crystal panel 10 to be inspected and the sensor of the sensor 1 It is possible to prevent the separation distance d from the circuit 31 from fluctuating. As a result, the distance d in the lower region of the sensor 1 is always kept at a minimum and constant during non-contact inspection, and damage to the liquid crystal panel 10 due to movement for scanning is avoided. . As described above, by adopting a configuration in which the central portion of the sensor is protruded, the distance between the sensor and the inspection object can be easily controlled. In other words, a curved part (flexible part) is provided in the middle part of each sensor board constituting the sensor to form a curve, and a sensor circuit is arranged on the upper surface of one end part, and the end part is connected to the signal. The sensor circuit is made to adhere to a spacer of a predetermined height provided on the substrate so that the sensor circuit is higher than the surface position of the signal substrate, so that the sensor circuit can be easily applied to the pixel electrode of the liquid crystal panel to be inspected. They can be placed close to each other, and the distance between the sensor and the inspection object can be easily controlled.
また、 センサと検査対象の間隔を最小に制御することにより、 センサ の感度と分解能が向上し、 画素電極の画素電圧を非接触方式で確実に検 出することができる。 さらに、 個々のセンサのセンサ感度と分解能が向 上することで、 検査の信頼性の向上、 検査時間の短縮化が可能となり、 検査全体の処理能力 (スループッ ト) が高くなるという利点がある。  In addition, by controlling the distance between the sensor and the inspection object to the minimum, the sensitivity and resolution of the sensor are improved, and the pixel voltage of the pixel electrode can be reliably detected in a non-contact manner. Furthermore, by improving the sensor sensitivity and resolution of each sensor, it is possible to improve the reliability of inspection and shorten the inspection time, and there is an advantage that the processing capacity (throughput) of the entire inspection is increased.
さらにまた、 列状に対向して配されたセンサ基板相互の先端部分が、 その列方向において互いに一部が重なり合う配列構成をとることで、 セ ンサ電極も列方向に互いに一部が重なり合うため、 検査時において液晶 パネルの画素電極のすべてを、 抜けなく確実に検査可能となる。  Furthermore, the sensor electrodes arranged opposite to each other in a row form an array configuration in which the sensor electrodes partially overlap each other in the column direction by adopting an arrangement configuration in which the portions overlap each other in the column direction. At the time of inspection, all the pixel electrodes of the liquid crystal panel can be inspected without fail.
なお、 本発明は、 上述の実施の形態例に限定されるものではなく、 本 発明の趣旨を逸脱しない限度において種々の変形が可能である。 上記の 実施の形態例に係る検査装置のセンサ部は、 複数のセンサ基板をスぺー サ上に交互に並べて構成された一次元ラインセンサである。 このような 構成をとつた場合、 複数あるセンサのうち 1つでも故障あるいは不良に なると、 センサとしての機能を果たすことが困難になる。 その場合、 セ ンサ全体を破棄等して正常なものと交換するのが通例である。  The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. The sensor section of the inspection apparatus according to the above embodiment is a one-dimensional line sensor configured by alternately arranging a plurality of sensor substrates on a spacer. When such a configuration is adopted, if any one of a plurality of sensors fails or becomes defective, it becomes difficult to perform the function as a sensor. In that case, the entire sensor is usually discarded and replaced with a normal one.
図 6は、 上記実施の形態例の変形例に係るセンサ部の回路構成を示し ている。 本変形例に係るセンサ部には、 一次元ラインセンサが複数設け られ、 それらを個別に選択して検査に使用できる構成をとつている。 す なわち、 図 6に示すセンサ回路は、 3つの一次元ラインセンサ 8 1〜 8 3を有し、 各ラインセンサは、 図 4に示すセンサ回路と同様、 複数の C MO S素子 (一次元ラインセンサ 8 1では、 CMO S素子 7 1 a〜 7 1 f ) のゲート端子 (G) にセンサ電極 (一次元ラインセンサ 8 1では、 センサ電極 7 0 a〜 7 0 f ) が連結されている。 FIG. 6 shows a circuit configuration of a sensor unit according to a modification of the above embodiment. The sensor unit according to this modification is provided with a plurality of one-dimensional line sensors. They can be selected individually and used for inspection. That is, the sensor circuit shown in FIG. 6 has three one-dimensional line sensors 8 1 to 8 3, and each line sensor has a plurality of CMOS elements (one-dimensional) as in the sensor circuit shown in FIG. In the line sensor 8 1, a sensor electrode (sensor electrode 70 a to 70 f in the one-dimensional line sensor 8 1) is connected to the gate terminal (G) of the CMO S element 7 1 a to 7 1 f). .
センサ部の一次元ラインセンサとして、 例えば、 一次元ラインセンサ 8 1を使用する場合、 選択ライン S 1に選択信号を送って、 それに接続 されたスィツチ素子 7 3 a〜 7 3 f を駆動状態 (アクティブ) にすると 、 スィッチ素子 7 3 a〜 7 3 f が導通状態となる。 その結果、 ゲート端 子 (G) に接続されたセンサ電極 7 0 a〜 7 0 f で検出された信号 (画 素電圧供給部より画素電極に印加された信号) が、 CMO S素子 7 1 a 〜 7 1 f のドレイン (D)、 およびスィツチ素子 7 3 a〜 7 3 f を介し て、 マルチプレクサ (MP X) 9 2に入力される。 他のセンサを選択し て使用する場合も、 これと同様の制御を行う。  For example, when the one-dimensional line sensor 8 1 is used as the one-dimensional line sensor of the sensor unit, a selection signal is sent to the selection line S 1 and the switch elements 7 3 a to 7 3 f connected thereto are driven ( When active), the switch elements 7 3 a to 7 3 f are turned on. As a result, the signal detected by the sensor electrodes 70 a to 70 f connected to the gate terminal (G) (the signal applied to the pixel electrode from the pixel voltage supply unit) is converted into the CMOS element 7 1 a ˜71 f is input to the multiplexer (MP X) 9 2 via the drain (D) of 1 f and the switch elements 7 3 a to 7 3 f. The same control is performed when other sensors are selected and used.
このように、 センサ回路として、 各々にセンサ電極が配された複数の 一次元ラインセンサを設け、 それらを個別に選択できるように構成する ことで、 例えば、 1つのセンサの故障が原因で検査を遂行できないとい つた事態を回避でき、 センサ部にバックアップ機能を持たせることがで きる。 その結果、 故障等に伴なうセンサ全体の破棄や交換等の必要がな く、 冗長性のあるセンサ部や検査装置とすることができる。 産業上の利用可能性  As described above, by providing a plurality of one-dimensional line sensors each having a sensor electrode arranged as a sensor circuit, and configuring them so that they can be individually selected, for example, inspection can be performed due to a failure of one sensor. It is possible to avoid situations where it cannot be performed, and to provide a backup function for the sensor unit. As a result, there is no need to discard or replace the entire sensor due to a failure or the like, and a redundant sensor unit or inspection device can be obtained. Industrial applicability
本発明によれば、 検査対象であるパネル上の画素電極の良否を精度よ く検出できる。 また、 本発明によれば、 センサの分解能の低下を回避し た非接触検査を実現できる。  According to the present invention, it is possible to accurately detect the quality of pixel electrodes on a panel to be inspected. Further, according to the present invention, it is possible to realize a non-contact inspection that avoids a decrease in the resolution of the sensor.

Claims

請求の範囲 The scope of the claims
1 . 検査対象に検査信号を供給して、 その検査対象の状態を検査する センサであって、 1. A sensor for supplying an inspection signal to an inspection object and inspecting the state of the inspection object,
表面が平板状の第 1の基板と、  A first substrate having a flat surface,
前記第 1の基板の所定部位に設けられた凸部と、  A convex portion provided at a predetermined portion of the first substrate;
少なくとも一方端部が前記凸部表面に当接するとともに他方端部が前 記第 1の基板の表面に当接するよう湾曲した第 2の基板と、  A second substrate curved such that at least one end abuts against the surface of the convex portion and the other end abuts against the surface of the first substrate;
前記第 2の基板の前記一方端部の表面に配したセンサ素子とを備え、 前記センサ素子は、 前記検査対象に対向するセンサ電極を配設してな ることを特徴とするセンサ。  A sensor element disposed on a surface of the one end of the second substrate, wherein the sensor element is provided with a sensor electrode facing the inspection object.
2 . 前記センサ電極は、 前記第 2の基板上に形成された M O S型トラ ンジス夕のゲート端子に連結された所定の面積を有する導体膜であるこ とを特徴とする請求項 1記載のセンサ。  2. The sensor according to claim 1, wherein the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS type transistor formed on the second substrate.
3 . 前記センサ電極と前記検査対象間の容量結合を介して非接触で前 記検査対象より前記検査信号を検出することを特徴とする請求項 2記載 のセンサ。  3. The sensor according to claim 2, wherein the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
4 . 前記第 2の基板は、 前記一方端部どうしが対向しながら前記凸部 上に列状に配されるとともに、 その列方向において前記一方端部の一部 が互いに重なり合う配列構成を有することを特徴とする請求項 3記載の センサ。  4. The second substrate has an arrangement configuration in which the one end portions are arranged in a row on the convex portion with the one end portions facing each other, and a part of the one end portion overlaps in the row direction. The sensor according to claim 3.
5 . 前記第 2の基板は、 所定厚のガラスあるいはプラスチックあるい は石英からなることを特徴とする請求項 4記載のセンサ。  5. The sensor according to claim 4, wherein the second substrate is made of glass, plastic, or quartz having a predetermined thickness.
6 . 前記列状に配された前記第 2の基板を複数列設け、 これら複数列 の基板に対応した前記センサ素子を個別に選択できることを特徴とする 請求項 4記載のセンサ。 6. The sensor according to claim 4, wherein the second substrates arranged in a row are provided in a plurality of rows, and the sensor elements corresponding to the plurality of rows of substrates can be individually selected.
7 . 前記凸部は、 前記第 1の基板と前記第 2の基板の前記一方端部と の間に載設したスぺーサであることを特徴とする請求項 1記載のセンサ 7. The sensor according to claim 1, wherein the convex portion is a spacer placed between the first substrate and the one end portion of the second substrate.
8 . 前記凸部は、 前記第 1の基板の一部を突出して形成されているこ とを特徴とする請求項 1記載のセンサ。 8. The sensor according to claim 1, wherein the convex portion is formed by projecting a part of the first substrate.
9 . 前記凸部は、 前記第 1の基板の所定部位に第 3の基板を積層して なることを特徴とする請求項 1記載のセンサ。  9. The sensor according to claim 1, wherein the convex portion is formed by laminating a third substrate at a predetermined portion of the first substrate.
1 0 . 検査対象に検査信号を供給する信号供給手段と、  1 0. A signal supply means for supplying an inspection signal to an inspection object;
前記検査対象に対向する部分を突出させた構成を有するセンサと、 前記検査対象より非接触で前記検査信号を検出する手段と、 前記検出信号の変化に基づいて前記検査対象の良否を識別する識別手 段とを備え、  A sensor having a configuration in which a portion facing the inspection object is protruded; means for detecting the inspection signal in a non-contact manner from the inspection object; and identification for identifying pass / fail of the inspection object based on a change in the detection signal With a means,
前記センサは、 各々がセンサ電極を有する複数のセンサ基板を列状に 対向して配してなり、 前記センサ基板は、 その一方端部が、 平板状の基 板の所定部位に設けられた凸部に当接するとともに、 他方端部が前記基 板の表面に当接するよう湾曲し、 前記センサ電極は、 前記検査対象に対 向するよう前記センサ基板の前記一方端部の表面に配設されていること を備えることを特徴とする検査装置。  The sensor is formed by arranging a plurality of sensor substrates each having a sensor electrode in a row, and one end portion of the sensor substrate is a protrusion provided at a predetermined portion of a flat substrate. The sensor electrode is disposed on the surface of the one end portion of the sensor substrate so as to face the object to be inspected. The inspection apparatus characterized by comprising.
1 1 . 前記センサ電極は、 前記センサ基板上に形成された M O S型ト ランジス夕のゲート端子に連結された所定の面積を有する導体膜である ことを特徴とする請求項 1 0記載の検査装置。  11. The inspection apparatus according to claim 10, wherein the sensor electrode is a conductor film having a predetermined area connected to a gate terminal of a MOS transistor formed on the sensor substrate. .
1 2 . 前記センサ電極と前記検査対象間の容量結合を介して非接触で 前記検査対象より前記検査信号を検出することを特徴とする請求項 1 1 記載の検査装置。  1. The inspection apparatus according to claim 1, wherein the inspection signal is detected from the inspection object in a non-contact manner through capacitive coupling between the sensor electrode and the inspection object.
1 3 . 前記センサ基板は、 前記一方端部どうしが対向しながら前記凸 部上に列状に配されるとともに、 その列方向において前記一方端部の一 部が互いに重なり合う配列構成を有することを特徴とする請求項 1 2記 載の検査装置。 1 3. The sensor substrate is arranged in a row on the convex portion with the one end portions facing each other, and one of the one end portions in the row direction. The inspection apparatus according to claim 12, wherein the parts have an arrangement configuration in which the parts overlap each other.
1 4 . 前記センサ基板は、 所定厚のガラスあるいはプラスチックある いは石英からなることを特徴とする請求項 1 3記載の検査装置。  14. The inspection apparatus according to claim 13, wherein the sensor substrate is made of glass, plastic, or quartz having a predetermined thickness.
1 5 . さらに、 前記列状に配された前記センサ基板を複数列設け、 こ れら複数列のセンサ基板を個別に選択する手段を備えることを特徴とす る請求項 1 3記載の検査装置。  15. The inspection apparatus according to claim 13, further comprising a plurality of rows of the sensor boards arranged in the row, and means for individually selecting the plurality of rows of sensor boards. .
1 6 . さらに、 前記センサ電極と前記検査対象の近接状態を維持した まま前記検査対象を順次走査するよう前記検査対象を位置決め移動させ る位置決め移動手段を備えることを特徴とする請求項 1 3記載の検査装 置。  16. The apparatus according to claim 13, further comprising positioning movement means for positioning and moving the inspection object so as to sequentially scan the inspection object while maintaining a proximity state between the sensor electrode and the inspection object. Inspection equipment.
1 7 . 前記位置決め移動手段は、 前記検査対象を空気流で浮かせた状 態で位置決めを行うことを特徴とする請求項 1 6記載の検査装置。 17. The inspection apparatus according to claim 16, wherein the positioning moving means performs positioning in a state where the inspection object is floated by an air flow.
1 8 . 請求項 1 0乃至 1 7のいずれかに記載の検査装置を用いて検査 対象の状態を検査することを特徴とする検査方法。 18. An inspection method comprising inspecting a state of an inspection object using the inspection apparatus according to any one of claims 10 to 17.
PCT/JP2006/300793 2005-01-14 2006-01-13 Sensor, inspection apparatus and inspection method WO2006077950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005008068A JP2006194786A (en) 2005-01-14 2005-01-14 Sensor, inspection device, and inspection method
JP2005-8068 2005-01-14

Publications (1)

Publication Number Publication Date
WO2006077950A1 true WO2006077950A1 (en) 2006-07-27

Family

ID=36692331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300793 WO2006077950A1 (en) 2005-01-14 2006-01-13 Sensor, inspection apparatus and inspection method

Country Status (3)

Country Link
JP (1) JP2006194786A (en)
TW (1) TW200630622A (en)
WO (1) WO2006077950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406423A (en) * 2021-06-30 2021-09-17 武汉普赛斯电子技术有限公司 Electronic device aging test system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248202A (en) * 2006-03-15 2007-09-27 Micronics Japan Co Ltd Sensor substrate used for inspection of display substrate, and inspection method of display substrate using it
JP5269482B2 (en) * 2008-05-28 2013-08-21 株式会社日本マイクロニクス Sensor substrate and inspection device
JP7346879B2 (en) * 2019-04-02 2023-09-20 村田機械株式会社 magnetic linear sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435597A (en) * 1987-07-31 1989-02-06 Sharp Kk Inspector for liquid crystal display device
JPH10239348A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Connecting apparatus, and its manufacture and inspecting apparatus
JP2002071720A (en) * 2000-09-01 2002-03-12 Kobe Steel Ltd Production method of connector
JP2003177153A (en) * 2002-08-21 2003-06-27 Mitsubishi Heavy Ind Ltd Liquid crystal panel inspection device
JP2004279335A (en) * 2003-03-18 2004-10-07 Olympus Corp Substrate inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435597A (en) * 1987-07-31 1989-02-06 Sharp Kk Inspector for liquid crystal display device
JPH10239348A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Connecting apparatus, and its manufacture and inspecting apparatus
JP2002071720A (en) * 2000-09-01 2002-03-12 Kobe Steel Ltd Production method of connector
JP2003177153A (en) * 2002-08-21 2003-06-27 Mitsubishi Heavy Ind Ltd Liquid crystal panel inspection device
JP2004279335A (en) * 2003-03-18 2004-10-07 Olympus Corp Substrate inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406423A (en) * 2021-06-30 2021-09-17 武汉普赛斯电子技术有限公司 Electronic device aging test system

Also Published As

Publication number Publication date
JP2006194786A (en) 2006-07-27
TW200630622A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
US10310690B2 (en) Array substrate, display apparatus, and method of inspecting sensor electrode
US10416820B2 (en) Display device
US20180277029A1 (en) In-cell touch display device and related test system and test method
JP5688421B2 (en) Display panel inspection method
EP2521010A1 (en) Display device
CN1975513A (en) Display device and method for testing the same
US10949014B2 (en) Display apparatus that includes electrodes in a frame area
US10585540B2 (en) Detection device and display device
US20200090567A1 (en) Test method of in-cell touch display device
WO2006077950A1 (en) Sensor, inspection apparatus and inspection method
CN102472788A (en) Electrical conduction pattern inspection apparatus and inspection method
KR20190110164A (en) Flat panel display device
JP2008151954A (en) Method of manufacturing display device, and display device
JP6806933B2 (en) Test circuit for in-cell touch panel
JP4246987B2 (en) Substrate inspection apparatus and substrate inspection method
JP2006242860A (en) Inspection device and inspection method
US20190146624A1 (en) Display apparatus with touch detection function
JPH09152629A (en) Array substrate of liquid crystal display device
KR20070035317A (en) Sensor for Sensing Electric Field
JP3448290B2 (en) LCD panel inspection equipment
JP2012078127A (en) Tft array inspection device and tft array inspection method
KR20220007799A (en) Display device and manufacturing method of the same
KR200458562Y1 (en) LCD Pannel Test Probe apparatus having Film Sheet type - Probe
JP2007187794A (en) Display apparatus with sensors
KR20060123019A (en) Mass production system checking structure of liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06700846

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6700846

Country of ref document: EP