WO2006092942A1 - ピペットチップ - Google Patents

ピペットチップ Download PDF

Info

Publication number
WO2006092942A1
WO2006092942A1 PCT/JP2006/302320 JP2006302320W WO2006092942A1 WO 2006092942 A1 WO2006092942 A1 WO 2006092942A1 JP 2006302320 W JP2006302320 W JP 2006302320W WO 2006092942 A1 WO2006092942 A1 WO 2006092942A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipette tip
pipette
tip
resin
glass
Prior art date
Application number
PCT/JP2006/302320
Other languages
English (en)
French (fr)
Inventor
Koji Fujita
Koki Tanamura
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2006092942A1 publication Critical patent/WO2006092942A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • B01L3/0279Interchangeable or disposable dispensing tips co-operating with positive ejection means

Definitions

  • the present invention relates to a pipette tip that can be detachably attached to a tip portion of a pipette main body.
  • micropipette As the micropipette, a semi-automatic pipette that requires manual operation, a robot-type fully automatic pipette, and the like are known.
  • the micropipette is used for quantification of chemical components contained in a sample, and can dispense a small amount of sample accurately and quickly.
  • the pipette tip used at that time is detachable from the tip of the pipette body, and a predetermined amount of sample is sucked into the pipette tip and discharged. These pipette tips are often used to prevent cross-contamination between samples and are discarded.
  • synthetic resin polypropylene, etc.
  • Patent Document 1 JP-A-8-112537
  • a glass pipette tip may be used instead of a synthetic resin pipette tip.
  • a pipette tip made of glass or metal may be used instead of synthetic resin.
  • these pipette tips are hard as a whole, it is difficult to attach to and remove from the tip of the pipette body, which is difficult to be elastically deformed.
  • the present invention has been made in view of the above circumstances, and can be used not only for aqueous solution type samples but also for organic solvent type samples and samples containing biopolymers.
  • aqueous solution type samples the accuracy and accuracy are ensured, and it is suitable for dispensing a large number of samples.
  • pipette tips that can be applied to robot-type fully automatic pipettes are provided. To do.
  • a first characteristic configuration of the present invention is a pipette tip that can be detachably attached to a tip portion of a pipette body, and the glass strength is obtained by strengthening the pipette tip. It is in. [0008] According to the first characteristic configuration, since the pipette tip can be detachably attached to the tip portion of the pipette body, if the pipette tip is replaced for each sample, a problem of cross-contamination between samples may occur. Since another sample can be immediately weighed, it can be quickly and easily dispensed even when the number of samples is large.
  • the pipette tip is a pipette tip that also has a strengthened glass power.
  • the pipette tip has a glass power that has been chemically strengthened or physically strengthened, the pipette tip is reduced in size. As such, it can be provided with strength for practical use. Therefore, unlike a simple glass pipette tip, it is difficult to break even if an impact is applied during use.
  • the strength of the pipette tip is a strengthened glass force, it does not elute even when an organic solvent sample is inhaled, and biopolymers such as proteins and nucleic acids may not be adsorbed. Therefore, it is difficult for a quantitative error of a chemical component to be analyzed to occur. Furthermore, even for samples with high viscosity, tempered glass is less wet than synthetic resin, so it is easy to run out of the liquid. Therefore, with this pipette tip, it is easy to ensure the accuracy and precision of the dispensing amount. .
  • the glass-strengthened pipette tip of the present invention is not easily deformed even when subjected to high-temperature and high-pressure treatment such as autoclave sterilization that is resistant to heat as compared with a pipette tip made of synthetic resin.
  • the synthetic resin pipette tip when washing, the synthetic resin pipette tip is light, so it floats on the surface of the washing solution, and the detergent may adhere strongly to the part where air easily enters.
  • the pipette tip having a strengthened glass strength according to the present invention is made of glass, it has a certain weight and can sink into the cleaning solution. For this reason, it is easy to clean, without the fact that air gets inside and the detergent sticks.
  • the used pipette chip of the present invention can be reused as a raw material. Therefore, the raw material cost is reduced, and the pipette tip can be manufactured at a low cost. Therefore, the pipette tip of the present invention can be obtained at a low cost. Therefore, the pipette tip of the present invention can be used disposable.
  • the second characteristic configuration of the present invention is a pipe that can be detachably attached to the tip of the pipette body.
  • the pipette tip can be detachably attached to the tip portion of the pipette body, if the pipette tip is replaced for each sample, the problem of cross-contamination between samples may also occur. Since another sample can be immediately weighed, it can be quickly and easily dispensed even when the number of samples is large.
  • the pipette tip is made of rosin, it is possible to have durability for practical use even if the size is reduced because of the repellency of the rosin. Since the surface thereof is coated with silicon dioxide and silicon dioxide, components contained in the resin are not dissolved even when an organic solvent sample is inhaled. Therefore, since it is not adsorbed by S-pipette tips such as proteins and nucleic acids, it is difficult for quantitative errors in chemical components to be analyzed.
  • the drainage is improved due to the low wetness of the silicon dioxide silicon coating, and it is easy to ensure the accuracy and precision of the dispensed amount.
  • a third characteristic configuration of the present invention is a pipette tip that can be detachably attached to a tip portion of a pipette body, and the pipette tip is made of metal.
  • the pipette tip can be detachably attached to the tip of the pipette body, if the pipette tip is replaced for each sample, the problem of cross-contamination between samples may also occur. Since another sample can be immediately weighed, it can be quickly and easily dispensed even when the number of samples is large.
  • the pipette tip inhales an organic solvent-based sample, the metal does not dissolve, and a quantitative error of the chemical component to be analyzed hardly occurs. Furthermore, the pipette tip is difficult to deform even when subjected to high-temperature and high-pressure treatment such as autoclave sterilization, which is resistant to heat compared to synthetic resin pipette tips.
  • a fourth characteristic configuration of the present invention is that the surface of the pipette tip having the metal force is covered with silicon dioxide.
  • the surface of the pipette tip that is made of metal is coated with silicon dioxide and silicon dioxide, which is resistant to acids and alkalis.
  • the metal does not dissolve, and biopolymers such as proteins and nucleic acids have not been adsorbed. Quantitative errors in chemical components are unlikely to occur!
  • pipette tips made of metal are more resistant to heat than synthetic resin pipette tips, and are not easily deformed even when subjected to high-temperature and high-pressure treatment such as autoclave sterilization.
  • the surface of the pipette tip is coated with silicon dioxide, it is difficult to touch the air.
  • the pipette tip has a certain amount of weight and can sink into the cleaning solution, so that it has good cleaning properties.
  • a fifth characteristic configuration of the present invention is a pipette tip that can be detachably attached to a tip portion of a pipette body, and is composed of the above-mentioned pipette tip force ceramics.
  • the pipette tip can be detachably attached to the tip of the pipette main body, if the pipette tip is replaced for each sample, the problem of cross-contamination between samples may also occur. Since another sample can be immediately weighed, it can be quickly and easily dispensed even when the number of samples is large.
  • the pipette tip also has a ceramic force, it is possible to provide strength for practical use even if it is downsized.
  • the pipette tip also has ceramic power, the ceramic does not dissolve even when inhaled with an aqueous solution sample or organic solvent sample that resists acids and alkalis. Quantitative errors are unlikely to occur.
  • the pipette tip is not easily deformed even when subjected to a high-temperature and high-pressure treatment such as autoclave sterilization which is resistant to heat compared to a synthetic resin pipette tip.
  • a sixth characteristic configuration of the present invention is a pipette tip that can be detachably attached to a tip portion of a pipette body, and the tip portion of the pipette body can be elastically deformed so that it can be fitted.
  • a soft fitting portion made of a material cover and a hard tube portion made of a hard material cover having an organic solvent resistance are integrally provided.
  • the pipette tip can be detachably attached to the tip of the pipette body, if the pipette tip is replaced for each sample, the problem of cross-contamination between samples may occur. Since another sample can be immediately weighed, it can be quickly and easily dispensed even when the number of samples is large.
  • the pipette tip includes a soft fitting portion made of an elastic material that can be elastically deformed so that the tip portion of the pipette body can be fitted, and a hard material having resistance to organic solvents. Since the hard tube portion is integrally provided, it can be applied to a robot type fully automatic pipette (automatic dispensing device).
  • the pipette tip can be attached and detached even in a robot-type fully automatic pipette. It becomes easy, and it becomes possible to have attachment / detachment performance and adhesion (airtightness) equivalent to those of a conventional synthetic resin pipette tip. As a result, there are no pipette tip removal errors, and cross contamination and failure can be prevented. Furthermore, since the adhesion (air tightness) between the pipette body and the pipette tip is ensured, an accurate amount of sample can be collected, and there is no possibility that the dispensing accuracy will be lowered.
  • the hard tube portion is composed of a hard material having resistance to organic solvents
  • the hard tube portion is composed of a chemical component to be analyzed, which does not elute even when an organic solvent sample is inhaled. Quantitative errors are unlikely to occur.
  • a seventh characteristic configuration of the present invention is that the elastic material is selected from resin or rubber.
  • the elastic material is made of resin or rubber, it is easily elastically deformed and the pipette tip can be easily attached and detached. These materials are relatively easy to obtain and can be handled using well-known techniques, so they are easy to handle!
  • the hard material is glass, metal, ceramics, a resin whose surface is coated with silicon dioxide, and the surface is coated with silicon dioxide.
  • a group of metal It is in the point chosen from.
  • a pipette tip that has glass strength that is reinforced by physics or physical strength can be provided with strength for practical use even if it is downsized. Therefore, unlike a simple glass pipette tip, it is not easily broken even if an impact is applied during use.
  • the hard material is a metal
  • the metal does not dissolve, and quantitative errors in the chemical components to be analyzed hardly occur.
  • the hard material is ceramics
  • the ceramic does not dissolve, so that it is difficult to cause a quantitative error in the chemical component to be analyzed.
  • the hard material is a resin whose surface is coated with silicon dioxide and silicon dioxide, in addition to being strong against acids and alkalis, it can be put into practical use even if it is downsized due to the elasticity of the resin. It can be durable.
  • the surface is coated with silicon dioxide and silicon dioxide, biopolymers such as proteins and nucleic acids can be adsorbed, even if an organic solvent sample is inhaled, the components contained in the resin will not dissolve. Since there is little to do, it is hard to produce the quantitative error of the chemical component to be analyzed. Furthermore, it is easy to ensure the accuracy and precision of the dispensing amount with good liquid drainage even for a sample with high viscosity due to the low wetness of the silicon dioxide silicon coating.
  • the hard material is a metal whose surface is coated with silicon dioxide silicon, it is resistant to acids and alkalis because the surface of the pipette tip having metallic power is coated with silicon dioxide silicon.
  • a ninth characteristic configuration of the present invention is that the resin is made of a material having resistance to organic solvents.
  • the resin is made of a material having resistance to organic solvents (for example, high-density polyethylene), the sample of the organic solvent exceeds the hard tube portion. Even when inhaled to the soft fitting part, the component contained in the resin does not melt out, and the quantitative error of the chemical component to be analyzed hardly occurs.
  • organic solvents for example, high-density polyethylene
  • a tenth characteristic configuration of the present invention is that the resin is made of a material having heat resistance.
  • the resin constituting the elastic material or the hard material is made of a heat-resistant material (for example, polypropylene), heat sterilization such as autoclave sterilization is performed. Even if applied, it is difficult to deform.
  • a heat-resistant material for example, polypropylene
  • a tempered glass / metal pipette tip having a ceramic force will be described.
  • FIG. 1 shows how the pipette tip 1 is attached to and detached from the micropipette body 2.
  • the micropipette body 2 to which the present invention is applied is a force that is mainly a plunger reciprocating air-phase intervening semi-automatic pipette, but is not limited to this. It can also be applied to automatic pipetting.
  • FIG. 2 is a cross-sectional view showing an example of an embodiment of the pipette tip of the present invention.
  • the pipette tip 1 is hollow and has a straight part 3 and a tapered part 4.
  • a connecting hole 5a for detachably connecting the pipette tip connecting portion 6 of the micropipette body 2 is provided at the tip of the straight portion 3.
  • the sample solution can be aspirated or Is provided with a hole 5b for discharging.
  • the shape of the pipette tip 1 is not limited to this. In other words, the shape is arbitrary as long as it is detachable from a micropipette or the like and can suck or discharge a predetermined amount of sample solution.
  • the pipette tip connecting portion 6 of the micropipette body 2 is inserted into the connecting hole 5a of the pipette tip 1 and pressed. After use, the pipette tip 1 can be pulled out directly, but if it is a micropipette with ejector function, it can be removed with a single touch.
  • the material of the pipette tip 1 of the present invention includes glass (soda lime glass, borosilicate glass, lead glass, low alkali glass, non-alkali glass, silica (quartz) glass, etc.), metal (iron-nickel alloy). Iron-based alloy materials such as various stainless steel, aluminum, brass, etc.)
  • ceramics for example, oxide ceramics such as Al 2 O, TiO, and ZrO, or
  • Nitride ceramics such as BN, Si N, A1N, and TiN).
  • soda lime glass when soda lime glass is used, a glass pipe heated at the center is stretched from both sides with a glass lathe to form a deformed tube and then cut to form.
  • Another molding method is press molding using a carbon mold.
  • the strength is improved by chemical strengthening or physical strengthening (thermal strengthening) treatment.
  • the glass surface is chemically treated to obtain a compressive stress layer on the surface.
  • a compressive stress layer For example, by immersing a glass containing lithium or sodium in a molten salt containing sodium or potassium and ion-exchanging the surface layer portion, an alkali metal ion having a larger ion radius than the alkali metal ion in the glass surface portion that originally existed. By pressing, the compression stress layer can be obtained.
  • the physical strengthening method creates a temperature difference between the glass surface and the interior by increasing the cooling rate to a temperature near the strain point near the annealing point of the glass, thereby obtaining a compressive stress layer on the surface. Is.
  • an element having a high mobility and a small atomic radius for example, sodium
  • an element having a low mobility and a large atomic radius for example, potassium
  • Abundant elements with large atomic radii exist on the surface.
  • the atomic radius is large, the element is preferable because it is difficult to elute glass power.
  • alkali-free glass when used, a physical strengthening method is performed to improve the strength.
  • it contains almost no easily eluted alkaline components (potassium and sodium), so they are dissolved as impurities in the inhaled sample solution, causing some adverse effects on the chemical components to be analyzed and causing analysis errors. It can be prevented from occurring.
  • a material called a coin-shaped slag such as aluminum
  • impact molding a method of manufacturing a metal pipette tip
  • a method of manufacturing a ceramic pipette tip for example, pressure is applied to the above-mentioned powdered material of an acid ceramic based ceramic such as alumina to form a pipette tip mold.
  • a method of pressurization a method of isotropically pressurizing the molded body, such as isostatic pressing, is preferable in order to make the density of the compact after pressurization uniform.
  • CIP Cold Isostatic press
  • HIP Hot Iso static press
  • the volume range of the pipette tip of the present invention is 0.1 L to 10000 ⁇ L, preferably,
  • the diameter (D1 and D2) and the height (T1) of the pipette tip of the present invention are in the range of D1: 0.8 mm to 2.4 mm, D2: 6 mm to 17.7 mm, Tl: 31 mm, respectively. ⁇ 158mm, preferably Dl: l. 3mm-l. 9mm, D2: 8.0mm ⁇ 8.6mm, Tl: 42mm
  • FIG. 3 is a cross-sectional view showing another embodiment of the pipette tip of the present invention.
  • the surface of the pipette tip 1 described above can be covered with silicon dioxide.
  • Applicable pipette tips include synthetic resins (polypropylene, etc.) in addition to the glass, metal, and ceramics described above.
  • a pipette tip molded body is immersed in a hydrofluoric acid solution of silicon dioxide supersaturated, and silicon dioxide dioxide is deposited on the surface. It can be deposited to form a silicon dioxide film (see, for example, Japanese Patent No. 3006065)
  • a soft fitting portion made of an elastic material that can be elastically deformed so that the tip portion of the pipette body can be fitted and a hard tube portion made of a hard material having organic solvent resistance are integrally provided.
  • the pipette tip is explained.
  • FIGS. 4 (a) and 4 (b) are cross-sectional views of the pipette tip 1 of the present invention attached to the pipette tip connecting portion 8 at the tip of the micropipette body.
  • the pipette tip 1 is hollow, and is composed of a soft fitting portion 9 made of an elastic material that can be elastically deformed, and a hard tube portion 10 that also has a hard material strength having organic solvent resistance.
  • the soft fitting portion 9 and the hard tube portion 10 are closely fixed with an adhesive 11 without a gap.
  • Fig. 4 (a) shows a case where the soft fitting portion 9 is internally fitted and fixed to the hard tube portion 10
  • Fig. 4 (a) shows a case where the soft fitting portion 9 is externally fitted and fixed to the hard tube portion 10. Shown in b).
  • the micropipette body to which the present invention is applied is mainly a robot type fully automatic pipette.
  • FIGS. 5 (a) and 5 (b) A perspective view (partially perspective view) of the soft fitting portion 9 is shown in FIGS. 5 (a) and 5 (b).
  • FIG. 5 (a) shows the soft fitting portion 9 that is fitted and fixed to the hard tube portion 10
  • FIG. 5 (b) shows the soft fitting portion 9 that is fitted and fixed to the hard tube portion 10.
  • the soft fitting part 9 is hollow, the connecting part 9a where the tip of the micropipette body is detachably tightly connected, the fitting part 9b for tightly fixing the hard tube part with an adhesive, and the tip of the micropipette body Pipette tip connection 8 and rigid tube 10 opening 10 Locking edge portions 9c for abutting and locking a are provided.
  • the material of the soft fitting portion 9 includes thermoplastic resin (polyethylene (for example, high-density polyethylene having resistance to organic solvents)), polypropylene (for example, heat resistance). Polypropylene, etc.), vinyl chloride, polystyrene, acrylic resin, polyethylene terephthalate (PET), polycarbonate, etc.), thermosetting resin (for example, epoxy resin, phenol resin, melamine resin, silicon resin) Etc.), rubber (for example, liquid silicone rubber, etc.), etc., but is not limited thereto, and any material that exhibits a packing effect is acceptable.
  • thermoplastic resin polyethylene (for example, high-density polyethylene having resistance to organic solvents)
  • polypropylene for example, heat resistance
  • Polypropylene, etc. vinyl chloride, polystyrene, acrylic resin, polyethylene terephthalate (PET), polycarbonate, etc.
  • thermosetting resin for example, epoxy resin, phenol resin, melamine resin, silicon resin
  • rubber for example, liquid silicone rubber
  • the soft fitting portion 9 As a method of manufacturing the soft fitting portion 9, it can be manufactured using a known molding technique.
  • FIGS. 6 (a) and 6 (b) Sectional views of an example of the hard tube portion 10 are shown in FIGS. 6 (a) and 6 (b).
  • the hard tube portion 10 is hollow and has a straight portion 10b and a tapered portion 10c.
  • the front end portion (opening portion 10a side) of the straight portion 10b can be fitted into the fitting portion 9b of the soft fitting portion 9 (external fitting or internal fitting).
  • a hole 10d for sucking or discharging the sample solution is provided at the tip of the tapered portion 10c.
  • the shape of the hard tube portion 10 is not limited to this, and can be fitted to the soft fitting portion 9, and the shape can be arbitrarily selected as long as a predetermined amount of sample solution can be sucked or discharged. is there.
  • FIG. 6 (b) A cross-sectional view of the hard tube portion whose surface is covered with silicon dioxide 7 is shown in FIG. 6 (b).
  • the material of the hard tube portion 10 in FIG. 6 (a) is glass (soda lime glass, borosilicate glass, lead glass, low alkali glass, alkali-free glass, Silica (quartz glass, etc.), metal (iron-based alloy materials such as iron-nickel alloys, various stainless steels, aluminum, brass, etc.), or ceramics (eg Al 2 O, T
  • Oxide ceramics such as iO and ZrO, or nitrides such as BN, Si N, A1N and TiN
  • the glass hard tube portion 10 As a method of manufacturing the glass hard tube portion 10, for example, when soda lime glass is used, a glass pipe heated at the center is stretched from both sides with a glass lathe to form a deformed tube, and then cut. After the molding, or as another molding method, press molding using a carbon mold. If necessary, improve the strength by chemical strengthening or physical strengthening (thermal strengthening).
  • chemical strengthening method and the physical strengthening method have already been described in detail in the first embodiment. For example, when using alkali-free glass, the physical strengthening method is performed to improve the strength.
  • the metal hard tube portion 10 for example, a method called impact molding in which a raw material (aluminum or the like) called coin-shaped slag is placed in a mold and punched impactively is used. Mold.
  • the ceramic hard tube portion 10 As a method of manufacturing the ceramic hard tube portion 10, for example, pressure is applied to the above-described powdered material of an acid ceramic based ceramic such as alumina, and it is compacted and formed into a pipette tip type.
  • a method of pressurization in order to make the density of the green compact after pressurization uniform, for example, a method of isotropically pressurizing the molded body, such as isostatic pressing, is preferable.
  • the hydrostatic pressure is described in detail in the first embodiment.
  • Fig. 6 (b) shows an embodiment in which the surface of the hard tube portion 10 is covered with silicon dioxide.
  • Examples of the material of the hard tube portion 10 applicable at this time include synthetic resins (polypropylene and the like) in addition to the above-described glass, metal, and ceramics.
  • the method for forming the silicon dioxide film 7 has been described in detail in the first embodiment.
  • the soft fitting portion 9 and the hard tube 4 manufactured as described above are connected to each other with a suitable adhesive 11 (for example, a synthetic rubber type, an epoxy resin type, a cyanoacrylate type). Adhere and fix.
  • a suitable adhesive 11 for example, a synthetic rubber type, an epoxy resin type, a cyanoacrylate type. Adhere and fix.
  • the pipette tip connecting portion 8 at the tip of the micropipette body is inserted into the connecting portion 9a of the soft fitting portion 9 and pressed.
  • a micropipette with a force eject function that allows the pipette tip 1 to be pulled out directly can be removed with a single touch.
  • the volume range of the pipette tip of the present invention is 0.1 L to 10000 ⁇ L, and preferably 2 L to 200 ⁇ L.
  • the tip of the straight portion 10b (on the opening 10a side) of the rigid tube portion 10 (which may be in either form of Fig. 6 (a) or (b)) having the material force as described above ) May be coated with an appropriate resin (for example, silicone resin) to form the soft fitting portion 9.
  • an appropriate resin for example, silicone resin
  • the soft fitting portion 9 may be formed by injection molding using an appropriate mold so as to wrap the tip portion of the straight portion 10b of the hard tube portion 10. good.
  • the connecting portion of the soft fitting portion in the above embodiment is configured to have a force that fits outside the pipette tip connecting portion.
  • the configuration is not limited to this, and conversely fits inside the pipette tip connecting portion. Also good.
  • an adhesive is used when connecting the soft fitting part and the hard tube part, but the present invention is not limited to this.
  • the connection method is arbitrary.
  • the fitting portion of the soft fitting portion may be inserted into the opening of the hard tube portion and press-contacted, or may be connected by heat application and fusion.
  • the pipette tip of the present invention can be applied to a manual pipette “semi-automatic pipette”, a fully-automatic pipette, and the like.
  • FIG. 1 is a diagram showing how a pipette tip is attached to and detached from a micropipette body.
  • FIG. 2 is a cross-sectional view showing one embodiment of the pipette tip of the present invention.
  • FIG. 3 is a sectional view showing another embodiment of the pipette tip of the present invention.
  • FIG. 4 is a cross-sectional view showing a state in which the pipette tip of the present invention is attached to the pipette tip connecting portion at the tip of the micropipette body.
  • FIG. 5 Perspective view of the soft fitting part of the pipette tip of the present invention (partial perspective view)
  • FIG. 6 is a cross-sectional view of a hard tube portion (example) of the pipette tip of the present invention.
  • FIG. 7 is a sectional view showing another embodiment of the pipette tip of the present invention. Explanation of symbols

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

 水溶液系の試料だけでなく有機溶媒系の試料や生体高分子を含む試料についても使用することが可能であり、高粘性の試料を分注する際もその正確さや精度が確保され得、尚且つ多数の試料の分注にも適したピペットチップを提供するため、ピペット本体の先端部に着脱自在に取り付け可能なピペットチップにおいて、ピペットチップが強化処理してある。

Description

明 細 書
ピペットチップ
技術分野
[0001] 本発明は、ピペット本体の先端部に着脱自在に取り付け可能なピペットチップに関 する。
背景技術
[0002] マイクロピペットは、手動操作を要する半自動型ピペット、あるいはロボットタイプの 全自動型ピペット等が知られている。当該マイクロピペットは、試料中に含まれる化学 成分の定量等を行う際に使用され、微量の試料を正確かつ迅速に分注することが可 能である。その際使用されるピペットチップは、ピペット本体の先端部に着脱自在で あり、その内部には所定量の試料が吸入され、排出される。当該ピペットチップは、試 料間のクロスコンタミネーシヨンを防止するために使 、捨てになって 、るものが多 、。 ピペットチップの材質としては合成樹脂製 (ポリプロピレンなど)が一般的に使用され る (特許文献 1参照)。
特許文献 1 :特開平 8— 112537号公報
発明の開示
発明が解決しょうとする課題
[0003] 上述の合成樹脂製ピペットチップの場合、有機溶媒系の試料を吸入すると、合成 榭脂の一部が試料中に溶け出すことがある。例えば環境ホルモン等の微量成分の 分析においては、その溶出した合成樹脂の化学成分が定量誤差となり、分析精度を 低下させる虞がある。
また、試料中に含まれるタンパク質や核酸などの生体高分子について定量分析を 実施する場合に試料を吸入したとき、生体高分子が合成樹脂に吸着されて定量値を 低下させる虞がある。
試料の粘度が高 、場合には、ピペットチップの内壁に試料が付着して液切れが悪 くなる。また、ピペットチップの外壁に付着している試料が混入すると、分注量の正確 さや精度を確保し難くなる。 [0004] そこで、合成樹脂製ピペットチップに代えてガラス製ピペットチップを使用することが ある。しかし、ガラス製ピペットチップには、分注量を微量にするため小型化すると実 用に供する強度を得難い。例えば、ピペットの先端部をピペットチップに挿入するとき に力を入れ過ぎたり、あるいはピペットチップの装着後、ピペットチップに何らかの衝 撃が加わると簡単に折れてしまうと 、つたことが多!、。
そのため、微量の有機溶媒系の試料や生体高分子を含む試料、あるいは高粘性 の試料を分注する際は、ホールピペット等を使用しなければならない。このとき、試料 が多数に及ぶ場合は非常に手間が掛カつていた。
[0005] また、合成樹脂製に代えてガラス製や金属製のピペットチップを使用することがある 。しかし、これらピペットチップは、全体が硬質であるため弾性変形し難ぐピペット本 体先端部への着脱が困難となる。
例えば、半自動型ピペットにそのようなガラス製又は金属製のピペットチップを着脱 する際は、手動で確実に行うことが可能であるため、それほど大きな問題は生じない しかし、ロボットタイプの全自動型ピペット (自動分注装置)にお 、ては、自動でピぺ ットチップの着脱が実施される。このとき、特に、ピペットチップの取り外しエラーが発 生し易ぐクロスコンタミネーシヨンや故障の原因になる。さらに、取付けの際もピペット チップとピペット本体との密着が不十分で、気密性を保持するように取付けられな ヽ 虞があり、正確な量の試料を採取できず、分注精度を下げる原因となっていた。
[0006] 本発明は、上記実情に鑑みてなされたものであって、水溶液系の試料だけでなく有 機溶媒系の試料や生体高分子を含む試料についても使用することが可能であり、高 粘性の試料を分注する際もその正確さや精度が確保され、且つ、多数の試料の分注 にも適し、さらに、ロボットタイプの全自動型ピペットに対しても適用可能なピペットチ ップを提供するものである。
課題を解決するための手段
[0007] 上記目的を達成するための本発明の第一特徴構成は、ピペット本体の先端部に着 脱自在に取り付け可能なピペットチップであって、前記ピペットチップが強化処理され たガラス力 なる点にある。 [0008] 上記第一特徴構成によれば、ピペット本体の先端部に着脱自在に取り付け可能な ピペットチップであるため、ピペットチップを試料毎に交換すれば、試料間のクロスコ ンタミネーシヨンの問題も発生せず、別の試料を直ちに量り取ることができるので、試 料が多数におよぶ場合でも迅速且つ簡便に分注することができる。
[0009] さらに、本発明の特徴として、ピペットチップは、強化処理されたガラス力もなるピぺ ットチップであるため、例えば、化学強化又は物理強化されたガラス力 なるピペット チップであれば、小型化したとしても実用に供する強度を備えることができる。そのた め、単なるガラス製ピペットチップと異なり、使用の際、何らかの衝撃が加わったとして も壊れ難い。
[0010] し力も、強化処理されたガラス力 なるピペットチップであるため、有機溶媒系の試 料を吸入しても溶出せず、タンパク質や核酸等の生体高分子が吸着することもな 、。 従って、分析対象となる化学成分の定量誤差が生じ難い。さらに、粘度の高い試料 に対しても、強化処理されたガラスは合成樹脂より濡水性が低いために液切れが良 いため、当該ピペットチップであれば、分注量の正確さや精度を確保し易い。
[0011] さらに、本発明の強化処理されたガラス力 なるピペットチップは、合成樹脂製ピぺ ットチップと比べて熱に強ぐオートクレープ滅菌などの高温高圧処理を施したとして も変形し難い。
また、洗浄する際においては、合成樹脂製ピペットチップは軽いので洗浄溶液の液 面に浮いてしまい、中に空気が入り易ぐその部分に洗剤が強く付着する場合がある 。しかし、本発明の強化処理されたガラス力もなるピペットチップであれば、ガラス製 であるため、ある程度の重量を有し、洗浄溶液中に沈み得る。そのため、中に空気が 入り込んで洗剤がこびり付くということもなぐ洗浄し易い。
[0012] 尚、合成樹脂と比べるとガラスは再生し易いので、使用済みの本発明のピペットチ ップを原料として再利用することができる。従って、原料コストが削減され、低コストで 当該ピペットチップを製造することが可能となるので、本発明のピペットチップを安価 で入手することができる。そのため、本発明のピペットチップを使い捨て使用すること も可能である。
[0013] 本発明の第二特徴構成は、ピペット本体の先端部に着脱自在に取り付け可能なピ ペットチップであって、前記ピペットチップが榭脂からなり、その表面を二酸化珪素で 被覆した点にある。
[0014] 上記第二特徴構成によれば、ピペット本体の先端部に着脱自在に取り付け可能な ピペットチップであるため、ピペットチップを試料毎に交換すれば、試料間のクロスコ ンタミネーシヨンの問題も発生せず、別の試料を直ちに量り取ることができるので、試 料が多数におよぶ場合でも迅速且つ簡便に分注することができる。
[0015] さらに、本発明の特徴として、ピペットチップが榭脂からなるため、榭脂が有する弹 性のために小型化しても実用に供する耐久性を備えることが可能となる。そして、そ の表面を二酸ィ匕珪素にて被覆してあるので、有機溶媒系の試料を吸入しても榭脂中 に含まれる成分が溶け出すことがない。従って、タンパク質や核酸等の生体高分子 力 Sピペットチップに吸着されないので、分析対象となる化学成分の定量誤差が生じ難 い。
さらに、粘度の高い試料に対しても、二酸ィ匕珪素被膜の低い濡水性のために液切 れが良くなり、分注量の正確さや精度を確保し易い。
[0016] 本発明の第三特徴構成は、ピペット本体の先端部に着脱自在に取り付け可能なピ ペットチップであって、前記ピペットチップが金属からなる点にある。
[0017] 上記第三特徴構成によれば、ピペット本体の先端部に着脱自在に取り付け可能な ピペットチップであるため、ピペットチップを試料毎に交換すれば、試料間のクロスコ ンタミネーシヨンの問題も発生せず、別の試料を直ちに量り取ることができるので、試 料が多数におよぶ場合でも迅速且つ簡便に分注することができる。
[0018] さらに、本発明の特徴として、ピペットチップが金属力もなるため、小型化しても実用 に供する強度を備えることが可能である。
そして、当該ピペットチップが有機溶媒系の試料を吸入しても金属が溶け出すこと もなぐ分析対象となる化学成分の定量誤差が生じ難い。さらに、当該ピペットチップ は、合成樹脂製ピペットチップと比べて熱に強ぐオートクレープ滅菌などの高温高 圧処理を施したとしても変形し難 ヽ。
尚、合成樹脂と比べると金属は再生し易いので、使用済みの本発明のピペットチッ プを原料として再利用することができる。 [0019] 本発明の第四特徴構成は、前記金属力もなるピペットチップの表面を二酸ィ匕珪素 で被覆した点にある。
[0020] 上記第四特徴構成によれば、金属力 なるピペットチップの表面を二酸ィ匕珪素で 被覆してあるため、酸やアルカリに強い。また、水溶液系の試料や有機溶媒系の試 料を吸入しても金属が溶け出すこともなぐタンパク質や核酸等の生体高分子が吸着 されると ヽつたこともな ヽので、分析対象となる化学成分の定量誤差が生じ難!、。
[0021] また、粘度の高!ヽ試料に対しても、二酸化珪素被膜の低!ヽ濡水性のために液切れ が良ぐ分注量の正確さや精度を確保し易い。
さらに、金属からなるピペットチップは、合成樹脂製ピペットチップと比べて熱に強く 、オートクレープ滅菌などの高温高圧処理を施したとしても変形し難い。尚、当該ピ ペットチップの表面を二酸ィ匕珪素で被覆してあるので、空気に触れな 、ため鲭難 、。 また、当該ピペットチップは、ある程度の重量をもち洗浄溶液中に沈み得るので洗浄 性も良い。
[0022] 本発明の第五特徴構成は、ピペット本体の先端部に着脱自在に取り付け可能なピ ペットチップであって、前記ピペットチップ力 セラミックスからなる点にある。
[0023] 上記第五特徴構成によれば、ピペット本体の先端部に着脱自在に取り付け可能な ピペットチップであるため、ピペットチップを試料毎に交換すれば、試料間のクロスコ ンタミネーシヨンの問題も発生せず、別の試料を直ちに量り取ることができるので、試 料が多数におよぶ場合でも迅速且つ簡便に分注することができる。
[0024] さらに、本発明の特徴として、ピペットチップがセラミックス力もなるため、小型化して も実用に供する強度を備えることが可能である。
また、ピペットチップがセラミックス力もなるため、酸やアルカリに強ぐ水溶液系の試 料や有機溶媒系の試料を吸入してもセラミックスが溶け出すこともな 、ので、分析対 象となる化学成分の定量誤差が生じ難 ヽ。
さらに、当該ピペットチップは、合成樹脂製ピペットチップ等と比べて熱に強ぐォー トクレーブ滅菌などの高温高圧処理を施したとしても変形し難い。
[0025] 本発明の第六特徴構成は、ピペット本体の先端部に着脱自在に取り付け可能なピ ペットチップであって、前記ピペット本体の先端部が嵌合可能に弾性変形し得る弾性 材料カゝらなる軟質嵌合部と、耐有機溶剤性を有する硬性材料カゝらなる硬質チューブ 部とを一体に設けた点にある。
[0026] 上記第六特徴構成によれば、ピペット本体の先端部に着脱自在に取り付け可能な ピペットチップであるため、ピペットチップを試料毎に交換すれば、試料間のクロスコ ンタミネーシヨンの問題も発生せず、別の試料を直ちに量り取ることができるので、試 料が多数におよぶ場合でも迅速且つ簡便に分注することができる。
[0027] さらに、本発明の特徴として、ピペットチップは、ピペット本体の先端部が嵌合可能 に弾性変形し得る弾性材料カゝらなる軟質嵌合部と、耐有機溶剤性を有する硬性材料 力 なる硬質チューブ部とを一体に設けてあるので、ロボットタイプの全自動型ピぺッ ト(自動分注装置)に対しても適用することが可能である。
[0028] つまり、軟質嵌合部に、ピペット本体の先端部が嵌合可能に弾性変形し得る弾性 材料を用いることで、ロボットタイプの全自動型ピペットにお ヽてもピペットチップの着 脱操作が容易となり、従来の合成樹脂製ピペットチップと同等の着脱性能と密着性( 気密性)とを持たせることが可能になる。その結果、ピペットチップの取り外しエラーが 無くなり、クロスコンタミネーシヨンや故障の発生を防止できる。さらに、ピペット本体と ピペットチップとの密着性 (気密性)が確保されるので、正確な量の試料を採取可能 であり、分注精度が下がる虞もない。
[0029] し力も、硬質チューブ部は、耐有機溶剤性を有する硬性材料力 構成されて 、るの で、有機溶媒系の試料を吸入しても溶出するものもなぐ分析対象となる化学成分の 定量誤差が生じ難い。
[0030] 本発明の第七特徴構成は、前記弾性材料が榭脂又はゴムカゝら選択される点にある
[0031] 上記第七特徴構成によれば、弾性材料が榭脂又はゴムカゝら構成されるので、弾性 変形し易くピペットチップの着脱が容易となる。そして、これらの材料は比較的容易に 入手することができ、また周知技術を用いてカ卩ェすることが可能であるため扱 、易!/ヽ
[0032] 本発明の第八特徴構成は、前記硬性材料が、ガラス、金属、セラミックス、表面を二 酸ィ匕珪素で被覆してある榭脂、表面を二酸ィ匕珪素で被覆してある金属カゝらなる群か ら選択される点にある。
[0033] 上記第八特徴構成によれば、硬性材料がガラスである場合、有機溶媒系の試料を 吸入しても溶出するものもなぐタンパク質や核酸等の生体高分子が吸着することが 殆どないので、分析対象となる化学成分の定量誤差が生じ難い。さらに、粘度の高 い試料に対しても、合成樹脂より濡水性が低いために液切れが良ぐ分注量の正確 さや精度を確保し易い。
特に、例えばィ匕学強化又は物理強化されたガラス力もなるピペットチップであれば 、小型化したとしても実用に供する強度を備えることが可能となる。そのため、単なる ガラス製ピペットチップと異なり、使用の際、何らかの衝撃が加わったとしても壊れ難 い。
[0034] 硬性材料が金属である場合、小型化しても実用に供する強度を備えることが可能で ある。さらに、有機溶媒系の試料を吸入しても金属が溶け出すこともなぐ分析対象と なる化学成分の定量誤差が生じ難 、。
[0035] 硬性材料がセラミックスである場合、小型化しても実用に供する強度を備えることが 可能である。また、酸やアルカリに強ぐ水溶液系の試料や有機溶媒系の試料を吸 入してもセラミックスが溶け出すこともないので、分析対象となる化学成分の定量誤差 が生じ難い。
[0036] 硬性材料が表面を二酸ィ匕珪素で被覆してある榭脂である場合、酸やアルカリに強 いことに加えて、榭脂の有する弾性のために小型化しても実用に供する耐久性を備 えることができる。
更にその表面を二酸ィ匕珪素にて被覆してあるので、有機溶媒系の試料を吸入して も榭脂中に含まれる成分が溶け出すことはなぐタンパク質や核酸等の生体高分子 が吸着することは殆どないため、分析対象となる化学成分の定量誤差が生じ難い。 さらに、粘度の高い試料に対しても、二酸ィ匕珪素被膜の低い濡水性のために液切 れが良ぐ分注量の正確さや精度を確保し易い。
[0037] 硬性材料が表面を二酸ィ匕珪素で被覆してある金属である場合、金属力 なるピぺ ットチップの表面を二酸ィ匕珪素で被覆してあるため、酸やアルカリに強い。
また、水溶液系の試料や有機溶媒系の試料を吸入しても金属が溶け出すことはな ぐタンパク質や核酸等の生体高分子が吸着することは殆どないため、分析対象とな る化学成分の定量誤差が生じ難 、。
さらに、粘度の高い試料に対しても、二酸ィ匕珪素被膜の低い濡水性のために液切 れが良ぐ分注量の正確さや精度を確保し易い。尚、硬性材料の表面を二酸化珪素 で被覆してあるので、空気に触れることもな 、ので鲭難 、。
[0038] 本発明の第九特徴構成は、前記樹脂が耐有機溶剤性を有する材料からなる点に ある。
[0039] 上記第九特徴構成によれば、榭脂が耐有機溶剤性を有する材料 (例えば、高密度 ポリエチレン等)から構成してあるので、万が一、有機溶媒系の試料が硬質チューブ 部を超えて軟質嵌合部まで吸入された場合でも、榭脂中に含まれる成分が溶け出す こともなぐ分析対象となる化学成分の定量誤差が生じ難い。
[0040] 本発明の第十特徴構成は、前記樹脂が耐熱性を有する材料からなる点にある。
[0041] 上記第十特徴構成によれば、弾性材料または硬性材料を構成する榭脂が耐熱性 を有する材料 (例えば、ポリプロピレン等)から構成してあるので、オートクレープ滅菌 などの加熱滅菌処理を施したとしても変形し難 ヽ。
発明を実施するための最良の形態
[0042] 以下に本発明の実施の形態を図面に基づいて説明する。
[0043] 〔第一実施形態〕
本実施形態では、強化処理されたガラス ·金属 'セラミックス力 なるピペットチップ について説明する。
[0044] 図 1は、マイクロピペット本体 2にピペットチップ 1が着脱される様子を示している。本 発明が適用されるマイクロピペット本体 2は、主にプランジャー往復 空気相介在型 の半自動ピペットである力 これに限定されるものではなぐ必要に応じて、メスピぺッ ト等のマニュアルピペットや全自動ピぺット等にも適用できる。
[0045] 図 2は、本発明のピペットチップの実施形態の一例を示した断面図である。ピペット チップ 1は中空であり、その形状は、ストレート部 3とテーパー部 4とを有する。ストレー ト部 3の先端部には、マイクロピペット本体 2のピペットチップ接続部 6を着脱自在に接 続する接続孔 5aが設けてある。テーパー部 4の先端部には、試料溶液を吸引もしく は吐出するための孔 5bが設けてある。
[0046] ピペットチップ 1の形状はこれに限定されるものでない。即ち、マイクロピペット等に 着脱自在であり、且つ所定量の試料溶液を吸引若しくは吐出可能であればその形 状については任意である。
[0047] 使用の際は、マイクロピペット本体 2のピペットチップ接続部 6をピペットチップ 1の接 続孔 5aに挿入し、圧接させる。使用後は、ピペットチップ 1を直接引き抜くことも可能 であるが、ェジェタト機能付きのマイクロピペットであれば、ワンタッチで取り外すこと が可能である。
[0048] 本発明のピペットチップ 1の材質としては、ガラス(ソーダライムガラス、ホウケィ酸ガ ラス、鉛ガラス、低アルカリガラス、無アルカリガラス、シリカ(石英)ガラス等)、金属( 鉄—ニッケル合金などの鉄系の合金材料、各種ステンレス、アルミニウム、真鍮など)
、あるいはセラミックス(例えば Al O、 TiO、 ZrO等の酸化物系セラミックス、もしくは
2 3 2 2
BN、 Si N、 A1N、 TiN等の窒化物系セラミックスなど)が挙げられる。
3 4
[0049] ガラス製ピペットチップの製造方法を以下に説明する。
例えばソーダライムガラスを用いた場合、中央部を熱したガラスパイプをガラス旋盤 で両側カゝら引き伸ばし、異型管とした後、切断することによって成形する。別の成形 方法として、カーボン製の型を用いてプレス成形してもよ 、。
[0050] 次に、化学強化又は物理強化 (熱強化)処理することによりその強度を向上させる。
化学強化法は、ガラス表面に化学的な処理を施して、表面に圧縮応力層を得るも のである。例えば、リチウムやナトリウムを含むガラスをナトリウムやカリウムを含む溶融 塩中に浸漬し、表層部をイオン交換することによって、元々存在したガラス表層部中 のアルカリ金属イオンより大き 、イオン半径のアルカリ金属イオンを押し込み、圧縮応 力層を得ることができる。
一方、物理強化法は、ガラスの徐冷点付近以上の温度力 歪み点付近の温度まで の冷却速度を大きくすることにより、ガラス表面と内部の温度差を作り、表面に圧縮応 力層を得るものである。
[0051] 特に化学強化法では、易動度が高く原子半径の小さな元素 (例えばナトリウム)力 易動度が低く原子半径の大きな元素 (例えばカリウム等)に置換され、ピペットチップ 表面に原子半径の大きい元素が豊富に存在するようになる。このとき、原子半径の大 き 、元素はガラス力も溶出し難くなるので好まし 、。
[0052] 例えば、無アルカリガラスを用いる場合には、物理強化法を実施して強度を向上さ せる。この場合、溶出しやすいアルカリ成分 (カリウムやナトリウム)を殆ど含有してい ないため、吸入した試料溶液中に、それらが不純物として溶け出し、分析対象となる 化学成分に何らかの悪影響を及ぼして分析誤差を生じさせることを防止できる。
[0053] 金属製ピペットチップの製造方法としては、例えば、コイン状のスラグと呼ばれる原 料 (アルミニウムなど)を金型の中に置き、衝撃的にパンチングするインパクト成形と呼 ばれる方法などで成形する。
[0054] セラミックス製ピペットチップの製造方法としては、例えば、上述したアルミナなどの 酸ィ匕系セラミックスの粉体材料に圧力を加え、圧密化してピペットチップ型に成形す る。加圧の方法としては、加圧後の圧粉体に密度を均一とするために、例えば静水 圧加圧のような成形体に対し等方的に加圧する方法が好ましい。
[0055] 静水圧加圧としては、常温または常温付近の温度 (例えば 5〜65°C)で加圧される CIP (Cold Isostatic press)と、加熱下(例えば 65°C以上)でカ卩圧される HIP (Hot Iso static press)が挙げられる。加圧される圧粉体について焼結又は分子間結合処理を 行うことにより、高密度で、し力もその密度が均一な成型体 (ピペットチップ)が得られ る。
[0056] 本発明のピペットチップの容量範囲は、 0. 1 L〜10000 μ Lであり、好ましくは、
2 μ L〜200 μ: Lである。
また、本発明のピペットチップの直径 (D1及び D2)、並びに高さ(T1)の範囲はそ れぞれ、 D1 : 0. 8mm〜2. 4mm、 D2 : 6mm〜17. 7mm、 Tl : 31mm〜158mm であり、好ましくは、 Dl : l. 3mm〜l. 9mm、 D2 : 8. 0mm〜8. 6mm, Tl :42mm
〜46mmである。
[0057] (別実施形態)
図 3は、本発明のピペットチップの別実施形態を示した断面図である。
上述したピペットチップ 1において、その表面を二酸ィ匕珪素により被覆することが可 能である。 このとき適用可能なピペットチップの材質としては、上述したガラス、金属、セラミック スの他に、合成樹脂(ポリプロピレンなど)が挙げられる。
[0058] 二酸化珪素被膜 7の形成方法としては、二酸ィヒ珪素を過飽和状態にした珪弗化水 素酸水溶液中にピペットチップ成型体を浸漬して、二酸ィ匕珪素を表面上に析出させ て二酸ィ匕珪素被膜を形成させることができる (例えば特許第 3006065号公報参照)
[0059] 〔第二実施形態〕
本実施形態では、ピペット本体の先端部が嵌合可能に弾性変形し得る弾性材料か らなる軟質嵌合部と、耐有機溶剤性を有する硬性材料カゝらなる硬質チューブ部とを 一体に設けてあるピペットチップについて説明する。
[0060] マイクロピペット本体の先端部のピペットチップ接続部 8に本発明のピペットチップ 1 を取付けたときの断面図を図 4 (a)及び (b)に示す。当該ピペットチップ 1は中空であ り、弾性変形し得る弾性材料カゝらなる軟質嵌合部 9と、耐有機溶剤性を有する硬性材 料力もなる硬質チューブ部 10とから構成してある。軟質嵌合部 9と硬質チューブ部 1 0とは、接着剤 11により隙間なく密着固定してある。
[0061] 軟質嵌合部 9が硬質チューブ部 10に内嵌固定される場合を図 4 (a)に示し、軟質 嵌合部 9が硬質チューブ部 10に外嵌固定される場合を図 4 (b)に示す。
[0062] 本発明が適用されるマイクロピペット本体は、主にロボットタイプの全自動型ピペット
(自動分注装置)であるが、これに限定されるものではなぐ必要に応じて、メスピぺッ ト等のマニュアルピペットやプランジャー往復一空気相介型の半自動ピペット等にも 適用できる。
[0063] (軟質嵌合部)
軟質嵌合部 9の斜視図 (一部透視図)を図 5 (a)及び (b)に示す。硬質チューブ部 1 0に内嵌固定される軟質嵌合部 9を図 5 (a)に示し、硬質チューブ部 10に外嵌固定さ れる軟質嵌合部 9を図 5 (b)に示す。
軟質嵌合部 9は中空で、マイクロピペット本体の先端部が着脱自在に密着接続され る接続部 9a、硬質チューブ部を接着剤により密着固定するための嵌合部 9b、並びに マイクロピペット本体先端のピペットチップ接続部 8と硬質チューブ部 10の開口部 10 aをそれぞれ接当係止する係止縁部 9cが設けてある。
[0064] 軟質嵌合部 9の材質 (弾性変形し得る弾性材料)としては、熱可塑性榭脂 (ポリエ チレン (例えば、耐有機溶剤性を有する高密度ポリエチレン等)、ポリプロピレン (例え ば、耐熱性を有するポリプロピレン等)、塩化ビニル、ポリスチレン、アクリル榭脂、ポリ エチレンテレフタレート(PET)、ポリカーボネート等)、熱硬化性榭脂(例えば、ェポキ シ榭脂、フエノール榭脂、メラミン榭脂、シリコン榭脂等)、ゴム (例えば、液状シリコー ンゴム等)等が挙げられるが、これらに限定されるものではなぐパッキン効果を奏す るような材料であれば良 、。
[0065] 軟質嵌合部 9の製造方法としては、公知の成形技術を用いて製造することができる
。例えば、図 5に示すような形状を形成し得る適当な金型を用意し、その金型を使用 して射出成形法により製造することが可能である。
[0066] (硬質チューブ部)
硬質チューブ部 10の一例の断面図を図 6 (a)及び (b)に示す。硬質チューブ部 10 は中空で、その形状はストレート部 10bとテーパー部 10cとを有する。ストレート部 10 bの先端部(開口部 10a側)は、上述の軟質嵌合部 9の嵌合部 9bに嵌込み (外嵌若し くは内嵌)可能である。また、テーパー部 10cの先端部には試料溶液を吸引もしくは 吐出するための孔 10dが設けてある。
硬質チューブ部 10の形状はこれに限定されるものでなぐ軟質嵌合部 9に嵌合可 能であり、尚且つ所定量の試料溶液を吸引若しくは吐出可能であるならばその形状 については任意である。
尚、表面が二酸ィ匕珪素 7により被覆してある硬質チューブ部の断面図を図 6 (b)に 示す。
[0067] 図 6 (a)における硬質チューブ部 10の材質 (耐有機溶剤性を有する硬性材料)とし ては、ガラス (ソーダライムガラス、ホウケィ酸ガラス、鉛ガラス、低アルカリガラス、無ァ ルカリガラス、シリカ(石英)ガラス等)、金属 (鉄—ニッケル合金などの鉄系の合金材 料、各種ステンレス、アルミニウム、真鍮など)、あるいはセラミックス(例えば Al O、 T
2 3 iO、 ZrO等の酸化物系セラミックス、もしくは BN、 Si N、 A1N、 TiN等の窒化物系
2 2 3 4
セラミックスなど)が挙げられる。 [0068] ガラス製の硬質チューブ部 10の製造方法としては、例えばソーダライムガラスを用 いた場合、中央部を熱したガラスパイプをガラス旋盤で両側カゝら引き伸ばし異型管と した後、切断することによって成型した後、あるいは別の成型方法として、カーボン製 の型を用いてプレス成型する。必要に応じて化学強化又は物理強化 (熱強化)で処 理することによりその強度を向上させる。化学強化法および物理強化法については、 第一実施形態で既に詳述してある。例えば、無アルカリガラスを用いる場合には、物 理強化法を実施して強度を向上させる。
[0069] 金属製の硬質チューブ部 10の製造方法としては、例えば、コイン状のスラグと呼ば れる原料 (アルミニウムなど)を金型の中に置き、衝撃的にパンチングするインパクト 成形と呼ばれる方法などで成形する。
[0070] セラミックス製の硬質チューブ部 10の製造方法としては、例えば、上述したアルミナ などの酸ィ匕系セラミックスの粉体材料に圧力をカ卩え、圧密化してピペットチップ型に 成形する。加圧の方法としては、加圧後の圧粉体に密度を均一とするために、例え ば静水圧加圧のような成形体に対し等方的に加圧する方法が好ましい。静水圧加圧 については、第一実施形態で詳述してある。
[0071] また、硬質チューブ部 10の表面を二酸ィ匕珪素により被覆する態様を図 6 (b)に示し てある。このとき適用可能な硬質チューブ部 10の材質としては、上述したガラス、金 属、セラミックスの他に、合成樹脂 (ポリプロピレンなど)などが挙げられる。二酸化珪 素被膜 7の形成方法につ 、ては、第一実施形態で詳述してある。
[0072] 上記のように製造された軟質嵌合部 9と硬質チューブ 4とを、適当な接着剤 11 (例 えば、合成ゴム系、エポキシ榭脂系、シァノアクリレート系等)を用いて隙間なく接着し 固定する。
[0073] 使用する際は、マイクロピペット本体の先端部にあるピペットチップ接続部 8を軟質 嵌合部 9の接続部 9aに挿入し、圧接させる。使用後は、ピペットチップ 1を直接引き 抜くことも可能である力 ェジェタト機能付きのマイクロピペットであれば、ワンタッチで 取り外すことが可能である。
[0074] 尚、本発明のピペットチップの容量範囲は、 0. 1 L〜10000 μ Lであり、好ましく は、 2 L〜200 μ: Lである。 [0075] (別実施形態)
図 7 (a)に示すように、上述したような材質力 なる硬質チューブ部 10 (図 6 (a)又は (b)のいずれの形態でも良い)のストレート部 10bの先端部(開口部 10a側)の内側に 適当な榭脂 (例えば、シリコーン榭脂等)を塗布して軟質嵌合部 9を形成しても良い。 あるいは、図 7 (b)に示すように、硬質チューブ部 10のストレート部 10bの先端部を 铸包むように適当な金型を用 ヽて射出成形することによって軟質嵌合部 9を形成して も良い。
[0076] (その他の実施形態)
1.上記実施形態における軟質嵌合部の接続部は、ピペットチップ接続部に外嵌す るような構成としてある力 これに限定されるものではなぐ逆に、ピペットチップ接続 部に内嵌する構成としても良 ヽ。
2.上記実施形態において、軟質嵌合部と硬質チューブ部とを接続する際、接着剤 を使用する構成としているがこれに限定されるものではなぐ隙間なく接続固定するこ とが可能であれば、その接続方法は任意である。例えば、軟質嵌合部の嵌合部を硬 質チューブ部の開口部に挿入して圧接させるだけでも良いし、あるいは、熱を加えて 融着させて接続しても良い。
産業上の利用可能性
[0077] 本発明のピペットチップは、マ-ユアルピペット '半自動ピペット '全自動ピペット等 に適用できる。
図面の簡単な説明
[0078] [図 1]マイクロピペット本体にピペットチップが着脱される様子を示す図
[図 2]本発明のピペットチップの実施形態の一つを示した断面図
[図 3]本発明のピペットチップの別実施形態を示した断面図
[図 4]マイクロピペット本体の先端部のピペットチップ接続部に本発明のピペットチッ プが取付けられたときの様子を示す断面図
[図 5]本発明のピペットチップの軟質嵌合部の斜視図 (一部透視図)
[図 6]本発明のピペットチップの硬質チューブ部(一例)の断面図
[図 7]本発明のピペットチップの別実施形態を示した断面図 符号の説明
1 ピペットチップ
2 マイクロピペット本体 3 ストレート部
4 テーノー咅 |5 5a 接続孔
5b 孔
6 ピペットチップ接続部
7 二酸化珪素被膜
8 ピペットチップ接続部
9 軟質嵌合部
9a 接続部
9b 嵌合部
9c 係止縁部
10 硬質チューブ部
10a 開口部
10b ストレート咅
10c テーパー部
10d 孔
11 接着剤

Claims

請求の範囲
[I] ピペット本体の先端部に着脱自在に取り付け可能なピペットチップであって、
前記ピペットチップが強化処理されたガラス力 なるピペットチップ。
[2] ピペット本体の先端部に着脱自在に取り付け可能なピペットチップであって、
前記ピペットチップが榭脂からなり、その表面を二酸ィ匕珪素で被覆してあるピペット チップ。
[3] ピペット本体の先端部に着脱自在に取り付け可能なピペットチップであって、
前記ピペットチップが金属力 なるピペットチップ。
[4] 前記金属力もなるピペットチップの表面を二酸ィ匕珪素で被覆してある請求項 3に記 載のピペットチップ。
[5] ピペット本体の先端部に着脱自在に取り付け可能なピペットチップであって、
前記ピペットチップ力 セラミックスからなるピペットチップ。
[6] ピペット本体の先端部に着脱自在に取り付け可能なピペットチップであって、
前記ピペット本体の先端部が嵌合可能に弾性変形し得る弾性材料カゝらなる軟質嵌 合部と、耐有機溶剤性を有する硬性材料力 なる硬質チューブ部とを一体に設けて あるピペットチップ。
[7] 前記弾性材料が、榭脂又はゴム力も選択される請求項 6に記載のピペットチップ。
[8] 前記硬性材料が、ガラス、金属、セラミックス、表面を二酸ィ匕珪素で被覆してある榭 脂、表面を二酸ィ匕珪素で被覆してある金属からなる群力 選択される請求項 6又は 7 の!、ずれ力 1項に記載のピペットチップ。
[9] 前記樹脂が、耐有機溶剤性を有する材料力もなる請求項 7に記載のピペットチップ
[10] 前記榭脂が、耐熱性を有する材料力 なる請求項 7に記載のピペットチップ。
[II] 前記榭脂が、耐熱性を有する材料力 なる請求項 8に記載のピペットチップ。
PCT/JP2006/302320 2005-03-02 2006-02-10 ピペットチップ WO2006092942A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-057785 2005-03-02
JP2005057785 2005-03-02
JP2005-118311 2005-04-15
JP2005118311 2005-04-15

Publications (1)

Publication Number Publication Date
WO2006092942A1 true WO2006092942A1 (ja) 2006-09-08

Family

ID=36940982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302320 WO2006092942A1 (ja) 2005-03-02 2006-02-10 ピペットチップ

Country Status (2)

Country Link
TW (1) TW200642763A (ja)
WO (1) WO2006092942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977831A3 (en) * 2007-03-20 2008-10-22 Hitachi High-Technologies Corporation Dispensing nozzle tip
WO2018061072A1 (ja) * 2016-09-27 2018-04-05 株式会社 エー・アンド・デイ ピペットチップ装着用アダプタ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028197Y2 (ja) * 1984-04-10 1990-02-27
JPH08505083A (ja) * 1992-11-11 1996-06-04 ラブシステムズ オイ 容 器
JP3064908U (ja) * 1999-06-15 2000-01-28 株式会社ニチリョー ピペット装置
JP2002001136A (ja) * 2000-06-16 2002-01-08 Internatl Reagents Corp ノズル
JP2002542499A (ja) * 1999-04-27 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト 少量の液体を付着させるための方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028197Y2 (ja) * 1984-04-10 1990-02-27
JPH08505083A (ja) * 1992-11-11 1996-06-04 ラブシステムズ オイ 容 器
JP2002542499A (ja) * 1999-04-27 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト 少量の液体を付着させるための方法および装置
JP3064908U (ja) * 1999-06-15 2000-01-28 株式会社ニチリョー ピペット装置
JP2002001136A (ja) * 2000-06-16 2002-01-08 Internatl Reagents Corp ノズル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977831A3 (en) * 2007-03-20 2008-10-22 Hitachi High-Technologies Corporation Dispensing nozzle tip
US8293192B2 (en) 2007-03-20 2012-10-23 Hitachi High-Technologies Corporation Dispensing nozzle tip
WO2018061072A1 (ja) * 2016-09-27 2018-04-05 株式会社 エー・アンド・デイ ピペットチップ装着用アダプタ
JPWO2018061072A1 (ja) * 2016-09-27 2019-07-04 株式会社エー・アンド・デイ ピペットチップ装着用アダプタ
US11000845B2 (en) 2016-09-27 2021-05-11 A&D Company, Limited Pipette tip mounting adaptor

Also Published As

Publication number Publication date
TW200642763A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
CN102066948B (zh) 用于分析物处理的方法和装置
EP3043165B1 (en) Bodily fluid sampler, bodily fluid container and bodily fluid sampling device
CN108395984A (zh) 用于热循环的可密封微流体芯片
JP4999372B2 (ja) 液体採取具
JP2005257283A (ja) マイクロチップ
JP4650102B2 (ja) 検体採取液容器
US8980200B2 (en) Condensed geometry nozzle for flow cytometry
ATE340028T1 (de) Durch spritzgussverfahren hergestellte vorrichtung zur aufbewahrung von flüssigkeiten und zugehöriges herstellungsverfahren
WO2006092942A1 (ja) ピペットチップ
WO2020033778A1 (en) Method of customizing a universal reagent cartridge with lyophilized target-specific reagent
JP2006329728A5 (ja)
WO2011151804A1 (en) A fluidic interfacing system and assembly
JP7052102B2 (ja) アダプタ
AU753234B2 (en) Body fluid collection vessel having reduced capacity
JP2001228162A (ja) 液体吐出装置、液体吐出ヘッド及び吐出方法
CN204298379U (zh) 快速提取核酸的便携式提取装置
US20160033370A1 (en) Triphasic fluid handling
WO2021024148A1 (en) A multi-channel sampler with an ability to distribute a certain volume in each channel
CN114222630A (zh) 移液管吸头以及移液管
US20210114024A1 (en) Device and Method for Preparing Sample Material
JP6825889B2 (ja) 生化学試料採取用ノズル
JP2005334733A (ja) 極微量飛滴ノズルとその製法
CN214439173U (zh) 可消除附着液的吸头
CN219699972U (zh) 一种样品采集试剂管
JP7234679B2 (ja) ピペット用フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06713463

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713463

Country of ref document: EP