WO2006089993A2 - Procedimiento de obtención de hidrogeles de ciclodextrinas con glicidiléteres, las composiciones obtenidas y sus aplicaciones - Google Patents

Procedimiento de obtención de hidrogeles de ciclodextrinas con glicidiléteres, las composiciones obtenidas y sus aplicaciones Download PDF

Info

Publication number
WO2006089993A2
WO2006089993A2 PCT/ES2006/000096 ES2006000096W WO2006089993A2 WO 2006089993 A2 WO2006089993 A2 WO 2006089993A2 ES 2006000096 W ES2006000096 W ES 2006000096W WO 2006089993 A2 WO2006089993 A2 WO 2006089993A2
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
cyclodextrins
hydrogels
derivatives
ether
Prior art date
Application number
PCT/ES2006/000096
Other languages
English (en)
French (fr)
Other versions
WO2006089993A3 (es
WO2006089993B1 (es
Inventor
Carmen Alvarez Lorenzo
Carmen RODRÍGUEZ-TENREIRO SÁNCHEZ
Juan José TORRES LABANDEIRA
Angel Concheiro Nine
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to EP06725794A priority Critical patent/EP1873167A4/en
Priority to US11/887,167 priority patent/US20090214604A1/en
Publication of WO2006089993A2 publication Critical patent/WO2006089993A2/es
Publication of WO2006089993A3 publication Critical patent/WO2006089993A3/es
Publication of WO2006089993B1 publication Critical patent/WO2006089993B1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/738Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/08Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with hydroxylated hydrocarbon radicals; Esters, ethers, or acetals thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/193Mixed ethers, i.e. ethers with two or more different etherifying groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0087Glucomannans or galactomannans; Tara or tara gum, i.e. D-mannose and D-galactose units, e.g. from Cesalpinia spinosa; Tamarind gum, i.e. D-galactose, D-glucose and D-xylose units, e.g. from Tamarindus indica; Gum Arabic, i.e. L-arabinose, L-rhamnose, D-galactose and D-glucuronic acid units, e.g. from Acacia Senegal or Acacia Seyal; Derivatives thereof
    • C08B37/0096Guar, guar gum, guar flour, guaran, i.e. (beta-1,4) linked D-mannose units in the main chain branched with D-galactose units in (alpha-1,6), e.g. from Cyamopsis Tetragonolobus; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2210/00Compositions for preparing hydrogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof

Definitions

  • hydrogels consisting of: i. cyclodextrins or their derivatives; or ii. cyclodextrins or their derivatives, and cellulose ethers or their derivatives; or iii. cyclodextrins or their derivatives, and guar gums or their derivatives; iv. and, in addition, using as a crosslinking agent: molecules that contain in its structure two or more glycidyl ether groups; the compositions obtained by this procedure; and the use and applications of the compositions in the preparation of pharmaceutical forms, medicaments, phytosanitary products, sequestering agents and cosmetic products.
  • a crosslinking agent molecules that contain in its structure two or more glycidyl ether groups
  • the current conception of a safe and effective pharmaceutical form also includes, in certain circumstances, the need for the drug to be released into the tissue or the most appropriate organ. Using these approaches, the pharmacological effect can be optimized, side effects reduced, treatments simplified and therapeutic compliance improved.
  • Hydrogels also find interesting applications as components of active substance and plant nutrient release systems (Osada and Kajiwara, GeZs Handbook, vol. 3, Chapter 5, Academic Press, San Diego, 2001, pp. 259-285), as trap systems to capture toxic substances or biological molecules in living organisms (Sellergren et al., Chem. Mater. 10: 4037-4046, 1998) and as sequestrants of polluting substances in water treatment (Sanbe et al., Analyt. ScL 19: 715-719, 2003).
  • a very interesting approach to promote the incorporation of the drug and modulate its transfer is to optimize the affinity of some of the components of the polymeric fabric for the drug.
  • the system incorporates the necessary dose and that the transfer is controlled by changes in the affinity of the drug by the chemical groups that are involved in its incorporation into the hydrogel.
  • the changes are induced by alterations in the physicochemical characteristics of the medium or by the competitive union of a physiological substance.
  • Cyclodextrins are cyclic oligomers, toroidal shaped, consisting of units of glucopyranose, which have a hydrophobic character in its inner part and hydrophilic in its outer surface.
  • Greek letters are used; for example, ⁇ — (6 units), ⁇ — (7 units) or ⁇ -cyclodextrin (8 units).
  • This notation system is also used to designate other cyclodextrins composed of more than eight units of ⁇ -1,4-glucopyranose, known as large cyclodextrins.
  • Natural cyclodextrins have a variable number of hydroxyl groups through which different functional groups can be incorporated to give rise to a wide variety of derivatives (Düchene and Wouessidjewe, Pharm. Technol. 14: 22-30, 1990). These new groups provide, in turn, characteristic binding sites and modify their physical-chemical properties, providing them with specific functionalities.
  • molecules with epoxy groups can be used, such as 1,4-butanedioldiglycidylether to contain trihydroxy-dioxadodecyl-beta-cyclodextrin or propylene oxide to obtain hydroxypropyl-beta-cyclodextrin (US Patents 4,596,795 and US 4,727,064 ; Pitha and Pitha, J. Pharm. Sel IA: 987-990, 1985).
  • 1,4-butanedioldiglycidylether to contain trihydroxy-dioxadodecyl-beta-cyclodextrin or propylene oxide to obtain hydroxypropyl-beta-cyclodextrin
  • 1,4-butanedioldiglycidylether to contain trihydroxy-dioxadodecyl-beta-cyclodextrin or propylene oxide to obtain hydroxypropyl-beta-cyclodextrin
  • the molecules in addition to being less polar than water, must be able to enter partially or totally into the cyclodextrin cavity (Uekama, Chem. Pharm. BuIl. 52: 900-915, 2004). He The energetic state of the water molecules located inside the cavity is unfavorable, as a consequence of the repulsions established between their polar groups and the apolar groups of the cyclodextrin. The replacement of water molecules with molecules, or parts of molecules, of other less polar substances leads to the formation of an inclusion complex (Szejtli, Cyclodextrin inclusion complexes.
  • the size and shape of the host molecule are decisive for a complex with a certain cyclodextrin to form.
  • the adaptation of the dimensions of the host molecule to those of the cyclodextrin cavity determines the value of the complex formation constant, indicating the high values of this constant that the interaction between the two species is intense (Perlovich et al., Eur. J. Pharm. Sel 20: 197-200, 2003).
  • the stoichiometric drug: cyclodextrin 1: 1 ratio is the most frequent, although complexes with 1: 2, 1: 3, 2: 3 or even 3: 2 ratios have also been described (Endo et al., Chem. Pharm. BuIl. 45: 1856-1859, 1997).
  • the formation of the inclusion complex may require more than one molecule of cyclodextrin per drug molecule.
  • the polarity of the host molecule also affects the complex ation process, conditioning its affinity for the cavity and the orientation within it.
  • the arrangement adopted by the drug is that which provides the maximum possible contact between its hydrophobic part and the inner surface of the cavity.
  • the affinity for the cavity is greater the more hydrophobic the drug is (Saenger, Angew. Chem. Int. Ed. Eng. 92: 343-361, 1980).
  • hydrophilic varieties are suitable to accelerate the rate of cession of fat-soluble drugs from solid forms and improve their bioavailability. For this reason, they are very useful as excipients of immediate release forms.
  • a process for obtaining solid forms with cyclodextrins for accelerated release of active ingredients is described in European Patent No. 00916925.1 (Patent ES 2187457 of Berndl et al.).
  • Hydrophobic cyclodextrins can serve as carriers of hydro soluble drugs, for example peptides and proteins, in prolonged release forms.
  • Certain enteric cyclodextrins, such as O-carboxymethyl-O-ethyl- ⁇ -cyclodextrin, are useful for developing delayed transfer systems.
  • the combination of different cyclodextrins and / or pharmaceutical additives makes it possible to obtain formulations that combine adequate oral bioavailability with prolonged therapeutic effects (Bibby et al., Int. J. Pharm. 197: 1-11, 2000).
  • cyclodextrins into systems containing high proportions of polymers (polymeric matrices), in which the chains are free (physically entwined or not crosslinked) or covalently bonded (chemically crosslinked) allows the drug release mechanism to be modified. added as free components, it is possible to modify the solubility and diffusivity of the drug, facilitate the hydration of the matrix and promote erosion (Bibby et al, Int. J. Pharm. 197: 1-11, 2000; Pose-Vilarnovo et al J.
  • cyclodextrins themselves can behave as crosslinking agents, acting as hosts of portions of the chains of certain amphiphilic polymers, for example triblock polymers of the type AB-A where A is poly (ethylene oxide) and B is poly (3-hydroxybutyrate), as described in WO2004009664 of Xu and Xiping.
  • cyclodextrins as chemically bonded components, to the hydrogels
  • monomeric derivatives vinyl, acrylic, methacrylic
  • the materials obtained by these procedures find numerous applications in the food, cosmetic and pharmaceutical industry (Friedman, Biotechnol. Food Ingredients, 327-347, 1991).
  • the ability of cyclodextrin units to form inclusion complexes is not affected by their fixation in the hydrogels, provided their cavities are not obstructed.
  • Cyclodextrins can also covalently bind to a previously formed polymer structure or give rise to crosslinked systems themselves.
  • Methods for polymerizing or cross-linking cyclodextrins, in the presence or absence of various polymers, have been described using epichlorohydrin (Fundueanu et al., J. Chromatogr. B 791: 407-419, 2003) or isocyanate derivatives (Hishiya et al. , Macromolecules 32: 2265-2269, 1999) as crosslinking agents.
  • the resulting materials known as molecular or "imprinted" materials, have a suitable spatial distribution so that each cyclodextrin unit can interact specifically with a part of the drug molecule, making it possible to form receptors capable of recognizing it with a high degree of selectivity
  • we have been able to synthesize fabrics Polymers with an affinity for peptide drugs and antibiotics of complex structure far superior to that of conventional gels (Asanuma et al., Anal. Chim. Acta 435: 25-33, 2001).
  • Cellulose ethers constitute a group of polymers soluble in water and / or in organic solvents with very diverse applications in the pharmaceutical industry (Doelker, Water swollen cellulose derivatives in pharmacy. In Hydrogels in Medicine and Pharmacy, VoL 2 (Peppas, ed. ), CRC Boca Raton, Florida, 1987, pp. 115-160; Doelker, Adv. Polym. ScL 107: 200-265, 1993). Structurally, they are alkylic modifications of cellulose, which result from replacing part of the hydrogen atoms of the hydroxyl groups of the anhydrous glucose units with alkyl groups. Each derivative is characterized by its degree of substitution (DS), and its molar substitution (SM).
  • DS degree of substitution
  • SM molar substitution
  • the DS indicates the average number of hydroxyl groups substituted in the anhydrous glucose unit. If the substituents are hydroxyalkyl groups which in turn undergo substitution reactions, side chains may be formed.
  • the value of SM reports the average number of alkylating reagent molecules that have reacted with each unit of anhydroglucopyranose.
  • the SM / DS ratio provides a measure of the length of the side chains.
  • the nature, number and distribution of the substituents largely determines the solubility and viscosity of cellulose ethers. The introduction of a polar substituent group (carboxyl or hydroxyl) in glucopyranose increases its solubility in water, which decreases, on the contrary, when hydrophobic ether groups predominate.
  • cellulose ethers Numerous varieties of cellulose ethers are available in the market. These varieties have different DS, molecular weights and nominal viscosities and different physical properties. Certain cellulose ethers, such as methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose or carboxymethylcellulose, are marketed with a purity suitable for pharmaceutical uses and are recognized as generally safe products ("generally recognized as safe", GRAS) by the Food and Drug Administration (FDA) (Savage, Ethers. In Cellulose and Cellulose Derivatives (Bikales and Segal, Eds.) Wiley-Interscience, London, 1971, pp. 785-809).
  • GRAS Food and Drug Administration
  • trisodium trimetaphosphate has been used to prepare starch hydrogels or guar gum (Gliko-Kabir et al, J. Controlled ReI. 63: 129-134, 2000); borax allows to obtain, in basic medium, hydrogels of guar gum or hydroxypropylcellulose (Shao et al., Macromolecules 33: 19-25, 2000); and divinylsulfone has been used to crosslink cationic cellulose ethers (Sj ⁇ strom and Piculell, Langmuir 14: 3836-3843, 2001).
  • the "gel time” parameter is used, which is defined as the time required for the value of the storage module to exceed the value of the loss module.
  • the time required to complete one crosslinking process is estimated as the time from which the values of the storage modulus and loss remain constant.
  • glycidyl ethers With respect to other crosslinking agents such as borax or divinylsulfone, glycidyl ethers have the advantage that they have a very low toxicity. Its wide safety margins, together with the absence of repoductive and endocrine effects and With carcinogenic effects, they are suitable as components of packages that are kept in prolonged contact with food (Poole et al., Food Additives & Contaminants 21: 905-919, 2004).
  • Crosslinking agents with glycidyl ether groups also known as epoxides, oxiranes or alkene oxides; Allinger et al., Organic Chemistry, 2 to Ed. Reverte SA, Barcelona, 1988, p.
  • US2001 / 0021703 describes a cross-linking process of amphiphilic cyclodextrin micelles, formed from dimers, trimers and cyclodextrin polymers using diglycidyl and triglycylether. The incorporation of the drug is carried out before the formation of the micelles and its cession only takes place once the junctions between the cyclodextrin units are degraded, the agent acting cross-linking as responsible for the transfer control.
  • Patent EP 0,387,681 describes a process for preparing water-soluble polycyclodextrin ammonium salts for use as hypocholesterolemic agents. The procedure includes the cross-linking of cyclodextrins using different cross-linking agents and subsequent esterification of the cross-linked cyclodextrins to obtain the ammonium salt.
  • cyclodextrins cellulose ethers or guar gums
  • crosslinking agents molecules that have two or more glycidyl ether groups in their structure are used, for example, diglycidyl ether, ethylene glycol glycidyl ether, diethylene glycol glycidyl ether, polyethylene glycidyl glyceryl, polyglycerol polyglycidyl glyceryl glyceryl glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol glycerol
  • any cyclodextrin or any of its derivatives is used.
  • cyclodextrins are natural cyclodextrins, ⁇ -, ⁇ - and ⁇ -cyclodextrin, and other cyclodextrins composed of more than eight units of ⁇ — 1,4-glucopyranoside, known as large cyclodextrins, as well as their derivatives, some of the which are shown in Table 1.
  • cellulose ether any ether of ionic or non-ionic cellulose.
  • examples of cellulose ethers are: methylcellulose (MC), hydroxyethylmethylcellulose (HEMC), hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), ethylhydroxyethylcellulose (EHEC), sodium carboxymethylcellulose (CMC ammonium quaternum) trimethylammonium substituent (Polyquaternium 10), copolymers of hydroxyethyl cellulose and dimethyl diallyl ammonium chloride (Polyquaternium A).
  • Any variety of guar gum, any modified guar gum or any of its derivatives is suitable for the process.
  • examples of guar gum derivatives, their hydroxypropylated or carboxyhydroxypropylated ethers, their cationic derivatives (Ecopol) and the products resulting from depolymerization of guar gums are examples.
  • the solution of cyclodextrin in water or in hydroalcoholic medium is prepared and the volume of a solution of HCl or another acidifying agent, or of NaOH or another alkalizing agent, is added. necessary to be able to adjust the pH to a suitable value so that the cross-linking process takes place (either acidic, neutral or alkaline).
  • Cyclodextrin can also be dissolved directly in a medium with the appropriate pH.
  • hydrogels of cyclodextrins and cellulose ethers, or of cyclodextrins and guar gums the incorporation of cellulose ether or guar gum into water or hydroalcoholic medium can be done before or after dissolving cyclodextrin.
  • the resulting solution is homogenized using a mechanical or magnetic stirrer and, if necessary, applying ultrasound.
  • the appropriate amount of crosslinking agent is incorporated, in solid or liquid state, or in solution.
  • the proportion of cyclodextrin or cyclodextrin derivative can be comprised between 1 and 95% of the total hydrogel components excluding water, with typical values being between 4% (p / p) and 70% (w / w), and the proportion of the crosslinking agent is between 99% and 5%, of the total hydrogel components excluding water, with typical values being between 96% (p / p) and 30% (p / p).
  • the proportion of cyclodextrin or cyclodextrin derivative is comprised between 1% and 95% of the total hydrogel components excluding water, with typical values being between 4% (w / w) and 70% (w / w); the proportion of cellulose ether or cellulose ether derivative is between 0.05% and 95% of the total hydrogel components excluding water, with typical values being between 0.1% (w / w) and the 20% (w / w); and the proportion of the crosslinking agent is between 98.95% and 4% of the total hydrogel components excluding water, with typical values being between 96% (w / w) and 30% (w / w).
  • the proportion of cyclodextrin or cyclodextrin derivative is comprised between 1% and 95% of the total hydrogel components excluding water, typical values being those included between 4% (w / w) and 70% (w / w);
  • the proportion of guar gum or the guar gum derivative can be between 0.05% and 95% of the total hydrogel components excluding water, with typical values being between 0.1% (w / w) and 20 % (w / w); and the proportion of the crosslinking agent is between 98.95% and 4% of the total hydrogel components, excluding water, with typical values being between 96% (w / w) and 30%
  • the obtained solution is homogenized, transferred to a suitable mold and allowed to rest at a controlled temperature between 0 and 100 0 C for the time required for complete crosslinking.
  • oscillatory shear reometry can be applied using samples of the solutions of cyclodextrins and crosslinking agent, of cyclodextrins, cellulose ethers and crosslinking agent, or of cyclodextrins, guar gums and crosslinking agent .
  • This technique allows to estimate the gelation time and the time necessary to complete the cross-linking process ( Figure 1).
  • the value of the time parameter of Gelification can be between 1 second and 12 hours, typical values being between 10 minutes and 2 hours.
  • the time required to complete the cross-linking can be between 3 seconds and 24 hours, with typical values being between 10 minutes and 6 hours.
  • the hydrogel, once formed, is removed from the mold and immersed, for washing, in a container with aqueous or hydroalcoholic medium, until the unreacted substances are eliminated.
  • the washing process is terminated when the absorbance of the washing medium is less than 0.001 over the entire wavelength range between 190 and 800 nm. Washing times are usually between 1 hour and 3 days.
  • the hydrogels are divided into portions of suitable shape and size and used as they are when removed from the washing liquid or after being dried. To dry them can use a vacuum oven or an airstream, at a temperature between 30 and 80 0 C. The hydrogels can also be dried by lyophilization.
  • compositions obtained, with or without drugs or active substances incorporated can be used as such or as base components of pharmaceutical forms, drugs and phytosanitary products for the treatment of pathological or physiological conditions in humans, animals and plants, such as transdermal forms, transmucosal forms, such as oral, oral, rectal, ocular, nasal, otic or vaginal dosage forms, and parenteral implants. They can also be used as sequestering agents for biological or toxic substances in living organisms, for example cholesterol, glucose or bile acids, or in the environment. The invention also covers its use in cosmetics. Advantages and improvements over existing procedures and materials
  • the process object of the invention leads to obtaining compositions with a three-dimensional hydrogel-like structure with a high affinity for water, but which do not dissolve, and which are endowed with a high capacity to incorporate drugs, active substances, biological molecules or toxic with physical structures and properties- very diverse chemicals, forming inclusion complexes with the cyclodextrins that are part of its structure.
  • compositions containing cyclodextrins and cellulose ethers or their derivatives, or cyclodextrins and guar gums or their derivatives are between 50 and 5000% (w / w) of which they have hydrogels obtained, under the same conditions, with cellulose ethers or their derivatives, or guar gums or their derivatives, without cyclodextrins. Therefore, in these new compositions, the ability to incorporate substances is strongly enhanced with respect to hydrogels prepared exclusively with cellulose ethers or their derivatives, or guar gums or their derivatives. This is a very important improvement for the use of the compositions as carriers of drugs or active substances in humans, animals or plants, or as "trap" systems of biological or toxic substances in living organisms or pollutants in water.
  • compositions have, in the hydrated state, viscoelastic properties.
  • the compositions are also very suitable for controlling the release of drugs or active substances, which are incorporated by immersion, in their solutions or in their suspensions, of the hydrogel once synthesized, by diffusion or formation of inclusion complexes and / or unions of non-covalent nature.
  • the compositions provide different transfer rates depending on their qualitative and quatitative composition, and the physicochemical properties of the drug, especially its water solubility and its affinity for the cyclodextrin cavity.
  • a drug or a water-soluble active substance with an affinity constant for hydroxypropyl-beta-cyclodextrin equal to 115 M "1
  • For a drug or lipophilic active substance with an affinity constant for hydroxypropyl-beta-cyclodextrin equal to 17000 M "1 these are typical values of percentage given 20% after 2 hours, 50% after 8 hours and 70% after 48 hours.
  • compositions can also serve to direct drugs to specific areas in living beings, through changes associated with environmental conditions, in the degree of swelling of the hydrogel or in the affinity of the drug for the hydrogel components. All these characteristics can be modulated through an adequate selection of the variety and / or the proportion of cyclodextrin / s and cellulose ethers or their derivatives, or guar gums or their derivatives that accompany it.
  • the low or zero toxicity of cyclodextrins, cellulose ethers; guar gums and their derivatives, and glycidyl ether crosslinking agents make the resulting compositions can be used as components of pharmaceutical forms, cosmetic preparations or systems
  • compositions can be used in very diverse fields, such as the development of pharmaceutical forms and systems for the release of drugs and active substances of immediate transfer or capable of controlling the transfer or of directing the drug towards specific areas, cosmetic preparations or delivery systems of active substances or phytosanitary products, to be used in humans, animals and plants. They can also be used to develop systems capable of sequestering, in the biological environment, toxic substances or molecules produced by living organisms. They can also be applied in the removal of contaminants from water or other liquid media. Examples of the invention
  • a solution of 20% (w / w) ⁇ -cyclodextrin was prepared in 0.2M NaOH. Then, 5 mL of a 50% (w / w) ethylene glycol glycidyl ether solution in water was added to 5 mL of this solution, so that the final concentration of crosslinking agent was 14.28%. The mixture was stirred for 1 minute to achieve complete homogenization. Then it was transferred to a test tube of 0.8 cm internal diameter and allowed to stand at 5O 0 C for 12 hours to complete the formation of the hydrogel. After this time, the hydrogel was removed from the mold and washed by immersion in 0.01M HCl and distilled water, remaining in each medium for 12 hours. The proportion of ⁇ -cyclodextrin in the hydrogel is 58.34% (w / w) and the The proportion of the crosslinking agent is 41.66% (w / w) of the total hydrogel components excluding water.
  • Example 2 Procedure for obtaining a hydrogel based on ⁇ -cyclodextrin and hydroxypropyl methylcellulose (HPMC) and process monitoring.
  • a 20% (w / w) ⁇ -cyclodextrin solution was prepared in 0.2M NaOH, and hydroxypropylmethylcellulose (HPMC) of nominal viscosity 4000 cPs was incorporated in the amount necessary to reach a final cellulose ether concentration 0.4% (w / w).
  • HPMC hydroxypropylmethylcellulose
  • 5 mL of a 50% (w / w) ethylene glycol glycidyl ether solution in water was added to 5 mL of this solution, so that the final concentration of crosslinking agent was 14.28%.
  • the mixture was stirred for 1 minute to achieve complete homogenization.
  • the proportion of ⁇ -cyclodextrin in the hydrogel is 57.67% (w / w), the proportion of HPMC is 1.15% (w / w) and the proportion of the crosslinking agent is 41.66% (w / w) of the total Hydrogel components excluding water.
  • Example 3 Procedure for obtaining a hydrogel based on hydroxypropyl- ⁇ -cyclodextrin and sodium carboxymethylcellulose (CMCNa), and process monitoring. 20% (w / w) hydroxypropyl- ⁇ -cyclodextrin solutions were prepared in 0.2M NaOH or 0.2M KOH.
  • hydrogels were extracted from the molds and washed by immersion in 0.01M HCl and distilled water, remaining in each medium for 12 hours.
  • the proportion of hydroxypropyl- ⁇ -cyclodextrin in these hydrogels is between 57.0% and 57.7% (w / w)
  • the proportion of sodium carboxymethylcellulose is between 1.15% and 2.29% (w / w)
  • the proportion of the crosslinking agent is comprised between 41.18% and 40.71% (w / w) of the total hydrogel components excluding water.
  • Example 4 Procedure for obtaining a hydrogel based on crystalline methyl- ⁇ -cyclodextrin and hydroxypropylmethylcellulose (HPMC), and process monitoring.
  • a solution of methyl- ⁇ -cyclodextrin (CRISMEB), 15% (w / w), in 0.1M HCl was prepared and hydroxypropylmethylcellulose (HPMC) of nominal viscosity 4000 cPs was incorporated in the amount necessary to reach a concentration 0.4% cellulose ether final (w / w). Then, 10 mL of a 50% ethylene glycol glycidyl ether solution in water was added to 10 mL of this solution, so that the final concentration of crosslinking agent was 14.28%.
  • CRISMEB methyl- ⁇ -cyclodextrin
  • HPMC hydroxypropylmethylcellulose
  • the mixture was stirred for 1 minute to achieve complete homogenization.
  • a sample of the mixture was transferred to the Peltier plate of a torque rheometer controlled stress and was tested at 50 0 C in oscillating mode, applying shear force of 0.1 Pa at a frequency of 0.1 rad / s, to register the evolution in time of the storage and loss modules (Figure 4).
  • the gelation time was approximately 20 minutes and the time needed to complete the cross-linking process was approximately 45 minutes.
  • the remaining mixture was transferred to a test tube of 0.8 cm internal diameter and allowed to stand at 5O 0 C for 12 hours. After this time, the hydrogel was removed from the mold and washed by immersion in 0.01M NaOH and distilled water, remaining in each medium for 12 hours.
  • the proportion of methyl- ⁇ -cyclodextrin in the hydrogel is 50.54% (w / w), the proportion of HPMC is 1.35% (w / w) and the proportion of the crosslinking agent is 48.11% (w / w) of the Total hydrogel components excluding water.
  • Example 5 Procedure for obtaining a hydrogel based on hydroxypropyl- ⁇ -cyclodextrin and cationically modified guar gum, and process monitoring. 20% (w / w) hydroxypropyl- ⁇ -cyclodextrin solutions were prepared in 0.2M NaOH or 0.2M KOH.
  • the remaining portions of the mixtures were transferred to test tubes of 0.8 cm in inner diameter and allowed to stand at 5O 0 C for 12 hours. After this time, the hydrogels were extracted from the molds and washed by immersion in 0.01M HCl and distilled water, remaining in each medium for 12 hours.
  • the proportion of hydroxypropyl- ⁇ -cyclodextrin in these hydrogels is between 57.0% and 57.7% (w / w)
  • the proportion of cationically modified guar gum is between 1.15% and 2.29% (w / w)
  • the proportion of the crosslinking agent is between 41.18% and 40.71% (w / w) of the total hydrogel components excluding water.
  • An increase in the concentration of cationically modified guar gum allowed to increase the values of both modules, reducing gelation time and giving rise to more viscoelastic hydrogels.
  • Example 6 Procedure for obtaining a composition based on hydroxypropyl- ⁇ -cyclodextrin and a composition based on hydroxypropyl- ⁇ -cyclodextrin e hydroxypropylmethylcellulose (HPMC), which incorporate diclofenac sodium and yield it in a controlled manner.
  • HPMC hydroxypropyl- ⁇ -cyclodextrin e hydroxypropylmethylcellulose
  • a 20% (w / w) hydroxypropyl- ⁇ -cyclodextrin solution was prepared in 0.2M NaOH. Aliquots of 5 mL of this solution were added amounts of hydroxypropyl methylcellulose (HPMC) of nominal viscosity 4000 cPs, necessary to reach cellulose ether concentrations between 0.2% (w / w) and 1.0% (w / w) . To each of the resulting solutions was added 2 mL of a 50% (w / w) solution of ethylene glycol glycidyl ether, so that the final concentration of crosslinking agent was in all cases 14.28%.
  • HPMC hydroxypropyl methylcellulose
  • the mixtures were homogenized using a magnetic stirrer, transferred to test tubes of 0.8 cm in inner diameter and allowed to stand at 5O 0 C for 12 hours to complete the formation of the hydrogel. After this time, the hydrogels were extracted from the molds and immersed in distilled water. After 12 hours, they were transferred to containers with 0.01M HCl, where they were kept for another 12 hours. Finally, they immersed 12 more hours in distilled water. Each hydrogel was divided into portions, disk-shaped, 8 mm in diameter and 5 mm thick. Three hydrogel discs were placed directly in vials with 10 mL of 0.1% (w / w) or 0.5% (w / w) diclofenac solution for two days.
  • Table 2 Amount of diclofenac incorporated by hydroxypropyl- ⁇ -cyclodextrin hydrogels (HP ⁇ CD) or by hydroxypropyl- ⁇ -cyclodextrin and hydroxypropylmethylcellulose (HPMC) hydrogels, crosslinked with ethylene glycol glycidyl ether (EGDE).
  • HP ⁇ CD hydroxypropyl- ⁇ -cyclodextrin hydrogels
  • HPMC hydroxypropyl- ⁇ -cyclodextrin and hydroxypropylmethylcellulose
  • hydroxypropyl- ⁇ -cyclodextrin Solutions of 15%, 20% and 25% hydroxypropyl- ⁇ -cyclodextrin were prepared in 0.2M NaOH. To each of them, the necessary amount of hydroxypropyl methylcellulose (HPMC) of nominal viscosity 4000 cPs was incorporated, to reach a final cellulose ether concentration of 0.4% (w / w), and the volume of ethylene glycol glycidyl ether solution in water at 50% (w / w) necessary to achieve a final concentration of crosslinking agent of 14.28% (w / w). The mixtures were homogenized using a magnetic stirrer, transferred to test tubes of 0.8 cm in inner diameter and allowed to stand at 5O 0 C for 12 hours to complete the formation of the hydrogel.
  • HPMC hydroxypropyl methylcellulose
  • hydrogels were extracted from the molds and immersed in distilled water. After 12 hours, they were transferred to containers with 0.01M HCl, where they were kept for another 12 hours. Finally, they immersed 12 more hours in distilled water and remained in this medium until the moment of incorporation of the estradiol Each hydrogel was divided into portions, disk-shaped, 8 mm in diameter and 5 mm thick.
  • the proportion of hydroxypropyl- ⁇ -cyclodextrin in these hydrogels is between 50.54% and 63.00% ( ⁇ / ⁇ ), the proportion of HPMC is between 1.35% and 1.00% (w / w) and the proportion of Crosslinking agent is comprised between 48.11% and 35.99% (w / w) of the total hydrogel components excluding water.
  • estradiol was incorporated into each of these portions by immersing them, in suitable containers, in 10 mL of a 0.2% drug suspension (w / w).
  • the containers were closed and taken to an autoclave where they underwent a heating cycle (121 0 C, 16 minutes), then keeping them for seven days in a thermostated chamber at 25 ° C.
  • the amount of estradiol incorporated was determined by immersing the hydrogels in 15 mL of a 0.3% aqueous solution of sodium dodecyl sulfate (w / w), for 14 days, and assessing by direct spectrophotometry the amount of drug assigned to the medium, which turned out to be comprised between 550 and 700 micrograms of estradiol per hydrogel disk.
  • the hydrogels with the incorporated estradiol were immersed in 15 mL of a 0.3% aqueous solution of sodium dodecyl sulfate (w / w) and the amount of drug assigned at different times was determined by ultraviolet spectrophotometry at 280 nm ( Figure 9).
  • the assignment profiles obtained show that the compositions control the assignment process for more than a week.
  • Figure 1 Evolution in time of storage module values (•) and loss (o) during cross-linking of hydroxypropyl- ⁇ -cyclodextrin (20%, w / w) and hydroxypropylmethylcellulose (0.4% w / w) with ethylene glycol glycidyl ether (14.28%, p / p) at 5O 0 C.
  • Figure 2. Evolution in time of storage module values (•) and loss (o) during cross-linking of hydroxypropyl- ⁇ -cyclodextrin (20%, w / w) and hydroxypropylmethylcellulose (0.4% w / w) with ethylene glycol glycidyl ether (14.28%, p / p) at 5O 0 C.
  • Figure 2 Evolution in time of storage module values (•) and loss (o) during cross-linking of hydroxypropyl- ⁇ -cyclodextrin (20%, w / w) and hydroxypropylmethylcellulose (0.4%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

Procedimiento de obtención de hidrogeles a base de ciclodextrinas, de ciclodextrinas y éteres de celulosa, o de ciclodextrinas y goma guar o sus derivados, utilizando como agente reticulante moléculas que contienen dos o más grupos glicidiléter en su estructura; las composiciones obtenidas capaces de incorporar fármacos y sustancias activas, que forman complejos de inclusión con ciclodextrinas; su uso como componentes de dispositivos de liberación controlada, tales como formas farmacéuticas transdérmicas, formas transmucosales bucales, orales, rectales, oculares, óticas o vaginales, e implantes parenterales, destinadas a administrar fármacos o sustancias activas a humanos, animales o plantas, o como componentes de preparados cosméticos; y el uso de las composiciones como secuestrantes, en la extracción de moléculas tóxicas o biológicas en organismos vivos o de sustancias contaminantes en aguas.

Description

Procedimiento de obtención de hidrogeles de ciclodextrinas con glicidiléteres, las composiciones obtenidas y sus aplicaciones. Sector de la técnica
Procedimiento de obtención de hidrogeles constituidos por: i. ciclodextrinas o sus derivados; o ii. ciclodextrinas o sus derivados, y éteres de celulosa o sus derivados; o iii. ciclodextrinas o sus derivados, y gomas guar o sus derivados; iv. y, además, empleando como agente reticulante: moléculas que contienen en su estructura dos o más grupos glicidiléter; las composiciones obtenidas por este procedimiento; y el uso y aplicaciones de las composiciones en la preparación de formas farmacéuticas, medicamentos, productos fitosanitarios, agentes secuestrantes y productos cosméticos. Estado de la técnica
En las últimas décadas, junto con la continua mejora de las formas farmacéuticas convencionales de liberación inmediata, se ha manifestado un creciente interés por el desarrollo de formulaciones más complejas capaces de prolongar el proceso de cesión del fármaco, manteniendo niveles terapéuticos durante largos periodos de tiempo (primera generación de sistemas de cesión controlada), de precisar el momento en que debe iniciarse la cesión (segunda generación de sistemas de cesión controlada) o, incluso, de proporcionar una velocidad de cesión regulada por la presencia de una determinada sustancia, cuya concentración es función del grado de afectación del órgano o el tejido (tercera generación de sistemas de cesión controlada) (Chien y Lin, Clin. Pharmacokinet.
' 41: 1267-1299, 2002). La concepción actual de forma farmacéutica segura y eficaz también incluye, en ciertas circunstancias, la necesidad de que libere el fármaco en el tejido o en el órgano más adecuado. Acudiendo a estas aproximaciones se consigue optimizar el efecto farmacológico, reducir los efectos secundarios, simplificar los tratamientos y mejorar el cumplimiento terapéutico.
La materialización práctica de estas formas de dosificación de fármacos ha podido hacerse realidad gracias al desarrollo de nuevos materiales poliméricos, algunos de los cuales son capaces de modificar su conformación como respuesta a cambios en las características biológicas o físico-químicas del medio, por lo que se denominan materiales "inteligentes". La incorporación de estos materiales poliméricos a algunas formas de dosificación clásicas -geles, partículas, comprimidos- las dota de nuevas funcionalidades, ampliando notablemente su potencial de aplicación en el campo de la biomedicina (Yuk y Bae, CWi. Rev. Ther. Drug Carrier Syst. 16: 385-423, 1999). La elevada afinidad por el agua y la versatilidad de los procedimientos de obtención que conducen a la formación de la estructura tridimensional que caracteriza a los hidrogeles reticulados por procedimientos físicos o químicos, los hacen muy útiles para diseñar formulaciones con propiedades mecánicas y de cesión de fármaco adecuadas a los requerimientos de la práctica totalidad de las vías de administración. El enorme potencial de los hidrogeles en el campo de la tecnología farmacéutica se pone de manifiesto por sus numerosas aplicaciones en el tratamiento de patologías oculares y en la administración de fármacos por vía oral, transdérmica, ocular, nasal, rectal o vaginal, tanto en medicina humana como veterinaria (Peppas et al., Eur. J. Pharm. Biopharm. 50: 27-46, 2000; Rathbone et al., Controlled Reléase Veterinary Drug Deliveiγ, Elsevier, Amsterdam, 2000). Los hidrogeles encuentran también interesantes aplicaciones como componentes de sistemas de liberación de sustancias activas y de nutrientes para plantas (Osada y Kajiwara, GeZs Handbook, vol. 3, Chapter 5, Academic Press, San Diego, 2001, pp. 259-285), como sistemas trampa para captar sustancias tóxicas o moléculas biológicas en organismos vivos (Sellergren et al., Chem. Mater. 10: 4037-4046, 1998) y como secuestrantes de sustancias contaminantes en el tratamiento de aguas (Sanbe et al., Analyt. ScL 19: 715-719, 2003).
Las propiedades de los co-monómeros y de los polímeros utilizados en la síntesis de los hidrogeles, junto con su proporción relativa y el grado de reticulación, son factores determinantes de las propiedades del sistema resultante. Por lo tanto, para cada aplicación concreta, se deben delimitar cuidadosamente estas variables críticas (Eichembaum et al., Macromolecules 32: 4867-4878, 1999).
Una aproximación muy interesante para promover la incorporación del fármaco y modular su cesión, consiste en optimizar la afinidad de alguno de los componentes del entramado polimérico por el fármaco. De esta manera, se consigue que el sistema incorpore la dosis necesaria y que la cesión se controle por los cambios en la afinidad del fármaco por los grupos químicos que están implicados en su incorporación al hidrogel. Los cambios se inducen por las alteraciones en las características fisicoquímicas del medio o por la unión competitiva de una sustancia fisiológica. Estas aproximaciones constituyen un recurso muy útil para conseguir que la liberación se produzca en lugares específicos o para regular la velocidad de cesión por mecanismos de retroalimentación. Recientemente, se ha descrito un sistema de estas características basado en hidrogeles dé N- isopropilacrilamida (Alvarez-Lorenzo y Concheiro, J. Controlled ReI. 80: 247-257, 2002). La utilidad terapéutica de los polímeros "inteligentes" se puede ver considerablemente incrementada si se promueve la creación, en su estructura interna, de receptores que reconozcan moléculas específicas (Alvarez-Lorenzo et al., Macromolecules 33: 8693-8697, 2000; Alvarez-Lorenzo y Concheiro, op. cited 2002). La dificultad que encierra la preparación de polímeros que presenten una buena capacidad de reconocimiento molecular en medio acuoso supone un serio inconveniente para aplicar esta aproximación en el campo de la biomedicina, dado que en un entorno acuoso las interacciones de tipo electrostático o por puentes de hidrógeno son menos intensas y las interacciones de carácter hidrofóbico menos selectivas que en un medio orgánico. Para paliar estas limitaciones, se han desarrollado procedimientos dirigidos a incorporar ciclodextrinas a la estructura de los hidrogeles, bien por simple mezcla física o formando parte de derivados monoméricos covalentemente unidos (Asanuma et al., Adv. Mater. 12: 1019-1030, 2000).
Las ciclodextrinas son oligómeros cíclicos, de forma toroidal, constituidos por unidades de glucopiranosa, que presentan carácter hidrofóbico en su parte interior e hidrofílico en su superficie externa. Para denotar el número de unidades α-D-glucosa que contiene una ciclodextrina se utilizan letras griegas; por ejemplo, α— (6 unidades), β— (7 unidades) ó γ-ciclodextrina (8 unidades). Este sistema de notación se utiliza también para designar a otras ciclodextrinas compuestas por más de ocho unidades de α— 1,4- glucopiranosa, conocidas como grandes ciclodextrinas. Las ciclodextrinas naturales presentan un número variable de grupos hidroxilo a través de los cuales se pueden incorporar diferentes grupos funcionales para dar lugar a una gran variedad de derivados (Düchene y Wouessidjewe, Pharm. Technol. 14: 22-30, 1990). Estos nuevos grupos proporcionan, a su vez, lugares de unión característicos y modifican sus propiedades- fisico-químicas, dotándolas de funcionalidades específicas. Para preparar derivados sustituidos de ciclodextrinas se pueden utilizar moléculas con grupos epóxido, como por ejemplo el 1,4-butanodioldiglicidileter para ontener trihidroxi-dioxadodecil-beta- ciclodextrina u óxido de propileno para obtener hidroxipropil-beta-ciclodextrina (Patentes US 4,596,795 y US 4,727,064; Pitha y Pitha, J. Pharm. Sel IA: 987-990, 1985). Una de las propiedades más interesantes y con mayor trascendencia práctica de las ciclodextrinas es su capacidad para formar complejos de inclusión con una amplia variedad de moléculas. Para que puedan formarse estos complejos, las moléculas además de ser menos polares que el agua, deben ser capaces de introducirse parcial o totalmente en la cavidad de la ciclodextrina (Uekama, Chem. Pharm. BuIl. 52: 900-915, 2004). El estado energético de las moléculas de agua ubicadas en el interior de la cavidad es desfavorable, como consecuencia de las repulsiones que se establecen entre sus grupos polares y los grupos apolares de la ciclodextrina. La sustitución de las moléculas de agua por moléculas, o por partes de moléculas, de otras sustancias menos polares conduce a la formación de un complejo de inclusión (Szejtli, Cyclodextrin inclusión complexes. En Cyclodextrin Technology (Szejtli, Ed.) Kluwer Academic Publishers, Budapest, 1988, p. 85). Como consecuencia de la variedad de los diámetros de sus cavidades, las ciclodextrinas pueden formar complejos de inclusión con una amplia gama de moléculas con tamaños muy diversos (Fundueanu et al., J. Chromatogr. B 791: 407-419, 2003). La formación de los complejos es un proceso dinámico en el que no se originan enlaces permanentes (covalentes o iónicos) entre el huésped y el hospedador, y en el que sólo intervienen fuerzas de interacción de carácter hidrofóbico o tipo van der Waals. Tanto la formación como la disociación de los complejos transcurre con una gran rapidez. Como consecuencia de ello, aunque habitualmente se representen como una única especie, son sistemas dinámicos en los que la ciclodextrina y el principio activo libre coexisten en disolución con el propio complejo (Uekama, opus cited 2004). La formación de los complejos se puede poner de manifiesto por diferentes técnicas instrumentales, relativamente sencillas, como la espectrofotometría ultravioleta-visible (Fundueanu et al., J. Chromatogr. B 791: 407-419, 2003), la espectroscopia Raman (Iliescu et al., Eur. J. Pharm. Sd. 22: 487-495, 2004), de rayos X y de resonancia magnética nuclear (RMN), o técnicas calorimétricas.
El tamaño y la forma de la molécula huésped son determinantes para que llegue a formarse un complejo con una determinada ciclodextrina. La adecuación de las dimensiones de la molécula huésped a las de la cavidad de la ciclodextrina condiciona el valor de la constante de formación del complejo, indicando los valores elevados de esta constante que la interacción entre las dos especies es intensa (Perlovich et al., Eur. J. Pharm. Sel 20: 197-200, 2003). La relación estequiométrica fármaco: ciclodextrina 1:1 es la más frecuente, aunque también se han descrito complejos con relaciones 1:2, 1:3, 2:3 ó incluso 3:2 (Endo et al., Chem. Pharm. BuIl. 45: 1856-1859, 1997). Si la molécula huésped es muy voluminosa, como ocurre por ejemplo en el caso de las hormonas esteroídicas, las vitaminas liposolubles o los glucósidos cardiotónicos, la formación del complejo de inclusión puede requerir más de una molécula de ciclodextrina por cada molécula de fármaco. La polaridad de la molécula huésped también afecta al proceso de complej ación, condicionando su afinidad por la cavidad y la orientación dentro de ella. En general, la disposición que adopta el fármaco es la que proporciona el máximo contacto posible entre su parte hidrofóbica y la superficie interior de la cavidad. Para dimensiones moleculares similares, la afinidad por la cavidad es mayor cuanto más hidrofóbico es el fármaco (Saenger, Angew. Chem. Int. Ed. Eng. 92: 343-361, 1980). Las modificaciones en las propiedades fisicoquímicas de los fármacos (solubilidad, estabilidad y volatilidad) que se derivan de su incorporación a los complejos de inclusión con ciclodextrinas, sirven de base para numerosas aplicaciones farmacéuticas (Nakai et al. Chem. Pharm. BuIl. 31:3745-3747, 1983; Loñsson y Brewster, J. Pharm. ScL 85:1017- 1025, 1996; Loftsson et al. Am. J. Drug Del. 2: 261-275, 2004). Las ciclodextrinas también se usan como portadores funcionales de fármacos para controlar su velocidad de cesión a partir de distintas formas farmacéuticas (Uekama, op. cited 2004). Las variedades más hidrofílicas son adecuadas para acelerar la velocidad de cesión de fármacos liposolubles a partir de formas sólidas y mejorar su biodisponibilidad. Por esta razón, resultan muy útiles como excipientes de formas de liberación inmediata. Un procedimiento para obtener formas sólidas con ciclodextrinas para liberación acelerada de principios activos, se describe en la patente N° de solicitud europea 00916925.1 (Patente ES 2187457 de Berndl et al.). Las ciclodextrinas hidrofóbicas pueden servir como portadores de fármacos hidro solubles, por ejemplo péptidos y proteínas, en formas de cesión prolongada. Ciertas ciclodextrinas entéricas, como la O-carboximetil-O- etil-β-ciclodextrina, resultan útiles para elaborar sistemas de cesión retardada. La combinación de diferentes ciclodextrinas y/o aditivos farmacéuticos permite conseguir formulaciones que combinan una adecuada biodisponibilidad oral con unos efectos terapéuticos prolongados (Bibby et al., Int. J. Pharm. 197: 1-11, 2000).
La incorporación de ciclodextrinas a sistemas que contienen elevadas proporciones de polímeros (matrices poliméricas), en las que las cadenas están libres (entrelazadas físicamente o no reticuladas) o covalentemente unidas (químicamente reticuladasj permite modificar el mecanismo de liberación del fármaco. Cuando las ciclodextrinas se adicionan como componentes libres, se consigue modificar la solubilidad y la difusividad del fármaco, facilitar la hidratación de la matriz y promover la erosión (Bibby et al, Int. J. Pharm. 197: 1-11, 2000; Pose-Vilarnovo et al. J. Controlled ReL, 94, 351-363, 2004). La interacción de la ciclodextrina con el polímero que forma la matriz, puede alterar de manera importante su capacidad para formar complejos de inclusión con fármacos. En general, la presencia en el medio de polímeros hidrofílicos en bajas proporciones facilita el proceso (Loftsson et al., Int. J. Pharm. 110: 169-177, 1995). La solubilidad del complejo y su capacidad para difundir hacia el exterior de la matriz son factores determinantes de la velocidad de cesión de los fármacos en este tipo de sistemas. Las propias ciclodextrinas pueden comportarse como agentes reticulantes, actuando como huéspedes de porciones de las cadenas de ciertos polímeros anfifílicos, por ejemplo polímeros tribloque del tipo A-B- A donde A es poli (óxido de etileno) y B es poli (3-hidroxibutirato), tal como se describe en la patente WO2004009664 de Xu y Xiping.
Para fijar las ciclodextrinas, como componentes químicamente unidos, a los hidrogeles se pueden utilizar derivados monoméricos (vinílicos, acrílicos, metacrílicos) de ciclodextrina durante la etapa de síntesis (Lee et al., J. Appl. Polym. Sel 80: 438-446, 2001). Los materiales obtenidos por estos procedimientos encuentran numerosas aplicaciones en la industria alimentaria, cosmética y farmacéutica (Friedman, Biotechnol. Food Ingredients, 327-347, 1991). La capacidad de las unidades de ciclodextrina para formar complejos de inclusión no se ve afectada por su fijación en los hidrogeles, siempre que sus cavidades no resulten obstruidas. Al estar inmovilizadas las ciclodextrinas en el interior de la matriz polimérica, la velocidad de cesión del fármaco huésped depende de su afinidad por la cavidad y también del coeficiente de difusión del fármaco libre a través de la matriz (Liu et al, Macromol. Biosci. 4: 729-736, 2004).
Las ciclodextrinas también se pueden unir covalentemente a una estructura polimérica formada previamente o dar lugar, por sí mismas, a sistemas reticulados. Se han descrito procedimientos para polimerizar o reticular las ciclodextrinas, en presencia o en ausencia de polímeros diversos, utilizando epiclorohidrina (Fundueanu et al., J. Chromatogr. B 791: 407-419, 2003) o derivados de isocianatos (Hishiya et al., Macromolecules 32: 2265-2269, 1999) como agentes reticulantes.
Las matrices poliméricas que incorporan ciclodextrinas, covalentemente unidas entre sí o a las cadenas de los componentes poliméricos, presentan un gran interés potencial como base para la creación de materiales poliméricos con capacidad de reconocimiento de moléculas específicas, aplicando técnicas de impresión molecular designadas por la expresión inglesa "molecular imprinting" (Asanuma et al., Anal. Chim. Acta 435: 25-33, 2001; Alvarez-Lorenzo y Concheiro, J. Chromatogr. B 804: 231-245, 2004). Los materiales resultantes, conocidos como materiales con impresión molecular o "imprinted", presentan una distribución espacial adecuada para que cada unidad de ciclodextrina pueda interaccionar específicamente con una parte de la molécula de fármaco, haciendo posible la formación de receptores capaces de reconocerlo con un alto grado de selectividad. Utilizando este procedimiento se han podido sintetizar entramados poliméricos con una afinidad por fármacos peptídicos y antibióticos de estructura compleja muy superior a la de los geles convencionales (Asanuma et al., Anal. Chim. Acta 435: 25-33, 2001).
Los éteres de celulosa constituyen un grupo de polímeros solubles en agua y/o en disolventes orgánicos con muy diversas aplicaciones en la industria farmacéutica (Doelker, Water swollen cellulose derivatives in pharmacy. En Hydrogels in Medicine and Pharmacy, VoL 2 (Peppas, ed.), CRC Boca Ratón, Florida, 1987, pp. 115-160; Doelker, Adv. Polym. ScL 107: 200-265, 1993). Estructuralmente, son modificaciones alquílicas de la celulosa, que resultan de sustituir parte de los átomos de hidrógeno de los grupos hidroxilo de las unidades de glucosa anhidra por grupos alquílicos. Cada derivado se caracteriza por su grado de sustitución (DS), y su sustitución molar (SM). El DS indica el número medio de grupos hidroxilo sustituidos en la unidad de glucosa anhidra. Si los sustituyentes son grupos hidroxialquilo que a su vez sufren reacciones de sustitución, se pueden formar cadenas laterales. El valor de SM informa del número medio de moléculas de reactivo alquilante que han reaccionado con cada unidad de anhidroglucopiranosa. La relación SM/DS aporta una medida de la longitud de las cadenas laterales. La naturaleza, el número y la distribución de los sustituyentes condiciona, en gran medida, la solubilidad y la capacidad viscosizante de los éteres de celulosa. La introducción de un grupo sustituyente polar (carboxilo o hidroxilo) en la glucopiranosa aumenta su solubilidad en agua, que disminuye, por el contrario, cuando predominan los grupos éter hidrofóbicos.
En el mercado se encuentran disponibles numerosas variedades de éteres de celulosa. Estas variedades presentan diferentes DS, pesos moleculares y viscosidades nominales y distintas propiedades físicas. Ciertos éteres de celulosa, como la metilcelulosa, la hidroxipropilcelulosa, la hidroxipropilmetilcelulosa o la carboximetilcelulosa, se comercializan con una pureza adecuada para usos farmacéuticos y están reconocidos como productos generalmente seguros ("generally recognized as safe", GRAS) por la Food and Drug Administration (FDA) (Savage, Ethers. En Cellulose and Cellulose Derivatives (Bikales y Segal, Eds.) Wiley-Interscience, Londres, 1971, pp. 785-809). La United States Pharmacopoeia 27/ National Formulary 22 (2004) y la Real Farmacopea Española 2a edición (2002) contienen monografías dedicadas a estos productos. Estos éteres de celulosa se usan para preparar una gran variedad de formas de dosificación, como suspensiones, emulsiones, geles, pellets o comprimidos (Alderman, Int. J. Pharm. Tech. & Prod. Mfr. 5: 1-9, 1984; Vázquez et al., DrugDev. Ind. Pharm. 18: 1355-1375, 1992). Las gomas guar se extraen del endosperma de las semillas de ciertas plantas de la familia de las leguminosas, como la Cyamopsis tetragonolobus. Son galactomananos resultantes del encadenamiento lineal de unidades de β-D-manosa unidas en (1-4), con ramificaciones constituidas por una sola α-D galactosa unida en α (1-6). Las gomas guar se dispersan fácilmente en agua, fría o caliente. Junto con las distintas variedades de goma guar, están disponibles en el mercado derivados como la hidroxipropilgoma guar o la carboximetil hidroxipropil goma guar, que se obtienen por procesos de semisíntesis química o por depolimerización (Freeland et al., Cosmet. Toilet. 99: 83-87, 1984).
La reticulación química de los éteres de celulosa o de las gomas guar permite obtener hidrogeles que cuentan con aplicaciones muy diversas. El grado de hinchamiento de algunos de estos hidrogeles puede experimentar cambios muy bruscos en función de la composición o de la temperatura del medio, lo que los dota de un considerable interés para desarrollar sistemas sensibles a estímulos o capaces de liberar sustancias activas en lugares específicos (Anbergen y Oppermann, Polymer 31: 1854-1858, 1990; Rodríguez et al., J. Controlled ReI. 86: 253-265, 2003).
Se han propuesto diversos agentes reticulantes para preparar hidrogeles a partir de polisacáridos: el trimetafosfato trisódico se ha utilizado para preparar hidrogeles de almidón o goma guar (Gliko-Kabir et al, J. Controlled ReI. 63: 129-134, 2000); el bórax permite obtener, en medio básico, hidrogeles de goma guar o de hidroxipropilcelulosa (Shao et al., Macromolecules 33: 19-25, 2000); y la divinilsulfona se ha utilizado para reticular éteres de celulosa catiónicos (Sjδstrom y Piculell, Langmuir 14: 3836-3843, 2001). Para caracterizar el proceso de reticulación se utiliza el parámetro "tiempo de gelificación", que se define como el tiempo necesario para que el valor del módulo de almacenamiento supere al valor del módulo de pérdida. El tiempo necesario para1 completar el proceso de reticulación se estima como aquel a partir del cual los valores de los módulos de almacenamiento y de pérdida se mantienen constantes. Recientemente, se ha puesto a punto por técnicas reométricas un procedimiento de reticulación de éteres de celulosa catiónicos y de gomas guar catiónicamente modificadas utilizando etilenglicoldiglicidileter. Los hidrogeles preparados por este último procedimiento se han mostrado muy útiles para incorporar y ceder de manera controlada antiinflamatorios no esteroídicos (Rodríguez et al., op. cited 2003).
Con respecto a otros agentes reticulantes como el bórax o la divinilsulfona, los glicidiléteres cuentan con la ventaja de que presentan una toxicidad muy baja. Sus amplios márgenes de seguridad, junto con la ausencia de efectos a nivel repoductivo y endocrino y de efectos carcinogénicos, los hacen adecuados como componentes de envases que se mantiene en contacto prolongado con alimentos (Poole et al., Food Additives & Contaminants 21: 905-919, 2004). Los agentes reticulantes con grupos glicidiléter (conocidos también por epóxidos, oxiranos u óxidos de alqueno; Allinger et al., Química Orgánica, 2a Ed. Reverte SA, Barcelona, 1988, p. 639), permiten obtener hidrogeles de éteres de celulosa o de gomas guar sin necesidad de formar previamente derivados de estos polímeros que cuenten con grupos polimerizables ni de modificar previamente la estructura del éter de celulosa o de la goma guar (Rodríguez et al., op. cited 2003). A continuación, se muestran algunos ejemplos de sustancias con dos o más grupos glicidiléter en su estructura.
Figure imgf000010_0001
Diglicidiléter
Propilenglicol diglicidiléter
Figure imgf000010_0002
Etilenglicol diglicidiléter
Figure imgf000010_0003
Figure imgf000010_0004
Dietilenglicol diglicidiléter Glicerol diglicidiléter
Figure imgf000010_0005
Polietilenglicol diglicidiléter
Glicerol triglicidiléter
Figure imgf000010_0006
Bisfenol A diglicidiléter También se han descrito algunos procedimientos que utilizan epóxidos para obtener derivados poliméricos de ciclodextrinas. En la Patente US 3,420,788 se describe un procedimiento de obtención de resinas de inclusión insolubles a base de ciclodextrinas y polímeros insolubles en agua, entre los que se incluyen derivados de celulosa insolubles en agua, para ser utilizadas en forma de polvo en separaciones cromatográficas. En la Patente JP63012490B se describe un procedimiento de preparación de partículas de ciclodextrinas para relleno cromatográfico, a partir de ciclodextrinas previamente polimerizadas utilizando distintos agentes reticulantes entre ellos 1 ,4-butanodiol diglicidiléter, que se dispersan en un disolvente orgánico con el fin de obtener las partículas tras un segundo proceso de reticulación. En la Patente US 4,357,468 se recoge un procedimiento de unión de unidades individualizadas de ciclodextrinas a cadenas de celulosa, usando entre otros agentes diepóxidos, para obtener materiales absorbentes no reticulados, útiles como filtros de cigarrillos, en la purificación de agua o para separación molecular. En la Patente US 4,535,152 se describe un procedimiento en el que se utilizan epóxidos con grupos ionizables en su estructura, para preparar cadenas no reticuladas y solubles en agua constituidas por 2-10 unidades de ciclodextrina, que cuentan, con grupos iónicos, con vistas a su utilización en la estabilización de coloides o en cromatografía de intercambio iónico. En la Patente GB 2,224,507 se recoge un procedimiento para la preparación de copolímeros de gelatina y ciclodextrina, utilizando como agente de polimerización epiclorhidrina o butileno diglicidiléter. En la Patente US 6,048,736 se describe un procedimiento para unir covalentemente fármacos a unidades de ciclodextrina individualizadas o incorporadas a estructuras poliméricas. Las uniones fármaco- ciclodextrina y las uniones de las ciclodextrinas entre sí se establecen utilizando agentes reticulantes que dan lugar a enlaces biodegradables. La cesión del fármaco se produce específicamente en los lugares, en los que tiene lugar la ruptura de estos enlaces. En la Patente US2001/0021703 se describe un procedimiento de reticulación de micelas de ciclodextrinas anfifílicas, formadas a partir de dímeros, trímeros y polímeros de ciclodextrinas utilizando diglicidil y triglicildéteres. La incorporación del fármaco se lleva a cabo antes de la formación de las micelas y su cesión sólo tiene lugar una vez que las uniones entre las unidades de ciclodextrinas se degradan, actuando el agente reticulando como responsable del control de la cesión. En la Patente EP 0,387,681 se describe un procedimiento de preparación de sales amónicas de policiclodextrinas, solubles en agua, para ser usadas como agentes hipocolesterolémicos. El procedimiento incluye la reticulación de ciclodextrinas utilizando distintos agentes reticulantes y la posterior esterificación de las ciclodextrinas reticuladas para obtener la sal amónica.
Descripción de la invención El procedimiento de obtención de hidrogeles a base de ciclodextrinas, de ciclodextrinas y éteres de celulosa, o de ciclodextrinas y gomas guar, reticulados con moléculas que contienen dos o más grupos glicidiléter, no requiere la obtención previa de un monómero o de un derivado de ciclodextrina que cuente con grupos polimerizables ni, tampoco, la modificación previa de la estructura del éter de celulosa o de la goma guar. Para la realización del procedimiento se parte de ciclodextrinas, de ciclodextrinas y éteres de celulosa, o de ciclodextrinas y gomas guar. También se pueden utilizar derivados de ciclodextrinas, de éteres de celulosa o de gomas guar. Como agentes reticulantes se usan moléculas que cuentan con dos o más grupos glicidiléter en su estructura, por ejemplo, el diglicidileter, el etilenglicoldiglicidileter, el dietilenglicoldiglicidileter, el polietilenglicoldiglicidileter, el poliglicerolpoliglicidileter, el propilenglicoldiglicidileter, el gliceroldiglicidileter, el gliceroltriglicidileter, o bisfenol A diglicidileter, que son capaces de reaccionar simultáneamente con los grupos hidroxilo, amino o carboxilo de dos o más moléculas de ciclodextrina, o de una ciclodextrina y un éter de celulosa, o de una ciclodextrina y una goma guar. Los materiales resultantes presentan una estructura tridimensional tipo hidrogel. y son capaces de incorporar, sin disolverse, elevadas proporciones de agua dando lugar a sistemas viscoelásticos.
Para el procedimiento, se utiliza cualquier ciclodextrina o cualquiera de sus derivados. Son ejemplos de ciclodextrinas las ciclodextrinas naturales, la α-, β- y γ- ciclodextrina, y otras ciclodextrinas compuestas por más de ocho unidades de α— 1,4- glucopiranosa, conocidas como grandes ciclodextrinas, así como sus derivados, algunos de los cuales se recogen en la Tabla 1.
Figure imgf000012_0001
Figure imgf000013_0001
Tabla 1.- Ejemplos de derivados de α-, β- y γ- ciclodextrina.
Por éter de celulosa se entiende cualquier éter de celulosa iónico o no iónico. Son ejemplos de éteres de celulosa: metilcelulosa (MC), hidroxietilmetilcelulosa (HEMC), hidroxipropilcelulosa (HPC), hidroxipropilmetilcelulosa (HPMC), hidroxietilcelulosa (HEC), etilhidroxietilcelulosa (EHEC), carboximetilcelulosa sódica (CMCNa), sales de amonio cuaternario de hidroxietilcelulosa con sustituyente trimetilamonio (Polyquaternium 10), copolímeros de hidroxietil celulosa y cloruro de dimetil dialil amonio (Polyquaternium A). Para el procedimiento es apropiada cualquier variedad de goma guar, cualquier goma guar modificada o cualquiera de sus derivados. Son ejemplos de derivados de goma guar, sus éteres hidroxipropilados o carboxihidroxipropilados, sus derivados catiónicos (Ecopol) y los productos resultantes de la depolimerización de las gomas guar.
Para llevar a cabo el procedimiento se prepara, en primer lugar, la disolución de ciclodextrina en agua o en medio hidroalcohólico y se añade el volumen de una disolución de HCl o de otro agente acidificante, o de NaOH o de otro agente alcalinizante, que sea necesario para conseguir ajustar el pH a un valor adecuado para que transcurra el proceso de reticulación (ya sea ácido, neutro o alcalino). También se puede disolver la ciclodextrina directamente en un medio con el pH adecuado. Para preparar hidrogeles de ciclodextrinas y éteres de celulosa, o de ciclodextrinas y gomas guar, la incorporación del éter de celulosa o de la goma guar al agua o al medio hidroalcohólico, puede hacerse antes o después de disolver la ciclodextrina. En cualquiera de los dos casos, la disolución resultante se homogeneiza utilizando un agitador mecánico o magnético y, si es necesario, aplicando ultrasonidos. A continuación, se incorpora, con agitación, la cantidad adecuada de agente reticulante, en estado sólido o líquido, o en disolución. Para obtener hidrogeles de ciclodextrinas o sus derivados, la proporción de ciclodextrina o del derivado de ciclodextrina puede estar comprendida entre el 1 y el 95% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 4% (p/p) y el 70% (p/p), y la proporción del agente reticulante está comprendida entre el 99% y el 5%, del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 96% (p/p) y el 30% (p/p).
Para obtener hidrogeles de ciclodextrinas o sus derivados y éteres de celulosas o sus derivados, la proporción de ciclodextrina o del derivado de ciclodextrina está comprendida entre el 1% y el 95% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 4% (p/p) y el 70% (p/p); la proporción de éter de celulosa o del derivado de éter de celulosa está comprendida entre el 0.05% y el 95% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 0.1 % (p/p) y el 20 % (p/p); y la proporción del agente reticulante está comprendida entre 98.95% y el 4% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 96 % (p/p) y el 30 % (p/p).
Para obtener hidrogeles de ciclodextrinas o sus derivados y gomas guar o sus derivados, la proporción de ciclodextrina o del derivado de ciclodextrina está comprendida entre el 1% y el 95% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 4 % (p/p) y el 70 % (p/p); la proporción de goma guar o del derivado de goma guar puede estar comprendida entre el 0.05% y el 95% del total de los componentes del hidrogel excluida el agua, siendo valores típicos los comprendidos entre el 0.1 % (p/p) y el 20 % (p/p); y la proporción del agente reticulante está comprendida entre 98.95% y el 4% del total de los componentes del hidrogel, excluida el agua, siendo valores típicos los comprendidos entre el 96 % (p/p) y el 30 %
(p/p)-
La disolución obtenida se homogeneiza, se transfiere a un molde adecuado y se deja en reposo, a temperatura controlada entre 0 y 1000C, durante el tiempo necesario para que se complete la reticulación. Para establecer el tiempo necesario para conseguir la formación del hidrogel, se puede aplicar la reometría de cizalla oscilatoria utilizando muestras de las disoluciones de ciclodextrinas y agente reticulante, de ciclodextrinas, éteres de celulosa y agente reticulante, o de ciclodextrinas, gomas guar y agente reticulante. Esta técnica permite estimar el tiempo de gelificación y el tiempo necesario para completar el proceso de reticulación (Figura 1). El valor del parámetro tiempo de gelificación puede estar comprendido entre 1 segundo y 12 horas, siendo valores típicos entre 10 minutos y 2 horas. El tiempo necesario para completar la reticulación puede estar comprendido entre 3 segundos y 24 horas, siendo valores típicos entre 10 minutos y 6 horas. El hidrogel, una vez formado, se retira del molde y se sumerge, para su lavado, en un recipiente con medio acuoso o hidroalcoholico, hasta eliminar las sustancias que no hayan reaccionado. El proceso de lavado se da por finalizado cuando la absorbancia del medio de lavado es menor que 0.001 en la totalidad del intervalo de longitudes de onda comprendido entre 190 y 800 nm. Los tiempos de lavado suelen estar comprendidos entre 1 hora y 3 días.
Una vez lavados, los hidrogeles se dividen en porciones de forma y tamaño adecuados y se utilizan tal como se encuentran al extraerlos del líquido de lavado o después de someterlos a desecación. Para desecarlos se puede utilizar una estufa de vacio o con corriente de aire, a temperatura comprendida entre 30 y 800C. Los hidrogeles también se pueden desecar por liofilización.
A continuación, se puede incorporar el fármaco o la sustancia activa al hidrogel por inmersión directa en una disolución o en una suspensión del fármaco o de la sustancia activa, a temperatura comprendida entre 0 y 1000C y a la presión atmosférica, con ayuda o no de ultrasonidos. La incorporación también se puede llevar a cabo en autoclave a temperatura comprendida entre 100 y 13O0C.
Las composiciones obtenidas, con o sin fármacos o sustancias activas incorporados, se pueden usar como tales o como componentes base de formas farmacéuticas, medicamentos y productos fitosanitarios para el tratamiento de estados patológicos o fisiológicos en humanos, animales y plantas, tales como formas transdérmicas, formas transmucosales, como por ejemplo, las formas de dosificación bucales, orales, rectales, oculares, nasales, óticas o vaginales, e implantes parenterales. También se pueden utilizar como agentes secuestrantes de sustancias biológicas o tóxicas en organismos vivos, por ejemplo colesterol, glucosa o ácidos biliares, o en el medio ambiente. La invención también cubre su uso en cosmética. Ventajas y mejoras sobre procedimientos y materiales ya existentes
El procedimiento objeto de la invención conduce a la obtención de composiciones con una estructura tridimensional tipo hidrogel con una alta afinidad por el agua, pero que no se disuelven, y que están dotadas de una alta capacidad de incorporación de fármacos, sustancias activas, moléculas biológicas o tóxicos con estructuras y propiedades físico- químicas muy diversas, formando complejos de inclusión con las ciclodextrinas que forman parte de su estructura. La capacidad de incorporación de fármaco o de sustancia activa de las composiciones que contienen ciclodextrinas y éteres de celulosa o sus derivados, o ciclodextrinas y gomas guar o sus derivados está comprendida entre el 50 y el 5000% (p/p) de la que presentan hidrogeles obtenidos, en las mismas condiciones, con éteres de celulosa o sus derivados, o gomas guar o sus derivados, sin ciclodextrinas. Por lo tanto, en estas nuevas composiciones, la capacidad de incorporación de sustancias está fuertemente potenciada con respecto a los hidrogeles preparados exclusivamente con éteres de celulosa o sus derivados, o gomas guar o sus derivados. Ello supone una mejora muy importante para el uso de las composiciones como portadores de fármacos o de sustancias activas en humanos, animales o plantas, o como sistemas "trampa" de sustancias biológicas o tóxicas en organismos vivos o de contaminantes en aguas.
Las composiciones presentan, en el estado hidratado, propiedades viscoelásticas. Las composiciones son también muy adecuadas para controlar la cesión de fármacos o de sustancias activas, que se incorporan por inmersión, en sus disoluciones o en sus suspensiones, del hidrogel una vez sintetizado, por difusión o formación de complejos de inclusión y/o uniones de naturaleza no covalente. Las composiciones proporcionan diferentes velocidades de cesión dependiendo de su composición cuali- y cuatitativa, y de las propiedades fisicoquímicas del fármaco, especialmente de su hidrosolubilidad y de su afinidad por la cavidad de la ciclodextrina. Para un fármaco o una sustancia activa hidrosoluble con constante de afinidad por hidroxipropil-beta- ciclodextrina igual a 115 M"1, son valores típicos de porcentaje cedido 50% al cabo de 2 horas, 80% al cabo de 4 horas y 100% al cabo de 8 horas. Para un fármaco o una sustancia activa lipofílica con constante de afinidad por hidroxipropil-beta-ciclodextrina igual a 17000 M"1, son valores típicos de porcentaje cedido 20% al cabo de 2 horas, 50% al cabo de 8 horas y 70% al cabo de 48 horas.
También pueden servir para dirigir fármacos hacia zonas específicas en seres vivos, mediante cambios asociados a las condiciones del entorno, en el grado de hinchamiento del hidrogel o en la afinidad del fármaco por los componentes del hidrogel. Todas estas características se pueden modular a través de una adecuada selección de la variedad y/o de la proporción de ciclodextrina/s y de los éteres de celulosa o sus derivados, o gomas guar o sus derivados que la/s acompañe/n. La baja o nula toxicidad de las ciclodextrinas, los éteres de celulosa; las gomas guar y sus derivados, y los agentes reticulantes glicidiléter hacen que las composiciones resultantes puedan ser utilizadas como componentes de formas farmacéuticas, de preparados cosméticos o sistemas
"trampa" para captar moléculas de organismos vivos o del ambiente, sin plantear problemas de biocompatibilidad o de impacto ambiental. Además, el procedimiento transcurre en condiciones que no comprometen, en general, la estabilidad de los fármacos o las sustancias activas, y no genera residuos que impliquen riesgos de contaminación ambiental.
Aplicaciones comerciales
Las composiciones pueden ser utilizadas en campos muy diversos, como el desarrollo de formas farmacéuticas y sistemas de liberación de fármacos y sustancias activas de cesión inmediata o capaces de controlar la cesión o de dirigir el fármaco hacia zonas específicas, preparados cosméticos o sistemas de liberación de sustancias activas o productos fitosanitarios, para ser utilizados en humanos, animales y plantas. También se pueden utilizar para desarrollar sistemas capaces de secuestrar, en el entorno biológico, sustancias tóxicas o moléculas producidas por organismos vivos. También pueden aplicarse en la extracción de contaminantes de aguas u otros medios líquidos. Ejemplos de la invención
A continuación, se incluyen algunos ejemplos que muestran la obtención de hidrogeles utilizando ciclodextrinas o sus derivados, ciclodextrinas o sus derivados y éteres de celulosa o sus derivados, ciclodextrinas o sus derivados y gomas guar y sus derivados. También se incluyen ejemplos de la monitorización del proceso de formación de algunos hidrogeles mediante técnicas de reometría oscilatoria. También se incluyen ejemplos de la preparación de composiciones que incorporan fármacos y controlan su cesión. También se incluye un ejemplo en el que se prueba la formación de complejos de inclusión de un fármaco con las unidades de ciclodextrina incorporadas al hidrogel. Ejemplo 1. Procedimiento de obtención de un hidrogel a base de γ-ciclodextrina
Se prepararó una disolución de γ-ciclodextrina, al 20% (p/p), en NaOH 0.2M. A continuación, a 5 mL de esta disolución se le adicionaron 2 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua, de manera que la concentración final de agente reticulante fue del 14.28%. La mezcla se sometió a agitación durante 1 minuto para conseguir su completa homogeneización. A continuación, se transfirió a un tubo de ensayo de 0.8 cm de diámetro interno, y se dejó en reposo a 5O0C durante 12 horas, para completar la formación del hidrogel. Transcurrido este tiempo, el hidrogel se extrajo del molde y se lavó por inmersión en HCl 0.01M y agua destilada, permaneciendo en cada medio 12 horas. La proporción de γ-ciclodextrina en el hidrogel es del 58.34 % (p/p) y la proporción del agente reticulante es del 41.66 % (p/p) del total de los componentes del hidrogel excluida el agua.
Ejemplo 2. Procedimiento de obtención de un hidrogel a base de γ-ciclodextrina e hidroxipropilmetilcelulosa (HPMC) y monitorización del proceso. Se prepararó una disolución de γ-ciclodextrina, al 20% (p/p), en NaOH 0.2M, y se le incorporó hidroxipropilmetilcelulosa (HPMC) de viscosidad nominal 4000 cPs, en la cantidad necesaria para alcanzar una concentración final de éter de celulosa del 0.4% (p/p). A continuación, a 5 mL de esta disolución se le adicionaron 2 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua, de manera que la concentración final de agente reticulante fue del 14.28%. La mezcla se sometió a agitación durante 1 minuto para conseguir su completa homogeneización. Inmediatamente, una muestra de la mezcla se transfirió al plato Peltier de un reómetro de torsión de esfuerzo controlado y se ensayó a 500C en modo oscilatorio, aplicando una fuerza de cizalla de 0.1Pa a una frecuencia de 0.1 rad/s, para registrar la evolución en el tiempo de los módulos de almacenamiento y de pérdida (Figura 2). El tiempo de gelificación fue de, aproximadamente, 15 minutos y el tiempo necesario para completar el proceso de reticulación fue de aproximadamente 45 minutos. El resto de la mezcla se transfirió a un tubo de ensayo de 0.8 cm de diámetro interno y se dejó en reposo a 500C durante 12 horas. Transcurrido este tiempo, el hidrogel se extrajo del molde y se lavó por inmersión en HCl 0.0 IM y agua destilada, permaneciendo en cada medio 12 horas. La proporción de γ-ciclodextrina en el hidrogel es del 57.67% (p/p), la proporción de HPMC es del 1.15 % (p/p) y la proporción del agente reticulante es del 41.66 % (p/p) del total de los componentes del hidrogel excluida el agua. Ejemplo 3. Procedimiento de obtención de un hidrogel a base de hidroxipropil-β- ciclodextrina y carboximetilcelulosa sódica (CMCNa), y monitorización del proceso. Se prepararon disoluciones de hidroxipropil-β-ciclodextrina, al 20% (p/p), en NaOH 0.2M o en KOH 0.2M. A alícuotas de 5 mL de estas disoluciones se le incorporó carboximetilcelulosa sódica de viscosidad nominal 400-800 cps, en las cantidades necesarias para alcanzar una concentración final del éter de celulosa del 0.4% (p/p) ó del 0.8% (p/p). A continuación, se adicionaron a cada disolución 2 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua (concentración final 14.28%). Las mezclas se sometieron a agitación durante 1 minuto para conseguir su completa homogeneización. Inmediatamente, se tomaron muestras de cada mezcla, se transfirieron al plato Peltier de un reómetro de torsión de esfuerzo controlado y se ensayaron a 5O0C en modo oscilatorio, aplicando una fuerza de cizalla de 0.1Pa a una frecuencia de 1 rad/s, para registrar la evolución en el tiempo de los módulos de almacenamiento y de pérdida (Figura 3). El tiempo de gelificación fue, en todos los casos, inferior a 1 hora y el tiempo necesario para completar el proceso de reticulación fue de 6 horas cuando se utilizó NaOH y de 12 horas cuando se utilizó KOH como agente alcalinizante. Las porciones restantes de las mezclas se transfirieron a tubos de ensayo de 0.8 cm de diámetro interno y se dejaron en reposo a 5O0C durante 12 horas. Transcurrido este tiempo, los hidrogeles se extrajeron de los moldes y se lavaron por inmersión en HCl 0.01M y agua destilada, permaneciendo en cada medio 12 horas. La proporción de hidroxipropil-β-ciclodextrina en estos hidrogeles está comprendida entre el 57.0% y el 57.7% (p/p), la proporción de carboximetilcelulosa sódica está comprendida entre el 1.15 % y el 2.29 % (p/p) y la proporción del agente reticulante está comprendida entre el 41.18 % y el 40.71% (p/p) del total de los componentes del hidrogel excluida el agua.
Un incremento en la concentración de carboximetilcelulosa sódica o la utilización de NaOH, en lugar de KOH como agente alcalinizante, permitió incrementar los valores de ambos módulos, reduciendo el tiempo de gelificación y dando lugar a hidrogeles más viscoelásticos.
Ejemplo 4. Procedimiento de obtención de un hidrogel a base de metil-β- ciclodextrina cristalina e hidroxipropilmetilcelulosa (HPMC), y monitorización del proceso. Se prepararó una disolución de metil-β-ciclodextrina (CRISMEB), al 15% (p/p), en HCl 0.1M, y se le incorporó hidroxipropilmetilcelulosa (HPMC) de viscosidad nominal 4000 cPs, en la cantidad necesaria para alcanzar una concentración final de éter de celulosa del 0.4% (p/p). A continuación, a 10 mL de esta disolución se le adicionaron 2 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua, de manera que la concentración final de agente reticulante fue del 14.28%. La mezcla se sometió a agitación durante 1 minuto para conseguir su completa homogeneización. Inmediatamente, se transfirió una muestra de la mezcla al plato Peltier de un reómetro de torsión de esfuerzo controlado y se ensayó a 500C en modo oscilatorio, aplicando una fuerza de cizalla de 0.1 Pa a una frecuencia de 0.1 rad/s, para registrar la evolución en el tiempo de los módulos de almacenamiento y de pérdida (Figura 4). El tiempo de gelificación fue de, aproximadamente, 20 minutos y el tiempo necesario para completar el proceso de reticulación fue de, aproximadamente, 45 minutos. El resto de la mezcla se transfirió a un tubo de ensayo de 0.8 cm de diámetro interno y se dejó en reposo a 5O0C durante 12 horas. Transcurrido este tiempo, el hidrogel se extrajo del molde y se lavó por inmersión en NaOH 0.01M y agua destilada, permaneciendo en cada medio 12 horas. La proporción de metil-β-ciclodextrina en el hidrogel es del 50.54% (p/p), la proporción de HPMC es del 1.35 % (p/p) y la proporción del agente reticulante es del 48.11% (p/p) del total de los componentes del hidrogel excluida el agua. Ejemplo 5. Procedimiento de obtención de un hidrogel a base de hidroxipropil-β- ciclodextrina y goma guar catiónicamente modificada, y monitorización del proceso. Se prepararon disoluciones de hidroxipropil-β-ciclodextrina, al 20% (p/p), en NaOH 0.2M o en KOH 0.2M. A alícuotas de 5 mL de estas disoluciones se le incorporó goma guar catiónicamente modificada (Ecopol E-261-S) de peso molecular 200000 Da, en las cantidades necesarias para alcanzar una concentración final de goma guar del 0.4% (p/p) o del 0.8% (p/p). A continuación, se adicionaron a cada mezcla 2 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua, de manera que la concentración final de agente reticulante rué, en todos los casos, del 14.28%. Las mezclas se sometieron a agitación magnética durante 1 minuto para conseguir su completa homogeneización. Inmediatamente, se tomaron muestras de cada mezcla, se transfirieron al plato Peltier de un reómetro de torsión de esfuerzo controlado y se ensayaron a 5O0C en modo oscilatorio, aplicando una fuerza de cizalla de 0.1Pa a una frecuencia de 1 rad/s, para registrar la evolución en el tiempo de los módulos de almacenamiento y de pérdida (Figura 5). El tiempo de gelificación fue, en todos los casos, inferior a 1 hora y el tiempo necesario para completar el proceso de reticulación fue de 6 horas.
Las porciones restantes de las mezclas se transfirieron a tubos de ensayo de 0.8 cm de diámetro interno y se dejaron en reposo a 5O0C durante 12 horas. Transcurrido este tiempo, los hidrogeles se extrajeron de los moldes y se lavaron por inmersión en HCl 0.01M y agua destilada, permaneciendo en cada medio 12 horas. La proporción de hidroxipropil-β-ciclodextrina en estos hidrogeles está comprendida entre el 57.0% y el 57.7% (p/p), la proporción de goma guar catiónicamente modificada está comprendida entre el 1.15 % y el 2.29 % (p/p) y la proporción del agente reticulante está comprendida entre el 41.18 % y el 40.71% (p/p) del total de los componentes del hidrogel excluida el agua. Un incremento en la concentración de goma guar catiónicamente modificada permitió incrementar los valores de ambos módulos, reduciendo el tiempo de gelificación y dando lugar a hidrogeles más viscoelásticos.
Ejemplo 6. Procedimiento de obtención de una composición a base de hidroxipropil- β-ciclodextrina y de una composición a base de hidroxipropil-β-ciclodextrina e hidroxipropilmetilcelulosa (HPMC), que incorporan diclofenaco sódico y lo ceden de manera controlada.
Se preparó una disolución de hidroxipropil-β-ciclodextrina, al 20% (p/p), en NaOH 0.2M. A alícuotas de 5 mL de esta disolución se le adicionaron cantidades de hidroxipropilmetilcelulosa (HPMC) de viscosidad nominal 4000 cPs, necesarias para alcanzar concentraciones de éter de celulosa comprendidas entre el 0.2% (p/p) y el 1.0% (p/p). A cada una de las disoluciones resultantes se le adicionaron 2 mL de una disolución de etilenglicoldiglicidileter en agua al 50% (p/p), de manera que la concentración final de agente reticulante fue en todos los casos 14.28%. Las mezclas se homogeneizaron utilizando un agitador magnético, se transfirieron a tubos de ensayo de 0.8 cm de diámetro interno, y se dejaron en reposo a 5O0C durante 12 horas, para completar la formación del hidrogel. Transcurrido este tiempo, los hidrogeles se extrajeron de los moldes y se sumergieron en agua destilada. Al cabo de 12 horas, se transfirieron a recipientes con HCl 0.01M, donde se mantuvieron durante otras 12 horas. Por último, se sumergieron 12 horas más en agua destilada. Cada hidrogel se dividió en porciones, con forma de disco, de 8 mm de diámetro y 5 mm de espesor. Tres discos de hidrogel se colocaron directamente en viales con 10 mL de disolución de diclofenaco al 0.1% (p/p) o al 0.5% (p/p) durante dos días. Otros tres discos de hidrogel se sometieron a desecación en estufa a 4O0C antes de introducirlos en los viales con la disolución de diclofenaco. Para determinar la cantidad de diclofenaco incorporada a cada disco de hidrogel, se midió la absorbancia del medio a 276 nm, antes y una vez completado el proceso de incorporación. En la Tabla 2, se muestran a modo de ejemplo los contenidos en diclofenaco de discos de hidrogel de diferente composición, a los que se incorporó el fármaco después de someterlos a desecación en estufa.
Disoluciones de Composición del hidrogel Cantidad de diclofenaco partida incorporado (mg /g hidrogel seco)
HPβCD HPMC HPβCD HPMC EGDE Hidrogeles Hidrogeles sumergidos en sumergidos en
(%, p/p) (%, p/p) (%, p/p) (%, p/p) (%, p/p) disolución de disolución de fármaco al 0.1% fármaco al 0.5%
20 0 58.34 0 41.66 11.08 424.13
20 0.2 58.00 0.58 41.42 10.31 285.54
20 0.4 57.67 1.15 41.18 8.95 120.96
20 0.6 57.34 1.72 40.94 14.23 132.72
20 0.8 57.01 2.28 40.71 16.97 120.85 20 56.69 2.83 40.48 14.94 169.51
Tabla 2. Cantidad de diclofenaco incorporada por hidrogeles de hidroxipropil-β- ciclodextrina (HPβCD) o por hidrogeles de hidroxipropil-β-ciclodextrina e hidroxipropilmetilcelulosa (HPMC), reticulados con etilenglicoldiglicidiléter (EGDE).
Tras la incorporación del diclofenaco, los hidrogeles se desecaron en estufa de aire a 4O0C. Sus espectros Raman se registraron en un espectrofotómetro IR con transformada de Fourier. En la Figura 6 se muestran los espectros IR, en los que se observan desplazamientos de aproximadamente 2 cm"1 hacia valores más bajos de número de ondas y cambios en la intensidad de las bandas situadas entre 1500 y 1650 cm"1, que son característicos de la formación de un complejo entre el fármaco y la ciclodextrina (Iliescu et al., Eur. J. Pharm. ScL 22: 487-495, 2004). Estos hechos confirman que el fármaco está incorporado al hidrogel formando complejos de inclusión con sus unidades de ciclodextrina.
En las Figuras 7 y 8 se muestran los perfiles de cesión de diclofenaco a partir de hidrogeles preparados con hidroxipropil-β-ciclodextrina, sin hidroxipropilmetilcelulosa o con un 0.4% (p/p) de hidroxipropilmetilcelulosa, respectivamente. El ensayo se llevó a cabo utilizando 25 mL de agua sin agitación. Todas las composiciones controlaron el proceso de liberación hasta un máximo de 8 horas. Ejemplo 7. Procedimiento de obtención de composiciones a base de hidroxipropil-β- ciclodextrina e hidroxipropilmetilcelulosa (HPMC), que incorporan estradiol y lo ceden de manera controlada.
Se prepararon disoluciones de hidroxipropil-β-ciclodextrina, al 15%, 20% y 25% (p/p), en NaOH 0.2M. A cada una de ellas, se le incorporó la cantidad necesaria de hidroxipropilmetilcelulosa (HPMC) de viscosidad nominal 4000 cPs, para alcanzar una concentración final de éter de celulosa del 0.4% (p/p), y el volumen de disolución de etilenglicoldiglicidiléter en agua al 50% (p/p) necesario para conseguir una concentración final de agente reticulante del 14.28% (p/p). Las mezclas se homogeneizaron utilizando un agitador magnético, se transfirieron a tubos de ensayo de 0.8 cm de diámetro interno, y se dejaron en reposo a 5O0C durante 12 horas, para completar la formación del hidrogel. Transcurrido este tiempo, los hidrogeles se extrajeron de los moldes y se sumergieron en agua destilada. Al cabo de 12 horas, se transfirieron a recipientes con HCl 0.01M, donde se mantuvieron durante otras 12 horas. Por último, se sumergieron 12 horas más en agua destilada y se mantuvieron en este medio hasta el momento de la incorporación del estradiol. Cada hidrogel se dividió en porciones, con forma de disco, de 8 mm de diámetro y 5 mm de espesor. La proporción de hidroxipropil-β-ciclodextrina en estos hidrogeles está comprendida entre el 50.54% y el 63.00% (ρ/ρ), la proporción de HPMC está comprendida entre el 1.35% y el 1.00% (p/p) y la proporción del agente reticulante está comprendida entre el 48.11% y el 35.99% (p/p) del total de los componentes del hidrogel excluida el agua.
El estradiol se incorporó a cada una de estas porciones sumergiéndolas, en recipientes adecuados, en 10 mL de una suspensión de fármaco al 0.2% (p/p). Los recipientes se cerraron y se llevaron a un autoclave donde se sometieron a un ciclo de calentamiento (1210C, 16 minutos), manteniéndolos, a continuación, durante siete días en una cámara termostatizada a 25°C. La cantidad de estradiol incorporada se determinó sumergiendo los hidrogeles en 15 mL de una disolución acuosa de dodecilsulfato sódico al 0.3% (p/p), durante 14 días, y valorando por espectrofotometría directa la cantidad de fármaco cedida al medio, que resultó estar comprendida entre 550 y 700 microgramos de estradiol por disco de hidrogel.
Los hidrogeles con el estradiol incorporado se sumergieron en 15 mL de una disolución acuosa de dodecilsulfato sódico al 0.3% (p/p) y se valoró, por espectrofotometría ultravioleta a 280 nm, la cantidad de fármaco cedida a distintos tiempos (Figura 9). Los perfiles de cesión obtenidos muestran que las composiciones controlan el proceso de cesión durante más de una semana.
Relación de Figuras
Figura 1. Evolución en el tiempo de los valores de módulo de almacenamiento (•) y pérdida (o) durante la reticulación de hidroxipropil-β-ciclodextrina (20%, p/p) e hidroxipropilmetilcelulosa (0.4% p/p) con etilenglicoldiglicidileter (14.28%, p/p) a 5O0C. Figura 2. Evolución en el tiempo de los valores de módulo almacenamiento (•) y pérdida (o) durante la reticulación de γ-ciclodextrina (20%, p/p) e hidroxipropilmetilcelulosa (HPMC) (0.4%, p/p) en NaOH 0.2 M con etilenglicoldiglicidileter (14.28%, p/p) a 5O0C. Figura 3. Evolución en el tiempo de los valores de módulo almacenamiento (•, A) y pérdida (o, Δ) durante la reticulación de hidroxipropil-beta-ciclodextrina (20%, p/p) con carboximetilcelulosa (0.4%, p/p) y etilenglicoldiglicidileter (14.28%, p/p) en NaOH 0.2M (•, o) o en KOH 0.2M (Á,Δ) a 5O0C.
Figura 4. Evolución en el tiempo de los valores de módulo almacenamiento (•) y pérdida (o) durante la reticulación de metil-β-ciclodextrina (20%, p/p) e hidroxipropilmetilcelulosa (HPMC) (0.4%, p/p) en HCl 0.1M con etilenglicoldiglicidileter
(14.28%, p/p) a 5O0C.
Figura 5. Evolución en el tiempo de los valores de módulo almacenamiento (•, A) y pérdida (o, Δ) durante la reticulación de hidroxipropil-beta-ciclodextrina (20%, p/p) y goma guar canónicamente modificada (0.4%, p/p) en NaOH 0.2 M (•, o) o al 0.8% (p/p) en KOH 0.2M ( A,Δ) con etilenglicoldiglicidileter (14.28%, p/p) a 5O0C. Figura 6. Espectros FT-Raman en la región 1550-1630 cm"1 de (a) diclofenaco, (b) hidrogel desecado de hidroxipropilmetilcelulosa (HPMC) (0.4%, p/p) e hidroxipropil- beta-ciclodextrina (HPβCD) (20%, p/p) con diclofenaco incorporado por inmersión en disolución de fármaco al 0.5% (p/p), (c) hidrogel desecado de HPβCD (20%, p/p) con diclofenaco incorporado por inmersión en disolución de fármaco al 0.5% (p/p), (d) hidrogel desecado de HPMC (0.4%, p/p) y HPβCD, (e) hidrogel desecado de HPβCD (20% (p/p), (f) HPMC, (g) HPβCD. Figura 7. Perfiles de cesión de diclofenaco a partir de las composiciones a base de hidroxipropil-beta-ciclodextrina (HPβCD) (20%, p/p) a las que se les incorporó el fármaco por inmersión en una disolución de diclofenaco sódico al 0.1% (p/p) (Tabla 2). Las composiciones se introdujeron en el medio de cesión directamente (•) o después de desecarlas en estufa a 400C (o). Los ensayos se llevaron a cabo en 25 mL de agua, sin agitación. Figura 8. Perfiles de cesión de diclofenaco sódico a partir de las composiciones a base de hidroxipropil-beta-ciclodextrina (HPβCD) (20%, p/p) e hidroxipropilmetilcelulosa (HPMC) (0.4%, p/p), a las que se les incorporó el fármaco por inmersión en una disolución de diclofenaco sódico al 0.1% (p/p) (Tabla 2). Las composiciones se introdujeron en el medio de cesión directamente (•) o después de desecarlas en estufa a 4O0C (o). Los ensayos se llevaron a cabo en 25 mL de agua, sin agitación.
Figura 9. Perfiles de cesión de estradiol a partir de las composiciones a base de hidroxipropilmetilcelulosa (HPMC) al 0.4% (p/p) e hidroxipropil-beta-ciclodextrina (HPβCD) al 15% (p/p) (•), al 20% (p/p) (o) y al 25% (p/p) (m), con etilenglicoldiglicidileter (14.28% p/p), a las que se les incorporó el fármaco por inmersión en una supensión de estradiol, autoclavado a 1210C durante 16 minutos y almacenamiento, durante siete días, en una cámara termostatizada a 25°C. Los ensayos se llevaron a cabo en 15 mL de disolución acuosa de dodecilsulfato sódico al 0.3% (p/p), sin agitación.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de hidrogeles caracterizado por que los hidrogeles están constituidos por: i. ciclodextrinas o sus derivados; o ii. ciclodextrinas o sus derivados, y éteres de celulosa o sus derivados; o iii. ciclodextrinas o sus derivados, y gomas guar o sus derivados; iv. y, además, empleando como agente reticulante: moléculas que contienen en su estructura dos o más grupos glicidiléter.
2. Procedimiento de obtención de hidrogeles, según la reivindicación 1, caracterizado porque en el caso i) comprende las siguientes etapas: a) disolución de la ciclodextrina o de un derivado de ciclodextrina en agua o medio hidroalcohólico; b) ajuste del pH de la disolución; c) incorporación del agente reticulante y homogeneización de la mezcla; d) transferencia a un molde; e) mantenimiento en cámara termo statizada a temperatura comprendida entre 0 y 1000C; f) extracción del molde; g) lavado del hidrogel; h) división en porciones de forma y tamaño adecuados.
3. Procedimiento de obtención de hidrogeles, según la reivindicación 1 y 2, caracterizado porque en el caso ii) comprende las siguientes etapas: a) disolución de la ciclodextrina o de un derivado de ciclodextrina, y del éter de celulosa o de un derivado del éter de celulosa en agua o medio hidroalcohólico; y a continuación las etapas b) a h) de la reivindicación 2.
4. Procedimiento de obtención de hidrogeles, según la reivindicación 1 y 2, caracterizado porque en el caso iii) comprende las siguientes etapas: a) disolución de la ciclodextrina o de un derivado de ciclodextrina, y de la goma guar o de un derivado de goma guar en agua o medio hidroalcohólico; y a continuación las etapas b) a h) de la reivindicación 2.
5. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1, 2, 3 y 4, caracterizado porque en las etapas a) y b) el medio de reacción es agua o medio hidroalcohólico y presenta un pH ácido, neutro o alcalino.
6. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1, 2, 3, 4 y 5, que incluye una etapa de secado de los hidrogeles en estufa de vacio o con corriente de aire, o por liofilización, entre las etapas g) y h) o después de la h).
7. Procedimiento de obtención de hidrogeles, según las reivindicaciones anteriores, caracterizado porque las ciclodextrinas o sus derivados son las α-, β- y γ- ciclodextrinas, las ciclodextrinas compuestas por más de ocho unidades de α-l,4-glucopiranosa, y los derivados metil-, etil-, butil-, hidroxietil-, 2-hidroxipropil-, 2-hidroxibutil-, acetil-, propionil-, butiril-, succinil-, benzoil-, palmitil-, toluensulfonil-, acetilmetil-, acetil butil-, glucosil-, maltosil-, carboximetil éter-, carboximetil etil-, fosfato éster-, 3- trimetilamoniun-, sulfobutil éter- ciclodextrina, y los polímeros de ciclodextrina.
8. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1 y 3, caracterizado porque los éteres de celulosa o sus derivados son éteres iónicos o no iónicos, tales como metilcelulosa (MC), hidroxietilmetilcelulosa (HEMC), hidroxipropilcelulosa (HPC), hidroxipropilmetilcelulosa (HPMC), hidroxietilcelulosa (HEC), etilhidroxietilcelulosa (EHEC), carboximetilcelulosa sódica (CMCNa), las sales de amonio cuaternario de hidroxietilcelulosa con sustituyente trimetilamonio y los copolímeros de hidroxietil celulosa y cloruro de dimetil dialilamonio.
9. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1 y 4, caracterizado porque las gomas guar o sus derivados son cualquier goma guar, cualquier goma guar modificada o cualquier derivado de goma guar, como cualquier éter hidroxipropilado o carboxihidroxipropilado, cualquier derivado catiónico o cualquier producto resultante de su depolimerización.
10. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1 a 6, caracterizado porque el agente reticulante es una sustancia que contiene en su estructura dos o más grupos glicidiléter; entendiéndose por glicidiléter: oxirano, epóxido, u óxido de alqueno; tales como: diglicidiléter, etilenglicoldiglicidileter, dietilenglicoldiglicidileter, propilenglicoldiglicidiléter, polietilenglicolpoliglicidileter, gliceroldiglicidiléter, gliceroltriglicidileter, poliglicerolpoliglicidileter y bisfenol A diglicidiléter.
11. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1, 2, 7 y 10, caracterizado porque la proporción de ciclodextrina o del derivado de ciclodextrina está comprendida entre el 1 y el 95% del total de los componentes del hidrogel, y la proporción del agente reticulante está comprendida entre el 99% y el 5%.
12. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1, 3, 8 y 10, caracterizado porque la proporción de ciclodextrina o del derivado de ciclodextrina está comprendida entre el 1% y el 95%; la proporción de éter de celulpsa o del derivado de éter de celulosa está comprendida entre el 0.05% y el 95%; y la proporción del agente reticulante está comprendida entre 98.95% y el 4% del total de los componentes del hidrogel.
13. Procedimiento de obtención de hidrogeles, según las reivindicaciones 1, 4, 9 y 10, caracterizado porque la proporción de ciclodextrina o del derivado de ciclodextrina está comprendida entre el 1% y el 95%: la proporción de goma guar o del derivado de goma guar está comprendida entre el 0.05% y el 95%; y la proporción del agente reticulante está comprendida entre 98.95% y el 4% del total de los componentes del hidrogel.
14. Procedimiento de obtención de hidrogel es, según las reivindicaciones anteriores, que incluye una etapa de incorporación de fármaco o de sustancia activa por inmersión del hidrogel, húmedo o previamente desecado, en una disolución o en una suspensión del fármaco o de la sustancia activa, a temperatura comprendida entre 0 y 1000C y a la presión atmosférica, con ayuda o no de ultrasonidos. La incorporación también se puede llevar a cabo en autoclave a temperatura comprendida entre 100 y 13O0C
15. Composiciones obtenidas según las reivindicaciones anteriores.
16. Composiciones, según las reivindicaciones anteriores, que incorporan a los hidrogeles, fármacos, sustancias activas o nutrientes para su liberación controlada.
17. Composiciones, según las reivindicaciones anteriores, caracterizadas porque, en organismos vivos o en el medioambiente, capturan sustancias biológicas o tóxicas actuando como agentes secuestrantes.
18. Uso de las composiciones, según las reivindicaciones anteriores, para la elaboración de un medicamento o un producto fitosanitario para el tratamiento de estados patológicos o fisiológicos en humanos, animales y plantas.
19.- Uso de las composiciones, según la reivindicación 18, para la elaboración de un medicamento para administrar por vía transdérmica, transmucosal, bucal, oral, rectal, ocular, nasal, ótica o vaginal, o como implante parenteral.
20.- Uso de las composiciones, según las reivindicaciones 1 a 16, para la preparación de cosméticos.
21. Uso de las composiciones, según la reivindicación 17, para la elaboración de un agente secuestrante de sustancias biológicas o tóxicas para actuar en organismos vivos o en el medioambiente.
PCT/ES2006/000096 2005-02-25 2006-02-15 Procedimiento de obtención de hidrogeles de ciclodextrinas con glicidiléteres, las composiciones obtenidas y sus aplicaciones WO2006089993A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06725794A EP1873167A4 (en) 2005-02-25 2006-02-15 METHOD FOR THE PRODUCTION OF HYDROGELS OF CYCLODEXTRINS WITH GLYCIDYL ETHERS, COMPOSITIONS OBTAINED THEREFOR AND APPLICATIONS THEREOF
US11/887,167 US20090214604A1 (en) 2005-02-25 2006-02-15 Method of obtaining hydrogels of cyclodextrins with glycidyl ethers, compositions thus obtained and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200500556A ES2310948B2 (es) 2005-02-25 2005-02-25 Procedimiento de obtencion de hidrogeles de ciclodextrinas con glicidileteres, las composiciones obtenidas y sus aplicaciones.
ESP200500556 2005-02-25

Publications (3)

Publication Number Publication Date
WO2006089993A2 true WO2006089993A2 (es) 2006-08-31
WO2006089993A3 WO2006089993A3 (es) 2006-11-02
WO2006089993B1 WO2006089993B1 (es) 2006-11-30

Family

ID=36927789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000096 WO2006089993A2 (es) 2005-02-25 2006-02-15 Procedimiento de obtención de hidrogeles de ciclodextrinas con glicidiléteres, las composiciones obtenidas y sus aplicaciones

Country Status (4)

Country Link
US (1) US20090214604A1 (es)
EP (1) EP1873167A4 (es)
ES (1) ES2310948B2 (es)
WO (1) WO2006089993A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003656A1 (en) * 2007-07-04 2009-01-08 Sea Marconi Technologies Di Vander Tumiatti S.A.S. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs
WO2010018293A1 (es) 2008-08-06 2010-02-18 Universidade De Santiago De Compostela Hidrogeles acrílicos con ciclodextrinas colgantes, su preparación y su aplicación como sistemas de liberación y componentes de lentes de contacto
US9161987B2 (en) 2007-11-28 2015-10-20 Fziomed, Inc. Carboxymethylcellulose polyethylene glycol compositions for medical uses

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20115279A0 (fi) * 2011-03-22 2011-03-22 Teknologian Tutkimuskeskus Vtt Oy Menetelmä hydrogeelin valmistamiseksi ksylaanipolysakkaridista ja hydrogeeli
ES2371898B2 (es) * 2011-09-29 2012-06-13 Universidade De Santiago De Compostela Nanogeles de ciclodextrina.
EP2698392A1 (en) * 2012-08-17 2014-02-19 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Polymer network material comprising a poly(glycidyl ether) structure, method of its production and use
RU2019135202A (ru) 2017-04-05 2021-05-05 Джелесис ЭлЭлСи Улучшенные сверхвпитывающие материалы и способы их получения
CN109081927B (zh) * 2018-06-25 2020-07-03 天津科技大学 一种水凝胶的制备方法
CN109734934B (zh) * 2019-01-11 2021-11-02 闽江学院 一种纳米纤维素温敏凝胶的制备方法
CN112915064A (zh) * 2021-02-02 2021-06-08 大连海事大学 一种药物缓释载体水凝胶的制备方法及其应用
US20220332924A1 (en) * 2021-04-09 2022-10-20 Qatar Foundation For Education, Science And Community Development Cyclodextrin-derived polymer nanoparticles for adsorption and synthesis thereof
CN114304143A (zh) * 2021-12-06 2022-04-12 盐城工学院 一种农药传递体系及其制备方法
US20230348796A1 (en) * 2022-04-28 2023-11-02 Saudi Arabian Oil Company Polymer-metal salt composite for the dehydration of water from sweet gas and liquid condensate streams

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420788A (en) 1964-04-29 1969-01-07 Afico Sa Inclusion resins of cyclodextrin and methods of use
US4357468A (en) 1980-08-07 1982-11-02 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Sorbents of cellulose basis capable of forming inclusion complexes and a process for the preparation thereof
US4596795A (en) 1984-04-25 1986-06-24 The United States Of America As Represented By The Secretary, Dept. Of Health & Human Services Administration of sex hormones in the form of hydrophilic cyclodextrin derivatives
US4727064A (en) 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
JPS6312490B2 (es) 1983-07-14 1988-03-19 Kogyo Gijutsuin
EP0916925A1 (en) 1997-11-17 1999-05-19 YASHIMA ELECTRIC CO., Ltd. Inclination sensor
ES2187457T3 (es) 1999-03-12 2003-06-16 Basf Ag Procedimiento para la obtencion de formas de dosificacion solidas que contienen ciclodextrina.
WO2004009664A2 (en) 2002-07-19 2004-01-29 Omeros Corporation Biodegradable triblock copolymers, synthesis methods therefor, and hydrogels and biomaterials made there from

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU191101B (en) * 1983-02-14 1987-01-28 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt,Hu Process for preparing water-soluble cyclodextrin polymers substituted with ionic groups
HU203899B (en) * 1988-05-03 1991-10-28 Forte Fotokemiai Ipar Process for producing gelatine-cyclodextreine polymeres
DE4033007A1 (de) * 1990-10-18 1992-04-23 Cassella Ag Verwendung von phosphonsaeurediglycidylestern als vernetzer bei der herstellung von hydrogelen
US6048736A (en) * 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
TW494548B (en) * 2000-08-25 2002-07-11 I-Ming Chen Semiconductor chip device and its package method
NO20005718A (no) * 2000-11-13 2001-06-05 Ethics Cosmeceuticals Ab Sammensetning for hud som inneholder kitosan-konjugert CLA og kitosankonjugert vitamin A eller et <beta>-cyklodekstrin-konjugert vitamin A samt fremgangsmåte for fremstilling og anvendelse av denne

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420788A (en) 1964-04-29 1969-01-07 Afico Sa Inclusion resins of cyclodextrin and methods of use
US4357468A (en) 1980-08-07 1982-11-02 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Sorbents of cellulose basis capable of forming inclusion complexes and a process for the preparation thereof
JPS6312490B2 (es) 1983-07-14 1988-03-19 Kogyo Gijutsuin
US4596795A (en) 1984-04-25 1986-06-24 The United States Of America As Represented By The Secretary, Dept. Of Health & Human Services Administration of sex hormones in the form of hydrophilic cyclodextrin derivatives
US4727064A (en) 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
EP0916925A1 (en) 1997-11-17 1999-05-19 YASHIMA ELECTRIC CO., Ltd. Inclination sensor
ES2187457T3 (es) 1999-03-12 2003-06-16 Basf Ag Procedimiento para la obtencion de formas de dosificacion solidas que contienen ciclodextrina.
WO2004009664A2 (en) 2002-07-19 2004-01-29 Omeros Corporation Biodegradable triblock copolymers, synthesis methods therefor, and hydrogels and biomaterials made there from

Non-Patent Citations (48)

* Cited by examiner, † Cited by third party
Title
"Cyclodextrin Technology", 1988, KLUWER ACADEMIC PUBLISHERS, pages: 85
"Medicine and Pharmacy", vol. 2, 1987, CRC BOCA RATON, pages: 115 - 160
ALDERMAN, INT. J. PHARM. TECH. & PROD. MFR., vol. 5, 1984, pages 1 - 9
ALLINGER ET AL.: "Quimica Organica", 1988, pages: 639
ALVAREZ-LORENZO ET AL., MACROMOLECULES, vol. 33, 2000, pages 8693 - 8697
ALVAREZ-LORENZO; CONCHEIRO, J. CHROMATOGR. B, vol. 804, 2004, pages 231 - 245
ALVAREZ-LORENZO; CONCHEIRO, J. CONTROLLED REL., vol. 80, 2002, pages 247 - 257
ANBERGEN; OPPERMANN, POLYMER, vol. 31, 1990, pages 1854 - 1858
ASANUMA ET AL., ADV. MATER., vol. 12, 2000, pages 1019 - 1030
ASANUMA ET AL., ANAL. CHIM. ACTA, vol. 435, 2001, pages 25 - 33
BIBBY ET AL., INT. J. PHARM., vol. 1-11, 2000
BIBBY ET AL., INT. J. PHARM., vol. 197, 2000, pages 1 - 11
CHIEN; LIN, CLIN. PHARMACOKINET., vol. 41, 2002, pages 1267 - 1299
DOELKER, ADV. POLYM. SCI., vol. 107, 1993, pages 200 - 265
DUCHENE; WOUESSIDJEWE, PHARM. TECHNOL., vol. 14, 1990, pages 22 - 30
EICHEMBAUM ET AL., MACROMOLECULES, vol. 32, 1999, pages 4867 - 4878
ENDO ET AL., CHEM. PHARM. BULL., vol. 45, 1997, pages 1856 - 1859
FREELAND ET AL., COSMET. TOILET., vol. 99, 1984, pages 83 - 87
FRIEDMAN, BIOTECHNOL. FOOD INGREDIENTS, 1991, pages 327 - 347
FUNDUEANU ET AL., J. CHROMATOGR. B, vol. 791, 2003, pages 407 - 419
GLIKO-KABIR ET AL., J. CONTROLLED REL., vol. 63, 2000, pages 129 - 134
HISHIYA ET AL., MACROMOLECULES, vol. 32, 1999, pages 2265 - 2269
ILIESCU ET AL., EUR. J. PHARM. SCI., vol. 22, 2004, pages 487 - 495
LEE ET AL., J. APPL. POLYM. SCI., vol. 80, 2001, pages 438 - 446
LIU ET AL., MACROMOL. BIOSCI., vol. 4, 2004, pages 729 - 736
LOFTSSON ET AL., AM. J. DRUG DEL., vol. 2, 2004, pages 261 - 275
LOFTSSON ET AL., INT. J. PHARM., vol. 110, 1995, pages 169 - 177
LOFTSSON; BREWSTER, J. PHARM. SCI., vol. 85, 1996, pages 1017 - 1025
NAKAI ET AL., CHEM. PHARM. BULL., vol. 31, 1983, pages 3745 - 3747
OSADA; KAJIWARA: "Gels Handbook", vol. 3, 2001, ACADEMIC PRESS, pages: 259 - 285
PEPPAS ET AL., EUR. J. PHARM. BIOPHARM., vol. 50, 2000, pages 27 - 46
PERLOVICH ET AL., EUR. J. PHARM. SCI., vol. 20, 2003, pages 197 - 200
PITHA; PITHA, J. PHARM. SCI., vol. 74, 1985, pages 987 - 990
POOLE ET AL., FOOD ADDITIVES & CONTAMINANTS, vol. 21, 2004, pages 905 - 919
POSE-VILARNOVO ET AL., J. CONTROLLED REL., vol. 94, 2004, pages 351 - 363
RATHBONE ET AL.: "Controlled Release Veterinary Drug Delivery", 2000, ELSEVIER
RODRIGUEZ ET AL., J. CONTROLLED REL., vol. 86, 2003, pages 253 - 265
SAENGER, ANGEW. CHEM. INT. ED. ENG., vol. 92, 1980, pages 343 - 361
SANBE ET AL., ANALYT. SCI., vol. 19, 2003, pages 715 - 719
SAVAGE; ETHERS: "Cellulose and Cellulose Derivatives", 1971, WILEY-INTERSCIENCE, pages: 785 - 809
See also references of EP1873167A4
SELLERGREN ET AL., CHEM. MATER., vol. 10, 1998, pages 4037 - 4046
SHAO ET AL., MACROMOLECULES, vol. 33, 2000, pages 19 - 25
SJ6STROM; PICULELL, LANGMUIR, vol. 14, 2001, pages 3836 - 3843
THE UNITED STATES PHARMACOPOEIA 27/NATIONAL FORMULARY, vol. 22, 2004
UEKAMA, CHEM. PHARM. BULL., vol. 52, 2004, pages 900 - 915
VÁZQUEZ, DRUG DEV. IND. PHARM., vol. 18, 1992, pages 1355 - 1375
YUK; BAE, CRIT. REV. THER. DRUG CARRIER SYST., vol. 16, 1999, pages 385 - 423

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003656A1 (en) * 2007-07-04 2009-01-08 Sea Marconi Technologies Di Vander Tumiatti S.A.S. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs
US9161987B2 (en) 2007-11-28 2015-10-20 Fziomed, Inc. Carboxymethylcellulose polyethylene glycol compositions for medical uses
US9345809B2 (en) 2007-11-28 2016-05-24 Fziomed, Inc. Carboxymethylcellulose polyethylene glycol compositions for medical uses
US9682167B2 (en) 2007-11-28 2017-06-20 Fziomed, Inc. Carboxymethylcellulose polyethylene glycol compositions for medical uses
WO2010018293A1 (es) 2008-08-06 2010-02-18 Universidade De Santiago De Compostela Hidrogeles acrílicos con ciclodextrinas colgantes, su preparación y su aplicación como sistemas de liberación y componentes de lentes de contacto

Also Published As

Publication number Publication date
ES2310948B2 (es) 2009-09-16
US20090214604A1 (en) 2009-08-27
EP1873167A4 (en) 2010-08-18
WO2006089993A3 (es) 2006-11-02
WO2006089993B1 (es) 2006-11-30
EP1873167A2 (en) 2008-01-02
ES2310948A1 (es) 2009-01-16

Similar Documents

Publication Publication Date Title
ES2310948B2 (es) Procedimiento de obtencion de hidrogeles de ciclodextrinas con glicidileteres, las composiciones obtenidas y sus aplicaciones.
Van De Manakker et al. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications
George et al. Natural biodegradable polymers based nano-formulations for drug delivery: A review
Gim et al. Carbohydrate‐based nanomaterials for biomedical applications
Kristl et al. Hydrocolloids and gels of chitosan as drug carriers
ES2320801T3 (es) Procedimiento para la fabricacion de sulfato de celulosa con caracteristicas mejoradas.
Hu et al. Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release
Wöhl-Bruhn et al. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres
Dhiman et al. Pharmaceutical applications of cyclodextrins and their derivatives
JP2008542342A5 (es)
EP3148600B1 (en) Cyclodextrin-grafted hyaluronic acid crosslinked with dextran and uses thereof
BRPI0613234A2 (pt) sistema que inclui nanopartìculas para a libertação de moléculas biologicamente ativas, composição farmacêutica, composição cosmética, vacina, procedimento para obtenção de um sistema para a libertação controlada de molécula biologicamente ativa, procedimento para a obtenção de nanopartìculas e utilização de um sistema
WO2016097211A1 (en) Grafting of cyclodextrin by amide bonds to an ether cross-linked hyaluronic acid and uses thereof
WO2014198683A2 (en) Ha with cyclodextrins
CN106188574A (zh) 一种羧甲基可得然胶水溶液或水凝胶及其制备方法和应用
US20170210829A1 (en) Cross-linked polymer mixture of hyaluronic acid and dextran grafted with cyclodextrins and uses thereof
Badwaik et al. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms
Sahu et al. Hydrogel: preparation, characterization and applications
Ma et al. Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding
ES2370093T3 (es) Procedimiento de preparación de derivados (poli(óxido de etileno) poli(óxido de propileno)) termosensibles, útiles para funcionalizar el quitosano.
Luzardo-Alvarez et al. Cyclodextrin-based polysaccharidic polymers: an approach for the drug delivery
GUVEN et al. Micro and nanogels for biomedical applications
ES2371898B2 (es) Nanogeles de ciclodextrina.
Koshani et al. Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose
Joshy et al. An overview of the recent developments in hydrogels

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006725794

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006725794

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887167

Country of ref document: US